JP6191671B2 - 冷媒漏洩箇所特定方法 - Google Patents

冷媒漏洩箇所特定方法 Download PDF

Info

Publication number
JP6191671B2
JP6191671B2 JP2015195327A JP2015195327A JP6191671B2 JP 6191671 B2 JP6191671 B2 JP 6191671B2 JP 2015195327 A JP2015195327 A JP 2015195327A JP 2015195327 A JP2015195327 A JP 2015195327A JP 6191671 B2 JP6191671 B2 JP 6191671B2
Authority
JP
Japan
Prior art keywords
refrigerant
flow path
heat source
valve
leakage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015195327A
Other languages
English (en)
Other versions
JP2017067396A (ja
Inventor
一泰 松井
一泰 松井
東 近藤
東 近藤
完 池宮
完 池宮
竹上 雅章
雅章 竹上
直宏 田中
直宏 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2015195327A priority Critical patent/JP6191671B2/ja
Priority to PCT/JP2016/078489 priority patent/WO2017057377A1/ja
Priority to ES16851548T priority patent/ES2753754T3/es
Priority to EP16851548.4A priority patent/EP3358277B1/en
Publication of JP2017067396A publication Critical patent/JP2017067396A/ja
Application granted granted Critical
Publication of JP6191671B2 publication Critical patent/JP6191671B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2108Temperatures of a receiver

Description

本発明は、冷媒漏洩箇所特定方法に関する。
冷媒回路を有する装置においては、配管損傷や機器の劣化等を要因として、冷媒漏洩が生じる場合がある。係る場合には、人体に対する保安性確保等の観点から、冷媒漏洩が生じた事実を早急に検知する必要がある。従来においては、冷媒漏洩を検知する方法として、例えば以下のような方法が提案されている。
特許文献1(特開2014−95514号公報)では、レシーバを含む冷媒回路において、冷媒をレシーバに回収する冷媒回収運転を行った後にレシーバ内の液面高さを検出し、検出した液面高さと所定の基準値とを比較することで充填冷媒量が不足していることを検知し、これにより冷媒漏洩の有無を判定する方法が提案されている。
また、特許文献2(特開2011−226704号公報)では、過冷却熱交換器を含む冷媒回路において、過冷却熱交換器の出口における冷媒の状態(冷媒の過冷却度等)に基づいて充填冷媒量が不足していることを検知し、これにより冷媒漏洩の有無を判定する方法が提案されている。
また、特許文献3(特開2013−40730号公報)では、複数の利用ユニットを含む冷媒回路において、各利用ユニット内に冷媒漏洩を検出可能な冷媒漏洩センサを配置することで、いずれかの利用ユニットで冷媒漏洩が生じた際に、冷媒漏洩が生じた事実及び冷媒漏洩が生じた利用ユニットを特定する方法が提案されている。
ここで、装置の設置環境によっては、冷媒漏洩が生じた場合、修繕工数の最小化、迅速な復旧、及び漏洩原因や責任所在の明確化が必要となる。このため、冷媒漏洩が生じた事実のみならず、冷媒漏洩が生じた箇所についても早急に特定する必要がある。
しかし、特許文献1及び特許文献2に開示される方法によると、冷媒漏洩が生じた事実については判定可能であるが、冷媒漏洩が生じた箇所については具体的に特定できない。一方、特許文献3に開示される方法によると、冷媒漏洩が生じた事実のみならず、冷媒漏洩が生じた箇所についても特定可能ではあるが、複数の冷媒漏洩センサを配置する必要があるためコスト増大が懸念される。
そこで、本発明の課題は、コスト増大を抑制しつつ、冷媒回路において冷媒漏洩が生じた際に冷媒漏洩箇所を特定可能な冷媒漏洩箇所特定方法を提供することである。
本発明の第1観点に係る冷媒漏洩箇所特定方法は、圧縮機、及び冷媒の流れを遮断する閉状態をとりうる複数の弁を含む冷媒回路において冷媒漏洩が生じた際に冷媒漏洩箇所を特定する冷媒漏洩箇所特定方法であって、第1工程と、第2工程と、を備える。第1工程は、圧縮機が停止している状態において、各弁を閉状態に設定することで、冷媒回路を複数の冷媒流路に区分けする工程である。第2工程は、第1工程の後に各冷媒流路における冷媒の状態の変化を検出することで、各冷媒流路における冷媒漏洩の有無を判定する工程である。
本発明の第1観点に係る冷媒漏洩箇所特定方法では、第1工程において圧縮機が停止している状態で各弁が閉状態に設定されて冷媒回路が複数の冷媒流路に区分けされ、第2工程において各冷媒流路における冷媒の状態の変化が検出され各冷媒流路における冷媒漏洩の有無が判定される。これにより、冷媒回路が複数の冷媒流路に区分けされ、冷媒流路毎に冷媒漏洩の有無が判定される。その結果、複数の冷媒漏洩センサを配置せずとも、冷媒漏洩箇所を特定することが可能となる。よって、コスト増大を抑制しつつ冷媒漏洩が生じた際に冷媒漏洩箇所を特定することが可能となる。
なお、ここで用いられる「弁」は、冷媒の流れを遮断可能なものが適宜選定され、例えば、通電状態を切り換えることで「閉状態」に制御可能な弁(電磁弁や電動弁)や、手動で「閉状態」に設定可能な閉鎖弁等が想定される。
また、ここでの「冷媒」は、特に限定されないが、例えば、R32のような微燃性の冷媒、又は、プロパンのような燃焼性を有する冷媒、又は、アンモニアのような毒性を有する冷媒が想定される。
また、ここでの「冷媒の状態」は、冷媒漏洩が生じている事実を特定可能な変数であれば特に限定されないが、例えば冷媒の圧力や温度等が想定される。
本発明の第2観点に係る冷媒漏洩箇所特定方法は、第1観点に係る冷媒漏洩箇所特定方法であって、第2工程においては、第1冷媒流路において冷媒状態検出センサによって冷媒の状態を検出した後に、第2冷媒流路と第1冷媒流路とを区分けする弁を、閉状態から開状態に切り換え、第1冷媒流路と第2冷媒流路とを連通させた状態で、冷媒状態検出センサによって冷媒の状態の変化を検出することで第2冷媒流路の冷媒の状態の変化を検出する。冷媒状態検出センサは、冷媒の状態の変化を検出するセンサである。開状態は、弁が冷媒の流れを許容する状態である。第1冷媒流路は、冷媒状態検出センサが配置されている冷媒流路である。第2冷媒流路は、冷媒状態検出センサが配置されていない冷媒流路である。
本発明の第2観点に係る冷媒漏洩箇所特定方法では、第2工程において、第1冷媒流路において冷媒状態検出センサによって冷媒の状態を検出した後に、第2冷媒流路と第1冷媒流路とを区分けする弁を、閉状態から開状態に切り換え、第1冷媒流路と第2冷媒流路とを連通させた状態で、冷媒状態検出センサによって冷媒の状態の変化を検出することで第2冷媒流路の冷媒の状態の変化を検出する。これにより、冷媒状態検出センサが配置されていない第2冷媒流路における冷媒の状態を検出可能となる。その結果、冷媒状態検出センサを各冷媒流路において配置せずとも、冷媒漏洩箇所を特定することが可能となる。よって、コスト増大をさらに抑制しつつ冷媒漏洩が生じた際に冷媒漏洩箇所を特定することが可能となる。
なお、ここでの「冷媒状態検出センサ」は、例えば、冷媒の圧力を検出する圧力センサや、冷媒の温度を検出する温度センサ等が想定される。
本発明の第3観点に係る冷媒漏洩箇所特定方法は、第1観点又は第2観点に係る冷媒漏洩箇所特定方法であって、第1工程は、冷媒回収工程を含む。冷媒回収工程は、圧縮機を運転させて、冷媒を収容可能な容器に冷媒回路内の冷媒の一部を回収する工程である。第1工程では、冷媒回収工程が完了した後に、圧縮機を停止させてから各弁を閉状態に切り換えて冷媒回路を複数の冷媒流路に区分けする。これにより、容器に液冷媒を回収した後に、各冷媒流路内に存在するガス冷媒の状態の変化を検出することが可能となる。すなわち、第2工程において、冷媒漏洩が生じた場合の状態の変化が液冷媒よりも著しいガス冷媒の状態の変化を検出することが可能となる。よって、高精度に判定を行うことが可能となる。
本発明の第4観点に係る冷媒漏洩箇所特定方法は、第1観点から第3観点のいずれかに係る冷媒漏洩箇所特定方法であって、第1工程は、充填冷媒量判定運転において充填冷媒量が適切でないと判定されたこと、又は冷媒漏洩センサが冷媒漏洩を検出したこと、を契機として行われる。充填冷媒量判定運転は、冷媒回路内の充填冷媒量の適否を判定する運転である。冷媒漏洩センサは、冷媒回路における冷媒漏洩を検出するセンサである。
これにより、冷媒回路における充填冷媒量が不足していることが特定されてから、第1工程及び第2工程が行われる。すなわち、第1工程及び第2工程は、冷媒漏洩が生じた際の冷媒漏洩箇所を特定することを主たる目的として行われ、冷媒漏洩が生じた事実を検知することを主たる目的として行われるものではない。よって、冷媒漏洩の有無を判定する上で、その都度、圧縮機を停止する必要がなくなり、温度管理の対象となる物品の劣化防止や、快適性の低下が抑制される。
なお、ここでの「冷媒漏洩センサ」は、漏洩した冷媒を検出するセンサであって、例えば、漏洩した冷媒の濃度に応じて電気抵抗値の変化によって冷媒漏洩を検出する。すなわち、「冷媒漏洩センサ」は、冷媒の状態を検出する「冷媒状態検出センサ」とは相違する。
本発明の第5観点に係る冷媒漏洩箇所特定方法は、第1観点から第4観点のいずれかに係る冷媒漏洩箇所特定方法であって、第2工程においては、冷媒漏洩が生じていると判定した冷媒流路について報知する情報を、情報出力装置において出力させる。情報出力装置は、情報を出力する装置である。
これにより、冷媒漏洩が生じた場合、冷媒漏洩が生じている箇所を特定する情報が情報出力装置から出力される。その結果、冷媒漏洩が生じた場合に、ユーザが、冷媒漏洩が生じた事実及び冷媒漏洩が生じた箇所を認識しやすくなり対処を促される。よって冷媒漏洩に対する保安性が向上する。
本発明の第1観点に係る冷媒漏洩箇所特定方法では、冷媒回路が複数の冷媒流路に区分けされ、冷媒流路毎に冷媒漏洩の有無が判定される。その結果、複数の冷媒漏洩センサを配置せずとも、冷媒漏洩箇所を特定することが可能となる。よって、コスト増大を抑制しつつ冷媒漏洩が生じた際に冷媒漏洩箇所を特定することが可能となる。
本発明の第2観点に係る冷媒漏洩箇所特定方法では、冷媒状態検出センサが配置されていない第2冷媒流路における冷媒の状態を検出可能となる。その結果、冷媒状態検出センサを各冷媒流路において配置せずとも、冷媒漏洩箇所を特定することが可能となる。よって、コスト増大をさらに抑制しつつ冷媒漏洩が生じた際に冷媒漏洩箇所を特定することが可能となる。
本発明の第3観点に係る冷媒漏洩箇所特定方法では、容器に液冷媒を回収した後に、各冷媒流路内に存在するガス冷媒の状態の変化を検出することが可能となる。すなわち、第2工程において、冷媒漏洩が生じた場合の状態の変化が液冷媒よりも著しいガス冷媒の状態の変化を検出することが可能となる。よって、高精度に判定を行うことが可能となる。
本発明の第4観点に係る冷媒漏洩箇所特定方法では、冷媒回路における充填冷媒量が不足していることが特定された状態で、第1工程及び第2工程が行われる。すなわち、第1工程及び第2工程は、冷媒漏洩が生じた際の冷媒漏洩箇所を特定することを主たる目的として行われ、冷媒漏洩が生じた事実を検知することを主たる目的として行われるものではない。よって、冷媒漏洩の有無を判定する上で、その都度、圧縮機を停止する必要がなくなり、温度管理の対象となる物品の劣化防止や、快適性の低下が抑制される。
本発明の第5観点に係る冷媒漏洩箇所特定方法では、冷媒漏洩が生じた場合、所定の報知情報(冷媒漏洩が生じている箇所を特定する情報)が出力される。その結果、冷媒漏洩が生じた場合に、ユーザが、冷媒漏洩が生じた事実及び冷媒漏洩が生じた箇所を認識しやすくなり対処を促される。よって冷媒漏洩に対する保安性が向上する。
本発明の一実施形態にかかる冷媒漏洩箇所特定方法を適用される冷凍装置の概略構成図。 冷凍装置の冷媒回路に含まれる第1冷媒流路、第2冷媒流路及び第3冷媒流路を模式的に示した図。 コントローラと、コントローラに接続される各部と、概念的に示したブロック図。 コントローラの処理の流れの一例を示したフローチャート。 コントローラの処理の流れの一例を示したフローチャート。 充填冷媒量判定モードにおける冷凍装置の各部における動作を模式的に示したシーケンス図。 冷媒漏洩判定モードにおける冷凍装置の各部における動作を模式的に示したシーケンス図。 本発明の一実施形態にかかる冷媒漏洩箇所特定方法を適用される変形例に係る冷凍装置の概略構成図。 変形例に係る冷凍装置の冷媒回路に含まれる第1冷媒流路及び第2冷媒流路を模式的に示した図。
以下、図面を参照しながら、本発明の一実施形態に係る冷媒漏洩箇所特定方法について説明する。なお、以下の実施形態は、本発明の具体例であって、本発明の技術的範囲を限定するものではなく、発明の要旨を逸脱しない範囲で適宜変更が可能である。
本実施形態に係る冷媒漏洩箇所特定方法は、冷凍装置100に適用されている。
(1)冷凍装置100
図1は、本発明の一実施形態にかかる冷媒漏洩箇所特定方法を適用される冷凍装置100の概略構成図である。冷凍装置100は、蒸気圧縮式の冷凍サイクルによって、冷蔵倉庫や店舗のショーケースの庫内等の利用側空間の冷却を行う装置である。冷凍装置100は、主として、熱源ユニット10と、利用ユニット30と、熱源ユニット10と利用ユニット30とを接続する液冷媒連絡管L1及びガス冷媒連絡管G1と、入力装置及び表示装置としての複数のリモコン40と、冷凍装置100の動作を制御するコントローラ50と、を有している。
冷凍装置100では、熱源ユニット10と利用ユニット30とが、液冷媒連絡管L1及びガス冷媒連絡管G1を介して接続されることで、冷媒回路RCが構成されている。冷凍装置100では、冷媒回路RC内に封入された冷媒が、圧縮され、冷却又は凝縮され、減圧され、加熱又は蒸発された後に、再び圧縮される、という冷凍サイクルが行われる。本実施形態では、冷媒回路RCには、蒸気圧縮式の冷凍サイクルを行うための冷媒としてR32が充填されている。
(1−1)熱源ユニット10
熱源ユニット10は、液冷媒連絡管L1及びガス冷媒連絡管G1を介して利用ユニット30と接続されており、冷媒回路RCの一部を構成している。熱源ユニット10は、主として、圧縮機11と、熱源側熱交換器12と、レシーバ13と、過冷却器14と、熱源側膨張弁15(膨張機構)と、インジェクション弁16と、液側閉鎖弁17と、ガス側閉鎖弁18と、逆止弁19と、を有している。
また、熱源ユニット10は、圧縮機11の吐出側と熱源側熱交換器12のガス側端とを接続する第1熱源側ガス冷媒管P1と、熱源側熱交換器12の液側端と液冷媒連絡管L1とを接続する熱源側液冷媒管P2と、圧縮機11の吸入側とガス冷媒連絡管G1とを接続する第2熱源側ガス冷媒管P3と、を有している。
また、熱源ユニット10は、熱源側液冷媒管P2を流れる冷媒の一部を分岐して圧縮機11に戻すインジェクション管P4を有している。インジェクション管P4は、熱源側液冷媒管P2の過冷却器14の下流側の部分から分岐して、過冷却器14を通過してから圧縮機11の圧縮行程の途中に接続されている。
圧縮機11は、冷凍サイクルにおける低圧の冷媒を高圧になるまで圧縮する機器である。ここでは、圧縮機11として、ロータリ式やスクロール式等の容積式の圧縮要素(図示せず)が圧縮機モータM11によって回転駆動される密閉式構造の圧縮機が使用されている。また、ここでは、圧縮機モータM11は、インバータにより運転周波数の制御が可能であり、これにより、圧縮機11の容量制御が可能になっている。
熱源側熱交換器12は、冷凍サイクルにおける高圧の冷媒の放熱器又は凝縮器として機能する熱交換器である。ここで、熱源ユニット10は、熱源ユニット10内に庫外空気(熱源側空気)を吸入して、熱源側熱交換器12において冷媒と熱交換させた後に、外部に排出するための熱源側ファン20を有している。すなわち、熱源ユニット10は、熱源側熱交換器12を流れる冷媒の冷却源としての熱源側空気を熱源側熱交換器12に供給するファンとして、熱源側ファン20を有している。熱源側ファン20は、熱源側ファンモータM20によって回転駆動される。
レシーバ13は、熱源側熱交換器12において凝縮した冷媒を一時的に溜める容器であり、熱源側液冷媒管P2に配置されている。
過冷却器14は、レシーバ13において一時的に溜められた冷媒をさらに冷却する熱交換器であり、熱源側液冷媒管P2のレシーバ13の下流側の部分に配置されている。
熱源側膨張弁15(弁)は、開度制御が可能な電動膨張弁であり、熱源側液冷媒管P2の過冷却器14の下流側の部分に配置されている。
インジェクション弁16は、インジェクション管P4のうち過冷却器14の入口に至るまでの部分に配置されている。インジェクション弁16は、開度制御が可能な電動膨張弁である。インジェクション弁16は、その開度に応じて、インジェクション管P4を流れる冷媒を過冷却器14に流入させる前に減圧する。このように、過冷却器14は、インジェクション管P4を経て熱源側液冷媒管P2から分岐した冷媒を冷却源として、レシーバ13において一時的に溜められた冷媒を冷却するようになっている。
液側閉鎖弁17(弁)は、熱源側液冷媒管P2と液冷媒連絡管L1との接続部分に配置された手動弁である。液側閉鎖弁17は、一端が熱源側液冷媒管P2に接続され他端が液冷媒連絡管L1に接続されている。液側閉鎖弁17は、開状態に設定されると熱源側液冷媒管P2と液冷媒連絡管L1とを連通させ、閉状態に設定されると熱源側液冷媒管P2と液冷媒連絡管L1とを遮断する。液側閉鎖弁17は、通常時には開状態に設定される。
ガス側閉鎖弁18(弁)は、第2熱源側ガス冷媒管P3とガス冷媒連絡管G1との接続部分に配置された手動弁である。ガス側閉鎖弁18は、一端が第2熱源側ガス冷媒管P3に接続され他端がガス冷媒連絡管G1に接続されている。ガス側閉鎖弁18は、開状態に設定されると第2熱源側ガス冷媒管P3とガス冷媒連絡管G1とを連通させ、閉状態に設定されると第2熱源側ガス冷媒管P3とガス冷媒連絡管G1とを遮断する。ガス側閉鎖弁18は、通常時には開状態に設定される。
逆止弁19は、熱源側液冷媒管P2に配置されている。より詳細には、逆止弁19は、熱源側熱交換器12の出口側において、レシーバ13の入口側に配置されている。逆止弁19は、熱源側熱交換器12の出口側からの冷媒の流れを許容し、レシーバ13の入口側からの冷媒の流れを遮断する。
熱源ユニット10には、熱源ユニット制御部26と電気的に接続された各種センサが配置されている。具体的には、熱源ユニット10の圧縮機11周辺には、圧縮機11の吸入側における冷媒の圧力である吸入圧力LPを検出する吸入圧力センサ21(冷媒状態検出センサ)と、圧縮機11の吐出側における冷媒の圧力である吐出圧力HPを検出する吐出圧力センサ22(冷媒状態検出センサ)と、が配置されている。また、熱源側液冷媒管P2のうちレシーバ13の出口と過冷却器14の入口との間の部分には、レシーバ13の出口における冷媒の温度であるレシーバ出口温度TLを検出するレシーバ出口温度センサ23が配置されている。さらに、熱源側熱交換器12又は熱源側ファン20の周辺には、熱源ユニット10内に吸入される熱源側空気の温度Taを検出する熱源側空気センサ24が配置されている。また、レシーバ13には、レシーバ13に収容されている液冷媒の液面の高さである液面高さLhを検出する液面検知センサ25が配置されている。
熱源ユニット10は、熱源ユニット10を構成する各部の動作を制御する熱源ユニット制御部26を有している。熱源ユニット制御部26は、CPUやメモリ等を含むマイクロコンピュータを有している。熱源ユニット制御部26は、各利用ユニット30の利用ユニット制御部38と通信線cb1を介して接続されており、制御信号等の送受信を行う。
(1−2)利用ユニット30
利用ユニット30は、液冷媒連絡管L1及びガス冷媒連絡管G1を介して熱源ユニット10と接続されており、冷媒回路RCの一部を構成している。
利用ユニット30は、加熱配管31と、利用側膨張弁32と、利用側熱交換器33(蒸発器)と、ドレンパン34と、を有している。また、利用ユニット30は、液冷媒連絡管L1と利用側膨張弁32とを接続する第1利用側液冷媒管P5と、利用側熱交換器33の液側端と利用側膨張弁32とを接続する第2利用側液冷媒管P6と、利用側熱交換器33のガス側端とガス冷媒連絡管G1とを接続する利用側ガス冷媒管P7と、を有している。
加熱配管31は、熱源ユニット10から送られる高圧の液冷媒が通過する冷媒配管である。加熱配管31は、ドレンパン34においてドレン水が凍結することによって生成される氷塊を融解するために配管であり、ドレンパン34に熱的に接続されている。加熱配管31は、第1利用側液冷媒管P5に含まれている。
利用側膨張弁32(弁)は、熱源ユニット10から送られる高圧冷媒の減圧手段(膨張手段)として機能する絞り機構である。利用側膨張弁32は、所定の駆動電圧を供給されることで開度が変化する開度調整が可能な電動弁である。利用側膨張弁32は、一端が第1利用側液冷媒管P5に接続され、他端が第2利用側液冷媒管P6に接続されている。利用側膨張弁32は、最低開度(閉状態)に設定された場合に第1利用側液冷媒管P5及び第2利用側液冷媒管P6間における冷媒の流れを遮断する。
利用側熱交換器33は、冷凍サイクルにおける低圧の冷媒の蒸発器として機能して庫内空気(利用側空気)を冷却する熱交換器である。ここで、利用ユニット30は、利用ユニット30内に利用側空気を吸入して、利用側熱交換器33において冷媒と熱交換させた後に、利用側空間に供給するための利用側ファン36を有している。すなわち、利用ユニット30は、利用側熱交換器33を流れる冷媒の加熱源としての利用側空気を利用側熱交換器33に供給するファンとして、利用側ファン36を有している。運転状態にある利用ユニット30では、利用側ファン36は、利用側ファンモータM36によって回転駆動される。
ドレンパン34は、利用側熱交換器33において生成されるドレン水を受けて回収する。ドレンパン34は、利用側熱交換器33の下方に配置されている。
また、利用ユニット30は、利用ユニット30を構成する各部の動作を制御する利用ユニット制御部38を有している。利用ユニット制御部38は、CPUやメモリ等を含むマイクロコンピュータを有している。利用ユニット制御部38は、熱源ユニット制御部26と通信線cb1を介して接続されており、制御信号等の送受信を行う。
(1−3)リモコン40(情報出力部)
リモコン40は、ユーザが冷凍装置100の運転状態を切り換えるための各種コマンドを入力するための入力装置である。例えば、リモコン40は、冷凍装置100の発停や設定温度等を切り換えるコマンドを、ユーザによって入力される。また、リモコン40は、冷媒漏洩判定モード(後述)において、各種コマンドをユーザによって入力される。
例えば、リモコン40は、ユーザが液側閉鎖弁17及びガス側閉鎖弁18の双方を閉状態に切り換えたことをコントローラ50に対して通知するためのコマンド(閉鎖弁閉通知コマンド)を入力される。また、リモコン40は、ユーザが液側閉鎖弁17を開状態に切り換えたことをコントローラ50に対して通知するためのコマンド(液側閉鎖弁開通知コマンド)を入力される。また、リモコン40は、ユーザがガス側閉鎖弁18を開状態に切り換えたことをコントローラ50に対して通知するためのコマンド(ガス側閉鎖弁開通知コマンド)を入力される。
なお、閉鎖弁閉通知コマンド、液側閉鎖弁開通知コマンド、及びガス側閉鎖弁開通知コマンドは、コントローラ50における冷媒漏洩箇所特定処理(後述)の開始の契機となるコマンドである。
また、リモコン40は、ユーザに対して各種情報を表示するための表示装置としても機能する。例えば、リモコン40は、冷凍装置100の運転状態(設定温度等)を表示する。また、リモコン40は、冷媒漏洩判定モードにおいて、ユーザに対して液側閉鎖弁17及びガス側閉鎖弁18を閉状態に切り換えることを要求する閉鎖弁閉切換要求情報(後述)、ユーザに対して液側閉鎖弁17を開状態に切り換えることを要求する液側閉鎖弁開切換要求情報(後述)、及びユーザに対してガス側閉鎖弁18を開状態に切り換えることを要求するガス側閉鎖弁開切換要求情報(後述)等を表示する。
リモコン40は、利用ユニット制御部38と通信線を介して接続されており、相互に信号の送受信を行っている。リモコン40は、ユーザによって入力されたコマンドを、通信線を介して利用ユニット制御部38へ送信する。また、リモコン40は、通信線を介して受信する指示に応じて情報を表示する。
(1−4)コントローラ50
冷凍装置100では、熱源ユニット制御部26と、各利用ユニット制御部38と、が通信線cb1を介して接続されることで、冷凍装置100の動作を制御するコントローラ50が構成されている。コントローラ50の詳細については、後述の「(4)コントローラ50の詳細」において説明する。
(2)冷却運転における冷媒回路RCにおける冷媒の流れ
以下、各運転モードにおける冷媒回路RCにおける冷媒の流れについて説明する。冷凍装置100では、運転時に、冷媒回路RCに充填された冷媒が、主として、圧縮機11、熱源側熱交換器12(放熱器)、レシーバ13、過冷却器14、熱源側膨張弁15(膨張機構)、利用側膨張弁32、利用側熱交換器33(蒸発器)の順に循環する冷却運転(冷凍サイクル運転)が行われる。この冷却運転においては、インジェクション管P4を経て熱源側液冷媒管P2を流れる冷媒の一部が分岐されて、過冷却器14を通過した後に、圧縮機11に戻される。
冷却運転が開始されると、冷媒回路RC内において、冷媒が圧縮機11に吸入されて圧縮された後に吐出される。ここで、冷凍サイクルにおける低圧は、吸入圧力センサ21によって検出される吸入圧力LPであり、冷凍サイクルにおける高圧は、吐出圧力センサ22によって検出される吐出圧力HPである。
圧縮機11では、利用ユニット30で要求される冷却負荷に応じた容量制御が行われる。具体的には、吸入圧力LPの目標値が利用ユニット30で要求される冷却負荷に応じて設定され、吸入圧力LPが目標値になるように圧縮機11の運転周波数が制御される。圧縮機11から吐出されたガス冷媒は、第1熱源側ガス冷媒管P1を経て、熱源側熱交換器12のガス側端に流入する。
熱源側熱交換器12のガス側端に流入したガス冷媒は、熱源側熱交換器12において、熱源側ファン20によって供給される熱源側空気と熱交換を行って放熱して凝縮し、過冷却状態の液冷媒になり、熱源側熱交換器12の液側端から流出する。
熱源側熱交換器12の液側端から流出した液冷媒は、熱源側液冷媒管P2の熱源側熱交換器12からレシーバ13までの間の部分を経て、レシーバ13の入口に流入する。レシーバ13に流入した液冷媒は、レシーバ13において飽和状態の液冷媒として一時的に溜められた後に、レシーバ13の出口から流出する。ここで、レシーバ13の出口における冷媒の温度は、レシーバ出口温度センサ23によって検出されるレシーバ出口温度TLである。
レシーバ13の出口から流出した液冷媒は、熱源側液冷媒管P2のレシーバ13から過冷却器14までの間の部分を経て、過冷却器14の熱源側液冷媒管P2側の入口に流入する。
過冷却器14に流入した液冷媒は、過冷却器14において、インジェクション管P4を流れる冷媒と熱交換を行ってさらに冷却されて過冷却状態の液冷媒になり、過冷却器14の熱源側液冷媒管P2側の出口から流出する。
過冷却器14の熱源側液冷媒管P2側の出口から流出した液冷媒は、熱源側液冷媒管P2の過冷却器14と熱源側膨張弁15との間の部分を経て、熱源側膨張弁15に流入する。このとき、過冷却器14の熱源側液冷媒管P2側の出口から流出した液冷媒の一部は、熱源側液冷媒管P2の過冷却器14と熱源側膨張弁15との間の部分からインジェクション管P4に分岐されるようになっている。
インジェクション管P4を流れる冷媒は、インジェクション弁16によって冷凍サイクルにおける中間圧になるまで減圧される。インジェクション弁16によって減圧された後のインジェクション管P4を流れる冷媒は、過冷却器14のインジェクション管P4側の入口に流入する。過冷却器14のインジェクション管P4側の入口に流入した冷媒は、過冷却器14において、熱源側液冷媒管P2を流れる冷媒と熱交換を行って加熱されてガス冷媒になる。そして、過冷却器14において加熱された冷媒は、過冷却器14のインジェクション管P4側の出口から流出して、圧縮機11の圧縮行程の途中に戻される。
熱源側液冷媒管P2から熱源側膨張弁15に流入した液冷媒は、熱源側膨張弁15によって減圧された後に、液側閉鎖弁17及び液冷媒連絡管L1を経て、利用ユニット30に流入する。
利用ユニット30に流入した冷媒は、第1利用側液冷媒管P5(加熱配管31)を経て利用側膨張弁32に流入する。利用側膨張弁32に流入した冷媒は、利用側膨張弁32によって冷凍サイクルにおける低圧になるまで減圧されて、第2利用側液冷媒管P6を経て利用側熱交換器33の液側端に流入する。
利用側熱交換器33の液側端に流入した冷媒は、利用側熱交換器33において、利用側ファン36によって供給される利用側空気と熱交換を行って蒸発し、ガス冷媒になり、利用側熱交換器33のガス側端から流出する。
利用側熱交換器33のガス側端から流出したガス冷媒は、利用側ガス冷媒管P7、ガス冷媒連絡管G1、ガス側閉鎖弁18及び第2熱源側ガス冷媒管P3を経て、再び、圧縮機11に吸入される。
(3)冷媒回路RCに含まれる冷媒流路
図2は、冷媒回路RCに含まれる第1流路RP1、第2流路RP2、及び第3流路RP3を模式的に示した図である。冷媒回路RCは、図2に示すように、主として、第1流路RP1、第2流路RP2、及び第3流路RP3に分かれる。
第1流路RP1(第1冷媒流路)は、熱源ユニット10内(より詳細には、液側閉鎖弁17の一端側とガス側閉鎖弁18の一端側の間)において構成される冷媒流路である。具体的には、第1流路RP1は、第1熱源側ガス冷媒管P1、熱源側液冷媒管P2、第2熱源側ガス冷媒管P3、及びインジェクション管P4で構成される冷媒流路である。すなわち、第1流路RP1は、圧縮機11、熱源側熱交換器12、レシーバ13、過冷却器14、熱源側膨張弁15、及びインジェクション弁16等を含む冷媒流路である。
第2流路RP2(第2冷媒流路)は、利用ユニット30の一部からガス冷媒連絡管G1からにかけて(より詳細には、利用側膨張弁32の一端側とガス側閉鎖弁18の他端側との間において)構成される冷媒流路である。具体的には、第2流路RP2は、第2利用側液冷媒管P6、利用側ガス冷媒管P7及びガス冷媒連絡管G1で構成される冷媒流路である。すなわち、第2流路RP2は、利用側熱交換器33等を含む冷媒流路である。
第3流路RP3(第2冷媒流路)は、液冷媒連絡管L1から利用ユニット30の一部にかけて(より詳細には、液側閉鎖弁17の他端側と利用側膨張弁32の他端側との間において)構成される冷媒流路である。具体的には、第3流路RP3は、液冷媒連絡管L1及び第1利用側液冷媒管P5で構成される冷媒流路である。すなわち、第3流路RP3は、加熱配管31等を含む冷媒流路である。
すなわち、冷媒回路RCは、各弁(具体的には、液側閉鎖弁17、及びガス側閉鎖弁18及び利用側膨張弁32)が閉状態に設定されることで、複数の冷媒流路(RP1、RP2、及びRP3)に区分けされる。
(4)コントローラ50の詳細
冷凍装置100では、熱源ユニット制御部26、及び利用ユニット制御部38が通信線で接続されることで、コントローラ50が構成されている。図3は、コントローラ50と、コントローラ50に接続される各部と、概念的に示したブロック図である。
コントローラ50は、複数の制御モードを有し、遷移している制御モードに応じて冷凍装置100の運転を制御する。本実施形態において、コントローラ50は、制御モードとして、平常時に遷移する通常運転モードと、充填冷媒量の適否(冷媒漏洩の有無等)を判定する場合に遷移する充填冷媒量判定モードと、冷媒漏洩が生じた場合に遷移する冷媒漏洩判定モードと、を有している。
コントローラ50は、熱源ユニット10に含まれる、各アクチュエータ(具体的には、圧縮機11(圧縮機モータM11)、熱源側膨張弁15、インジェクション弁16、及び熱源側ファン20(熱源側ファンモータM20))と、各種センサ(吸入圧力センサ21、吐出圧力センサ22、レシーバ出口温度センサ23、及び熱源側空気センサ24、液面検知センサ25等)と、電気的に接続されている。また、コントローラ50は、利用ユニット30に含まれるアクチュエータ(具体的には、利用側ファン36(利用側ファンモータM36)と電気的に接続されている。また、コントローラ50は、リモコン40と、電気的に接続されている。
コントローラ50は、主として、記憶部51と、通信部52と、モード制御部53と、アクチュエータ制御部54と、充填冷媒量不足判別部55と、表示制御部56と、冷媒漏洩箇所特定部57と、を有している。なお、コントローラ50内におけるこれらの各部は、熱源ユニット制御部26及び/又は利用ユニット制御部38に含まれる各部が一体的に機能することによって実現されている。
(4−1)記憶部51
記憶部51は、例えば、ROM、RAM、及びフラッシュメモリ等で構成されており、揮発性の記憶領域と不揮発性の記憶領域を含む。記憶部51には、コントローラ50の各部における処理を定義した制御プログラムが格納されている。
また、記憶部51は、各センサの検出値を、記憶する検出値記憶領域510を含んでいる。検出値記憶領域510には、例えば吸入圧力センサ21の検出値(吸入圧力LP)、吐出圧力センサ22の検出値(吐出圧力HP)、及び液面検知センサ25の検出値(液面高さLh)等が記憶される。
また、記憶部51は、後述の充填冷媒量判定において用いられる基準値Shを記憶する基準値記憶領域511を含んでいる。基準値Shは、後述する冷媒回収運転の完了後におけるレシーバ13における液面高さの基準値である。基準値Shは、冷媒回路RCにおける充填済みの冷媒量及びレシーバ13の容量等に応じて予め設定される。
また、記憶部51は、圧力基準値テーブル(図示省略)を記憶する圧力基準値記憶領域512を含んでいる。圧力基準値テーブルには、レシーバ出口温度センサ23及び熱源側空気センサ24の検出値(TL及びTa)、圧縮機11の特性から定まる冷媒循環量、及び各種冷媒配管の配管長等に応じて、吸入圧力及び吐出圧力の圧力基準値が状況別に定義されている。
また、記憶部51には、所定のビット数を有する複数のフラグが設けられている。
例えば、記憶部51には、コントローラ50が遷移している制御モードを判別可能な制御モード判別フラグ513が設けられている。制御モード判別フラグ513は、所定のビット数を含み、遷移している制御モードに応じて所定のビットが立てられる。
また、記憶部51には、冷媒漏洩判定モードにおいて実行される冷媒回収運転(後述)が完了したか否かを判別する冷媒回収完了フラグ514が設けられている。冷媒回収完了フラグ514は、冷媒漏洩判定モードにおいて実行される冷媒回収運転が完了した場合に立てられる。
また、記憶部51には、冷媒回路RCにおいて充填されている冷媒量が不足しているか否かを判定する充填冷媒量判定が完了したか否かを判別する充填冷媒量判定完了フラグ515が設けられている。充填冷媒量判定完了フラグ515は、充填冷媒量判定が完了した場合に立てられる。
また、記憶部51には、冷媒回路RCにおいて充填されている冷媒量が不足している(すなわち、冷媒回路RCにおいて冷媒を充填する際の充填冷媒量が適切でない、又は冷媒回路RCにおいて冷媒漏洩が生じている)か否かを判別するための充填冷媒量不足判別フラグ516が設けられている。充填冷媒量不足判別フラグ516は、冷媒回路RCにおいて充填されている冷媒量が不足している(すなわち、冷媒回路RCにおいて冷媒を充填する際の充填冷媒量が適切でない、又は冷媒回路RCにおいて冷媒漏洩が生じている)場合に立てられる。
また、記憶部51には、冷媒漏洩判定モードにおいて実行される冷媒漏洩箇所特定処理(後述)の進捗の程度を示す特定処理進捗フラグ517が設けられている。特定処理進捗フラグ517は、所定のビット数を含み、実行されている冷媒漏洩箇所特定処理の進捗状況に応じて所定のビットが立てられる。
また、記憶部51には、冷媒漏洩箇所特定処理において特定された冷媒漏洩箇所を判別する冷媒漏洩箇所判別フラグ518が設けられている。冷媒漏洩箇所判別フラグ518は、所定のビット数を含み、冷媒漏洩箇所特定処理において特定された冷媒漏洩箇所に応じて所定のビットが立てられる。
また、記憶部51には、リモコン40を介して所定のコマンド(後述)を入力されたか否かを判別するためのコマンド判別フラグ519が設けられている。コマンド判別フラグ519は、所定のビット数を含み、状況に応じて所定のコマンドが入力された場合に、対応するビットを立てられる。例えば、コマンド判別フラグ519は、冷媒漏洩判定モード時に、ユーザによって入力された閉鎖弁閉通知コマンド、液側閉鎖弁開通知コマンド、及びガス側閉鎖弁開通知コマンドを受信した場合に、受信したコマンドに対応するビットを立てられる。
(4−2)通信部52
通信部52は、コントローラ50に接続される各機器と、信号の送受信を行うための通信インターフェースとしての役割を果たす機能部である。通信部52は、アクチュエータ制御部54からの依頼を受けて、指定されたアクチュエータに所定の信号を送信する。また、通信部52は、各種センサ(21〜25)、リモコン40から出力された信号を受けて、記憶部51の対応する記憶領域に格納するとともに所定のフラグをたてる。
(4−3)モード制御部53
モード制御部53は、制御モードを切り換える機能部である。モード制御部53は、切り換える制御モードに応じて制御モード判別フラグ513を立てる。モード制御部53は、通常時には、制御モードを通常運転モードに切り換える。
モード制御部53は、ユーザがリモコン40を介して充填冷媒量判定の実行を指示する冷媒量判定開始コマンドを入力することで、制御モードを通常運転モードから充填冷媒量判定モードへと切り換える。その結果、ユーザが所望のタイミングで、制御モードを充填冷媒量判定モードに切り換えられる。
モード制御部53は、充填冷媒量判定モードにおいて充填冷媒量判定完了フラグ515が立てられ、且つ充填冷媒量不足判別フラグ516が立てられると、制御モードを冷媒漏洩判定モードに切り換える。その後、充填冷媒量判定完了フラグ515及び充填冷媒量不足判別フラグ516をクリアする。
一方、モード制御部53は、充填冷媒量判定モードにおいて充填冷媒量判定完了フラグ515が立てられた状態において、充填冷媒量不足判別フラグ516が立てられない場合には、制御モードを通常運転モードに切り換える。その後、充填冷媒量判定完了フラグ515をクリアする。
(4−4)アクチュエータ制御部54
アクチュエータ制御部54は、制御プログラムに沿って、状況に応じて、冷凍装置100(熱源ユニット10及び利用ユニット30)に含まれる各アクチュエータ(例えば圧縮機11、熱源側膨張弁15、インジェクション弁16、及び利用側膨張弁32等)の動作を制御する。アクチュエータ制御部54は、制御モード判別フラグ513を参照することで遷移している制御モードを判別し、遷移している制御モードに基づき各アクチュエータの動作を制御する。
例えば、アクチュエータ制御部54は、通常運転モード時には、設定温度や各種センサの検出値等に応じて冷却運転が行われるように、圧縮機11の運転容量、熱源側ファン20及び利用側ファン36の回転数、及び熱源側膨張弁15やインジェクション弁16の開度等をリアルタイムに制御する。
また、アクチュエータ制御部54は、充填冷媒量判定モード時には、冷媒回収運転が行われるように各アクチュエータの動作を制御する。冷媒回収運転は、冷媒回路RC内の冷媒の一部を、熱源ユニット10(特にレシーバ13)に回収する運転である。具体的に、アクチュエータ制御部54は、冷媒回収運転において、熱源側膨張弁15及びインジェクション弁16を冷媒の流れを遮断する閉状態に設定するとともに、圧縮機11を冷媒回収運転用の回転数で運転させる。これにより、冷媒回路RC内の冷媒の一部は、熱源ユニット10に回収される。なお、本実施形態では、冷媒回収が最短時間で完了するように、冷媒回収運転時における圧縮機11の回転数は、最大回転数に設定されている。
アクチュエータ制御部54は、冷媒回収運転開始後、冷媒回収が完了したと想定される状態(具体的には、吸入圧力LPが所定の閾値ΔTh未満の状態)となったことを契機として冷媒回収運転を完了する。そして、アクチュエータ制御部54は、圧縮機11を停止し、冷媒回収完了フラグ514を立てる。なお、閾値ΔThは、冷媒回路RC内に封入されている冷媒量、及び圧縮機11の特性から定まる冷媒循環量等に基づいて、大気圧を下回らない程度の値に設定される。本実施形態において、閾値ΔThは、0.3MPaに設定されている。
(4−5)充填冷媒量不足判別部55
充填冷媒量不足判別部55は、充填冷媒量判定モード時において、冷媒回収完了フラグ514が立てられると(すなわち、冷媒回収運転が完了すると)、冷媒回路RCにおいて充填されている冷媒量が適切か否かを判定する充填冷媒量判定を行う。具体的に、充填冷媒量不足判別部55は、充填冷媒量判定において、記憶部51に記憶されている液面検知センサ25の検出値(液面高さLh)を参照し、当該液面高さLhが所定の基準値Sh未満であるか否かを判定する。
そして、充填冷媒量不足判別部55は、液面高さLhが基準値Sh以上である場合には、充填冷媒量の適否の判定が終了したことを示すべく、充填冷媒量判定完了フラグ515を立てる。一方、充填冷媒量不足判別部55は、液面高さLhが基準値Sh未満である場合には、充填冷媒量判定完了フラグ515を立てるとともに、冷媒回路RCにおける充填冷媒量が不足していることを示すべく充填冷媒量不足判別フラグ516を立てる。
(4−6)表示制御部56
表示制御部56は、表示装置としてのリモコン40の動作を制御する機能部である。表示制御部56は、運転状態や状況に係る情報をユーザに対して表示すべく、リモコン40に所定の情報を出力させる。例えば、表示制御部56は、通常モードで冷却運転中には、設定温度等の各種情報をリモコン40に表示させる。
また、表示制御部56は、充填冷媒量判定モードにおける冷媒回収運転時には、冷媒回収運転を行っていることを表す情報を、リモコン40に表示させる。
また、表示制御部56は、冷媒漏洩判定モード時には、ユーザに所定のアクションを促す情報を表示する。
例えば、表示制御部56は、制御モード判別フラグ513において冷媒漏洩判定モードに切り換えられたことを特定するビットが立てられると(すなわち冷媒漏洩判定モードに遷移すると)、液側閉鎖弁17及びガス側閉鎖弁18を閉状態に切り換えることをユーザに対して要求するテキスト情報(閉鎖弁閉切換要求情報)をリモコン40に表示させる。
また、表示制御部56は、冷媒漏洩判定モード時に、特定処理進捗フラグ517において、第1特定処理(後述)が完了したことを示すビットが立てられ、且つ冷媒漏洩箇所判別フラグ518において第1流路RP1において冷媒漏洩が生じたことを特定するビットが立てられていない場合(すなわち第1特定処理が完了し第1流路RP1において冷媒漏洩が生じていないと想定される場合)には、ガス側閉鎖弁18を開状態に切り換えることをユーザに対して要求するテキスト情報(ガス側閉鎖弁開切換要求情報)をリモコン40に表示させる。
また、表示制御部56は、冷媒漏洩判定モード時に、特定処理進捗フラグ517において、第3特定処理(後述)が完了したことを示すビットが立てられ、且つ冷媒漏洩箇所判別フラグ518において第3流路RP3において冷媒漏洩が生じたことを特定するビットが立てられていない場合(すなわち第3特定処理が完了し第3流路RP3において冷媒漏洩が生じていないと想定される場合)には、液側閉鎖弁17を開状態に切り換えることをユーザに対して要求するテキスト情報(液側閉鎖弁開切換要求情報)をリモコン40に表示させる。
また、表示制御部56は、冷媒漏洩箇所判別フラグ518のいずれかのビットが立てられると、立てられたビットに対応する箇所に応じて冷媒漏洩が生じていることを報知するための情報(冷媒漏洩箇所報知情報)及びサービスマンへの通知を要求する情報を、リモコン40に表示させる。
また、コントローラ50は、特定処理進捗フラグ517において第3特定処理が完了したことが示された場合において冷媒漏洩箇所判別フラグ518のいずれのビットも立てられない時(すなわち、冷媒漏洩箇所特定処理が完了した場合であって冷媒漏洩箇所が特定されない時)には、冷媒回路RCにおける充填冷媒量が適切でない(不足している)ことを報知する情報(充填冷媒量不足報知情報)をリモコン40に表示させる。
(4−7)冷媒漏洩箇所特定部57
冷媒漏洩箇所特定部57は、制御モード判別フラグ513において冷媒漏洩判定モードに切り換えられたことを特定するビットが立てられると(すなわち冷媒漏洩判定モードに遷移すると)、冷媒漏洩箇所特定処理を実行する。
冷媒漏洩箇所特定処理には、主として、第1特定処理と、第2特定処理と、第3特定処理と、が含まれる。第1特定処理は、第1流路RP1(図2参照)における冷媒漏洩の有無を判別するための処理である。第2特定処理は、第2流路RP2(図2参照)における冷媒漏洩の有無を判別するための処理である。第3特定処理は、第3流路RP3(図2参照)における冷媒漏洩の有無を判別するための処理である。
具体的に、冷媒漏洩箇所特定部57は、冷媒漏洩判定モード時にはコマンド判別フラグ519を参照し、閉鎖弁閉通知コマンドを受信したことを判別すると、第1特定処理を実行する。ここで、閉鎖弁閉通知コマンドを受信した状況とは、液側閉鎖弁17及びガス側閉鎖弁18がユーザによって閉状態に切換えられたと想定される状況であり、第1流路RP1と第2流路RP2及び第3流路RP3とが分断された状態にあると想定される状況である。
冷媒漏洩箇所特定部57は、第1特定処理においては、吸入圧力センサ21の検出値(吸入圧力LP)を参照るとともに、吐出圧力センサ22の検出値(吐出圧力HP)を参照することで第1流路RP1における冷媒漏洩の有無を判定する。より詳細には、冷媒漏洩箇所特定部57は、第1特定処理においては、吸入圧力センサ21の検出値(吸入圧力LP)を参照し、所定の閾値を超える割合で吸入圧力LPの変動が継続しているか否かを判定することで第2熱源側ガス冷媒管P3(低圧側)における冷媒漏洩を判定する。また、冷媒漏洩箇所特定部57は、吐出圧力センサ22の検出値(吐出圧力HP)を参照し、所定の閾値を超える割合で吐出圧力HPの変動が継続しているか否かを判定することで第1熱源側ガス冷媒管P1及び熱源側液冷媒管P2(高圧側)における冷媒漏洩の有無を判定する。
冷媒漏洩箇所特定部57は、第1特定処理の結果、第1流路RP1において冷媒漏洩が生じていると判定した場合には、係る情報を示すべく、冷媒漏洩箇所判別フラグ518において第1流路RP1に対応するビットを立てる。この際、冷媒漏洩箇所特定部57は、第1流路RP1の低圧側で冷媒漏洩が生じている場合には第1流路RP1の低圧側に対応するビットを立て、高圧側で冷媒漏洩が生じている場合には第1流路RP1の高圧側に対応するビットを立てる。
また、冷媒漏洩箇所特定部57は、ガス側閉鎖弁開通知コマンドを受信したことを判別すると、第2特定処理を実行する。ここで、ガス側閉鎖弁開通知コマンドを受信した状況とは、ガス側閉鎖弁18がユーザによって開状態に切換えられたと想定される状況であり、第1流路RP1の入口側と第2流路RP2の出口側とが連通した状態であって、第2流路RP2の入口側と第3流路RP3の出口側とが分断された状態にあると想定される状況である。冷媒漏洩箇所特定部57は、第2特定処理においては、吸入圧力センサ21の検出値(吸入圧力LP)を参照し、所定の閾値を超える割合で吸入圧力LPの変動が継続しているか否かを判定することで第2流路RP2における冷媒漏洩の有無を判定する。冷媒漏洩箇所特定部57は、第2特定処理の結果、第2流路RP2において冷媒漏洩が生じていると判定した場合には、係る情報を示すべく、冷媒漏洩箇所判別フラグ518において第2流路RP2に対応するビットを立てる。
また、冷媒漏洩箇所特定部57は、第2特定処理が完了し第2流路RP2において冷媒漏洩が生じていないと判定した場合には、利用側膨張弁32を所定開度に設定して閉状態から開状態に切り換えた後、第3特定処理を実行する。ここで、第2特定処理完了後、利用側膨張弁32が開状態に切り換えられると、第2流路RP2(より詳細には第1流路RP1)の入口側と第3流路RP3の出口側とが連通するとともに、第1流路RP1の出口側と第3流路RP3の入口側とが分断された状態にあると想定される状況である。冷媒漏洩箇所特定部57は、第3特定処理においては、吸入圧力センサ21の検出値(吸入圧力LP)を参照し、所定の閾値を超える割合で吸入圧力LPの変動が継続しているか否かを判定することで第3流路RP3における冷媒漏洩の有無を判定する。冷媒漏洩箇所特定部57は、第3特定処理の結果、第3流路RP3において冷媒漏洩が生じていると判定した場合には、係る情報を示すべく、冷媒漏洩箇所判別フラグ518において第3流路RP3に対応するビットを立てる。
なお、第1特定処理、第2特定処理、及び第3特定処理において用いられる閾値は設計仕様や設置環境に応じて適宜設定される。例えば、冷媒漏洩箇所特定部57は、圧力基準値記憶領域512に記憶されている圧力基準値テーブルに基づき、係る閾値を設定する。但し、制御プログラムにおいて、係る閾値を予め設定しておいてもよい。
以上のような態様で行われる冷媒漏洩箇所特定処理においては、第2流路RP2及び第3流路RP3における冷媒漏洩の有無の判定が、第1流路RP1に配置された吸入圧力センサ21(冷媒状態検出センサ)の検出値に基づき行われている。すなわち、各冷媒流路に圧力センサや温度センサ等の冷媒状態検出センサを配置せずとも、各冷媒流路における冷媒漏洩の有無を個別に判定できるようになっている。
(5)コントローラ50の処理の流れ
以下、コントローラ50の処理の流れの一例について、図4及び図5を参照しながら説明する。図4及び図5は、コントローラ50の処理の流れの一例を示したフローチャートである。
コントローラ50は、電源を投入されると、図4及び図5のステップS101からS125に示すような流れで処理を行う。図4及び図5では、ステップS102からS104において通常運転モードに遷移している場合の処理が示されており、ステップS105からS110において充填冷媒量判定モードに遷移している場合の処理が示されており、ステップS111からS125において冷媒漏洩判定モードに遷移している場合の処理が示されている。より詳細には、ステップS104において冷却運転が行われ、ステップS106及びS107において冷媒回収運転が行われ、ステップS109及びS110において充填冷媒量判定が行われ、ステップS111からS124において冷媒漏洩箇所特定処理が行われる様子が示されている。
なお、図4及び図5に示す処理の流れは、一例であり、適宜変更可能である。例えば、矛盾のない範囲でステップの順序が変更されてもよいし、一部のステップが他のステップと並列的に実行されてもよい。
ステップS101において、コントローラ50は、冷媒量判定開始コマンドを入力された場合には、ステップS105へ進む。一方、冷媒量判定開始コマンドを入力されていない場合には、ステップS102へ進む。
ステップS102において、コントローラ50は、通常運転モードに遷移する。その後ステップS103へ進む。
ステップS103において、コントローラ50は、運転コマンド(運転開始指示)が入力されていない場合には、ステップS101に戻る。一方、運転コマンドが入力されている場合には、ステップS104へ進む。
ステップS104において、コントローラ50は、設定されている設定温度及び各種センサ(20〜25)の検出値に応じて、各アクチュエータの状態をリアルタイムに制御して、冷却運転を行わせる。また、コントローラ50は、設定温度等の各種情報をリモコン40に表示させる。その後、ステップS101に戻る。
ステップS105において、コントローラ50は、充填冷媒量判定モードに遷移する。その後、ステップS106へ進む。
ステップS106において、熱源側膨張弁15及びインジェクション弁16を閉状態に制御して、圧縮機11を所定の回転数(ここでは最大回転数)で運転させることで、冷媒回路RC内の冷媒をレシーバ13に回収する冷媒回収運転を開始する。その後、ステップS107へ進む。
ステップS107において、コントローラ50は、吸入圧力LPが閾値ΔTh未満であるか否かを判定する。当該判定の結果、吸入圧力LPが閾値ΔTh以上である場合には、ステップS107において当該判定を繰り返す。一方、吸入圧力LPが閾値ΔTh未満である場合には、ステップS108へ進む。
ステップS108において、コントローラ50は、吸入圧力LPが閾値ΔTh未満となってレシーバ13への冷媒回収が完了したと想定される状況になったことを受けて、圧縮機11を停止して冷媒回収運転を完了させる。その後、ステップS109へ進む。
ステップS109において、コントローラ50は、冷媒回路RC内に充填されている冷媒量が適切であるか否か、又は冷媒回路RCにおいて冷媒漏洩が生じているか否か、を判定する充填冷媒量判定を開始する。その後、ステップS110へ進む。
ステップS110において、コントローラ50は、液面高さLhが基準値Sh以上か否かを判定する。当該判定の結果、液面高さLhが基準値Sh以上である場合には、ステップS102に戻る。一方、液面高さLhが基準値Sh未満である場合には、ステップS111へ進む。
ステップS111において、コントローラ50は、冷媒漏洩判定モードに遷移する。その後、ステップS112へ進む。
ステップS112において、コントローラ50は、利用側膨張弁32を閉状態に切り換える。また、コントローラ50は、液側閉鎖弁17及びガス側閉鎖弁18を閉状態に切り換えさせることをユーザに対して要求する閉鎖弁閉切換要求情報を、リモコン40に表示させる。その後、ステップS113へ進む。
ステップS113において、コントローラ50は、閉鎖弁閉通知コマンドがユーザによってリモコン40に入力されない場合(すなわち、液側閉鎖弁17及びガス側閉鎖弁18の閉状態への切換えが行われないと想定される場合)には、ステップS125へ進む。一方、コントローラ50は、閉鎖弁閉通知コマンドがユーザによってリモコン40に入力された場合(すなわち、液側閉鎖弁17及びガス側閉鎖弁18の閉状態への切換えが完了したと想定される場合)には、ステップS114へ進む。
ステップS114において、コントローラ50は、冷媒漏洩箇所特定処理における第1特定処理を開始する。具体的に、コントローラ50は、吸入圧力LPが所定の閾値を超える割合で変動しているか否か、及び吐出圧力HPが所定の閾値を超える割合で変動しているか否かを判定することで、第1流路RP1における冷媒漏洩の有無を判別する。その後、ステップS115へ進む。
ステップS115において、コントローラ50は、第1特定処理の結果、第1流路RP1において冷媒漏洩が生じていると想定される場合(すなわち、吸入圧力LP又は吐出圧力HPが所定の閾値を超える割合で変動している場合)には、ステップS124へ進む。一方、第1特定処理の結果、第1流路RP1において冷媒漏洩が生じていないと想定される場合(すなわち、吸入圧力LP又は吐出圧力HPが所定の閾値を超える割合で変動していない場合)には、ステップS116へ進む。
ステップS116において、コントローラ50は、ガス側閉鎖弁18を開状態に切換えさせることをユーザに対して要求するガス側閉鎖弁開切換要求情報を、リモコン40に表示させる。その後、ステップS117へ進む。
ステップS117において、コントローラ50は、ガス側閉鎖弁開通知コマンドがユーザによってリモコン40に入力されない場合(すなわち、ガス側閉鎖弁18の開状態への切換えが行われないと想定される場合)には、ステップS125へ進む。一方、コントローラ50は、ガス側閉鎖弁開通知コマンドがユーザによってリモコン40に入力された場合(すなわち、ガス側閉鎖弁18の開状態への切換えが完了したと想定される場合)には、ステップS118へ進む。
ステップS118において、コントローラ50は、冷媒漏洩箇所特定処理における第2特定処理を開始する。具体的に、コントローラ50は、吸入圧力LPが所定の閾値を超える割合で変動しているか否かを判定することで、第2流路RP2における冷媒漏洩の有無を判別する。その後、ステップS119へ進む。
ステップS119において、コントローラ50は、第2特定処理の結果、第2流路RP2において冷媒漏洩が生じていると想定される場合(すなわち、吸入圧力LPが所定の閾値を超える割合で変動している場合)には、ステップS124へ進む。一方、第2特定処理の結果、第2流路RP2において冷媒漏洩が生じていないと想定される場合(すなわち、吸入圧力LPが所定の閾値を超える割合で変動していない場合)には、ステップS120へ進む。
ステップS120において、コントローラ50は、利用側膨張弁32を所定開度に設定して閉状態から開状態に切り換える。その後、ステップS121へ進む。
ステップS121において、コントローラ50は、冷媒漏洩箇所特定処理における第3特定処理を開始する。具体的に、コントローラ50は、吸入圧力LPが所定の閾値を超える割合で変動しているか否かを判定することで、第3流路RP3における冷媒漏洩の有無を判別する。その後、ステップS122へ進む。
ステップS122において、コントローラ50は、第3特定処理の結果、第3流路RP3において冷媒漏洩が生じていると想定される場合(すなわち、吸入圧力LPが所定の閾値を超える割合で変動している場合)には、ステップS124へ進む。一方、第3特定処理の結果、第3流路RP3において冷媒漏洩が生じていないと想定される場合(すなわち、吸入圧力LPが所定の閾値を超える割合で変動していない場合)には、ステップS123へ進む。
ステップS123において、コントローラ50は、冷媒漏洩箇所特定処理の結果、冷媒漏洩箇所が特定されないことを受けて、冷媒回路RCにおける充填冷媒量が適切でない(不足している)ことを報知する充填冷媒量不足報知情報をリモコン40に表示させ、待機する。
ステップS124において、コントローラ50は、冷媒漏洩箇所特定処理の結果、冷媒漏洩箇所が特定されたことを受けて、冷媒漏洩が生じている箇所を報知する冷媒漏洩箇所報知情報をリモコン40に表示させ、待機する。
ステップS125において、コントローラ50は、閉鎖弁閉要求情報を表示しているにも関わらず閉鎖弁閉通知コマンドがユーザによってリモコン40に入力されない(すなわち、液側閉鎖弁17及びガス側閉鎖弁18の閉状態への切換えが行われない)、又はガス側閉鎖弁開要求情報を表示しているにも関わらずガス側閉鎖弁開通知コマンドがユーザによってリモコン40に入力されない(すなわち、ガス側閉鎖弁18の開状態への切換えが行われない)、と想定されることを受けて、冷媒漏洩箇所特定処理が実行不能であることを報知するエラー情報をリモコン40に表示させ、待機する。
(6)冷凍装置100の各部の動作状態について
ここで、充填冷媒量判定モード及び冷媒漏洩判定モードにおける冷凍装置100の各部における動作を説明する。図6は、充填冷媒量判定モードにおける冷凍装置100の各部における動作を模式的に示したシーケンス図である。図7は、冷媒漏洩判定モードにおける冷凍装置100の各部における動作を模式的に示したシーケンス図である。図6及び図7では、期間S1において充填冷媒量判定が実行され、期間S2において第1特定処理が実行され、期間S3において第2特定処理が実行され、期間S4において第3特定処理が実行される様子が示されている。
(6−1)期間S1
期間S1においては、リモコン40に冷媒量判定開始コマンドが入力されることを契機として、コントローラ50の制御モードが充填冷媒量判定モードに遷移している。
コントローラ50は、充填冷媒量判定モードに係る処理として、熱源側膨張弁15(及びインジェクション弁16)を閉状態に切換えるべく、熱源側膨張弁15(及びインジェクション弁16)に対して駆動信号を出力している。これを受けて、熱源側膨張弁15(及びインジェクション弁16)が閉状態に切り換わっている。
そして、コントローラ50は、圧縮機11を所定の回転数(最大回転数)で駆動させるべく、圧縮機11に対して駆動信号を出力している。これを受けて、圧縮機11は、最大回転数で駆動している。
次に、圧縮機11は、リモコン40において充填冷媒量判定運転中であることを表示させるべく、リモコン40に対し指示を送っている。これを受けて、リモコン40は、充填冷媒量判定運転中であることを表示している。
その後、コントローラ50は、吸入圧力LPが閾値ΔTh未満となることを受けて、冷媒回収が完了したと判定して、圧縮機11を停止させるべく圧縮機11に対して停止信号を出力している。これを受けて圧縮機11は駆動を停止している。
コントローラ50は、充填冷媒量判定を実行し、判定の結果、充填冷媒量が不足していると判定している。その結果、コントローラ50は、冷媒漏洩判定モードに遷移している。
(6−2)期間S2
期間S2においては、コントローラ50は、冷媒漏洩判定モードに遷移した後、利用側膨張弁32を閉状態に切換えるべく、利用側膨張弁32に対して駆動信号を出力している。これを受けて、利用側膨張弁32が閉状態に切り換わっている。
また、コントローラ50は、第1流路RP1と、第2流路RP2及び第3流路RP3を区分けさせるべく、リモコン40に対し閉鎖弁閉切換要求情報を表示させる指示を送っている。これを受けてリモコン40は、閉鎖弁閉切換要求情報を表示している。
そして、閉鎖弁閉切換要求情報が表示された後、ユーザが液側閉鎖弁17及びガス側閉鎖弁18を閉状態に切り換え、閉鎖弁閉通知コマンドをリモコン40に入力している。
その後、コントローラ50は、第1流路RP1における冷媒漏洩の有無を判別すべく、第1特定処理を実行している。
このように、期間S2においては、圧縮機11が停止している状態において各弁(32、17及び18)が閉状態に設定されることで冷媒回路RCが複数の冷媒流路に区分けされる工程(第1工程)が行われた後に、第1流路RP1における冷媒の状態の変化を検出することで冷媒漏洩の有無を判定する工程(第2工程)が行われている。
(6−3)期間S3
期間S3においては、コントローラ50は、第1特定処理の完了後、冷媒漏洩箇所が特定されていない結果を受けて、第1流路RP1の入口側(ガス側)と第2流路RP2の出口側を連通させるべく、リモコン40に対しガス側閉鎖弁開切換要求情報を表示させる指示を送っている。これを受けてリモコン40は、ガス側閉鎖弁開切換要求情報を表示している。
そして、ガス側閉鎖弁開切換要求情報が表示された後、ユーザがガス側閉鎖弁18を開状態に切り換え、ガス側閉鎖弁開通知コマンドをリモコン40に入力している。
その後、コントローラ50は、第2流路RP2における冷媒漏洩の有無を判別すべく、第2特定処理を実行している。
このように、期間S3においては、吸入圧力センサ21(冷媒状態検出センサ)が配置されている第1流路RP1と、吸入圧力センサ21が配置されていない第2流路RP2と、を区分けするガス側閉鎖弁18を開状態に切り換え、第1流路RP1と第2流路RP2とを連通させた状態で吸入圧力センサ21によって吸入圧力LPの変化を検出することで、第2流路RP2の冷媒の状態の変化を検出している。
(6−4)期間S4
期間S4においては、コントローラ50は、第2特定処理の完了後、冷媒漏洩箇所が特定されていない結果を受けて、利用側膨張弁32を所定開度に設定して開状態に切り換えて第1流路RP1の入口側(ガス側)と第3流路RP3の出口側を連通させるべく、利用側膨張弁32に対して駆動信号を出力している。これを受けて、利用側膨張弁32が開状態に切り換わっている。
次に、コントローラ50は、第3流路RP3における冷媒漏洩の有無を判別すべく、第3特定処理を実行している。
このように、期間S4においては、吸入圧力センサ21(冷媒状態検出センサ)が配置されている第1流路RP1と、吸入圧力センサ21が配置されていない第3流路RP3と、を区分けする利用側膨張弁32を開状態に切り換え、第1流路RP1と第3流路RP3とを連通させた状態で吸入圧力センサ21によって吸入圧力LPの変化を検出することで、第3流路RP3の冷媒の状態の変化を検出している。
その後、コントローラ50は、第3特定処理(冷媒漏洩箇所特定処理)の結果に応じて、リモコン40に対し所定の情報(冷媒漏洩箇所報知情報又は充填冷媒量不足報知情報)を表示させる指示を送っている。これを受けてリモコン40は、指示された情報を表示している。
(7)冷凍装置100の特徴
(7−1)
上記実施形態に係る冷媒漏洩箇所特定方法によると、コスト増大を抑制しつつ、冷媒回路RCにおいて冷媒漏洩が生じた際に冷媒漏洩箇所を特定可能な冷媒漏洩箇所特定方法を提供することが可能である。
すなわち、冷媒回路を有する装置においては、配管損傷や機器の劣化等を要因として、冷媒漏洩が生じる場合があり、人体に対する保安性確保等の観点から、冷媒漏洩が生じた事実を早急に検知する必要がある。また、装置の設置環境によっては、冷媒漏洩が生じた場合、修繕工数の最小化、迅速な復旧、及び原因や責任所在の明確化が必要となるため、冷媒漏洩が生じた事実のみならず、冷媒漏洩が生じた箇所についても早急に特定する必要がある。
しかし、従来、提案されている方法によると、冷媒漏洩が生じた事実については判定可能であるが、冷媒漏洩が生じた箇所については具体的に特定できない。または、冷媒漏洩が生じた事実のみならず冷媒漏洩が生じた箇所についても特定可能ではあるが、複数の冷媒漏洩センサを配置する必要があるためコスト増大が懸念される。
この点、上記実施形態に係る冷媒漏洩箇所特定方法では、圧縮機11が停止している状態で各弁(液側閉鎖弁17、ガス側閉鎖弁18及び利用側膨張弁32)が閉状態に設定されて冷媒回路RCが複数の冷媒流路に区分けされる工程(第1工程)と、各冷媒流路(RP1、RP2、及びRP3)における冷媒の圧力の変化を検出することで各冷媒流路における冷媒漏洩の有無を判定する工程(第2工程)と、が含まれている。
これにより、冷媒回路RCが複数の冷媒流路(RP1、RP2、及びRP3)に区分けされ、冷媒流路毎に冷媒漏洩の有無が判定されるようになっている。その結果、複数の冷媒漏洩センサを配置せずとも、冷媒漏洩箇所を特定することが可能となっている。よって、コスト増大を抑制しつつ冷媒漏洩が生じた際に冷媒漏洩箇所を特定することが可能となっている。
(7−2)
上記実施形態に係る冷媒漏洩箇所特定方法では、各冷媒流路(RP1、RP2、及びRP3)における冷媒の圧力の変化を検出することで各冷媒流路における冷媒漏洩の有無を判定している。係る工程においては、圧力センサ(吸入圧力センサ21又は吐出圧力センサ22)が配置されている第1流路RP1の冷媒の圧力を圧力センサによって検出している。その後、第1流路RP1と第2流路RP2とを区分けするガス側閉鎖弁18、又は第1流路RP1と第3流路RP3とを区分けする利用側膨張弁32をユーザによって閉状態から開状態に切り換えさせている。そして、第1流路RP1と第2流路RP2又は第3流路RP3とが連通した状態で、圧力センサが配置されていない第2流路RP2又は第3流路RP3の冷媒の圧力の変化を、第1流路RP1に配置された吸入圧力センサ21によって検出している。
これにより、圧力センサや温度センサ等の冷媒状態検出センサが配置されていない第2流路RP2及び第3流路RP3における冷媒の状態を検出可能となっている。その結果、冷媒状態検出センサを各冷媒流路において配置せずとも、冷媒回路RCにおける冷媒漏洩箇所を特定することが可能となっている。よって、コスト増大を抑制しつつ冷媒漏洩が生じた際に冷媒漏洩箇所を特定することが可能となっている。
(7−3)
上記実施形態に係る冷媒漏洩箇所特定方法では、冷媒を収容可能なレシーバ13に冷媒回路RC内の冷媒の一部を回収する工程が含まれており、係る冷媒を回収する工程の完了後に、圧縮機11が停止され、各弁(液側閉鎖弁17、ガス側閉鎖弁18及び利用側膨張弁32)が閉状態に切り換えられることで冷媒回路RCが複数の冷媒流路に区分けされている。これにより、レシーバ13に液冷媒を回収した後に、各冷媒流路(RP1、RP2、及びRP3)内に存在するガス冷媒の状態の変化を検出することが可能となっている。すなわち、冷媒の圧力の変化を検出することで各冷媒流路における冷媒漏洩の有無を判定する工程において、冷媒漏洩が生じた場合の圧力の変化が液冷媒よりも著しい(早い)ガス冷媒の圧力の変化を検出することが可能となっている。よって、高精度に判定を行うことが可能となっており、液冷媒の圧力の変化を検出することによって判定を行う場合と比較して短時間で判定を行えるようになっている。
(7−4)
上記実施形態に係る冷媒漏洩箇所特定方法では、充填冷媒量判定運転において充填冷媒量が適切でないと判定されたことを契機として、圧縮機11を停止させるとともに各弁(液側閉鎖弁17、ガス側閉鎖弁18及び利用側膨張弁32)を閉状態に切り換えさせて冷媒回路RCを複数の冷媒流路に区分けする工程が行われている。
これにより、冷媒回路RCにおける充填冷媒量が不足していることが特定されてから、圧縮機11を停止して冷媒回路RCを複数の冷媒流路に区分けする工程、及び各冷媒流路における冷媒漏洩の有無を判別する工程(すなわち、冷媒漏洩箇所を特定する工程)が行われている。すなわち、冷媒漏洩の有無を判定する上で、その都度、圧縮機11を停止する必要がないように構成されており、温度管理の対象となる物品の劣化防止や、快適性の低下が抑制される。
(7−5)
上記実施形態に係る冷媒漏洩箇所特定方法では、冷媒漏洩が生じていると判定した冷媒流路(RP1、RP2、及びRP3)について報知する冷媒漏洩箇所報知情報を、リモコン40において出力させる工程が含まれている。
これにより、冷媒漏洩が生じた場合、冷媒漏洩が生じている箇所を特定する冷媒漏洩箇所報知情報がリモコン40において表示されるようになっている。その結果、冷媒漏洩が生じた場合に、ユーザが、冷媒漏洩が生じた事実及び冷媒漏洩が生じた箇所を認識しやすくなっており対処を促されるようになっている。よって冷媒漏洩に対する保安性が向上している。
(8)変形例
上記実施形態は、以下の変形例に示すように適宜変形が可能である。なお、各変形例は、矛盾が生じない範囲で他の変形例と組み合わせて適用されてもよい。
(8−1)変形例A
上記実施形態では、第1流路RP1の入口側(ガス側)と第2流路RP2の出口側を区分けするための弁として手動のガス側閉鎖弁18が用いられ、第1流路RP1の出口側(液側)と第3流路RP3の入口側を区分けするための弁として手動の液側閉鎖弁17が用いられていた。
しかし、液側閉鎖弁17及び/又はガス側閉鎖弁18として、通電されることで開状態と閉状態とを切換えられる電磁弁、又は所定の駆動電圧を供給されることで開度(閉状態を含む)を切り換えられる電動弁を用いてもよい。
係る場合、冷媒漏洩判定モードに係る処理において、液側閉鎖弁17又はガス側閉鎖弁18をユーザによって閉状態又は開状態に切り換えさせる必要がなくなり、リモコン40において、閉鎖弁開切換要求情報又はガス側閉鎖弁開切換要求情報等を表示する必要がなくなる。よって、図5のステップS112において、閉鎖弁閉切換要求情報をリモコン40に表示させるのに代えて、液側閉鎖弁17及びガス側閉鎖弁18に所定の駆動電圧を供給又は遮断することで、電磁弁又は電動弁で構成された液側閉鎖弁17及びガス側閉鎖弁18を閉状態に切り換えるように構成してもよい。また、図5のステップS116において、ガス側閉鎖弁開切換要求情報をリモコン40に表示させるのに代えて、電磁弁又は電動弁で構成されたガス側閉鎖弁18に所定の駆動電圧を供給又は遮断することでガス側閉鎖弁18を開状態に切り換えるように構成してもよい。
その結果、冷媒漏洩箇所を特定する工程を、人手を介さずに実行することが可能となる。すなわち、上記実施形態に係る冷媒漏洩箇所特定方法が自動で実行される。なお、係る場合、冷凍装置100は、冷媒漏洩箇所を自動的に特定可能な冷媒漏洩箇所特定装置として機能する。
(8−2)変形例B
上記実施形態に係る冷媒漏洩箇所特定方法は、冷蔵倉庫や店舗のショーケースの庫内の冷却を行う冷凍装置100に適用されていた。しかし、これに限定されず、本発明は、他の冷凍装置にも適用可能である。例えば、本発明は、建物内の冷房等を行うことで空気調和を実現する空調システム(エアコン)に適用されてもよい。また、例えば、図1における冷媒回路RCにおいて、四路切換弁を配置する又は冷媒配管の配置替えを行うことで、利用側熱交換器33を冷媒の放熱器又は凝縮器として機能させ、利用ユニット30が設置される空間の加熱運転又は暖房運転を行うように構成された冷凍装置においても、本発明は適用可能である。
また、例えば、本発明に係る冷媒漏洩箇所特定方法は、図8に示すような冷凍装置200に適用されてもよい。冷凍装置200は、輸送コンテナ内(庫内)の冷却を行う冷凍装置である。以下、冷凍装置200の冷凍装置100とは異なる部分を説明する。
冷凍装置200は、庫外ユニットとして機能する熱源ユニット10aを熱源ユニット10に代えて有し、庫内ユニットとして機能する利用ユニット30aを利用ユニット30に代えて有している。また、冷凍装置200では、冷媒回路RCに代えて冷媒回路RC1が構成されている。
また、冷凍装置200は、熱源ユニット10a内において、第1熱源側ガス冷媒管P1から分岐する第3熱源側ガス冷媒管P8を有するとともに、第3熱源側ガス冷媒管P8から分岐する第4熱源側ガス冷媒管P9を有している。また、冷凍装置200では、利用ユニット30a内において、第3利用側液冷媒管P10を有している。
また、冷凍装置200では、液側閉鎖弁17及びガス側閉鎖弁18が省略されている。また、冷凍装置200は、第2熱源側ガス冷媒管P3の一端と利用側ガス冷媒管P7の一端とを接続する第1ガス側開閉弁71(弁)が配置されている。また、冷凍装置200は、第3熱源側ガス冷媒管P8の一端と第2利用側液冷媒管P6の一端とを接続する第2ガス側開閉弁72(弁)が配置されている。また、冷凍装置200では、第4熱源側ガス冷媒管P9の一端と第3利用側液冷媒管P10の一端とを接続する第3ガス側開閉弁73(弁)が配置されている。第1ガス側開閉弁71、第2ガス側開閉弁72及び第3ガス側開閉弁73は、通電されることで開状態と閉状態とが切り換わる電磁弁である。
また、冷凍装置200では、利用側膨張弁32に変えて減圧手段としてのキャピラリチューブ32aが配置されている。また、冷凍装置200では、加熱配管31は、第3利用側液冷媒管P10に含まれている。
このような冷凍装置200において構成される冷媒回路RC1は、図9に示すように、主として、第1流路RP1´及び第2流路RP2´に分かれる。図9は、冷媒回路RC1に含まれる第1流路RP1´及び第2流路RP2´を模式的に示した図である。
第1流路RP1´(第1冷媒流路)は、熱源ユニット10a内において構成される冷媒流路である。具体的には、第1流路RP1´は、第1熱源側ガス冷媒管P1、熱源側液冷媒管P2、第2熱源側ガス冷媒管P3、インジェクション管P4、第3熱源側ガス冷媒管P8、及び第4熱源側ガス冷媒管P9で構成される冷媒流路である。
第2流路RP2´(第2冷媒流路)は、利用ユニット30a内において構成される冷媒流路である。具体的には、第2流路RP2´は、第1利用側液冷媒管P5、第2利用側液冷媒管P6、第3利用側液冷媒管P10、及び利用側ガス冷媒管P7で構成される冷媒流路である。すなわち、第3流路RP3は、加熱配管31、キャピラリチューブ32a、利用側熱交換器33等を含む冷媒流路である。
つまり、冷媒回路RC1は、各弁(具体的には、第1ガス側開閉弁71、第2ガス側開閉弁72、第3ガス側開閉弁73、及び熱源側膨張弁15が閉状態に設定されることで、複数の冷媒流路(RP1及びRP2)に区分けされる。
係る冷凍装置200においては、冷媒漏洩判定モードに係る処理において、リモコン40に閉鎖弁開切換要求情報又はガス側閉鎖弁開切換要求情報等を表示させるのに代えて、通電状態を切り換えることで第1ガス側開閉弁71、第2ガス側開閉弁72、及び第3ガス側開閉弁73を閉状態に設定すればよい。また、ガス側閉鎖弁開切換要求情報をリモコン40に表示させるのに代えて、通電状態を切り換えることで第1ガス側開閉弁71を開状態に設定すればよい。
係る処理を冷媒漏洩判定モードにおいて行うことで、本発明の一実施形態に係る冷媒漏洩箇所特定方法を冷凍装置200にも適用することが可能となり、上記実施形態と同様の効果を奏する。
(8−3)変形例C
上記実施形態では、吸入圧力センサ21の検出値(吸入圧力LP)が所定の閾値ΔTh未満となることで、冷媒回収が完了したものとして冷媒回収運転が完了するように構成されていた(図4のステップS107及びステップS108参照)。しかし、冷媒回収運転が完了する契機については、設計仕様や設置環境に応じて適宜変更が可能である。
例えば、吐出圧力センサ22の検出値(吐出圧力HP)が所定値未満となることで冷媒回収が完了したものとして冷媒回収運転が完了するように構成されてもよい。
また、例えば、冷媒回収運転開始後、予め設定した所定時間が経過したことを契機として冷媒回収運転を完了するように構成されてもよい。
また、上記実施形態では、閾値ΔThは、0.3Mpaに設定されていたが、必ずしも0.3MPaに限定されず、設計仕様や設置環境に応じて適当な値を設定されればよい。例えば、閾値ΔThは、0.1Mpaに設定されてもよいし、0.4Mpaに設定されてもよい。
(8−4)変形例D
上記実施形態では、コントローラ50は、液面検知センサ25の検出値(液面高さLh)と基準値Shを比較することで、冷媒回路RCにおける充填冷媒量の適否(冷媒漏洩の有無)を判定していた。しかし、冷媒回路RCにおける充填冷媒量の適否を判定する方法は、必ずしもこれに限定されず、冷媒回路RCにおける充填冷媒量を適否について判定可能な方法であればいかなる方法でもよい。例えば、吸入圧力センサ21の検出値(吸入圧力LP)、吐出圧力センサ22の検出値(吐出圧力HP)、又はレシーバ出口温度センサ23の検出値(レシーバ出口温度TL)等を用いて、冷媒回路RCにおける充填冷媒量の適否を判定してもよい。
また、熱源ユニット10又は利用ユニット30のいずれかに、漏洩した冷媒を検知することで冷媒漏洩を検出可能な冷媒漏洩センサを配置し、係る冷媒漏洩センサの検出結果に基づいて冷媒回路RCにおける冷媒漏洩の有無を判定するようにしてもよい。係る場合には、冷媒漏洩センサが漏洩冷媒を検出したことを契機として冷媒漏洩判定モードに遷移することとなる。すなわち、冷媒漏洩センサが漏洩冷媒を検出したことを契機として、冷媒回路RCが複数の冷媒流路に区分けされ、冷媒流路毎の冷媒漏洩の有無が判別される。
(8−5)変形例E
上記実施形態では、冷媒漏洩判定開始コマンドが入力されたことに応じて、充填冷媒量判定モードに遷移し、充填冷媒量の判定が行われていた。しかし、充填冷媒量の判定が行われる契機となるイベントについては必ずしもこれに限定されず、設計仕様や設置環境に応じて適宜変更が可能である。
例えば、施工時やメンテナンス時の試運転や、定期点検の際に、充填冷媒量の判定が行われるようにしてもよい。すなわち、運転時に充填冷媒量判定モードに遷移する必要は必ずしもなく、運転停止時に所定のコマンドを入力されることを契機として充填冷媒量判定モードに遷移して充填冷媒量判定を行うようにしてもよい。
また、コントローラ50(モード制御部53)において、時間を計測可能なカウンタを配置し、通常運転モードに遷移してから所定時間t1が経過することを契機として通常モードから充填冷媒量判定モードへ切り換えさせるように構成してもよい。係る場合、コントローラ50が定期的に充填冷媒量判定モードへ遷移するようになる。なお、所定時間t1は、設計仕様や設置環境に応じて適宜設定される。
(8−6)変形例F
上記実施形態では、冷媒回路RCにおける冷媒漏洩箇所を特定する上で、第1流路RP1、第2流路RP2、及び第3流路RP3の冷媒漏洩の有無が、吸入圧力LPの変動を検出することで判定されていた。
しかし、必ずしも、第1流路RP1、第2流路RP2、及び第3流路RP3の冷媒漏洩の有無が吸入圧力LPに基づいて判定される必要はなく、他の値に基づいて判定されてもよい。例えば、第1流路RP1、第2流路RP2、及び第3流路RP3の冷媒漏洩の有無は、吐出圧力HPが所定の閾値を超える割合で変動するか否かを検出することで判定されてもよい。
また、例えば、熱源ユニット10に圧縮機11に吸入される冷媒の温度(吸入温度LT)又は圧縮機11から吐出される冷媒の温度(吐出温度HT)を検出する温度センサを配置し、吸入温度LT又は吐出温度HTが所定の閾値を超える割合で変動するか否かを検出することで、第1流路RP1、第2流路RP2、及び第3流路RP3の冷媒漏洩の有無を判定するようにしてもよい。
また、第2流路RP2及び/又は第3流路RP3に、冷媒の状態を検出する冷媒状態検出センサ(例えば、冷媒の圧力を検出する圧力センサや、冷媒の温度を検出する温度センサ)を配置し、係る冷媒状態検出センサに検出結果に応じて、第2流路RP2及び/又は第3流路RP3の冷媒漏洩の有無を判定するようにしてもよい。
(8−7)変形例G
上記実施形態では、冷媒回路RCにおいて、第1流路RP1と第3流路RP3とを区分けする弁として液側閉鎖弁17が配置されたが、熱源側膨張弁15を第1流路RP1と第3流路RP3とを区分けする弁として機能させてもよい。係る場合、液側閉鎖弁17については省略が可能である。
(8−8)変形例H
上記実施形態では、冷凍装置100において、熱源ユニット制御部26と各利用ユニット制御部38とが通信線cb1を介して接続されることで、冷凍装置100の動作を制御するコントローラ50が構成されていた。しかし、コントローラ50の構成態様については必ずしもこれに限定されず、設計仕様や設置環境に応じて適宜変更が可能である。例えば、コントローラ50に含まれる要素(記憶部51、通信部52、モード制御部53、アクチュエータ制御部54、充填冷媒量不足判別部55、表示制御部56、及び冷媒漏洩箇所特定部57)の一部又は全部は、必ずしも、熱源ユニット10及び利用ユニット30のいずれかに配置される必要はなく、通信ネットワークで接続された遠隔地において別装置内に配置されてもよく、独立に配置されてもよい。すなわち、コントローラ50に含まれる要素(記憶部51、通信部52、モード制御部53、アクチュエータ制御部54、充填冷媒量不足判別部55、表示制御部56、及び冷媒漏洩箇所特定部57)が実現可能であれば、コントローラ50の構成態様については特に限定されない。
(8−9)変形例I
上記実施形態では、コントローラ50は、所定の情報を、「情報出力部」としてのリモコン40に出力させていた。特に、コントローラ50は、冷媒漏洩箇所報知情報をリモコン40に出力させていた。この点、冷媒漏洩が生じた場合に、冷媒漏洩箇所報知情報をユーザに対して報知可能であれば、リモコン40以外のユニットを「情報出力部」として機能させてもよい。
例えば、音声を出力可能なスピーカを配置して、当該スピーカに所定の警告音やメッセージ音声を出力させることで、冷媒漏洩箇所報知情報を出力させる「情報出力部」として機能させてもよい。また、LEDランプ等の光源を配置して、当該光源を点滅又は点灯させることで冷媒漏洩箇所報知情報を出力させる「情報出力部」として機能させてもよい。また、冷凍装置100が適用される施設や現場から離れた遠隔地に設置される集中管理機器等の装置において冷媒漏洩箇所報知情報を出力可能なユニットを配置して「情報出力部」として機能させてもよい。
(8−10)変形例J
上記実施形態では、冷凍装置100において、熱源ユニット10及び利用ユニット30の台数は1台のみであった。しかし、熱源ユニット10及び/又は利用ユニット30の台数についてはこれに限定されず、複数台あってもよい。
また、上記実施形態では、冷媒回路RCに配置される圧縮機11の台数は1台のみであった。しかし、圧縮機11の台数についてはこれに限定されず、複数台あってもよい。
(8−11)変形例K
上記実施形態では、冷凍装置100において、利用側膨張弁32は電動弁が採用されたが、これに限定されず、例えば、感温筒の温度変化に応じて作動する感温式膨張弁が採用されてもよい。係る場合、利用側膨張弁32の前段又は後段に電磁弁又は電動弁を配置し、係る電磁弁又は電動弁を閉状態に切り換えることで第2流路RP2と第3流路RP3とを区分けするようにしてもよい。
(8−12)変形例L
上記実施形態では、R32が冷媒回路RCを循環する冷媒として用いられていた。しかし、冷媒回路RCで用いられる冷媒は、特に限定されない。例えば、冷媒回路RCでは、HFO1234yf、HFO1234ze(E)やこれらの冷媒の混合冷媒などが、R32に代えて用いられてもよい。また、冷媒回路RCでは、R407CやR410A等のHFC系冷媒を用いられてもよい。
本発明は、冷媒回路を含む冷凍装置において冷媒漏洩箇所を特定する冷媒漏洩箇所特定方法として利用可能である。
10、10a :熱源ユニット
11 :圧縮機
12 :熱源側熱交換器
13 :レシーバ
14 :過冷却器
15 :熱源側膨張弁(弁)
16 :インジェクション弁
17 :液側閉鎖弁(弁)
18 :ガス側閉鎖弁(弁)
19 :逆止弁
20 :熱源側ファン
21 :吸入圧力センサ(冷媒状態検出センサ)
22 :吐出圧力センサ(冷媒状態検出センサ)
23 :レシーバ出口温度センサ(冷媒状態検出センサ)
24 :熱源側空気センサ
25 :液面検知センサ(冷媒状態検出センサ)
26 :熱源ユニット制御部
30、30a :利用ユニット
31 :加熱配管
32 :利用側膨張弁(弁)
32a :キャピラリチューブ
33 :利用側熱交換器
34 :ドレンパン
36 :利用側ファン
38 :利用ユニット制御部
40 :リモコン(情報出力部)
50 :コントローラ
51 :記憶部
52 :通信部
53 :モード制御部
54 :アクチュエータ制御部
55 :充填冷媒量不足判別部
56 :表示制御部
57 :冷媒漏洩箇所特定部
71 :第1ガス側開閉弁(弁)
72 :第2ガス側開閉弁(弁)
73 :第3ガス側開閉弁(弁)
100、200 :冷凍装置
G1 :ガス冷媒連絡管
L1 :液冷媒連絡管
P1 :第1熱源側ガス冷媒管
P2 :熱源側液冷媒管
P3 :第2熱源側ガス冷媒管
P4 :インジェクション管
P5 :第1利用側液冷媒管
P6 :第2利用側液冷媒管
P7 :利用側ガス冷媒管
P8 :第3熱源側ガス冷媒管
P9 :第4熱源側ガス冷媒管
P10 :第3利用側液冷媒管
RC、RC1 :冷媒回路
RP1、RP1´ :第1流路(第1冷媒流路)
RP2、RP2´ :第2流路(第2冷媒流路)
RP3 :第3流路(第2冷媒流路)
cb1 :通信線
特開2014−95514号公報 特開2011−226704号公報 特開2013−40730号公報

Claims (5)

  1. 圧縮機(11)、及び冷媒の流れを遮断する閉状態をとりうる複数の弁(15、17、18、32、71、72、73)を含む冷媒回路(RC、RC1)において冷媒漏洩が生じた際に冷媒漏洩箇所を特定する冷媒漏洩箇所特定方法であって、
    前記圧縮機が停止している状態において、各前記弁を前記閉状態に設定することで前記冷媒回路を複数の冷媒流路(RP1、RP2、RP3、RP1´、RP2´)に区分けする第1工程と、
    前記第1工程の後に各前記冷媒流路における冷媒の状態の変化を検出することで、各前記冷媒流路における冷媒漏洩の有無を判定する第2工程と、
    を備
    前記第2工程においては、
    冷媒の状態の変化を検出する冷媒状態検出センサ(21、22)が配置されている第1冷媒流路(RP1、RP1´)において、前記冷媒状態検出センサによって冷媒の状態を検出した後に、
    前記冷媒状態検出センサが配置されていない第2冷媒流路(RP2、RP3、RP2´)と前記第1冷媒流路とを区分けする前記弁を、前記閉状態から冷媒の流れを許容する開状態に切り換え、
    前記第1冷媒流路と前記第2冷媒流路とを連通させた状態で前記冷媒状態検出センサによって冷媒の状態の変化を検出することで、前記第2冷媒流路の冷媒の状態の変化を検出する、
    冷媒漏洩箇所特定方法。
  2. 圧縮機(11)、及び冷媒の流れを遮断する閉状態をとりうる複数の弁(15、17、18、32、71、72、73)を含む冷媒回路(RC、RC1)において冷媒漏洩が生じた際に冷媒漏洩箇所を特定する冷媒漏洩箇所特定方法であって、
    前記圧縮機が停止している状態において、各前記弁を前記閉状態に設定することで前記冷媒回路を複数の冷媒流路(RP1、RP2、RP3、RP1´、RP2´)に区分けする第1工程と、
    前記第1工程の後に各前記冷媒流路における冷媒の状態の変化を検出することで、各前記冷媒流路における冷媒漏洩の有無を判定する第2工程と、
    を備え、
    前記第1工程は、前記圧縮機を運転させ冷媒を収容可能な容器に前記冷媒回路内の冷媒の一部を回収する冷媒回収工程を含み、
    前記第1工程では、前記冷媒回収工程が完了した後に、前記圧縮機を停止させてから各前記弁を前記閉状態に切り換えて前記冷媒回路を複数の冷媒流路に区分けする、
    冷媒漏洩箇所特定方法。
  3. 前記第1工程は、前記圧縮機を運転させ冷媒を収容可能な容器に前記冷媒回路内の冷媒の一部を回収する冷媒回収工程を含み、
    前記第1工程では、前記冷媒回収工程が完了した後に、前記圧縮機を停止させてから各前記弁を前記閉状態に切り換えて前記冷媒回路を複数の冷媒流路に区分けする、
    請求項に記載の冷媒漏洩箇所特定方法。
  4. 前記第1工程は、前記冷媒回路内の充填冷媒量の適否を判定する充填冷媒量判定運転において前記充填冷媒量が適切でないと判定されたこと、又は前記冷媒回路における冷媒漏洩を検出する冷媒漏洩センサが冷媒漏洩を検出したことを契機として行われる、
    請求項1から3のいずれか1項に記載の冷媒漏洩箇所特定方法。
  5. 前記第2工程においては、冷媒漏洩が生じていると判定した前記冷媒流路について報知する情報を、情報出力装置(40)において出力させる、
    請求項1から4のいずれか1項に記載の冷媒漏洩箇所特定方法。
JP2015195327A 2015-09-30 2015-09-30 冷媒漏洩箇所特定方法 Active JP6191671B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015195327A JP6191671B2 (ja) 2015-09-30 2015-09-30 冷媒漏洩箇所特定方法
PCT/JP2016/078489 WO2017057377A1 (ja) 2015-09-30 2016-09-27 冷媒漏洩箇所特定方法
ES16851548T ES2753754T3 (es) 2015-09-30 2016-09-27 Método de especificación del punto de fuga de refrigerante
EP16851548.4A EP3358277B1 (en) 2015-09-30 2016-09-27 Refrigerant leakage spot specifying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015195327A JP6191671B2 (ja) 2015-09-30 2015-09-30 冷媒漏洩箇所特定方法

Publications (2)

Publication Number Publication Date
JP2017067396A JP2017067396A (ja) 2017-04-06
JP6191671B2 true JP6191671B2 (ja) 2017-09-06

Family

ID=58423816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015195327A Active JP6191671B2 (ja) 2015-09-30 2015-09-30 冷媒漏洩箇所特定方法

Country Status (4)

Country Link
EP (1) EP3358277B1 (ja)
JP (1) JP6191671B2 (ja)
ES (1) ES2753754T3 (ja)
WO (1) WO2017057377A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111033154B (zh) * 2017-08-18 2022-02-22 三菱电机株式会社 空调装置
WO2020051314A1 (en) * 2018-09-06 2020-03-12 Carrier Corporation Refrigerant leak detection system
EP3951288A4 (en) * 2019-03-26 2022-03-23 Mitsubishi Electric Corporation OUTDOOR UNIT AND REFRIGERATION CIRCUIT DEVICE EQUIPPED WITH IT
JP7401795B2 (ja) * 2019-09-09 2023-12-20 ダイキン工業株式会社 冷媒漏洩判定システム
US11674726B2 (en) * 2020-06-30 2023-06-13 Thermo King Llc Systems and methods for transport climate control circuit management and isolation
JPWO2022003869A1 (ja) * 2020-07-01 2022-01-06
DE102020128276A1 (de) 2020-10-28 2022-04-28 Viessmann Climate Solutions Se Wärmepumpe
WO2022234612A1 (ja) * 2021-05-06 2022-11-10 三菱電機株式会社 冷凍サイクルシステム、制御方法
CN114264036B (zh) * 2021-12-07 2022-12-02 珠海格力电器股份有限公司 冷媒泄漏控制方法、装置、设备、冷热联供系统和空调

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04369370A (ja) * 1991-06-14 1992-12-22 Hitachi Ltd 冷凍装置
JP3162132B2 (ja) * 1991-10-30 2001-04-25 株式会社日立製作所 冷凍装置の制御方法
JP2005241050A (ja) * 2004-02-24 2005-09-08 Mitsubishi Electric Building Techno Service Co Ltd 空調システム
JP3963190B2 (ja) * 2005-04-07 2007-08-22 ダイキン工業株式会社 空気調和装置の冷媒量判定システム
CN102365502B (zh) * 2009-03-26 2014-05-21 三菱电机株式会社 空气调节装置
JP5334909B2 (ja) * 2010-04-20 2013-11-06 三菱電機株式会社 冷凍空調装置並びに冷凍空調システム
JP5538329B2 (ja) * 2011-08-18 2014-07-02 三菱電機株式会社 室外機及び空気調和装置
JP2013053756A (ja) * 2011-08-31 2013-03-21 Fujitsu General Ltd 冷凍サイクル装置
JP5562318B2 (ja) * 2011-11-21 2014-07-30 三菱電機株式会社 流体漏洩箇所特定装置及びこれを備えた冷凍空調装置
JP5999499B2 (ja) * 2012-11-09 2016-09-28 パナソニックIpマネジメント株式会社 冷凍装置

Also Published As

Publication number Publication date
EP3358277B1 (en) 2019-08-07
WO2017057377A1 (ja) 2017-04-06
JP2017067396A (ja) 2017-04-06
EP3358277A4 (en) 2018-08-08
ES2753754T3 (es) 2020-04-14
EP3358277A1 (en) 2018-08-08

Similar Documents

Publication Publication Date Title
JP6191671B2 (ja) 冷媒漏洩箇所特定方法
JP6274277B2 (ja) 冷凍装置
JP6380696B2 (ja) 冷凍装置
CN109844426B (zh) 制冷装置
CN109642761B (zh) 制冷装置
JP6156528B1 (ja) 冷凍装置
JP6269756B1 (ja) 冷凍装置
JP4904908B2 (ja) 空気調和装置
JP6428717B2 (ja) 冷凍システム
JP4270197B2 (ja) 空気調和装置
JP4093275B2 (ja) 空気調和装置
JP5971371B1 (ja) 冷凍装置
KR20080071601A (ko) 공기 조화 장치
JP2007240108A (ja) 空気調和装置
JP6573523B2 (ja) 冷媒回収装置
JP2007127326A (ja) 冷媒充填回路を備えたエンジン駆動式ヒートポンプ
JP5138292B2 (ja) 空気調和装置
JP2019184150A (ja) 空気調和機
JP7032667B2 (ja) 冷凍装置
JP2021055956A (ja) 冷凍サイクル装置及び判定システム
JP6825336B2 (ja) 冷凍装置
JP2017067397A (ja) 冷凍装置
JP6848395B2 (ja) 冷凍装置
JP2017101858A (ja) 冷凍装置
JP2017101856A (ja) 冷凍装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170724

R151 Written notification of patent or utility model registration

Ref document number: 6191671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151