JP5983533B2 - トナー収容容器、及び画像形成装置 - Google Patents

トナー収容容器、及び画像形成装置 Download PDF

Info

Publication number
JP5983533B2
JP5983533B2 JP2013107322A JP2013107322A JP5983533B2 JP 5983533 B2 JP5983533 B2 JP 5983533B2 JP 2013107322 A JP2013107322 A JP 2013107322A JP 2013107322 A JP2013107322 A JP 2013107322A JP 5983533 B2 JP5983533 B2 JP 5983533B2
Authority
JP
Japan
Prior art keywords
toner
container
shutter
acid
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013107322A
Other languages
English (en)
Other versions
JP2014228647A (ja
Inventor
長山 将志
将志 長山
中島 久志
久志 中島
関口 良隆
良隆 関口
沙織 山田
沙織 山田
真梨子 瀧居
真梨子 瀧居
細川 浩
浩 細川
加藤 俊次
俊次 加藤
真二 田牧
真二 田牧
池口 弘
弘 池口
賢治 菊地
賢治 菊地
道治 鈴木
道治 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2013107322A priority Critical patent/JP5983533B2/ja
Publication of JP2014228647A publication Critical patent/JP2014228647A/ja
Application granted granted Critical
Publication of JP5983533B2 publication Critical patent/JP5983533B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Dry Development In Electrophotography (AREA)
  • Developing Agents For Electrophotography (AREA)

Description

本発明は、トナー収容容器、及び画像形成装置に関する。
電子写真方式の画像形成装置は、粉体である現像剤を収納した粉体収納容器であるトナー容器から現像剤であるトナーを粉体搬送装置で現像装置に供給(補給)している。
例えば、回転自在な筒状の粉体収納部材と、紛体収納部材に固定された搬送管受入部材と、搬送管受入部材に設けられた開口部と、トナーを容器本体が回転することで容器内において上方に持ち上げる汲み上げ部と、を有するトナー収容容器が提案されている(例えば、特許文献1参照)。この提案の技術では、容器本体の回転に伴って汲み上げ部によりトナーが持ち上げられ、当該回転中に汲み上げ部よりトナーが落下して搬送管の内部にトナーが供給される。
しかし、汲み上げ部によってトナーを汲み上げて、搬送管の内部に供給する構成を採用する方式の場合、トナーボトル内のトナー残量が少なくなってくると、現像装置へのトナー補給が困難になるという問題がある。
したがって、トナー収容容器内のトナー残量が少なくなっても、現像装置へのトナーの補給が可能なトナー収容容器の提供が求められているのが現状である。
本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、トナー収容容器内のトナー残量が少なくなっても、現像装置へのトナーの補給が可能なトナー収容容器を提供することを目的とする。
前記課題を解決するための手段としては、以下の通りである。即ち、
本願発明のトナー収容容器は、
トナー搬送装置に装着可能であり、前記トナー搬送装置に供給するトナーが収容された容器本体と、
前記容器本体の内部に配置され、前記トナーを前記容器本体における長手方向の一端側から容器開口部が設けられた他端側に搬送する搬送部と、
前記容器開口部に配置され、前記トナー搬送装置に固定された搬送管を受け入れ可能な管受入口と、
前記搬送部によって搬送された前記トナーを前記容器本体の下方から上方に持ち上げ、前記搬送管のトナー受入口に向けて移動させる汲み上げ部と、を備えるトナー収容容器において、
前記トナーが、結着樹脂と外添剤とを含み、
前記外添剤が、シリコーンオイルを含む無機粒子を含有し、
前記容器本体が、前記容器開口部の容器本体内部側から、前記一端側に向かって突出している突出部を有し、
前記汲み上げ部が、前記容器本体内壁面から前記突出部に向かって伸びる汲み上げ壁面と、前記突出部に沿うように湾曲する湾曲部と、を有し、
前記突出部が、前記トナー収容容器が前記トナー搬送装置に装着された際、前記湾曲部と挿入された前記搬送管のトナー受入口との間に存在するように設けられている、
ことを特徴とする。
本発明によると、従来における前記諸問題を解決することができ、トナー収容容器内のトナー残量が少なくなっても、現像装置へのトナーの補給が可能なトナー収容容器を提供することができる。
図1は、本発明の一例のトナー収容容器を装着する前のトナー搬送装置とトナー収容容器の断面説明図である。 図2は、本発明の画像形成装置の一例を示す概略構成図である。 図3は、図2に示す画像形成装置の作像部の一構成を示す模式図である。 図4は、図2に示す画像形成装置におけるトナー補給装置にトナー収容容器が設置された状態を示す模式図である。 図5は、トナー補給装置にトナー収容容器が設置された状態を示す一例の概略斜視図である。 図6は、本発明のトナー収容容器の構成の一例を示す斜視説明図である。 図7は、トナー収容容器を装着する前のトナー搬送装置とトナー収容容器の一例の斜視説明図である。 図8は、トナー収容容器を装着した状態のトナー搬送装置とトナー収容容器の一例の斜視説明図である。 図9は、トナー収容容器を装着した状態のトナー搬送装置とトナー収容容器の一例の断面説明図である。 図10は、先端側のカバーを取り外した状態のトナー収容容器の一例の斜視説明図である。 図11は、容器本体からノズル受入部材を取り外した状態のトナー収容容器の一例の斜視説明図である。 図12は、容器本体からノズル受入部材を取り外した状態のトナー収容容器の一例の断面説明図である。 図13は、図12の状態からノズル受入部材を容器本体に取り付けた状態のトナー収容容器の一例の断面説明図である。 図14は、容器先端側から見たノズル受入部材の一例の斜視説明図である。 図15は、容器後端側から見たノズル受入部材の一例の斜視説明図である。 図16は、図13に示す状態のノズル受入部材の一例の断面図である。 図17は、図13に示す状態のノズル受入部材の一例の断面図である。 図18は、ノズル受入部材の一例の分解斜視図である。 図19(a)は、開閉部材と搬送管の装着動作時の状態を説明する一例の上方から見た平面視図である。図19(b)は、開閉部材と搬送管の装着動作時の状態を説明する一例の上方から見た平面視図である。図19(c)は、開閉部材と搬送管の装着動作時の状態を説明する一例の上方から見た平面視図である。図19(d)は、開閉部材と搬送管の装着動作時の状態を説明する一例の上方から見た平面視図である。 図20(a)は、一の実施形態における容器後端側から見た後端開口部とシャッタ抜け防止爪及び平面ガイド部との関係を示す拡大図である。図20(b)は、一の実施形態における容器後端側から見た後端開口部とシャッタ抜け防止爪及び平面ガイド部との関係を示す拡大図である。 図21は、他の実施形態における開閉部材と搬送管の当接状態を示す拡大断面図である。 図22は、他の実施形態における凝集抑制手段の突出量と画像中の黒ポチの発生の関係を示す予想図である。 図23は、他の実施形態における凝集抑制手段の別な構成を示す拡大図である。 図24は、搬送管の端面の変形例を示す拡大図である。 図25は、他の実施形態における主要部の構成を示す拡大斜視図である。 図26は、他の実施形態における開閉部材と搬送管の当接状態を示す拡大断面図である。 図27は、他の実施形態における開閉部材の端面に設けたシール部材と凝集抑制手段の構成を説明する拡大断面図である。 図28は、他の実施形態におけるシール部材の構成を示す拡大断面図である。 図29は、他の実施形態におけるシール部材の潰れ量を説明する拡大断面図である。 図30は、図9のE−E断面図である。 図31は、本発明のトナー収容容器の構成を示す斜視説明図である。 図32は、本発明のトナー収容容器の構成を示す断面斜視図である。 図33は、本発明のトナー収容容器の構成を示す側面図である。 図34は、本発明のトナー収容容器の構成を示す断面斜視図である。 図35は、本発明のトナー収容容器の構成を示す断面図である。 図36は、本発明のトナー収容容器の他の態様を示す斜視図である。 図37は、本発明のトナー収容容器の他の態様を示す断面図である。 図38(a)は、トナー収容容器にトナーを充填するときの製造工程の一例を説明するための図である。図38(b)は、トナー収容容器にトナーを充填するときの製造工程の一例を説明するための図である。 図39は、トナー収容容器内のトナー残量とトナー補給量との関係を示すグラフである。 図40は、本発明のトナー収容容器に収容されるトナーの状態の一例を示す概念図である。
(トナー収容容器)
本発明の第1のトナー収容容器は、トナーと、容器本体と、搬送部と、管受入口と、汲み上げ部と、を少なくとも備え、更に必要に応じて、その他の部材を備える。
前記トナーは、画像形成に用いられる。前記トナーが、少なくとも結着樹脂と外添剤とを含むトナーであって、前記外添剤が、シリコーンオイル含む無機粒子を含有する。
前記容器本体は、トナー搬送装置に装着可能であり、前記トナー搬送装置に供給する前記トナーを収容する。
前記搬送部は、前記容器本体の内部に配置され、前記トナーを前記容器本体における長手方向の一端側から容器開口部が設けられた他端側に搬送する。
前記管受入口は、前記容器開口部に配置され、前記トナー搬送装置に固定された搬送管を受け入れ可能である。
前記汲み上げ部(トナー移送部ともいう)は、前記搬送部によって搬送された前記トナーを前記容器本体の下方から上方に持ち上げ、前記搬送管のトナー受入口に向けて移動させる。
前記容器本体は、前記容器開口部の容器本体内部側から、前記一端側に向かって突出している突出部を有する。
前記汲み上げ部は、前記容器本体内壁面から前記突出部に向かって伸びる汲み上げ壁面と前記突出部に沿うように湾曲する湾曲部とを有する。
前記突出部は、前記トナー収容容器が前記トナー搬送装置に装着された際、前記湾曲部と挿入された前記搬送管のトナー受入口との間に存在するように設けられている。
前記突出部は、板状の部材であって、前記板状の部材の平らな側面が、前記湾曲部と、挿入された前記トナー搬送管のトナー受入口との間に存在するように設けられていることが好ましい。
そうすることにより、板状の部材の平らな側面は、トナーを受け易く、前記汲み上げ部から前記トナー搬送管へのトナーの受け渡しが円滑に進む。
なお、前記平らな側面は、前記汲み上げ部に対向する前記板状の部材の面と略直交する側面である。
また、前記汲み上げ部は、前記容器本体内壁面から前記突出部に向かって隆起した隆起部を有する。前記隆起部には前記突出部に沿うように湾曲する湾曲部が設けられている。
前記突出部は、前記トナー収容容器が前記トナー搬送装置に装着された際、前記湾曲部と挿入された前記搬送管のトナー受入口との間に存在するように設けられている。
前記トナー収容容器は、前記汲み上げ部を2つ有し、前記トナー収容容器が前記トナー搬送装置に装着された際、前記2つの汲み上げ部がそれぞれに有する湾曲部と、挿入された前記搬送管のトナー受入口との間のそれぞれに、前記突出部が存在することが好ましい。そうすることにより、効率よくトナーの汲み上げが行われ、前記汲み上げ部から前記トナー搬送管へのトナーの受け渡しが円滑に進む。
2つの前記突出部は、前記トナー収容容器における長手方向の中心軸を挟んで対向して配置されていてもよいし、対向して配置されていなくてもよい。
(画像形成装置)
本発明の画像形成装置においては、前記トナー収容容器が画像形成装置本体に着脱可能に設置されている。
以下、本発明の実施形態について図面を用いて説明する。図2は、画像形成装置としての複写機(以下、複写機500という)に適用した、本発明の一実施形態について説明する。
図2は、本実施形態の複写機500の概略構成図である。複写機500は、複写機装置本体(以下、プリンタ部100という)、給紙テーブル(以下、給紙部200という)及びプリンタ部100上に取り付けるスキャナ(以下、スキャナ部400という)から構成されている。
プリンタ部100の上部に設けられたトナー収容容器収納部70には、各色(イエロー、マゼンタ、シアン、ブラック)に対応した四つのトナー収容容器32(Y,M,C,K)が着脱自在(交換自在)に設置されている。トナー収容容器収納部70の下方には中間転写ユニット85が配設されている。
中間転写ユニット85は、中間転写体としての中間転写ベルト48、四つの一次転写バイアスローラ49(Y,M,C,K)、二次転写バックアップローラ82、複数のテンションローラ、及び、不図示の中間転写クリーニング装置等で構成されている。中間転写ベルト48は、複数のローラ部材によって張架、支持されるとともに、この複数のローラ部材の一つである二次転写バックアップローラ82の回転駆動によって図2中の矢印方向に無端移動する。
プリンタ部100には、中間転写ベルト48に対向するように、各色に対応した四つの作像部46(Y,M,C,K)が並設されている。四つのトナー収容容器32(Y,M,C,K)の下方には、それぞれの色のトナー容器に対応した四つのトナー搬送装置としてのトナー補給装置60(Y,M,C,K)が配設されている。そして、トナー収容容器32(Y,M,C,K)に収容された粉体の現像剤であるトナーは、それぞれに対応するトナー補給装置60(Y,M,C,K)によって、各色に対応した作像部46(Y,M,C,K)の現像装置内に供給(補給)される。
図2に示すように、プリンタ部100は、四つの作像部46の下方に潜像形成手段である露光装置47を備えている。露光装置47は、スキャナ部400で読み込んだ原稿画像の画像情報に基づいて、感光体41(Y,M,C,K)の表面を露光走査し、各感光体の表面に静電潜像を形成する。画像情報はスキャナ部400からの読み込みではなく、複写機500に接続されたパーソナルコンピュータ等の外部装置から入力される画像情報であってもよい。
本形態において、露光装置47には、レーザーダイオードを用いたレーザービームスキャナ方式を用いているが、露光手段としてはLEDアレイを用いるものなど他の構成でもよい。
図3は、イエローに対応した作像部46Yの一構成を示す模式図である。
作像部46Yは、像担持体であるドラム状の感光体41Yを備える。作像部46Yは、帯電手段である帯電ローラ44Y、現像手段である現像装置50Y、感光体クリーニング装置42Y、不図示の除電装置等を感光体41Yの周囲に配設した構成である。そして、感光体41Y上で、作像プロセス(帯電工程、露光工程、現像工程、転写工程、クリーニング工程)が行われることで、感光体41Y上にイエローのトナー画像が形成される。
なお、他の三つの作像部46(M,C,K)も、使用されるトナーの色が異なる点以外は、イエローに対応した作像部46Yとほぼ同様の構成となっていて、各感光体41(M,C,K)上にそれぞれの色のトナーに対応したトナー画像が形成される。以下、他の三つの作像部46(M,C,K)の説明を適宜に省略して、イエローに対応した作像部46Yのみの説明を行うことにする。
感光体41Yは、不図示の駆動モータによって図3中の時計回り方向に回転駆動される。感光体41Yは、帯電ローラ44Yと対向する位置で、感光体41Yの表面が一様に帯電される(帯電工程)。その後、感光体41Yの表面は、露光装置47から発せられたレーザ光Lの照射位置に達して、この位置での露光走査によってイエローに対応した静電潜像が形成される(露光工程)。その後、感光体41Yの表面は、現像装置50Yとの対向位置に達して、この位置で静電潜像がイエローのトナーで現像されて、イエローのトナー像が形成される(現像工程)。
中間転写ユニット85の四つの一次転写バイアスローラ49(Y,M,C,K)は、それぞれ、中間転写ベルト48を感光体41(Y,M,C,K)との間に挟み込んで一次転写ニップを形成している。一次転写バイアスローラ49(Y,M,C,K)には、トナーの極性とは逆の転写バイアスが印加される。
現像工程でトナー像が形成された感光体41Yの表面は、中間転写ベルト48を挟んで一次転写バイアスローラ49Yと対向する一次転写ニップに達して、この一次転写ニップで感光体41Y上のトナー像が中間転写ベルト48上に転写される(一次転写工程)。このとき、感光体41Y上には、僅かながら未転写トナーが残存する。一次転写ニップでトナー像を中間転写ベルト48に転写した感光体41Yの表面は、感光体クリーニング装置42Yとの対向位置に達する。感光体41Y上に残存した未転写トナーは、この対向位置で感光体クリーニング装置42Yが備えるクリーニングブレード42aによって機械的に回収される(クリーニング工程)。最後に、感光体41Yの表面は、不図示の除電装置との対向位置に達して、この位置で感光体41Y上の残留電位が除去される。こうして、感光体41Y上で行われる一連の作像プロセスが終了する。
このような作像プロセスは、他の作像部46(M,C,K)でも、イエローの作像部46Yと同様に行われる。即ち、作像部46(M,C,K)の下方に配設された露光装置47から、画像情報に基づいたレーザ光Lが、各作像部46(M,C,K)の感光体41(M,C,K)上に向けて照射される。詳しくは、露光装置47は、光源からレーザ光Lを発して、そのレーザ光Lを回転駆動されたポリゴンミラーで走査しながら、複数の光学素子を介して各感光体41(M,C,K)上に照射する。その後、現像工程を経て各感光体41(M,C,K)上に形成した各色のトナー像を、中間転写ベルト48上に転写する。
このとき、中間転写ベルト48は、図2中の矢印方向に走行して、各一次転写バイアスローラ49(Y,M,C,K)の一次転写ニップを順次通過する。これにより、各感光体41(Y,M,C,K)上の各色のトナー像が、中間転写ベルト48上に重ねて一次転写され、中間転写ベルト48上にカラートナー像が形成される。
各色のトナー像が重ねて転写され、カラートナー像が形成された中間転写ベルト48は、二次転写ローラ89との対向位置に達する。この位置では、二次転写バックアップローラ82が、二次転写ローラ89との間に中間転写ベルト48を挟み込んで二次転写ニップを形成している。そして、中間転写ベルト48上に形成されたカラートナー像は、二次転写ニップの位置に搬送された転写紙等の記録媒体P上に、例えば二次転写バックアップローラ82に印加される転写バイアスの作用によって転写される。このとき、中間転写ベルト48には、記録媒体Pに転写されなかった未転写トナーが残存する。二次転写ニップを通過した中間転写ベルト48は、不図示の中間転写クリーニング装置の位置に達し、その表面上の未転写トナーが回収され、中間転写ベルト48上で行われる一連の転写プロセスが終了する。
次に、記録媒体Pの動きについて説明する。
上述した二次転写ニップに搬送される記録媒体Pは、プリンタ部100の下方に配設された給紙部200に設けられた給紙トレイ26から、給紙ローラ27やレジストローラ対28等を経由して搬送されるものである。詳しくは、給紙トレイ26には記録媒体Pが複数枚重ねて収納されている。そして、給紙ローラ27が図2中、反時計回り方向に回転駆動されると、一番上の記録媒体Pがレジストローラ対28の二つのローラによって形成されるローラニップに向けて搬送される。
レジストローラ対28に搬送された記録媒体Pは、回転駆動を停止したレジストローラ対28のローラニップの位置で一旦停止する。そして、中間転写ベルト48上のカラートナー像が二次転写ニップに到達するタイミングに合わせて、レジストローラ対28が回転駆動されることで、記録媒体Pが二次転写ニップに向けて搬送される。これにより、記録媒体P上に、所望のカラートナー像が転写される。
二次転写ニップでカラートナー像が転写された記録媒体Pは、定着装置86の位置に搬送される。定着装置86では、定着ベルト及び加圧ローラによる熱と圧力とにより、表面に転写されたカラートナー像が記録媒体P上に定着される。定着装置86を通過した記録媒体Pは、排紙ローラ対29のローラ間を経て、装置外へと排出される。排紙ローラ対29によって装置外に排出された記録媒体Pは、出力画像として、スタック部30上に順次スタックされる。こうして、複写機500における一連の画像形成プロセスが完了する。
次に、作像部46における現像装置50の構成及び動作について、更に詳しく説明する。なお、ここではイエローに対応した作像部46Yを例に挙げて説明を行うが、他色の作像部46(M,C,K)においても同様の構成及び動作を行う。
現像装置50Yは、図3に示すように、現像剤担持体としての現像ローラ51Y、現像剤規制板としてのドクタブレード52Y、二つの現像剤搬送スクリュ55Y、及び、トナー濃度検知センサ56Y等で構成されている。現像ローラ51Yは、感光体41Yに対向し、ドクタブレード52Yは、現像ローラ51Yに対向する。二つの現像剤搬送スクリュ55Yは、二つの現像剤収容部(53Y,54Y)内に配設されている。現像ローラ51Yは、内部に固設されたマグネットローラ、及び、マグネットローラの周囲を回転するスリーブ等で構成されている。第一現像剤収容部53Y及び第二現像剤収容部54Y内には、キャリアとトナーとからなる二成分の現像剤Gが収容されている。第二現像剤収容部54Yは、その上方に形成された開口を介してトナー落下搬送経路64Yに連通している。トナー濃度検知センサ56Yは、第二現像剤収容部54Y内の現像剤G中のトナー濃度を検知する。
現像装置50Y内の現像剤Gは、二つの現像剤搬送スクリュ55Yによって、攪拌されながら、第一現像剤収容部53Yと第二現像剤収容部54Yとの間を循環する。第一現像剤収容部53Y内の現像剤Gは、現像剤搬送スクリュ55Yの一方に搬送されながら現像ローラ51Y内のマグネットローラにより形成される磁界によって現像ローラ51Yのスリーブ表面上に供給されて担持される。現像ローラ51Yのスリーブは、図3に矢印で示すように反時計回り方向に回転駆動し、現像ローラ51Y上に担持された現像剤Gは、スリーブの回転にともない現像ローラ51Y上を移動する。このとき、現像剤G中のトナーは、現像剤G中のキャリアとの摩擦帯電によりキャリアとは逆極性の電位に帯電して静電的にキャリアに吸着し、現像ローラ51Y上に形成された磁界によって引き寄せられるキャリアとともに現像ローラ51Y上に担持される。
現像ローラ51Y上に担持された現像剤Gは、図3中の矢印方向に搬送されて、ドクタブレード52Yと現像ローラ51Yとが対向するドクタ部に達する。現像ローラ51Y上の現像剤Gは、ドクタ部を通過する際にその量が規制されて適量化され、その後、感光体41Yとの対向位置である現像領域まで搬送される。現像領域では、現像ローラ51Yと感光体41Yとの間に形成された現像電界によって感光体41Y上に形成された潜像に現像剤G中のトナーが吸着される。現像領域を通過した現像ローラ51Yの表面上に残った現像剤Gは、スリーブの回転に伴い第1現像剤収容部53Yの上方に達して、この位置で現像ローラ51Yから離脱される。
現像装置50Y内の現像剤Gは、トナー濃度が所定の範囲内になるように調整される。詳しくは、現像装置50Y内の現像剤Gに含まれるトナーの現像による消費量に応じて、トナー容器32Yに収容されているトナーが、トナー補給装置60Yを介して第二現像剤収容部54Y内に補給される。第二現像剤収容部54Y内に補給されたトナーは、二つの現像剤搬送スクリュ55Yによって、現像剤Gとともに混合、攪拌されながら、第一現像剤収容部53Yと第二現像剤収容部54Yとの間を循環する。
次に、トナー補給装置60(Y,M,C,K)について説明する。
図4は、トナー補給装置60Yにトナー収容容器32Yが装着された状態を示す模式図であり、図5は、トナー収容容器収容部70に四つのトナー収容容器32(Y,M,C,K)が装着された状態を示す概略斜視図である。
プリンタ部100のトナー収容容器収容部70に装着されたトナー収容容器32(Y,M,C,K)内のトナーは、図4に示すように各色の現像装置50(Y,M,C,K)内のトナー消費に応じて、適宜に各現像装置50(Y,M,C,K)内に補給される。このとき、トナー収容容器32(Y,M,C,K)内のトナーは、トナー色ごとに設けられたトナー補給装置60(Y,M,C,K)によって補給される。なお、四つのトナー補給装置60(Y,M,C,K)やトナー収容容器32(Y,M,C,K)は、作像プロセスに用いられるトナーの色が異なる以外はほぼ同一構造である。このため、以下、イエローに対応したトナー補給装置60Y及びトナー収容容器32Yのみの説明を行い、他の三つの色に対応したトナー補給装置60(M,C,K)及びトナー収容容器32(M,C,K)の説明を適宜に省略する。
トナー補給装置60Y(Y,M,C,K)は、トナー収容容器収容部70、搬送管としての搬送ノズル611(Y,M,C,K)、搬送部材としての搬送スクリュ614(Y,M,C,K)、トナー落下搬送経路64(Y,M,C,K)、容器回転駆動部91(Y,M,C,K)等で構成されている。
説明の便宜のため、トナー収容容器32Yのトナー補給装置60Yへの装着方向を基準にして、後述する容器本体33の容器開口部33a側を容器先端側とし、容器開口部33aの反対側(後述する把手部303側)を容器後端側とする。トナー収容容器32Yが図4中矢印Qの方向へ移動してプリンタ部100のトナー収容容器収容部70に装着されると、その装着動作に連動して、トナー収容容器32Yの容器先端側からトナー補給装置60Yの搬送ノズル611Yが挿入される。これにより、トナー収容容器32Y内と搬送ノズル611Y内とが連通する。この装着動作に連動して連通する構成についての詳細は後述する。
トナー収容容器の形態として、トナー収容容器32Yは、略円筒状のトナーボトルである。そして、トナー収容容器32Yは、主として、トナー収容容器収容部70に非回転で保持される容器先端側カバー34Yと、容器ギア301Yが一体的に形成されたトナー収納部材としての容器本体33Yとから主に構成される。容器本体33Yは、容器先端側カバー34Yに対して回転可能に保持されている。
トナー収容容器収容部70は、図5に示すように、主として、容器カバー受入部73と、容器受部72と、挿入口形成部71とで構成されている。容器カバー受入部73は、トナー収容容器32Yの容器先端側カバー34Yを保持するための部分である。容器受部72は、トナー収容容器32Yの容器本体33Yを支持するための部分である。挿入口形成部71は、容器受部72と、トナー収容容器32Yの装着動作時における挿入口を形成する部分である。複写機500の手前側(図2の紙面垂直方向手前側)に設置された不図示の本体カバーを開放すると、トナー収容容器収容部70の挿入口形成部71が露呈される。そして、各トナー収容容器32(Y,M,C,K)の長手方向を水平方向とした状態で、複写機500の手前側から各トナー収容容器32(Y,M,C,K)の着脱操作(トナー収容容器32の長手方向を着脱方向とする着脱操作)を行う。なお、図4中のセットカバー608Yは、トナー収容容器収容部70の容器カバー受入部73の一部である。
容器受部72は、その長手方向の長さが、容器本体33Yの長手方向の長さとほぼ同等になるように形成されている。容器カバー受入部73は、容器受部72における長手方向(着脱方向)の容器先端側に設けられ、挿入口形成部71は容器受部72における長手方向の一端側に設けられている。図5では四つのトナー収容容器32の直下に容器本体33の軸方向を長手として、挿入口形成部71から容器カバー受入部73まで続く溝がそれぞれ形成されている。この溝に嵌ってすべり移動を可能にするよう、容器先端側カバー34の下部の両側面には一対のスライドガイド361(図7)がある。容器受部72の溝にはその両側面から突き出る一対のスライドレールがある。この一対のスライドレールに上下から挟むように、スライドガイド361は容器本体33の回転軸と平行にスライド溝361aが形成されている。更に容器先端側カバー34は、トナー補給装置60に装着するときに、セットカバー608に設けられた補給装置側ロック部材と係合する容器ロック部339を備える。
そのため、トナー収容容器32Yの装着動作にともない、容器先端側カバー34Yは、挿入口形成部71を通過した後に、しばらく容器受部72上を滑動して、その後に容器カバー受入部73に装着される。
また、容器先端側カバー34には、図6に示すように、トナー収容容器32の使用状況等のデータを記録したIDタグ(IDチップ)700が設けられている。更に、容器先端側カバー34には、収納するトナーの色が異なるトナー収容容器32が他の色のセットカバー608に装着されることを防止する色非互換リブ34bを設けている。スライドガイド361が装着時に容器受部72のスライドレールと係合することで容器先端側カバー34の補給装置60上での姿勢が決まる。そして、容器ロック部339と補給装置側ロック部材609の位置合わせ、及びIDタグ700と本体側のコネクタの位置合わせをスムースに行うことができる。IDタグはトナー容器の情報(収容されているトナーの色、使用された回数等)を記憶する記憶素子が設けられている電子基板であり。本実施例の形態に限定されるものではない。また、IDタグが存在しない構成にしてもよい。
容器先端側カバー34Yが容器カバー受入部73に装着された状態で、図8に示すように駆動モータや駆動ギア等で構成されている容器回転駆動部91Yから容器駆動ギア601Yを介して、容器本体33Yに具備された容器ギア301Y(図10)に回転駆動が入力される。これにより、容器本体33Yが図4中の矢印A方向に回転駆動される。容器本体33Y自体が回転することで、容器本体33Yの内周面に螺旋状に形成された螺旋状突起302Y(回転搬送部)も回転し、容器本体33Yの内部に収容されたトナーが容器本体長手方向に沿って図4中の左側に位置する一端(把手部303側)から右側に位置する他端(容器開口部33a側)へ搬送される。これにより、他端33に設けられた容器先端側カバー34Y側から搬送ノズル611Y内にトナーが供給される。言い換えるなら螺旋状突起302Yが回転することでノズル受入口331Yに挿入された搬送ノズル611Yにトナーが供給される。
搬送ノズル611Y内には、搬送スクリュ614Yが配置されている。搬送スクリュ614Yは、容器回転駆動部91Yから搬送スクリュギア605Yに回転駆動が入力されることで回転し、搬送ノズル611Y内に供給されたトナーを搬送する。搬送ノズル611Yの搬送方向下流端は、トナー落下搬送経路64Yに接続されている。搬送スクリュ614Yによって搬送されたトナーは、トナー落下搬送経路64Yを自重落下して現像装置50Y(第二現像剤収容部54Y)内に補給される。
トナー収容容器32(Y,M,C,K)は、それぞれ、寿命に達したとき(収容するトナーがほとんどすべて消費されて空になったとき)に新品のものに交換される。トナー収容容器32の長手方向における容器先端側カバー34とは反対側の一端には把手部303が設けられており、交換の際には、作業者が把手部303を握って引き出すことで、装着されたトナー収容容器32を取り外すことが出来る。
トナー補給装置60Yでは、搬送スクリュ614Yの回転数によって現像装置50Yへのトナーの供給量を制御している。このため、搬送ノズル611Y内を通過したトナーは、現像装置50Yへの供給量を制御されることなく、トナー落下搬送経路64Yを介して、直接に現像装置50Yへと搬送される。本実施形態のように、搬送ノズル611Yをトナー収容容器32Yに挿入するトナー補給装置60Yであっても、トナーホッパ等のトナー1次貯留部を設けてもよい。
また、本実施形態のトナー補給装置60Yでは、搬送ノズル611Y内に供給されたトナーを搬送スクリュ614Yによって搬送する構成としているが、搬送ノズル611Y内に供給されたトナーを搬送する搬送部材の構成としては、スクリュ部材に限るものではない。例えば周知の粉体ポンプを用いて搬送ノズル611Yの開口部に負圧を発生させる構成など、スクリュ部材以外によって搬送力を付与する構成であってもよい。
次に、本実施形態のトナー収容容器32(Y,M,C,K)及びトナー補給装置60(Y,M,C,K)についてより詳細に説明する。なお、上述したように、トナー収容容器32(Y,M,C,K)及びトナー補給装置60(Y,M,C,K)は、それぞれ使用するトナーの色が異なる他はほぼ同様の構成になっている。よって、以下、トナーの色を示す添字Y,M,C,Kは省略して説明する。
図6は、トナー収容容器32の斜視説明図である。図7は、トナー収容容器32を装着する前のトナー補給装置60と、トナー収容容器32の先端側端部との斜視説明図であり、図8は、トナー収容容器32を装着した状態のトナー補給装置60と、容器先端側のトナー収容容器32の端部との斜視説明図である。
図1は、トナー収容容器32を装着する前のトナー補給装置60と、容器先端側のトナー収容容器32の端部との断面説明図であり、図9は、トナー収容容器32を装着した状態のトナー補給装置60と、容器先端側のトナー収容容器32の端部との断面説明図である。
トナー補給装置60は、内部に搬送スクリュ614を備える搬送ノズル611と、ノズルシャッタ612を備える。ノズルシャッタ612は、トナー収容容器32が装着される前の非装着時(図1及び図7の状態)では、搬送ノズル611に形成されたノズル開口610を閉鎖し、トナー収容容器32が装着された装着時(図8及び図9の状態)にはノズル開口610を開放する。一方、トナー収容容器32の先端面の中央には、装着時に搬送ノズル611が挿入される管挿入口としてのノズル受入口331が形成されており、非装着時にノズル受入口331を閉鎖する開閉部材としての容器シャッタ332を備える。
まず、トナー収容容器32について説明する。
上述したようにトナー収容容器32は、容器本体33と、容器先端側カバー34とから主に構成されている。図10は、図6の状態から容器先端側カバー34を取り外した状態のトナー収容容器32の斜視説明図である。なお、本発明におけるトナー収容容器32は、容器本体33と、容器先端側カバー34とから主に構成されているものに限られない。たとえば、容器先端側カバー34が有するスライドガイド361やIDタグ700などの機能を設けない場合には、図10の容器先端側カバー34がない状態でトナー収容容器として用いてもよい。また、スライドガイド361やIDタグ700などの機能をトナー収容容器に設けることで、容器先端側カバーがないトナー収容容器とすることができる。
図11は、図10の状態から容器本体33から管挿入部材としてのノズル受入部材330を取り外した状態のトナー収容容器32の斜視説明図であり、図12は、容器本体33からノズル受入部材330を取り外した状態のトナー収容容器32の断面説明図である。図13は、図12の状態からノズル受入部材330を容器本体33に取り付けた状態のトナー収容容器32(図10と同様に容器先端側カバー34を取り外した状態のトナー収容容器32)の断面説明図である。
図10、図11に示すように、容器本体33は、略円筒状であり、円筒の中心軸を回転軸として回転する構成となっている。以下、この回転軸に平行な方向を「回転軸方向」と呼び、回転軸方向において、トナー収容容器32におけるノズル受入口331が形成されている側(容器先端側カバー34が配置されている側)を「容器先端側」と呼ぶことにする。また、トナー収容容器32における把手部303が配置されている側(容器先端側とは逆側)を「容器後端側」と呼ぶことにする。なお、上述したトナー収容容器32の長手方向は回転軸方向であり、トナー補給装置60にトナー収容容器32を装着した状態では、回転軸方向は水平方向となる。容器本体33の容器ギア301よりも容器後端側は、容器先端側よりもその外径が大きくなっており、その内周面には螺旋状突起302が形成されている。そして、容器本体33が図中の矢印A方向に回転すると、容器本体33内のトナーは螺旋状突起302の作用によって回転軸方向における一端側(容器後端側)から他端側(容器先端側)に向かう搬送力が付与される。即ち、容器本体の内部に搬送部としての螺旋状突起が配置されている。
容器本体33の容器先端側の内壁には、容器本体33が図10、及び図11中矢印A方向に回転することで螺旋状突起302によって容器先端側に搬送されてきたトナーを、容器本体33の回転によって上方に汲み上げる汲み上げ部304が形成されている。汲み上げ部304は、図13、図32に示すように凸部304hと、汲み上げ壁面304fとからなる。
凸部304hは、螺旋を形成しながら容器本体33の回転中心に向かって山の稜線を成すように容器本体33の内側に隆起した部分(隆起部)である。汲み上げ壁面304fは、凸部304hから容器本体33の周面の内壁にまで繋がる壁面のうち凸部304hを挟んで容器回転方向から見て下流側となる壁面である。
そして、汲み上げ壁面304fが下方にあるときに、螺旋状突起302の搬送力によって汲み上げ部304に対向する内部空間に進入したトナーを、容器本体33の回転に応じて汲み上げ壁面304fが上方に汲み上げる。これにより、挿入された搬送ノズル611よりも上方にトナーを汲み上げることができる。すなわち下方から上方にトナーを持ち上げる。
更に回転が進むと汲み上げ壁面611によって汲み上げられているトナーが重力に従い、汲み上げ壁面上から滑り落ちる、また、そのまま崩れて落下してゆく。
滑り落ちる先には後述する本体側の搬送管である搬送ノズル611が存在するため、搬送管のノズル開口に向けてトナーを移動させることになる。
図30は、図9のE−E断面図である。図30にあるように凸部304hは、容器本体33がブロー成型で形成されることに影響され、なだらかな山状になっている。
図9等では汲み上げ部304を区別する必要上、便宜的に曲線で凸部304hを表している。汲み上げ壁面304fは、図9にあるように格子で表された領域であり、図30にあるように、容器本体33の回転軸を点対象の基準として凸部304hと容器本体33の内周面とをつなぐ一対の斜面から成る。凸部304hは、隆起し始める容器内壁面から当該内壁面に対向する反対側の内壁面に向かって、且つ、開口部方向に伸びるように連続して設けられている。なお、図9などのE−E断面の箇所では、凸部304hで分けられた内壁面のうち容器回転方向上流側の壁面は、図9などのE−E断面の切断方向と壁面の延在方向が概ね一致しているため、図30のような肉厚の状態で表れている。凸部304hもその一見肉厚に見える箇所にある。
汲み上げ壁面304fは、容器開口部33a方向にトナーを搬送させる必要もあるため、図33に示すように、凸部304hから容器開口部33aに向かうにしたがって、容器本体33の長手方向軸線(図33に示す一点鎖線)から離れるように傾斜している。このようにすることによって、汲み上げ壁面がトナーを汲み上げて回転したときに、汲み上げ壁面が、開口部に向かって傾斜する(凸部から開口部への方向が、水平方向よりも下側に傾斜した方向になる。さらに言えば、長手方向軸線に対して容器の径方向外側に向かって傾斜する。)構成となりトナーを容器開口部方向に搬送しやすくなっている。
容器本体33の汲み上げ部304よりも更に容器先端側には、容器ギア301が形成されている。容器先端側カバー34には、容器本体33に取り付けた状態で、この容器ギア301の一部(図6中の奥側)が露出するように、ギア露出開口34aが設けられている。そして、トナー収容容器32をトナー補給装置60に装着することで、ギア露出開口34aから露出した容器ギア301が、トナー補給装置60側の容器駆動ギア601に噛み合う構成となっている。
容器本体33の容器ギア301よりもさらに容器先端側には、円筒状の容器開口部33aが形成されている。そして、この容器開口部33aにノズル受入部材330の受入部材固定部337を圧入することにより、容器本体33に対してノズル受入部材330を固定することが出来る。ノズル受入部材330を固定する方法としては圧入に限らず、接着剤による固定やネジ止めによる固定であっても良い。
トナー収容容器32は、容器本体33に対して容器開口部33aの開口からトナーを充填後、ノズル受入部材330を容器本体33の容器開口部33aに固定する構成となっている。
また、容器本体33の容器開口部33aの容器ギア301側の端部には、カバー爪引掛け部306が形成されている。図10に示す状態のトナー収容容器32(容器本体33)に対して、容器先端側(図10中の左下側)から容器先端側カバー34を取り付ける。これにより、容器本体33が回転軸方向で容器先端側カバー34を貫き、容器先端側カバー34の上部に設けられたカバー爪部341がカバー爪引掛け部306に引っ掛かる。カバー爪引掛け部306は容器開口部33aの外周面を一周するように形成されており、カバー爪部341が引っ掛かることで、容器本体33と容器先端側カバー34とは、相対的に回転可能な取り付けとなる。
また、容器本体33は、二軸延伸ブロー成形法によって成形される。この二軸延伸ブロー成形法は、一般的にはプリフォーム成形工程と延伸ブロー成形工程との二段工程からなる。プリフォーム成形工程では、樹脂を用いて射出成形により試験管状のプリフォームを成形する。このときの射出成形により、試験管状の口部に、容器開口部33a、カバー爪引掛け部306及び容器ギア301を形成する。延伸ブロー成形工程は、プリフォーム成形工程後に冷却され、型から外されたプリフォームを加熱して軟化した後、ブロー成形すると共に延伸する。
容器本体33では、容器ギア301よりも容器後端側が延伸ブロー成形工程によって成形される。すなわち、汲み上げ部304、螺旋状突起302が形成されている部分、及び、把手部303は、延伸ブロー成形工程によって成形される。
容器本体33において、容器ギア301、容器開口部33a及びカバー爪引掛け部306等の容器ギア301から容器先端側の各部は、射出成形されたプリフォームのままの形状であるため、精度良く成形できる。一方、汲み上げ部304、螺旋状突起302が形成されている部分、及び、把手部303は、射出成形された後、延伸ブロー成形工程で延伸して成形されているため、成型の精度はプリフォーム成型部よりは劣る。
次に、容器本体33に固定されるノズル受入部材330について説明する。
図14は、容器先端側から見たノズル受入部材330の斜視説明図であり、図15は、容器後端側から見たノズル受入部材330の斜視説明図である。また、図16は、図13に示す状態のノズル受入部材330を上から見た上断面図であり、図17は、図13に示す状態のノズル受入部材330を横(図13中の奥側)から見た横断面図である。さらに、図18は、ノズル受入部材330の分解斜視図である。
ノズル受入部材330は、支持部材としての容器シャッタ支持部材340と、容器シャッタ332と、封止部材としての容器シール333と、付勢部材としての容器シャッタバネ336と、受入部材固定部337とから構成されている。容器シャッタ支持部材340は、後端部としてのシャッタ後端支持部335、側面部として平板状のシャッタ側面支持部335a(突出部)、側面開口部としてのシャッタ支持開口部335b及び受入部材固定部337からなり、容器シャッタバネ336はコイルスプリングからなる。
容器シャッタ支持部材340に設けられた突出部としてのシャッタ側面支持部335a(突出部)とシャッタ支持開口部335bとは、トナー収容容器回転方向において互いに隣り合って配置され、二つの互いに対向するシャッタ側面支持部335a(突出部)が円筒形状の一部を形成し、シャッタ支持開口部335bの部分(二箇所)で円筒形状を大きく切り取った形状となっている。このような形状により、円筒形状の内側に形成される円柱状の空間S1内(図16)を容器シャッタ332が搬送ノズル611の挿入方向に沿っての移動、言い換えればノズル受入口331を開放する開位置への移動とノズル受入口331を閉じる閉止位置への移動を案内することができる。
すなわち容器本体が、容器開口部の容器本体内部側から、容器後端側に向かって突出している突出部を有している。
容器本体33に固定されるノズル受入部材330は、容器本体33の回転時に容器本体33とともに回転するが、このとき、ノズル受入部材330のシャッタ側面支持部335a(突出部)は、トナー補給装置60側の搬送ノズル611の周りを回転する。このため、回転しているシャッタ側面支持部335a(突出部)とシャッタ支持開口部335bとが搬送ノズル611の上部に形成されたノズル開口610のすぐ上方の空間を交互に通過する。これにより、仮にノズル開口610の上方でトナーが瞬間的に堆積してもその堆積トナーをシャッタ側面支持部335a(突出部)が横切って崩すので、放置時に堆積トナーが凝集してしまい、再起動時にトナーの搬送不良を起こすことを抑制することができる。一方、シャッタ側面支持部335a(突出部)が搬送ノズル611の側方に位置し、ノズル開口610とシャッタ支持開口部335bとが対向するタイミングでは、図9中の矢印βで示すように、トナーはシャッタ支持開口部335bを通過して容器本体33内のトナーが搬送ノズル611内へと供給される。
容器シャッタ332は、閉止部としての先端円筒部332c、滑動部332d、ガイドロッド332e及びシャッタ抜け防止爪332aからなる。先端円筒部332cは、容器シール333の円筒開口(ノズル受入口331)と密着する容器先端側の部分である。滑動部332dは、先端円筒部332cよりも容器後端側に形成され、先端円筒部332cよりは外径が少し大きく、一対のシャッタ側面支持部335a(突出部)の内周面を滑動する円筒状の部分である。
ガイドロッド332eは、先端円筒部332cの円筒内部から容器後端側に向けて起立した棒材であり、容器シャッタバネ336のコイル内部に挿入されることで容器シャッタバネ336が座屈しないように規制するロッド部分である。
ガイドロッド摺動部332gは、円柱状のガイドロッド332eの途中からガイドロッド332eの中心軸を挟んで両側に一対の平面が形成されている。また、ガイドロッド摺動部332bの容器後端側は二股に割れて一対の片持ち梁332fを形成している。
シャッタ抜け防止爪332aは、ガイドロッド332eの起立した根元とは反対側の端部であって片持ち梁332fの端部に備えられ、容器シャッタ支持部材340から容器シャッタ332の脱落を防止する一対の爪部分である。
図16及び図17に示すように、容器シャッタバネ336の先端側端部は先端円筒部332cの内壁面に突き当たり、容器シャッタバネ336の後端側端部はシャッタ後端支持部335の壁面に突き当たる。このとき、容器シャッタバネ336は圧縮した状態であるため、容器シャッタ332はシャッタ後端支持部335から離れる方向(図16及び図17中の右方向、容器先端方向)の付勢力を受ける。しかし、容器シャッタ332の容器後端側の端部に形成されたシャッタ抜け防止爪332aがシャッタ後端支持部335の外壁面に引っ掛かる。これにより、図16及び図17で示す状態よりも容器シャッタ332はシャッタ後端支持部335から離れる方向に移動することを防止している。
このようなシャッタ抜け防止爪332aのシャッタ後端支持部335に対する引っ掛かりと、容器シャッタバネ336の付勢力と、によって位置決めがなされる。詳しくは、容器シャッタ332のトナー漏れ防止機能を発揮する先端円筒部332cと容器シール333との軸方向の容器シャッタ支持部材340に対する位置決めがなされる。両者が密着する関係で位置決めがされ、トナーの漏出を防止することが出来る。
受入部材固定部337は容器後端側ほど外周面及び内周面の直径が段階的に小さくなる筒状である。容器先端側から容器後端側に見て順に直径が小さくなる。その外周面には図17に示すように、二箇所の外径部(容器先端から順に外周面AA,BB)、内周面には五箇所の内径部(容器先端から順に外周面CC,DD,EE,FF,GG)がある。外周面の外周面AAと外周面BBの境界はテーパ面でつながっている。内周面の四番目の内径部FFと五番目の内径部GGの境界も同様にテーパ面で繋がっている。この内周面の内径部FF及びそれに繋がるテーパ面は、後述するシール部材巻き込み防止空間337bに対応し、それらの面の稜線は後述する五角形断面の辺に相当する。
図16〜図18に示すように、受入部材固定部337から容器後端側には互いに対向し、円筒を軸方向に切断した片状の形態である一対のシャッタ側面支持部335a(突出部)が突出している。二つのシャッタ側面支持部335a(突出部)の容器後端側の端部は、底の中央に丸穴が開いたカップ形状のシャッタ後端支持部335に繋がっている。二つのシャッタ側面支持部335a(突出部)には、互いに対向することで、それらの内壁円筒面とその延長の仮想円筒面によって認識できる円柱状の空間S1が形成されている。受入部材固定部337は、円柱状空間S1の直径と同じ大きさの内径になる円筒状の内周面として先端から五番目の内径部GGを有する。この円柱状空間S1および円筒状の内周面GGを容器シャッタ332の滑動部332dは滑動する。受入部材固定部337の3番目の内周面EEは、45[°]分配の等間隔で配置されたノズルシャッタ突き当てリブ337aの長手頂部を通る仮想円周面である。この内周面EEに対応して断面(図16及び図17の断面図における断面)が四角形の円筒状(円管状)の容器シール333が配置される。容器シール333は、三番目の内周面EEから五番目の内周面FFに繋がる垂直面に接着剤または両面テープ等により固定されている。この容器シール333の貼り付けとは反対側(図16及び図17中の右側)の露出した面が円筒状の受入部材固定部337(容器開口部)の円筒状開口の内底をなす。
また、図16及び図17に示すように、受入部材固定部337の内周面FFとそれに繋がるテーパ面に対応して、シール部材巻き込み防止空間337b(挟み込み防止空間)が形成されている。シール部材巻き込み防止空間337bは三つの異なる部材で囲まれたリング状の密閉空間である。すなわち、受入部材固定部337の内周面(四番目の内周面FFとそれに繋がるテーパ面)と、容器シール333の貼付側の垂直面と、容器シャッタ332の先端円筒部332cから滑動部332dまでの外周面とで囲まれたリング状の空間である。そして、このリング状の空間の断面(図16及び図17の断面図における断面)は五角形をしている。受入部材固定部337の内周面と容器シール333の端面とが成す角度、及び容器シャッタ332の外周面と容器シール333の端面とが成す角度は共に90[°]である。
シール部材巻き込み防止空間337bの機能を述べる。容器シャッタ332がノズル受入口331を遮蔽している状態から容器後端方向に移動した場合、容器シール333の内周面は容器シャッタ332の先端円筒部332cと摺動する。このため、容器シール333の内周面は容器シャッタ332に引っ張られ容器後端方向に移動するように弾性変形する。
このとき、シール部材巻き込み防止空間337bが無く、三番目の内周面から繋がる垂直面(容器シール333の貼付面)と五番目の内周面GGとが直交するように繋がっていた場合、次のような状態となるおそれがある。すなわち、容器シール333の弾性変形した部分が、容器シャッタ332と摺動する受入部材固定部337の内周面と容器シャッタ332の外周面との間に挟まれて、巻き込まれた状態となるおそれがある。受入部材固定部337と容器シャッタ332とが摺動する部分、即ち、先端円筒部332cと内周面GGとの間に容器シール333が巻き込まれると、受入部材固定部337に対して容器シャッタ332がロックされ、ノズル受入口331の開閉が行えなくなる。
これに対して、本実施形態のノズル受入部材330は、その内周部にシール部材巻き込み防止空間337bが形成されている。シール部材巻き込み防止空間337bの内径(内周面EEとそれに繋がるテーパ面それぞれの内径)は、容器シール333の外径よりも小さいため、容器シール333全体がシール部材巻き込み防止空間337bに進入してくることはない。また、容器シール333の容器シャッタ332に引っ張られて弾性変形する領域には限度があり、内周面GGに至って巻き込まれる前に容器シール自身の弾性で復元する。この作用により、受入部材固定部337に対して容器シャッタ332がロックされることに起因してノズル受入口331の開閉が行えなくなることを防止できる。
図16〜図18に示すように、受入部材固定部337の内周面であって容器シール333の外周に隣接する箇所には、複数本のノズルシャッタ突き当てリブ337aが放射状に延在するように形成されている。図16及び図17に示すように、受入部材固定部337に容器シール333を固定した状態では、容器シール333の容器先端側の垂直面は、ノズルシャッタ突き当てリブ337aの容器先端側の端部よりも回転軸方向に少しだけ突き出している。
図9に示すように、トナー収容容器32をトナー補給装置60に装着したときには、トナー補給装置60側のノズルシャッタ612のノズルシャッタ鍔部612aが、ノズルシャッタバネ613に付勢されて容器シール333の突き出た分を押し潰す。ノズルシャッタ鍔部612aが更に進入してノズルシャッタ突き当てリブ337aの容器先端側端部に突き当たり、容器シール333の先端側端面を覆って容器外部から遮断する。これにより、装着時のノズル受入口331における搬送ノズル611周りの密閉性を確保し、トナー漏れを防止することができる。
ノズルシャッタバネ613に付勢されるノズルシャッタ鍔部612aのノズルシャッタバネ受け面612fの裏側がノズルシャッタ突き当てリブ337aに突き当たることで、ノズルシャッタ612のトナー収容容器32に対する回転軸方向の位置が決まる。これにより、容器シール333の容器先端側の端面及び先端開口305(後述する容器開口部33aの中に配置されている円筒状の受入部材固定部337の内部空間)の容器先端側の端面と、ノズルシャッタ612との回転軸方向の位置関係が決まる。
次に、容器シャッタ332と搬送ノズル611の動作について図1、図9、図19(a)〜図19(d)を用いて説明する。トナー収容容器32をトナー補給装置60に装着する前においては、図1に示すように、容器シャッタ332はノズル受入口331を閉じる閉止位置に向けて容器シャッタバネ336で付勢されている。このときの容器シャッタ332と搬送ノズル611の外観を図19(a)に示す。そして、トナー収容容器32をトナー補給装置60に装着すると、図19(b)に示すように、搬送ノズル611がノズル受入口331に挿入される。トナー収容容器32をトナー補給装置60にさらに押し込むと、容器シャッタ332の端面となる先端円筒部332cの端面332h(以下、「容器シャッタの端面332h」と称する)と搬送ノズル611の挿入方向に位置する端面611a(以下、「搬送ノズルの端面611a」と称する)とが接触する。この状態からトナー収容容器32をさらに押し込むと、図19(c)に示すように、容器シャッタ332が押し込まれて、図19(d)に示すように、搬送ノズル611がノズル受入口331からシャッタ後端支持部335内に挿入される。このため、図9に示すように、容器本体33内に搬送ノズル611が挿入されてセット位置となる。このとき、図19(d)に示すように、ノズル開口610はシャッタ支持開口部335bに重なる位置にある。
その後、容器本体33が回転すると、汲み上げ部304によって搬送ノズル611よりも上方に汲み上げられたトナーが、ノズル開口610から搬送ノズル611内に落下して導入される。搬送ノズル611内に導入されたトナーは、搬送スクリュ614が回転することで搬送ノズル611内をトナー落下搬送経路64に向かって搬送され、トナー落下搬送経路64から現像装置50へと落下して供給される。
図9などのE−E断面の箇所(搬送ノズル611の先端側であって搬送スクリュ614の軸受の端面の箇所)では、凸部304hとシャッタ側面支持部335a(突出部)とは対向する位置にある。また、汲み上げ壁面304fは、図30のXの方向(及び図34において矢印Xで示す方向)、すなわちシャッタ側面支持部335aに向かって伸びるように容器の内壁面から立ち上がっている。また、凸部304hは、図34において矢印Yで示す方向、すなわちシャッタ側面支持部335aに向かって隆起している。
さらに、シャッタ側面支持部335aと凸部が対向する部分では、凸部304hがシャッタ側面支持部335aの外形に沿うように容器径方向外方に向かって湾曲している(湾曲部304i)。言い換えると、内側から径方向外方に向かってへこんでいる。
この凸部のへこんでいる部分を湾曲部304iとしている。
当該湾曲部304iは凸部304hの他の部分よりもなだらかになっており、シャッタ側面支持部材335aに長手方向でも沿うようになっている。
図32においては、符号Zで示した囲み部の箇所が、図面奥に向かって湾曲しており、この箇所に湾曲部304iが形成されている。
また、同様に、汲み上げ壁面304fもシャッタ側面支持部335aと対向する。そして、容器回転方向下流側から見て、汲み上げ壁面304f、シャッタ側面支持部335a(突出部)の回転方向下流側端面335c(平らな側面)、ノズル開口610の回転方向上流側の横縁部611sがある。突出部としてのシャッタ側面支持部335aは搬送ノズル611が挿入されたときには、搬送ノズル611に沿って伸びている。
先に説明した汲み上げ作用と同様に、図30の容器本体33の汲み上げ壁面304fによって形成された汲み上げ部304によっても、搬送管である搬送ノズル611の開口部であるノズル開口610に向かってトナーが矢印T1のように移動する。
このとき、上記シャッタ側面支持部335a(突出部)の外周面及び回転方向下流側端面335c(平らな側面)は、汲み上げ部304からノズル開口610へのトナーの橋渡しをするトナー橋渡し部として機能する。
図30は、橋渡し手段として機能するシャッタ側面支持部335a(突出部)を備える容器本体33内部のトナーの流れも示している。
容器本体33の図中矢印A方向の回転によって、汲み上げ壁面304fで容器本体の周方向に沿って汲み上げられたトナーは、重力によってノズル開口610の方向に流れていく(図中矢印T1)。図30に示す構成では、搬送ノズル611と凸部304h(汲み上げ壁面304fの回転中心側に突出した凸部)との間にある隙間を塞ぐようにシャッタ側面支持部335a(突出部)が配置されている。そうなるように容器本体33の回転方向下流側からみて、シャッタ側面支持部335a(突出部)の回転方向下流側端面335c(平らな側面)、汲み上げ部304の凸部304hの順に配置されている。
凸部304hの湾曲部304iが存在することにより、凸部304h及び汲み上げ壁面304fをよりシャッタ側面支持部材335aに沿わせるようにすることが可能になっており、シャッタ側面支持部材335aがトナーの汲み上げ壁面からノズル開口への橋渡しに有効に機能するようになる。
このような配置により、汲み上げられたトナーはノズル開口610に効率良く入る。
さらにトナーが、結着樹脂と外添剤とを含み、外添剤が、シリコーンオイルを含む無機粒子を含有すると、トナー収容容器32の交換時に容器本体33に残ってしまうトナー量を減らすことができる。
なお、上記のシャッタ側面支持部335a(突出部)と凸部304hとを密着させるに越したことはない。しかし、凸部304h、汲み上げ壁面304f及び湾曲部304iは製造コスト抑制のため寸法精度が射出成型ほどには出せないブロー成型で形成されることが多い。ブロー成型を採用するとシャッタ側面支持部に完全に密着させることは困難であり、量産性の観点からは少し隙間を開けて構成するのが好ましい。なお、湾曲部と湾曲部に対向するシャッタ側面支持部材との距離は本実施例においては0.3mm〜1mm程度である。
すなわち本実施形態においては、
・本体側ノズルを容器に挿入する構成とすることで、トナー飛散等を抑える構成にする。
・シャッタ側面支持部を、汲み上げ壁面からノズルへのトナー橋渡しとして利用することで、トナーの補給性を向上させる。
という有用な構成を備えている。
しかし、上述したとおり、凸部304h及び汲み上げ壁面304fは、寸法精度が射出成型ほどには出せないブロー成型で形成されることが多いので、シャッタ側面支持部335aに完全に密着させることは困難であり、上記のように構成しても、トナーを十分に搬送ノズルに向けて搬送できないことがある。さらに、トナー搬送の機能を向上させるべく汲み上げ壁面の形状を構成した場合にもトナーを十分に搬送ノズルに向けて搬送できないことがあった。
なお、当該課題はブロー成型で顕著ということであり、ブロー成型ではなくとも、凸部とシャッタ側面支持部材との高度な寸法精度をだすことは困難であることから、本発明の容器本体はブロー成型品に限るものではない。
上記のようにトナーを十分に搬送ノズルに向けて搬送できないのは、以下の要因によるものと発明者らは考えている。
第1の要因としてトナーの流動性が高いとシャッタ側面支持部335aと、隆起部(凸部304h)との間(図35のAで示す部分)からトナーが流れ落ちてしまうことが考えられる。これにより、搬送ノズル611へのトナー供給量が低下すると考えられる。これは、流動性が高いトナーでは顕著であると考えられる。
第2の要因として長手方向で見れば、汲み上げ壁面304fは開口部に向かって傾斜する(容器本体の軸線方向に対して外側に傾斜する)ように設けられており、搬送ノズル611に最も接近している凸部304hから徐々に離れていくように構成されている(図35のBで示す部分)。これは、トナーを汲み上げて、ノズル開口近傍まで搬送するのに有効な構成である。しかし、当該構成を採ると、容器先端側に向かうにつれ、搬送ノズル611と、凸部304hとの間にある隙間は広くなっていく。このため、シャッタ側面支持部335aと汲み上げ壁面304fとの間からトナーが流れ落ちてしまう。これにより、搬送ノズル611へのトナー供給量が低下すると考えられる。これは、流動性が高いトナーでは顕著であると考えられる。
第3の要因として同じく長手方向で見れば、トナーは汲み上げ壁面304fの容器後端側から、先端側(図35のCで示す部分)へ向かってシャッタ側面支持部335a近傍まで移動してゆくが、その間で汲み上げ壁面304fから落下してしまうトナーが存在すると考えられる。汲み上げ壁面304fから落下すると当然、搬送ノズル611まではトナーは搬送されないため、落下したトナー分だけ、搬送ノズル611へのトナー供給量は低下すると考えられる。これも、流動性が高いトナーで顕著な要因のひとつであると考えられる。
第4の要因としてトナーの流動性が低いとそもそも排出が不可能であると考えられる。
上記のような要因が考えられ、それぞれが関連しあうことで容器内から容器外へ排出されるトナー排出性の差異が生じるものと考えられる。
また、トナー排出性能はトナー残量が少なくなってきたときに顕著な課題となる。
トナー残量が多い状態だと、トナー収容容器本体の螺旋状の搬送部の搬送力によって勢いでトナーが排出されるが、トナー残量が少ない状態だと汲み上げ部及び橋渡し手段の構成によってはノズル開口610へトナーを注ぎ込むことができなくなる場合がある。
そこで、結着樹脂と外添剤とを含み、外添剤が、シリコーンオイルを含む無機粒子を含有するトナーを使用すると、第1の要因、第2の要因に対しては、適度な粒子間の凝集力があるため、隙間にはまりにくく多少の隙間があっても乗り越えていくという作用が生じさせると考えられる。これにより、隙間が存在してもトナー剤がノズルに供給される。また、凝集度によっては隙間にはまった場合にも、脱落して通り抜けてしまうことがなく、はまったトナーがその場で凝集体となり隙間を埋める役割を担う作用を生じさせることも考えられる。
第3の要因に対しては、適度な粒子間の凝集力によりトナーがこぼれにくく、汲み上げの効率を向上させるものと考えられる。
第4の要因に関しては、流動性が向上することによりトナーの搬送をスムーズにさせるものと考えられる。
さて、トナー収容容器32が図19(d)に示すセット位置にある場合、容器シャッタの端面332hは、ノズル開口610の領域内で搬送ノズルの端面611aに押圧された状態である。このとき、ノズル開口610だけでなく、搬送ノズルの端面611aと容器シャッタの端面332hが汲み上げ部304の下方に位置している。したがって、搬送ノズル611よりも上方に汲み上げられたトナーは、ノズル開口610だけでなく、容器シャッタの端面332hと搬送ノズルの端面611aとの間にも落下してくる。また、落下したトナーは舞い上がって、容器シャッタ332と容器シャッタ支持部材340との間に付着する可能性がある。
ここで、容器シャッタの端面332hと搬送ノズルの端面611aとが平坦面であったと仮定すると、容器シャッタの端面332hと搬送ノズルの端面611aとの接触が面摺動となり、高負荷になる。また、組み付け誤差や部品のバラツキなどにより理想的に完全な面同士の摺動になることは難しく、微小な隙間が発生する。このため、当該隙間にトナーが入り込み、面摺動にともないトナーを擦るという動作が行われてしまうことがある。
また、トナー容器内を舞ったトナーが、容器シャッタ332と容器シャッタ支持部材340との間に付着した場合を考える。トナー収容容器32がトナー補給装置60に装着された状態では、容器シャッタ332の先端円筒部332cは容器シャッタバネ336によって搬送ノズルの端面611aに押し付けられるため、容器シャッタに制動力が加わっている。その結果、容器本体33に固定され、螺旋状突起302と一体で回転している容器シャッタ支持部材340に対して容器シャッタ332がつれまわりしなくなると考えられる。その場合、容器シャッタ332と容器シャッタ支持部材340の間のトナーが容器シャッタ332によって擦られることが予想される。
そうすると、擦られて負荷がかかったトナーは負荷がかかっていない状態のトナー粒径より大きい凝集体となる可能性がある。この凝集体が、トナー補給装置60を経由して現像装置50に搬送されてしまうと、意図しない黒ポチなどの異常画像が発生する虞がある。この凝集体を形成してしまう現象は、トナーの中でも、特に低い定着温度で画像形成できる低融点トナーの場合に、より発生しやすい。
そこで、本発明は、以下で説明するように、容器本体33の回転に伴うトナーの凝集を抑制する凝集抑制手段を有していることが好ましい。
凝集抑制手段として、容器シャッタ332の先端円筒部332cがその長手方向で容器シャッタバネ336の押圧によって搬送ノズル611に押し付けられ、その押し付けで制動力が生じても容器シャッタ332が容器シャッタ支持部材340とつれまわるようにしてある。この防止作用により、容器シャッタ332と容器シャッタ支持部材340との間でトナーに作用する摺動負荷は低減される。つれまわり(相対的な回転)とは、ガイドロッド332eの軸を中心とした容器シャッタ332の回転を想定している。容器シャッタ332が容器シャッタ支持部材340とつれまわる状態とは、両者が一緒に回転する状態、言い換えれば容器シャッタ332が容器シャッタ支持部材340に対して相対的には回転しない状態を意味する。また、容器シャッタ332と容器シャッタ支持部材340との間とは、滑動部332dの外周面とシャッタ支持開口部335bの内周面との間、及びガイドロッド摺動部332gと後端開口部335dとの間を想定している。
トナーへの摺動負荷は、容器シャッタ332の軸方向の開閉動作よりも軸を中心とした回転動作の方がはるかに大きい。というのも開閉動作はトナー収容容器32の装脱時のみに生じるが、回転動作は補給動作の度に生じるからである。
図20(a)は図17における左側から(容器後端側から)見たときの開閉部材後端支持部中央の貫通孔としての後端開口部335dとシャッタ抜け防止爪332aとの関係を示す平面図である。図20(b)は、図19(c)における後端開口部335dとガイドロッド摺動部332gとの嵌め合い関係を示すガイドロッド摺動部332gの断面図である。
ガイドロッド332eは、円筒部332iとガイドロッド摺動部332gと片持ち梁332fとシャッタ抜け防止爪332aとで構成されている。容器シャッタ332のガイドロッド332eは、図17に示すように、容器後端側が二股に割れて一対の片持ち梁332fを形成している。その各梁の外周面にシャッタ抜け防止爪332aが設けられている。シャッタ抜け防止爪332aは、図17及び図20(a)に示すように、後端開口部335dの長手方向の長さWにおける外縁よりも外側に突出している。後端開口部335dは、片持ち梁332fとガイドロッド摺動部332gが後端開口部335dと摺動しながら容器シャッタ332の移動をガイドする機能を有する。ガイドロッド摺動部332gは、図20(b)に示すように、後端開口部335dの上下辺と対向する平面をなし、左右辺が後端開口部335dにならった曲面を有している。円筒部332iは、図20(a)及び図20(b)における左右方向の幅がガイドロッド摺動部332gと同じである円筒形状をなす。また、図19(a)から図19(d)に示す容器シャッタ332の移動の際に、後端開口部335dが片持ち梁332fとガイドロッド摺動部332gとの移動を妨げない程度の嵌め合い関係を有している。このように、後端開口部335dは、片持ち梁332fとガイドロッド摺動部332gを挿通して容器シャッタ332の移動を案内するとともに容器シャッタ332の回転軸を中心とする回転を規制する。
容器シャッタ支持部材340に容器シャッタ332を組み付けるときは、ガイドロッド332eを容器シャッタバネ336に通し、ガイドロッド332eの一対の片持ち梁332fをガイドロッド332eの軸中心に向かって撓ませて、後端開口部335dに対してシャッタ抜け防止爪332aを通過させる。これにより、図15乃至17に示すようなノズル受入部材330に対するガイドロッド332eの組み付けがなされる。このとき、容器シャッタ332は、容器シャッタバネ336によってノズル受入口331を閉じる方向に加圧されるとともに、シャッタ抜け防止爪332aにより容器シャッタの抜けが防止される。なお、片持ち梁332fが撓める弾性を有すよう、ガイドロッド332eはポリスチレン等の樹脂で成型されていることが好ましい。
そして、トナー収容容器32がセット位置にセットされると、ガイドロッド摺動部332gは後端開口部335dを通過し、図19(d)及び図20(b)に示すように、被駆動伝達部としてのガイドロッド摺動部332gの平面部と、駆動伝達部としての後端開口部335dの開口辺とが対向し、接触する位置となる。このとき、シャッタ側面支持部335a(突出部)の内周面が先端円筒部332cおよび滑動部332dの外周面と対向する。
したがって、容器シャッタの端面332hが容器シャッタバネ336の押圧によって搬送ノズルの端面611aに押し付けられた状態であっても、ガイドロッド摺動部332gの平面部と後端開口部335dの開口辺との面接触により、容器シャッタ332の長手軸(ガイドロッド332eの中心軸であり、容器本体33の回転中心軸でもある)を中心とする回転方向には固定される。結果、回転する容器シャッタ支持部材340から容器シャッタ332のガイドロッド332eへ回転力が伝達される。その回転力は前述の制動力よりも大きいので、容器シャッタ332は容器シャッタ支持部材340の回転に伴って回転する。言い換えれば容器シャッタ332は容器シャッタ支持部材340の回転につれまわる(このとき両者の相対的な回転は規制されている)。すなわち、ガイドロッド摺動部332gと後端開口部335dは、容器シャッタ支持部材340から容器シャッタ332へ回転力が伝達される駆動伝達手段となっている。同時に、前記凝集抑制手段と言える。この凝集抑制手段により、容器シャッタ332と容器シャッタ支持部材340との間におけるガイドロッド332eの軸を中心とした回転方向でのトナーへの摺擦が抑制されるので、容器本体33の回転に伴う容器シャッタ332と容器シャッタ支持部材340との間でのトナー凝集を抑制できる。
なお、上記凝集抑制手段は、ガイドロッド摺動部332gに限られず、片持ち梁332fとしてもよい。この場合、トナー収容容器32がセット位置にあるときに片持ち梁332fが後端開口部335dに位置するように長さ、位置を決定すればよい。
別の凝集抑制手段についてその解決すべき課題から説明する。容器シャッタ332がトナー収容容器32(容器本体33)と一体的に回転する場合、容器シャッタの端面332hは搬送ノズルの端面661aに対して相対的に回転することになる。容器シャッタ332の先端円筒部332cは、その長手方向で容器シャッタバネ336の押圧によって搬送ノズル611に押し付けられている。そのような状態で上記相対的回転をさせると、容器シャッタの端面332hの搬送ノズルの端面661aに対する摺動負荷はすこぶる大きくなり、トナー凝集体発生の原因となる。
そこで、開閉部材であるところの容器シャッタ332の回転によって発生するトナー凝集を抑制する凝集抑制手段であって、上記実施形態とは別の箇所でのトナー凝集体発生の抑制を目的とする第2の凝集抑制手段を提案するものである。以下の凝集抑制手段は、搬送ノズルの端面611aと対向する先端円筒部332cの当接領域でのトナーへの摺動負荷を低減するものである。
容器シャッタの端面332hは、図9、図14に示すように、画像形成装置に前記トナー収容容器が装着された際には、該端面332hから対向する搬送ノズル611の端面611aに向かって(または容器先端から外に向けて)突出し、搬送ノズル611の端面611aに当接する当接部342を有する。当接部342はこの実施形態における凝集抑制手段(第2の凝集抑制手段)となる突出部である。当接部342の外周面は、トナー収容容器32の回転軸と同心の円周面を有し、搬送ノズルの端面611aに向けてその直径が小さくなるような形状(たとえば半球状)であり、図9に示すように、その半球状の頂部と搬送ノズルの端面611aとで点接触するように設けられている。これにより、当接部342が搬送ノズルの端面611aと当接した際の摺動負荷が低い状態で回転することができる。したがって、容器シャッタの端面332hと搬送ノズルの端面611aとが平坦面の場合に比べて接触面積を大幅に削減できるので、容器本体33の回転に伴う容器シャッタの端面332hと搬送ノズルの端面611aとの間でトナーに加えられる摺動負荷を低減でき、トナーの凝集を抑制することができる。
当接部342の材質として、容器シャッタ332と一体成形する場合は容器シャッタ332と同一の材質、例えばポリスチレン樹脂などが挙げられる。容器シャッタ332はトナー収容容器32側に装着された部品であるので、トナー収容容器32と一緒に交換される。このため、搬送ノズルの端面611aに接触して回転する当接部342の材質は、交換を前提にした場合、プリンタ部100に設置して、基本的に交換しない搬送ノズル611(端面611a)の材質よりも柔らかい材質とするのが耐久性の点で好ましい。
また、当接部342は、図9、図14に示すように、トナー収容容器32の回転中心軸上、言い換えれば容器シャッタ332の回転中心軸上になるよう、容器シャッタの端面332hのおおむね中心に配置されている。このような構成により、容器シャッタの端面332hは搬送ノズルの端面661aに対して相対的に回転するときの当接部342先端の回転軌跡は理想的には1点になる。トナー収容容器と画像形成装置という別部品同士の装着ゆえ許容交差内の位置ズレは不可避であり、かつ大量生産によるばらつきも生じるが、それらを考慮しても上記回転軌跡を極小にすることはできる。そうすると、上記同様に容器シャッタの端面332hと搬送ノズルの端面611aとの接触面積の増大を抑制でき、摺動負荷に起因するトナーの凝集を抑制することができる。
次に、当接部342によって形成される容器シャッタの端面332hと搬送ノズルの端面611aの面間の隙間について説明する。図21に示すように、この隙間は当接部342の、容器シャッタの端面332hから先端までの突出量Xによって設定される。
本発明者らは、突出量Xと画像中の黒ポチの発生の関係、すなわち、当接領域の摺動面積と画像中の黒ポチの発生の関係を調べたところ、図22に示す傾向となった。すなわち、本形態において、突出量X(面間の隙間)は1mmに設定している。このため、面間の隙間に入り込んだトナーは摺動による負荷が軽減され、また面外に落下しやすく滞留し難くなるため、凝集体が発生しなくなる。このように、容器シャッタの端面332hと搬送ノズルの端面611aの間の隙間にトナーが入り込んだ場合でも摺動負荷が軽減されるので、トナーへの負荷が軽減される。このため、トナーへの負荷を最小限に抑えて凝集体の生成や異常画像を抑制することができる。
また、図22に示すように、突出量X(面間の隙間)は0.5mm以上あれば問題はなく、概ね0.2mm以下になると出力画像上でも確認し得るレベルの凝集体が発生しやすくなることが予想される。そこで、突出量X(面間の隙間)は、0.5mm〜1mm程度に設定するのが好ましい。
なお、凝集抑制手段は、図21に示すように、当接部342と容器シャッタ332とが一体成形されるものに限られない。例えば、図23に示すように、凝集抑制手段を容器シャッタ332と別体にしてもよい。この場合にも、上記突出量Xを充足するようにすれば、上記と同様の効果が得られる。図23に示す凝集抑制手段は、容器シャッタの端面332hのおおむね中心に樹脂製の球体を転動自在に設けて当接部342Bとした。
このような構成としても、容器シャッタの端面332hと搬送ノズルの端面611aの面間の隙間に入り込んだトナーは摺動による負荷が軽減される。このため、凝集体が発生しなくなる。このように、トナーが容器シャッタの端面332hと搬送ノズルの端面611aの面間の隙間に入り込んだ場合でも摺動負荷が軽減されるので、トナーへの負荷が軽減される。このため、トナーへの負荷を最小限に抑えて凝集体の生成や異常画像を抑制することができる。
また、搬送ノズルの端面611aはフラットな平端面としているが、例えば、図24に示すように、当接部342と対向する搬送ノズルの端面611aの部位611bだけを当接部342側に突出するように端面611aを形成してもよい。
別の凝集抑制手段について説明する。
上記の凝集抑制手段では、凝集抑制手段を容器シャッタの端面332hと搬送ノズルの端面611aの間に配置しているので、トナーの凝集体の生成を抑制することに対しては特に有効であるが、トナー収容容器32をトナー補給装置60から取り外したとき、面間に付着したトナーが画像形成装置内または床に落下して汚すことが想定される。
そこで、本凝集抑制手段では、容器シャッタの端面332hにおける搬送ノズルの端面611aとの非当接領域Rにシール部材350を配置した。このため、容器シャッタの端面332hと搬送ノズルの端面611aとの面間にトナーが滞留することを防止することができる。
シール部材350は発泡ポリウレタン等の弾性部材で構成されている。図25及び図26に示すように、シール部材350は当接部342の外側に位置するように環状に形成されている。シール部材350は、トナー収容容器32内への搬送ノズル611の挿入に伴い容器シャッタ332がノズル受入口331を開放する開位置を占めたときに、シール部材350の厚み方向に0.1mm〜0.5mm圧縮されるように構成されている。具体的には、図27に示すように当接部342の突出量Xを1mmとしたとき、シール部材350の厚みtを1.1mm〜1.5mmとする。そして、シール部材350の対向面350aと搬送ノズルの端面611aとが接触したときに、シール部材350がつぶれることで搬送ノズルの端面611aと当接部342とが当接するように設定する。
このように、シール部材350を配置すると、搬送ノズルの端面611aと当接部342とが当接する前に、図26に示すように、搬送ノズルの端面611aにシール部材350の対向面350aが接触するので、面間にトナーが入りにくくなる。このため、トナー収容容器32をトナー補給装置60から取り外したとき、画像形成装置内または床にトナーが落下して汚すことを抑制することができる。
なお、図29に示すように、シール部材350の潰れ量t1は、0.1mm〜0.5mm程度に設定している。例えば潰れ量を1mm以上にすると、摺動負荷が上昇するため、シール部材350の対向面350aと搬送ノズルの端面611aとの間でトナーの凝集体が発生しや易くなることが観察された。そのため潰れ量t1としては0.5mm以下とするのが望ましい。本形態では潰れ量t1を0.2mmの設定している。このように、シール部材350の圧縮量を最小限にすることにより、トナー収容容器32(容器本体33)の回転負荷を低減することができる。またシール部材350の表面に付着してしまったトナーには僅かながら圧縮作用を受けてしまうが、容器シャッタの端面332hと搬送ノズル611の端面611aという剛体同士に挟まれるわけではなく、柔軟なシール部材350によって搬送ノズル611の端面611aに押し付けられるのでシールの柔軟性が押し付け力を吸収し、トナーへの摺動負荷が小さくなることも見込める。
シール部材350を設けたことによりトナーが面間に入り込むことを抑制することができるので、容器本体33の回転に伴う凝集体の発生もより確実に抑制することができる。
また、図26に示すように、シール部材350の対向面350aは、搬送ノズルの端面611aに圧接された状態で容器シャッタ332と一体で回転する。このため、シール部材350の対向面350aに、図28に示すように、例えば高分子ポリエチレンシート或いはポリエチレンテレフタレート(PET)材で形成されたシート材351を接着することで、搬送ノズルの端面611aに対向する側を低摩擦面として形成してもよい。このように搬送ノズルの端面611aとの対向面350aを低摩擦面とすると、搬送ノズルの端面611aとの摺動でトナーへ与える負荷を軽減することができる。
本発明においては、図31に示すように、突出部を容器シャッタバネによって付勢されているシャッタを支持するシャッタ側面支持部335aとする構成以外でも対応できる。
具体的には、容器開口部を閉鎖する容器シャッタ332を弾性変形する薄膜部材を複数枚(本実施形態では2枚)ずらして重ねることで形成し、重なっている部分が弾性変形によって容器開口部を開放可能に構成する。
当該薄膜部材の重ね合わさっている部分を押し広げて搬送ノズルが容器開口部内に挿入される。
この場合には前述の実施形態における付勢部材によって付勢されるシャッタが存在しない。
しかし、容器開口部から容器後端側に向けて一対の平板状の部材を前述の実施形態のシャッタ側面支持部335aと同様に突出させ、汲み上げ部からノズル開口へのトナーの橋渡しをするトナー橋渡し部として機能させる。
上記以外の構成は他の実施形態と同様である。
このように突出部の形状、構成に関しては、本願の効果が奏することが可能であればいかなる対応もとることが可能である。
さらに、図36及び図37に示すものは、汲み上げ部304にいたる容器本体部分が太くなっている態様のトナー収容容器あって、湾曲部304iが図30ものより大きく形成されているものである。このような構成のものであってもよい。なお、図37においては、紙面奥側に容器開口部33aがある。
次に、図38(a)及び図38(b)にて、トナー収容容器32にトナーを充填するときの製造工程の一例について説明する。
まず、空のトナー収容容器32に対して、把手部303に容器本体33内に通じる穴部33d2(貫通穴)を形成する(加工工程である。)。
その後、穴部33d2から清掃用ノズルを差し込んで、容器本体33内の清掃を行う。
その後、図38(a)を参照して、穴部33d2が形成されたトナー収容容器32を充填機200にセットする。
詳しくは、充填機200の支持部210に把持部303の引掛部としてのくびれ部33d1を係合させて、把持部33dが上方になるようにトナー収容容器32を吊着する。
さらに、トナー収容容器32の穴部33d2に、充填機200のノズル220を差し込んで、充填機200からトナー収容容器32内にトナーを充填する(充填工程である。)。
そして、図38(b)を参照して、トナーの充填が完了した後に、穴部32d2を封止部材としての封止キャップ等で封止する。
これにより、トナーを充填した後のトナー容器32におけるシール性が担保される。
なお、本実施の形態では、把手部303に覆設されるキャップ90を封止部材として用いたが、穴部33d2に差し込まれる栓を封止部材として用いることもできるし、穴部33d2に覆設される発泡ポリウレタン等のシール部材を封止部材として用いることもできる。すなわち、上記実施形態におけるトナー収容容器において、容器本体に開口が設けられ、当該開口を封止部材によって封止されているトナー収容容器ができ上がる。
上述したように、本実施形態では、トナー収容容器32のトナー充填時において、容器本体33からノズル受入部材330を分解することなく、トナー収容容器32へのトナー充填を行うことができることになる。
これにより、製造時の作業性が向上する。
<トナー>
次に、本発明のトナー収容容器に収容されているトナーについて説明する。
(1)前記トナーが、少なくとも結着樹脂と外添剤とを含むトナーであって、前記外添剤が、シリコーンオイルを含む無機粒子を含有する。
(2)前記トナー中の前記シリコーンオイルのクロロホルムによる抽出量が、前記トナーに対し、0.20質量%〜2.00質量%であることが好ましい。
前記トナーが、前記(1)を満たすことにより、トナーに適度な凝集性が付与される。
前記トナーが、前記(1)を満たすことにより、吐き出し性とトナー補給性とを両立することができ、トナー容器内のトナー残量が少なくなっても、トナーの補給が可能なトナー収容容器を提供することができる。
前記トナーが、前記(2)を満たすことにより、補給速度が安定する。この補給速度の安定は、容器本体33内のトナーの量が少なくなった場合でも維持される。
<シリコーンオイルのクロロホルムによる抽出量>
前記トナー中の前記シリコーンオイルのクロロホルムによる抽出量は、前記トナーに対し、0.20質量%〜2.00質量%が好ましい。
ここで、前記トナー中の前記シリコーンオイルのクロロホルムによる抽出量は、前記トナー中に遊離しているシリコーンオイルの総量を意味する。
前記トナー中に遊離しているシリコーンオイルは、前記無機粒子と化学結合していないシリコーンオイルであって、例えば、前記無機粒子の表面の細孔等に物理吸着しているシリコーンオイルも含まれる。
前記トナー中の前記シリコーンオイルのクロロホルムによる抽出量は、具体的には、以下の測定方法で求められる。
<<シリコーンオイルのクロロホルムによる抽出量の測定方法>>
前記トナー中の前記シリコーンオイルのクロロホルムによる抽出量(総シリコーンオイル遊離量)は、以下の(1)〜(3)の手順からなる定量方法によって測定できる。
(1)遊離シリコーンオイルの抽出
試料のトナーをクロロホルムに浸漬、攪拌、放置する。
遠心分離により上澄み液を除去した後の固形分に、新たにクロロホルムを加え、攪拌、放置する。
この操作を繰り返し、試料から遊離シリコーンオイルを取り除く。
(2)炭素量の定量
遊離シリコーンオイルを取り除いた試料中の炭素量の定量をCHN元素分析装置(CHN コーダーMT−5型(ヤナコ製))により測定する。
(3)シリコーンオイル抽出量の定量
シリコーンオイル抽出量を下記の式(1)により求める。
シリコーンオイル抽出量=(C0−C1)/C×100×37/12(質量%)・・・(1)
上記式(1)中のC,C0,C1,係数37/12は以下の値、意味を表す。
C :処理剤シリコーンオイル中炭素含有率(質量%)
C0:抽出操作前の試料中炭素量(質量%)
C1:抽出操作後の試料中炭素量(質量%)
係数37/12:ポリジメチルシロキサンの構造中のC量から全体量への換算係数
以下にポリジメチルシロキサンの構造式を下記一般式(3)に示す。
ただし、前記一般式(3)中、nは整数である。
図40は本発明のトナーの状態の一例を示す概念図である。トナー粒子表面には外添剤としてのシリカ粒子(シリカA、シリカB、シリカC)が外添されており、この各シリカ粒子の表面には遊離していないシリコーンオイル(残存PDMS−ポリジメチルシロキサン)と遊離したシリコーンオイル(遊離PDMS−ポリジメチルシロキサン)とが存在している。
各シリカ粒子におけるPDMSの遊離量を[遊離PDMS(A)量]、[遊離PDMS(B)量]、[遊離PDMS(C)量]と表すと添加シリコーンオイル処理シリカ中総PDMS遊離量及びトナー中総PDMS遊離量は以下の通りとなる。
添加シリコーンオイル処理シリカ中の総PDMS遊離量=遊離PDMS(A)量+遊離PDMS(B)量+遊離PDMS(C)量
トナー中の総PDMS遊離量(%)=〔遊離PDMS(A)量+遊離PDMS(B)量+遊離PDMS(C)量)/トナー量〕×100
遊離シリコーンオイルとはクロロホルムで除去可能なシリコーンオイル部分を指し、この部分は外部との接触、外部からのストレスにより取れる。残存シリコーンオイルはクロロホルムで除去できないシリコーンオイル部分を指し、外部との接触、外部からのストレスでは取れない。
遊離シリコーンオイルは、トナーに適度な凝集性を付与する。
前記トナー中の前記シリコーンオイルのクロロホルムによる抽出量が、前記トナーに対し、0.20質量%未満であると、トナーに適度な凝集性が付与されず、補給性が安定しない。
前記トナー中の前記シリコーンオイルのクロロホルムによる抽出量が、前記トナーに対し、2.00質量%を超えると、遊離シリコーンオイルがキャリアを汚染し、キャリアの帯電性能を低下させる。
<外添剤>
前記外添剤は、シリコーンオイルで処理されてなる無機粒子を少なくとも含有し、更に必要に応じて、その他の外添剤を含有する。
<<シリコーンオイルで処理されてなる無機粒子>>
前記シリコーンオイルで処理されてなる無機粒子は、無機粒子をシリコーンオイルで処理することにより得られる。
−無機粒子−
前記無機粒子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、シリカ、アルミナ、チタニア、チタン酸バリウム、チタン酸マグネシウム、チタン酸カルシウム、チタン酸ストロンチウム、酸化鉄、酸化銅、酸化亜鉛、酸化スズ、ケイ砂、クレー、雲母、ケイ灰石、ケイソウ土、酸化クロム、酸化セリウム、ベンガラ、三酸化アンチモン、酸化マグネシウム、酸化ジルコニウム、硫酸バリウム、炭酸バリウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素などが挙げられる。
これらの中でも、シリカ、チタニア、アルミナが好ましい。
これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
−シリコーンオイル−
前記シリコーンオイルとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ジメチルシリコーンオイル(例えば、ポリジメチルシロキサン(PDMS))、メチルフェニルシリコーンオイル、クロルフェニルシリコーンオイル、メチルハイドロジェンシリコーンオイル、アルキル変性シリコーンオイル、フッ素変性シリコーンオイル、ポリエーテル変性シリコーンオイル、アルコール変性シリコーンオイル、アミノ変性シリコーンオイル、エポキシ変性シリコーンオイル、エポキシ・ポリエーテル変性シリコーンオイル、フェノール変性シリコーンオイル、カルボキシル変性シリコーンオイル、メルカプト変性シリコーンオイル、アクリル・メタクリル変性シリコーンオイル、α−メチルスチレン変性シリコーンオイルなどが挙げられる。
−シリコーンオイルで処理されてなる無機粒子の作製方法−
シリコーンオイルで処理されてなる無機粒子は、例えば、以下の方法により得ることができる。
予め、数百℃のオーブンで充分脱水乾燥した前記無機粒子と、前記シリコーンオイルとを均一に接触させ、前記無機粒子の表面に前記シリコーンオイルを付着させる。
前記無機粒子に前記シリコーンオイルを付着させる方法としては、例えば、前記無機粒子と前記シリコーンオイルとを回転羽根などの混合機により充分粉体のまま混合させる方法、前記シリコーンオイルが希釈できる比較的低沸点の溶剤に前記シリコーンオイルを溶解させ、前記無機粒子をその溶剤中に含浸させ、前記溶剤を除去乾燥させる方法などが挙げられる。前記シリコーンオイルの粘度が高い場合には、溶剤中で処理する方法が好ましい。
その後、前記シリコーンオイルが付着した前記無機粒子を100℃から数百℃のオーブン中で熱処理を施すことにより、前記無機粒子の表面の水酸基を用いて金属と前記シリコーンオイルとのシロキサン結合を形成させたり、シリコーンオイル自身を更に高分子化、架橋させたりすることができる。
前記外添剤を作製する際の、前記無機粒子に対する前記シリコーンオイルの添加量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記無機粒子の表面積あたり2.0mg/m〜10mg/mが好ましい。前記添加量が、2mg/m未満であると、必要なトナー中のシリコーンオイル遊離量が確保できず、必要なクリーニング特性が確保できなくなることがあり、10mg/mを超えると、トナー中のシリコーンオイル遊離量が多くなりすぎ潜像担持体(感光体)や現像部材へのフィルミングにより画像不良が発生することがある。
予め、シリコーンオイル中に酸やアルカリ、金属塩、オクチル酸亜鉛、オクチル酸錫、ジブチル錫ジラウレートなどの触媒を含ませて反応を促進させてもよい。
また、前記無機粒子は、前記シリコーンオイルの処理の前に予めシランカップリング剤などの疎水化剤による処理を行っていてもよい。
予め疎水化されている前記無機粒子の方が前記シリコーンオイルの吸着量は多くなる。
−シリコーンオイルで処理されてなる無機粒子の平均一次粒子径−
前記シリコーンオイルで処理されてなる無機粒子の平均一次粒子径としては、特に制限はなく、目的に応じて適宜選択することができるが、30nm〜150nmが好ましく、30nm〜100nmがより好ましい。前記平均一次粒子径が、150nmを超えると、前記無機粒子の表面積が小さくなり、担持できるシリコーンオイルの全体量も少量になり、前記トナー中のシリコーンオイルのクロロホルムによる抽出量を本発明の好ましい形態で規定する特定の範囲に設定しても、その効果が発揮しにくくなることがある。前記平均一次粒子径が、30nm未満であると、トナーから前記シリコーンオイルが遊離しにくくなり、前記トナー中のシリコーンオイルのクロロホルムによる抽出量を本発明の好ましい形態で規定する特定の範囲に設定してもクリーニングに必要な制止層が形成されにくくなり、その効果が発揮しにくくなることがある。ここで、前記平均一次粒子径は、数平均の粒子径である。
シリコーンオイル処理後の無機粒子の二次凝集を解離することは困難であるため、前記平均一次粒子径は、走査型電子顕微鏡又は透過型電子顕微鏡により得られる写真から直接を求めることが好ましい。
この場合、少なくとも100個以上の無機粒子を観察しその長径の算術平均値を平均一次粒子径とする。
−シリコーンオイルで処理されてなる無機粒子のBET比表面積−
前記シリコーンオイルで処理されてなる無機粒子のBET比表面積としては、特に制限はなく、目的に応じて適宜選択することができるが、10m/g〜50m/gが好ましい。
前記BET比表面積が、10m/g未満であると、担持できる前記シリコーンオイルの全体量も少量になり、前記トナー中のシリコーンオイルのクロロホルムによる抽出量を本発明で規定する特定の範囲に設定しても、その効果が発揮しにくくなることがある。前記BET比表面積が、50m/gを超えると、クリーニングに必要な制止層が形成されにくくなり、効果が発揮しにくくなることがある。
<<その他の外添剤>>
前記その他の外添剤としては、例えば、表面処理を施さない無機粒子、シリコーンオイル以外の処理剤(例えば、疎水化処理剤)により表面処理された無機粒子などが挙げられる。
前記疎水化処理剤としては、特に制限はなく、目的に応じて適宜選択することができるが、シランカップリング剤、シリル化剤、フッ化アルキル基を有するシランカップリング剤、有機チタネート系カップリング剤、アルミニウム系のカップリング剤が好ましい。
前記無機粒子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、シリカ、アルミナ、チタニア、チタン酸バリウム、チタン酸マグネシウム、チタン酸カルシウム、チタン酸ストロンチウム、酸化鉄、酸化銅、酸化亜鉛、酸化スズ、ケイ砂、クレー、雲母、ケイ灰石、ケイソウ土、酸化クロム、酸化セリウム、ベンガラ、三酸化アンチモン、酸化マグネシウム、酸化ジルコニウム、硫酸バリウム、炭酸バリウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素などが挙げられる。
前記その他の外添剤としては、前記シリコーンオイルで処理されてなる無機粒子よりも平均粒子径が小さいものが好適に用いられる。
この小さな無機粒子によってトナー表面の被覆率が上がり、適切な流動性を現像剤に与えることができ、現像時における潜像に対する忠実再現性や現像量を確保することができる。
また、現像剤保存時のトナーの凝集、固化を防止することができる。
前記その他の外添剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記トナーに対して、0.1質量%〜5質量%が好ましい。
本発明に用いられるトナーは結着樹脂として結晶性ポリエステル樹脂及び非結晶性ポリエステル樹脂を用いることができる。
<結晶性ポリエステル樹脂>
結晶性ポリエステル樹脂としては、結晶性を有するポリエステル樹脂である限り、特に制限はなく、目的に応じて適宜従来公知のものを使用することができるが、その分子主鎖中に下記一般式(1)で表されるエステル結合を有することが好ましい。
−[OCO−R−COO−(CH]− ・・・ 一般式(1)
(前記一般式(1)中、Rは炭素数2〜20の直鎖状不飽和脂肪族2価カルボン酸残基を示し、nは2〜20の整数を示す。)
前記結晶性ポリエステル樹脂における前記一般式(1)の構造の存在は、例えば、固体C13NMRにより確認することができる。
前記直鎖状不飽和脂肪族2価カルボン酸残基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、マレイン酸、フマル酸、1,3−n−プロペンジカルボン酸、1,4−n−ブテンジカルボン酸等の直鎖状不飽和2価カルボン酸由来の直鎖状不飽和脂肪族残基が挙げられる。
前記一般式(1)において、(CHは直鎖状脂肪族2価アルコール残基を示す。この場合の直鎖状脂肪族2価アルコール残基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、エチレングリコール、1,3−プロピレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオール等の直鎖状脂肪族2価アルコール由来の残基が挙げられる。
前記結晶性ポリエステル樹脂は、その酸成分として、直鎖状不飽和脂肪族ジカルボン酸を用いることで、芳香族ジカルボン酸を用いた場合よりも結晶構造を形成し易いという利点があり、結晶性ポリエステル樹脂の機能をより効果的に発揮させることができる。
前記結晶性ポリエステル樹脂は、例えば、(I)直鎖状不飽和脂肪族2価カルボン酸又はその反応性誘導体(例えば、酸無水物、炭素数1〜4の低級アルキルエステル、酸ハライド等)からなる多価カルボン酸成分と、(II)直鎖状脂肪族ジオールからなる多価アルコール成分とを、重縮合反応をさせることによって製造することができる。
前記多価カルボン酸成分には、必要に応じ、少量の他の多価カルボン酸を添加してもよく、他の多価カルボン酸としては、例えば、(i)分岐鎖を有する不飽和脂肪族2価カルボン酸、(ii)飽和脂肪族2価カルボン酸、飽和脂肪族3価カルボン酸等の飽和脂肪族多価カルボン酸、(iii)芳香族2価カルボン酸、芳香族3価カルボン酸等の芳香族多価カルボン酸などが挙げられる。
これらの多価カルボン酸の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、全カルボン酸に対して、30モル%以下が好ましく、10モル%以下がより好ましく、得られるポリエステル樹脂が結晶性を有する範囲内で適宜添加される。
必要に応じて添加される多価カルボン酸としては、例えば、マロン酸、コハク酸、グルタル酸、アジピン酸、スベリン酸、セバシン酸、シトラコン酸、フタル酸、イソフタル酸、テレフタル酸等の2価カルボン酸;無水トリメリット酸、1,2,4−ベンゼントリカルボン酸、1,2,5−ベンゼントリカルボン酸、1,2,4−シクロヘキサントリカルボン酸、1,2,4−ナフタレントリカルボン酸、1,2,5−ヘキサントリカルボン酸、1,3−ジカルボキシル−2−メチレンカルボキシプロパン、1,2,7,8−オクタンテトラカルボン酸等の3価以上の多価カルボン酸などが挙げられる。
前記多価アルコール成分には、更に必要に応じて、少量の脂肪族系の分岐鎖2価アルコールや環状2価アルコールの他、3価以上の多価アルコールを添加してもよい。
これらの多価アルコールの含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、全アルコールに対して、30モル%以下が好ましく、10モル%以下がより好ましく、得られるポリエステルが結晶性を有する範囲内で適宜添加される。
必要に応じて添加される多価アルコールとしては、例えば、1,4−ビス(ヒドロキシメチル)シクロヘキサン、ポリエチレングリコール、ビスフェノールAエチレンオキサイド付加物、ビスフェノールAプロピレンオキサイド付加物、グリセリンなどが挙げられる。
前記結晶性ポリエステル樹脂の分子量分布としては、特に制限はなく、目的に応じて適宜選択することができるが、低温定着性の観点からシャープであることが好ましく、また、その分子量が比較的低分子量であることが好ましい。
前記結晶性ポリエステル樹脂の分子量としては、o−ジクロルベンゼン可溶分のGPCによる分子量分布において、重量平均分子量(Mw)が5,500〜6,500、数平均分子量(Mn)が1,300〜1,500であることが好ましく、前記重量平均分子量と前記数平均分子量との比(Mw/Mn)が2〜5であることが好ましい。
前記GPCは、例えば、40℃のヒートチャンバー中でカラムを安定させ、この温度におけるカラムに、溶媒としてo−ジクロルベンゼンを毎分1mLの流速で流し、試料濃度として0.05質量%〜0.6質量%に調整した樹脂のo−ジクロルベンゼン試料溶液を50μL〜200μL注入して測定することができる。なお、分子量測定に当たっては、試料の有する分子量分布を、数種の単分散ポリスチレン標準試料により作成された検量線の対数値とカウント数との関係から算出できる。
前記結晶性ポリエステル樹脂の前記分子量分布は、横軸をlog(M:分子量)とし、縦軸を質量%とする分子量分布図に基づくものである。前記結晶性ポリエステル樹脂の場合、この分子量分布図において、3.5質量%〜4.0質量%の範囲に分子量ピークを有することが好ましく、また、そのピークの半値幅が1.5以下であることが好ましい。
前記結晶性ポリエステル樹脂のガラス転移温度(Tga)及び軟化温度(T1/2a)としては、特に制限はなく、目的に応じて適宜選択することができるが、トナーの耐熱保存性が悪化しない範囲で低いことが好ましい。前記Tgaとしては、80℃〜130℃が好ましく、80℃〜125℃がより好ましい。また、前記T1/2aとしては、80℃〜130℃が好ましく、80℃〜125℃がより好ましい。前記Tga及びT1/2aが前記範囲を超えると、トナーの定着下限温度が高くなり、低温定着性が悪化することがある。
ここで、結着樹脂のガラス転移温度(Tg)は、示差走査熱量計(例えば、DSC−60、株式会社島津製作所製)を用い、10℃/分間で20℃〜150℃まで昇温して測定することにより求めることができる。なお、本発明における吸熱ピーク及びガラス転移温度の測定は一度目の昇温の際の吸熱曲線を用いて導き出す。
また、結着樹脂の軟化温度(T1/2)は、高架式フローテスターCFT−500(株式会社島津製作所製)を用い、ダイス穴径1mm、加圧20kg/cm、昇温速度6℃/分間の条件下で1cmの試料を溶融流出させたときの流出開始点から流出終了点までの1/2に相当する温度により測定される。
本発明においてポリエステル樹脂が結晶性を有するか否かは、粉末X線回折装置によるX線回折パターンにピークが存在するか否かで確認できる。
前記結晶性ポリエステル樹脂は、その回折パターンにおいて、2θが19°〜25°の位置に少なくとも1つの回折ピークが存在することが好ましく、2θが(i)19°〜20°、(ii)21°〜22°、(iii)23°〜25°及び(iv)29°〜31°の位置に回折ピークが存在することがより好ましい。また、溶融混練し、粉砕されたトナーにおいても、2θ=19°〜25°の位置に回折ピークが存在する場合、それは結晶性ポリエステル樹脂が結晶性を維持していることを示しており、結晶性ポリエステル樹脂の機能を確実に発揮させることができるため好ましい。
前記結晶性ポリエステル樹脂のトナー中の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、1質量%〜15質量%が好ましく、1質量%〜10質量%がより好ましい。
<非結晶性樹脂>
前記非結晶性樹脂としては、特に制限はなく、目的に応じて適宜従来公知の材料を用いることができるが、例えば、ポリスチレン、クロロポリスチレン、ポリα−メチルスチレン、スチレン/クロロスチレン共重合体、スチレン/プロピレン共重合体、スチレン/ブタジエン共重合体、スチレン/塩化ビニル共重合体、スチレン/酢酸ビニル共重合体、スチレン/マレイン酸共重合体、スチレン/アクリル酸エステル共重合体(スチレン/アクリル酸メチル共重合体、スチレン/アクリル酸エチル共重合体、スチレン/アクリル酸ブチル共重合体、スチレン/アクリル酸オクチル共重合体、スチレン/アクリル酸フェニル共重合体等)、スチレン/メタクリル酸エステル共重合体(スチレン/メタクリル酸メチル共重合体、スチレン/メタクリル酸エチル共重合体、スチレン/メタクリル酸ブチル共重合体、スチレン/メタクリル酸フェニル共重合体等)、スチレン/α−クロルアクリル酸メチル共重合体、スチレン/アクリロニトリル/アクリル酸エステル共重合体等のスチレン系樹脂(スチレン又はスチレン置換体を含む単独重合体又は共重合体)、塩化ビニル樹脂、スチレン/酢酸ビニル共重合体、ロジン変性マレイン酸樹脂、フェノール樹脂、エポキシ樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、アイオノマー樹脂、ポリウレタン樹脂、シリコーン樹脂、ケトン樹脂、エチレン/エチルアクリレート共重合体、キシレン樹脂、ポリビニルブチラール樹脂等の石油系樹脂、水素添加された石油系樹脂などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
これらの非結晶性樹脂の製造方法としては、特に制限はなく、塊状重合、溶液重合、乳化重合及び懸濁重合のいずれも利用できる。
また、前記非結晶性樹脂としては、低温定着性の観点から、ポリエステル樹脂が好ましく、前記ポリエステル樹脂としては、例えば、アルコールとカルボン酸との縮重合によって通常得られるものも使用可能である。
前記アルコールとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール等のグリコール類、1,4−ビス(ヒドロキシメチル)シクロヘキサン、及びビスフェノールA等のエチル化ビスフェノール類、その他2価のアルコール単量体、3価以上の多価アルコール単量体などが挙げられる。
前記カルボン酸としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、マレイン酸、フマル酸、フタル酸、イソフタル酸、テレフタル酸、コハク酸、マロン酸等の2価の有機酸単量体、1,2,4−ベンゼントリカルボン酸、1,2,5−ベンゼントリカルボン酸、1,2,4−シクロヘキサントリカルボン酸、1,2,4−ナフタレントリカルボン酸、1,2,5−ヘキサントリカルボン酸、1,3−ジカルボキシル−2−メチレンカルボキシプロパン、1,2,7,8−オクタンテトラカルボン酸等の3価以上の多価カルボン酸単量体などが挙げられる。
前記ポリエステル樹脂としては、耐熱保存性の観点から、ガラス転移温度Tgが55℃
以上のものが好ましく、60℃以上のものがより好ましい。
前記非結晶性樹脂は、クロロホルム不溶分を含有することが好ましい。特に、トナー化後に、トナー中のクロロホルム不溶分を1質量%〜30質量%となるようにすると、耐ホットオフセット性を維持しつつ、非結晶性樹脂以外の樹脂の配分も確保できるため好ましい。
前記非結晶性樹脂のクロロホルム不溶分は、以下のように測定される。
前記非結晶性樹脂約1.0gを秤量し、これにクロロホルムを約50g加える。充分に溶解させた溶液を遠心分離で分け、JIS規格(P3801)5種Cの定性濾紙を用いて常温で濾過する。濾紙残渣が不溶分であり、用いた結着樹脂又はトナー質量と濾紙残渣質量の比(質量%)でクロロホルム不溶分の含有量を表す。
前記非結晶性樹脂は、THF可溶分により求められたGPCによる分子量分布が1,000〜10,000の間にメインピークを有し、該分子量分布の半値幅が15,000以下であることが好ましい。このような非結晶性樹脂は、非常に良好な低温定着性を示すため、トナーに処方した際に結晶性ポリエステル樹脂を減量しても充分に低温定着性を補助することができる。本発明者らが検討を重ねた結果、前記結晶性ポリエステル樹脂、前記非結晶性樹脂及び後述する複合樹脂を組み合わせた処方でトナーを製造すると、前記非結晶性樹脂の割合を高めた場合が最もバランスがよく、過剰な結晶性ポリエステル樹脂や過剰なTHF不溶分による副作用や、前記複合樹脂の硬さによる定着下限への悪影響が顕在化せず、それぞれの樹脂の機能が有効に発揮され、低温定着性、耐熱保存性、耐ホットオフセット性が良好になるということを見出した。
前記非結晶性樹脂のトナー中の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、60質量%〜95質量%が好ましく、75質量%〜90質量%がより好ましい。
本発明に用いられるトナーは複合樹脂を用いることができる。
<複合樹脂>
前記複合樹脂は、縮重合系樹脂ユニットと付加重合系樹脂ユニットとを含んでなる。即ち、縮重合系樹脂ユニットと付加重合系樹脂ユニットとが化学的に結合した樹脂(以下では「ハイブリッド樹脂」と称することもある)である。
前記複合樹脂は、原料となる縮重合系モノマー及び付加重合系モノマーを含む混合物を、同一反応容器中で縮重合反応と付加重合反応を同時に並行して行うか、縮重合反応と付加重合反応、又は付加重合反応と縮重合反応を順次行うことによって得ることができる。
前記複合樹脂の原料である縮重合系モノマーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリエステル樹脂ユニットを形成する多価アルコールと多価カルボン酸、ポリアミド樹脂ユニット又はポリエステル−ポリアミド樹脂ユニットを形成する多価カルボン酸とアミン若しくはアミノ酸などが挙げられる。
前記多価アルコールのうち、2価のアルコール成分としては、例えば、1,2−プロパンジオール、1,3−プロパンジオール、エチレングリコール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、ジエチレングリコール、トリエチレングリコール、1,5−ペンタンジオール、1,6−へキサンジオール、ネオペンチルグリコール、2−エチル−1,3−ヘキサンジオール、水素添加ビスフェノールA、ビスフェノールAにエチレンオキシド、プロピレンオキシド等の環状エーテルが重合して得られるジオールなどが挙げられる。
前記多価アルコールのうち、3価以上の多価アルコールとしては、例えば、ソルビトール、1,2,3,6−ヘキサンテトロール、1,4−ソルビタン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、1,2,4−ブタントリオール、1,2,5−ペンタトリオール、グリセロール、2−メチルプロパントリオール、2−メチル−1,2,4−ブタントリオール、トリメチロールエタン、トリメチロールプロパン、1,3,5−トリヒドロキシベンゼンなどが挙げられる。
これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
これらの中でも、結着樹脂に耐熱保存性や機械的強度を付与する点で、水素添加ビスフェノールA又はビスフェノールAにエチレンオキシド、プロピレンオキシド等の環状エーテルが重合して得られるジオールなどのビスフェノールA骨格を有するアルコール成分が、好ましい。
前記多価カルボン酸のうち、2価のカルボン酸成分としては、例えば、フタル酸、イソフタル酸、テレフタル酸等のべンゼンジカルボン酸類又はその無水物;コハク酸、アジピン酸、セバシン酸、アゼライン酸等のアルキルジカルボン酸類又はその無水物;マレイン酸、シトラコン酸、イタコン酸、アルケニルコハク酸、フマル酸、メサコン酸等の不飽和二塩基酸;マレイン酸無水物、シトラコン酸無水物、イタコン酸無水物、アルケニルコハク酸無水物等の不飽和二塩基酸無水物などが挙げられる。
前記多価カルボン酸のうち、3価以上の多価カルボン酸成分としては、例えば、トリメリット酸、ピロメリット酸、1,2,4−ベンゼントリカルボン酸、1,2,5−ベンゼントリカルボン酸、2,5,7−ナフタレントリカルボン酸、1,2,4−ナフタレントリカルボン酸、1,2,4−ブタントリカルボン酸、1,2,5−ヘキサントリカルボン酸、1,3−ジカルボキシ−2−メチル−2−メチレンカルボキシプロパン、テトラ(メチレンカルボキシ)メタン、1,2,7,8−オクタンテトラカルボン酸、エンポール三量体酸、又はこれらの無水物、部分低級アルキルエステルなどが挙げられる。
これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
これらの中でも、結着樹脂の耐熱保存性、機械的強度の観点から、フタル酸、イソフタル酸、テレフタル酸、トリメリット酸等の芳香族多価カルボン酸化合物が好ましい。
前記アミン及び前記アミノ酸としては、例えば、ジアミン(C1)、3価以上のポリアミン(C2)、アミノアルコール(C3)、アミノメルカプタン(C4)、アミノ酸(C5)、C1〜C5のアミノ基をブロックしたもの(C6)などが挙げられる。
前記ジアミン(C1)としては、例えば、芳香族ジアミン(フェニレンジアミン、ジエチルトルエンジアミン、4,4’−ジアミノジフェニルメタン等)、脂環式ジアミン(4,4’−ジアミノ−3,3’−ジメチルジシクロヘキシルメタン、ジアミノシクロヘキサン、イソホロンジアミン等)、脂肪族ジアミン(エチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン等)などが挙げられる。
前記3価以上のポリアミン(C2)としては、例えば、ジエチレントリアミン、トリエチレンテトラミンなどが挙げられる。
前記アミノアルコール(C3)としては、例えば、エタノールアミン、ヒドロキシエチルアニリンなどが挙げられる。
前記アミノメルカプタン(C4)としては、例えば、アミノエチルメルカプタン、アミノプロピルメルカプタンなどが挙げられる。
前記アミノ酸(C5)としては、例えば、アミノプロピオン酸、アミノカプロン酸、ε−カプロラクタムなどが挙げられる。
前記(C1)〜(C5)のアミノ基をブロックしたもの(C6)としては、前記(C1)〜(C5)のアミン類とケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン等)から得られるケチミン化合物、オキサゾリジン化合物などが挙げられる。
前記複合樹脂中における縮重合系モノマー成分のモル比率としては、5モル%〜40モル%が好ましく、10モル%〜25モル%がより好ましい。
前記モル比率が、5モル%未満であると、前記結晶性ポリエステル樹脂との分散性が悪化することがあり、40モル%を超えると、離型剤の分散が悪化することがある。
なお、縮重合反応を行う際には公知のエステル化触媒などを使用してもよい。
前記複合樹脂における付加重合系モノマーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ビニル系モノマーが挙げられる。
前記ビニル系モノマーとしては、例えば、スチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、p−フェニルスチレン、p−エチルスチレン、2,4−ジメチルスチレン、p−n−アミルスチレン、p−tert−ブチルスチレン、p−n−へキシルスチレン、p−n−4−ジクロロスチレン、m−ニトロスチレン、o−ニトロスチレン、p−ニトロスチレン等のスチレン系ビニルモノマー;アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸n−オクチル、アクリル酸2−エチルヘキシル等のアクリル酸系ビニルモノマー;メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸n−オクチル、メタクリル酸n−ドデシル、メタクリル酸2−エチルへキシル、メタクリル酸ステアリル、メタクリル酸フェニル、メタクリル酸ジメチルアミノエチル、メタクリル酸ジエチルアミノエチル等のメタクリル酸系ビニルモノマー;その他のビニルモノマー又は共重合体を形成する他のモノマーなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記その他のビニルモノマー又は共重合体を形成する他のモノマーとしては、例えば、エチレン、プロピレン、ブチレン、イソブチレン等のモノオレフイン類;ブタジエン、イソプレン等のポリエン類;塩化ビニル、塩化ビニリデン、臭化ビニル、フッ化ビニル等のハロゲン化ビニル類;酢酸ビニル、プロピオン酸ビニル、安息香酸ビニル等のビニルエステル類;ビニルメチルエーテル、ビニルエチルエーテル、ビニルイソブチルエーテル等のビニルエーテル類;ビニルメチルケトン、ビニルヘキシルケトン、メチルイソプロペニルケトン等のビニルケトン類;N−ビニルピロール、N−ビニルカルバゾール、N−ビニルインドール、N−ビニルピロリドン等のN−ビニル化合物;ビニルナフタリン類;アクリロニトリル、メタクリロニトリル、アクリルアミド等のアクリル酸若しくはメタクリル酸誘導体;マレイン酸、シトラコン酸、イタコン酸、アルケニルコハク酸、フマル酸、メサコン酸等の不飽和二塩基酸;マレイン酸無水物、シトラコン酸無水物、イタコン酸無水物、アルケニルコハク酸無水物等の不飽和二塩基酸無水物;マレイン酸モノメチルエステル、マレイン酸モノエチルエステル、マレイン酸モノブチルエステル、シトラコン酸モノメチルエステル、シトラコン酸モノエチルエステル、シトラコン酸モノブチルエステル、イタコン酸モノメチルエステル、アルケニルコハク酸モノメチルエステル、フマル酸モノメチルエステル、メサコン酸モノメチルエステル等の不飽和二塩基酸のモノエステル;ジメチルマレイン酸、ジメチルフマル酸等の不飽和二塩基酸エステル;クロトン酸、ケイヒ酸等のα,β−不飽和酸;クロトン酸無水物、ケイヒ酸無水物等のα,β−不飽和酸無水物;該α,β−不飽和酸と低級脂肪酸との無水物、アルケニルマロン酸、アルケニルグルタル酸、アルケニルアジピン酸、これらの酸無水物又はこれらのモノエステル等のカルボキシル基を有するモノマー;2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート、2−ヒドロキシプロピルメタクリレート等のアクリル酸又はメタクリル酸ヒドロキシアルキルエステル類、4−(1−ヒドロキシ−1−メチルブチル)スチレン、4−(1−ヒドロキシ−1−メチルへキシル)スチレン等のヒドロキシ基を有するモノマーなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
これらの中でも、スチレン、アクリル酸、アクリル酸n−ブチル、アクリル酸2−エチルヘキシル、メタクリル酸、メタクリル酸n−ブチル、メタクリル酸2−エチルヘキシルが好適に用いられ、少なくともスチレンとアクリル酸とを含む組合せで用いると、離型剤の分散性が極めて良好である点で特に好ましい。
前記複合樹脂の製造においては、必要に応じて付加重合系モノマーの架橋剤を添加することができる。
前記架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、芳香族ジビニル化合物、アルキル鎖で結ばれたジアクリレート化合物類、エーテル結合を含むアルキル鎖で結ばれたジアクリレート化合物類、ポリエステル型ジアクリレート類などが挙げられる。
前記芳香族ジビニル化合物としては、例えば、ジビニルベンゼン、ジビニルナフタレンなどが挙げられる。
前記アルキル鎖で結ばれたジアクリレート化合物類としては、例えば、エチレングリコールジアクリレート、1,3−ブチレングリコールジアクリレート、1,4−ブタンジオールジアクリレート、1,5−ペンタンジオールジアクリレート、1,6へキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、これらの化合物のアクリレートをメタクリレートに代えたものなどが挙げられる。
前記エーテル結合を含むアルキル鎖で結ばれたジアクリレート化合物類としては、例えば、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ポリエチレングリコール#400ジアクリレート、ポリエチレングリコール#600ジアクリレート、ジプロピレングリコールジアクリレート、これらの化合物のアクリレートをメタクリレートに代えたものなどが挙げられる。
その他、芳香族基及びエーテル結合を含む鎖で結ばれたジアクリレート化合物、ジメタクリレート化合物も挙げられる。
前記ポリエステル型ジアクリレート類としては、例えば、商品名MANDA(日本化薬株式会社製)が挙げられる。
多官能型の架橋剤としては、例えば、ペンタエリスリトールトリアクリレート、トリメチロールエタントリアクリレート、トリメチロールプロパントリアクリレート、テトラメチロールメタンテトラアクリレート、オリゴエステルアクリレート及び以上の化合物のアクリレートをメタクリレートに代えたもの、トリアリルシアヌレート、トリアリルトリメリテートなどが挙げられる。
前記架橋剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、使用される付加重合系モノマー100質量部に対して、0.01質量部〜10質量部が好ましく、0.03質量部〜5質量部がより好ましい。
前記付加重合系モノマーを重合させる際に用いられる重合開始剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)等のアゾ系重合開始剤;メチルエチルケトンパーオキサイド、アセチルアセトンパーオキサイド、2,2−ビス(tert−ブチルパーオキシ)ブタン、tert−ブチルハイドロパーオキサイド、ベンゾイルパーオキサイド、n−ブチル−4,4−ジ−(tert−ブチルパーオキシ)バレレート等の過酸化物系重合開始剤などが挙げられる。
これらは、1種単独で使用してもよく、樹脂の分子量及び分子量分布を調節する目的で2種類以上を併用してもよい。
前記重合開始剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、使用される付加重合系モノマー100質量部に対して、0.01質量部〜15質量部が好ましく、0.1質量部〜10質量部がより好ましい。
前記縮重合系樹脂ユニットと前記付加重合系樹脂ユニットとを化学的に結合するには、例えば、縮重合及び付加重合のいずれでも反応可能なモノマー(両反応性モノマー)を用いることができる。
このような両反応性モノマーとしては、例えば、アクリル酸、メタクリル酸等の不飽和カルボン酸;フマル酸、マレイン酸、シトラコン酸、イタコン酸等の不飽和ジカルボン酸又はその無水物;ヒドロキシ基を有するビニル系モノマーなどが挙げられる。
前記両反応性モノマーの含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、使用される付加重合系モノマー100質量部に対して、1質量部〜25質量部が好ましく、2質量部〜20質量部がより好ましい。
前記複合樹脂は、同一反応容器内であれば、縮重合反応と付加重合反応の両反応の進行及び/又は完了を同時に行う他、それぞれの反応温度、時間を選択して、独立に反応の進行を完了することができる。
例えば、反応容器内の縮重合系モノマーの混合物中に、付加重合系モノマー及び重合開始剤からなる混合物を滴下してあらかじめ混合し、最初にラジカル重合反応により付加重合を完了させ、次いで反応温度を上昇させることにより縮重合を行う方法がある。
このように、反応容器中で独立した二つの反応を進行させることにより、2種の樹脂ユニットを効果的に分散乃至結合させることが可能である。
前記複合樹脂としては、ポリエステル樹脂の縮重合系樹脂ユニットとビニル樹脂の付加重合系樹脂ユニットとを有する複合樹脂であることが好ましく、このユニットの組合せによって複合樹脂の機能をより効果的に発揮させることができる。
前記複合樹脂の軟化温度(T1/2c)としては、特に制限はなく、目的に応じて適宜選択することができるが、90℃〜130℃が好ましく、100℃〜120℃がより好ましい。
前記軟化温度(T1/2c)が、90℃未満であると、耐熱保存性及び耐ホットオフセット性が悪化することがあり、130℃を超えると、低温定着性を悪化させることがある。
また、前記複合樹脂のガラス転移温度(Tgc)は、定着性、保存性及び耐久性の観点から、50℃〜80℃が好ましく、55℃〜70℃がより好ましい。
なお、前記Tgc及び前記T1/2cは、前記Tga及び前記T1/2aと同様にして測定することができる。
前記複合樹脂の酸価としては、特に制限はなく、目的に応じて適宜選択することができるが、帯電性及び環境安定性の観点から、5mgKOH/g〜80mgKOH/gが好ましく、15mgKOH/g〜40mgKOH/gがより好ましい。なお、前記酸価は、JIS K−0070に準ずる方法で求めることができる。
前記複合樹脂のトナー中の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、3質量%〜20質量%が好ましい。
<着色剤>
前記着色剤としては、特に制限はなく、目的に応じて従来公知の染顔料から適宜選択することができ、例えば、カーボンブラック、ランプブラック、鉄黒、アニリンブルー、フタロシアニンブルー、フタロシアニングリーン、ハンザイエローG、ローダミン6Cレーキ、カルコオイルブルー、クロムイエロー、キナクリドン、ベンジジンイエロー、ローズベンガル、トリアリルメタン系染料等の染顔料などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
本発明のトナーは、前記着色剤を用いることにより、ブラックトナーとしてもフルカラートナーとしても使用できる。
前記着色剤の中でも、カーボンブラックは、特に良好な黒色着色力を有するが、同時に、良好な導電性材料でもあるため、含有量が多かったり、トナー中に凝集した状態で存在したりすると電気抵抗が低下し、転写工程において転写不良を招く原因になる。特に、前記結晶性ポリエステル樹脂と併用した場合、カーボンブラックの粒子が前記結晶性ポリエステル樹脂のドメイン中に入り込めないため、結晶性ポリエステル樹脂が大きな分散径をもってトナー中に存在した場合、結晶性ポリエステル樹脂以外の樹脂中に比較的濃度の高い状態で存在することになる。そのため、凝集体のままトナー中に閉じ込められやすくなり、抵抗が過剰に低下しやすくなる。
前記複合樹脂も併用する場合、カーボンブラックの分散が良好となり、上記のリスクを軽減することができる。また、カーボンブラックを含有すると、記録媒体へトナーを定着する際に、溶融したトナーの粘性を高くすることができるため、非結晶性樹脂を多く処方した場合に、粘性低下に起因して発生するホットオフセットを抑制できるという効果も付与することができる。
前記着色剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、トナーの樹脂成分に対して、1質量%〜30質量%が好ましく、3質量%〜20質量%がより好ましい。
<その他の成分>
本発明のトナーは、必要に応じて帯電制御剤、脂肪酸アミド化合物、離型剤等のその他の成分を配合することができる。
<<帯電制御剤>>
前記帯電制御剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ニグロシン及び脂肪酸金属塩等による変性物、ホスホニウム塩等のオニウム塩及びこれらのレーキ顔料、トリフェニルメタン染料及びこれらのレーキ顔料、高級脂肪酸の金属塩;ジブチルスズオキサイド、ジオクチルスズオキサイド、ジシクロヘキシルスズオキサイドなどのジオルガノスズオキサイド;ジブチルスズボレート、ジオクチルスズボレート、ジシクロヘキシルスズボレート等のジオルガノスズボレート類、有機金属錯体、キレート化合物、モノアゾ金属錯体、アセチルアセトン金属錯体、芳香族ハイドロキシカルボン酸、芳香族ダイカルボン酸系の金属錯体、第四級アンモニウム塩、サリチル酸金属化合物などが挙げられる。他にも、芳香族ハイドロキシカルボン酸、芳香族モノ又はポリカルボン酸及びその金属塩、無水物、エステル類、ビスフェノール等のフェノール誘導体類等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記帯電制御剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、トナー樹脂成分100質量部に対し、0.1質量部〜10質量部が好ましく、1質量部〜5質量部がより好ましい。
これら帯電制御剤の中でも、サリチル酸金属化合物を含有させると、同時に耐ホットオフセット性を改良できる点で好ましい。特に、6配位の構成を取りうる3価以上の金属を有する錯体は、結着樹脂とワックスの反応性が高い部分と反応し、軽度の架橋構造を作るため、耐ホットオフセットへの効果が大きい。また、前記複合樹脂と併用することで分散性が向上し、帯電極性制御の機能をより有効に発揮させることができる。
ここで、3価以上の金属としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、Al、Fe、Cr、Zrなどが挙げられる。
また、サリチル酸金属化合物としては、例えば、下記一般式(2)で表される化合物を用いることができ、Mが亜鉛である金属錯体としてボントロンE−84(オリエント化学工業株式会社製)が挙げられる。
〔一般式(2)〕
(前記一般式(2)中、R、R及びRはそれぞれ独立して水素原子、直鎖又は分枝鎖状の炭素数1〜10のアルキル基又は炭素数2〜10のアルケニル基を表し、Mはクロム、亜鉛、カルシウム、ジルコニウム又はアルミニウムを表し、mは2以上の整数を表し、nは1以上の整数を表す)
<<脂肪酸アミド化合物>>
本発明のトナーは、脂肪酸アミド化合物を含有することが好ましい。
トナー製造時に溶融混練工程を含む粉砕トナーに対し、結晶性ポリエステル樹脂と共に脂肪酸アミド化合物を配合すると、混練時に溶融していた結晶性ポリエステル樹脂が冷却される際の混練物中での再結晶が促進されるため、結着樹脂との相溶が少なくなり、トナーのガラス転移温度の低下を抑えることができるため、耐熱保存性を改善することができる。
また、後述する離型剤と併用した場合には、離型剤を定着画像表面に留めることが可能となるため、擦れに対して強く(耐スミア性の向上)することができる。
トナーにおける前記脂肪酸アミド化合物の含有量としては、0.5質量%〜10質量%が好ましい。
前記脂肪酸アミド化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、下記一般式(I)又は下記一般式(II)で表される化合物などが挙げられる。
−CO−NR ・・・一般式(I)
(前記一般式(I)中、Rは、炭素数10〜30の脂肪族炭化水素基を表し、R及びRは、各々独立して水素原子、炭素数1〜10のアルキル基、炭素数6〜10のアリール基、又は炭素数7〜10のアラルキル基を表す。)
(前記一般式(II)中、R及びR3は炭素数5〜21のアルキル基又はアルケニル基を表し、Rは炭素数1〜20のアルキレン基を表す。)
これらの中でも、前記一般式(II)で表されるアルキレンビス脂肪酸アミドが特に好ましい。
ここで、前記一般式(I)における前記R及び前記Rのアルキル基、アリール基、アラルキル基は、フッ素原子、塩素原子、シアノ基、アルコキシ基、アルキルチオ基等の通常不活性な置換基で置換されていてもよいが、無置換のものが好ましい。
前記一般式(I)で表される化合物としては、例えば、ステアリン酸アミド、ステアリン酸メチルアミド、ステアリン酸ジエチルアミド、ステアリン酸ベンジルアミド、ステアリン酸フェニルアミド、ベヘン酸アミド、ベヘン酸ジメチルアミド、ミリスチン酸アミド、パルミチン酸アミドなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記一般式(II)で示されるアルキレンビス飽和脂肪酸アミドとしては、例えば、メチレンビスステアリン酸アミド、エチレンビスステアリン酸アミド、メチレンビスパルミチン酸アミド、エチレンビスパルミチン酸アミド、メチレンビスベヘン酸アミド、エチレンビスベヘン酸アミド、ヘキサメチレンビスステアリン酸アミド、ヘキサエチレンビスパルミチン酸アミド、ヘキサメチレンビスベヘン酸アミドなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、エチレンビスステアリン酸アミドが特に好ましい。
前記の他に使用できるアルキレンビス脂肪酸アミド系の化合物として、具体的には、プロピレンビスステアリン酸アミド、ブチレンビスステアリン酸アミド、メチレンビスオレイン酸アミド、エチレンビスオレイン酸アミド、プロピレンビスオレイン酸アミド、ブチレンビスオレイン酸アミド、メチレンビスラウリン酸アミド、エチレンビスラウリン酸アミド、プロピレンビスラウリン酸アミド、ブチレンビスラウリン酸アミド、メチレンビスミリスチン酸アミド、エチレンビスミリスチン酸アミド、プロピレンビスミリスチン酸アミド、ブチレンビスミリスチン酸アミド、プロピレンビスパルミチン酸アミド、ブチレンビスパルミチン酸アミド、メチレンビスパルミトレイン酸アミド、エチレンビスパルミトレイン酸アミド、プロピレンビスパルミトレイン酸アミド、ブチレンビスパルミトレイン酸アミド、メチレンビスアラキジン酸アミド、エチレンビスアラキジン酸アミド、プロピレンビスアラキジン酸アミド、ブチレンビスアラキジン酸アミド、メチレンビスエイコセン酸アミド、エチレンビスエイコセン酸アミド、プロピレンビスエイコセン酸アミド、ブチレンビスエイコセン酸アミド、メチレンビスベヘニン酸アミド、エチレンビスベヘニン酸アミド、プロピレンビスベヘニン酸アミド、ブチレンビスベヘニン酸アミド、メチレンビスエルカ酸アミド、エチレンビスエルカ酸アミド、プロピレンビスエルカ酸アミド、ブチレンビスエルカ酸アミド等の、飽和又は1〜2価の不飽和の脂肪酸のアルキレンビス脂肪酸アミド系の化合物などが挙げられる。
なお、これらの脂肪酸アミド化合物は、軟化温度(T1/2)が定着時の定着部材表面の温度より低いと、定着部材表面で離型剤としての効果も果たすことができる。
<<離型剤>>
前記離型剤としては、特に制限はなく、目的に応じて従来公知のものから適宜選択することができ、例えば、低分子量ポリエチレン、低分子量ポリプロピレン等の低分子量ポリオレフィンワックス;フィッシャー・トロプシュワックス等の合成炭化水素系ワックス;蜜ロウ、カルナウバワックス、キャンデリラワックス、ライスワックス、モンタンワックス等の天然ワックス類;パラフィンワックス、マイクロクリスタリンワックス等の石油ワックス類;ステアリン酸、パルミチン酸、ミリスチン酸等の高級脂肪酸、その金属塩及びアミド;合成エステルワックス;並びにこれらの各種変性ワックスなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
これらの中でも、カルナウバワックス及びその変性ワックス、ポリエチレンワックス、合成エステル系ワックスが好ましく、ポリエステル樹脂やポリオール樹脂に対して適度に微分散し、耐ホットオフセット性、転写性及び耐久性ともに優れたトナーとすることが容易な点で、カルナウバワックスが特に好ましい。また、脂肪酸アミド化合物と併用した場合、定着画像表面に留まる効果が非常に強くなり、耐スミア性が更に向上する。
前記離型剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、トナーに対して、2質量%〜15質量%が好ましい。前記含有量が、2質量%未満であると、ホットオフセット防止効果が不充分となることがあり、15質量%を超えると、転写性及び耐久性が低下することがある。
前記離型剤の融点としては、特に制限はなく、目的に応じて適宜選択することができるが、70℃〜150℃が好ましい。前記融点が、70℃未満であると、トナーの耐熱保存性が低下することがあり、150℃を超えると、離型性が充分に果たせないことがある。
なお、前記融点は、例えば、示差走査熱量計(DSC−60、株式会社島津製作所製)を用いて測定することができる。
<トナーの粒径>
本発明のトナーの粒径については、特に制限はなく、目的に応じて適宜選択することができるが、細線再現性等に優れた高画質を得る観点から、体積平均粒径が4μm〜10μmであることが好ましい。前記体積平均粒径が、4μm未満であると、現像工程におけるクリーニング性、転写工程における転写効率に支障をきたし、画像品質が低下することがある。前記体積平均粒径が、10μmを超えると、画像の細線再現性が低下することがある。
ここで、トナーの体積平均粒径の測定は、種々の方法によって測定可能であるが、例えば、米国コールター・エレクトロニクス社製のコールターカウンターTAII、コールターマルチサイザーIIなどを用いて行うことができる。
<トナーの製造方法>
本発明のトナーは、例えば、粉砕法、重合法などで製造される。
前記重合法としては、特に制限はなく、従来公知のから目的に応じて適宜選択することができ、例えば、懸濁重合法、溶解懸濁法、乳化凝集法、エステル伸長法などが挙げられる。
前記粉砕法は、少なくとも溶融混練工程、粉砕工程を含み、更に必要に応じて、冷却工程、分級工程等のその他の工程を含む。即ち、前記結晶性ポリエステル樹脂、前記非結晶性樹脂、前記複合樹脂、及び着色剤を含有するトナー材料を乾式混合し、混練機にて溶融混練し、粉砕して粉砕トナーを得る方法である。
前記溶融混練工程は、上述のトナー材料を混合した混合物を溶融混練する工程である。前記溶融混練工程で用いる溶融混練機としては、例えば、一軸の連続混練機、二軸の連続混練機、ロールミルによるバッチ式混練機を用いることができる。具体的には、神戸製鋼所社製KTK型二軸押出機、東芝機械社製TEM型押出機、ケイシーケイ社製二軸押出機、池貝鉄工所社製PCM型二軸押出機、ブス社製コニーダーなどが好適に用いられる。溶融混練は、バインダー樹脂の分子鎖の切断を招来しないような適正な条件で行うことが好ましい。具体的には、溶融混練温度は結着樹脂の軟化点を参考にして行われ、前記軟化点より高温であるほど切断が激しく、低温であるほど分散が進まないことがある。
前記粉砕工程は、前記溶融混練工程で得られた混練物を粉砕する工程である。この粉砕においては、まず、混練物を粗粉砕し、次いで微粉砕することが好ましい。この際ジェット気流中で衝突板に衝突させて粉砕したり、ジェット気流中で粒子同士を衝突させて粉砕したり、機械的に回転するローターとステーターの狭いギャップで粉砕する方式が好ましく用いられる。
前記分級工程は、前記粉砕工程にて得られた粉砕物を分級する工程であり、トナーを所定粒径の粒子に調整することができる。分級は、例えば、サイクロン、デカンター、遠心分離等により、微粒子部分を取り除くことにより行うことができる。
前記粉砕及び分級が終了した後に、粉砕物を遠心力などで気流中にて分級し、所定の粒径のトナーを製造する。
本発明のトナーの製造方法としては、溶融混練工程と粉砕工程との間に冷却工程を含むことが好ましい。前記冷却工程は、溶融混練工程で得られた混練物を冷却する工程である。前記冷却工程において、前記混練物の平均厚みが2.5mm以上であると、混練物の冷却速度が遅くなり、混練物中で溶融している結晶性ポリエステル樹脂の再結晶化が行なわれる時間が長くなるため、再結晶が促進され、結晶性ポリエステル樹脂の機能をより効果的に発揮させることができる。再結晶化を促進させるには、前述のように脂肪酸アミド化合物を配合することが有効な方法ではあるが、このような方法も同様に有効である。前記混練物の平均厚みの上限値としては、特に制限はなく、目的に応じて適宜選択することができるが、8mmを超えると、後の粉砕工程において粉砕効率が著しく低下するため、8mm以下が好ましい。なお、前記平均厚みの求め方としては、特に制限はなく、従来公知の厚みを測定する方法を適用し、測定値の平均値を算出することにより求めることができる。
トナーの流動性、保存性、現像性、及び転写性を高めるため、上記のようにして製造されたトナー(トナー母体粒子)にシリコーンオイルで処理されてなる無機粒子等の外添剤を添加混合する外添剤混合工程を更に含む。
前記外添剤混合工程に使用できる混合装置としては、粉体を混合できる限り特に制限はなく、公知の装置を用いることができ、例えば、V型混合機、ロッキングミキサー、レーディゲミキサー、ナウターミキサー、ヘンシェルミキサーなどが挙げられる。これらの混合装置は、ジャケット等を装備して内部の温度を調節できるものが好ましい。
前記外添剤に与える負荷の履歴を変えるには、例えば、混合の途中又は漸次に外添剤を加えていけばよいし、混合機の回転数、転動速度、時間、温度などを適宜変化させてもよい。また、初めに強い負荷を与え、次いで、比較的弱い負荷を与えてもよいし、その逆でもよい。
なお、前記外添剤混合工程を施した後に、250メッシュ以上の篩を通過させ、粗大粒子や凝集粒子を除去してもよい。
(現像剤)
本発明に関する現像剤は、本発明のトナーを含んでなる。前記現像剤としては、特に制限はなく、トナーのみからなる一成分現像剤として用いても、キャリアを含有する二成分現像剤として用いてもよいが、近年の情報処理速度の向上に対応した高速プリンターなどに使用する場合には、寿命向上などの観点から、二成分現像剤として用いることが好ましい。
前記キャリア及びその含有量としては、特に制限はなく、目的に応じて適宜選択することができる。
以下、本発明の実施例について説明するが、本発明は下記実施例に何ら限定されるものではない。「部」は、特に明示しない限り「質量部」を表す。「%」は、特に明示しない限り「質量%」を表す。
<シリコーンオイルのクロロホルムによる抽出量の測定方法>
トナー中のシリコーンオイルのクロロホルムによる抽出量(総シリコーンオイル遊離量)は、以下の(1)〜(3)の手順からなる定量方法によって測定した。
(1)遊離シリコーンオイルの抽出
試料のトナーをクロロホルムに浸漬、攪拌、放置した。
遠心分離により上澄み液を除去した後の固形分に、新たにクロロホルムを加え、攪拌、放置した。
この操作を繰り返し、試料から遊離シリコーンオイルを取り除いた。
(2)炭素量の定量
遊離シリコーンオイルを取り除いた試料中の炭素量の定量をCHN元素分析装置(CHN コーダーMT−5型(ヤナコ製))により測定した。
(3)シリコーンオイル抽出量の定量
シリコーンオイル抽出量を下記の式(1)により求めた。
シリコーンオイル抽出量=(C0−C1)/C×100×37/12(質量%)・・・(1)
上記式(1)中のC,C0,C1,係数37/12は以下の値、意味を表す。
C :処理剤シリコーンオイル中炭素含有率(質量%)
C0:抽出操作前の試料中炭素量(質量%)
C1:抽出操作後の試料中炭素量(質量%)
係数37/12:ポリジメチルシロキサンの構造中のC量から全体量への換算係数
<製造例1:結晶性ポリエステル樹脂の合成>
アルコール成分として1,5−ペンタンジオールを用い、カルボン酸成分としてフマル酸を用いて、結晶性ポリエステル樹脂a1を得た。
具体的には、表1に示すアルコール成分及びカルボン酸成分の単量体を、常圧下、170℃〜260℃、無触媒の条件でエステル化反応した後、反応系に、全カルボン酸成分に対し400ppmの3酸化アンチモンを加え3Torrの真空下でグリコールを系外へ除去しながら250℃で重縮合を行い、結晶性の樹脂を得た。尚、反応は攪拌トルクが10kg・cm(100ppm)となるまで実施し、反応は反応系の減圧状態を解除して停止させた。
得られた結晶性ポリエステル樹脂a1は、粉末X線回折装置(リガク電機株式会社製、RINT1100)によるX線回折パターン(管球:Cu、管電圧−電流:50kV−30mA、ゴニオメーター:広角ゴニオメーター、サンプリング幅:0.020°、走査速度:2.0°/分間、走査範囲:5°〜50°、回折ピーク:平滑化点数11として処理したものをピークサーチし、検出されたピーク)において、2θ=19°〜25°の位置に少なくとも1つの回折ピークが存在し、結晶性ポリエステルであることを確認した。
結晶性ポリエステル樹脂a1のガラス転移温度Tgaは、示差走査熱量計(DSC−60、株式会社島津製作所製)を用い、10℃/分間で20℃〜150℃まで昇温した際のDSC測定を行って求めた。
結晶性ポリエステル樹脂a1の軟化温度(T1/2a)は、高架式フローテスターCFT−500(株式会社島津製作所製)を用い、ダイス穴径1mm、加圧20kg/cm2、昇温速度6℃/分間の条件下で1cmの試料を溶融流出させたときの流出開始点から流出終了点までの1/2に相当する温度とした。
結晶性ポリエステル樹脂a1がその分子主鎖中に下記一般式(1)で表されるエステル結合を有するか否かを固体C13NMRにより確認した。結果を表1に示す。
−[OCO−R−COO−(CH]− ・・・一般式(1)
(前記一般式(1)中、Rは炭素数2〜20の直鎖状不飽和脂肪族2価カルボン酸残基を示し、nは2〜20の整数を示す。)
<製造例2:非結晶性樹脂の合成>
非結晶性樹脂b1−1、b2−1は以下のようにして得た。
表2−1、及び表2−2に示す単量体を、常圧下、170℃〜260℃、無触媒の条件でエステル化反応せしめた後、反応系に全カルボン酸成分に対し400ppmの3酸化アンチモンを加え、3Torr(399.966Pa)の真空下でグリコールを系外へ除去しながら250℃で重縮合を行い、樹脂を得た。なお、架橋反応は撹拌トルクが10kg・cm(100ppm)となるまで実施し、反応は反応系の減圧状態を解除して停止させた。
得られた非結晶性樹脂b1−1、b2−1は、製造例1と同様に測定したX線回折パターンにより、回折ピークが存在せず、非結晶性であることを確認した。
また、得られた非結晶性樹脂b1−1、b2−1のガラス転移温度Tgb及び軟化温度T1/2bを製造例1と同様にして測定した。結果を表2−1及び表2−2に示す。
得られた非結晶性樹脂b1−1のクロロホルム不溶分の含有量は、次のようにして求めた。即ち、得られた樹脂1.0gを秤量し、これにクロロホルム50gを加えて充分に溶解させた溶液を遠心分離で分け、JIS規格(P3801)5種Cの定性濾紙を用いて常温で濾過した。濾紙残渣が不溶分であり、用いた樹脂の質量と濾紙残渣質量の比率(質量%)で表す。結果を表2−1に示す。
得られた非結晶性樹脂b2−1のGPC(ゲルパーミエーションクロマトグラフィ)におけるメインピーク及び半値幅の測定を次のようにして行った。結果を表2−2に示す。
40℃のヒートチャンバー中でカラムを安定させ、この温度におけるカラムに、溶媒としてTHFを毎分1mLの流速で流し、試料濃度として0.05質量%〜0.6質量%に調製した樹脂のTHF試料溶液を50μL〜200μL注入して測定した。
試料の分子量測定に当たっては、試料の有する分子量分布を、数種の単分散ポリスチレン標準試料により作成された検量線の対数値とカウント数との関係から算出した。
検量線作成用の単分散ポリスチレン標準試料としては、Pressure Chemical Co.或いは東ソー株式会社製の分子量が6×10、2.1×10、4×10、1.75×10、5.1×10、1.1×10、3.9×10、8.6×10、2×10、4.48×10のものを用い、少なくとも10点程度の単分散ポリスチレン標準試料を用いた。検出器にはRI(屈折率)検出器を用いた。
<製造例3:複合樹脂Cの合成>
−複合樹脂c1の合成−
縮重合系モノマーである、テレフタル酸0.8mol、フマル酸0.6mol、無水トリメリット酸0.8mol、ビスフェノールA(2,2)プロピレンオキサイド1.1mol、及びビスフェノールA(2,2)エチレンオキサイド0.5mol、並びにエステル化触媒としてジブチル錫オキシド0.5molを、窒素導入管、脱水管、攪拌器、滴下ロート、及び熱電対を装備した5リットル容器の四つ口フラスコ内に入れ、窒素雰囲気下、135℃まで加熱した。
付加重合系モノマーである、スチレン10.5mol、アクリル酸3mol、及び2−エチルヘキシルアクリレート1.5mol、並びに重合開始剤としてt−ブチルハイドロパーオキサイド0.24molを滴下ロートに入れ混合物を得た。
得られた混合物を、前記四つ口フラスコに5時間かけて滴下し、撹拌を行いながら6時間反応を行った。
続けて、210℃まで3時間かけて昇温を行い、210℃、10kPaにて所望の軟化点まで反応を行って、複合樹脂c1を合成した。
以上の反応により、縮重合系モノマー、付加重合系モノマー、及び両反応性モノマーであるアクリル酸を反応させることによって、縮重合系樹脂ユニットと付加重合系樹脂ユニットとが化学的に結合したハイブリット樹脂を作製した。135℃では付加重合(両反応性系)反応が促進され、また210℃に上げることにより、縮重合反応が促進される。
得られた複合樹脂c1の軟化点(T1/2c)は115℃、ガラス転移温度(Tgc)は58℃、酸価は25mgKOH/gであった。
なお、前記複合樹脂c1の酸価は、JIS K−0070に準じて以下の方法により求めた。
得られた樹脂を粉砕した試料0.5g〜2.0gを精秤し、重さW(g)を測定した。次いで、300mLのビーカーに試料を入れ、トルエン/エタノール(体積比4/1)の混合液150mLを加え溶解した。0.1mol/LのKOHのエタノール溶液を用いて、電位差滴定装置を用いて滴定した。この時のKOH溶液の使用量をS(mL)とし、同時にブランクを測定し、この時のKOH溶液の使用量をB(mL)とし、以下の式(2)で算出した。ただし、fはKOHのファクターである。
酸価(mgKOH/g)={(S−B)×f×5.61}/W ・・・式(2)
<製造例4:外添剤の処理方法>
−シリカ1の製造−
シリコーンオイルとして300csのポリジメチルシロキサン(PDMS)(KF−96、信越化学工業株式会社製)の所定量(表4に示す添加部数)をヘキサン30部に溶解し、処理用外添剤OX50(日本アエロジル株式会社製、平均一次粒子径が35nmの未処理シリカ)100部をその中に攪拌しながら超音波照射することによって分散した。
窒素パージ下の攪拌下に、表4に示すシリコーンオイル添加量となるように導入し、攪拌を継続した状態で、表4に示す反応温度及び反応時間で処理して[シリカ1]を得た。
−シリカ2〜6、チタニア1、アルミナ1の製造−
[シリカ1]の製造において、表4に示す条件に代えた以外は、[シリカ1]の製造と同様にして、[シリカ2]〜[シリカ6]、[チタニア1]、[アルミナ1]を得た。
表4はこれをシリコーンオイル処理シリカ中のシリコーンオイル(PDMS:ポリジメチルシロキサン)の量、遊離率、残存量に換算した値を示したものである。
シリカ2〜6の製造においては、シリカとして、OX50(日本アエロジル株式会社製、平均一次粒子径が35nmの未処理シリカ)を用いた。
チタニア1の製造においては、チタニアとして、(MT−150A、テイカ株式会社製)を用いた。
アルミナ1の製造においては、アルミナとして、(TG−A90、キャボットジャパン株式会社製)を用いた。
表4における遊離率等は以下のシリコーンオイル遊離量の測定法により求めた。
<シリコーンオイル遊離量の測定法>
トナー中の遊離シリコーンオイル量(シリコーンオイル遊離量)は、以下の(1)〜(3)の手順からなる定量方法によって測定した。
(1)遊離シリコーンオイルの抽出
試料のトナーをクロロホルムに浸漬、攪拌、放置した。
遠心分離により上澄み液を除去した後の固形分に、新たにクロロホルムを加え、攪拌、放置した。
この操作を繰り返し、試料から遊離シリコーンオイルを取り除いた。
(2)炭素量の定量
遊離シリコーンオイルを取り除いた試料中の炭素量の定量をCHN元素分析装置(CHN コーダーMT−5型(ヤナコ製))により測定した。
(3)シリコーンオイル遊離量の定量
シリコーンオイル遊離量を下記の式(1)により求めた。
シリコーンオイル遊離量=(C0−C1)/C×100×37/12(質量%)・・・(1)
上記式(1)中のC,C0,C1,係数37/12は以下の値、意味を表す。
C :処理剤シリコーンオイル中炭素含有率(質量%)
C0:抽出操作前の試料中炭素量(質量%)
C1:抽出操作後の試料中炭素量(質量%)
係数37/12:ポリジメチルシロキサンの構造中のC量から全体量への換算係数
<その他のトナー材料>
本実施例及び比較例で用いる前記結晶性ポリエステル樹脂(A)、前記非結晶性樹脂(B)、及び前記複合樹脂(C)以外のトナー材料について下記表5に示す。
(実施例1〜8、及び比較例1(トナー1〜9))
<トナーの作製>
上記表1〜5に記載のトナー原材料を下記表6−1に示す処方で、へンシェルミキサー(三井三池化工機株式会社製、FM20B)を用いて予備混合した後、二軸混練機(株式会社池貝製、PCM−30)で100℃〜130℃の温度で溶融、混練した。得られた混練物はローラーにて平均厚み2.8mmに圧延した後にベルトクーラーにて室温まで冷却し、ハンマーミルにて200μm〜300μmに粗粉砕した。次いで、超音速ジェット粉砕機ラボジェット(日本ニューマチック工業株式会社製)を用いて微粉砕した後、気流分級機(日本ニューマチック工業株式会社製、MDS−I)で重量平均粒径が5.6±0.2μmとなるようにルーバー開度を適宜調整しながら分級し、トナー母体粒子を得た。次いで、トナー母体粒子100質量部に対し、下記表6−1に示す処方で外添剤をヘンシェルミキサーで撹拌混合し、トナー1〜9を作製した。
また、トナー中のPDMS抽出量(質量%)を前述の方法で測定した結果を表6−2に示す。
(実施例1〜8、及び比較例1)
<トナー収容容器>
図10に示すトナー収容容器(容器開口部の断面は、図30に示す断面)を用いた。容器本体内には、製造例6で製造したトナーを充填した。
図10に示すトナー収容容器は、容器本体が、容器開口部の容器本体内部側から、一端側に向かって突出している突出部を有している。
また、汲み上げ部は、容器本体内壁面から突出部に向かって伸びる汲み上げ壁面と突出部に沿うように湾曲する湾曲部とを有している。
また、汲み上げ部は、容器本体内壁面から突出部に向かって隆起した隆起部を有している。隆起部には突出部に沿うように湾曲する湾曲部が設けられている。
突出部は、トナー収容容器がトナー搬送装置に装着された際、湾曲部と挿入された搬送管のトナー受入口との間に存在するように設けられている。
更に、図10に示すトナー収容容器は、突出部が、板状の部材であって、板状の部材の平らな側面(厚さ方向の側面)が、湾曲部と、挿入されたトナー搬送管のトナー受入口との間に存在するように設けられている。
更に、図10に示すトナー収容容器は、汲み上げ壁面を有する汲み上げ部を2つ有する。2つの汲み上げ部それぞれにおいて、トナー収容容器がトナー搬送装置に装着された際、前記汲み上げ部が有する湾曲部と、挿入された搬送管のトナー受入口との間に、突出部が存在する。
図10に示すトナー収容容器は、汲み上げ部が容器本体と一体的に形成されており、突出部が容器本体に固定されており、容器本体が回転することで、前記汲み上げ部が、トナーを下方から上方に持ち上げる。
<評価>
<<トナー排出性>>
上記のトナー収容容器について、以下の評価方法で評価を行った。
その際の容器本体からのトナーの排出性を以下の評価基準で評価した。結果を表1に示した。
〔評価方法〕
トナーをトナー収容容器に120g充填した(なお、トナー収容容器の容量は、1,200mL)。トナー収容容器を振ってトナーを十分に攪拌した。トナー収容容器を本実施例に記載の搬送ノズルを備えた補給装置に装着した(図9参照)。トナー収容容器を回転、及び補給装置を動作させて補給装置から排出されるトナーの量を計測した。
条件:トナー収容容器回転数:100rpm
補給装置の搬送ノズル内の搬送スクリュピッチ:12.5mm
搬送スクリュ外径:10mm
搬送スクリュ軸径:4mm
搬送スクリュ回転数:500rpm
〔評価基準〕
○:収容容器内トナー残量が70gとなってもトナーが排出されるもの。
×:収容容器内トナー残量が70gとなる前にトナー排出がなされなくなるもの。
本実験においてはトナーの未使用時充填量(製品出荷時の充填量)は200g以上と想定して、排出性を検証するために上記のようにトナー残量70gを評価基準とした。
○を合格とし×を不合格とした。
<<補給安定性>>
上記のトナー収容容器について、上記排出性の評価方法と同じ評価方法で評価を行った。
その際の容器本体からのトナー補給性を以下の評価基準で評価した。結果を表1に示した。
〔評価基準〕
◎:非常に良好(トナーが排出できなくなるまで駆動し続けたときに、トナー収容容器内のトナー残量が70g未満、10g以上の範囲において、トナー補給量が0.4g/sec以上の状態で安定的に(一定量)で維持されている。図39のイ)
※トナー補給量0.4g/secは、A4紙に全ベタ画像を連続通紙してもトナー補給量不足によりベタ画像のかすれ等がない(ベタ追従性)ことが予測される補給量である。
※トナー10g以上の範囲としたのは、容器内壁にトナーが付着する分を考慮したものである。
○:良好(トナーが排出できなくなるまで駆動し続けたときに、トナー収容容器内のトナー残量が70g未満、10g以上の範囲において、トナー補給量が0.4g/sec未満の状態で一定量で維持されている。図39のロ)
※トナー補給量は、0.4g/secより少ないが、安定的に(一定量で)補給量が維持されているため、トナー収容容器の回転数を上げる等により、トナー補給量の底上げを行なうことができ、安定して、ベタ追従に十分な補給が行える。
△:許容レベル(トナーが排出できなくなるまで駆動し続けたときに、トナー収容容器内のトナー残量が70g未満となったとき以降、トナーの排出は行われるが、トナー補給量が一定ではなく、傾きを持って減少してゆく。図39のハ)
※トナーは排出されるため、補給が0になるということはないが、ベタ追従性を保障するためにより複雑な補給制御が必要となる。
×:実用上使用できないレベル(トナー排出ができなくなるまで駆動し続けたときに、トナー排出はなされるが、トナー残量70g以上残った状態で排出が行われなくなってしまうもの)
××:実用上使用できないレベル(トナーの排出が行われない)
◎、○、△を合格とし、×、××を不合格とした。
※今回の◎、○となっているトナーについて言えばトナー残量が10g未満の範囲で補給量が急激に減少した(変極点を持って下降した)。
また、今回の実験においては、◎、○となっているトナーのトナー補給量の変動幅がトナー残量10gから70gの範囲において0.05g/sec以内であった。
以上の各実施例および比較例より、本発明によれば、トナー収容容器内のトナー残量が少なくなっても、現像装置へのトナーの補給が可能なトナー収容容器を提供することができることがわかった。
32(Y,M,C,K) トナー収容容器
33 容器本体
33a 容器開口部
50 現像装置
60(Y,M,C,K) トナー補給装置
70 トナー収容容器収納部
302 螺旋状突起
303 把手部
304 汲み上げ部
304f 汲み上げ壁面
304h 凸部
304i 湾曲部
330 ノズル受入部材
331 ノズル受入口
332 容器シャッタ
332a シャッタ抜け防止爪
332c 先端円筒部
332d 滑動部
332e ガイドロッド
332f 片持ち梁
332g ガイドロッド摺動部
332h 容器シャッタの端面
332i 円筒部
333 容器シール
333a 管挿入口の内面
335 シャッタ後端支持部
335a シャッタ側面支持部
335b シャッタ支持開口部
335d 後端開口部
336 容器シャッタバネ
340 容器シャッタ支持部材
342 当接部
350 シール部材
610 ノズル開口
611 搬送ノズル
611a 搬送ノズルの端面
614 搬送スクリュ
特開2012−133349号公報

Claims (8)

  1. トナー搬送装置に装着可能であり、前記トナー搬送装置に供給するトナーが収容された容器本体と、
    前記容器本体の内部に配置され、前記トナーを前記容器本体における長手方向の一端側から容器開口部が設けられた他端側に搬送する搬送部と、
    前記容器開口部に配置され、前記トナー搬送装置に固定された搬送管を受け入れ可能な管受入口と、
    前記搬送部によって搬送された前記トナーを前記容器本体の下方から上方に持ち上げ、前記搬送管のトナー受入口に向けて移動させる汲み上げ部と、を備えるトナー収容容器において、
    前記トナーが、結着樹脂と外添剤とを含み、
    前記外添剤が、シリコーンオイルを含む無機粒子を含有し、
    前記容器本体が、前記容器開口部の容器本体内部側から、前記一端側に向かって突出している突出部を有し、
    前記汲み上げ部が、前記容器本体内壁面から前記突出部に向かって伸びる汲み上げ壁面と、前記突出部に沿うように湾曲する湾曲部と、を有し、
    前記突出部が、前記トナー収容容器が前記トナー搬送装置に装着された際、前記湾曲部と挿入された前記搬送管のトナー受入口との間に存在するように設けられている、
    ことを特徴とするトナー収容容器。
  2. トナー搬送装置に装着可能であり、前記トナー搬送装置に供給するトナーが収容された容器本体と、
    前記容器本体の内部に配置され、前記トナーを前記容器本体における長手方向の一端側から容器開口部が設けられた他端側に搬送する搬送部と、
    前記容器開口部に配置され、前記トナー搬送装置に固定された搬送管を受け入れ可能な管受入口と、
    前記搬送部によって搬送された前記トナーを前記容器本体の下方から上方に持ち上げ、前記搬送管のトナー受入口に向けて移動させる汲み上げ部と、を備えるトナー収容容器において、
    前記トナーが、結着樹脂と外添剤とを含み、
    前記外添剤が、シリコーンオイルを含む無機粒子を含有し、
    前記容器本体が、前記容器開口部の容器本体内部側から、前記一端側に向かって突出している突出部を有し、
    前記汲み上げ部が、前記容器本体内壁面から前記突出部に向かって隆起した隆起部を有し、
    前記隆起部には前記突出部に沿うように湾曲する湾曲部が設けられており、
    前記突出部が、前記トナー収容容器が前記トナー搬送装置に装着された際、前記湾曲部と挿入された前記搬送管のトナー受入口との間に存在するように設けられている、
    ことを特徴とするトナー収容容器。
  3. 前記トナー中の前記シリコーンオイルのクロロホルムによる抽出量が、前記トナーに対し、0.20質量%〜2.00質量%であることを特徴とする請求項1または2に記載のトナー収容容器。
  4. 前記突出部が、平らな側面を有する板状の部材であって、
    前記板状の部材の平らな側面が、前記湾曲部と、挿入されたトナー搬送管のトナー受入口との間に存在するように設けられていることを特徴とする請求項1乃至3のいずれかに記載のトナー収容容器。
  5. 前記汲み上げ部を2つ有し、
    前記トナー収容容器が前記トナー搬送装置に装着された際、前記2つの汲み上げ部がそれぞれに有する湾曲部と、挿入された前記搬送管のトナー受入口との間のそれぞれに、前記突出部が存在することを特徴とする請求項1乃至4のいずれかに記載のトナー収容容器。
  6. 前記汲み上げ部と、前記突出部とが、前記容器本体に固定されている又は一体的に形成されており、
    前記容器本体が回転することで、前記汲み上げ部が、前記トナーを下方から上方に持ち上げることを特徴とする請求項1乃至5のいずれかに記載のトナー収容容器。
  7. 前記容器開口部を閉鎖する閉鎖位置と、開放する開放位置との間で移動可能なシャッタ部材を有し、
    前記シャッタ部材が、前記トナー搬送装置に固定された搬送管に押圧されることで前記閉鎖位置から前記開放位置へと移動するとともに、
    前記突出部が、前記シャッタ部材の移動領域に沿って設けられていることを特徴とする請求項1乃至6のいずれかに記載のトナー収容容器。
  8. 請求項1乃至7のいずれかに記載のトナー収容容器が画像形成装置本体に着脱可能に設置されていることを特徴とする画像形成装置。
JP2013107322A 2013-05-21 2013-05-21 トナー収容容器、及び画像形成装置 Active JP5983533B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013107322A JP5983533B2 (ja) 2013-05-21 2013-05-21 トナー収容容器、及び画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013107322A JP5983533B2 (ja) 2013-05-21 2013-05-21 トナー収容容器、及び画像形成装置

Publications (2)

Publication Number Publication Date
JP2014228647A JP2014228647A (ja) 2014-12-08
JP5983533B2 true JP5983533B2 (ja) 2016-08-31

Family

ID=52128556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013107322A Active JP5983533B2 (ja) 2013-05-21 2013-05-21 トナー収容容器、及び画像形成装置

Country Status (1)

Country Link
JP (1) JP5983533B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6780560B2 (ja) * 2016-03-31 2020-11-04 大日本印刷株式会社 光学素子、周期構造体
JP7514426B2 (ja) 2020-06-05 2024-07-11 株式会社リコー 粉体収容容器、及び、画像形成装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5488571B2 (ja) * 2010-12-03 2014-05-14 株式会社リコー 粉体収納容器、粉体補給装置及び画像形成装置
JP5807844B2 (ja) * 2011-03-09 2015-11-10 株式会社リコー トナー、画像形成装置及びプロセスカートリッジ
JP2013064826A (ja) * 2011-09-16 2013-04-11 Ricoh Co Ltd 静電荷像現像用トナー、画像形成装置、及びプロセスカートリッジ

Also Published As

Publication number Publication date
JP2014228647A (ja) 2014-12-08

Similar Documents

Publication Publication Date Title
JP6152699B2 (ja) トナー収容容器、及び画像形成装置
JP6160133B2 (ja) 電子写真画像形成用トナー、画像形成方法及びプロセスカートリッジ
JP5983674B2 (ja) トナー収容容器、及び画像形成装置
JP5892089B2 (ja) 電子写真画像形成用トナー、画像形成方法、画像形成装置及びプロセスカートリッジ
JP6007941B2 (ja) トナー収容容器、及び画像形成装置
US20100124715A1 (en) Electrostatic charge image developing toner and method of producing the same, electrostatic charge image developer, toner cartridge, process cartridge, and image forming device
JP5861537B2 (ja) 画像形成方法及び画像形成装置
JP2014074882A (ja) トナー、画像形成装置、画像形成方法、及びプロセスカートリッジ
JP6451405B2 (ja) トナー収容容器、及び画像形成装置
JP6035680B2 (ja) 電子写真画像形成用トナー、画像形成方法及びプロセスカートリッジ
JP6432368B2 (ja) トナー収容容器、及び画像形成装置
JP6515594B2 (ja) トナー収容容器、及び画像形成装置
JP6447270B2 (ja) トナー収容容器、及び画像形成装置
JP6535988B2 (ja) トナー、画像形成装置、画像形成方法、及びプロセスカートリッジ
JP2014174501A (ja) トナー、及び画像形成方法
JP5962701B2 (ja) トナー収容容器、及び画像形成装置
JP6520501B2 (ja) トナー、画像形成装置、画像形成方法、及びプロセスカートリッジ
JP6080003B2 (ja) 電子写真画像形成用トナー、画像形成方法及びプロセスカートリッジ
JP5983533B2 (ja) トナー収容容器、及び画像形成装置
JP6515601B2 (ja) トナー収容容器、及び画像形成装置
JP6007940B2 (ja) トナー収容容器、及び画像形成装置
JP6032064B2 (ja) トナー、画像形成装置、及びプロセスカートリッジ
JP6175897B2 (ja) トナー収容容器、及び画像形成装置
JP2009162956A (ja) トナーセット、二成分現像剤セット、現像装置、画像形成装置および画像形成方法
JP6152698B2 (ja) トナー収容容器、及び画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150911

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20150911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160115

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160718

R151 Written notification of patent or utility model registration

Ref document number: 5983533

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151