JP6156304B2 - エンジンの冷却装置 - Google Patents

エンジンの冷却装置 Download PDF

Info

Publication number
JP6156304B2
JP6156304B2 JP2014190911A JP2014190911A JP6156304B2 JP 6156304 B2 JP6156304 B2 JP 6156304B2 JP 2014190911 A JP2014190911 A JP 2014190911A JP 2014190911 A JP2014190911 A JP 2014190911A JP 6156304 B2 JP6156304 B2 JP 6156304B2
Authority
JP
Japan
Prior art keywords
flow path
engine
temperature
cooling
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014190911A
Other languages
English (en)
Other versions
JP2016061251A (ja
Inventor
進児 若本
進児 若本
春樹 三角
春樹 三角
智弘 小口
智弘 小口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2014190911A priority Critical patent/JP6156304B2/ja
Publication of JP2016061251A publication Critical patent/JP2016061251A/ja
Application granted granted Critical
Publication of JP6156304B2 publication Critical patent/JP6156304B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

本発明は、エンジンの冷却装置、特に、水冷式のエンジンの冷却装置に関する。
水冷式のエンジンにおいては、エンジン冷却水は、ウォータポンプにより、シリンダブロック及びシリンダヘッドに設けられたウォータジャケットを含む複数の流路を経由して循環され、エンジンの冷却の他、補機の冷却や加温、あるいは空調装置による車内暖房用の熱源に用いられる。特許文献1には、車内の暖房性能向上のため、エンジンの暖機運転中は、シリンダヘッドの排気ポート側の部分を流れた高い温度の冷却水をヒータに供給することが記載される。
特開平10−212946号公報(特に段落0016〜0017)
ところで、エンジンの暖機運転中や外気温が低いときに車内の暖房要求があるときは、燃焼室を保温するために燃焼室周りの冷却を抑えつつ、暖房用熱量を確保するために排気ポート周りのみ冷却水を循環させることが提案される。しかし、その場合、シリンダヘッドの排気ポート周りは奪熱可能な面積が比較的小さいため、水温の上昇が早期に鈍化し、外気温がより低いときは水温が低下するという不具合がある。
本発明は、エンジンの冷却装置における上記のような不具合に対処しようとするもので、水温上昇の鈍化や水温低下が解消され、エンジン暖機時や低外気温時の燃焼室の保温と暖房用熱量の確保との両立が確実に図られるエンジンの冷却装置の提供を目的とする。
上記課題を解決するためのものとして、本発明のエンジンの冷却装置は、冷却水を送り出すウォータポンプと、シリンダブロックを通過する第1流路と、シリンダヘッドの排気ポート側の部分を通過する第2流路と、空調装置のヒータコアを通過する第3流路と、補機及びラジエータの少なくとも一方を通過する第4流路と、エンジン温度を検出する検出手段と、上記検出手段で検出されるエンジン温度に応じて上記流路を切り換える制御手段とが備えられ、上記制御手段は、上記エンジン温度が第1閾値温度未満のときは、上記ウォータポンプから導出された冷却水が上記シリンダヘッドの排気ポート側の部分と上記ヒータコアとを通って上記ウォータポンプに戻るように、冷却水を上記第2流路及び第3流路を経由して循環させ、上記エンジン温度が上記第1閾値温度より高い第2閾値温度以上のときは、上記ウォータポンプから導出された冷却水が上記シリンダヘッドの排気ポート側の部分、上記ヒータコア、上記補機及びラジエータの少なくとも一方、上記シリンダブロックをそれぞれ通って上記ウォータポンプに戻るように、冷却水を上記第1乃至第4流路を経由して循環させ、上記エンジン温度が上記第1閾値温度以上かつ上記第2閾値温度未満のときは、上記ウォータポンプから導出された冷却水が上記シリンダヘッドの排気ポート側の部分、上記ヒータコア、及び上記シリンダブロックをそれぞれ通って上記ウォータポンプに戻るように、冷却水を上記第1乃至第3流路を経由して循環させることを特徴とするものである
本発明によれば、エンジン温度が相対的に低い第1閾値温度未満のときは、エンジン冷却水がシリンダヘッドの排気ポート側の部分と空調装置のヒータコアとを流れるので、シリンダヘッドの排気ポート側の部分から奪った熱が車内暖房用の熱源に用いられる。このとき、シリンダヘッドの排気ポート側の部分が冷却されても、燃焼室が冷却水で大幅に冷却されることはない。つまり、燃焼室が保温される。
一方、エンジン温度が相対的に高い第2閾値温度以上に上昇すると、エンジン冷却水が上記に加えてさらにシリンダブロックと補機及びラジエータの少なくとも一方とを流れるので、シリンダヘッドの排気ポート側の部分及びシリンダブロックが冷却され、これらから奪った熱が車内暖房用の熱源に安定的に用いられる。また、補機が冷却水で冷却され、あるいは加温される。あるいは、冷却水の放熱がラジエータによって促進される。
その上で、エンジン温度が上記第1閾値温度以上に上昇したが、第2閾値温度未満のときは、エンジン冷却水がシリンダヘッドの排気ポート側の部分とシリンダブロックと空調装置のヒータコアとを流れるので、シリンダヘッドの排気ポート側の部分から奪った熱に加えてさらにシリンダブロックから奪った熱が車内暖房用の熱源に用いられる。そのため、たとえシリンダヘッドの排気ポート周りの奪熱可能な面積が比較的小さくても、奪熱可能面積の増大により、水温上昇の早期鈍化や水温低下が解消される。また、このとき、シリンダブロックが冷却されても、燃焼室が冷却水で大幅に冷却されることはない。つまり、燃焼室が保温される。
以上により、本発明によれば、燃焼室の大幅な冷却を回避しつつ奪熱可能面積を増大することにより、水温上昇の鈍化や水温低下が解消され、エンジン暖機時や低外気温時の燃焼室の保温と暖房用熱量の確保との両立が確実に図られるエンジンの冷却装置が提供される。
本発明においては、シリンダヘッドの排気ポート側の部分以外の部分を通過する第5流路がさらに備えられ、上記第2流路と第5流路とが相互に分離して形成されていることが好ましい。
この構成によれば、エンジン温度が第1閾値温度未満のときに、冷却水がシリンダヘッドの排気ポート側の部分を流れても、シリンダヘッドのそれ以外の部分が冷却されることがない。そのため、エンジン温度が第1閾値温度未満のときの燃焼室の保温と暖房用熱量の確保とがそれぞれ確実に達成される。
本発明においては、上記制御手段は、上記エンジン温度が上記第1閾値温度以上かつ上記第2閾値温度未満のときは、上記冷却水を上記第5流路を経由せずに循環させ、上記第2閾値温度以上のときは、上記第5流路を経由して循環させることが好ましい。
この構成によれば、エンジン温度が第1閾値温度以上に上昇したが、第2閾値温度未満のときは、冷却水がシリンダヘッドの排気ポート側の部分とシリンダブロックとを流れるけれども、シリンダヘッドの排気ポート側の部分以外の部分を流れないので、燃焼室の保温が続けられる。これに対し、エンジン温度が第2閾値温度以上に上昇すると、冷却水がシリンダヘッドの排気ポート側の部分以外の部分を流れるので、燃焼室の保温が終了し、燃焼室の冷却が開始される。
本発明においては、上記第5流路は上記第1流路の冷却水の流れの下流に設けられ、上記第1流路における上記第5流路よりも上流側の部分を上記第3流路に連絡する連絡流路が設けられ、上記制御手段は、上記エンジン温度が上記第1閾値温度以上かつ上記第2閾値温度未満のときは、上記第5流路を閉鎖すると共に上記連絡流路を開通し、上記第2閾値温度以上のときは、上記連絡流路を閉鎖すると共に上記第5流路を開通することが好ましい。
この構成によれば、エンジン温度が第1閾値温度以上に上昇したが、第2閾値温度未満のときは、第5流路が閉鎖されると共に連絡流路が開通されることにより、冷却水がシリンダヘッドの排気ポート側の部分以外の部分を確実に流れなくなり、かつシリンダブロックと空調装置のヒータコアとを確実に流れる。これに対し、エンジン温度が第2閾値温度以上に上昇すると、連絡流路が閉鎖されると共に第5流路が開通されることにより、冷却水がシリンダブロックとシリンダヘッドの排気ポート側の部分以外の部分とを確実に流れる。
本発明においては、上記第5流路は上記第4流路の上流に設けられていることが好ましい。
この構成によれば、エンジン温度が第2閾値温度以上に上昇したときに第5流路が開通されるだけで、冷却水がシリンダブロックとシリンダヘッドの排気ポート側の部分以外の部分と補機及びラジエータの少なくとも一方とを確実に流れる。
本発明においては、上記エンジンは、上記第1閾値温度以上かつ上記第2閾値温度未満のときにCI燃焼制御されるエンジンであることが好ましい。
この構成によれば、温度制約が厳しいCI燃焼(圧縮自己着火燃焼)制御が実行されるときに、奪熱可能面積の増大により暖房用熱量が確保されつつ、燃焼室が保温されることにより良好なCI燃焼の実現及び維持が図られる。
本発明によれば、燃焼室の大幅な冷却を回避しつつ奪熱可能面積を増大することにより、エンジン暖機時や低外気温時の燃焼室の保温と暖房用熱量の確保との両立が確実に図られるエンジンの冷却装置が提供される。
本発明の実施形態に係るエンジンの冷却装置の全体構成を示すブロック図である。 エンジン温度がT1未満のときの上記冷却装置の作動状態を示すブロック図である。 エンジン温度がT1以上T2未満のときの上記冷却装置の作動状態を示すブロック図である。 エンジン温度がT2以上T3未満のときの上記冷却装置の作動状態を示すブロック図である。 エンジン温度がT3以上T4未満のときの上記冷却装置の作動状態を示すブロック図である。 エンジン温度がT4以上のときの上記冷却装置の作動状態を示すブロック図である。 上記冷却装置のECUが行う制御動作のフローチャートである。 同じくタイムチャートである。
以下、図面を参照して本発明の実施形態を説明する。
図1は、本実施形態に係るエンジンの冷却装置1の全体構成を示すブロック図である。このエンジン2は、シリンダブロック3と、シリンダブロック3に結合されたシリンダヘッド4とを含み、4つの気筒♯1〜♯4がクランク軸方向(図1に関して左右方向)に1列に配置され、吸気系と排気系とが互いにシリンダブロック3及びシリンダヘッド4の反対側に配置されたクロスフロー型の直列4気筒ガソリンエンジンであって、SI燃焼(火花点火燃焼)制御とCI燃焼(圧縮自己着火燃焼)制御との双方が実行可能に構成されている。
エンジン2は、車両前部に設けられたエンジンルーム(図示せず)内に、気筒列が車幅方向を向き、吸気側が車両前後方向の前方を向き、排気側が車両前後方向の後方を向き、各気筒のシリンダ軸が上下方向を向くように搭載される。
図1は、シリンダブロック3を吸気側から見たものとして表し、シリンダヘッド4を上方から見たものとして表す。
冷却装置1は、ウォータポンプ(W/P)5と、第1〜第5バルブV1〜V5を有するロータリ式の流調弁6と、第1〜第3冷却流路21,23,33と、第1〜第3放熱流路24,30,32と、第1〜第6連絡流路22,25,26,28,29,31と、戻し流路27と、ECU50とを備え、エンジン冷却水を、ウォータポンプ5により、シリンダブロック3及びシリンダヘッド4に設けられたウォータジャケット(図示せず)を含む複数の流路を経由して循環させる水冷式の冷却装置である。
ウォータポンプ5は、エンジン2の回転によって受動的に駆動される機械式のウォータポンプであって、エンジン2の気筒列における第1気筒♯1側の一端部に配設される。
第1冷却流路(本発明の「第1流路」に相当する)21は、シリンダボア壁を囲むように設けられたシリンダブロック3のウォータジャケットにより構成され、シリンダブロック3を第1気筒♯1側から第4気筒♯4側を回って第1気筒♯1側まで一巡するように通過する(図中の破線はシリンダボアより後ろ側(つまり排気側)にある部分を表す)。
第2冷却流路(本発明の「第2流路」に相当する)23は、シリンダヘッド4のウォータジャケットで構成され、シリンダヘッド4の排気ポート側の部分(図1に関して上側の部分)を第1気筒♯1側から第4気筒♯4側まで気筒列方向に通過する。
第3冷却流路(本発明の「第5流路」に相当する)33は、同じくシリンダヘッド4のウォータジャケットで構成され、シリンダヘッド4の排気ポート側の部分以外の部分、例えば吸気ポート側の部分(図1に関して下側の部分)や幅方向の中央部分(図1に関して上下方向の中央部分)等(以下、本実施形態において「吸気ポート側の部分等」という)を第1気筒♯1側から第4気筒♯4側まで気筒列方向に通過する。
第1冷却流路21を流れる冷却水は、ピストン(図示せず)で画成される気筒の下部分を冷却する。そのため、ピストンが上死点近傍にあるときに形成される気筒の上部分の燃焼室が第1冷却流路21を流れる冷却水で大幅に冷却されることはない。また、第2冷却流路23を流れる冷却水は、シリンダヘッド4の排気ポート側の部分のみを冷却する。そのため、燃焼室が第2冷却流路23を流れる冷却水で大幅に冷却されることはない。
第1放熱流路(本発明の「第3流路」に相当する)24は、枝分かれして、空調装置8のヒータコア11及び補機であるエレキスロットルボディ(ETB)12を通過する。第2放熱流路(本発明の「第4流路」に相当する)30は、枝分かれして、補機であるオイルクーラ(O/C)13、EGRクーラ(EGR/C)14、EGRバルブ(EGR/V)15、及びATFウォーマ(ATF/W)16を通過する。第3放熱流路(本発明の「第4流路」に相当する)32は、ラジエータ(RAD)7を通過する。
第1連絡流路22は、流調弁6の内部で第3冷却流路33の終端部近傍を第5バルブV5を介して第3放熱流路32の始端部に連絡する。第2連絡流路25は、流調弁6の内部で第1放熱流路24の終端部を第1バルブV1及び第2バルブV2を介して第3連絡流路26の始端部に連絡する。第3連絡流路26は第2連絡流路25の終端部を第2バルブV2を介して戻し流路27の始端部に連絡する。第4連絡流路(本発明の「連絡流路」に相当する)28は第1冷却流路21の中間部(より詳しくは第4気筒♯4の近傍の部分)を第3バルブV3を介して第5連絡流路29の始端部に連絡する。第5連絡流路29は流調弁6の内部で第4連絡流路28の終端部を第3バルブV3を介して第2連絡流路25の第1バルブV1寄りの部分に連絡する。第6連絡流路31は流調弁6の内部で第2連絡流路25の第2バルブV2寄りの部分を第3冷却流路33の終端部近傍に連絡する。
戻し流路27は、第2放熱流路30の終端部及び第3連絡流路26の終端部をウォータポンプ5に連絡する。
第1冷却流路21は、ウォータポンプ5の導出部(図1に「OUT」と記す)を始端部とし、シリンダヘッド4の第1気筒♯1側の端部を終端部とする。第3冷却流路33は、第1冷却流路21に連続して、シリンダヘッド4の第1気筒♯1側の端部を始端部とし、流調弁6の第4バルブV4を終端部とする。第2冷却流路23は、ウォータポンプ5の他の導出部(図1に「OUT」と記す)を始端部とし、シリンダヘッド4の第4気筒♯4側の端部に設けられた排出部4bを終端部とする。シリンダヘッド4において、第2冷却流路23と第3冷却流路33との間に隔壁4aが設けられ、この隔壁4aを介して第2冷却流路23と第3冷却流路33とは相互に分離して形成される。また、第1冷却流路21と第3冷却流路33との間に上下方向に延びる移動用流路がいくつか設けられる。
第1放熱流路24は、第2冷却流路23に連続して、上記排出部4bを始端部とし、流調弁6の第1バルブV1を終端部とする。第2放熱流路30は、第3冷却流路33に連続して、上記第4バルブV4を始端部とし、第3連絡流路26と戻し流路27との合流部を終端部とする。第3放熱流路32は、第1連絡流路22に連続して、上記第5バルブV5を始端部とし、第2放熱流路30の補機13〜16より下流の終端部近傍を終端部とする。
戻し流路27は、第3連絡流路26と第2放熱流路30との合流部を始端部とし、ウォータポンプ5の導入部(図1に「IN」と記す)を終端部とする。
第3冷却流路33に第1水温センサ53が配設され、第2放熱流路30の始端部近傍に第2水温センサ54が配設され、第3放熱流路32のラジエータ7の下流に第3水温センサ55が配設され、第1放熱流路24のヒータコア11の下流に第4水温センサ56が配設される。これらの第1〜第4水温センサ53〜56は本発明の「検出手段」に相当する。
ECU50は、CPU、ROM、RAM等を含む周知の構成のマイクロプロセッサである。ECU50は、エンジン回転数を検知するエンジン回転数センサ51、及び燃料噴射量を検知する燃料噴射量センサ52から検知信号を入力し、エンジン回転数及び燃料噴射量から判定されるエンジン2の負荷状態に基いて、エンジン2のシリンダヘッド4側の燃焼室の壁面の温度(ヘッド燃焼室壁温)を算出し、算出したヘッド燃焼室壁温に応じて流調弁6を制御し、これにより、エンジン冷却水が流れる流路を切り換える。ECU50は本発明の「検出手段」及び「制御手段」に相当する。
以下、ECU50が行う制御動作の一例を、図2〜図6の各ブロック図、図7のフローチャート、及び図8のタイムチャートを参照して説明する。
図2は、エンジン温度がT1(例えば30℃等)未満のとき(すなわち冷間時)の冷却装置1の作動状態(図7のステップS1でYES)を示すブロック図である(図8の時刻t1まで)。このとき、燃焼形態はSI燃焼であり、ECU50は、全てのバルブV1〜V5が閉じるように流調弁6を制御する(ステップS2)。これにより、図中太線で示すように、全ての流路が閉鎖され、冷却水は、シリンダブロック3及びシリンダヘッド4を流れず、エンジン2内に滞留する。そのため、エンジン温度が速やかに上昇し、エンジン2の暖機が促進される。
次に、図3は、エンジン温度がT1以上T2(例えば60℃等)未満のとき(すなわち暖機中)の冷却装置1の作動状態(ステップS3でYES)を示すブロック図である(時刻t1から時刻t2まで)。このとき、燃焼形態はSI燃焼であり、ECU50は、第1バルブV1と第2バルブV2とが開くように流調弁6を制御する(ステップS4)。これにより、図中太線で示すように、第2冷却流路23、第1放熱流路24、第2連絡流路25、第3連絡流路26、及び戻し流路27が開通される。
その結果、ウォータポンプ5の導出部(OUT)から第2冷却流路23に導出された冷却水は、シリンダヘッド4の排気ポート側の部分を流れた後、ヒータコア11及びエレキスロットルボディ12を流れ、流調弁6内の第2連絡流路25、第3連絡流路26、及び戻し流路27を経てウォータポンプ5に戻る。
そのため、昇温が早い排気ポート側の部分から奪った熱が車内暖房用の熱源に用いられる。また、エレキスロットルボディ12が凍結している場合はそれが解凍される。さらに、排気ポート側の部分を流れる冷却水で燃焼室が大幅に冷却されることがないので、燃焼室が保温され、引き続きエンジン2の暖機が促進される。上記温度T2はT1より高い温度であり、本発明の「第1閾値温度」に相当する。
図8から分かるように、この期間中(t1〜t2)のバルブV1,V2の開度は比較的小さい値に設定される。そのため、冷却水の流量が低目に抑えられる。
次に、図4は、エンジン温度がT2以上T3(例えば70℃等)未満のとき(すなわち暖機中の定常運転時)の冷却装置1の作動状態(ステップS5でYES)を示すブロック図である(時刻t2から時刻t3まで)。このとき、燃焼形態はCI燃焼に切り換えられ、ECU50は、第1バルブV1と第2バルブV2と第3バルブV3とが開くように流調弁6を制御する(ステップS6)。これにより、図中太線で示すように、第4連絡流路28及び第5連絡流路29が開通される。
その結果、ウォータポンプ5の導出部(OUT)から第1冷却流路21に導出されて第1冷却流路21を第1気筒♯1側から第4気筒♯4側まで約半分流れた冷却水は、第4連絡流路28及び第5連絡流路29を介して上記流調弁6内の第2連絡流路25に合流した後、ヒータコア11及びエレキスロットルボディ12に熱を奪われて第1放熱流路24を戻ってきた冷却水と共に、第3連絡流路26及び戻し流路27を経てウォータポンプ5に戻る。
そのため、ウォータポンプ5の導出部(OUT)から第2冷却流路23に導出される冷却水の温度が上昇し、シリンダヘッド4の排気ポート側の部分から奪った熱に加えてさらにシリンダブロック3から奪った熱が車内暖房用の熱源に用いられる。また、シリンダブロック3を流れる冷却水で燃焼室が大幅に冷却されることがないので、燃焼室が保温され、引き続きエンジン2の暖機が促進される。その結果、温度制約が厳しいCI燃焼が良好に実現され維持される。上記温度T3はT2より高い温度であり、本発明の「第2閾値温度」に相当する。
図8から分かるように、この期間中(t2〜t3)のバルブV1,V2,V3の開度も比較的小さい値に設定される。そのため、冷却水の流量が引き続き低目に抑えられる。
次に、図5は、エンジン温度がT3以上T4(例えば110℃等)未満のとき(すなわち暖機後の定常運転時)の冷却装置1の作動状態(ステップS7でYES)を示すブロック図である(時刻t3から時刻t4まで)。このとき、燃焼形態はSI燃焼に戻され、ECU50は、第1バルブV1と第4バルブV4とが開き、第2バルブV2と第3バルブV3とが閉じるように流調弁6を制御する(ステップS8)。これにより、図中太線で示すように、第4連絡流路28及び第5連絡流路29が再び閉鎖される共に、第2放熱流路30及び第6連絡流路31が開通される。
その結果、ウォータポンプ5の導出部(OUT)から第1冷却流路21に導出された冷却水は、シリンダブロック3を一巡した後、あるいは一巡する途中で、第3冷却流路33に移動し、シリンダヘッド4の吸気ポート側の部分等を流れた後、オイルクーラ13、EGRクーラ14、EGRバルブ15、及びATFウォーマ16を流れ、戻し流路27を経てウォータポンプ5に戻る。また、第1放熱流路24を戻ってきた冷却水は、第6連絡流路31を介して上記第3冷却流路33に合流し、第3冷却流路33を流れる冷却水と共に、第2放熱流路30及び戻し流路27を経てウォータポンプ5に戻る。
そのため、シリンダヘッド4の排気ポート側の部分、シリンダヘッド4の吸気ポート側の部分等(つまりシリンダヘッド4全体)、及びシリンダブロック3が冷却され、これらから奪った熱が車内暖房用の熱源に安定的に用いられる。また、オイルクーラ13、EGRクーラ14、及びEGRバルブ15が冷却水で冷却され、ATFウォーマ16が加温される。上記温度T4はT3より高い温度である。
図8から分かるように、この期間中(t3〜t4)の第4バルブV4の開度は比較的大きい値に設定される。そのため、シリンダブロック3を一巡する冷却水の流量が高目に増大される。
次に、図6は、エンジン温度がT4以上のとき(すなわち暖機後の高負荷運転時)の冷却装置1の作動状態(ステップS9でYES)を示すブロック図である(時刻t4から時刻t5まで)。このとき、燃焼形態はSI燃焼であり、ECU50は、第1バルブV1と第4バルブV4と第5バルブV5とが開き、第2バルブV2と第3バルブV3とが閉じるように流調弁6を制御する(ステップS10)。これにより、図中太線で示すように、第3放熱流路32が開通される。
その結果、第3冷却流路33を流れる冷却水及び第1放熱流路24を戻ってきた冷却水は、それまでその全量が第2放熱流路30に導入されていたものが、その一部が第3放熱流路32に導入され、ラジエータ7を流れた後、第2放熱流路30及び戻し流路27を経てウォータポンプ5に戻る。
そのため、冷却水の放熱がラジエータ7によって促進され、高負荷運転時のエンジン2のオーバーヒートが抑制される。なお、第2放熱流路30を流れる冷却水の流量と第3放熱流路32を流れる冷却水の流量との割合は、目標エンジン温度に応じて設定され、第4バルブV4と第5バルブV5とのバルブ開度で調整される。
図8から分かるように、この期間中(t4〜t5)の第4バルブV4及び第5バルブV5の開度は双方共比較的大きい値に設定される。そのため、シリンダブロック3を一巡する冷却水の流量が引き続き高目に増大される。また、第4バルブV4及び第5バルブV5の開度は相互に略同じ値に設定される。そのため、第2放熱流路30を流れる冷却水の流量と第3放熱流路32を流れる冷却水の流量とは相互に略同じ値に調整される。
以上の構成により、本実施形態では次のような作用が得られる。
(1)シリンダブロック3を通過する第1冷却流路21と、シリンダヘッド4の排気ポート側の部分を通過する第2冷却流路23と、空調装置8のヒータコア11を通過する第1放熱流路24と、補機13〜16を通過する第2放熱流路30と、ラジエータ7を通過する第3放熱流路32と、エンジン温度を検出すると共に、検出したエンジン温度に応じて上記流路を切り換えるECU50とが備えられ、上記ECU50は、上記エンジン温度がT1以上T2未満のときは、エンジン冷却水を上記第2冷却流路23及び第1放熱流路24を経由して循環させ(図3)、T3以上のときは、上記第1冷却流路21、第2冷却流路23、第1放熱流路24、第2放熱流路30、及び第3放熱流路32を経由して循環させ(図5及び図6)、T2以上T3未満のときは、上記第1冷却流路21、第2冷却流路23、及び第1放熱流路24を経由して循環させる(図4)ことから、エンジン温度が相対的に低いT2未満のときは(図3)、エンジン冷却水がシリンダヘッド4の排気ポート側の部分と空調装置8のヒータコア11とを流れるので、シリンダヘッド4の排気ポート側の部分から奪った熱が車内暖房用の熱源に用いられる。このとき、シリンダヘッド4の排気ポート側の部分が冷却されても、燃焼室が冷却水で大幅に冷却されることはない。つまり、燃焼室が保温される。
一方、エンジン温度が相対的に高いT3以上に上昇すると(図5及び図6)、エンジン冷却水が上記に加えてさらにシリンダブロック3と補機13〜16とラジエータ7とを流れるので、シリンダヘッド4の排気ポート側の部分及びシリンダブロック3が冷却され、これらから奪った熱が車内暖房用の熱源に安定的に用いられる。また、補機13〜16が冷却水で冷却され、あるいは加温される。あるいは、冷却水の放熱がラジエータ7によって促進される。
その上で、エンジン温度がT2以上に上昇したが、T3未満のときは(図4)、エンジン冷却水がシリンダヘッド4の排気ポート側の部分とシリンダブロック3と空調装置8のヒータコア11とを流れるので、シリンダヘッド4の排気ポート側の部分から奪った熱に加えてさらにシリンダブロック3から奪った熱が車内暖房用の熱源に用いられる。そのため、たとえシリンダヘッド4の排気ポート周りの奪熱可能な面積が比較的小さくても、奪熱可能面積の増大により、水温上昇の早期鈍化や水温低下が解消される。また、このとき、シリンダブロック3が冷却されても、燃焼室が冷却水で大幅に冷却されることはない。つまり、燃焼室が保温される。
より詳しくは、図8に符号アで示すように、本実施形態では、時刻t2〜t3の期間中、冷却水をシリンダブロック3にも流すことにより、奪熱可能面積が増大して、水温の上昇速度がそれまでの期間(t1〜t2)と比べてそれほど鈍化していない。そのため、暖房用熱量が確保される。これに対し、上記期間中(t2〜t3)、冷却水をシリンダブロック3に流さない場合は、シリンダヘッド4の排気ポート周りの奪熱可能面積が比較的小さいことにより、図8に符号イで示すように、水温の上昇速度が大幅に鈍化する。そのため、暖房用熱量の確保が困難になる。
以上により、本実施形態によれば、燃焼室の大幅な冷却を回避しつつ奪熱可能面積を増大することにより、水温上昇の鈍化や水温低下が解消され、エンジン暖機時や低外気温時の燃焼室の保温と暖房用熱量の確保との両立が確実に図られるエンジンの冷却装置が提供される。
(2)シリンダヘッド4の吸気ポート側の部分等を通過する第3冷却流路33がさらに備えられ、上記第2冷却流路23と第3冷却流路33とが相互に分離して形成されていることから、エンジン温度がT2未満のときに、冷却水がシリンダヘッド4の排気ポート側の部分を流れても(図3)、シリンダヘッド4の吸気ポート側の部分等が冷却されることがない。そのため、エンジン温度がT2未満のときの燃焼室の保温と暖房用熱量の確保とがそれぞれ確実に達成される。
(3)上記ECU50は、上記エンジン温度がT2以上かつT3未満のときは(図4)、上記冷却水を上記第3冷却流路33を経由せずに循環させ、上記T3以上のときは(図5及び図6)、上記第3冷却流路33を経由して循環させることから、エンジン温度がT2以上に上昇したが、T3未満のときは(図4)、冷却水がシリンダヘッド4の排気ポート側の部分とシリンダブロック3とを流れるけれども、シリンダヘッド4の吸気ポート側の部分等を流れないので、燃焼室の保温が続けられる。これに対し、エンジン温度がT3以上に上昇すると(図5及び図6)、冷却水がシリンダヘッド4の吸気ポート側の部分等を流れるので、燃焼室の保温が終了し、燃焼室の冷却が開始される。
(4)上記第3冷却流路33は上記第1冷却流路21の冷却水の流れの下流に設けられ、上記第1冷却流路21における上記第3冷却流路33よりも上流側の部分を上記第1放熱流路24に連絡する第4連絡流路28が設けられ、上記ECU50は、上記エンジン温度が上記T2以上かつ上記T3未満のときは(図4)、上記第3冷却流路33を閉鎖すると共に上記第4連絡流路28を開通し、上記T3以上のときは(図5及び図6)、上記第4連絡流路28を閉鎖すると共に上記第3冷却流路33を開通することから、エンジン温度がT2以上に上昇したが、T3未満のときは(図4)、第3冷却流路33が閉鎖されると共に第4連絡流路28が開通されることにより、冷却水がシリンダヘッド4の吸気ポート側の部分等を確実に流れなくなり、かつシリンダブロック3と空調装置8のヒータコア11とを確実に流れる。これに対し、エンジン温度がT3以上に上昇すると(図5及び図6)、第4連絡流路28が閉鎖されると共に第3冷却流路33が開通されることにより、冷却水がシリンダブロック3とシリンダヘッド4の吸気ポート側の部分等とを確実に流れる。
(5)上記第3冷却流路33は上記第2放熱流路30及び第3放熱流路32の上流に設けられていることから、エンジン温度がT3以上に上昇したときに(図5及び図6)第3冷却流路33が開通されるだけで、冷却水がシリンダブロック3とシリンダヘッド4の吸気ポート側の部分等と補機13〜16とラジエータ7とを確実に流れる。
(6)上記エンジン2は、上記T2以上かつ上記T3未満のときにCI燃焼制御されるエンジンであることから、温度制約が厳しいCI燃焼制御が実行されるとき(時刻t2〜t3)に、奪熱可能面積の増大により暖房用熱量が確保されつつ、燃焼室が保温されることにより良好なCI燃焼の実現及び維持が図られる。
なお、上記実施形態では、エンジン温度としてヘッド燃焼室壁温を用いたが、これに代えて、第1〜第4水温センサ53〜56の少なくともいずれか1つで検出される冷却水温を用いてもよい。
また、上記実施形態では、エンジン2はCI燃焼制御が可能なエンジンであったが、これに限らず、SI燃焼制御のみが可能なエンジンにも本発明は適用可能である。
また、上記実施形態では、流路の切換え用に複数のバルブV1〜V5を有するロータリ式の流調弁6を用いたが、これに限らず、単一のバルブを複数組み合わせて用いることもできる。
また、図5及び図6に符号Aで示すように、エンジン2の暖機後は、シリンダヘッド4を通過した後の第2冷却流路23と第3冷却流路33とを相互に連絡しても構わない。
さらに、「第1乃至第4流路」や「第1乃至第3流路」との表現については、流路を流れる順番を特定するものではなく、順番を問わずその対象流路を流れている状態を表現したものである。
1 冷却装置
2 エンジン
3 シリンダブロック
4 シリンダヘッド
5 ウォーターポンプ
6 流調弁
7 ラジエータ
8 空調装置
11 ヒータコア
13 オイルクーラ(補機)
14 EGRクーラ(補機)
15 EGRバルブ(補機)
16 ATFウォーマ(補機)
21 第1冷却流路(第1流路)
23 第2冷却流路(第2流路)
24 第1放熱流路(第3流路)
28 第4連絡流路(連絡流路)
30 第2放熱流路(第4流路)
32 第3放熱流路(第4流路)
33 第3冷却流路(第5流路)
50 ECU(検出手段、制御手段)
51 エンジン回転数センサ
52 燃料噴射量センサ
53〜56 第1〜第4水温センサ(検出手段)
T2,T3 第1、第2閾値温度

Claims (6)

  1. 冷却水を送り出すウォータポンプと、
    シリンダブロックを通過する第1流路と、
    シリンダヘッドの排気ポート側の部分を通過する第2流路と、
    空調装置のヒータコアを通過する第3流路と、
    補機及びラジエータの少なくとも一方を通過する第4流路と、
    エンジン温度を検出する検出手段と、
    上記検出手段で検出されるエンジン温度に応じて上記流路を切り換える制御手段とが備えられ、
    上記制御手段は、
    上記エンジン温度が第1閾値温度未満のときは、上記ウォータポンプから導出された冷却水が上記シリンダヘッドの排気ポート側の部分と上記ヒータコアとを通って上記ウォータポンプに戻るように、冷却水を上記第2流路及び第3流路を経由して循環させ、
    上記エンジン温度が上記第1閾値温度より高い第2閾値温度以上のときは、上記ウォータポンプから導出された冷却水が上記シリンダヘッドの排気ポート側の部分、上記ヒータコア、上記補機及びラジエータの少なくとも一方、上記シリンダブロックをそれぞれ通って上記ウォータポンプに戻るように、冷却水を上記第1乃至第4流路を経由して循環させ、
    上記エンジン温度が上記第1閾値温度以上かつ上記第2閾値温度未満のときは、上記ウォータポンプから導出された冷却水が上記シリンダヘッドの排気ポート側の部分、上記ヒータコア、及び上記シリンダブロックをそれぞれ通って上記ウォータポンプに戻るように、冷却水を上記第1乃至第3流路を経由して循環させることを特徴とするエンジンの冷却装置。
  2. 請求項1に記載のエンジンの冷却装置において、
    シリンダヘッドの排気ポート側の部分以外の部分を通過する第5流路がさらに備えられ、上記第2流路と第5流路とが相互に分離して形成されていることを特徴とするエンジンの冷却装置。
  3. 請求項2に記載のエンジンの冷却装置において、
    上記制御手段は、
    上記エンジン温度が上記第1閾値温度以上かつ上記第2閾値温度未満のときは、上記冷却水を上記第5流路を経由せずに循環させ、
    上記第2閾値温度以上のときは、上記第5流路を経由して循環させることを特徴とするエンジンの冷却装置。
  4. 請求項3に記載のエンジンの冷却装置において、
    上記第5流路は上記第1流路の冷却水の流れの下流に設けられ、
    上記第1流路における上記第5流路よりも上流側の部分を上記第3流路に連絡する連絡流路が設けられ、
    上記制御手段は、
    上記エンジン温度が上記第1閾値温度以上かつ上記第2閾値温度未満のときは、上記第5流路を閉鎖すると共に上記連絡流路を開通し、
    上記第2閾値温度以上のときは、上記連絡流路を閉鎖すると共に上記第5流路を開通することを特徴とするエンジンの冷却装置。
  5. 請求項4に記載のエンジンの冷却装置において、
    上記第5流路は上記第4流路の上流に設けられていることを特徴とするエンジンの冷却装置。
  6. 請求項1から5のいずれか1項に記載のエンジンの冷却装置において、
    上記エンジンは、上記第1閾値温度以上かつ上記第2閾値温度未満のときにCI燃焼制御されるエンジンであることを特徴とするエンジンの冷却装置。
JP2014190911A 2014-09-19 2014-09-19 エンジンの冷却装置 Active JP6156304B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014190911A JP6156304B2 (ja) 2014-09-19 2014-09-19 エンジンの冷却装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014190911A JP6156304B2 (ja) 2014-09-19 2014-09-19 エンジンの冷却装置

Publications (2)

Publication Number Publication Date
JP2016061251A JP2016061251A (ja) 2016-04-25
JP6156304B2 true JP6156304B2 (ja) 2017-07-05

Family

ID=55795813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014190911A Active JP6156304B2 (ja) 2014-09-19 2014-09-19 エンジンの冷却装置

Country Status (1)

Country Link
JP (1) JP6156304B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5999162B2 (ja) * 2014-10-16 2016-09-28 マツダ株式会社 エンジンの冷却装置
JP6726059B2 (ja) * 2016-08-12 2020-07-22 株式会社Subaru エンジンの冷却システム
CN110719988A (zh) 2017-06-09 2020-01-21 日立汽车系统株式会社 内燃机的冷却装置及冷却方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57159915A (en) * 1981-03-26 1982-10-02 Mazda Motor Corp Cooling device for engine
US4423705A (en) * 1981-03-26 1984-01-03 Toyo Kogyo Co., Ltd. Cooling system for liquid-cooled internal combustion engines
JPH10212946A (ja) * 1997-01-29 1998-08-11 Daihatsu Motor Co Ltd 内燃機関における冷却装置
JP2006046139A (ja) * 2004-08-03 2006-02-16 Toyota Motor Corp シリンダヘッド
JP5223389B2 (ja) * 2008-03-12 2013-06-26 トヨタ自動車株式会社 内燃機関の冷却装置
JP2011179421A (ja) * 2010-03-02 2011-09-15 Toyota Motor Corp 内燃機関の冷却装置
JP5633199B2 (ja) * 2010-06-07 2014-12-03 株式会社日本自動車部品総合研究所 内燃機関の冷却システム
JP5756399B2 (ja) * 2011-12-27 2015-07-29 本田技研工業株式会社 圧縮着火内燃機関の制御装置
DE102012200003B4 (de) * 2012-01-02 2015-04-30 Ford Global Technologies, Llc Flüssigkeitsgekühlte Brennkraftmaschine und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
JP6096492B2 (ja) * 2012-12-10 2017-03-15 富士重工業株式会社 エンジンの冷却装置

Also Published As

Publication number Publication date
JP2016061251A (ja) 2016-04-25

Similar Documents

Publication Publication Date Title
US9624816B2 (en) Cooling device for multi-cylinder engine
JP6090138B2 (ja) エンジンの冷却装置
US20150159540A1 (en) Cooling device of multi-cylinder engine
JP6036668B2 (ja) 多気筒エンジンの冷却構造
JP4513669B2 (ja) 蓄熱装置を備えた内燃機関
KR101637779B1 (ko) 차량의 배기열 회수 장치 및 방법
JP5742702B2 (ja) 冷却装置の制御装置
JP6079594B2 (ja) 多気筒エンジンの冷却構造
JP2011047305A (ja) 内燃機関
JP5633199B2 (ja) 内燃機関の冷却システム
JP6156304B2 (ja) エンジンの冷却装置
JP5541371B2 (ja) エンジンの冷却装置
JP6222157B2 (ja) 内燃機関の冷却装置
US6830016B2 (en) System and method for cooling an engine
JP2006329128A (ja) 内燃機関の冷却構造
JP5083277B2 (ja) 内燃機関の冷却装置
JP2012167613A (ja) エンジン
JP5708042B2 (ja) V型エンジンの冷却装置
JP2013124546A (ja) 車両の冷却装置
JP6604540B2 (ja) エンジン冷却装置
JP2011252454A (ja) 内燃機関の冷却装置
US10858981B2 (en) Water jacket of engine and engine cooling system having the same
JP5304573B2 (ja) エンジンの暖機促進システム
JP7168398B2 (ja) 車両用内燃機関の冷却装置
JP6443728B2 (ja) エンジンの排熱回収システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170522

R150 Certificate of patent or registration of utility model

Ref document number: 6156304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150