JP6149850B2 - 膜電極接合体の製造方法 - Google Patents

膜電極接合体の製造方法 Download PDF

Info

Publication number
JP6149850B2
JP6149850B2 JP2014247701A JP2014247701A JP6149850B2 JP 6149850 B2 JP6149850 B2 JP 6149850B2 JP 2014247701 A JP2014247701 A JP 2014247701A JP 2014247701 A JP2014247701 A JP 2014247701A JP 6149850 B2 JP6149850 B2 JP 6149850B2
Authority
JP
Japan
Prior art keywords
heat treatment
catalyst layer
drying
electrode catalyst
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014247701A
Other languages
English (en)
Other versions
JP2016110855A (ja
Inventor
晋平 野納
晋平 野納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014247701A priority Critical patent/JP6149850B2/ja
Priority to DE102015120531.9A priority patent/DE102015120531B4/de
Priority to US14/957,717 priority patent/US9673442B2/en
Priority to KR1020150171135A priority patent/KR20160069470A/ko
Priority to CN201510884163.5A priority patent/CN105680075B/zh
Publication of JP2016110855A publication Critical patent/JP2016110855A/ja
Application granted granted Critical
Publication of JP6149850B2 publication Critical patent/JP6149850B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Description

本発明は、膜電極接合体の製造方法に関する。
燃料電池に用いられる膜電極接合体(MEA:Membrane Electrode Assembly)は、電解質膜の両面に電極触媒層が形成された発電体である。この膜電極接合体は、従来から種々の製造方法が提案されている。
例えば、特許文献1には、転写シート上に触媒インクを塗工することにより電極触媒層が形成された転写シートを作製し、作製した転写シートを乾燥させて溶媒を除去し、乾燥させた転写シートを熱処理し、熱処理した転写シートを電解質膜へ転写して、膜電極接合体を製造する方法が記載されている。
特許文献2には、電解質膜上に触媒形成用混合液(触媒インク)を塗工し乾燥することにより電極触媒層を形成した後、形成された電極触媒層からアルコール等の有機物を除去するために、40℃以上でかつ電極触媒層に含まれる電解質樹脂(陽イオン交換樹脂,アイオノマー)のガラス転移温度以下の温度で熱処理することが記載されている。
特許文献3には、触媒ペーストをガス供給層(多孔質シート)上に塗布して乾燥する際に、触媒ペースト中のアルコール溶剤分を乾燥除去することが記載されている。
特許文献4には、触媒ペーストを基材シート上に塗工し乾燥することにより電極触媒層が形成された触媒層転写シートを作製した後、触媒層転写シートを加熱しながら電解質膜に対して加圧して電解質膜の面上に電極触媒層を転写し基材シートを剥離する際に、電解質膜のガラス転移温度±50℃の高温状態を保持することにより、電極触媒層の剥離不良を抑制することが記載されている。
特許文献5には、インク状組成物(触媒インク)を基材シート上に塗布・乾燥して電極触媒層が形成された基材シートを作製した後、形成された電極触媒層を電極触媒層中のアイオノマー(電解質樹脂,イオン交換樹脂)のガラス転移温度より高い温度で熱処理することにより、電極触媒層の構造の強度を向上させることが記載されている。
特許文献6には、カーボン粒子と陽イオン交換樹脂(電解質樹脂,アイオノマー)との混合物のシートを、陽イオン交換樹脂のガラス転移温度以上、分解温度以下の温度で加熱処理することにより、陽イオン交換樹脂の結晶構造の安定性やカーボン粒子の表面と陽イオン交換樹脂との密着性の向上等の触媒電極層の構造の強度を向上させることが記載されている。
特開2004−288391号公報 特開2012−209268号公報 特開平7−29576号公報 特開2014−60167号公報 特開2010−61865号公報 特開2005−50734号公報
本願の発明者は、従来技術に関して以下で説明する問題点を見出した。すなわち、例えば、特許文献1において、転写シートの乾燥時には、溶媒としてのアルコール(例えば、エタノールやプロパノール等)が蒸発することにより、アルコールガスが発生する。そして、発生したアルコールガスが滞留している環境下において、電極触媒層に対して熱処理を行なった場合には、アルコールガスが電極触媒層中の触媒による酸化反応によって酸化し、例えば、エタノールの場合には酢酸へ変化し、酸化熱が発生する。酸化熱の発生は、電極触媒層中のアイオノマーの熱分解を招く。例えば、アイオノマーが、末端基にスルホン酸基(−SOH)を有する高分子ポリマーであるフッ素樹脂(例えば、「Nafion」<登録商標>)の場合、スルホン酸基が酸化熱によって熱分解することにより、電極触媒層中に含まれる硫酸イオン(So 2−)が増加する。電極触媒層中に含まれる硫酸イオンの増加は、燃料電池のセル内、より具体的には、セルを構成する膜電極接合体内のpHを低下させて酸性環境とし、電極触媒層の被毒が発生し、電極触媒層のプロトン伝導度(陽イオン伝導度)の低下や、電極触媒層及びガス拡散層からなる電極のインピーダンスの増加が発生し、燃料電池の発電の出力低下が発生する、という問題が生じる。
なお、上記特許文献1〜6のいずれにおいても、電極触媒層の製造過程で発生した硫酸イオンによって、燃料電池(膜電極接合体)の初期段階の電極触媒層であっても電極触媒層の被毒が発生し、電極触媒層のプロトン伝導度の低下や、電極触媒層及びガス拡散層からなる電極のインピーダンスの増加、燃料電池の発電の出力低下等の問題が生じる点について何ら記載されていない。
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態として実現することが可能である。
(1)本発明の一形態によれば、電解質膜の面上に電極触媒層が形成された膜電極接合体の製造方法が提供される。この膜電極接合体の製造方法は、触媒金属を担持した触媒担持粒子と、溶媒と、アイオノマーとを含む触媒インクが塗工された基材シートの乾燥処理を実行する乾燥工程と;前記乾燥工程の後に、前記アイオノマーのガラス転移温度以上の熱処理温度で、前記触媒インクが乾燥された状態の基材シートを熱処理して、前記電極触媒層を作製する熱処理工程と;作製された前記電極触媒層を、前記電解質膜に熱圧着して、前記膜電極接合体を作製する熱圧着工程と;を備える。前記熱処理工程は、前記熱処理を実行する加熱装置の室内に滞留する前記溶媒がガス化した状態の溶媒ガスの濃度が、予め定めた濃度閾値以下となった後に前記熱処理を実行する。
この形態の膜電極接合体の製造方法によれば、溶媒ガスの濃度が予め定めた濃度閾値以下である環境下において、熱処理を実行するので、溶媒ガスの酸化反応による酸化熱の発生を抑制することができ、酸化熱の発生による電極触媒層中のアイオノマーの熱分解を抑制することができる。これにより、例えば、アイオノマーが、末端基にスルホン酸基を有する高分子ポリマーの場合、スルホン酸基が酸化熱によって熱分解することにより、硫酸イオンが発生することを抑制することができる。
(2)上記形態の膜電極接合体の製造方法において、前記熱処理工程は、前記乾燥工程の終了後に、前記乾燥工程で用いられた加熱装置の室内に残留する前記溶媒ガスの濃度を測定し、測定した前記溶媒ガスの濃度が前記濃度閾値以下となったことを確認した後に、前記溶媒ガスの濃度が前記濃度閾値以下となった前記加熱装置を用いて前記熱処理工程における前記熱処理を実行することとしてもよい。
この形態の膜電極接合体の製造方法によれば、溶媒ガスの濃度が濃度閾値以下の環境下において熱処理工程を実行することができる。また、乾燥装置として用いた加熱装置を、熱処理装置として用いることができるので、製造設備の小型化が可能である。
(3)上記形態の膜電極接合体の製造方法において、前記乾燥工程が実行される乾燥装置と、前記熱処理工程が実行される熱処理装置と、前記乾燥装置と前記熱処理装置との間に配置された乾燥調製装置と、を有する加熱装置を用い、前記熱処理工程は、前記乾燥装置によって前記乾燥工程における前記乾燥処理を実行し、前記乾燥装置の室内の終端位置における前記溶媒ガスの濃度に応じて、前記乾燥調製装置によって前記触媒インクの乾燥状態を調整し、前記乾燥調製装置の室内の終端位置における前記溶媒ガスの濃度が前記濃度閾値以下となったことを確認した後に、前記熱処理装置によって前記熱処理工程における前記熱処理を実行することとしてもよい。
この形態の膜電極接合体の製造方法においても、溶媒ガスの濃度が濃度閾値以下の環境下において熱処理工程を実行することができる。また、乾燥装置、乾燥調製装置、及び熱処理装置の順で乾燥工程、乾燥調製と溶媒ガスの濃度の確認工程、及び、熱処理工程を順に実行するので、製造設備は大型化するが、製造効率の向上が可能である。
本発明は、種々の形態で実現することが可能であり、例えば、電解質膜の面上に電極触媒層が形成された膜電極接合体の他、さらにガス拡散層が形成された膜電極接合体(「膜電極ガス拡散層接合体」とも呼ぶ)の製造方法、燃料電池の製造方法等の各種の製造方法の形態で実現することができる。
第1実施形態の膜電極接合体の製造方法を示すフローチャートである。 触媒インクの塗工装置の一例を示す説明図である。 電極触媒層シートの加熱装置を示す説明図である。 溶媒ガスとしてのエタノールガスの濃度と熱処理により発生した硫酸イオンの量との関係の一例を示す説明図である。 膜電極接合体の作製に用いられる転写装置の一例を示す説明図である。 第2実施形態の電極触媒層シートの加熱装置を示す説明図である。 実施例と比較例の電極触媒層に含まれている硫酸イオンの量を比較して示す説明図である。
A.第1実施形態:
図1は、第1実施形態の膜電極接合体の製造方法を示すフローチャートである。以下で説明するように、電極触媒層シートの作製(ステップS100)、電極触媒層シートの乾燥(ステップS200)、溶媒ガスの除去の確認処理(ステップS300)、電極触媒層シートの熱処理(ステップS400)、及び、電解質膜への電極触媒層の転写(ステップS500)を行って、膜電極接合体(MEA)を作製する。
ステップS100では、基材シート上に触媒インクの塗工層が形成された電極触媒層シートを作製する。具体的には、膜電極接合体において、燃料電池のカソード用電極触媒層を作製するためのカソード用電極触媒層シート、及び、アノード用電極触媒層を作製するためのアノード用電極触媒層シートの2種類の電極触媒層シートを作製する。カソード用電極触媒層シートの作製にはカソード用触媒インクが用いられ、アノード用電極触媒層シートの作製にはアノード用触媒インクが用いられる。なお、カソードとアノードとを特に区別しない場合には、カソード用電極触媒層シート及びアノード用電極触媒層シートを単に「電極触媒層シート」とも呼び、カソード用触媒インク及びアノード用触媒インクを単に「触媒インク」とも呼ぶ。
触媒インクは、例えば、以下のようにして作製(調整)することができる。用意した触媒担持粒子を水(イオン交換水)に混合した後、エタノールやプロパノールなどの1以上の親水性溶媒(以下「溶媒」と呼ぶ)を加えるとともに、用意したアイオノマーを加えて混合した混合物を、超音波ホモジナイザーやビーズミル等を用いて分散することにより、触媒インクを作製することができる。但し、これに限定されるものではなく、種々の一般的な手法を用いて触媒インクを作製することができる。なお、通常、カソード用触媒インクは、アノード触媒インクに比べて、触媒の含有密度が高くなるように作製される。
触媒担持粒子は、例えば、以下のようにして作製することができる。触媒金属を担持するための導電性の担持用粒子を、触媒金属の溶液中に分散せて、含浸法や共沈法、イオン交換法等を行なうことによって触媒担持粒子を作製することができる。なお、担持用粒子としては、種々のカーボン粒子(カーボン粉末)を選択可能であり、例えば、カーボンブラックやカーボンナノチューブを用いることができる。触媒金属としては、白金や白金化合物(例えば、白金コバルト合金や白金ニッケル合金等)を用いることができる。電極触媒層用のアイオノマーとしては、末端基にスルホンサン基を有するプロトン伝導性の電解質材料が用いられる。本例では、電解質膜と同様に、Nafionが用いられる。但し、これに限定されるものではなく、種々の一般的な手法を用いて触媒担持粒子を作製することができる。
電極触媒層シートは、基材シート上に触媒インクを塗工する塗工装置を利用して作製することができる。
図2は、触媒インクが塗工された電極触媒層シートの作製に用いられる塗工装置の一例を示す説明図である。この塗工装置100cは、カソード用電極触媒層シートの作製に用いられる塗工装置の一例であり、ダイコータ110と、搬送ロール116と、から構成されている。
不図示の供給ロールから送り出される帯状の基材シートStcは、ダイコータ110のダイ112とバックアップロール114との間に供給される。ダイコータ110は、ダイ112のスリットからカソード用触媒インクを吐出して、基材シートStc上にカソード用触媒インクを塗工し、触媒インクの塗工層、すなわち、未乾燥状態のカソード用電極触媒層14cpを形成する。未乾燥状態のカソード用電極触媒層14cpは、基材シートStc上に間欠的に形成される。なお、未乾燥状態のカソード用電極触媒層14cpが形成される間隔は、基本的には公差を含む一定間隔とされる。
未乾燥状態のカソード用電極触媒層14cpが形成されたカソード用電極触媒層シートStcp(以下、「未乾燥のカソード用電極触媒層シートStcp」とも呼ぶ)は、搬送ロール116を介して後述する乾燥工程を実行する加熱装置へ搬送される。
基材シートStcとしては、例えば、ポリエチレンテレフタレート(PET)、ポリテトラフルオロエチレン(PTFE)、ポリエチレンナフタレート(PEN)あるいはポリエチレン(PE)等の材料によって形成された帯状シートが利用される。
なお、触媒インク層を形成する際の触媒インクの塗工方法としては、ダイコータに限定されるものではなく、アプリケータ、バーコータ、スプレー等を利用する方法や、スクリーン印刷、グラビア印刷などの種々の塗工方法を用いた種々の塗工装置を提供することができる。
また、触媒インクが塗工されたアノード用電極触媒層シートの作製は、図示は省略するが、カソード用電極触媒層の作製と同様の塗工装置を用いて実行される。但し、触媒インクが塗工されたアノード用電極触媒層シートにおいて、基材シート上に形成される未乾燥状態のアノード用電極触媒層は、間欠的に形成されるカソード用電極触媒層とは異なり、アノード用触媒インクを基材シート上に連続的に延伸する帯状にダイ塗工することにより、連続的に延伸する帯状に形成される。
乾燥前のアノード用電極触媒層が形成されたアノード用電極触媒層シートも、乾燥前のカソード用電極触媒層シートStcpと同様に、乾燥工程を実行する加熱装置へ搬送される。
なお、未乾燥のカソード用電極触媒層シートStcp及びアノード用電極触媒層シートが、本発明の「触媒インクが塗工された基材シート」に相当する。
図3は、ステップS200の電極触媒層シートの乾燥工程からステップS400の電極触媒層シートの熱処理工程までの工程で用いられる加熱装置について示す説明図である。図3(a)は、カソード用電極触媒層シートを例とし、ステップS200の乾燥工程における加熱装置200について示し、図3(b)はステップS300の確認工程における加熱装置200について示し、図3(c)はステップS400の熱処理工程における加熱装置200について示している。
加熱装置200は、加熱(乾燥あるいは熱処理)の対象物の搬送方向に沿って上流側に配置された第1の加熱部200aと下流側に配置された第2の加熱部200bと、を備えている。第1の加熱部200aは、対象物が搬送される室内の上方及び下方に設けられた複数の送風口から送出される設定温度Taの風によって、室内を通過する対象物を加熱する。同様に、第2の加熱部200bも、室内の上方及び下方に設けられた複数の送風口から送出される設定温度Tbの風によって、室内を通過する対象物を加熱する。また、第1の加熱部200a及び第2の加熱部200bの側面には、搬送方向に沿って複数の排気口(不図示)が設けられており、送風口から送出された気体は排気口から排気される。これにより、後述する乾燥工程において発生する溶媒がガス化した状態の溶媒ガスの排出を促すことができる。第1及び第2の加熱部200a,200bの動作は、不図示の制御装置から温度や風量が設定されることにより制御される。
なお、第1の加熱部200aの上方の送風口は、送出される風が搬送方向の上流側に向かうように設定されている。この構造については、後述する熱処理工程において説明する。
加熱装置200としては、室内を通過する対象物を設定した温度および風量で加熱することができる種々の一般的な加熱装置を用いることができる。本例では、第1及び第2の加熱炉を有する加熱炉を加熱装置200として用いるものとする。
図1のステップS200では、加熱装置200は乾燥装置として用いられ、第1の加熱部200aは、送風口から送出される設定温度Taの風によって、室内を通過する未乾燥のカソード用電極触媒層シートStcpのカソード用電極触媒層14cpの乾燥処理を実行する。同様に、第2の加熱部200bも、送風口から送出される設定温度Tbの風によって、室内を通過する未乾燥のカソード用電極触媒層シートStcpのカソード用電極触媒層14cpを乾燥する。
ここで、第1の加熱部200aの設定温度Ta及び第2の加熱部200bの設定温度Tbは乾燥温度Tdrに設定されて、未乾燥のカソード用電極触媒層シートStcpのカソード用電極触媒層14cpの乾燥が実行される。乾燥温度Tdrは、アイオノマーのガラス転移温度Tgよりも低く、かつ、アイオノマーが熱分解しない温度、すなわち、アイオノマーの熱分解が発生し得る閾値温度Tth未満の温度に設定される。また、乾燥温度Tdrは、乾燥時間を考慮して設定される。閾値温度Tthは、予め実験により、触媒インクに用いられるアイオノマーが分解して硫酸イオンが発生する温度を測定することにより求めることができる。例えば、100℃〜120℃未満の範囲内であることが好ましい。また、例えば、主な溶媒がエタノールで、閾値温度Tthを110℃とした場合、乾燥温度Tdrを、70℃〜90℃に設定することができる。但し、これに限定されるものではなく、設定した閾値温度Tth、溶媒の沸点、乾燥時間等に応じて、種々の温度に設定することができる。媒が他の溶媒でも同様である。
以上のように、ステップS200の乾燥工程では、乾燥装置としての加熱装置200で、未乾燥のカソード用電極触媒層シートStcpのカソード用電極触媒層14cpを乾燥し、乾燥済みのカソード用電極触媒層14cdを有するカソード用電極触媒層シートStcdを加熱装置200から送出する。加熱装置200から送出された乾燥済みのカソード用電極触媒層シートStcdは、不図示の巻き取ロールでロール状に巻き取られる。
図3(b)に示すように、加熱装置200の第1の加熱部200a及び第2の加熱部200bの室内の最下流位置(終端位置)には、それぞれ、ガスセンサー202a,202bが設けられている。ガスセンサー202a,202bの計測対象のガスは、触媒インクに最も多く含まれる主な溶媒のガスとされる。例えば、触媒インクの主な溶媒(アルコール)としてエタノールが用いられている場合、ガスセンサー202a,202bとしては、エタノールガスの濃度を計測するガスセンサーが用いられる。但し、複数の溶媒のそれぞれに対応する複数のガスセンサーを、それぞれの加熱部の室内に設けて、各溶媒ガスの濃度を計測するようにしてもよいが、主な溶媒ガスの濃度に比べて他の溶媒ガスの濃度は十分に低いと考えられるの、主な溶媒のガスの濃度を計測すれば十分と考えられる。本例ではエタノールガスを計測するものとし、ガスセンサー202a,202bには、エタノールガス用のガスセンサーが用いられる。
図1のステップS300では、ガスセンサー202a,202bによって、ステップS200の乾燥工程において発生した溶媒ガスの残留する濃度(以下、「溶媒ガス濃度」とも呼ぶ)Pa,Pbを計測し、溶媒ガス濃度Pa,Pbが濃度閾値Pth[ppm]以下であることを確認するまで、加熱装置200の使用を待機させる。濃度閾値Pthは、その値の溶媒ガス濃度の環境下で後述する熱処理を行った場合に、アイオノマーが熱分解することによって発生する硫酸イオンの量として許容できる溶媒ガス濃度の値である。この濃度閾値Pthは、溶媒ガス濃度と熱処理の温度で電極触媒層を加熱した場合に発生する硫酸イオン量との関係を、あらかじめ実験により求めることにより、許容される硫酸イオン量に対応する溶媒ガス濃度を求めることにより設定することができる。
図4は、溶媒ガスとしてのエタノールガスの濃度と熱処理により発生した硫酸イオンの量との関係の一例を示す説明図である。図4は、熱処理前のカソード用電極触媒層14cdをエタノールガスの各濃度環境下において、後述する熱処理における熱処理温度Th(本例では145℃)、熱処理時間ts(本例では40sec)で熱処理を行なった場合に、エタノールガス濃度[ppm]と、熱処理後のカソード用電極触媒層に含まれる硫酸イオン量[μg/cm]との関係の一例を示している。硫酸イオン量[μg/cm]は、例えば、熱処理したカソード用電極触媒層あるいはその試料片を温水浸漬し、得られた抽出液に含まれるイオン成分をイオンクロマトグラフィーにより分析することにより測定することができる。なお、試料片に基づいて硫酸イオン量を測定した場合において、実際の電極触媒層における硫酸イオン量は、実際の電極触媒層の面積に対応する値を推定することにより求めることができる。
図4に示すように、エタノールガス(溶媒ガス)の濃度の増加に従って、硫酸イオン量は増加する。特に、或る濃度Prを境界として、その濃度Prよりも高い場合には硫酸イオン量の増加の傾斜が高く、その濃度Pr以下の場合には硫酸イオン量の増加の傾斜が小さくなる。そこで、エタノールガスの濃度がその濃度Pr以下であれば、硫酸イオン量を抑制することが可能であることが分かる。例えば、この濃度Prを濃度閾値Pthとして設定すればよい。本例では、図4に示した境界の濃度Pr(本例では2ppm)を濃度閾値Pthとする。但し、許容される硫酸イオン量がこの濃度Prに対応する硫酸イオン量よりも低い場合には、許容される硫酸イオン量に対応する濃度を濃度閾値Pthとして設定してもよい。許容される硫酸イオン量としては、0.5μg/cm以下とすることが好ましく、0.3μg/cm以下とすることがより好ましく、0.1μg/cm以下とすることがさらに好ましい。そして、濃度閾値Pthとしては、これら許容される硫酸イオン量に応じた濃度を濃度閾値Pthとすることが好ましい。
なお、上記した硫酸イオン量及び濃度閾値は、主な溶媒がエタノールを例として説明したが、主な溶媒がプロパノール等の他の溶媒であっても同様である。
ステップS300において、加熱装置200の第1の加熱部200a及び第2の加熱部200bの溶媒ガス濃度Pa,Pbが濃度閾値Pth以下となって、加熱装置200の室内から溶媒ガスが濃度閾値Pth以下となるまで除去されたことを確認した場合には、この加熱装置200を熱処理装置として用いてステップS400の熱処理工程を実行する。
図3(c)に示すように、ステップS400の熱処理工程の場合、熱処理装置としての加熱装置200の第1の加熱部200aは、設定温度Taを乾燥工程と同じ乾燥温度Tdrに設定し、第2の加熱部200bは、設定温度Tbを熱処理温度Thに設定する。熱処理温度Thは、アイオノマーのガラス転移温度Tg(例えば、120℃〜140℃)以上の温度に設定される。但し、過度に高い温度の場合には、含まれている種々の材料に分解等が発生してしまう可能性があるので、ガラス転移温度Tgから+50℃程度までの温度とすることが好ましい。なお、ガラス転移温度Tg以上の温度の融点を有するアイオノマーの場合には、融点未満の温度としてもよい。本例では、熱処理温度Thは145℃に設定される。
なお、第1の加熱部200aは上述したように上方の送風口が上流方向を向くように設定されている。これにより、仮に、第1の加熱部200aにおける加熱によって溶媒ガスが発生したとしても、第2の加熱部200bの方向に流れ込まないようにすることが可能である。で、かつ、融点Tm(例えば、150℃〜200℃)未満の温度に設定される。
図1のステップS400の熱処理工程では、ステップS200で巻き取られた乾燥済みのカソード用電極触媒層シートStcdを不図示の供給ロールに設置し、供給ロールから巻き出された乾燥済のカソード用電極触媒層シートStcdを第1の加熱部200aで予加熱した後、第2の加熱部200bにおいて熱処理温度Thで熱処理し、熱処理されたカソード用電極触媒層14cを有するカソード用電極触媒層シートStchを加熱装置200から送出する。加熱装置200から送出された熱処理済みのカソード用電極触媒層シートStchは、不図示の巻き取ロールでロール状に巻き取られる。このカソード用電極触媒層シートの熱処理工程により、カソード用電極触媒層14cの構造の強度を向上させることができ、後述する転写時において発生する転写不可状態や転写不十分状態等の転写不良(「剥離不良」とも呼ぶ)を抑制することができる。なお、第1の加熱部200aの設定温度Taは、第2の加熱部200bの設定温度Tdと同様に、熱処理温度Thとしてもよい。
また、図示は省略するが、図1のステップS100で作製されたアノード用電極触媒層シートも、加熱装置200を用いて同様に、ステップS200の乾燥工程からステップS400の熱処理工程までの各工程を実行して、熱処理済みのアノード用電極触媒層シートを作製することができる。これにより、カソード用電極触媒層シートと同様に、アノード用電極触媒層の構造の強度を向上させることができ、以下で説明する転写時において発生する転写不良(剥離不良)を抑制することができる。
なお、熱処理済みのカソード用電極触媒層シートStch及びアノード用電極触媒層シートが、本発明の「触媒インクが乾燥された状態の基材シート」に相当する。
図1のステップS500では、電解質膜の一方の面にカソード用電極触媒層を転写するとともに、他方の面にアノード用電極触媒層を転写して、電解質膜の一方の面にカソード用電極触媒層が形成されるとともに、他方の面にアノード用電極触媒層が形成された膜電極接合体を作製する。なお、ステップS500の転写工程が本発明の「熱圧着工程」に相当する。
図5は、膜電極接合体の作製に用いられる転写装置の一例を示す説明図である。この転写装置500は、熱転写部502と、剥離部504と、から構成されている。
熱転写部502には、膜面が上下向きに搬送される電解質膜12と、電解質膜12の上方でカソード用電極触媒層14cが下向きに搬送されるカソード用電極触媒層シートStchと、電解質膜12の下方でアノード用電極触媒層14aが上向きに搬送されるアノード用電極触媒層シートStahと、が供給される。電解質膜12とカソード用電極触媒層シートStchとアノード用電極触媒層シートStahとは、それぞれ、ロール状の状態で設置された供給ロール(不図示)から巻き出されて、熱転写部502に供給される。
熱転写部502は、上下に設置された一対のヒートロール502a,502bを備えている。ヒートロール502a,502bは、カソード用電極触媒層シートStchのカソード用電極触媒層14cを電解質膜12の上面に重ね合わせるとともに、アノード用電極触媒層シートStahのアノード用電極触媒層14aを電解質膜12の下面に重ね合わせて、互いに密着させる。また、ヒートロール502a,502bは、カソード用電極触媒層14cを電解質膜12の上面に熱圧着させるとともに、アノード用電極触媒層14aを電解質膜12の下面に熱圧着させる。
剥離部504は、上下に設置された一対のニップロール504a,504bを備えている。ニップロール504a,504bは、熱転写部502で圧着されて搬送されてくる圧着積層シートを挟み込み、上側のニップロール504aでカソード用電極触媒層シートStchの基材シートStcを剥離し、下側のニップロール504bでアノード用電極触媒層シートStahの基材シートStaを剥離する。これにより、電解質膜12の上面にカソード用電極触媒層14cが転写されるとともに、電解質膜12の下面にアノード用電極触媒層14aが転写されて、電解質膜12の両面にカソード用電極触媒層14c及びアノード用電極触媒層14aが形成された帯状の膜電極接合体シート10Stが作製される。
作製された帯状の膜電極接合体シート10Stは、不図示の巻き取ロールによって巻き取られる。そして、膜電極接合体シート10Stを、図5の破線で示すように、カソード用電極触媒層14cが一つ含まれるように切断することにより、一つの膜電極接合体10が作製される。
B.第2実施形態:
第2実施形態の膜電極接合体の製造方法は、基本的に第1実施形態の膜電極接合体の製造方法と同様である。すなわち、図1に示したように、電極触媒層シートの作製(ステップS100)、電極触媒層シートの乾燥(ステップS200)、溶媒ガスの除去の確認(ステップS300)、電極触媒層シートの熱処理(ステップS400)、及び、電解質膜への電極触媒層の転写(ステップS500)を行って、膜電極接合体(MEA)を作製する。第2実施形態の膜電極接合体の製造方法が第1実施形態の膜電極接合体の製造方法と異なる点は、以下で説明するように、ステップS200の乾燥工程からステップS400の熱処理工程までの工程で用いられる加熱装置の構成及び実行される各工程の処理の内容である。
図6は、第2実施形態の膜電極接合体の製造方法のステップS200の電極触媒層シートの乾燥工程からステップS400の電極触媒層シートの熱処理工程までの工程で用いられる加熱装置について示す説明図である。この加熱装置200Bは、第1実施形態の加熱装置200の下流側に、第1の加熱部200a及び第2の加熱部200bと同じ構造の第3の加熱部200c及び第4の加熱部200dを備える。
この加熱装置200Bは、第1から第3の加熱部200a〜200cでステップS200の乾燥工程(図1)を実行し、第3の加熱部200cでステップS300の溶媒ガスの除去の確認工程(図1)を実行し、第4の加熱部200dでステップS400の熱処理工程(図1)を実行する装置である。すなわち、この加熱装置200Bは、不図示の塗工装置から搬送されてきた未乾燥の電極触媒層シートが加熱装置200Bの各加熱部200a〜200dの室内を通過する過程で乾燥及び熱処理が実行され、熱処理済みの電極触媒層が形成された電極触媒層シートを作製する装置である。第1〜第4の加熱部200a〜200dの動作は、不図示の制御装置から温度や風量が設定されることにより制御される。なお、第1及び第2の加熱部200a,200bが本発明の「乾燥装置」に相当し、第3の加熱部200cが本発明の「乾燥調製装置」に相当し、第4の加熱部200dが本発明の「熱処理装置」に相当する。
加熱装置200Bとしては、加熱装置200と同様に、室内を通過する対象物を設定した温度および風量で加熱することができる種々の一般的な加熱装置を用いることができる。本例では、第1〜第4の加熱炉を有する加熱炉を加熱装置200Bとして用いるものとする。
第1及び第2の加熱部200a,200bは、第1実施形態の加熱装置200と同様に、それぞれ、設定温度Ta,Tbが乾燥温度Tdr1、設定風量Va,Vbが乾燥風量Vdr1に設定される。乾燥温度Tdr1は、第1実施形態で説明した乾燥温度Tdrと同様であり、閾値温度Tth(:110℃)未満の温度のうち、例えば、80℃〜90℃に設定される。
なお、ステップS200の乾燥工程は、第2の加熱部200bの終端位置に設置されたガスセンサー202bで溶媒ガス(本例では、第1実施形態と同様にエタノールガス)の濃度(溶媒ガス濃度)Pbを計測しながら実行される。
計測した溶媒ガス濃度Pbが濃度閾値Pth(本例では、第1実施形態と同様に2ppm)よりも高い場合、電極触媒層の乾燥が不十分であり、電極触媒層シートの電極触媒層(触媒インク)から発生する溶媒ガスの濃度が高く、電極触媒層からの溶媒の除去が不十分であると想定される。このため、第4の加熱部200dに到達するまでに十分に乾燥させる必要がある。そこで、計測した溶媒ガス濃度Pbが濃度閾値Pthよりも高い場合には、第3の加熱部200cの設定温度Tcを設定温度Ta,Tbに設定された乾燥温度Tdr1よりも高い乾燥温度Tdr2とし、設定風量Vcを設定風量Va,Vbに設定された乾燥風量Vdr1よりも多い乾燥風量Vdr2として、第3の加熱部200cを通過する電極触媒層シートの乾燥を促進させる。乾燥温度Tdr2は、乾燥温度Tdr1と同様に、閾値温度Tth(:110℃)未満の温度のうち、乾燥温度Tdr1よりも高い温度であり、例えば、90℃〜100℃に設定される。
一方、計測した溶媒ガス濃度Pbが濃度閾値Pth以下の場合には、乾燥が十分であると想定されるため、第3の加熱部200cの設定温度Tcを設定温度Ta,Tbに設定された乾燥温度Tdr1とし、設定風量Vcを設定風量Va,Vbに設定された乾燥風量Vdr1と同じとして、第3の加熱部200cにおける乾燥を第1および第2の加熱部200a,200bと同様に維持させればよい。
ステップS300の確認工程は、ステップS200の乾燥工程の最終位置である、第3の加熱部200cの終端位置に設置されたガスセンサー202cで溶媒ガス濃度Pcを計測することにより実行される。なお、後述する第4の加熱部200dにおける熱処理工程が、濃度閾値Pth以下の溶媒ガス濃度環境下で行われることを担保するためには、ガスセンサー202cで計測した溶媒ガス濃度Pcが濃度閾値Pth以下であることが求められる。すなわち、第3の加熱部200cによる乾燥の調整によって、電極触媒層シートの電極触媒層からの溶媒の除去が十分に行われ、これにより発生する溶媒ガスが第3の加熱部200cの室内から十分に排出されていることが求められる。仮に、計測した溶媒ガス濃度Pcが濃度閾値Pthを超える場合、第1〜第3の加熱部200a〜200cでの乾燥が不十分であり、溶媒の除去及び溶媒ガスの排出が不十分である、と言える。この場合には、予め、第3の加熱部200cの設定温度Tc及び設定風量Vcを変更して乾燥を促進させて、計測した溶媒ガス濃度Pcが濃度閾値Pth以下であることを確認できるように調整しておくことが好ましい。また、予め、第1及び第2の加熱部200a,200bの設定温度Ta,Tb及び設定風量Va,Vbを調整しておき、第1〜第3の加熱部200a〜200cでの乾燥により、第3の加熱部200cの終端位置で計測した溶媒ガス濃度Pcが濃度閾値Pth以下であることを確認できるように調整しておくことも好ましい。
ステップS400の熱処理工程は、第4の加熱部200dにおいて実行される。第4の加熱部200dは、第1実施形態の加熱装置200の第2の加熱部200bと同様に、設定温度Tdが熱処理温度Thに設定され、設定風量Vdは熱処理風量Vhに設定される。熱処理温度Thは、アイオノマーのガラス転移温度Tg(例えば、120℃〜140℃)以上の温度で、かつ、融点Tm(例えば、150℃〜200℃)未満の温度に設定される。本例では、熱処理温度Thは145℃に設定される。
第4の加熱部200dにおいて熱処理された電極触媒層シートは、加熱装置200Bから送出され、不図示の巻き取ロールでロール状に巻き取られる。
本実施形態においても、触媒インクが塗工された電極触媒層シートを乾燥し、触媒インクが乾燥された状態の電極触媒層シートを熱処理して、熱処理された電極触媒層を有する電極触媒層シートを作製することができる。そして、熱処理された電極触媒層を有する電極触媒層シートを用いて、電解質膜に電極触媒層を転写し、電解質膜の面上に電極触媒層が形成された膜電極接合体を作製することができる。
C.効果:
第1実施形態の製造方法では、加熱装置を乾燥装置及び熱処理装置として共通に用いて、以下のように電極触媒層を作製している。すなわち、加熱装置を乾燥装置として用いて、触媒インクが塗工されて未乾燥の電極触媒層が形成された電極触媒層シートを、アイオノマーが熱分解されない乾燥温度で乾燥する。そして、乾燥に用いた加熱装置に残留する溶媒ガスの濃度を測定し、予め定めた濃度閾値以下となったことを確認するまで待機させる。そして、溶媒ガスの濃度が濃度閾値以下となったことを確認した場合に、その加熱装置を熱処理装置として用いて、溶媒ガスの濃度が濃度閾値以下の環境下において、触媒インクが乾燥されて乾燥済みの電極触媒層が形成された電極触媒層シートを熱処理して、熱処理済みの電極触媒層を作製している。
また、第2実施形態の製造方法では、乾燥装置と乾燥調製装置と熱処理装置とが順に配置された加熱装置を用いて、以下のように電極触媒層を作製している。すなわち、乾燥装置において、触媒インクが塗工されて乾燥前の電極触媒層が形成された電極触媒層シートを、アイオノマーが熱分解されない乾燥温度で乾燥する。乾燥調製装置において、乾燥装置から乾燥調製装置へ移行する乾燥装置の終端位置における溶媒ガスの濃度に応じて、終端位置における溶媒ガスの濃度が濃度閾値以下となるように、触媒インク(乾燥前の電極触媒層)の乾燥状態を調整し、溶媒の除去が十分に行われるとともに、これにより発生した溶媒ガスの排出が十分に行われるように調整する。そして、乾燥調製装置の終端位置における溶媒ガスの濃度が濃度閾値以下となったことを確認した後、熱処理装置において、溶媒ガスの濃度が濃度閾値以下の環境下において、触媒インクが乾燥されて乾燥済みの電極触媒層が形成された電極触媒層シートを熱処理して、熱処理済みの電極触媒層を作製している。
第1実施形態及び第2実施形態の製造方法をまとめると、触媒インクが塗工された基材シートを、アイオノマーが熱分解されない乾燥温度で乾燥した後、触媒インクが乾燥された状態の電極触媒層シートを、媒溶媒ガスの濃度が濃度閾値以下である環境下において、アイオノマーのガラス転移温度以上の温度でかつ融点未満の熱処理温度で熱処理して、前記電極触媒層を作製している。
この製造方法では、アイオノマーの熱分解されない乾燥温度で乾燥を行なっているので、乾燥時にアイオノマーが熱分解することを抑制することができる。さらに、熱処理時において、触媒による酸化反応によって酸化熱を発生する溶媒ガスの濃度が濃度閾値以下とされた環境下で熱処理を行なっているので、熱処理温度及び酸化熱によってアイオノマーが熱分解することを抑制することができる。これにより、末端基にスルホン酸基を有する高分子ポリマーのアイオノマーにおいて、スルホン酸基が酸化熱によって熱分解することにより、硫酸イオンが発生することを抑制することができる。
図7は、第1実施形態の製造方法により作製した実施例1及び第2実施形態の製造方法により作製した実施例2の膜電極接合体中の電極触媒層に含まれている硫酸イオンの量を比較例の膜電極接合体と比較して示す説明図である。比較例の膜電極接合体の製造方法は、乾燥工程後、溶媒ガスの濃度が濃度閾値以下の環境下とすることなく、熱処理工程を行なう方法である。この条件の相違以外の各種条件、例えば、触媒インクの組成、乾燥条件、熱処理条件等については、比較例、第1実施例及び第2実施例のいずれも同じ条件である。硫酸イオン量は、図4でも説明したように、例えば、作製した電極触媒層を温水浸漬し、得られた抽出液に含まれるイオン成分をイオンクロマトグラフィーにより分析することにより測定した。
図7から明らかなように、比較例の硫酸イオン量に比べて、第1実施形態に対応する実施例1及び第2実施形態に対応する実施例2のいずれも硫酸イオン量が10/1以下に低減されていることがわかる。従って、第1実施形態及び第2実施形態の製造方法によれば、硫酸イオンの発生を抑制した電極触媒層を作製し、膜電極接合体を作製することが可能である
また、電極触媒層を熱処理することにより、電極触媒層の構造の強度を向上させることができ、転写時において発生する電極触媒層の転写不可状態や転写不十分状態等の転写不良(剥離不良)を抑制することができる。
また、第1実施形態の製造方法では、一つの加熱装置を乾燥装置として用いるとともに、熱処理装置として用いているので、製造設備の小型化が可能である。一方、第2実施形態の製造方法では、一つの加熱装置を構成する複数の加熱部を、乾燥装置と乾燥調製装置と熱処理装置として区分して用いることにより、製造設備は大型化するが、製造効率を向上させることができる。
D.変形例:
(1)変形例1:
第1及び第2実施形態では、カソード用電極触媒層シート及びアノード用電極触媒層シートのいずれも熱処理工程を実行するものとして説明したが、アノー用電極触媒層については、熱処理を行なわなくてもよい。
(2)第1及び第2実施形態では、カソード用電極触媒層が基材シート上に間欠的に形成され、アノード用電極触媒層が基材シート上に連続的に形成されるものとして説明したが、アノード用電極触媒層が基材シート上に間欠的に形成され、カソード用電極触媒層が基材シート上に連続的に形成されるものとしてもよい。
(3)変形例3:
第2実施形態では、乾燥装置としての第1及び第2の加熱部200a,200bの後段に乾燥調製装置としての第3の加熱部200cを備え、第3の加熱部200cでは、第2の加熱部200bでの乾燥状態に応じて乾燥温度及び乾燥風量を調整して、終端位置での溶媒ガス濃度が濃度閾値以下と確認されるようにする構成を例に説明したが、これに限定されるものではない。例えば、乾燥調製装置として、複数の加熱部を配置してこれらの加熱部を通過する構成として、これらの複数の加熱部で構成された乾燥調製装置を通過する間に、終端位置での溶媒ガス濃度が濃度閾値以下と確認されるようにしてもよい。すなわち、熱処理装置としての加熱部での熱処理が溶媒ガスの濃度が濃度閾値以下となる環境下で実行されるようにできれば、どのような構成であってもよい。
本発明は、上述の実施形態や実施例、変形例に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態、実施例、変形例中の技術的特徴は、上述の課題の一部または全部を解決するために、あるいは、上述の効果の一部または全部を達成するために、適宜、差し替えや組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。
10…膜電極接合体
10St…膜電極接合体シート
12…電解質膜
14a…アノード用電極触媒層
14c…カソード用電極触媒層
14cd…カソード用電極触媒層
14cp…カソード用電極触媒層(カソード用触媒インク層)
100c…塗工装置
110…ダイコータ
112…ダイ
114…バックアップロール
116…搬送ロール
200…加熱装置
200B…加熱装置
200a…第1の加熱部
200b…第2の加熱部
200c…第3の加熱部
200d…第4の加熱部
202a…ガスセンサー
202b…ガスセンサー
202c…ガスセンサー
500…転写装置
502…熱転写部
502a…ヒートロール
502b…ヒートロール
504…剥離部
504a…ニップロール
504b…ニップロール

Claims (3)

  1. 電解質膜の面上に電極触媒層が形成された膜電極接合体の製造方法であって、
    触媒金属を担持した触媒担持粒子と、溶媒としてのアルコールと、末端基にスルホン酸基を有するアイオノマーとを含む触媒インクが塗工された基材シートの乾燥処理を実行する乾燥工程と、
    前記乾燥工程の後に、前記アイオノマーのガラス転移温度以上の熱処理温度で、前記触媒インクが乾燥された状態の基材シートを熱処理して、前記電極触媒層を作製する熱処理工程と、
    作製された前記電極触媒層を、前記電解質膜に熱圧着して、前記膜電極接合体を作製する熱圧着工程と、
    を備え、
    前記熱処理工程は、前記熱処理を実行する加熱装置の室内に、前記溶媒としてのアルコールがガス化した状態のアルコールガスとなって滞留する前記アルコールガスの濃度が、予め定めた濃度閾値以下となった後に前記熱処理を実行し、
    前記予め定めた濃度閾値は、或る値の前記アルコールガスの濃度の環境下で前記熱処理を行なった場合に、前記アイオノマーが熱分解することによって発生する硫酸イオンの量が0.5μg/cm 以下となる量に対応する前記アルコールガスの濃度の値である、ことを特徴とする膜電極接合体の製造方法。
  2. 請求項1に記載の膜電極接合体の製造方法であって、
    前記熱処理工程は、前記乾燥工程の終了後に、前記乾燥工程で用いられた加熱装置の室内に残留する前記アルコールガスの濃度を測定し、測定した前記アルコールガスの濃度が前記濃度閾値以下となったことを確認した後に、前記アルコールガスの濃度が前記濃度閾値以下となった前記加熱装置を用いて前記熱処理工程における前記熱処理を実行することを特徴とする膜電極接合体の製造方法。
  3. 請求項1に記載の膜電極接合体の製造方法であって、
    前記乾燥工程が実行される乾燥装置と、前記熱処理工程が実行される熱処理装置と、前記乾燥装置と前記熱処理装置との間に配置された乾燥調製装置と、を有する加熱装置を用い、
    前記熱処理工程は、前記乾燥装置によって前記乾燥工程における前記乾燥処理を実行し、前記乾燥装置の室内の終端位置における前記アルコールガスの濃度に応じて、前記乾燥調製装置によって前記触媒インクの乾燥状態を調整し、前記乾燥調製装置の室内の終端位置における前記アルコールガスの濃度が前記濃度閾値以下となったことを確認した後に、前記熱処理装置によって前記熱処理工程における前記熱処理を実行することを特徴とする膜電極接合体の製造方法。
JP2014247701A 2014-12-08 2014-12-08 膜電極接合体の製造方法 Active JP6149850B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014247701A JP6149850B2 (ja) 2014-12-08 2014-12-08 膜電極接合体の製造方法
DE102015120531.9A DE102015120531B4 (de) 2014-12-08 2015-11-26 Verfahren zum Herstellen einer Membranelektrodenanordnung
US14/957,717 US9673442B2 (en) 2014-12-08 2015-12-03 Method of manufacturing membrane electrode assembly
KR1020150171135A KR20160069470A (ko) 2014-12-08 2015-12-03 막전극 접합체의 제조 방법
CN201510884163.5A CN105680075B (zh) 2014-12-08 2015-12-04 制造膜电极组件的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014247701A JP6149850B2 (ja) 2014-12-08 2014-12-08 膜電極接合体の製造方法

Publications (2)

Publication Number Publication Date
JP2016110855A JP2016110855A (ja) 2016-06-20
JP6149850B2 true JP6149850B2 (ja) 2017-06-21

Family

ID=55974428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014247701A Active JP6149850B2 (ja) 2014-12-08 2014-12-08 膜電極接合体の製造方法

Country Status (5)

Country Link
US (1) US9673442B2 (ja)
JP (1) JP6149850B2 (ja)
KR (1) KR20160069470A (ja)
CN (1) CN105680075B (ja)
DE (1) DE102015120531B4 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7364892B2 (ja) 2020-01-09 2023-10-19 日本製鉄株式会社 製造スケジュール決定装置、製造スケジュール決定方法およびプログラム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102644540B1 (ko) 2018-07-04 2024-03-06 현대자동차주식회사 계면저항을 최소화한 박막형 막-전극 접합체 제조방법
KR102598553B1 (ko) * 2018-12-24 2023-11-03 현대자동차주식회사 막 전극 접합체의 열 처리 장치 및 열 처리 방법
JP7156261B2 (ja) * 2019-12-17 2022-10-19 トヨタ自動車株式会社 燃料電池用触媒層の製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729576A (ja) 1993-07-16 1995-01-31 Aqueous Res:Kk 燃料電池用電極の製造方法
JP4228643B2 (ja) * 2002-09-24 2009-02-25 アイシン精機株式会社 固体高分子型燃料電池の膜電極接合体の製造方法
JP2004288391A (ja) 2003-03-19 2004-10-14 Toyota Motor Corp 膜−電極接合体の製造方法、膜−電極接合体、及び燃料電池
JP2005050734A (ja) 2003-07-30 2005-02-24 Japan Storage Battery Co Ltd 固体高分子形燃料電池用電極の製造方法
JP2005209402A (ja) * 2004-01-20 2005-08-04 Aisin Seiki Co Ltd 固体高分子型燃料電池の膜電極接合体の製造方法
US7883817B2 (en) 2004-07-06 2011-02-08 Panasonic Corporation Method for producing gas diffusion electrode and method for producing polymer electrolyte fuel cell, and gas diffusion electrode and polymer electrolyte fuel cell
JP2006286560A (ja) * 2005-04-05 2006-10-19 Asahi Glass Co Ltd 固体高分子形燃料電池用膜・電極接合体の製造方法
JP5277740B2 (ja) * 2008-06-10 2013-08-28 旭硝子株式会社 触媒層の形成方法および固体高分子形燃料電池用膜電極接合体の製造方法
JP2010061865A (ja) * 2008-09-01 2010-03-18 Toyota Motor Corp 膜電極構造体の製造方法、及び該製造方法で製造される膜電極構造体
JP5375208B2 (ja) * 2009-03-05 2013-12-25 トヨタ自動車株式会社 燃料電池の製造方法、燃料電池
JP5503322B2 (ja) * 2010-02-15 2014-05-28 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
JP2011222416A (ja) * 2010-04-13 2011-11-04 Toyota Motor Corp 燃料電池用電極の製造方法
JP2011258397A (ja) 2010-06-09 2011-12-22 Toyota Motor Corp 燃料電池の触媒層の製造
WO2014155929A1 (ja) * 2013-03-27 2014-10-02 Jx日鉱日石エネルギー株式会社 燃料電池用触媒層の製造方法、燃料電池用触媒層および燃料電池
JP5699348B2 (ja) 2013-11-11 2015-04-08 大日本印刷株式会社 膜触媒層接合体の製造装置及び製造方法、並びに膜電極接合体の製造装置及び製造方法
JP6348036B2 (ja) 2014-09-24 2018-06-27 株式会社Screenホールディングス 触媒層形成方法および触媒層形成装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7364892B2 (ja) 2020-01-09 2023-10-19 日本製鉄株式会社 製造スケジュール決定装置、製造スケジュール決定方法およびプログラム

Also Published As

Publication number Publication date
CN105680075A (zh) 2016-06-15
CN105680075B (zh) 2019-04-12
DE102015120531A1 (de) 2016-06-09
DE102015120531B4 (de) 2023-09-07
KR20160069470A (ko) 2016-06-16
JP2016110855A (ja) 2016-06-20
US20160164068A1 (en) 2016-06-09
US9673442B2 (en) 2017-06-06

Similar Documents

Publication Publication Date Title
JP6149850B2 (ja) 膜電極接合体の製造方法
US20140011116A1 (en) Manufacturing method and apparatus for membrane electrode assembly, and polymer electrolyte fuel cell
JP4879372B2 (ja) 膜−触媒層接合体の製造方法及び装置
JP6352727B2 (ja) 膜・触媒層接合体の製造装置および製造方法
JP6352730B2 (ja) 膜・触媒層接合体の製造装置および製造方法
JP2016046091A (ja) 塗工装置および塗工方法、並びに、膜・触媒層接合体の製造装置および製造方法
JP6128099B2 (ja) 膜電極接合体の製造方法および膜電極接合体
WO2015122081A1 (ja) 電解質膜改質装置および電解質膜改質方法、並びに、膜・触媒層接合体の製造システムおよび製造方法
EP2922126A1 (en) Intermittent coating method and intermittent coating apparatus
JP4233051B2 (ja) 燃料電池用電極層の製造方法
EP3001491B1 (en) Catalyst layer forming method and catalyst layer forming apparatus
JP5899522B2 (ja) 燃料電池用膜電極接合体の製造方法および製造装置
JP7470816B2 (ja) 触媒被覆膜の製造方法
JP5853194B2 (ja) 膜−触媒層接合体の製造方法及びその製造装置
JP2006139950A (ja) 燃料電池用電極層の製造方法
JP2018147890A (ja) 膜・触媒層接合体の製造装置
JP2009289623A (ja) 膜電極接合体における触媒層の製造方法
JP6135641B2 (ja) 膜電極接合体の製造方法
JP6254877B2 (ja) 触媒層形成方法および触媒層形成装置
JP2016201175A (ja) 燃料電池用触媒層シートの製造方法及び燃料電池用触媒層シート、膜電極接合体、固体高分子形燃料電池
JP2010027271A (ja) 燃料電池用触媒層の形成方法
EP3723177B1 (en) Method for manufacturing membrane electrode assembly for fuel cell
TW202007534A (zh) 膜-觸媒接合體的製造方法及製造裝置、帶觸媒層的電解質膜的製造方法
JP2019145258A (ja) 膜電極接合体の製造方法
JP2005216685A (ja) 固体高分子型燃料電池用電極およびその製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170508

R151 Written notification of patent or utility model registration

Ref document number: 6149850

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151