JP6007941B2 - トナー収容容器、及び画像形成装置 - Google Patents

トナー収容容器、及び画像形成装置 Download PDF

Info

Publication number
JP6007941B2
JP6007941B2 JP2014096927A JP2014096927A JP6007941B2 JP 6007941 B2 JP6007941 B2 JP 6007941B2 JP 2014096927 A JP2014096927 A JP 2014096927A JP 2014096927 A JP2014096927 A JP 2014096927A JP 6007941 B2 JP6007941 B2 JP 6007941B2
Authority
JP
Japan
Prior art keywords
toner
container
shutter
parts
transport
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014096927A
Other languages
English (en)
Other versions
JP2015004966A (ja
Inventor
正名 斯波
正名 斯波
真悟 阪下
真悟 阪下
順一 粟村
順一 粟村
智紀 村山
智紀 村山
ちひろ 菊池
ちひろ 菊池
将也 福田
将也 福田
細川 浩
浩 細川
加藤 俊次
俊次 加藤
真二 田牧
真二 田牧
池口 弘
弘 池口
賢治 菊地
賢治 菊地
道治 鈴木
道治 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2014096927A priority Critical patent/JP6007941B2/ja
Priority to US14/282,110 priority patent/US9152084B2/en
Publication of JP2015004966A publication Critical patent/JP2015004966A/ja
Application granted granted Critical
Publication of JP6007941B2 publication Critical patent/JP6007941B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/06Apparatus for electrographic processes using a charge pattern for developing
    • G03G15/08Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer
    • G03G15/0822Arrangements for preparing, mixing, supplying or dispensing developer
    • G03G15/0865Arrangements for supplying new developer
    • G03G15/0867Arrangements for supplying new developer cylindrical developer cartridges, e.g. toner bottles for the developer replenishing opening
    • G03G15/087Developer cartridges having a longitudinal rotational axis, around which at least one part is rotated when mounting or using the cartridge
    • G03G15/0872Developer cartridges having a longitudinal rotational axis, around which at least one part is rotated when mounting or using the cartridge the developer cartridges being generally horizontally mounted parallel to its longitudinal rotational axis

Description

本発明は、トナー収容容器、及び画像形成装置に関する。
電子写真方式の画像形成装置は、粉体である現像剤を収納した粉体収納容器であるトナー容器から現像剤であるトナーを粉体搬送装置で現像装置に供給(補給)している。
例えば、回転自在な筒状の粉体収納部材と、紛体収納部材に固定された搬送管受入部材と、搬送管受入部材に設けられた開口部と、トナーを容器本体が回転することで容器内において上方に持ち上げる汲み上げ部と、を有するトナー収容容器が提案されている(例えば、特許文献1参照)。この提案の技術では、容器本体の回転に伴って汲み上げ部によりトナーが持ち上げられ、当該回転中に汲み上げ部よりトナーが落下して搬送管の内部にトナーが供給される。
しかし、汲み上げ部によってトナーを汲み上げて、搬送管の内部に供給する構成を採用する方式の場合、トナーボトル内のトナー残量が少なくなってくると、現像装置へのトナー補給が困難になるという問題がある。
したがって、トナー収容容器内のトナー残量が少なくなっても、現像装置へのトナーの補給が可能なトナー収容容器の提供が求められているのが現状である。
近年、更なる省エネルギー化を図る観点から、低温定着や高速複写を可能にする技術の開発が進められており、例えば、低軟化点の樹脂・ワックス等を用いて低温定着性に優れたトナーが検討されてきている。しかし、前記低温定着性に優れたトナーでは、熱的に弱いため、使用している機械から発生する熱や保存時の熱等によって固まってしまう現象、即ちブロッキング現象が生じ易くなり、耐熱保存性が十分でなく、また、ホットオフセットが発生しやすいため、定着温度幅を十分に確保するのが困難であるという問題がある。
本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、トナー収容容器内のトナー残量が少なくなっても、現像装置へのトナーの補給が可能なトナー収容容器を提供することを目的とする。
また、本発明は、更に、低温定着性と、耐ホットオフセット性と、耐熱保存性とを良好なレベルに両立させることが可能なトナー収容容器を提供することを目的とする。
前記課題を解決するための手段としては、以下の通りである。即ち、
本発明のトナー収容容器は、
トナー搬送装置に装着可能であり、前記トナー搬送装置に供給するトナーが収容された容器本体と、
前記容器本体の内部に配置され、前記トナーを前記容器本体における長手方向の一端側から容器開口部が設けられた他端側に搬送する搬送部と、
前記容器開口部に配置され、前記トナー搬送装置に固定された搬送管を受け入れ可能な管受入口と、
前記搬送部によって搬送された前記トナーを前記容器本体の下方から上方に持ち上げ、前記搬送管のトナー受入口に向けて移動させる汲み上げ部と、を備えるトナー収容容器において、
前記トナーの、パウダーレオメーターで測定され下記式(1)で表される流動速度指標が、下記式(2)の範囲であり、
前記容器本体が、前記容器開口部の容器本体内部側から、前記一端側に向かって突出している突出部を有し、
前記汲み上げ部が、前記容器本体内壁面から前記突出部に向かって伸びる汲み上げ壁面と前記突出部に沿うように湾曲する湾曲部とを有し、
前記突出部が、前記トナー収容容器が前記トナー搬送装置に装着された際、前記湾曲部と挿入された前記搬送管のトナー受入口との間に存在するように設けられている、
ことを特徴とする。
流動速度指標=(回転速度10mm/sの全体エネルギー)/(回転速度100mm/sの全体エネルギー) ・・・(1)
1.8≦流動速度指標≦6.5 ・・・(2)
本発明によると、従来における前記諸問題を解決することができ、トナー収容容器内のトナー残量が少なくなっても、現像装置へのトナーの補給が可能なトナー収容容器を提供することができる。本発明によると、更に、低温定着性と、耐ホットオフセット性と、耐熱保存性とを良好なレベルに両立させることが可能なトナー収容容器を提供することができる。
図1は、本発明の一例のトナー収容容器を装着する前のトナー搬送装置とトナー収容容器の断面説明図である。 図2は、本発明の画像形成装置の一例を示す概略構成図である。 図3は、図2に示す画像形成装置の作像部の一構成を示す模式図である。 図4は、図2に示す画像形成装置におけるトナー補給装置にトナー収容容器が設置された状態を示す模式図である。 図5は、トナー補給装置にトナー収容容器が設置された状態を示す一例の概略斜視図である。 図6は、本発明のトナー収容容器の構成の一例を示す斜視説明図である。 図7は、トナー収容容器を装着する前のトナー搬送装置とトナー収容容器の一例の斜視説明図である。 図8は、トナー収容容器を装着した状態のトナー搬送装置とトナー収容容器の一例の斜視説明図である。 図9は、トナー収容容器を装着した状態のトナー搬送装置とトナー収容容器の一例の断面説明図である。 図10は、先端側のカバーを取り外した状態のトナー収容容器の一例の斜視説明図である。 図11は、容器本体からノズル受入部材を取り外した状態のトナー収容容器の一例の斜視説明図である。 図12は、容器本体からノズル受入部材を取り外した状態のトナー収容容器の一例の断面説明図である。 図13は、図12の状態からノズル受入部材を容器本体に取り付けた状態のトナー収容容器の一例の断面説明図である。 図14は、容器先端側から見たノズル受入部材の一例の斜視説明図である。 図15は、容器後端側から見たノズル受入部材の一例の斜視説明図である。 図16は、図13に示す状態のノズル受入部材の一例の断面図である。 図17は、図13に示す状態のノズル受入部材の一例の断面図である。 図18は、ノズル受入部材の一例の分解斜視図である。 図19Aは、開閉部材と搬送管の装着動作時の状態を説明する一例の上方から見た平面視図である。 図19B、は、開閉部材と搬送管の装着動作時の状態を説明する一例の上方から見た平面視図である。 図19Cは、開閉部材と搬送管の装着動作時の状態を説明する一例の上方から見た平面視図である。 図19Dは、開閉部材と搬送管の装着動作時の状態を説明する一例の上方から見た平面視図である。 図20Aは、一の実施形態における容器後端側から見た後端開口部とシャッタ抜け防止爪及び平面ガイド部との関係を示す拡大図である。 図20Bは、一の実施形態における容器後端側から見た後端開口部とシャッタ抜け防止爪及び平面ガイド部との関係を示す拡大図である。 図21は、他の実施形態における開閉部材と搬送管の当接状態を示す拡大断面図である。 図22は、他の実施形態における凝集抑制手段の突出量と画像中の黒ポチの発生の関係を示す予想図である。 図23は、他の実施形態における凝集抑制手段の別な構成を示す拡大図である。 図24は、搬送管の端面の変形例を示す拡大図である。 図25は、他の実施形態における主要部の構成を示す拡大斜視図である。 図26は、他の実施形態における開閉部材と搬送管の当接状態を示す拡大断面図である。 図27は、他の実施形態における開閉部材の端面に設けたシール部材と凝集抑制手段の構成を説明する拡大断面図である。 図28は、他の実施形態におけるシール部材の構成を示す拡大断面図である。 図29は、他の実施形態におけるシール部材の潰れ量を説明する拡大断面図である。 図30は、図9のE−E断面図である。 図31は、本発明のトナー収容容器の構成を示す斜視説明図である。 図32は、本発明のトナー収容容器の構成を示す断面斜視図である。 図33は、本発明のトナー収容容器の構成を示す側面図である。 図34は、本発明のトナー収容容器の構成を示す断面斜視図である。 図35は、本発明のトナー収容容器の構成を示す断面図である。 図36は、本発明のトナー収容容器の他の態様を示す斜視図である。 図37は、本発明のトナー収容容器の他の態様を示す断面図である。 図38Aは、トナー収容容器にトナーを充填するときの製造工程の一例を説明するための図である。 図38Bは、トナー収容容器にトナーを充填するときの製造工程の一例を説明するための図である。 図39は、プロペラ型ブレードの概略図である。 図40は、プロペラ型ブレードのブレード板の形状を説明するための図である。 図41は、トナー収容容器内のトナー残量とトナー補給量との関係を示すグラフである。 図42は、重量平均分子量の測定の一例を示すグラフである。 図43は、実施例で用いたベルト式定着装置の概略図である。
(トナー収容容器)
本発明のトナー収容容器は、トナーと、容器本体と、搬送部と、管受入口と、汲み上げ部と、を少なくとも備え、更に必要に応じて、その他の部材を備える。
パウダーレオメーターで測定され下記式(1)で表される前記トナーの流動速度指標は、下記式(2)の範囲であり、下記式(3)の範囲が好ましく、下記式(4)の範囲がより好ましい。
流動速度指標=(回転速度10mm/sの全体エネルギー)/(回転速度100mm/sの全体エネルギー) ・・・(1)
1.8≦流動速度指標≦6.5 ・・・(2)
2.8≦流動速度指標≦6.5 ・・・(3)
2.8≦流動速度指標≦4.0 ・・・(4)
前記容器本体は、トナー搬送装置に装着可能であり、前記トナー搬送装置に供給する前記トナーを収容する。
前記搬送部は、前記容器本体の内部に配置され、前記トナーを前記容器本体における長手方向の一端側から容器開口部が設けられた他端側に搬送する。
前記管受入口は、前記容器開口部に配置され、前記トナー搬送装置に固定された搬送管を受け入れ可能である。
前記汲み上げ部(トナー移送部ともいう)は、前記搬送部によって搬送された前記トナーを前記容器本体の下方から上方に持ち上げ、前記搬送管のトナー受入口に向けて移動させる。
前記容器本体は、前記容器開口部の容器本体内部側から、前記一端側に向かって突出している突出部を有する。
前記汲み上げ部は、前記容器本体内壁面から前記突出部に向かって伸びる汲み上げ壁面と前記突出部に沿うように湾曲する湾曲部とを有する。
前記突出部は、前記トナー収容容器が前記トナー搬送装置に装着された際、前記湾曲部と挿入された前記搬送管のトナー受入口との間に存在するように設けられている。
前記突出部は、板状の部材であって、前記板状の部材の平らな側面が、前記湾曲部と、挿入された前記トナー搬送管のトナー受入口との間に存在するように設けられていることが好ましい。そうすることにより、板状の部材の平らな側面は、トナーを受け易く、前記汲み上げ部から前記トナー搬送管へのトナーの受け渡しが円滑に進む。
なお、前記平らな側面は、前記汲み上げ部に対向する前記板状の部材の面と略直交する側面である。
また、前記汲み上げ部は、前記容器本体内壁面から前記突出部に向かって隆起した隆起部を有する。前記隆起部には前記突出部に沿うように湾曲する湾曲部が設けられている。
前記突出部は、前記トナー収容容器が前記トナー搬送装置に装着された際、前記湾曲部と挿入された前記搬送管のトナー受入口との間に存在するように設けられている。
前記トナー収容容器は、前記汲み上げ部を2つ有し、前記トナー収容容器が前記トナー搬送装置に装着された際、前記2つの汲み上げ部がそれぞれに有する湾曲部と、挿入された前記搬送管のトナー受入口との間のそれぞれに、前記突出部が存在することが好ましい。そうすることにより、効率よくトナーの汲み上げが行われ、前記汲み上げ部から前記トナー搬送管へのトナーの受け渡しが円滑に進む。
2つの前記突出部は、前記トナー収容容器における長手方向の中心軸を挟んで対向して配置されていてもよいし、対向して配置されていなくてもよい。
(画像形成装置)
本発明の画像形成装置においては、前記トナー収容容器が画像形成装置本体に着脱可能に設置されている。
以下、本発明の実施形態について図面を用いて説明する。図2は、画像形成装置としての複写機(以下、複写機500という)に適用した、本発明の一実施形態について説明する。
図2は、本実施形態の複写機500の概略構成図である。複写機500は、複写機装置本体(以下、プリンタ部100という)、給紙テーブル(以下、給紙部200という)及びプリンタ部100上に取り付けるスキャナ(以下、スキャナ部400という)から構成されている。
プリンタ部100の上部に設けられたトナー収容容器収納部70には、各色(イエロー、マゼンタ、シアン、ブラック)に対応した四つのトナー収容容器32(Y,M,C,K)が着脱自在(交換自在)に設置されている。トナー収容容器収納部70の下方には中間転写ユニット85が配設されている。
中間転写ユニット85は、中間転写体としての中間転写ベルト48、四つの一次転写バイアスローラ49(Y,M,C,K)、二次転写バックアップローラ82、複数のテンションローラ、及び、不図示の中間転写クリーニング装置等で構成されている。中間転写ベルト48は、複数のローラ部材によって張架、支持されるとともに、この複数のローラ部材の一つである二次転写バックアップローラ82の回転駆動によって図2中の矢印方向に無端移動する。
プリンタ部100には、中間転写ベルト48に対向するように、各色に対応した四つの作像部46(Y,M,C,K)が並設されている。四つのトナー収容容器32(Y,M,C,K)の下方には、それぞれの色のトナー収容容器に対応した四つのトナー搬送装置としてのトナー補給装置60(Y,M,C,K)が配設されている。そして、トナー収容容器32(Y,M,C,K)に収容された粉体の現像剤であるトナーは、それぞれに対応するトナー補給装置60(Y,M,C,K)によって、各色に対応した作像部46(Y,M,C,K)の現像装置内に供給(補給)される。
図2に示すように、プリンタ部100は、四つの作像部46の下方に潜像形成手段である露光装置47を備えている。露光装置47は、スキャナ部400で読み込んだ原稿画像の画像情報に基づいて、感光体41(Y,M,C,K)の表面を露光走査し、各感光体の表面に静電潜像を形成する。画像情報はスキャナ部400からの読み込みではなく、複写機500に接続されたパーソナルコンピュータ等の外部装置から入力される画像情報であってもよい。
本形態において、露光装置47には、レーザーダイオードを用いたレーザービームスキャナ方式を用いているが、露光手段としてはLEDアレイを用いるものなど他の構成でもよい。
図3は、イエローに対応した作像部46Yの一構成を示す模式図である。
作像部46Yは、像担持体であるドラム状の感光体41Yを備える。作像部46Yは、帯電手段である帯電ローラ44Y、現像手段である現像装置50Y、感光体クリーニング装置42Y、不図示の除電装置等を感光体41Yの周囲に配設した構成である。そして、感光体41Y上で、作像プロセス(帯電工程、露光工程、現像工程、転写工程、クリーニング工程)が行われることで、感光体41Y上にイエローのトナー画像が形成される。
なお、他の三つの作像部46(M,C,K)も、使用されるトナーの色が異なる点以外は、イエローに対応した作像部46Yとほぼ同様の構成となっていて、各感光体41(M,C,K)上にそれぞれの色のトナーに対応したトナー画像が形成される。以下、他の三つの作像部46(M,C,K)の説明を適宜に省略して、イエローに対応した作像部46Yのみの説明を行うことにする。
感光体41Yは、不図示の駆動モータによって図3中の時計回り方向に回転駆動される。感光体41Yは、帯電ローラ44Yと対向する位置で、感光体41Yの表面が一様に帯電される(帯電工程)。その後、感光体41Yの表面は、露光装置47から発せられたレーザ光Lの照射位置に達して、この位置での露光走査によってイエローに対応した静電潜像が形成される(露光工程)。その後、感光体41Yの表面は、現像装置50Yとの対向位置に達して、この位置で静電潜像がイエローのトナーで現像されて、イエローのトナー像が形成される(現像工程)。
中間転写ユニット85の四つの一次転写バイアスローラ49(Y,M,C,K)は、それぞれ、中間転写ベルト48を感光体41(Y,M,C,K)との間に挟み込んで一次転写ニップを形成している。一次転写バイアスローラ49(Y,M,C,K)には、トナーの極性とは逆の転写バイアスが印加される。
現像工程でトナー像が形成された感光体41Yの表面は、中間転写ベルト48を挟んで一次転写バイアスローラ49Yと対向する一次転写ニップに達して、この一次転写ニップで感光体41Y上のトナー像が中間転写ベルト48上に転写される(一次転写工程)。このとき、感光体41Y上には、僅かながら未転写トナーが残存する。一次転写ニップでトナー像を中間転写ベルト48に転写した感光体41Yの表面は、感光体クリーニング装置42Yとの対向位置に達する。感光体41Y上に残存した未転写トナーは、この対向位置で感光体クリーニング装置42Yが備えるクリーニングブレード42aによって機械的に回収される(クリーニング工程)。最後に、感光体41Yの表面は、不図示の除電装置との対向位置に達して、この位置で感光体41Y上の残留電位が除去される。こうして、感光体41Y上で行われる一連の作像プロセスが終了する。
このような作像プロセスは、他の作像部46(M,C,K)でも、イエローの作像部46Yと同様に行われる。即ち、作像部46(M,C,K)の下方に配設された露光装置47から、画像情報に基づいたレーザ光Lが、各作像部46(M,C,K)の感光体41(M,C,K)上に向けて照射される。詳しくは、露光装置47は、光源からレーザ光Lを発して、そのレーザ光Lを回転駆動されたポリゴンミラーで走査しながら、複数の光学素子を介して各感光体41(M,C,K)上に照射する。その後、現像工程を経て各感光体41(M,C,K)上に形成した各色のトナー像を、中間転写ベルト48上に転写する。
このとき、中間転写ベルト48は、図2中の矢印方向に走行して、各一次転写バイアスローラ49(Y,M,C,K)の一次転写ニップを順次通過する。これにより、各感光体41(Y,M,C,K)上の各色のトナー像が、中間転写ベルト48上に重ねて一次転写され、中間転写ベルト48上にカラートナー像が形成される。
各色のトナー像が重ねて転写され、カラートナー像が形成された中間転写ベルト48は、二次転写ローラ89との対向位置に達する。この位置では、二次転写バックアップローラ82が、二次転写ローラ89との間に中間転写ベルト48を挟み込んで二次転写ニップを形成している。そして、中間転写ベルト48上に形成されたカラートナー像は、二次転写ニップの位置に搬送された転写紙等の記録媒体P上に、例えば二次転写バックアップローラ82に印加される転写バイアスの作用によって転写される。このとき、中間転写ベルト48には、記録媒体Pに転写されなかった未転写トナーが残存する。二次転写ニップを通過した中間転写ベルト48は、不図示の中間転写クリーニング装置の位置に達し、その表面上の未転写トナーが回収され、中間転写ベルト48上で行われる一連の転写プロセスが終了する。
次に、記録媒体Pの動きについて説明する。
上述した二次転写ニップに搬送される記録媒体Pは、プリンタ部100の下方に配設された給紙部200に設けられた給紙トレイ26から、給紙ローラ27やレジストローラ対28等を経由して搬送されるものである。詳しくは、給紙トレイ26には記録媒体Pが複数枚重ねて収納されている。そして、給紙ローラ27が図2中、反時計回り方向に回転駆動されると、一番上の記録媒体Pがレジストローラ対28の二つのローラによって形成されるローラニップに向けて搬送される。
レジストローラ対28に搬送された記録媒体Pは、回転駆動を停止したレジストローラ対28のローラニップの位置で一旦停止する。そして、中間転写ベルト48上のカラートナー像が二次転写ニップに到達するタイミングに合わせて、レジストローラ対28が回転駆動されることで、記録媒体Pが二次転写ニップに向けて搬送される。これにより、記録媒体P上に、所望のカラートナー像が転写される。
二次転写ニップでカラートナー像が転写された記録媒体Pは、定着装置86の位置に搬送される。定着装置86では、定着ベルト及び加圧ローラによる熱と圧力とにより、表面に転写されたカラートナー像が記録媒体P上に定着される。定着装置86を通過した記録媒体Pは、排紙ローラ対29のローラ間を経て、装置外へと排出される。排紙ローラ対29によって装置外に排出された記録媒体Pは、出力画像として、スタック部30上に順次スタックされる。こうして、複写機500における一連の画像形成プロセスが完了する。
次に、作像部46における現像装置50の構成及び動作について、更に詳しく説明する。なお、ここではイエローに対応した作像部46Yを例に挙げて説明を行うが、他色の作像部46(M,C,K)においても同様の構成及び動作を行う。
現像装置50Yは、図3に示すように、現像剤担持体としての現像ローラ51Y、現像剤規制板としてのドクタブレード52Y、二つの現像剤搬送スクリュ55Y、及び、トナー濃度検知センサ56Y等で構成されている。現像ローラ51Yは、感光体41Yに対向し、ドクタブレード52Yは、現像ローラ51Yに対向する。二つの現像剤搬送スクリュ55Yは、二つの現像剤収容部(53Y,54Y)内に配設されている。現像ローラ51Yは、内部に固設されたマグネットローラ、及び、マグネットローラの周囲を回転するスリーブ等で構成されている。第一現像剤収容部53Y及び第二現像剤収容部54Y内には、キャリアとトナーとからなる二成分の現像剤Gが収容されている。第二現像剤収容部54Yは、その上方に形成された開口を介してトナー落下搬送経路64Yに連通している。トナー濃度検知センサ56Yは、第二現像剤収容部54Y内の現像剤G中のトナー濃度を検知する。
現像装置50Y内の現像剤Gは、二つの現像剤搬送スクリュ55Yによって、攪拌されながら、第一現像剤収容部53Yと第二現像剤収容部54Yとの間を循環する。第一現像剤収容部53Y内の現像剤Gは、現像剤搬送スクリュ55Yの一方に搬送されながら現像ローラ51Y内のマグネットローラにより形成される磁界によって現像ローラ51Yのスリーブ表面上に供給されて担持される。現像ローラ51Yのスリーブは、図3に矢印で示すように反時計回り方向に回転駆動し、現像ローラ51Y上に担持された現像剤Gは、スリーブの回転にともない現像ローラ51Y上を移動する。このとき、現像剤G中のトナーは、現像剤G中のキャリアとの摩擦帯電によりキャリアとは逆極性の電位に帯電して静電的にキャリアに吸着し、現像ローラ51Y上に形成された磁界によって引き寄せられるキャリアとともに現像ローラ51Y上に担持される。
現像ローラ51Y上に担持された現像剤Gは、図3中の矢印方向に搬送されて、ドクタブレード52Yと現像ローラ51Yとが対向するドクタ部に達する。現像ローラ51Y上の現像剤Gは、ドクタ部を通過する際にその量が規制されて適量化され、その後、感光体41Yとの対向位置である現像領域まで搬送される。現像領域では、現像ローラ51Yと感光体41Yとの間に形成された現像電界によって感光体41Y上に形成された潜像に現像剤G中のトナーが吸着される。現像領域を通過した現像ローラ51Yの表面上に残った現像剤Gは、スリーブの回転に伴い第1現像剤収容部53Yの上方に達して、この位置で現像ローラ51Yから離脱される。
現像装置50Y内の現像剤Gは、トナー濃度が所定の範囲内になるように調整される。詳しくは、現像装置50Y内の現像剤Gに含まれるトナーの現像による消費量に応じて、トナー収容容器32Yに収容されているトナーが、トナー補給装置60Yを介して第二現像剤収容部54Y内に補給される。第二現像剤収容部54Y内に補給されたトナーは、二つの現像剤搬送スクリュ55Yによって、現像剤Gとともに混合、攪拌されながら、第一現像剤収容部53Yと第二現像剤収容部54Yとの間を循環する。
次に、トナー補給装置60(Y,M,C,K)について説明する。
図4は、トナー補給装置60Yにトナー収容容器32Yが装着された状態を示す模式図であり、図5は、トナー収容容器収容部70に四つのトナー収容容器32(Y,M,C,K)が装着された状態を示す概略斜視図である。
プリンタ部100のトナー収容容器収容部70に装着されたトナー収容容器32(Y,M,C,K)内のトナーは、図4に示すように各色の現像装置50(Y,M,C,K)内のトナー消費に応じて、適宜に各現像装置50(Y,M,C,K)内に補給される。このとき、トナー収容容器32(Y,M,C,K)内のトナーは、トナー色ごとに設けられたトナー補給装置60(Y,M,C,K)によって補給される。なお、四つのトナー補給装置60(Y,M,C,K)やトナー収容容器32(Y,M,C,K)は、作像プロセスに用いられるトナーの色が異なる以外はほぼ同一構造である。このため、以下、イエローに対応したトナー補給装置60Y及びトナー収容容器32Yのみの説明を行い、他の三つの色に対応したトナー補給装置60(M,C,K)及びトナー収容容器32(M,C,K)の説明を適宜に省略する。
トナー補給装置60(Y,M,C,K)は、トナー収容容器収容部70、搬送管としての搬送ノズル611(Y,M,C,K)、搬送部材としての搬送スクリュ614(Y,M,C,K)、トナー落下搬送経路64(Y,M,C,K)、容器回転駆動部91(Y,M,C,K)等で構成されている。
説明の便宜のため、トナー収容容器32Yのトナー補給装置60Yへの装着方向を基準にして、後述する容器本体33の容器開口部33a側を容器先端側とし、容器開口部33aの反対側(後述する把手部303側)を容器後端側とする。トナー収容容器32Yが図4中矢印Qの方向へ移動してプリンタ部100のトナー収容容器収容部70に装着されると、その装着動作に連動して、トナー収容容器32Yの容器先端側からトナー補給装置60Yの搬送ノズル611Yが挿入される。これにより、トナー収容容器32Y内と搬送ノズル611Y内とが連通する。この装着動作に連動して連通する構成についての詳細は後述する。
トナー収容容器の形態として、トナー収容容器32Yは、略円筒状のトナーボトルである。そして、トナー収容容器32Yは、主として、トナー収容容器収容部70に非回転で保持される容器先端側カバー34Yと、容器ギア301Yが一体的に形成されたトナー収容部材としての容器本体33Yとから主に構成される。容器本体33Yは、容器先端側カバー34Yに対して回転可能に保持されている。
トナー収容容器収容部70は、図5に示すように、主として、容器カバー受入部73と、容器受部72と、挿入口形成部71とで構成されている。容器カバー受入部73は、トナー収容容器32Yの容器先端側カバー34Yを保持するための部分である。容器受部72は、トナー収容容器32Yの容器本体33Yを支持するための部分である。挿入口形成部71は、容器受部72と、トナー収容容器32Yの装着動作時における挿入口を形成する部分である。複写機500の手前側(図2の紙面垂直方向手前側)に設置された不図示の本体カバーを開放すると、トナー収容容器収容部70の挿入口形成部71が露呈される。そして、各トナー収容容器32(Y,M,C,K)の長手方向を水平方向とした状態で、複写機500の手前側から各トナー収容容器32(Y,M,C,K)の着脱操作(トナー収容容器32の長手方向を着脱方向とする着脱操作)を行う。なお、図4中のセットカバー608Yは、トナー収容容器収容部70の容器カバー受入部73の一部である。
容器受部72は、その長手方向の長さが、容器本体33Yの長手方向の長さとほぼ同等になるように形成されている。容器カバー受入部73は、容器受部72における長手方向(着脱方向)の容器先端側に設けられ、挿入口形成部71は容器受部72における長手方向の一端側に設けられている。図5では四つのトナー収容容器32の直下に容器本体33の軸方向を長手として、挿入口形成部71から容器カバー受入部73まで続く溝がそれぞれ形成されている。この溝に嵌ってすべり移動を可能にするよう、容器先端側カバー34の下部の両側面には一対のスライドガイド361(図7)がある。容器受部72の溝にはその両側面から突き出る一対のスライドレールがある。この一対のスライドレールに上下から挟むように、スライドガイド361は容器本体33の回転軸と平行にスライド溝361aが形成されている。更に容器先端側カバー34は、トナー補給装置60に装着するときに、セットカバー608に設けられた補給装置側ロック部材と係合する容器ロック部339を備える。
そのため、トナー収容容器32Yの装着動作にともない、容器先端側カバー34Yは、挿入口形成部71を通過した後に、しばらく容器受部72上を滑動して、その後に容器カバー受入部73に装着される。
また、容器先端側カバー34には、図6に示すように、トナー収容容器32の使用状況等のデータを記録したIDタグ(IDチップ)700が設けられている。更に、容器先端側カバー34には、収納するトナーの色が異なるトナー収容容器32が他の色のセットカバー608に装着されることを防止する色非互換リブ34bを設けている。スライドガイド361が装着時に容器受部72のスライドレールと係合することで容器先端側カバー34の補給装置60上での姿勢が決まる。そして、容器ロック部339と補給装置側ロック部材609の位置合わせ、及びIDタグ700と本体側のコネクタの位置合わせをスムースに行うことができる。IDタグはトナー収容容器の情報(収容されているトナーの色、使用された回数等)を記憶する記憶素子が設けられている電子基板であり。本実施例の形態に限定されるものではない。また、IDタグが存在しない構成にしてもよい。
容器先端側カバー34Yが容器カバー受入部73に装着された状態で、図8に示すように駆動モータや駆動ギア等で構成されている容器回転駆動部91Yから容器駆動ギア601Yを介して、容器本体33Yに具備された容器ギア301Y(図10)に回転駆動が入力される。これにより、容器本体33Yが図4中の矢印A方向に回転駆動される。容器本体33Y自体が回転することで、容器本体33Yの内周面に螺旋状に形成された螺旋状突起302Y(回転搬送部)も回転し、容器本体33Yの内部に収容されたトナーが容器本体長手方向に沿って図4中の左側に位置する一端(把手部303側)から右側に位置する他端(容器開口部33a側)へ搬送される。これにより、他端33に設けられた容器先端側カバー34Y側から搬送ノズル611Y内にトナーが供給される。言い換えるなら螺旋状突起302Yが回転することでノズル受入口331Yに挿入された搬送ノズル611Yにトナーが供給される。
搬送ノズル611Y内には、搬送スクリュ614Yが配置されている。搬送スクリュ614Yは、容器回転駆動部91Yから搬送スクリュギア605Yに回転駆動が入力されることで回転し、搬送ノズル611Y内に供給されたトナーを搬送する。搬送ノズル611Yの搬送方向下流端は、トナー落下搬送経路64Yに接続されている。搬送スクリュ614Yによって搬送されたトナーは、トナー落下搬送経路64Yを自重落下して現像装置50Y(第二現像剤収容部54Y)内に補給される。
トナー収容容器32(Y,M,C,K)は、それぞれ、寿命に達したとき(収容するトナーがほとんどすべて消費されて空になったとき)に新品のものに交換される。トナー収容容器32の長手方向における容器先端側カバー34とは反対側の一端には把手部303が設けられており、交換の際には、作業者が把手部303を握って引き出すことで、装着されたトナー収容容器32を取り外すことが出来る。
トナー補給装置60Yでは、搬送スクリュ614Yの回転数によって現像装置50Yへのトナーの供給量を制御している。このため、搬送ノズル611Y内を通過したトナーは、現像装置50Yへの供給量を制御されることなく、トナー落下搬送経路64Yを介して、直接に現像装置50Yへと搬送される。本実施形態のように、搬送ノズル611Yをトナー収容容器32Yに挿入するトナー補給装置60Yであっても、トナーホッパ等のトナー1次貯留部を設けてもよい。
また、本実施形態のトナー補給装置60Yでは、搬送ノズル611Y内に供給されたトナーを搬送スクリュ614Yによって搬送する構成としているが、搬送ノズル611Y内に供給されたトナーを搬送する搬送部材の構成としては、スクリュ部材に限るものではない。例えば周知の粉体ポンプを用いて搬送ノズル611Yの開口部に負圧を発生させる構成など、スクリュ部材以外によって搬送力を付与する構成であってもよい。
次に、本実施形態のトナー収容容器32(Y,M,C,K)及びトナー補給装置60(Y,M,C,K)についてより詳細に説明する。なお、上述したように、トナー収容容器32(Y,M,C,K)及びトナー補給装置60(Y,M,C,K)は、それぞれ使用するトナーの色が異なる他はほぼ同様の構成になっている。よって、以下、トナーの色を示す添字Y,M,C,Kは省略して説明する。
図6は、トナー収容容器32の斜視説明図である。図7は、トナー収容容器32を装着する前のトナー補給装置60と、トナー収容容器32の先端側端部との斜視説明図であり、図8は、トナー収容容器32を装着した状態のトナー補給装置60と、容器先端側のトナー収容容器32の端部との斜視説明図である。
図1は、トナー収容容器32を装着する前のトナー補給装置60と、容器先端側のトナー収容容器32の端部との断面説明図であり、図9は、トナー収容容器32を装着した状態のトナー補給装置60と、容器先端側のトナー収容容器32の端部との断面説明図である。
トナー補給装置60は、内部に搬送スクリュ614を備える搬送ノズル611と、ノズルシャッタ612を備える。ノズルシャッタ612は、トナー収容容器32が装着される前の非装着時(図1及び図7の状態)では、搬送ノズル611に形成されたノズル開口610を閉鎖し、トナー収容容器32が装着された装着時(図8及び図9の状態)にはノズル開口610を開放する。一方、トナー収容容器32の先端面の中央には、装着時に搬送ノズル611が挿入される管挿入口としてのノズル受入口331が形成されており、非装着時にノズル受入口331を閉鎖する開閉部材としての容器シャッタ332を備える。
まず、トナー収容容器32について説明する。
上述したようにトナー収容容器32は、容器本体33と、容器先端側カバー34とから主に構成されている。図10は、図6の状態から容器先端側カバー34を取り外した状態のトナー収容容器32の斜視説明図である。なお、本発明におけるトナー収容容器32は、容器本体33と、容器先端側カバー34とから主に構成されているものに限られない。たとえば、容器先端側カバー34が有するスライドガイド361やIDタグ700などの機能を設けない場合には、図10の容器先端側カバー34がない状態でトナー収容容器として用いてもよい。また、スライドガイド361やIDタグ700などの機能をトナー収容容器に設けることで、容器先端側カバーがないトナー収容容器とすることができる。
図11は、図10の状態から容器本体33から管挿入部材としてのノズル受入部材330を取り外した状態のトナー収容容器32の斜視説明図であり、図12は、容器本体33からノズル受入部材330を取り外した状態のトナー収容容器32の断面説明図である。図13は、図12の状態からノズル受入部材330を容器本体33に取り付けた状態のトナー収容容器32(図10と同様に容器先端側カバー34を取り外した状態のトナー収容容器32)の断面説明図である。
図10、図11に示すように、容器本体33は、略円筒状であり、円筒の中心軸を回転軸として回転する構成となっている。以下、この回転軸に平行な方向を「回転軸方向」と呼び、回転軸方向において、トナー収容容器32におけるノズル受入口331が形成されている側(容器先端側カバー34が配置されている側)を「容器先端側」と呼ぶことにする。また、トナー収容容器32における把手部303が配置されている側(容器先端側とは逆側)を「容器後端側」と呼ぶことにする。なお、上述したトナー収容容器32の長手方向は回転軸方向であり、トナー補給装置60にトナー収容容器32を装着した状態では、回転軸方向は水平方向となる。容器本体33の容器ギア301よりも容器後端側は、容器先端側よりもその外径が大きくなっており、その内周面には螺旋状突起302が形成されている。そして、容器本体33が図中の矢印A方向に回転すると、容器本体33内のトナーは螺旋状突起302の作用によって回転軸方向における一端側(容器後端側)から他端側(容器先端側)に向かう搬送力が付与される。即ち、容器本体の内部に搬送部としての螺旋状突起が配置されている。
容器本体33の容器先端側の内壁には、容器本体33が図10、及び図11中矢印A方向に回転することで螺旋状突起302によって容器先端側に搬送されてきたトナーを、容器本体33の回転によって上方に汲み上げる汲み上げ部304が形成されている。汲み上げ部304は、図13、図32に示すように凸部304hと、汲み上げ壁面304fとからなる。
凸部304hは、螺旋を形成しながら容器本体33の回転中心に向かって山の稜線を成すように容器本体33の内側に隆起した部分(隆起部)である。汲み上げ壁面304fは、凸部304hから容器本体33の周面の内壁にまで繋がる壁面のうち凸部304hを挟んで容器回転方向から見て下流側となる壁面である。
そして、汲み上げ壁面304fが下方にあるときに、螺旋状突起302の搬送力によって汲み上げ部304に対向する内部空間に進入したトナーを、容器本体33の回転に応じて汲み上げ壁面304fが上方に汲み上げる。これにより、挿入された搬送ノズル611よりも上方にトナーを汲み上げることができる。すなわち下方から上方にトナーを持ち上げる。
更に回転が進むと汲み上げ壁面611によって汲み上げられているトナーが重力に従い、汲み上げ壁面上から滑り落ちる、また、そのまま崩れて落下してゆく。
滑り落ちる先には後述する本体側の搬送管である搬送ノズル611が存在するため、搬送管のノズル開口に向けてトナーを移動させることになる。
図30は、図9のE−E断面図である。図30にあるように凸部304hは、容器本体33がブロー成型で形成されることに影響され、なだらかな山状になっている。
図9等では汲み上げ部304を区別する必要上、便宜的に曲線で凸部304hを表している。汲み上げ壁面304fは、図9にあるように格子で表された領域であり、図30にあるように、容器本体33の回転軸を点対象の基準として凸部304hと容器本体33の内周面とをつなぐ一対の斜面から成る。凸部304hは、隆起し始める容器内壁面から当該内壁面に対向する反対側の内壁面に向かって、且つ、開口部方向に伸びるように連続して設けられている。なお、図9などのE−E断面の箇所では、凸部304hで分けられた内壁面のうち容器回転方向上流側の壁面は、図9などのE−E断面の切断方向と壁面の延在方向が概ね一致しているため、図30のような肉厚の状態で表れている。凸部304hもその一見肉厚に見える箇所にある。
汲み上げ壁面304fは、容器開口部33a方向にトナーを搬送させる必要もあるため、図33に示すように、凸部304hから容器開口部33aに向かうにしたがって、容器本体33の長手方向軸線(図33に示す一点鎖線)から離れるように傾斜している。このようにすることによって、汲み上げ壁面がトナーを汲み上げて回転したときに、汲み上げ壁面が、開口部に向かって傾斜する(凸部から開口部への方向が、水平方向よりも下側に傾斜した方向になる。さらに言えば、長手方向軸線に対して容器の径方向外側に向かって傾斜する。)構成となりトナーを容器開口部方向に搬送しやすくなっている。
容器本体33の汲み上げ部304よりも更に容器先端側には、容器ギア301が形成されている。容器先端側カバー34には、容器本体33に取り付けた状態で、この容器ギア301の一部(図6中の奥側)が露出するように、ギア露出開口34aが設けられている。そして、トナー収容容器32をトナー補給装置60に装着することで、ギア露出開口34aから露出した容器ギア301が、トナー補給装置60側の容器駆動ギア601に噛み合う構成となっている。
容器本体33の容器ギア301よりもさらに容器先端側には、円筒状の容器開口部33aが形成されている。そして、この容器開口部33aにノズル受入部材330の受入部材固定部337を圧入することにより、容器本体33に対してノズル受入部材330を固定することが出来る。ノズル受入部材330を固定する方法としては圧入に限らず、接着剤による固定やネジ止めによる固定であってもよい。
トナー収容容器32は、容器本体33に対して容器開口部33aの開口からトナーを充填後、ノズル受入部材330を容器本体33の容器開口部33aに固定する構成となっている。
また、容器本体33の容器開口部33aの容器ギア301側の端部には、カバー爪引掛け部306が形成されている。図10に示す状態のトナー収容容器32(容器本体33)に対して、容器先端側(図10中の左下側)から容器先端側カバー34を取り付ける。これにより、容器本体33が回転軸方向で容器先端側カバー34を貫き、容器先端側カバー34の上部に設けられたカバー爪部341がカバー爪引掛け部306に引っ掛かる。カバー爪引掛け部306は容器開口部33aの外周面を一周するように形成されており、カバー爪部341が引っ掛かることで、容器本体33と容器先端側カバー34とは、相対的に回転可能な取り付けとなる。
また、容器本体33は、二軸延伸ブロー成形法によって成形される。この二軸延伸ブロー成形法は、一般的にはプリフォーム成形工程と延伸ブロー成形工程との二段工程からなる。プリフォーム成形工程では、樹脂を用いて射出成形により試験管状のプリフォームを成形する。このときの射出成形により、試験管状の口部に、容器開口部33a、カバー爪引掛け部306及び容器ギア301を形成する。延伸ブロー成形工程は、プリフォーム成形工程後に冷却され、型から外されたプリフォームを加熱して軟化した後、ブロー成形すると共に延伸する。
容器本体33では、容器ギア301よりも容器後端側が延伸ブロー成形工程によって成形される。すなわち、汲み上げ部304、螺旋状突起302が形成されている部分、及び、把手部303は、延伸ブロー成形工程によって成形される。
容器本体33において、容器ギア301、容器開口部33a及びカバー爪引掛け部306等の容器ギア301から容器先端側の各部は、射出成形されたプリフォームのままの形状であるため、精度良く成形できる。一方、汲み上げ部304、螺旋状突起302が形成されている部分、及び、把手部303は、射出成形された後、延伸ブロー成形工程で延伸して成形されているため、成型の精度はプリフォーム成型部よりは劣る。
次に、容器本体33に固定されるノズル受入部材330について説明する。
図14は、容器先端側から見たノズル受入部材330の斜視説明図であり、図15は、容器後端側から見たノズル受入部材330の斜視説明図である。また、図16は、図13に示す状態のノズル受入部材330を上から見た上断面図であり、図17は、図13に示す状態のノズル受入部材330を横(図13中の奥側)から見た横断面図である。さらに、図18は、ノズル受入部材330の分解斜視図である。
ノズル受入部材330は、支持部材としての容器シャッタ支持部材340と、容器シャッタ332と、封止部材としての容器シール333と、付勢部材としての容器シャッタバネ336と、受入部材固定部337とから構成されている。容器シャッタ支持部材340は、後端部としてのシャッタ後端支持部335、側面部として平板状のシャッタ側面支持部335a(突出部)、側面開口部としてのシャッタ支持開口部335b及び受入部材固定部337からなり、容器シャッタバネ336はコイルスプリングからなる。
容器シャッタ支持部材340に設けられた突出部としてのシャッタ側面支持部335a(突出部)とシャッタ支持開口部335bとは、トナー収容容器回転方向において互いに隣り合って配置され、二つの互いに対向するシャッタ側面支持部335a(突出部)が円筒形状の一部を形成し、シャッタ支持開口部335bの部分(二箇所)で円筒形状を大きく切り取った形状となっている。このような形状により、円筒形状の内側に形成される円柱状の空間S1内(図16)を容器シャッタ332が搬送ノズル611の挿入方向に沿っての移動、言い換えればノズル受入口331を開放する開位置への移動とノズル受入口331を閉じる閉止位置への移動を案内することができる。
すなわち容器本体が、容器開口部の容器本体内部側から、容器後端側に向かって突出している突出部を有している。
容器本体33に固定されるノズル受入部材330は、容器本体33の回転時に容器本体33とともに回転するが、このとき、ノズル受入部材330のシャッタ側面支持部335a(突出部)は、トナー補給装置60側の搬送ノズル611の周りを回転する。このため、回転しているシャッタ側面支持部335a(突出部)とシャッタ支持開口部335bとが搬送ノズル611の上部に形成されたノズル開口610のすぐ上方の空間を交互に通過する。これにより、仮にノズル開口610の上方でトナーが瞬間的に堆積してもその堆積トナーをシャッタ側面支持部335a(突出部)が横切って崩すので、放置時に堆積トナーが凝集してしまい、再起動時にトナーの搬送不良を起こすことを抑制することができる。一方、シャッタ側面支持部335a(突出部)が搬送ノズル611の側方に位置し、ノズル開口610とシャッタ支持開口部335bとが対向するタイミングでは、図9中の矢印βで示すように、トナーはシャッタ支持開口部335bを通過して容器本体33内のトナーが搬送ノズル611内へと供給される。
容器シャッタ332は、閉止部としての先端円筒部332c、滑動部332d、ガイドロッド332e及びシャッタ抜け防止爪332aからなる。先端円筒部332cは、容器シール333の円筒開口(ノズル受入口331)と密着する容器先端側の部分である。滑動部332dは、先端円筒部332cよりも容器後端側に形成され、先端円筒部332cよりは外径が少し大きく、一対のシャッタ側面支持部335a(突出部)の内周面を滑動する円筒状の部分である。
ガイドロッド332eは、先端円筒部332cの円筒内部から容器後端側に向けて起立した棒材であり、容器シャッタバネ336のコイル内部に挿入されることで容器シャッタバネ336が座屈しないように規制するロッド部分である。
ガイドロッド摺動部332gは、円柱状のガイドロッド332eの途中からガイドロッド332eの中心軸を挟んで両側に一対の平面が形成されている。また、ガイドロッド摺動部332bの容器後端側は二股に割れて一対の片持ち梁332fを形成している。
シャッタ抜け防止爪332aは、ガイドロッド332eの起立した根元とは反対側の端部であって片持ち梁332fの端部に備えられ、容器シャッタ支持部材340から容器シャッタ332の脱落を防止する一対の爪部分である。
図16及び図17に示すように、容器シャッタバネ336の先端側端部は先端円筒部332cの内壁面に突き当たり、容器シャッタバネ336の後端側端部はシャッタ後端支持部335の壁面に突き当たる。このとき、容器シャッタバネ336は圧縮した状態であるため、容器シャッタ332はシャッタ後端支持部335から離れる方向(図16及び図17中の右方向、容器先端方向)の付勢力を受ける。しかし、容器シャッタ332の容器後端側の端部に形成されたシャッタ抜け防止爪332aがシャッタ後端支持部335の外壁面に引っ掛かる。これにより、図16及び図17で示す状態よりも容器シャッタ332はシャッタ後端支持部335から離れる方向に移動することを防止している。
このようなシャッタ抜け防止爪332aのシャッタ後端支持部335に対する引っ掛かりと、容器シャッタバネ336の付勢力と、によって位置決めがなされる。詳しくは、容器シャッタ332のトナー漏れ防止機能を発揮する先端円筒部332cと容器シール333との軸方向の容器シャッタ支持部材340に対する位置決めがなされる。両者が密着する関係で位置決めがされ、トナーの漏出を防止することが出来る。
受入部材固定部337は容器後端側ほど外周面及び内周面の直径が段階的に小さくなる筒状である。容器先端側から容器後端側に見て順に直径が小さくなる。その外周面には図17に示すように、二箇所の外径部(容器先端から順に外周面AA,BB)、内周面には五箇所の内径部(容器先端から順に外周面CC,DD,EE,FF,GG)がある。外周面の外周面AAと外周面BBの境界はテーパ面でつながっている。内周面の四番目の内径部FFと五番目の内径部GGの境界も同様にテーパ面で繋がっている。この内周面の内径部FF及びそれに繋がるテーパ面は、後述するシール部材巻き込み防止空間337bに対応し、それらの面の稜線は後述する五角形断面の辺に相当する。
図16〜図18に示すように、受入部材固定部337から容器後端側には互いに対向し、円筒を軸方向に切断した片状の形態である一対のシャッタ側面支持部335a(突出部)が突出している。二つのシャッタ側面支持部335a(突出部)の容器後端側の端部は、底の中央に丸穴が開いたカップ形状のシャッタ後端支持部335に繋がっている。二つのシャッタ側面支持部335a(突出部)には、互いに対向することで、それらの内壁円筒面とその延長の仮想円筒面によって認識できる円柱状の空間S1が形成されている。受入部材固定部337は、円柱状空間S1の直径と同じ大きさの内径になる円筒状の内周面として先端から五番目の内径部GGを有する。この円柱状空間S1および円筒状の内周面GGを容器シャッタ332の滑動部332dは滑動する。受入部材固定部337の3番目の内周面EEは、45[°]分配の等間隔で配置されたノズルシャッタ突き当てリブ337aの長手頂部を通る仮想円周面である。この内周面EEに対応して断面(図16及び図17の断面図における断面)が四角形の円筒状(円管状)の容器シール333が配置される。容器シール333は、三番目の内周面EEから五番目の内周面FFに繋がる垂直面に接着剤または両面テープ等により固定されている。この容器シール333の貼り付けとは反対側(図16及び図17中の右側)の露出した面が円筒状の受入部材固定部337(容器開口部)の円筒状開口の内底をなす。
また、図16及び図17に示すように、受入部材固定部337の内周面FFとそれに繋がるテーパ面に対応して、シール部材巻き込み防止空間337b(挟み込み防止空間)が形成されている。シール部材巻き込み防止空間337bは三つの異なる部材で囲まれたリング状の密閉空間である。すなわち、受入部材固定部337の内周面(四番目の内周面FFとそれに繋がるテーパ面)と、容器シール333の貼付側の垂直面と、容器シャッタ332の先端円筒部332cから滑動部332dまでの外周面とで囲まれたリング状の空間である。そして、このリング状の空間の断面(図16及び図17の断面図における断面)は五角形をしている。受入部材固定部337の内周面と容器シール333の端面とが成す角度、及び容器シャッタ332の外周面と容器シール333の端面とが成す角度は共に90[°]である。
シール部材巻き込み防止空間337bの機能を述べる。容器シャッタ332がノズル受入口331を遮蔽している状態から容器後端方向に移動した場合、容器シール333の内周面は容器シャッタ332の先端円筒部332cと摺動する。このため、容器シール333の内周面は容器シャッタ332に引っ張られ容器後端方向に移動するように弾性変形する。
このとき、シール部材巻き込み防止空間337bが無く、三番目の内周面から繋がる垂直面(容器シール333の貼付面)と五番目の内周面GGとが直交するように繋がっていた場合、次のような状態となるおそれがある。すなわち、容器シール333の弾性変形した部分が、容器シャッタ332と摺動する受入部材固定部337の内周面と容器シャッタ332の外周面との間に挟まれて、巻き込まれた状態となるおそれがある。受入部材固定部337と容器シャッタ332とが摺動する部分、即ち、先端円筒部332cと内周面GGとの間に容器シール333が巻き込まれると、受入部材固定部337に対して容器シャッタ332がロックされ、ノズル受入口331の開閉が行えなくなる。
これに対して、本実施形態のノズル受入部材330は、その内周部にシール部材巻き込み防止空間337bが形成されている。シール部材巻き込み防止空間337bの内径(内周面EEとそれに繋がるテーパ面それぞれの内径)は、容器シール333の外径よりも小さいため、容器シール333全体がシール部材巻き込み防止空間337bに進入してくることはない。また、容器シール333の容器シャッタ332に引っ張られて弾性変形する領域には限度があり、内周面GGに至って巻き込まれる前に容器シール自身の弾性で復元する。この作用により、受入部材固定部337に対して容器シャッタ332がロックされることに起因してノズル受入口331の開閉が行えなくなることを防止できる。
図16〜図18に示すように、受入部材固定部337の内周面であって容器シール333の外周に隣接する箇所には、複数本のノズルシャッタ突き当てリブ337aが放射状に延在するように形成されている。図16及び図17に示すように、受入部材固定部337に容器シール333を固定した状態では、容器シール333の容器先端側の垂直面は、ノズルシャッタ突き当てリブ337aの容器先端側の端部よりも回転軸方向に少しだけ突き出している。
図9に示すように、トナー収容容器32をトナー補給装置60に装着したときには、トナー補給装置60側のノズルシャッタ612のノズルシャッタ鍔部612aが、ノズルシャッタバネ613に付勢されて容器シール333の突き出た分を押し潰す。ノズルシャッタ鍔部612aが更に進入してノズルシャッタ突き当てリブ337aの容器先端側端部に突き当たり、容器シール333の先端側端面を覆って容器外部から遮断する。これにより、装着時のノズル受入口331における搬送ノズル611周りの密閉性を確保し、トナー漏れを防止することができる。
ノズルシャッタバネ613に付勢されるノズルシャッタ鍔部612aのノズルシャッタバネ受け面612fの裏側がノズルシャッタ突き当てリブ337aに突き当たることで、ノズルシャッタ612のトナー収容容器32に対する回転軸方向の位置が決まる。これにより、容器シール333の容器先端側の端面及び先端開口305(後述する容器開口部33aの中に配置されている円筒状の受入部材固定部337の内部空間)の容器先端側の端面と、ノズルシャッタ612との回転軸方向の位置関係が決まる。
次に、容器シャッタ332と搬送ノズル611の動作について図1、図9、図19A〜図19Dを用いて説明する。トナー収容容器32をトナー補給装置60に装着する前においては、図1に示すように、容器シャッタ332はノズル受入口331を閉じる閉止位置に向けて容器シャッタバネ336で付勢されている。このときの容器シャッタ332と搬送ノズル611の外観を図19Aに示す。そして、トナー収容容器32をトナー補給装置60に装着すると、図19Bに示すように、搬送ノズル611がノズル受入口331に挿入される。トナー収容容器32をトナー補給装置60にさらに押し込むと、容器シャッタ332の端面となる先端円筒部332cの端面332h(以下、「容器シャッタの端面332h」と称する)と搬送ノズル611の挿入方向に位置する端面611a(以下、「搬送ノズルの端面611a」と称する)とが接触する。この状態からトナー収容容器32をさらに押し込むと、図19Cに示すように、容器シャッタ332が押し込まれて、図19Dに示すように、搬送ノズル611がノズル受入口331からシャッタ後端支持部335内に挿入される。このため、図9に示すように、容器本体33内に搬送ノズル611が挿入されてセット位置となる。このとき、図19Dに示すように、ノズル開口610はシャッタ支持開口部335bに重なる位置にある。
その後、容器本体33が回転すると、汲み上げ部304によって搬送ノズル611よりも上方に汲み上げられたトナーが、ノズル開口610から搬送ノズル611内に落下して導入される。搬送ノズル611内に導入されたトナーは、搬送スクリュ614が回転することで搬送ノズル611内をトナー落下搬送経路64に向かって搬送され、トナー落下搬送経路64から現像装置50へと落下して供給される。
図9などのE−E断面の箇所(搬送ノズル611の先端側であって搬送スクリュ614の軸受の端面の箇所)では、凸部304hとシャッタ側面支持部335a(突出部)とは対向する位置にある。また、汲み上げ壁面304fは、図30のXの方向(及び図34において矢印Xで示す方向)、すなわちシャッタ側面支持部335aに向かって伸びるように容器の内壁面から立ち上がっている。また、凸部304hは、図34において矢印Yで示す方向、すなわちシャッタ側面支持部335aに向かって隆起している。
さらに、シャッタ側面支持部335aと凸部が対向する部分では、凸部304hがシャッタ側面支持部335aの外形に沿うように容器径方向外方に向かって湾曲している(湾曲部304i)。言い換えると、内側から径方向外方に向かってへこんでいる。
この凸部のへこんでいる部分を湾曲部304iとしている。
当該湾曲部304iは凸部304hの他の部分よりもなだらかになっており、シャッタ側面支持部材335aに長手方向でも沿うようになっている。
図32においては、符号Zで示した囲み部の箇所が、図面奥に向かって湾曲しており、この箇所に湾曲部304iが形成されている。
また、同様に、汲み上げ壁面304fもシャッタ側面支持部335aと対向する。そして、容器回転方向下流側から見て、汲み上げ壁面304f、シャッタ側面支持部335a(突出部)の回転方向下流側端面335c(平らな側面)、ノズル開口610の回転方向上流側の横縁部611sがある。突出部としてのシャッタ側面支持部335aは搬送ノズル611が挿入されたときには、搬送ノズル611に沿って伸びている。
先に説明した汲み上げ作用と同様に、図30の容器本体33の汲み上げ壁面304fによって形成された汲み上げ部304によっても、搬送管である搬送ノズル611の開口部であるノズル開口610に向かってトナーが矢印T1のように移動する。
このとき、上記シャッタ側面支持部335a(突出部)の外周面及び回転方向下流側端面335c(平らな側面)は、汲み上げ部304からノズル開口610へのトナーの橋渡しをするトナー橋渡し部として機能する。
図30は、トナー橋渡し部として機能するシャッタ側面支持部335a(突出部)を備える容器本体33内部のトナーの流れも示している。
容器本体33の図中矢印A方向の回転によって、汲み上げ壁面304fで容器本体の周方向に沿って汲み上げられたトナーは、重力によってノズル開口610の方向に流れていく(図中矢印T1)。図30に示す構成では、搬送ノズル611と凸部304h(汲み上げ壁面304fの回転中心側に突出した凸部)との間にある隙間を塞ぐようにシャッタ側面支持部335a(突出部)が配置されている。そうなるように容器本体33の回転方向下流側からみて、シャッタ側面支持部335a(突出部)の回転方向下流側端面335c(平らな側面)、汲み上げ部304の凸部304hの順に配置されている。
凸部304hの湾曲部304iが存在することにより、凸部304h及び汲み上げ壁面304fをよりシャッタ側面支持部材335aに沿わせるようにすることが可能になっており、シャッタ側面支持部材335aがトナーの汲み上げ壁面からノズル開口への橋渡しに有効に機能するようになる。
このような配置により、汲み上げられたトナーはノズル開口610に効率良く入る。さらに前記式(2)を満たすトナーを用いると、トナー収容容器32の交換時に容器本体33に残ってしまうトナー量を減らすことができる。また、前記式(3)を満たすトナー、及び前記式(4)を満たすトナーを用いると、補給量が安定する。この補給量の安定は、容器本体33内のトナーの量が少なくなった場合でも維持される。また、交換時に容器本体33に残ってしまうトナー量を減らすことができるため、ランニングコストを削減させて経済性を向上させるとともに、廃棄する残留トナーを低減させて環境への影響を低減させることができる。
なお、上記のシャッタ側面支持部335a(突出部)と凸部304hとを密着させるに越したことはない。しかし、凸部304h、汲み上げ壁面304f及び湾曲部304iは製造コスト抑制のため寸法精度が射出成型ほどには出せないブロー成型で形成されることが多い。ブロー成型を採用するとシャッタ側面支持部に完全に密着させることは困難であり、量産性の観点からは少し隙間を開けて構成するのが好ましい。なお、湾曲部と湾曲部に対向するシャッタ側面支持部材との距離は本実施例においては0.3mm〜1mm程度である。
すなわち本実施形態においては、
・本体側ノズルを容器に挿入する構成とすることで、トナー飛散等を抑える構成にする。
・シャッタ側面支持部を、汲み上げ壁面からノズルへのトナー橋渡しとして利用することで、トナーの補給性を向上させる。
という有用な構成を備えている。
しかし、上述したとおり、凸部304h及び汲み上げ壁面304fは、寸法精度が射出成型ほどには出せないブロー成型で形成されることが多いので、シャッタ側面支持部335aに完全に密着させることは困難であり、上記のように構成しても、トナーを十分に搬送ノズルに向けて搬送できないことがある。さらに、トナー搬送の機能を向上させるべく汲み上げ壁面の形状を構成した場合にもトナーを十分に搬送ノズルに向けて搬送できないことがあった。
なお、当該課題はブロー成型で顕著ということであり、ブロー成型ではなくとも、凸部とシャッタ側面支持部材との高度な寸法精度をだすことは困難であることから、本発明の容器本体はブロー成型品に限るものではない。
上記のようにトナーを十分に搬送ノズルに向けて搬送できないのは、以下の要因によるものと発明者らは考えている。
第1の要因としてトナーの流動性が高いとシャッタ側面支持部335aと、隆起部(凸部304h)との間(図35のAで示す部分)からトナーが流れ落ちてしまうことが考えられる。これにより、搬送ノズル611へのトナー供給量が低下すると考えられる。これは、流動性が高いトナーでは顕著であると考えられる。
第2の要因として長手方向で見れば、汲み上げ壁面304fは開口部に向かって傾斜する(容器本体の軸線方向に対して外側に傾斜する)ように設けられており、搬送ノズル611に最も接近している凸部304hから徐々に離れていくように構成されている(図35のBで示す部分)。これは、トナーを汲み上げて、ノズル開口近傍まで搬送するのに有効な構成である。しかし、当該構成を採ると、容器先端側に向かうにつれ、搬送ノズル611と、凸部304hとの間にある隙間は広くなっていく。このため、シャッタ側面支持部335aと汲み上げ壁面304fとの間からトナーが流れ落ちてしまう。これにより、搬送ノズル611へのトナー供給量が低下すると考えられる。これは、流動性が高いトナーでは顕著であると考えられる。
第3の要因として同じく長手方向で見れば、トナーは汲み上げ壁面304fの容器後端側から、先端側(図35のCで示す部分)へ向かってシャッタ側面支持部335a近傍まで移動してゆくが、その間で汲み上げ壁面304fから落下してしまうトナーが存在すると考えられる。汲み上げ壁面304fから落下すると当然、搬送ノズル611まではトナーは搬送されないため、落下したトナー分だけ、搬送ノズル611へのトナー供給量は低下すると考えられる。これも、流動性が高いトナーで顕著な要因のひとつであると考えられる。
第4の要因としてトナーの流動性が低いとそもそも排出が不可能であると考えられる。
上記のような要因が考えられ、それぞれが関連しあうことで容器内から容器外へ排出されるトナー排出性の差異が生じるものと考えられる。
また、トナー排出性能はトナー残量が少なくなってきたときに顕著な課題となる。
トナー残量が多い状態だと、トナー収容容器本体の螺旋状の搬送部の搬送力によって勢いでトナーが排出されるが、トナー残量が少ない状態だと汲み上げ部及び橋渡し手段の構成によってはノズル開口610へトナーを注ぎ込むことができなくなる場合がある。
そこで、前記式(2)を満たすトナーを使用すると、
第1の要因、第2の要因に対しては、適度な粒子間の凝集力があるため、隙間にはまりにくく多少の隙間があっても乗り越えていくという作用が生じさせると考えられる。これにより、隙間が存在してもトナー剤がノズルに供給される。また、凝集度によっては隙間にはまった場合にも、脱落して通り抜けてしまうことがなく、はまったトナーがその場で凝集体となり隙間を埋める役割を担う作用を生じさせることも考えられる。
第3の要因に対しては、適度な粒子間の凝集力によりトナーがこぼれにくく、汲み上げの効率を向上させるものと考えられる。
第4の要因に対しては、流動性が向上することによりトナーの搬送をスムーズにさせるものと考えられる。
さて、トナー収容容器32が図19Dに示すセット位置にある場合、容器シャッタの端面332hは、ノズル開口610の領域内で搬送ノズルの端面611aに押圧された状態である。このとき、ノズル開口610だけでなく、搬送ノズルの端面611aと容器シャッタの端面332hが汲み上げ部304の下方に位置している。したがって、搬送ノズル611よりも上方に汲み上げられたトナーは、ノズル開口610だけでなく、容器シャッタの端面332hと搬送ノズルの端面611aとの間にも落下してくる。また、落下したトナーは舞い上がって、容器シャッタ332と容器シャッタ支持部材340との間に付着する可能性がある。
ここで、容器シャッタの端面332hと搬送ノズルの端面611aとが平坦面であったと仮定すると、容器シャッタの端面332hと搬送ノズルの端面611aとの接触が面摺動となり、高負荷になる。また、組み付け誤差や部品のバラツキなどにより理想的に完全な面同士の摺動になることは難しく、微小な隙間が発生する。このため、当該隙間にトナーが入り込み、面摺動にともないトナーを擦るという動作が行われてしまうことがある。
また、トナー収容容器内を舞ったトナーが、容器シャッタ332と容器シャッタ支持部材340との間に付着した場合を考える。トナー収容容器32がトナー補給装置60に装着された状態では、容器シャッタ332の先端円筒部332cは容器シャッタバネ336によって搬送ノズルの端面611aに押し付けられるため、容器シャッタに制動力が加わっている。その結果、容器本体33に固定され、螺旋状突起302と一体で回転している容器シャッタ支持部材340に対して容器シャッタ332がつれまわりしなくなると考えられる。その場合、容器シャッタ332と容器シャッタ支持部材340の間のトナーが容器シャッタ332によって擦られることが予想される。
そうすると、擦られて負荷がかかったトナーは負荷がかかっていない状態のトナー粒径より大きい凝集体となる可能性がある。この凝集体が、トナー補給装置60を経由して現像装置50に搬送されてしまうと、意図しない黒ポチなどの異常画像が発生する虞がある。この凝集体を形成してしまう現象は、トナーの中でも、特に低い定着温度で画像形成できる低融点トナーの場合に、より発生しやすい。
そこで、本発明は、以下で説明するように、容器本体33の回転に伴うトナーの凝集を抑制する凝集抑制手段を有していることが好ましい。
凝集抑制手段として、容器シャッタ332の先端円筒部332cがその長手方向で容器シャッタバネ336の押圧によって搬送ノズル611に押し付けられ、その押し付けで制動力が生じても容器シャッタ332が容器シャッタ支持部材340とつれまわるようにしてある。この防止作用により、容器シャッタ332と容器シャッタ支持部材340との間でトナーに作用する摺動負荷は低減される。つれまわり(相対的な回転)とは、ガイドロッド332eの軸を中心とした容器シャッタ332の回転を想定している。容器シャッタ332が容器シャッタ支持部材340とつれまわる状態とは、両者が一緒に回転する状態、言い換えれば容器シャッタ332が容器シャッタ支持部材340に対して相対的には回転しない状態を意味する。また、容器シャッタ332と容器シャッタ支持部材340との間とは、滑動部332dの外周面とシャッタ支持開口部335bの内周面との間、及びガイドロッド摺動部332gと後端開口部335dとの間を想定している。
トナーへの摺動負荷は、容器シャッタ332の軸方向の開閉動作よりも軸を中心とした回転動作の方がはるかに大きい。というのも開閉動作はトナー収容容器32の装脱時のみに生じるが、回転動作は補給動作の度に生じるからである。
図20Aは図17における左側から(容器後端側から)見たときの開閉部材後端支持部中央の貫通孔としての後端開口部335dとシャッタ抜け防止爪332aとの関係を示す平面図である。図20Bは、図19Cにおける後端開口部335dとガイドロッド摺動部332gとの嵌め合い関係を示すガイドロッド摺動部332gの断面図である。
ガイドロッド332eは、円筒部332iとガイドロッド摺動部332gと片持ち梁332fとシャッタ抜け防止爪332aとで構成されている。容器シャッタ332のガイドロッド332eは、図17に示すように、容器後端側が二股に割れて一対の片持ち梁332fを形成している。その各梁の外周面にシャッタ抜け防止爪332aが設けられている。シャッタ抜け防止爪332aは、図17及び図20Aに示すように、後端開口部335dの長手方向の長さWにおける外縁よりも外側に突出している。後端開口部335dは、片持ち梁332fとガイドロッド摺動部332gが後端開口部335dと摺動しながら容器シャッタ332の移動をガイドする機能を有する。ガイドロッド摺動部332gは、図20Bに示すように、後端開口部335dの上下辺と対向する平面をなし、左右辺が後端開口部335dにならった曲面を有している。円筒部332iは、図20A及び図20Bにおける左右方向の幅がガイドロッド摺動部332gと同じである円筒形状をなす。また、図19A〜Dに示す容器シャッタ332の移動の際に、後端開口部335dが片持ち梁332fとガイドロッド摺動部332gとの移動を妨げない程度の嵌め合い関係を有している。このように、後端開口部335dは、片持ち梁332fとガイドロッド摺動部332gを挿通して容器シャッタ332の移動を案内するとともに容器シャッタ332の回転軸を中心とする回転を規制する。
容器シャッタ支持部材340に容器シャッタ332を組み付けるときは、ガイドロッド332eを容器シャッタバネ336に通し、ガイドロッド332eの一対の片持ち梁332fをガイドロッド332eの軸中心に向かって撓ませて、後端開口部335dに対してシャッタ抜け防止爪332aを通過させる。これにより、図15乃至17に示すようなノズル受入部材330に対するガイドロッド332eの組み付けがなされる。このとき、容器シャッタ332は、容器シャッタバネ336によってノズル受入口331を閉じる方向に加圧されるとともに、シャッタ抜け防止爪332aにより容器シャッタの抜けが防止される。なお、片持ち梁332fが撓める弾性を有すよう、ガイドロッド332eはポリスチレン等の樹脂で成型されていることが好ましい。
そして、トナー収容容器32がセット位置にセットされると、ガイドロッド摺動部332gは後端開口部335dを通過し、図19D及び図20Bに示すように、被駆動伝達部としてのガイドロッド摺動部332gの平面部と、駆動伝達部としての後端開口部335dの開口辺とが対向し、接触する位置となる。このとき、シャッタ側面支持部335a(突出部)の内周面が先端円筒部332cおよび滑動部332dの外周面と対向する。
したがって、容器シャッタの端面332hが容器シャッタバネ336の押圧によって搬送ノズルの端面611aに押し付けられた状態であっても、ガイドロッド摺動部332gの平面部と後端開口部335dの開口辺との面接触により、容器シャッタ332の長手軸(ガイドロッド332eの中心軸であり、容器本体33の回転中心軸でもある)を中心とする回転方向には固定される。結果、回転する容器シャッタ支持部材340から容器シャッタ332のガイドロッド332eへ回転力が伝達される。その回転力は前述の制動力よりも大きいので、容器シャッタ332は容器シャッタ支持部材340の回転に伴って回転する。言い換えれば容器シャッタ332は容器シャッタ支持部材340の回転につれまわる(このとき両者の相対的な回転は規制されている)。すなわち、ガイドロッド摺動部332gと後端開口部335dは、容器シャッタ支持部材340から容器シャッタ332へ回転力が伝達される駆動伝達手段となっている。同時に、前記凝集抑制手段と言える。この凝集抑制手段により、容器シャッタ332と容器シャッタ支持部材340との間におけるガイドロッド332eの軸を中心とした回転方向でのトナーへの摺擦が抑制されるので、容器本体33の回転に伴う容器シャッタ332と容器シャッタ支持部材340との間でのトナー凝集を抑制できる。
なお、上記凝集抑制手段は、ガイドロッド摺動部332gに限られず、片持ち梁332fとしてもよい。この場合、トナー収容容器32がセット位置にあるときに片持ち梁332fが後端開口部335dに位置するように長さ、位置を決定すればよい。
別の凝集抑制手段についてその解決すべき課題から説明する。容器シャッタ332がトナー収容容器32(容器本体33)と一体的に回転する場合、容器シャッタの端面332hは搬送ノズルの端面661aに対して相対的に回転することになる。容器シャッタ332の先端円筒部332cは、その長手方向で容器シャッタバネ336の押圧によって搬送ノズル611に押し付けられている。そのような状態で上記相対的回転をさせると、容器シャッタの端面332hの搬送ノズルの端面661aに対する摺動負荷はすこぶる大きくなり、トナー凝集体発生の原因となる。
そこで、開閉部材であるところの容器シャッタ332の回転によって発生するトナー凝集を抑制する凝集抑制手段であって、上記実施形態とは別の箇所でのトナー凝集体発生の抑制を目的とする第2の凝集抑制手段を提案するものである。以下の凝集抑制手段は、搬送ノズルの端面611aと対向する先端円筒部332cの当接領域でのトナーへの摺動負荷を低減するものである。
容器シャッタの端面332hは、図9、図14に示すように、画像形成装置に前記トナー収容容器が装着された際には、該端面332hから対向する搬送ノズル611の端面611aに向かって(または容器先端から外に向けて)突出し、搬送ノズル611の端面611aに当接する当接部342を有する。当接部342はこの実施形態における凝集抑制手段(第2の凝集抑制手段)となる突出部である。当接部342の外周面は、トナー収容容器32の回転軸と同心の円周面を有し、搬送ノズルの端面611aに向けてその直径が小さくなるような形状(たとえば半球状)であり、図9に示すように、その半球状の頂部と搬送ノズルの端面611aとで点接触するように設けられている。これにより、当接部342が搬送ノズルの端面611aと当接した際の摺動負荷が低い状態で回転することができる。したがって、容器シャッタの端面332hと搬送ノズルの端面611aとが平坦面の場合に比べて接触面積を大幅に削減できるので、容器本体33の回転に伴う容器シャッタの端面332hと搬送ノズルの端面611aとの間でトナーに加えられる摺動負荷を低減でき、トナーの凝集を抑制することができる。
当接部342の材質として、容器シャッタ332と一体成形する場合は容器シャッタ332と同一の材質、例えばポリスチレン樹脂などが挙げられる。容器シャッタ332はトナー収容容器32側に装着された部品であるので、トナー収容容器32と一緒に交換される。このため、搬送ノズルの端面611aに接触して回転する当接部342の材質は、交換を前提にした場合、プリンタ部100に設置して、基本的に交換しない搬送ノズル611(端面611a)の材質よりも柔らかい材質とするのが耐久性の点で好ましい。
また、当接部342は、図9、図14に示すように、トナー収容容器32の回転中心軸上、言い換えれば容器シャッタ332の回転中心軸上になるよう、容器シャッタの端面332hのおおむね中心に配置されている。このような構成により、容器シャッタの端面332hは搬送ノズルの端面661aに対して相対的に回転するときの当接部342先端の回転軌跡は理想的には1点になる。トナー収容容器と画像形成装置という別部品同士の装着ゆえ許容交差内の位置ズレは不可避であり、かつ大量生産によるばらつきも生じるが、それらを考慮しても上記回転軌跡を極小にすることはできる。そうすると、上記同様に容器シャッタの端面332hと搬送ノズルの端面611aとの接触面積の増大を抑制でき、摺動負荷に起因するトナーの凝集を抑制することができる。
次に、当接部342によって形成される容器シャッタの端面332hと搬送ノズルの端面611aの面間の隙間について説明する。図21に示すように、この隙間は当接部342の、容器シャッタの端面332hから先端までの突出量Xによって設定される。
本発明者らは、突出量Xと画像中の黒ポチの発生の関係、すなわち、当接領域の摺動面積と画像中の黒ポチの発生の関係を調べたところ、図22に示す傾向となった。すなわち、本形態において、突出量X(面間の隙間)は1mmに設定している。このため、面間の隙間に入り込んだトナーは摺動による負荷が軽減され、また面外に落下しやすく滞留し難くなるため、凝集体が発生しなくなる。このように、容器シャッタの端面332hと搬送ノズルの端面611aの間の隙間にトナーが入り込んだ場合でも摺動負荷が軽減されるので、トナーへの負荷が軽減される。このため、トナーへの負荷を最小限に抑えて凝集体の生成や異常画像を抑制することができる。
また、図22に示すように、突出量X(面間の隙間)は0.5mm以上あれば問題はなく、概ね0.2mm以下になると出力画像上でも確認し得るレベルの凝集体が発生しやすくなることが予想される。そこで、突出量X(面間の隙間)は、0.5mm〜1mm程度に設定するのが好ましい。
なお、凝集抑制手段は、図21に示すように、当接部342と容器シャッタ332とが一体成形されるものに限られない。例えば、図23に示すように、凝集抑制手段を容器シャッタ332と別体にしてもよい。この場合にも、上記突出量Xを充足するようにすれば、上記と同様の効果が得られる。図23に示す凝集抑制手段は、容器シャッタの端面332hのおおむね中心に樹脂製の球体を転動自在に設けて当接部342Bとする。
このような構成としても、容器シャッタの端面332hと搬送ノズルの端面611aの面間の隙間に入り込んだトナーは摺動による負荷が軽減される。このため、凝集体が発生しなくなる。このように、トナーが容器シャッタの端面332hと搬送ノズルの端面611aの面間の隙間に入り込んだ場合でも摺動負荷が軽減されるので、トナーへの負荷が軽減される。このため、トナーへの負荷を最小限に抑えて凝集体の生成や異常画像を抑制することができる。
また、搬送ノズルの端面611aはフラットな平端面としているが、例えば、図24に示すように、当接部342と対向する搬送ノズルの端面611aの部位611bだけを当接部342側に突出するように端面611aを形成してもよい。
別の凝集抑制手段について説明する。
上記の凝集抑制手段では、凝集抑制手段を容器シャッタの端面332hと搬送ノズルの端面611aの間に配置しているので、トナーの凝集体の生成を抑制することに対しては特に有効であるが、トナー収容容器32をトナー補給装置60から取り外したとき、面間に付着したトナーが画像形成装置内または床に落下して汚すことが想定される。
そこで、本凝集抑制手段では、容器シャッタの端面332hにおける搬送ノズルの端面611aとの非当接領域Rにシール部材350を配置する。このため、容器シャッタの端面332hと搬送ノズルの端面611aとの面間にトナーが滞留することを防止することができる。
シール部材350は発泡ポリウレタン等の弾性部材で構成されている。図25及び図26に示すように、シール部材350は当接部342の外側に位置するように環状に形成されている。シール部材350は、トナー収容容器32内への搬送ノズル611の挿入に伴い容器シャッタ332がノズル受入口331を開放する開位置を占めたときに、シール部材350の厚み方向に0.1mm〜0.5mm圧縮されるように構成されている。具体的には、図27に示すように当接部342の突出量Xを1mmとしたとき、シール部材350の厚みtを1.1mm〜1.5mmとする。そして、シール部材350の対向面350aと搬送ノズルの端面611aとが接触したときに、シール部材350がつぶれることで搬送ノズルの端面611aと当接部342とが当接するように設定する。
このように、シール部材350を配置すると、搬送ノズルの端面611aと当接部342とが当接する前に、図26に示すように、搬送ノズルの端面611aにシール部材350の対向面350aが接触するので、面間にトナーが入りにくくなる。このため、トナー収容容器32をトナー補給装置60から取り外したとき、画像形成装置内または床にトナーが落下して汚すことを抑制することができる。
なお、図29に示すように、シール部材350の潰れ量t1は、0.1mm〜0.5mm程度に設定している。例えば潰れ量を1mm以上にすると、摺動負荷が上昇するため、シール部材350の対向面350aと搬送ノズルの端面611aとの間でトナーの凝集体が発生しや易くなることが観察された。そのため潰れ量t1としては0.5mm以下とするのが望ましい。本形態では潰れ量t1を0.2mmの設定している。このように、シール部材350の圧縮量を最小限にすることにより、トナー収容容器32(容器本体33)の回転負荷を低減することができる。またシール部材350の表面に付着してしまったトナーには僅かながら圧縮作用を受けてしまうが、容器シャッタの端面332hと搬送ノズル611の端面611aという剛体同士に挟まれるわけではなく、柔軟なシール部材350によって搬送ノズル611の端面611aに押し付けられるのでシールの柔軟性が押し付け力を吸収し、トナーへの摺動負荷が小さくなることも見込める。
シール部材350を設けたことによりトナーが面間に入り込むことを抑制することができるので、容器本体33の回転に伴う凝集体の発生もより確実に抑制することができる。
また、図26に示すように、シール部材350の対向面350aは、搬送ノズルの端面611aに圧接された状態で容器シャッタ332と一体で回転する。このため、シール部材350の対向面350aに、図28に示すように、例えば高分子ポリエチレンシート或いはポリエチレンテレフタレート(PET)材で形成されたシート材351を接着することで、搬送ノズルの端面611aに対向する側を低摩擦面として形成してもよい。このように搬送ノズルの端面611aとの対向面350aを低摩擦面とすると、搬送ノズルの端面611aとの摺動でトナーへ与える負荷を軽減することができる。
本発明においては、図31に示すように、突出部を容器シャッタバネによって付勢されているシャッタを支持するシャッタ側面支持部335aとする構成以外でも対応できる。
具体的には、容器開口部を閉鎖する容器シャッタ332を弾性変形する薄膜部材を複数枚(本実施形態では2枚)ずらして重ねることで形成し、重なっている部分が弾性変形によって容器開口部を開放可能に構成する。
当該薄膜部材の重ね合わさっている部分を押し広げて搬送ノズルが容器開口部内に挿入される。この場合には前述の実施形態における付勢部材によって付勢されるシャッタが存在しない。
しかし、容器開口部から容器後端側に向けて一対の平板状の部材を前述の実施形態のシャッタ側面支持部335aと同様に突出させ、汲み上げ部からノズル開口へのトナーの橋渡しをするトナー橋渡し部として機能させる。
上記以外の構成は他の実施形態と同様である。
このように突出部の形状、構成に関しては、本発明の効果が奏することが可能であればいかなる対応もとることが可能である。
さらに、図36及び図37に示すものは、汲み上げ部304にいたる容器本体部分が太くなっている態様のトナー収容容器あって、湾曲部304iが図30のものより大きく形成されているものである。このような構成のものであってもよい。なお、図37においては、紙面奥側に容器開口部33aがある。
次に、図38A及び図38Bにて、トナー収容容器32にトナーを充填するときの製造工程の一例について説明する。
まず、空のトナー収容容器32に対して、把手部303に容器本体33内に通じる穴部33d2(貫通穴)を形成する(加工工程である。)。
その後、穴部33d2から清掃用ノズルを差し込んで、容器本体33内の清掃を行う。
その後、図38Aを参照して、穴部33d2が形成されたトナー収容容器32を充填機200にセットする。
詳しくは、充填機200の支持部210に把持部303の引掛部としてのくびれ部33d1を係合させて、把持部33dが上方になるようにトナー収容容器32を吊着する。
さらに、トナー収容容器32の穴部33d2に、充填機200のノズル220を差し込んで、充填機200からトナー収容容器32内にトナーを充填する(充填工程である。)。
そして、図38Bを参照して、トナーの充填が完了した後に、穴部32d2を封止部材としての封止キャップ等で封止する。
これにより、トナーを充填した後のトナー収容容器32におけるシール性が担保される。
なお、本実施の形態では、把手部303に覆設されるキャップ90を封止部材として用いたが、穴部33d2に差し込まれる栓を封止部材として用いることもできるし、穴部33d2に覆設される発泡ポリウレタン等のシール部材を封止部材として用いることもできる。すなわち、上記実施形態におけるトナー収容容器において、容器本体に開口が設けられ、当該開口を封止部材によって封止されているトナー収容容器ができ上がる。
上述したように、本実施形態では、トナー収容容器32のトナー充填時において、容器本体33からノズル受入部材330を分解することなく、トナー収容容器32へのトナー充填を行うことができることになる。
これにより、製造時の作業性が向上する。
<トナー>
次に、本発明のトナー収容容器に収容されているトナーについて説明する。
前記トナーは、パウダーレオメーターで測定され下記式(1)で表される流動速度指標が、下記式(2)の範囲であり、下記式(3)の範囲が好ましく、下記式(4)の範囲がより好ましい。
流動速度指標=(回転速度10mm/sの全体エネルギー)/(回転速度100mm/sの全体エネルギー) ・・・(1)
1.8≦流動速度指標≦6.5 ・・・(2)
2.8≦流動速度指標≦6.5 ・・・(3)
2.8≦流動速度指標≦4.0 ・・・(4)
前記トナーが、前記式(2)を満たすことにより、排出性とトナー補給性とを両立することができ、トナー収容容器内のトナー残量が少なくなっても、トナーの補給が可能なトナー収容容器を提供することができる。
前記トナーが、前記式(3)又は前記式(4)を満たすことにより、補給速度が安定する。この補給速度の安定は、容器本体33内のトナーの量が少なくなった場合でも維持される。
更に、テトラヒドロフラン(THF)を用いたソクスレー抽出法により抽出される前記トナーの成分のゲルパーミエーションクロマトグラフィ(GPC)による分子量分布における重量平均分子量Mwを5,000以上50,000以下とすることにより、好ましくは5,000以上35,000以下とすることにより、より好ましくは8,000以上18,000以下とすることにより、特に好ましくは14,000以上18,000以下とすることにより、低温定着性と、耐ホットオフセット性と、耐熱保存性とを良好なレベルに両立させることができる。
また、本発明で使用するトナーは、テトラヒドロフラン(THF)に対する不溶分中の樹脂成分がトナーに対し0.5質量%以上20質量%以下が好ましく、0.5質量%以上5質量%以下がより好ましい。
不溶分の主成分は樹脂であり、その他顔料などが含まれる場合もある。不溶の樹脂は特に限定はされないが、分子量が非常に大きくTHFに対する溶解性が乏しかったり、架橋した構造だったりする場合が多い。架橋については、例えば共有結合などの化学結合を通じた化学的架橋以外に、水素結合や金属を介した配位結合、イオン結合、疎水相互作用などを通じた物理的架橋が考えられる。不溶分が全くないもしくは少なすぎる場合は、定着時のトナーの粘度が低すぎるので、ホットオフセットを起こす。一方、高すぎると、定着時のトナーの粘度が高すぎるのでコールドオフセットを起こしやすく、低温定着が困難になる。
前記トナーの流動速度指標の調整方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、外添剤の種類、及びトナーにおける外添剤の含有量により調整することができる。
<<トナーの流動速度指標の測定について>>
トナーの流動速度指標の測定には、例えば、シスメックス社製パウダーレオメーターFT−4を用い、FT−4測定専用の直径25mm、容積25mLの円筒状のスプリット容器にFT−4測定専用の23.5mmのプロペラ型ブレード(以下ブレード)を組み合わせて測定を行なうことができる。
プロペラ型ブレードは、例えば、図39、及び図40に示した形状で、両最外縁部の距離が23.5mmであり、ブレード板は、両最外縁部分が70°で反時計回りになめらかにねじられたものである。
スプリット容器は、例えば、直径25mm、容積25mL、容器底面からスプリット部分までの高さ52mmのものである。容器の55mmの高さまでトナーを入れることで粉体層を形成させる。
次に測定前に行うコンディショニングについて説明する。コンディショニングとは、測定前に粉体層を攪拌して余分な空気を抜くことで、均一な粉体層を形成させることである。ブレード進入角度(移動中のブレードの最外縁部が描く軌跡と粉体層表面とのなす角)5°、ブレード回転速度40mm/sで高さ60mmから5mmまでブレードを時計回りに回転させながら降下させ、粉体層をほぐす。その後、ブレード進入角度2°、回転速度40mm/sで高さ5mmから2mmまで時計回りに回転させながら降下させ、容器底のトナーの圧縮による不均一層の発生を防ぐ。そこから高さ2mmから高さ60mmまでブレード進入角度5°、回転速度100mm/sで時計回りに回転させながらブレードを上昇させ、高さ60mmの位置でブレードを時計回りと反時計回りに交互に回転させることで、ブレードに付着しているトナーをふるい落とす。ここまでを1サイクルとして、これを18サイクル繰り返しコンディショニングとする。
コンディショニング実施後、スプリット容器のすりきり位置(底面から52mmの位置)から上方にあるトナーをすりきり、25mLのトナー重量を測定する。その後、100mm/s、70mm/s、40mm/s、10mm/sの回転速度にて続けて測定する。ブレードの進入角度は5°で測定する。
測定終了後、回転トルクと垂直荷重の総和である全体エネルギーが表示されるので、回転速度10mm/sのものと回転速度100mm/sのものを抽出し、下記式(1)に基づき、流動速度指標を計算する。
流動速度指標=(回転速度10mm/sの全体エネルギー)/(回転速度100mm/sの全体エネルギー ) ・・・(1)
なお、測定は、トナーを、23℃、53%RHで24時間調湿して行う。
<<トナーのテトラヒドロフラン(THF)を用いてソクスレー抽出法により抽出される成分のゲルパーミエーションクロマトグラフィ(GPC)による分子量分布における重量平均分子量Mwの測定について>>
前記ゲルパーミエーションクロマトグラフィ(GPC)による重量平均分子量Mwの測定は以下のように行う。
<ソクスレー抽出(試料の前処理)>
トナー0.3gを秤量し、あらかじめ重量を秤量(g)した円筒濾紙(「No.86R」;東洋濾紙製)に入れてソクスレー抽出器にかける。ヒーター温度を85℃にセットし、抽出溶媒としてソクスレー用丸底フラスコにテトラヒドロフランTHF(安定剤含有 和光純薬製)200mLを用いて、7時間にわたって全還流抽出(ソクスレー抽出)を行った後、ロータリーエバポレーターでTHFを留去せしめて、抽出物を得る。抽出物をTHF(安定剤含有 和光純薬製)に0.15質量%で溶解後、ポア径が0.45μmの耐溶剤性メンブランフィルターで濾過し、その濾液を試料として用いる。前記THF試料溶液を100μL注入して測定する。
本発明における不溶分中の樹脂成分は、不溶分から着色剤、磁性材料、外添剤を除いた成分である。
本発明における不溶分中の樹脂成分の算出方法は、次の通りである。
トナーを電気炉内に設置し、窒素ガスを供給して窒素ガスで置換した状態下で、樹脂や離型剤が分解するが、着色剤、磁性材料、外添剤が分解しない温度で処理する。重量減少を確認し、重量減少が止まった段階で樹脂成分以外の不溶分を秤量する。
樹脂成分以外の不溶分の質量の測定方法としては、着色剤、磁性材料、外添剤のそれぞれの材料の化学構造を特定し、着色剤、磁性材料、外添剤のそれぞれの材料に含まれる元素であって、他の成分には含まれない元素に着目し、当該材料の質量を変更した場合の蛍光X線のエネルギー強度の変化から得られる検量線を用いて質量を算出することもできる。
ソックスレー抽出後の円筒濾紙を風乾後、さらに減圧乾燥した上で、濾紙上の不溶分と濾紙の質量の総和(g)を秤量する。それからあらかじめ秤量した樹脂成分以外の不溶分と濾紙質量(g)を引くことで、不溶分中の樹脂成分の質量を求めることができる。不溶分中の樹脂成分の質量をトナー仕込み量0.3gで割り100をかけることで、トナー質量に対する不溶分中の樹脂成分の割合を質量パーセントで算出する。
(重量平均分子量Mwの測定)
測定装置:GPC−8220GPC(東ソー社製)
カラム:TSKgel SuperHZM−H 15cm 3連(東ソー社製)
温度:40℃
溶媒:THF
流速:0.35mL/min
試料:上述のソクスレー抽出物の乾燥固体、ないしは標準サンプルをTHFに溶解させ0.15質量パーセント濃度の試料を作成し、0.1mL注入する。
検量線:試料の分子量測定にあたっては、試料の有する分子量分布を、数種の単分散ポリスチレン標準試料により作製された検量線の対数値とカウント数との関係から算出する。検量線作成用の標準ポリスチレン試料としては、昭和電工社製ShowdexSTANDARDのStd.No S−7300、S−210、S−390、S−875、S−1980、S−10.9、S−629、S−3.0、S−0.580をTHFに溶解させ、0.15質量パーセント濃度の溶液を作成し、検出器にはRI(屈折率)検出器を用いて作成する。
検出されたピークのうち、最も大きいものをメインピークとする。複数ピークが検出された場合は、図42に示したようにピークのすその下端で垂直分割し、メインピークについて解析を行い、Mwを算出する。
前記トナーは、例えば、結着樹脂及び着色剤を含有するトナー母体粒子と、外添剤とを少なくとも含有し、更に必要に応じて、その他の成分を含有する。また、トナーの帯電は正でも負でも特に限定されない。
<<外添剤>>
前記外添剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、シリカ微粒子、疎水化されたシリカ微粒子、脂肪酸金属塩(例えば、ステアリン酸亜鉛、ステアリン酸アルミニウムなど)、金属酸化物粒子(例えば、チタニア、アルミナ、酸化錫、酸化アンチモンなど)又はこれらの疎水化物、フルオロポリマーなどが挙げられる。これらの中でも、疎水化されたシリカ微粒子、チタニア微粒子、疎水化されたチタニア微粒子が好ましい。
前記疎水化されたシリカ微粒子としては、例えば、R−972、R−974、RX−200、RY−200、R−202、R−805、R−812、RX−50、NAX−50、NX−90G、R−8200、RX−300(いずれも、日本アエロジル株式会社製);H2000/4、H2000T、H05TM、H13TM、H20TM、H30TM(いずれも、クラリアント社製);X−24−9163A(信越化学工業株式会社製);UFP−30、UFP−35(いずれも、電気化学工業株式会社製)などが挙げられる。
前記チタニア微粒子としては、例えば、P−25(日本アエロジル株式会社製);STT−30、STT−65C−S(いずれも、チタン工業株式会社製);TAF−140(富士チタン工業株式会社製);MT−150W、MT−500B、MT−600B、MT−150A(いずれも、テイカ株式会社製)などが挙げられる。
前記疎水化されたチタニア微粒子としては、例えば、T−805(日本アエロジル株式会社製);STT−30A、STT−65S−S(いずれも、チタン工業株式会社製);TAF−500T、TAF−1500T(いずれも、富士チタン工業株式会社製)、IT−S(石原産業株式会社製)などが挙げられる。
前記外添剤の粒径、形状としては、特に制限はなく、目的に応じて適宜選択することができる。
前記外添剤の形状、粒径により、トナーの流動性を制御することができる。
例えば、粒径に関していえば、通常、粒径の小さい外添剤よりも粒径の大きな外添剤の方が混合したときにトナー母体粒子に固定化されやすいので、トナーとしての流動性は小さくなる。逆に粒径の小さい外添剤はトナー母体粒子に固定化されず流動しやすいので、トナー自体の流動性もよくなる。
また、形状に関していえば、真円に近いほど流動しやすく、トナーの流動性もよくなる。外添剤に用いる酸化チタンは針状だが、シリカは球状及び異型化形状のものが知られている。このうち、球状シリカがもっとも流動しやすく、トナーの流動性も良くなり、小粒径シリカを用いると特に流動性を良くすることができる。
前記トナーにおける前記外添剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができる。
前記トナーにおいて、前記トナー母体粒子に対する前記外添剤の含有量を変動させることで、トナーの流動性を制御することができる。前記トナーにおいて前記外添剤の量を増やすと、前記トナー母体粒子の表面を覆う前記外添剤の量が増えるので、通常、トナーの流動性を上げることができ、減らすと流動性を下げることができる。その際、特に小粒径球状シリカの量の増減で、効果的にトナーの流動性を制御することができる。
一方、前記外添剤による前記トナー母体粒子の被覆の割合を増やしすぎると、表面が無機物で覆われる面積が増えすぎるので定着しにくくなる。逆に、前記外添剤の被覆の割合を減らしすぎると、トナーの流動性がなくなってトナーの補給ができなくなったり、トナー同士が凝集して異常画像が発生しやすくなったりすることがある。
<<トナー母体粒子>>
前記トナー母体粒子は、結着樹脂及び着色剤を少なくとも含有し、更に必要に応じて、離型剤、帯電制御剤などを含有する。
−結着樹脂−
前記結着樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリエステル樹脂、シリコーン樹脂、スチレン・アクリル樹脂、スチレン樹脂、アクリル樹脂、エポキシ樹脂、ジエン系樹脂、フェノール樹脂、テルペン樹脂、クマリン樹脂、アミドイミド樹脂、ブチラール樹脂、ウレタン樹脂、エチレン酢酸ビニル樹脂などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、低温定着性に優れ、画像表面を平滑化できる点で、低分子量化しても十分な可撓性を有する点で、ポリエステル樹脂、ポリエステル樹脂と上記他の結着樹脂とを組み合わせた樹脂が好ましい。
−−ポリエステル樹脂−−
前記ポリエステル樹脂としては、特に制限はなく、目的に応じて適宜選択することができる。また、前記ポリエステル樹脂としては、ポリエステルの側鎖に各種反応性官能基を導入した変性ポリエステル樹脂でもよいし、導入していない未変性ポリエステル樹脂でもよい。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
また、前記ポリエステル樹脂は、結晶性ポリエステル樹脂であってもよいし、非結晶性ポリエステル樹脂であってもよい。
−−−結晶性ポリエステル樹脂−−−
前記結着樹脂として、結晶性ポリエステル樹脂を含有することができる。
前記結晶性ポリエステル樹脂とは、主鎖が規則的に配向する結晶構造をとっている割合が特に高く、融点近傍で樹脂の粘度が大きく変化するポリエステル樹脂のことを指す。
前記結晶性ポリエステル樹脂は、例として、アルコール成分として、炭素数2〜12の飽和脂肪族ジオール化合物(特に1,4−ブタンジオール、1,6−ヘキサンジオール、1,8−オクタンジオール、1,10−デカンジオール、1,12−ドデカンジオール、及びこれらの誘導体)と、少なくとも酸成分として、二重結合(C=C結合)を有する炭素数2〜12のジカルボン酸、若しくは、炭素数2〜12の飽和ジカルボン酸(特にフマル酸、1,4−ブタン二酸、1,6−ヘキサン二酸、1,8−オクタン二酸、1,10−デカン二酸、1,12−ドデカン二酸、及びこれらの誘導体)を用いて合成される結晶性ポリエステル樹脂が好ましい。
中でも、吸熱ピーク温度と吸熱ショルダー温度との差をより小さくする点で、特に1,4−ブタンジオール、1,6−ヘキサンジオール、1,8−オクタンジオール、1,10−デカンジオール、及び1,12−ドデカンジオールのいずれか一種類のアルコール成分と、フマル酸、1,4−ブタン二酸、1,6−ヘキサン二酸、1,8−オクタン二酸、1,10−デカン二酸、及び1,12−ドデカン二酸のいずれか一種類のジカルボン酸成分のみで構成されることが好ましい。
また、前記結晶性ポリエステル樹脂の結晶性及び軟化点を制御する方法としては、ポリエステル合成時にアルコール成分にグリセリン等の3価以上の多価アルコールや、酸成分に無水トリメリット酸などの3価以上の多価カルボン酸を追加して縮重合を行った非線状ポリエステルなどを設計、使用するなどの方法が挙げられる。
本発明の結晶性ポリエステル樹脂の分子構造は、溶液や固体によるNMR測定の他、X線回折、GC/MS、LC/MS、IR測定などにより確認することができる。
前記結晶性ポリエステル樹脂の前記トナーにおける含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、0質量%〜15質量%が好ましく、5質量%〜15質量%がより好ましい。前記含有量が、5質量%未満の場合、低温定着性に対する効果が十分に得られない場合がある。また、結晶性ポリエステル樹脂は耐ストレス性が相対的に低いので前記含有量が15質量%を超えると、トナー母体表面の結晶性ポリエステル樹脂部に外添剤が埋没してしまうので保存性が悪化することがあり、好ましくない。
前記変性ポリエステル樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、活性水素基含有化合物、前記活性水素基含有化合物と反応可能なポリエステル(以下、「ポリエステルプレポリマー」と称することがある)とを、伸長反応及び/又は架橋反応して得られる樹脂などが挙げられる。前記伸長反応及び/又は架橋反応は、必要に応じて、反応停止剤(ジエチルアミン、ジブチルアミン、ブチルアミン、ラウリルアミン、ケチミン化合物等のモノアミンをブロックしたものなど)により停止させてもよい。
前記ソクスレー抽出の重量平均分子量Mw及び不溶分中の樹脂成分の制御方法としては、粉砕法においては、原材料の結着樹脂の種類や分子量を適宜変更することで制御できる。この場合は、原材料結着樹脂の重量平均分子量とトナーのソクスレー抽出の重量平均分子量Mwには相関関係がある。樹脂は複数使用してもよい。例えば、Mwが10,000前後の樹脂と、Mwが50,000前後の樹脂を任意の比率で混合し使用してもよい。
また、前記トナーのテトラヒドロフラン(THF)に対する不溶分中の樹脂成分に関しては、0.5質量%以上20質量%以下が好ましく、0.5質量%以上5質量%以下がさらに好ましい。前記不溶分中の樹脂成分が、少ないと熱がかかったときに軟らかくなりやすくなるので定着性には有利だが、耐熱性には不利になる。また、前記不溶分中の樹脂成分が、0.5質量%未満であると、定着時にトナーが融解したときの粘度が低すぎてホットオフセットが置き易く十分な定着幅の確保が難しい。一方、前記不溶分中の樹脂成分が多いとホットオフセットが起きにくく定着の確保が容易だったり、耐熱性も向上したりするが、定着下限温度が上昇する。前記不溶分中の樹脂成分が、20質量%を超えると、そもそもトナーが溶融しても定着が起きるまでの粘度にするためには温度が必要なので、低温定着が困難になる。
一方、溶解懸濁法においては、トナー組成物を溶剤に溶解又は分散液を水系媒体中に乳化/分散し、得られた乳化/分散液から溶剤を除去した後にプレポリマーを加熱架橋反応させる(例えば、撹拌下で45℃、10時間)方法がある。熟成の温度、時間を変えることにより反応を制御することができる。この場合は、架橋反応後のプレポリマーは高分子量化が進みソクスレー抽出できない不溶分になるが、この架橋反応が十分に進行しない場合ソクスレーで抽出可能な成分となり、見かけの抽出された抽出成分は分子量が大きい傾向を示すこととなることと推測される。このように架橋反応が進まない場合は、定着時のトナーの溶融粘度が下がりすぎホットオフセットが起こる。
また、不溶分に関しては主成分が架橋反応後のプレポリマーであるので、結着樹脂中のプレポリマーの量を増やしたり減らしたりすることで、不溶分を増やしたり減らしたり制御することが可能である。
−着色剤−
前記着色剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、黒色顔料、イエロー顔料、マゼンタ顔料、シアン顔料などが挙げられる。これらの中でも、イエロー顔料、マゼンタ顔料、及びシアン顔料のいずれかを含有することが好ましい。
前記黒色顔料は、例えば、ブラックトナーに用いられる。前記黒色顔料としては、例えば、カーボンブラック、酸化銅、二酸化マンガン、アニリンブラック、活性炭、非磁性フェライト、マグネタイト、ニグロシン染料、鉄黒などが挙げられる。
前記イエロー顔料は、例えば、イエロートナーに用いられる。前記イエロー顔料としては、例えば、シイ・アイ・ピグメントイエロー(C.I.Pigment Yellow)74、93、97、109、128、151、154、155、166、168、180、185、ナフトールイエローS、ハンザイエロー(10G、5G、G)、カドミウムイエロー、黄色酸化鉄、黄土、黄鉛、チタン黄、ポリアゾイエローなどが挙げられる。
前記マゼンタ顔料は、例えば、マゼンタトナーに用いられる。前記マゼンタ顔料としては、例えば、キナクリドン系顔料、シイ・アイ・ピグメントレッド(C.I.Pigment Red)48:2、57:1、58:2、5、31、146、147、150、176、184、269等のモノアゾ顔料などが挙げられる。また、前記モノアゾ顔料に前記キナクリドン系顔料を併用してもよい。
前記シアン顔料は、例えば、シアントナーに用いられる。前記シアン顔料としては、例えば、Cu−フタロシアニン顔料、Zn−フタロシアニン顔料、Al−フタロシアニン顔料などが挙げられる。
前記トナーにおける前記着色剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記トナー100質量部に対して、1質量部〜15質量部が好ましく、3質量部〜10質量部がより好ましい。
前記着色剤は、樹脂と複合化されたマスターバッチとして使用してもよい。このような樹脂としては、特に制限はないが、前記結着樹脂との相溶性の点から、前記結着樹脂、又は前記結着樹脂と類似した構造の樹脂を用いることが好ましい。
−離型剤−
前記離型剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ロウ類、ワックス類などが挙げられる。
前記ロウ類及び前記ワックス類としては、例えば、植物系ワックス、鉱物系ワックス、石油ワックスなどが挙げられる。前記植物系ワックスとしては、例えば、カルナウバワックス、綿ロウ、木ロウ、ライスワックスなどが挙げられる。前記動物系ワックスとしては、例えば、ミツロウ、ラノリンなどが挙げられる。前記鉱物系ワックスとしては、例えば、オゾケライト、セルシンなどが挙げられる。前記石油ワックスとしては、例えば、パラフィン、マイクロクリスタリン、ペトロラタムなどが挙げられる。
前記離型剤の融点としては、特に制限はなく、目的に応じて適宜選択することができるが、50℃〜120℃が好ましく、60℃〜90℃がより好ましい。前記融点が、50℃未満であると、ワックスが保存性に悪影響を与えることがあり、120℃を超えると、低温での定着時にコールドオフセットを起こし易いことがある。なお、前記離型剤の融点は、示差走査熱量計(TG−DSCシステム、TAS−100、理学電機社製)を用いて、最大吸熱ピークを測定することにより求められる。
前記離型剤は、前記トナー母体粒子中に分散した状態で存在することが好ましく、そのためには、前記離型剤と前記結着樹脂とは相溶しないことが好ましい。前記離型剤を、前記トナー母体粒子中に微分散する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、トナー製造時の混練の剪断力をかけて分散させる方法などが挙げられる。
前記離型剤の分散状態は、トナー粒子の薄膜切片を透過型電子顕微鏡(TEM)で観察することにより確認することができる。前記離型剤の分散径は、小さい方が好ましいが、小さすぎると定着時の染み出しが不十分な場合がある。したがって、倍率1万倍で前記離型剤を確認することができれば、前記離型剤が分散した状態で存在していることになる。1万倍で前記離型剤が確認できない場合、微分散していたとしても、定着時の染出しが不十分となる。
前記離型剤の前記トナーにおける含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、1質量%〜20質量%が好ましく、3質量%〜10質量%がより好ましい。前記含有量が、1質量%未満の場合、離型性不足のため耐ホットオフセット性が悪化するのでオイル塗布定着などの対応が必要になる。20質量%を超えるとトナー母体粒子表面に多くの離型剤が析出してしまうが、離型剤自身はやわらかく耐ストレス性に劣るため、外添剤埋没による耐熱保存性の悪化、感光体へのフィルミングなどの異常が発生するため好ましくない。
−帯電制御剤−
また、トナーに適切な帯電能を付与するために、必要に応じて帯電制御剤をトナーに含有させることも可能である。
前記帯電制御剤としては、公知の帯電制御剤がいずれも使用可能である。有色材料を用いると色調が変化することがあるため、無色乃至白色に近い材料が好ましく、例えば、トリフェニルメタン系染料、モリブデン酸キレート顔料、ローダミン系染料、アルコキシ系アミン、4級アンモニウム塩(フッ素変性4級アンモニウム塩を含む)、アルキルアミド、燐の単体又はその化合物、タングステンの単体又はその化合物、フッ素系活性剤、サリチル酸の金属塩、サリチル酸誘導体の金属塩などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記トナーにおける前記帯電制御剤の含有量は、結着樹脂の種類、分散方法を含めたトナー製造方法によって決定されるものであり、一義的に限定されるものではないが、前記結着樹脂に対し0.01質量%〜5質量%が好ましく、0.02質量%〜2質量%がより好ましい。前記含有量が、5質量%を超えると、トナーの帯電性が大きすぎ、帯電制御剤の効果を減退させ、現像ローラとの静電気的吸引力が増大し、現像剤の流動性低下や、画像濃度の低下を招くことがあり、0.01質量%未満であると、帯電立ち上り性や帯電量が十分でなく、トナー画像に影響を及ぼしやすいことがある。
<<トナーの製造方法>>
前記トナーの製造方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、粉砕法、ケミカル工法などが挙げられる。これらの方法を用いることで、トナー母体粒子を得ることができる。
前記ケミカル工法としては、例えば、モノマーを出発原料として製造する懸濁重合法、乳化重合凝集法、シード重合法、溶解懸濁法、溶解懸濁重合法、転相乳化法、これらの工法によって得られた樹脂粒子を水系媒体中に分散させた状態で凝集させて加熱溶融等により所望サイズの粒子に造粒する凝集法などが挙げられる。
前記溶解懸濁法は、樹脂や樹脂前駆体を有機溶剤などに溶解して水系媒体中にて分散乃至乳化させる方法である。
前記溶解懸濁重合法は、前記溶解懸濁法において、活性水素基と反応可能な官能基を有する結着樹脂前駆体(反応性基含有プレポリマー)を含む油相組成物を、樹脂微粒子を含む水系媒体中に乳化乃至分散させ、該水系媒体中で、活性水素基含有化合物と、前記反応性基含有プレポリマーとを反応させる方法である。
前記転相乳化法は、樹脂や樹脂前駆体と適当な乳化剤からなる溶液に水を加えて転相させる方法である。
以下に、これらの製法についての詳細に説明する。
−粉砕法−
前記粉砕法は、例えば、少なくとも着色剤、結着樹脂、離型剤を有するトナー材料を溶融混練したものを、粉砕し、分級することにより、前記トナー母体粒子を製造する方法である。
前記溶融混練では、前記トナー材料を混合し、得られた混合物を溶融混練機に仕込んで溶融混練する。前記溶融混練機としては、例えば、一軸又は二軸の連続混練機、ロールミルによるバッチ式混練機などを用いることができる。
前記粉砕では、前記混練で得られた混練物を粉砕する。この粉砕においては、まず、混練物を粗粉砕し、次いで微粉砕することが好ましい。この際ジェット気流中で衝突板に衝突させて粉砕したり、ジェット気流中で粒子同士を衝突させて粉砕したり、機械的に回転するローターとステーターの狭いギャップで粉砕する方式が好ましく用いられる。
前記分級は、前記粉砕で得られた粉砕物を分級して所定粒径の粒子に調整する。前記分級は、例えば、サイクロン、デカンター、遠心分離器等により、微粒子部分を取り除くことにより行うことができる。
前記粉砕及び分級が終了した後に、粉砕物を遠心力などで気流中に分級し、所定の粒径のトナー母体粒子を製造することができる。
−溶解懸濁法−
前記溶解懸濁法は、例えば、少なくとも結着樹脂乃至樹脂前駆体、着色剤、及び離型剤を含有してなるトナー組成物を有機溶媒中に溶解乃至分散させた油相組成物を、水系媒体中で分散乃至乳化させることにより、トナー母体粒子を製造する方法である。
前記トナー組成物を溶解乃至分散させる場合に用いる有機溶媒としては、沸点が100℃未満の揮発性であることが、後の溶媒除去が容易になる点から好ましい。
前記溶解懸濁法では、油相組成物を水系媒体中で分散乃至乳化させる際に、必要に応じて、乳化剤や分散剤を用いてもよい。
−溶解懸濁重合法−
前記溶解懸濁重合法においては、前記溶解懸濁法において、少なくとも結着樹脂、反応性基含有結着樹脂前駆体(反応性基含有プレポリマー)、着色剤、及び離型剤を含む油相組成物を樹脂微粒子を含む水系媒体中に分散乃至乳化させ、トナー母体粒子を造粒して得ることが好ましい。
なお、前記反応性基含有結着樹脂前駆体としては、活性水素基と反応可能な官能基を有する反応性基含有プレポリマーが知られており、これを用いる製造においては、乳化造粒した母体粒子中で前記油相組成物中及び/又は水系媒体中に含まれる活性水素基含有化合物とプレポリマーを反応させる方法が好ましい。
前記樹脂微粒子は、公知の重合方法を用いて形成することができるが、樹脂微粒子の水性分散液として得ることが好ましい。
前記樹脂微粒子の体積平均粒径は、10nm〜300nmが好ましく、30nm〜120nmがより好ましい。前記樹脂微粒子の体積平均粒径が、10nm未満である場合、及び300nmを超える場合、トナーの粒度分布が悪化することがある。
前記油相組成物の固形分濃度は、40質量%〜80質量%であることが好ましい。前記固形分濃度が高すぎると、溶解乃至分散が困難になり、また粘度が高くなって扱いづらくなることがあり、前記固形分濃度が低すぎると、トナーの製造性が低下することがある。
前記着色剤や離型剤等の結着樹脂以外のトナー組成物、及びそれらのマスターバッチ等は、それぞれ個別に有機溶媒に溶解乃至分散させた後、結着樹脂溶解液又は分散液に混合してもよい。
前記水系媒体としては、水単独でもよいが、水と混和可能な溶剤を併用することもできる。水と混和可能な溶剤としては、アルコール(メタノール、イソプロパノール、エチレングリコール等)、ジメチルホルムアミド、テトラヒドロフラン、セルソルブ類(メチルセルソルブ等)、低級ケトン類(アセトン、メチルエチルケトン等)などが挙げられる。
前記水系媒体中への分散乃至乳化の方法としては、特に限定されるものではないが、低速せん断式、高速せん断式、摩擦式、高圧ジェット式、超音波などの公知の設備が適用できる。これらの中でも、粒子の小粒径化の観点からは、高速せん断式が好ましい。高速せん断式分散機を使用した場合、回転数は特に限定はないが、通常1,000rpm〜30,000rpmであり、5,000〜20,000rpmが好ましい。分散時の温度としては、通常、0℃〜150℃(加圧下)であり、20℃〜80℃が好ましい。
前記有機溶媒を、得られた乳化分散体から除去する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、常圧又は減圧下で系全体を撹拌しながら徐々に昇温し、液滴中の有機溶媒を完全に蒸発除去する方法を採用することができる。
前記水系媒体に分散されたトナー母体粒子を洗浄、乾燥する方法としては、公知の技術が用いられる。即ち、遠心分離機、フィルタープレスなどで固液分離した後、得られたトナーケーキを常温〜約40℃程度のイオン交換水に再分散させ、必要に応じて酸やアルカリでpH調整した後、再度固液分離するという工程を数回繰り返すことにより不純物や界面活性剤などを除去した後、気流乾燥機や循環乾燥機、減圧乾燥機、振動流動乾燥機などにより乾燥することによってトナー粉末を得る。この際、遠心分離などでトナーの微粒子成分を取り除いてもよいし、また、乾燥後に必要に応じて公知の分級機を用いて所望の粒径分布にすることができる。
前記トナー母体粒子は、前記外添剤、前記帯電制御剤等の粒子と混合してもよい。このとき、機械的衝撃力を印加することにより、前記トナー母体粒子の表面から前記外添剤等の粒子が脱離するのを抑制することができる。
前記機械的衝撃力を印加する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、高速で回転する羽根を用いて混合物に衝撃力を印加する方法、高速気流中に混合物を投入し、加速させて粒子同士又は粒子を適当な衝突板に衝突させる方法などが挙げられる。
前記方法に用いる装置としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、オングミル(ホソカワミクロン株式会社製)、I式ミル(日本ニューマチック社製)を改造して粉砕エアー圧力を下げた装置、ハイブリダイゼイションシステム(株式会社奈良機械製作所製)、クリプトロンシステム(川崎重工業株式会社製)、自動乳鉢などが挙げられる。
以下、本発明の実施例について説明するが、本発明は下記実施例に何ら限定されるものではない。「部」は、特に明示しない限り「質量部」を表す。「%」は、特に明示しない限り「質量%」を表す。
<トナーの流動速度指標の測定について>
トナーの流動速度指標の測定には、シスメックス社製パウダーレオメーターFT−4を用い、FT−4測定専用の直径25mm、容積25mLの円筒状のスプリット容器にFT−4測定専用の23.5mmのプロペラ型ブレード(以下ブレード)を組み合わせて測定を行った。
プロペラ型ブレードは、図39、及び図40に示した形状で、両最外縁部の距離が23.5mmであり、ブレード板は、両最外縁部分が70°で反時計回りになめらかにねじられたものである。
スプリット容器は直径25mm、容積25mL、容器底面からスプリット部分までの高さ52mmのものである。容器の55mmの高さまでトナーを入れることで粉体層を形成させた。
次に測定前に行ったコンディショニングについて説明する。コンディショニングとは、測定前に粉体層を攪拌して余分な空気を抜くことで、均一な粉体層を形成させることである。ブレード進入角度(移動中のブレードの最外縁部が描く軌跡と粉体層表面とのなす角)5°、ブレード回転速度40mm/sで高さ60mmから5mmまでブレードを時計回りに回転させながら降下させ、粉体層をほぐした。その後、ブレード進入角度2°、回転速度40mm/sで高さ5mmから2mmまで時計回りに回転させながら降下させ、容器底のトナーの圧縮による不均一層の発生を防いだ。そこから高さ2mmから高さ60mmまでブレード進入角度5°、回転速度100mm/sで時計回りに回転させながらブレードを上昇させ、高さ60mmの位置でブレードを時計回りと反時計回りに交互に回転させることで、ブレードに付着しているトナーをふるい落とした。ここまでを1サイクルとして、これを18サイクル繰り返しコンディショニングとした。
コンディショニング実施後、スプリット容器のすりきり位置(底面から52mmの位置)から上方にあるトナーをすりきり、25mLのトナー重量を測定した。その後、100mm/s、70mm/s、40mm/s、10mm/sの回転速度にて続けて測定した。ブレードの進入角度は5°で測定した。
測定終了後、回転トルクと垂直荷重の総和である全体エネルギーが表示されるので、回転速度10mm/sのものと回転速度100mm/sのものを抽出し、下記式(1)に基づき、流動速度指標を計算した。
流動速度指標=(回転速度10mm/sの全体エネルギー)/(回転速度100mm/sの全体エネルギー ) ・・・(1)
なお、測定は、トナーを、23℃、53%RHで24時間調湿して行った。
<ソクスレー抽出及びTHF不溶分の算出>
トナー0.3gを秤量し、あらかじめ重量を秤量(g)した円筒濾紙(「No.86R」;東洋濾紙製)に入れてソクスレー抽出器にかけた。ヒーター温度を85℃にセットし、抽出溶媒としてソクスレー用丸底フラスコにテトラヒドロフランTHF(安定剤含有 和光純薬製)200mLを用いて、7時間にわたって全還流抽出(ソクスレー抽出)を行った後、ロータリーエバポレーターでTHFを留去せしめて、抽出物を得た。抽出物をTHF(安定剤含有 和光純薬製)に0.15質量%で溶解後、ポア径が0.45μmの耐溶剤性メンブランフィルターで濾過し、その濾液を試料として用いた。前記THF試料溶液を100μL注入して測定した。
不溶分中の樹脂成分の算出方法は、次の通りである。
トナーを電気炉内に設置し、窒素ガスを供給して窒素ガスで置換した状態下で、樹脂や離型剤が分解するが、着色剤、磁性材料、外添剤が分解しない温度で処理した。重量減少を確認し、重量減少が止まった段階で樹脂成分以外の不溶分を秤量した。
ソックスレー抽出後の円筒濾紙を風乾後、さらに減圧乾燥した上で、濾紙上の不溶分と濾紙の質量の総和(g)を秤量した。それからあらかじめ秤量した樹脂成分以外の不溶分と濾紙質量(g)を引くことで不溶分中の樹脂成分の質量を求めた。不溶分中の樹脂成分の質量をトナー仕込み量0.3gで割り100をかけることで、トナー質量に対する不溶分中の樹脂成分の割合を質量パーセントで算出した。結果は表2−1、表2−2に示した。
<トナー抽出成分の重量平均分子量Mwの測定>
測定装置:GPC−8220GPC(東ソー社製)
カラム:TSKgel SuperHZM−H 15cm 3連(東ソー社製)
温度:40℃
溶媒:THF
流速:0.35mL/min
試料:上述のソクスレー抽出物の乾燥固体、ないしは標準サンプルをTHFに溶解させ0.15質量パーセント濃度の試料を作成し、0.1mL注入した。
検量線:試料の分子量測定にあたっては、試料の有する分子量分布を、数種の単分散ポリスチレン標準試料により作製された検量線の対数値とカウント数との関係から算出した。検量線作成用の標準ポリスチレン試料としては、昭和電工社製ShowdexSTANDARDのStd.No S−7300、S−210、S−390、S−875、S−1980、S−10.9、S−629、S−3.0、S−0.580をTHFに溶解させ、0.15質量パーセント濃度の溶液を作成し、検出器にはRI(屈折率)検出器を用いて作成した。
検出されたピークのうち、最も大きいものをメインピークとした。複数ピークが検出された場合は、図42に示したようにピークのすその下端で垂直分割し、メインピークについて解析を行い、Mwを算出した。
(製造例I−1−1)
<結晶性ポリエステル樹脂1の製造>
冷却管、撹拌機及び窒素導入管を備えた反応槽中に、セバシン酸202部(1.00mol)、1,6−ヘキサンジオール154部(1.30mol)、及び縮合触媒としてテトラブトキシチタネート0.5部を入れ、窒素気流下にて180℃で、生成する水を留去しながら8時間反応させた。次いで220℃まで徐々に昇温しながら、窒素気流下にて生成する水及び1,6−ヘキサンジオールを留去しながら4時間反応させ、さらに5mmHg〜20mmHgの減圧下にて、Mwがおよそ15,000に達するまで反応を行い、[結晶性ポリエステル樹脂1]を得た。得られた[結晶性ポリエステル樹脂1]は、Mw14,000、融点66℃であった。
(製造例I−1−2)
<結晶性ポリエステル樹脂2の製造>
攪拌機、温度計、コンデンサー、窒素ガス導入管を備えた反応容器中に、1,8−オクタンジカルボン酸を4.9mol、5−スルホイソフタル酸ナトリウムジメチルを0.1mol、1,6−ヘキサンジオールを4.8mol、及びエチレングリコールを0.22mol、を入れた後、容器内を窒素ガスにより不活性雰囲気下とし、ジブチルスズオキシドを0.04mol投入し、窒素ガス気流下約180℃で約5時間撹拌反応させた後、チタンテトラブトキサイドを0.02mol加えて、温度230℃、反応容器内圧力10.0mmHgの減圧下で、4時間追加反応させて、[結晶性ポリエステル樹脂2]を得た。得られた[結晶性ポリエステル樹脂2]は、Mw16,000、融点64℃であった。
(製造例I−2−1)
<非結晶性ポリエステル樹脂1(未変性ポリエステル樹脂)の製造>
冷却管、撹拌機及び窒素導入管を備えた反応槽中に、ビスフェノールA EO2mol付加物222部、ビスフェノールA PO2mol付加物129部、テレフタル酸150部、アジピン酸15部、及びテトラブトキシチタネート0.5部を入れ、窒素気流下にて230℃、常圧で、生成する水を留去しながら8時間反応させた。次いで、5mmHg〜20mmHgの減圧下にて反応させ、酸価が2mgKOH/gになった時点で180℃に冷却し、無水トリメリット酸35部を加え、常圧で3時間反応させ、[非結晶性ポリエステル樹脂1]を得た。得られた[非結晶性ポリエステル樹脂1]は、Mw6,000、Tg54℃であった。
(製造例I−2−2)
<非結晶性ポリエステル樹脂2(未変性ポリエステル樹脂)の製造>
冷却管、撹拌機及び窒素導入管を備えた反応槽中に、ビスフェノールA EO2mol付加物212部、ビスフェノールA PO2mol付加物116部、テレフタル酸166部、及びテトラブトキシチタネート0.5部を入れ、窒素気流下にて230℃、常圧で、生成する水を留去しながら8時間反応させた。次いで、5mmHg〜20mmHgの減圧下にて反応させ、Mwがおよそ15,000に達するまで反応を行い、[非結晶性ポリエステル樹脂2]を得た。得られた[非結晶性ポリエステル樹脂2]は、Mw14,000、Tg60℃であった。
(製造例I−2−3)
<非結晶性ポリエステル樹脂3(未変性ポリエステル樹脂)の製造>
冷却管、撹拌機及び窒素導入管を備えた反応槽中に、ビスフェノールA EO2mol付加物204部、ビスフェノールA PO2mol付加物106部、テレフタル酸166部、及びテトラブトキシチタネート0.5部を入れ、窒素気流下にて230℃、常圧で、生成する水を留去しながら8時間反応させた。次いで、5mmHg〜20mmHgの減圧下にて反応させ、Mwがおよそ40,000に達するまで反応を行い、[非結晶性ポリエステル樹脂3]を得た。得られた[非結晶性ポリエステル樹脂3]は、Mw38,000、Tg62℃であった。
(製造例I−2−4)
<非結晶性ポリエステル樹脂4(未変性ポリエステル樹脂)の製造>
窒素導入管、脱水管、攪拌器及び熱伝対を装備した四つ口フラスコに、ビスフェノールAエチレンオキサイドサイド2モル付加物を360部、ビスフェノールAプロピレンオキサイド2モル付加物を130部、イソフタル酸を140部、アジピン酸を52部、及び500ppmのチタンテトライソプロポキシドを常圧で230℃で8時間反応し、さらに10mmHg〜15mmHgの減圧で4時間反応後、反応容器に無水トリメリット酸を全樹脂成分に対して1mol%になるよう入れ、180℃、常圧で3時間反応し、[非結晶性ポリエステル樹脂4]を得た。得られた[非結晶性ポリエステル樹脂4]は、Mw5,100、Tg42℃であった。
(製造例I−2−5)
<非結晶性ポリエステル樹脂5の製造>
攪拌機、温度計、コンデンサー、及び窒素ガス導入管を備えた反応容器中に、ビスフェノールAエチレンオキサイド2モル付加物を1.5molと、ビスフェノールAトリメチレンオキサイド2モル付加物を1.8molと、シクロヘキサンジメタノールを1.1molと、エチレングリコールを0.62molと、テレフタル酸を4.0molと、イソフタル酸1.0molとを投入し、反応容器中を乾燥窒素ガスで置換した後、ジブチルスズオキサイドを0.04mol投入して、窒素ガス気流下約195℃で約6時間撹拌反応させ、さらに温度を約240℃に上げて約6.0時間撹拌反応させた後、反応容器内を10.0mmHgまで減圧し、減圧下で約0.5時間攪拌反応させて、淡黄色透明な[非結晶性ポリエステル樹脂5]を得た。得られた[非結晶性ポリエステル樹脂5]は、Mw11,300、Tg56℃であった。
(製造例I−3)
<ポリエステルプレポリマーの製造>
冷却管、撹拌機及び窒素導入管を備えた反応槽中に、ビスフェノールA EO2mol付加物720部、ビスフェノールA PO2mol付加物90部、テレフタル酸290部、及びテトラブトキシチタネート1部を入れ、窒素気流下にて230℃、常圧で、生成する水を留去しながら8時間反応させた。次いで、10mmHg〜15mmHgの減圧下にて7時間反応させ、[中間体ポリエステル1]を得た。[中間体ポリエステル1]は、Mn3,200、Mw9,300であった。
次に、冷却管、撹拌機及び窒素導入管を備えた反応槽中に、得られた[中間体ポリエステル1]400部、イソホロンジイソシアネート95部、及び酢酸エチル500部を入れ、窒素気流下にて80℃で8時間反応させて、末端にイソシアネート基を有する[ポリエステルプレポリマー1]の50%酢酸エチル溶液を得た。[ポリエステルプレポリマー1]の遊離イソシアネート質量%は、1.47%であった。
(製造例I−4)
<グラフト重合体の製造>
攪拌棒及び温度計をセットした反応容器中に、キシレン480部、低分子量ポリエチレン(三洋化成工業株式会社製、サンワックスLEL−400:軟化点128℃)100部を入れて充分溶解し、窒素置換した後、スチレン740部、アクリロニトリル100部、アクリル酸ブチル60部、ジ−t−ブチルパーオキシヘキサヒドロテレフタレート36部、及びキシレン100部の混合溶液を170℃で3時間滴下して重合し、更にこの温度で30分間保持した。次いで、脱溶剤を行い、[グラフト重合体]を合成した。得られた[グラフト重合体]は、Mw24,000、Tg67℃であった。
(製造例I−5−1)
<トナー母体粒子1の製造>
<溶解懸濁重合法>
−離型剤分散液1の調製−
撹拌棒及び温度計をセットした容器にパラフィンワックス(HNP−9、日本精蝋株式会社製、融点75℃)50部、[グラフト重合体]30部、及び酢酸エチル420部を入れ、撹拌下80℃に昇温し、80℃のまま5時間保持した後、1時間で30℃に冷却し、ビーズミル(ウルトラビスコミル、アイメックス社製)を用いて、送液速度1kg/hr、ディスク周速度6m/秒間、直径0.5mmジルコニアビーズを80体積%充填、3パスの条件で、分散を行い[離型剤分散液1]を得た。
−結晶性ポリエステル樹脂分散液1の調製−
撹拌棒及び温度計をセットした容器に[結晶性ポリエステル樹脂1]100部、及び酢酸エチル400部を入れ、撹拌下75℃で加熱溶解させた後、1時間で10℃以下まで冷却し、ビーズミル(ウルトラビスコミル、アイメックス社製)を用いて、送液速度1kg/hr、ディスク周速度6m/秒間、直径0.5mmジルコニアビーズを80体積%充填の条件で、5時間分散を行い[結晶性ポリエステル樹脂分散液1]を得た。
−マスターバッチ1の作製−
・非結晶性ポリエステル樹脂1 100部
・カーボンブラック(Printex35、デグサ社製) 100部
(DBP吸油量:42mL/100g、pH:9.5)
・イオン交換水 50部
上記の原材料を、ヘンシェルミキサー(日本コークス工業株式会社製)を用いて混合した。得られた混合物を、二本ロールを用いて混練した。混練温度は90℃から混練を始め、その後、50℃まで徐々に冷却していった。得られた混練物をパルペライザー(ホソカワミクロン株式会社製)で粉砕して[マスターバッチ1]を作製した。
−油相1の作製−
温度計及び撹拌機を備えた容器に、[非結晶性ポリエステル樹脂1]93部、[結晶性ポリエステル樹脂分散液1]68部、[離型剤分散液1]75部、[マスターバッチ1]18部、及び酢酸エチル19部を入れて、撹拌機にてプレ分散させた後、TK式ホモミキサー(プライミクス株式会社製)にて回転数5,000rpmで撹拌し、均一に溶解、分散させて[油相1]を得た。
−樹脂微粒子の水分散液の製造−
攪拌棒及び温度計をセットした反応容器に、水600部、スチレン120部、メタクリル酸100部、アクリル酸ブチル45部、アルキルアリルスルホコハク酸ナトリウム塩(エレミノールJS−2、三洋化成工業株式会社製)10部、及び過硫酸アンモニウム1部を仕込み、400回転/分間で20分間攪拌したところ、白色の乳濁液が得られた。この乳濁液を加熱して、系内温度75℃まで昇温し、6時間反応させた。更に1%過硫酸アンモニウム水溶液30部を加え、75℃で6時間熟成して[樹脂微粒子の水分散液]を得た。この[樹脂微粒子の水分散液]中に含まれる粒子の体積平均粒径は60nmであり、樹脂分の重量平均分子量は140,000、Tgは73℃であった。
−水相1の調製−
水990部、[樹脂微粒子の水分散液]83部、ドデシルジフェニルエーテルジスルホン酸ナトリウムの48.5%水溶液(エレミノールMON−7、三洋化成工業株式会社製)37部、及び酢酸エチル90部を混合撹拌し、[水相1]を得た。
−乳化乃至分散−
前記[油相1]273部に[ポリエステルプレポリマー1]の50%酢酸エチル溶液45部、及びイソホロンジアミンの50%酢酸エチル溶液3部を添加し、TK式ホモミキサー(プライミクス株式会社製)にて回転数5,000rpmで撹拌し、均一に溶解、分散して[油相1’]を得た。次いで、撹拌機及び温度計をセットした別の容器内に[水相1]400部を入れ、TK式ホモミキサー(プライミクス株式会社製)にて13,000rpmで攪拌しながら、[油相1’]を添加し、1分間乳化して[乳化スラリー1]を得た。
−脱溶剤〜洗浄〜乾燥−
撹拌機及び温度計をセットした容器内に、[乳化スラリー1]を投入し、30℃で8時間脱溶剤して、[スラリー1]を得た。得られた[スラリー1]を減圧濾過した後、以下の洗浄処理を行った。
(1)濾過ケーキにイオン交換水100部を加え、TKホモミキサーで混合(回転数6,000rpmで5分間)した後濾過した。
(2)前記(1)の濾過ケーキに10%水酸化ナトリウム水溶液100部を加え、TKホモミキサーで混合(回転数6,000rpmで10分間)した後、減圧濾過した。
(3)前記(2)の濾過ケーキに10%塩酸100部を加え、TKホモミキサーで混合(回転数6,000rpmで5分間)した後濾過した。
(4)前記(3)の濾過ケーキにイオン交換水300部を加え、TKホモミキサーで混合(回転数6,000rpmで5分間)した後濾過する操作を2回行い、濾過ケーキ1を得た。
得られた濾過ケーキ1を循風乾燥機にて45℃で48時間乾燥した。その後目開き75μmのメッシュで篩い、トナー母体粒子1を作製した。トナー母体粒子1の粒径を測定したところ、体積平均粒径(Dv)は5.6μmであった。
(製造例I−5−2)
<トナー母体粒子2の製造>
<溶解懸濁重合法>
製造例I−5−1の[油相1]の作製において、[非結晶性ポリエステル樹脂1]の代わりに[非結晶性ポリエステル樹脂4]を用いた以外は、トナー母体粒子1と同様に製造して、トナー母体粒子2を得た。得られたトナー母体粒子2の粒径を測定したところ、体積平均粒径(Dv)は5.6μmであった。
(製造例I−5−3)
<トナー母体粒子3の製造>
<溶解懸濁重合法>
製造例I−5−1の[油相1]の作製において、[非結晶性ポリエステル樹脂1]93部及び[結晶性ポリエステル樹脂分散液1]68部の代わりに[非結晶性ポリエステル樹脂1]を161部を用いた以外は、[油相1]の作製と同様にして[油相2]を得た。
製造例I−5−1のトナー母体粒子1の製造において、[油相1]を[油相2]に代えた以外は、トナー母体粒子1の製造と同様にして、トナー母体粒子3を得た。得られたトナー母体粒子3の粒径を測定したところ、体積平均粒径(Dv)は5.6μmであった。
(製造例I−5−4)
<トナー母体粒子4の製造>
<溶解懸濁重合法>
製造例I−5−3の[油相2]の作製において、[離型剤分散液1]75部を50部に変えた以外は、トナー母体粒子3の製造と同様にして、トナー母体粒子4を得た。得られたトナー母体粒子4の粒径を測定したところ、体積平均粒径(Dv)は5.6μmであった。
(製造例I−5−5)
<トナー母体粒子5の製造>
<溶解懸濁重合法>
製造例I−5−4のトナー母体粒子4の製造の洗浄処理(3)において、濾過ケーキに10%塩酸100部を加え、TKホモミキサーで混合(回転数6,000rpmで5分間)した後、得られたスラリーを55℃10分間加熱し、表面を平滑化して表面積を減らす工程を得た後濾過し、濾過ケーキを得た以外は、トナー母体粒子4の製造と同様にして、トナー母体粒子5を得た。得られたトナー母体粒子5の粒径を測定したところ、体積平均粒径(Dv)は5.6μmであった。
(製造例I−5−6)
<トナー母体粒子6の製造>
<溶解懸濁重合法>
製造例I−5−3の[油相2]の作製において、[離型剤分散液1]75部を0部に変えた以外は、トナー母体粒子3の製造と同様にして、トナー母体粒子6を得た。得られたトナー母体粒子6の粒径を測定したところ、体積平均粒径(Dv)は5.6μmであった。
(製造例I−5−7)
<トナー母体粒子7の製造>
<粉砕法>
−マスターバッチ2の作製−
・非結晶性ポリエステル樹脂2 100部
・カーボンブラック(Printex35、デグサ社製) 100部
(DBP吸油量:42mL/100g、pH:9.5)
・イオン交換水 50部
上記の原材料を、ヘンシェルミキサー(日本コークス工業株式会社製)を用いて混合した。得られた混合物を、二本ロールを用いて混練した。混練温度は90℃から混練を始め、その後、50℃まで徐々に冷却していった。得られた混練物をパルペライザー(ホソカワミクロン株式会社製)で粉砕して[マスターバッチ2]を作製した。
−溶融混練・粉砕・分級−
[非結晶性ポリエステル樹脂2]54部、[非結晶性ポリエステル樹脂3]27部、[結晶性ポリエステル樹脂1]8部、パラフィンワックス(HNP−9、日本精蝋株式会社製、融点75℃)6部、及び[マスターバッチ2]12部を、へンシェルミキサー(ヘンシェル20B、日本コークス工業株式会社製)を用いて1,500rpmで3分間予備混合した後、一軸混練機(小型ブス・コ・ニーダー、Buss社製)にて、設定温度(入口部90℃)、出口部(60℃)、フィード量(10kg/hr)の条件で溶融、混練した。得られた混練物を圧延冷却し、パルペライザー(ホソカワミクロン株式会社製)にて粗粉砕した。次いで、I式ミル(日本ニューマチック社製、IDS−2型)にて、平面型衝突板を用い、エアー圧力(6.0atm/cm)、フィード量(0.5kg/hr)の条件にて微粉砕を行い、更に分級機(アルピネ社製、132MP)により分級を行って、[トナー母体粒子7]を得た。トナー母体粒子7の粒径を測定したところ、体積平均粒径(Dv)は7.0μmであった。
(製造例I−5−8)
<トナー母体粒子8の製造>
<懸濁重合法>
モノビニル単量体としてスチレン91部及びn−ブチルアクリレート29部(これらの単量体を共重合して得られた共重合体の計算Tg=60℃)、着色剤としてカーボンブラック(三菱化学株式会社製、商品名:♯25B)7部、帯電制御剤として帯電制御樹脂(藤倉化成株式会社製、商品名:FCA−1001−NS、スチレン/アクリル樹脂)1部、架橋性の重合性単量体としてジビニルベンゼン0.6部、分子量調整剤としてt−ドデシルメルカプタン1.2部、及びマクロモノマーとしてポリメタクリル酸エステルマクロモノマー(東亜合成株式会社製、商品名:AA6、Tg=94℃)0.6部を、攪拌装置で攪拌、混合した後、さらにメディア式分散機により、均一に分散させた。ここに、離型剤としてパラフィンワックス(HNP−9、日本精蝋株式会社製)12部を添加し、混合、溶解して、重合性単量体組成物を得た。
他方、室温下で、イオン交換水250部に塩化マグネシウム(水溶性多価金属塩)8.6部を溶解した水溶液に、イオン交換水50部に水酸化ナトリウム(水酸化アルカリ金属)4.8部を溶解した水溶液を攪拌下で徐々に添加して、水酸化マグネシウムコロイド(難水溶性の金属水酸化物コロイド)分散液を調製した。
上記により得られた水酸化マグネシウムコロイド分散液に、上記重合性単量体組成物を投入し、さらに攪拌して、そこへ重合開始剤としてt−ブチルパーオキシイソブチレート(日油株式会社製、商品名:パーブチルIB)6部を添加した後、高速乳化・分散機(プライミクス株式会社製、商品名:T.K.ホモミキサー)を用いて、12,000rpmの回転数で分散を行い重合性単量体組成物の液滴形成を行った。
次に、液滴形成された重合性単量体組成物の水分散液を、反応器上部から投入し、95℃に昇温して重合反応を行い、重合転化率が95%に達したときに、反応器内の温度を90℃にし、シェル用重合性単量体としてメチルメタクリレート1部、及びイオン交換水10部に溶解した水溶性重合開始剤である2,2’−アゾビス(2−メチル−N−(2−ハイドロキシエチル)−プロピオンアミド)(和光純薬工業株式会社製、商品名:VA−086、水溶性)0.1部を添加した。さらに3時間、温度を90℃に維持して、重合を継続した後、水冷して反応を停止し、着色樹脂粒子の水分散液を得た。
上記着色樹脂粒子の水分散液に、pHが6.5以下となるまで硫酸を滴下することによって、攪拌しながら酸洗浄を行った。次いで、濾過により水を分離した後、新たにイオン交換水500部を加えて再スラリー化し、水洗浄処理(洗浄・濾過・脱水)を室温(25℃)で数回繰り返し行って、得られた固形分を濾過分離した後、真空乾燥機の容器内に入れ、圧力30torr、温度50℃の条件下で、72時間真空乾燥を行い、[トナー母体粒子8]を得た。トナー母体粒子8の粒径を測定したところ、体積平均粒径(Dv)は5.6μmであった。
(製造例I−5−9)
<トナー母体粒子9の製造>
<乳化重合凝集法>
乳化重合凝集法としては、下記の樹脂粒子分散液、着色剤粒子分散液、離型剤粒子分散液をそれぞれ調製し、これらを所定の割合で攪拌・混合しながら、金属塩凝集剤を添加しイオン的に中和させて凝集粒子を形成した。
次いで、無機水酸化物を添加して系中のpHを弱酸性から中性域に調整した後、前記樹脂粒子のガラス転移点以上の温度に加熱して融合及び合一した。
反応終了後、充分な洗浄、固液分離乾燥の工程を経て所望のトナー粒子を得た。
−着色剤粒子分散液の調製−
シアン顔料20部(大日精化工業株式会社製:ECB−301)、アニオン界面活性剤2部(第一工業製薬株式会社製:ネオゲンSC、有効成分として、着色剤に対して10%)、イオン交換水78部を用い、上記成分をすべて投入した時に液面の高さが容器の高さの1/3程度になるような大きさのステンレス容器に投入し、ホモジナイザー(LKA社製、ウルトラタラックスT50)を用いて、5,000回転で5分間分散した後、攪拌器で1昼夜攪拌させて脱泡した。
続けて、分散液を高圧衝撃式分散機アルティマイザー(株式会社スギノマシン製、HJP30006)を用いて、圧力240MPaで分散した。
分散は、トータル仕込み量と装置の処理能力から換算して25パス相当行った。
その後イオン交換水を加えて、固形分濃度を16.5%に調整した。
得られた着色剤粒子分散液の体積平均粒径をマイクロトラックUPAにて測定したところ115nmであった。
−離型剤粒子分散液の調製−
パラフィンワックス(HNP−9、日本精蝋株式会社製)280部、アニオン性界面活性剤(第一工業製薬株式会社製、ネオゲンRK)8.4部(有効成分として、離型剤に対して3.0%)、及びイオン交換水720部をホモジナイザー(IKA社製、ウルトラタラックスT50)で95℃に加熱しながら十分に分散した後、圧力吐出型ホモジナイザー(ゴーリン社製、ゴーリンホモジナイザー)で、分散圧力500kg/cmで、仕込み量と分散能力から換算して10パスに相当する時間分散処理し、離型剤粒子分散液を得た。
離型剤粒子の体積平均粒径は225nmであった。
その後イオン交換水を加えて固形分濃度を25.8%に調整した。
−非結晶性ポリエステル樹脂分散液(1)の調製−
[非結晶性ポリエステル樹脂5]を、キャビトロンCD1010(株式会社ユーロテック製)を高温高圧型に改造した分散機を用いて分散した。
イオン交換水79%、アニオン系界面活性剤(第一工業製薬株式会社製、ネオゲンRK)が1%(有効成分として)、及び[非結晶性ポリエステル樹脂5]の濃度が20%の組成比で、アンモニアによりpHを8.5に調整し、回転子の回転速度が60Hz、圧力が5kg/cm、熱交換器による加熱140℃、の条件でキャビトロンを運転し、体積平均粒径290nmの非結晶性ポリエステル樹脂分散液(1)を得た。
−結晶性ポリエステル樹脂分散液(1)の調製−
[結晶性ポリエステル樹脂2]を200部(固形分濃度100%)を蒸留水800部中に入れ、85℃に加熱後、アンモニアにてpH9.0に調整し、アニオン系界面活性剤(第一工業製薬株式会社製、ネオゲンRK)0.4部(有効成分として)を加え、85℃に加熱しながら、ホモジナイザー(IKAジャパン社製:ウルトラタラクスT50)にて、8,000rpmで7分間分散し、結晶性ポリエステル樹脂分散液(1)を得た。
体積平均粒径は260nmであった。
−追加粒子(1)の調製−
[非結晶性ポリエステル樹脂分散液1](非結晶性ポリエステル樹脂濃度20%)150部とアニオン性界面活性剤(第一工業製薬株式会社製:ネオゲンRK、有効成分量60%)1.5部(有効成分として0.9部)とを混合した後、1.0%硝酸水溶液を添加し、pHを4.0にして、追加粒子(1)を調製した。
イオン交換水410部、結晶性ポリエステル樹脂分散液(1)160部(結晶性ポリエステル樹脂濃度20%)、非結晶性ポリエステル樹脂分散液(1)340部(非結晶性ポリエステル樹脂濃度20%)、及びアニオン性界面活性剤(第一工業製薬株式会社製:ネオゲンRK、有効成分量60%)2.5部(有効成分として1.5部)を、温度計、pH計、及び攪拌機を具備した3リットルの反応容器に入れ、外部からマントルヒーターで温度制御しながら、温度30℃、攪拌回転数150rpmにて、30分間保持した。
その後、着色剤粒子分散液50部(着色剤濃度15%)、及び離型剤粒子分散液60部(離型剤濃度25%)を投入し、5分間保持した。
そのまま、1.0%硝酸水溶液を添加し、pHを2.7に調整した。
攪拌機、及びマントルヒーターをはずし、ホモジナイザー(IKAジャパン社製:ウルトラタラクスT50)にて、3,000rpmで分散しながら、ポリ塩化アルミニウム0.33部、及び0.1%硝酸水溶液37.5部の混合溶液を、そのうちの1/2を添加した後、分散回転数を5,000rpmにして、残りの1/2を1分間かけて添加し、分散回転数を6,500rpmにして、6分間分散した。
反応容器に、攪拌機、及びマントルヒーターを設置し、スラリーが充分に攪拌するように攪拌機の回転数を適宜調整しながら、42℃まで、0.5℃/分間で昇温し、42℃で15分間保持した後、0.05℃/分間で昇温しながら、10分間ごとに、コールターマルチサイザーII(アパーチャー径:50μm、コールター社製)にて、アイソトンを希釈液として測定濃度10%で粒径を測定し、体積平均粒径が5.0μmとなったところで、追加粒子(1)150部を3分間かけて投入した。
投入後30分間保持した後、5%水酸化ナトリウム水溶液を用いてpHを9.0にした。
その後、5℃ごとにpHを9.0に調整しながら、昇温速度1℃/分間で95℃まで昇温後、保持した。2時間目でほぼ球形化したことを確認し、1℃/分間で20℃まで降温して粒子を固化させた。
その後、反応生成物をろ過し、イオン交換水で通水洗浄し、ろ液の伝導度が50mS以下となったところで、ケーキ状になった粒子を取り出し、粒子質量の10倍量のイオン交換水中に投入し、スリーワンモータで攪拌し充分に粒子がほぐれたところで、1.0%硝酸水溶液でpHを3.8に調整して10分間保持した。
その後再度ろ過、通水洗浄し、ろ液の伝導度が10mS以下となったところで、通水を停止し、固液分離した。
得られたケーキ状になった粒子をオースターで解砕して、25℃のオーブン中で24時間乾燥して[トナー母体粒子9]を得た。トナー母体粒子9の粒径を測定したところ、体積平均粒径(Dv)は5.7μmであった。
(製造例I−6)
<トナー1〜17の作製>
得られた[トナー母体粒子1]〜[トナー母体粒子9]を100部に対して、表1に従って、所定の外添剤を所定量添加した。混合順として、1段目にシリカAのみ添加して混合、2段目に酸化チタン(商品名「JMT−150IB」、テイカ社製)0.6部を追加して混合、3段目にシリカBを添加して混合した。混合後は、目開き500メッシュの篩を通過させ、トナー1〜トナー17を得た。
(製造例II−1)
−結着樹脂生成工程−
結着樹脂として、ポリエステル(II−1)を用い、以下のようにしてトナー母体粒子を製造した。
−−ポリエステルの合成−−
冷却管、攪拌機及び窒素導入管の付いた反応槽中に、ビスフェノールエチレンオキサイド2モル付加物70質量部、ビスフェノールAプロピオンオキサイド2モル付加物568質量部、テレフタル酸44質量部、及びイソフタル酸211質量部を投入し、常圧窒素気流下にて、210℃で13時間縮合反応した。更に10mmHg〜15mmHgの減圧下で脱水しながら5時間反応を継続した後に冷却し、ポリエステル(II−1)を得た。ポリエステル(II−1)の重量平均分子量Mwは5,700であった。
−−中間体ポリエステルの合成(II−1)−−
冷却管、撹拌機及び窒素導入管の付いた反応容器中に、プロピレングリコール650質量部、ビスフェノールAプロピレンオキサイド2モル付加物90質量部、テレフタル酸290質量部、無水トリメリット酸22質量部、及びジブチルチンオキサイド2質量部を仕込み、常圧下で、230℃にて8時間反応させた。次いで、10mmHg〜15mmHgの減圧下で、7時間反応させて、中間体ポリエステル(II−1)を合成した。
得られた中間体ポリエステル(II−1)は、数平均分子量(Mn)が5,900、重量平均分子量(Mw)が22,500、ガラス転移温度(Tg)が43℃、酸価が0.5mgKOH/g、水酸基価が22mgKOH/gであった。
−−ポリエステルプレポリマーの合成(II−1)−−
次に、冷却管、撹拌機及び窒素導入管の付いた反応容器中に、前記中間体ポリエステル(II−1)410質量部、イソホロンジイソシアネート89質量部、及び酢酸エチル500質量部を仕込み、100℃にて5時間反応させて、ポリエステルプレポリマー(II−1)〔プレポリマー(II−1);前記活性水素基含有化合物と反応可能な重合体〕を合成した。
得られたポリエステルプレポリマーの遊離イソシアネート含有量は、1.53質量%であった。
<結晶性ポリエステル樹脂II−1の製造>
冷却管、撹拌機及び窒素導入管を備えた反応槽中に、セバシン酸202部(1.00mol)、1,6−ヘキサンジオール154部(1.30mol)、及び縮合触媒としてテトラブトキシチタネート0.5部を入れ、窒素気流下にて180℃で、生成する水を留去しながら8時間反応させた。次いで220℃まで徐々に昇温しながら、窒素気流下にて生成する水及び1,6−ヘキサンジオールを留去しながら4時間反応させ、さらに5mmHg〜20mmHgの減圧下にて、Mwがおよそ15,000に達するまで反応を行い、[結晶性ポリエステル樹脂II−1]を得た。得られた[結晶性ポリエステル樹脂II−1]は、Mw14,000、融点66℃であった。
<トナー母体粒子II−1の製造>
<溶解懸濁重合法>
−離型剤分散液II−1の調製−
撹拌棒及び温度計をセットした容器にパラフィンワックス(HNP−9、日本精蝋株式会社製、融点75℃)50部、[グラフト重合体]30部、及び酢酸エチル420部を入れ、撹拌下80℃に昇温し、80℃のまま5時間保持した後、1時間で30℃に冷却し、ビーズミル(ウルトラビスコミル、アイメックス社製)を用いて、送液速度1kg/hr、ディスク周速度6m/秒間、直径0.5mmジルコニアビーズを80体積%充填、3パスの条件で、分散を行い[離型剤分散液II−1]を得た。
−結晶性ポリエステル樹脂分散液II−1の調製−
撹拌棒及び温度計をセットした容器に[結晶性ポリエステル樹脂II−1]100部、及び酢酸エチル400部を入れ、撹拌下75℃で加熱溶解させた後、1時間で10℃以下まで冷却し、ビーズミル(ウルトラビスコミル、アイメックス社製)を用いて、送液速度1kg/hr、ディスク周速度6m/秒間、直径0.5mmジルコニアビーズを80体積%充填の条件で、5時間分散を行い[結晶性ポリエステル樹脂分散液II−1]を得た。
−マスターバッチII−1の作製−
・ポリエステル(II−1)〔非結晶性ポリエステル樹脂II−1〕 100部
・カーボンブラック(Printex35、デグサ社製) 100部
(DBP吸油量:42mL/100g、pH:9.5)
・イオン交換水 50部
上記の原材料を、ヘンシェルミキサー(日本コークス工業株式会社製)を用いて混合した。得られた混合物を、二本ロールを用いて混練した。混練温度は90℃から混練を始め、その後、50℃まで徐々に冷却していった。得られた混練物をパルペライザー(ホソカワミクロン株式会社製)で粉砕して[マスターバッチII−1]を作製した。
−油相II−1の作製−
温度計及び撹拌機を備えた容器に、[ポリエステル(II−1)]93部、[結晶性ポリエステル樹脂分散液II−1]68部、[離型剤分散液II−1]75部、[マスターバッチII−1]18部、及び酢酸エチル19部を入れて、撹拌機にてプレ分散させた後、TK式ホモミキサー(プライミクス株式会社製)にて回転数5,000rpmで撹拌し、均一に溶解、分散させて[油相II−1]を得た。
−樹脂微粒子の水分散液の製造−
攪拌棒及び温度計をセットした反応容器に、水600部、スチレン120部、メタクリル酸100部、アクリル酸ブチル45部、アルキルアリルスルホコハク酸ナトリウム塩(エレミノールJS−2、三洋化成工業株式会社製)10部、及び過硫酸アンモニウム1部を仕込み、400回転/分間で20分間攪拌したところ、白色の乳濁液が得られた。この乳濁液を加熱して、系内温度75℃まで昇温し、6時間反応させた。更に1%過硫酸アンモニウム水溶液30部を加え、75℃で6時間熟成して[樹脂微粒子の水分散液]を得た。この[樹脂微粒子の水分散液]中に含まれる粒子の体積平均粒径は60nmであり、樹脂分の重量平均分子量は140,000、Tgは73℃であった。
−水相II−1の調製−
水990部、[樹脂微粒子の水分散液]83部、ドデシルジフェニルエーテルジスルホン酸ナトリウムの48.5%水溶液(エレミノールMON−7、三洋化成工業株式会社製)37部、及び酢酸エチル90部を混合撹拌し、[水相II−1]を得た。
−乳化乃至分散(乳化・分散工程)−
前記[油相II−1]273部に[ポリエステルプレポリマーII−1]の50%酢酸エチル溶液45部、及びイソホロンジアミンの50%酢酸エチル溶液3部を添加し、TK式ホモミキサー(プライミクス株式会社製)にて回転数5,000rpmで撹拌し、均一に溶解、分散して[油相II−1’]を得た。次いで、撹拌機及び温度計をセットした別の容器内に[水相II−1]400部を入れ、TK式ホモミキサー(プライミクス株式会社製)にて13,000rpmで攪拌しながら、[油相II−1’]を添加し、1分間乳化して[乳化スラリーII−1]を得た。
−脱溶剤〜洗浄〜乾燥−
撹拌機及び温度計をセットした容器内に、[乳化スラリーII−1]を投入し、30℃で8時間脱溶剤した後、45℃で10時間熟成を行い、[スラリーII−1]を得た。得られた[スラリーII−1]を減圧濾過した後、以下の洗浄処理を行った。
(1)濾過ケーキにイオン交換水100部を加え、TKホモミキサーで混合(回転数6,000rpmで5分間)した後濾過した。
(2)前記(1)の濾過ケーキに10%水酸化ナトリウム水溶液100部を加え、TKホモミキサーで混合(回転数6,000rpmで10分間)した後、減圧濾過した。
(3)前記(2)の濾過ケーキに10%塩酸100部を加え、TKホモミキサーで混合(回転数6,000rpmで5分間)した後濾過した。
(4)前記(3)の濾過ケーキにイオン交換水300部を加え、TKホモミキサーで混合(回転数6,000rpmで5分間)した後濾過する操作を2回行い、濾過ケーキII−1を得た。
得られた濾過ケーキII−1を循風乾燥機にて45℃で48時間乾燥した。その後目開き75μmのメッシュで篩い、トナー母体粒子II−1を作製した。トナー母体粒子II−1の粒径を測定したところ、体積平均粒径(Dv)は5.5μmであった。
(製造例II−2)
製造例II−1において、脱溶剤後の熟成の時間を10時間から5時間に変えた以外は、製造例II−1と同様にして製造例II−2のトナー母体粒子II−2を得た。
(製造例II−3)
製造例II−1において、脱溶剤後の熟成の時間を10時間から15時間に変えた以外は、製造例II−1と同様にして製造例II−3のトナー母体粒子II−3を製造した。
−−中間体ポリエステルの合成(II−2)−−
冷却管、撹拌機及び窒素導入管の付いた反応容器中に、プロピレングリコール682質量部、ビスフェノールAプロピレンオキサイド2モル付加物81質量部、テレフタル酸283質量部、無水トリメリット酸22質量部、及びジブチルチンオキサイド2質量部を仕込み、常圧下で、230℃にて5時間反応させた。次いで、10mmHg〜15mmHgの減圧下で、4時間反応させて、中間体ポリエステル(II−2)を合成した。
得られた中間体ポリエステル(II−2)は、数平均分子量(Mn)が2,900、重量平均分子量(Mw)が11,500、ガラス転移温度(Tg)が45℃、酸価が0.5mgKOH/g、水酸基価が32mgKOH/gであった。
−−プレポリマーの合成(II−2)−−
次に、冷却管、撹拌機及び窒素導入管の付いた反応容器中に、前記中間体ポリエステル(II−2)410質量部、イソホロンジイソシアネート89質量部、及び酢酸エチル500質量部を仕込み、100℃にて5時間反応させて、プレポリマー(II−2)(前記活性水素基含有化合物と反応可能な重合体)を合成した。
得られたプレポリマーの遊離イソシアネート含有量は、1.46質量%であった。
(製造例II−4)
製造例II−1の乳化・分散工程においてプレポリマー(II−1)をプレポリマー(II−2)に変えた以外は、製造例II−1と同様にして製造例II−4のトナー母体粒子II−4を得た。
(製造例II−5)
製造例II−1において、脱溶剤後の熟成の時間を10時間から0時間(熟成工程無し)に変えた以外は、製造例II−1と同様にして製造例II−5のトナー母体粒子II−5を得た。
(製造例II−6)
製造例II−1の乳化・分散工程において、前記プレポリマー(II−1)を使用しないこと以外は、製造例II−1と同様にして製造例II−6のトナー母体粒子II−6を得た。
(製造例II−7)
製造例II−1の乳化・分散工程において、前記プレポリマー(II−1)を20質量部使用すること以外は、製造例II−1と同様にして製造例II−7のトナー母体粒子II−7を得た。
(製造例II−8)
製造例II−1の乳化・分散工程において、前記プレポリマー(II−1)を75質量部使用すること以外は、製造例II−1と同様にして製造例II−8のトナー母体粒子II−8を得た。
(製造例II−9)
製造例II−1の乳化・分散工程において、前記プレポリマー(II−1)を90質量部使用すること以外は、製造例II−1と同様にして製造例II−9のトナー母体粒子II−9を得た。
(製造例II−10)
製造例II−1の乳化・分散工程において、ポリエステル(II−1)の代わりに前記非結晶性ポリエステル樹脂3を使用した以外は、製造例II−1と同様にして製造例II−10のトナー母体粒子II−10を得た。
(製造例II−11)
[非結晶性ポリエステル樹脂2]27部、[非結晶性ポリエステル樹脂3]54部、[結晶性ポリエステル樹脂1]8部、パラフィンワックス(HNP−9、日本精蝋株式会社製、融点75℃)6部、及び[マスターバッチ2]12部を、へンシェルミキサー(ヘンシェル20B、日本コークス工業株式会社製)を用いて1,500rpmで3分間予備混合した後、一軸混練機(小型ブス・コ・ニーダー、Buss社製)にて、設定温度(入口部90℃)、出口部(60℃)、フィード量(10kg/hr)の条件で溶融、混練した。得られた混練物を圧延冷却し、パルペライザー(ホソカワミクロン株式会社製)にて粗粉砕した。次いで、I式ミル(日本ニューマチック社製、IDS−2型)にて、平面型衝突板を用い、エアー圧力(6.0atm/cm)、フィード量(0.5kg/hr)の条件にて微粉砕を行い、更に分級機(アルピネ社製、132MP)により分級を行って、製造例II−11のトナー母体粒子II−11を得た。トナー母体粒子II−11の粒径を測定したところ、体積平均粒径(Dv)は7.0μmであった。
(製造例II−12)
製造例II−11において、[非結晶性ポリエステル樹脂2]を27部から57部に、[非結晶性ポリエステル樹脂3]を54部から24部に変更した以外は、製造例II−11と同様にして、トナー母体粒子II−12を得た。
<ソクスレー抽出>
サンプルとして、製造したトナー0.3gを秤量し、円筒濾紙(「No.86R」;東洋濾紙製)に入れてソクスレー抽出器にかけた。ヒーター温度を85℃にセットし、抽出溶媒としてソクスレー用丸底フラスコにテトラヒドロフランTHF(安定剤含有 和光純薬製)200mLを用いて、7時間にわたって全還流抽出(ソクスレー抽出)を行った後、ロータリーエバポレーターでTHFを留去せしめて、抽出物を得た。抽出物をTHFに溶解した溶液をポア径が0.45μmの耐溶剤性メンブランフィルターでろ過した後、GPCによって分子量の測定を行った。
結果を表2−1、及び表2−2に示す。
(実施例1〜15、及び比較例1〜2)
<トナー収容容器>
図10に示すトナー収容容器(容器開口部の断面は、図30に示す断面)を用いた。容器本体内には、製造例I−6で製造したトナーを充填した。
図10に示すトナー収容容器は、容器本体が、容器開口部の容器本体内の側から、一端側に向かって突出している突出部を有している。
また、汲み上げ部は、容器本体内壁面から突出部に向かって伸びる汲み上げ壁面と突出部に沿うように湾曲する湾曲部とを有している。
また、汲み上げ部は、容器本体内壁面から突出部に向かって隆起した隆起部を有している。隆起部には突出部に沿うように湾曲する湾曲部が設けられている。
突出部は、トナー収容容器がトナー搬送装置に装着された際、湾曲部と挿入された搬送管のトナー受入口との間に存在するように設けられている。
更に、図10に示すトナー収容容器は、突出部が、板状の部材であって、板状の部材の平らな側面(厚さ方向の側面)が、湾曲部と、挿入されたトナー搬送管のトナー受入口との間に存在するように設けられている。
更に、図10に示すトナー収容容器は、汲み上げ壁面を有する汲み上げ部を2つ有する。2つの汲み上げ部それぞれにおいて、トナー収容容器がトナー搬送装置に装着された際、前記汲み上げ部が有する湾曲部と、挿入された搬送管のトナー受入口との間に、突出部が存在する。
図10に示すトナー収容容器は、汲み上げ部が容器本体と一体的に形成されており、突出部が容器本体に固定されており、容器本体が回転することで、前記汲み上げ部が、トナーを下方から上方に持ち上げる。
<評価>
<<トナー排出性>>
上記のトナー収容容器について、以下の評価方法で評価を行った。
その際の容器本体からのトナーの排出性を以下の評価基準で評価した。結果を表1に示した。
〔評価方法〕
トナーをトナー収容容器に120g充填した(なお、トナー収容容器の容量は、1,200mL)。トナー収容容器を振ってトナーを十分に攪拌した。トナー収容容器を本実施例に記載の搬送ノズルを備えた補給装置に装着した(図9参照)。トナー収容容器を回転、及び補給装置を動作させて補給装置から排出されるトナーの量を計測した。
条件:トナー収容容器回転数:100rpm
補給装置の搬送ノズル内の搬送スクリュピッチ:12.5mm
搬送スクリュ外径:10mm
搬送スクリュ軸径:4mm
搬送スクリュ回転数:500rpm
〔評価基準〕
○:収容容器内トナー残量が70gとなってもトナーが排出されるもの。
×:収容容器内トナー残量が70gとなる前にトナー排出がなされなくなるもの。
本実験においてはトナーの未使用時充填量(製品出荷時の充填量)は200g以上と想定して、排出性を検証するために上記のようにトナー残量70gを評価基準とした。
○を合格とし×を不合格とした。
<<補給安定性>>
上記のトナー収容容器について、上記排出性の評価方法と同じ評価方法で評価を行った。
その際の容器本体からのトナーの補給安定性を以下の評価基準で評価した。結果を表1に示した。
〔評価基準〕
◎:非常に良好(トナーが排出できなくなるまで駆動し続けたときに、トナー収容容器内のトナー残量が70g未満、10g以上の範囲において、トナー補給量が0.4g/sec以上の状態で安定的に(一定量)で維持されている。図41のイ)
※トナー補給量0.4g/secは、A4紙に全ベタ画像を連続通紙してもトナー補給量不足によりベタ画像のかすれ等がない(ベタ追従性)ことが予測される補給量である。
※トナー10g以上の範囲としたのは、容器内壁にトナーが付着する分を考慮したものである。
○:良好(トナーが排出できなくなるまで駆動し続けたときに、トナー収容容器内のトナー残量が70g未満、10g以上の範囲において、トナー補給量が0.4g/sec未満の状態で一定量で維持されている。図41のロ)
※トナー補給量は、0.4g/secより少ないが、安定的に(一定量で)補給量が維持されているため、トナー収容容器の回転数を上げる等により、トナー補給量の底上げを行なうことができ、安定して、ベタ追従に十分な補給が行える。
△:許容レベル(トナーが排出できなくなるまで駆動し続けたときに、トナー収容容器内のトナー残量が70g未満となったとき以降、トナーの排出は行われるが、トナー補給量が一定ではなく、傾きを持って減少してゆく。図41のハ)
※トナーは排出されるため、補給が0になるということはないが、ベタ追従性を保障するためにより複雑な補給制御が必要となる。
×:実用上使用できないレベル(トナー排出ができなくなるまで駆動し続けたときに、トナー排出はなされるが、トナー残量70g以上残った状態で排出が行われなくなってしまうもの)
××:実用上使用できないレベル(トナーの排出が行われない)
◎、○、△を合格とし、×、××を不合格とした。
※今回の◎、○となっているトナーについて言えばトナー残量が10g未満の範囲で補給量が急激に減少した(変極点を持って下降した)。
また、今回の実験においては、◎、○となっているトナーのトナー補給量の変動幅がトナー残量10gから70gの範囲において0.05g/sec以内であった。
表1中、シリカの種類は、以下のとおりである。
X−24(商品名):信越化学工業株式会社製
UFP35(商品名):電気化学工業株式会社製
UFP50(商品名):電気化学工業株式会社製
NX90G(商品名):日本アエロジル株式会社製
H2000(商品名):クラリアント社製
(実施例II−1〜II−72)
製造例I−6において、トナー母体粒子、並びにシリカA及びシリカBを表2−1、及び表2−2に記載のとおりにした以外は、製造例I−6と同様にして、トナーII−1〜II−72を製造した。
実施例1と同様の評価を行い、更にキャリアと混合してトナー濃度5質量%の二成分現像剤を作成し、得られた各現像剤を用いて、以下のようにして、定着性(オフセット未発生上限温度及び定着下限温度)、耐熱保存性(針入度)、及び総合評価を評価した。
結果を表2−3、及び表2−4に示す。
<定着性(オフセット未発生温度及び定着下限温度)>
図43に示すベルト式定着装置110を備えた画像形成装置を用いて、定着性(オフセット未発生温度及び定着下限温度)を評価した。
ベルト式定着装置110は、加熱ローラ121と、定着ローラ122と、加圧ローラ124と、定着ベルト123とを備えている。
定着ベルト123は、内部に回転可能に配置された加熱ローラ121と定着ローラ122とによって張架され、加熱ローラ121により所定の温度に加熱されている。加熱ローラ121は、内部には加熱源125が内蔵されており、加熱ローラ121の近傍に取り付けられた温度センサ127により温度調節自在に設計されている。定着ローラ122は、定着ベルト123の内側に、かつ定着ベルト123の内面に当接しながら回転可能に配置されている。加圧ローラ124は、定着ベルト123の外側に、かつ定着ベルト123の外面に、定着ローラ122を圧接するようにして当接し、回転可能に配置されている。
ベルト式定着装置110では、まず、定着処理すべきトナー像が形成された記録媒体(シート)Pが加熱ローラ121まで搬送される。そして、内蔵されている加熱源125の働きにより所定の温度に加熱された加熱ローラ121及び定着ベルト123によりシートP上のトナーTが加熱されて溶融状態となる。この状態において、該シートPが定着ローラ122及び加圧ローラ124間に形成されたニップ部に挿入される。該ニップ部に挿入されたシートPは、定着ローラ122及び加圧ローラ124の回転に連動して回転する定着ベルト123の表面に当接され、加圧ローラ124の押圧力により前記ニップ部を通過する際に押圧され、トナーTがシートP上に定着される。次いで、トナーTが定着されたシートPは、定着ローラ122及び加圧ローラ124間を通過し、定着ベルト123から剥離され、ガイドGを経てトレイ(不図示)に搬送される。なお、定着ベルト123はクリーニングローラ126で清浄化される。
図43に示すベルト式定着装置においては、定着ローラ122、加圧ローラ124、加熱ローラ121及び定着ベルト123により、ベルト張力1.5kg/片、ベルト速度350mm/sec及びニップ部幅13mmの定着条件にて定着が行われた。
定着ローラ122は、直径38mm、アスカーC硬度が約30度のシリコーン発砲体製のローラである。加圧ローラ124は、直径48mmの芯金(鉄製、肉厚1mm)上にPFAチューブを被覆し、該PFA層の表面に厚さ1mmのシリコーンゴム層を被覆した直径50mm、アスカーC硬度が約75度のローラである。加熱ローラ121は、直径30mm、肉厚2mmのアルミニウム製のローラである。定着ベルト123は、ベルト直径6
0mm及びベルト幅310mmであり、約40μm厚みのニッケル製ベルト基体表面に厚さ約150μmのシリコーンゴム製の離型層を有するローラに張架されている。
<ホットオフセット未発生温度>
図43に示すベルト式定着装置を備えた画像形成装置を用いてオフセット未発生温度を測定した。即ち、画像形成は、カラー複写機(「プリテール550」;株式会社リコー製)を用いて、転写紙(「タイプ6000−70W」;株式会社リコー製)に、ベタ画像を、1.0±0.1mg/cm2のトナーが現像されるように調整した。得られた画像を定着ベルト(加熱ローラ)の温度を変えて図43のベルト式定着装置を用いて定着し、オフセットの発生しない定着温度(オフセット未発生温度)を測定した。
<定着下限温度>
図43に示すベルト式定着装置を備えた画像形成装置を用いて、画像は、カラー複写機(「プリテール550」;株式会社リコー製)を用いて、転写紙(「タイプ6200」;株式会社リコー製)をセットし、複写テストを行った。得られた定着画像をパットで擦った後の画像濃度の残存率が70%以上となる定着ロール温度をもって定着下限温度とした。なお、定着下限温度が150℃より低いトナーが、好ましく、定着下限温度が130℃より低いトナーが、更に好ましい。
<定着幅>
定着下限温度とオフセットオフセット未発生温度の上限の差を定着幅とした。定着幅は20℃以上が好ましく、50℃以上の場合更に好ましい。
<耐熱保存性(針入度)>
50mLのガラス容器に各トナーを10g充填し、50℃の恒温槽に20時間放置した。このトナーを室温に冷却し、針入度試験(JIS K2235−1991)により針入度を測定した。なお、前記針入度の値が大きいほど耐熱保存性が優れていることを示す。
本発明の態様は、例えば、以下のとおりである。
<1> トナー搬送装置に装着可能であり、前記トナー搬送装置に供給するトナーが収容された容器本体と、
前記容器本体の内部に配置され、前記トナーを前記容器本体における長手方向の一端側から容器開口部が設けられた他端側に搬送する搬送部と、
前記容器開口部に配置され、前記トナー搬送装置に固定された搬送管を受け入れ可能な管受入口と、
前記搬送部によって搬送された前記トナーを前記容器本体の下方から上方に持ち上げ、前記搬送管のトナー受入口に向けて移動させる汲み上げ部と、を備えるトナー収容容器において、
前記トナーの、パウダーレオメーターで測定され下記式(1)で表される流動速度指標が、下記式(2)の範囲であり、
前記容器本体が、前記容器開口部の容器本体内部側から、前記一端側に向かって突出している突出部を有し、
前記汲み上げ部が、前記容器本体内壁面から前記突出部に向かって伸びる汲み上げ壁面と前記突出部に沿うように湾曲する湾曲部とを有し、
前記突出部が、前記トナー収容容器が前記トナー搬送装置に装着された際、前記湾曲部と挿入された前記搬送管のトナー受入口との間に存在するように設けられている、
ことを特徴とするトナー収容容器である。
流動速度指標=(回転速度10mm/sの全体エネルギー)/(回転速度100mm/sの全体エネルギー) ・・・(1)
1.8≦流動速度指標≦6.5 ・・・(2)
前記<1>のトナー収容容器においては、前記容器本体に収容された前記トナーが、前記搬送部によって前記容器開口部が設けられた他端側に搬送され、前記汲み上げ部によって前記搬送管のトナー受け入れ口に移動する際に、前記容器本体が有する前記突出部が、前記汲み上げ部が有する前記湾曲部と挿入される前記搬送管のトナー受入口との間に存在し、かつ前記トナーの流動速度指標が、前記式(2)を満たすことにより、現像装置へのトナーの補給が安定して行われ、トナー収容容器内のトナー残量が少なくなっても、現像装置へのトナーの補給が可能になる。
<2> トナー搬送装置に装着可能であり、前記トナー搬送装置に供給するトナーが収容された容器本体と、
前記容器本体の内部に配置され、前記トナーを前記容器本体における長手方向の一端側から容器開口部が設けられた他端側に搬送する搬送部と、
前記容器開口部に配置され、前記トナー搬送装置に固定された搬送管を受け入れ可能な管受入口と、
前記搬送部によって搬送された前記トナーを前記容器本体の下方から上方に持ち上げ、前記搬送管のトナー受入口に向けて移動させる汲み上げ部と、を備えるトナー収容容器において、
前記トナーの、パウダーレオメーターで測定され下記式(1)で表される流動速度指標が、下記式(2)の範囲であり、
前記容器本体が、前記容器開口部の容器本体内部側から、前記一端側に向かって突出している突出部を有し、
前記汲み上げ部が、前記容器本体内壁面から前記突出部に向かって隆起した隆起部を有し、
前記隆起部には前記突出部に沿うように湾曲する湾曲部が設けられており、
前記突出部が、前記トナー収容容器が前記トナー搬送装置に装着された際、前記湾曲部と挿入された前記搬送管のトナー受入口との間に存在するように設けられている、
ことを特徴とするトナー収容容器である。
流動速度指標=(回転速度10mm/sの全体エネルギー)/(回転速度100mm/sの全体エネルギー) ・・・(1)
1.8≦流動速度指標≦6.5 ・・・(2)
前記<2>のトナー収容容器においては、前記容器本体に収容された前記トナーが、前記搬送部によって前記容器開口部が設けられた他端側に搬送され、前記汲み上げ部によって前記搬送管のトナー受け入れ口に移動する際に、前記容器本体が有する前記突出部が、前記汲み上げ部が有する前記湾曲部と挿入される前記搬送管のトナー受入口との間に存在し、かつ前記トナーの流動速度指標が、前記式(2)を満たすことにより、現像装置へのトナーの補給が安定して行われ、トナー収容容器内のトナー残量が少なくなっても、現像装置へのトナーの補給が可能になる。
<3> トナーの流動速度指標が、下記式(3)の範囲である前記<1>から<2>のいずれかに記載のトナー収容容器である。
2.8≦流動速度指標≦6.5 ・・・(3)
<4> トナーの流動速度指標が、下記式(4)の範囲である前記<1>から<3>のいずれかに記載のトナー収容容器である。
2.8≦流動速度指標≦4.0 ・・・(4)
<5> トナーの、テトラヒドロフラン(THF)を用いてソクスレー抽出法により抽出される成分のゲルパーミエーションクロマトグラフィ(GPC)による分子量分布における重量平均分子量Mwが、5,000以上35,000以下である前記<1>から<4>のいずれかに記載のトナー収容容器である。
<6> トナーの、テトラヒドロフラン(THF)を用いてソクスレー抽出法により抽出される成分のゲルパーミエーションクロマトグラフィ(GPC)による分子量分布における重量平均分子量Mwが、8,000以上18,000以下である前記<1>から<5>のいずれかに記載のトナー収容容器である。
<7> トナーの、テトラヒドロフラン(THF)を用いてソクスレー抽出法により抽出される成分のゲルパーミエーションクロマトグラフィ(GPC)による分子量分布における重量平均分子量Mwが、14,000以上18,000以下である前記<1>から<6>のいずれかに記載のトナー収容容器である。
<8> トナーの、テトラヒドロフラン(THF)を用いたソクスレー抽出法による抽出の不溶分のうち樹脂成分が、前記トナーに対し0.5質量%以上20質量%以下である前記<1>から<7>のいずれかに記載のトナー収容容器である。
<9> トナーの、テトラヒドロフラン(THF)を用いたソクスレー抽出法による抽出の不溶分のうち樹脂成分が、前記トナーに対し0.5質量%以上5質量%以下である前記<1>から<8>のいずれかに記載のトナー収容容器である。
<10> トナーの結着樹脂が、結晶性ポリエステル樹脂を含む前記<1>から<9>のいずれかに記載のトナー収容容器である。
<11> 突出部が、板状の部材であって、
前記板状の部材の平らな側面が、湾曲部と、挿入されたトナー搬送管のトナー受入口との間に存在するように設けられている<1>から<10>のいずれかに記載のトナー収容容器である。
<12> 汲み上げ部を2つ有し、
トナー収容容器がトナー搬送装置に装着された際、前記2つの汲み上げ部がそれぞれに有する湾曲部と、挿入された搬送管のトナー受入口との間のそれぞれに、突出部が存在する前記<1>から<11>のいずれかに記載のトナー収容容器である。
<13> 汲み上げ部と、突出部とが、容器本体に固定されている又は一体的に形成されており、
前記容器本体が回転することで、前記汲み上げ部が、トナーを下方から上方に持ち上げる前記<1>から<12>のいずれかに記載のトナー収容容器である。
<14> 容器開口部を閉鎖する閉鎖位置と、開放する開放位置との間で移動可能なシャッタ部材を有し、
前記シャッタ部材が、搬送管に押圧されることで前記閉鎖位置から前記開放位置へと移動するとともに、
前記突出部が、前記シャッタ部材の移動領域に沿って設けられている前記<1>から<13>のいずれかに記載のトナー収容容器である。
<15> 前記<1>から<14>のいずれかに記載のトナー収容容器が画像形成装置本体に着脱可能に設置されたことを特徴とする画像形成装置である。
32(Y,M,C,K) トナー収容容器
33 容器本体
33a 容器開口部
50 現像装置
60(Y,M,C,K) トナー補給装置
70 トナー収容容器収納部
302 螺旋状突起
303 把手部
304 汲み上げ部
304f 汲み上げ壁面
304h 凸部
304i 湾曲部
330 ノズル受入部材
331 ノズル受入口
332 容器シャッタ
332a シャッタ抜け防止爪
332c 先端円筒部
332d 滑動部
332e ガイドロッド
332f 片持ち梁
332g ガイドロッド摺動部
332h 容器シャッタの端面
332i 円筒部
333 容器シール
333a 管挿入口の内面
335 シャッタ後端支持部
335a シャッタ側面支持部
335b シャッタ支持開口部
335d 後端開口部
336 容器シャッタバネ
340 容器シャッタ支持部材
342 当接部
350 シール部材
610 ノズル開口
611 搬送ノズル
611a 搬送ノズルの端面
614 搬送スクリュ
特開2012−133349号公報

Claims (14)

  1. トナー搬送装置に装着可能であり、前記トナー搬送装置に供給するトナーが収容された容器本体と、
    前記容器本体の内部に配置され、前記トナーを前記容器本体における長手方向の一端側から容器開口部が設けられた他端側に搬送する搬送部と、
    前記容器開口部に配置され、前記トナー搬送装置に固定された搬送管を受け入れ可能な管受入口と、
    前記搬送部によって搬送された前記トナーを前記容器本体の下方から上方に持ち上げ、前記搬送管のトナー受入口に向けて移動させる汲み上げ部と、を備えるトナー収容容器において、
    前記トナーの、パウダーレオメーターで測定され下記式(1)で表される流動速度指標が、下記式(2)の範囲であり、
    前記容器本体が、前記容器開口部の容器本体内部側から、前記一端側に向かって突出している突出部を有し、
    前記汲み上げ部が、前記容器本体内壁面から前記突出部に向かって伸び、且つ前記容器本体の長手方向軸線から離れるように傾斜した汲み上げ壁面と前記突出部に沿うように湾曲する湾曲部とを有し、
    前記突出部が、前記トナー収容容器が前記トナー搬送装置に装着された際、前記湾曲部と挿入された前記搬送管のトナー受入口との間に存在するように設けられている、
    ことを特徴とするトナー収容容器。
    流動速度指標=(回転速度10mm/sの全体エネルギー)/(回転速度100mm/sの全体エネルギー) ・・・(1)
    1.8≦流動速度指標≦6.5 ・・・(2)
  2. トナー搬送装置に装着可能であり、前記トナー搬送装置に供給するトナーが収容された容器本体と、
    前記容器本体の内部に配置され、前記トナーを前記容器本体における長手方向の一端側から容器開口部が設けられた他端側に搬送する搬送部と、
    前記容器開口部に配置され、前記トナー搬送装置に固定された搬送管を受け入れ可能な管受入口と、
    前記搬送部によって搬送された前記トナーを前記容器本体の下方から上方に持ち上げ、前記搬送管のトナー受入口に向けて移動させる汲み上げ部と、を備えるトナー収容容器において、
    前記トナーの、パウダーレオメーターで測定され下記式(1)で表される流動速度指標が、下記式(2)の範囲であり、
    前記容器本体が、前記容器開口部の容器本体内部側から、前記一端側に向かって突出している突出部を有し、
    前記汲み上げ部が、前記容器本体内壁面から前記突出部に向かって隆起した隆起部があって、隆起し始める前記容器本体内壁面から当該内壁面に対向する反対側の内壁面に向かって、且つ前記容器開口部方向に伸びるように連続して設けられた前記隆起部を有し、
    前記隆起部には前記突出部に沿うように湾曲する湾曲部が設けられており、
    前記突出部が、前記トナー収容容器が前記トナー搬送装置に装着された際、前記湾曲部と挿入された前記搬送管のトナー受入口との間に存在するように設けられている、
    ことを特徴とするトナー収容容器。
    流動速度指標=(回転速度10mm/sの全体エネルギー)/(回転速度100mm/sの全体エネルギー) ・・・(1)
    1.8≦流動速度指標≦6.5 ・・・(2)
  3. トナーの流動速度指標が、下記式(3)の範囲である請求項1から2のいずれかに記載のトナー収容容器。
    2.8≦流動速度指標≦6.5 ・・・(3)
  4. トナーの流動速度指標が、下記式(4)の範囲である請求項1から3のいずれかに記載のトナー収容容器。
    2.8≦流動速度指標≦4.0 ・・・(4)
  5. トナーの、テトラヒドロフラン(THF)を用いてソクスレー抽出法により抽出される成分のゲルパーミエーションクロマトグラフィ(GPC)による分子量分布における重量平均分子量Mwが、5,000以上35,000以下である請求項1から4のいずれかに記載のトナー収容容器。
  6. トナーの、テトラヒドロフラン(THF)を用いてソクスレー抽出法により抽出される成分のゲルパーミエーションクロマトグラフィ(GPC)による分子量分布における重量平均分子量Mwが、8,000以上18,000以下である請求項1から5のいずれかに記載のトナー収容容器。
  7. トナーの、テトラヒドロフラン(THF)を用いてソクスレー抽出法により抽出される成分のゲルパーミエーションクロマトグラフィ(GPC)による分子量分布における重量平均分子量Mwが、14,000以上18,000以下である請求項1から6のいずれかに記載のトナー収容容器。
  8. トナーの、テトラヒドロフラン(THF)を用いたソクスレー抽出法による抽出の不溶分のうち樹脂成分が、前記トナーに対し0.5質量%以上20質量%以下である請求項1から7のいずれかに記載のトナー収容容器。
  9. トナーの、テトラヒドロフラン(THF)を用いたソクスレー抽出法による抽出の不溶分のうち樹脂成分が、前記トナーに対し0.5質量%以上5質量%以下である請求項1から8のいずれかに記載のトナー収容容器。
  10. トナーの結着樹脂が、結晶性ポリエステル樹脂を含む請求項1から9のいずれかに記載のトナー収容容器。
  11. 汲み上げ部を2つ有し、
    トナー収容容器がトナー搬送装置に装着された際、前記2つの汲み上げ部がそれぞれに有する湾曲部と、挿入された搬送管のトナー受入口との間のそれぞれに、突出部が存在する請求項1から10のいずれかに記載のトナー収容容器。
  12. 汲み上げ部と、突出部とが、容器本体に固定されている又は一体的に形成されており、
    前記容器本体が回転することで、前記汲み上げ部が、トナーを下方から上方に持ち上げる請求項1から11のいずれかに記載のトナー収容容器。
  13. 容器開口部を閉鎖する閉鎖位置と、開放する開放位置との間で移動可能なシャッタ部材を有し、
    前記シャッタ部材が、搬送管に押圧されることで前記閉鎖位置から前記開放位置へと移動するとともに、
    前記突出部が、前記シャッタ部材の移動領域に沿って設けられている請求項1から12のいずれかに記載のトナー収容容器。
  14. 請求項1から13のいずれかに記載のトナー収容容器が画像形成装置本体に着脱可能に設置されたことを特徴とする画像形成装置。
JP2014096927A 2013-05-21 2014-05-08 トナー収容容器、及び画像形成装置 Active JP6007941B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014096927A JP6007941B2 (ja) 2013-05-21 2014-05-08 トナー収容容器、及び画像形成装置
US14/282,110 US9152084B2 (en) 2013-05-21 2014-05-20 Toner housing container and image forming apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013107053 2013-05-21
JP2013107053 2013-05-21
JP2014096927A JP6007941B2 (ja) 2013-05-21 2014-05-08 トナー収容容器、及び画像形成装置

Publications (2)

Publication Number Publication Date
JP2015004966A JP2015004966A (ja) 2015-01-08
JP6007941B2 true JP6007941B2 (ja) 2016-10-19

Family

ID=51935467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014096927A Active JP6007941B2 (ja) 2013-05-21 2014-05-08 トナー収容容器、及び画像形成装置

Country Status (2)

Country Link
US (1) US9152084B2 (ja)
JP (1) JP6007941B2 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102002623B1 (ko) * 2012-06-03 2019-07-22 가부시키가이샤 리코 분체 용기 및 화상 형성 장치
JP6007940B2 (ja) * 2013-05-21 2016-10-19 株式会社リコー トナー収容容器、及び画像形成装置
JP6175896B2 (ja) * 2013-05-21 2017-08-09 株式会社リコー 補給現像剤収容容器および画像形成装置
JP6152699B2 (ja) * 2013-05-21 2017-06-28 株式会社リコー トナー収容容器、及び画像形成装置
JP6048346B2 (ja) * 2013-08-29 2016-12-21 コニカミノルタ株式会社 現像剤収容容器
EP3243108A4 (en) 2015-01-05 2017-12-06 Ricoh Company, Ltd. Toner, toner stored unit, and image forming apparatus
JP2017107138A (ja) 2015-01-05 2017-06-15 株式会社リコー トナー、トナー収容ユニット及び画像形成装置
JP6690236B2 (ja) 2015-01-05 2020-04-28 株式会社リコー トナー、トナー収容ユニット及び画像形成装置
US9594331B2 (en) * 2015-02-27 2017-03-14 Ricoh Company, Ltd. Powder container and image forming apparatus incorporating same
JP6515598B2 (ja) * 2015-03-09 2019-05-22 株式会社リコー トナー収容容器、及び画像形成装置
JP6515601B2 (ja) * 2015-03-12 2019-05-22 株式会社リコー トナー収容容器、及び画像形成装置
JP6515604B2 (ja) * 2015-03-13 2019-05-22 株式会社リコー トナー収容容器、及び画像形成装置
JP6515608B2 (ja) * 2015-03-16 2019-05-22 株式会社リコー トナー収容容器、及び画像形成装置
JP6515610B2 (ja) * 2015-03-17 2019-05-22 株式会社リコー トナー収容容器、及び画像形成装置
JP6520471B2 (ja) 2015-06-29 2019-05-29 株式会社リコー トナー、現像剤、現像剤収容ユニット及び画像形成装置
JP7010006B2 (ja) 2018-01-11 2022-01-26 株式会社リコー 画像形成装置、及び画像形成方法
US11163244B2 (en) 2018-05-22 2021-11-02 Hewlett-Packard Development Company, L.P. Print material transfer mechanisms
JP2021043311A (ja) * 2019-09-10 2021-03-18 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. 搬送路に係る制御部材を有する画像形成システム
US11048190B1 (en) * 2020-03-23 2021-06-29 General Plastic Industrial Co., Ltd. Leak-prohibiting device of toner cartridge

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07191539A (ja) * 1993-12-27 1995-07-28 Ricoh Co Ltd 乾式二成分系現像剤におけるトナーの補給方法
US5495323A (en) * 1994-02-28 1996-02-27 Xerox Corporation Clean spiral toner cartridge
JP2000352840A (ja) * 1999-04-07 2000-12-19 Ricoh Co Ltd 電子写真用トナー、該トナーを収納した容器およびトナーの補給方法
US6169864B1 (en) * 1999-07-06 2001-01-02 Xerox Corporation Toner container including a movably mounted sealing member
JP2002357946A (ja) * 2001-05-31 2002-12-13 Canon Inc トナー補給容器、トナー補給装置及び封止部材
JP3691489B2 (ja) * 2003-02-03 2005-09-07 株式会社リコー トナーボトル
JP4393159B2 (ja) * 2003-11-17 2010-01-06 キヤノン株式会社 トナー及び画像形成方法
JP4795215B2 (ja) * 2005-12-08 2011-10-19 株式会社リコー 画像形成装置、それに用いられるキャリア、トナー、現像剤
JP4606368B2 (ja) * 2006-04-05 2011-01-05 株式会社リコー オイルレス定着用一成分現像用トナー、それを用いた画像形成方法、画像形成装置及びプロセスカートリッジ
JP5086739B2 (ja) * 2006-09-15 2012-11-28 株式会社リコー トナー、及びその製造方法、並びに該トナーを用いた現像剤
JP2009003361A (ja) * 2007-06-25 2009-01-08 Fuji Xerox Co Ltd 静電荷像現像用トナー、並びに、これを用いた静電荷像現像用現像剤、静電荷像現像用現像剤カートリッジ、画像形成装置、及びプロセスカートリッジ
US8295742B2 (en) 2008-11-10 2012-10-23 Ricoh Company, Limited Powder container, powder supplying device, and image forming apparatus
TWI596452B (zh) 2009-09-04 2017-08-21 Ricoh Co Ltd Toner container and image forming device
JP5511315B2 (ja) * 2009-10-30 2014-06-04 株式会社リコー 静電荷像現像用トナー、その製造方法、現像剤、画像形成方法及び画像形成装置
MX348142B (es) 2010-03-01 2017-05-30 Ricoh Co Ltd Envase de tóner y aparato formador de imágenes.
TWI516882B (zh) 2010-03-10 2016-01-11 理光股份有限公司 碳粉容器及影像形成裝置
JP5488571B2 (ja) * 2010-12-03 2014-05-14 株式会社リコー 粉体収納容器、粉体補給装置及び画像形成装置
CN106933077B (zh) 2010-12-03 2022-08-23 株式会社理光 粉末容器、粉末供给装置和成像设备
JP5870647B2 (ja) 2011-02-17 2016-03-01 株式会社リコー 粉体収納容器、粉体補給装置及び画像形成装置
JP5879691B2 (ja) * 2011-02-17 2016-03-08 富士ゼロックス株式会社 画像形成装置、及び画像形成方法
JP5656740B2 (ja) * 2011-05-23 2015-01-21 株式会社沖データ 現像剤収容体、画像形成ユニット及び画像形成装置
MX368873B (es) 2011-11-25 2019-10-21 Ricoh Co Ltd Recipiente para polvo y aparato formador de imagen.
US9405221B2 (en) 2012-06-08 2016-08-02 Ricoh Company, Ltd. Powder container and image forming apparatus incorporating same
JP6007940B2 (ja) * 2013-05-21 2016-10-19 株式会社リコー トナー収容容器、及び画像形成装置

Also Published As

Publication number Publication date
US9152084B2 (en) 2015-10-06
JP2015004966A (ja) 2015-01-08
US20140348545A1 (en) 2014-11-27

Similar Documents

Publication Publication Date Title
JP6007941B2 (ja) トナー収容容器、及び画像形成装置
JP5983674B2 (ja) トナー収容容器、及び画像形成装置
JP6149509B2 (ja) トナー収容容器、及び画像形成装置
JP5962701B2 (ja) トナー収容容器、及び画像形成装置
JP2015176068A (ja) 画像形成装置
JP6776564B2 (ja) トナー、現像剤、画像形成装置及びプロセスカートリッジ
KR101910723B1 (ko) 토너용 폴리에스테르 수지, 토너, 현상제 및 화상 형성 장치
JP6515598B2 (ja) トナー収容容器、及び画像形成装置
JP6007940B2 (ja) トナー収容容器、及び画像形成装置
JP6515604B2 (ja) トナー収容容器、及び画像形成装置
JP6152697B2 (ja) トナー収容容器、及び画像形成装置
JP2017227839A (ja) トナー、トナー収容ユニット、画像形成装置、及び画像形成方法
JP6175897B2 (ja) トナー収容容器、及び画像形成装置
JP6443147B2 (ja) トナー収容容器、及び画像形成装置
JP6163872B2 (ja) トナー収容容器、及び画像形成装置
JP7388161B2 (ja) 画像形成装置および画像形成方法
JP6515608B2 (ja) トナー収容容器、及び画像形成装置
JP6515610B2 (ja) トナー収容容器、及び画像形成装置
JP5983533B2 (ja) トナー収容容器、及び画像形成装置
JP6152698B2 (ja) トナー収容容器、及び画像形成装置
JP6248726B2 (ja) トナー収容容器、及び画像形成装置
JP6729020B2 (ja) トナー、トナー収容ユニット、画像形成装置、及び画像形成方法
JP2019164209A (ja) トナー及びその製造方法、現像剤、並びに前記トナーを用いたプロセスカートリッジ、画像形成装置及び画像形成方法
JP2017009982A (ja) トナー、現像剤、画像形成装置及びトナー収容ユニット
JP2021144206A (ja) マゼンタトナー、現像剤、トナー収容ユニット、画像形成装置及び画像形成方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150911

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20150911

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160328

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160719

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160829

R151 Written notification of patent or utility model registration

Ref document number: 6007941

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151