JP5992589B1 - 熱膨張性塩化ビニル系樹脂製材料及び熱膨張性塩化ビニル系樹脂製材料の製造方法 - Google Patents

熱膨張性塩化ビニル系樹脂製材料及び熱膨張性塩化ビニル系樹脂製材料の製造方法 Download PDF

Info

Publication number
JP5992589B1
JP5992589B1 JP2015175216A JP2015175216A JP5992589B1 JP 5992589 B1 JP5992589 B1 JP 5992589B1 JP 2015175216 A JP2015175216 A JP 2015175216A JP 2015175216 A JP2015175216 A JP 2015175216A JP 5992589 B1 JP5992589 B1 JP 5992589B1
Authority
JP
Japan
Prior art keywords
vinyl chloride
chloride resin
mass
parts
thermally expandable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015175216A
Other languages
English (en)
Other versions
JP2017048354A (ja
Inventor
秀康 鳥居
秀康 鳥居
恭彦 佐藤
恭彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Regulus Co Ltd
Original Assignee
Regulus Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Regulus Co Ltd filed Critical Regulus Co Ltd
Priority to JP2015175216A priority Critical patent/JP5992589B1/ja
Application granted granted Critical
Publication of JP5992589B1 publication Critical patent/JP5992589B1/ja
Publication of JP2017048354A publication Critical patent/JP2017048354A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

【課題】低温域においても火炎及び煙の遮断機能を効果的に発揮し得、膨張後における膨張体が形状保持性及び機械的強度に優れるものになる熱膨張性塩化ビニル系樹脂組成物及びこれを用いた熱膨張性シートの提供。【解決手段】ベースとなる塩化ビニル系樹脂に、該樹脂用の可塑剤と膨張性黒鉛と難燃材と、更に前記塩化ビニル系樹脂の脱塩酸触媒とを含有してなり、該脱塩酸触媒は、前記塩化ビニル系樹脂100質量部に対して10質量部添加した可塑剤を含む試料Aを180℃で15分、次いで190℃で15分加熱した際に、試料Aの重量減が25質量%以上となる物質であり、且つ、該物質の添加量の範囲が、前記塩化ビニル系樹脂100質量部に対して添加した可塑剤を含む試料Bについて、180℃で15分、次いで190℃で15分加熱後に、試料Bの重量減が25質量%以上となる範囲内である熱膨張性塩化ビニル系樹脂組成物。【選択図】なし

Description

本発明は、熱膨張性塩化ビニル系樹脂組成物及びこれを用いた熱膨張性シート等の製品に関し、特に低温域における火炎及び煙の遮断機能を効果的に発揮し得、膨張後における膨張体が形状保持性及び機械的強度に優れるものになる熱膨張性塩化ビニル系樹脂組成物、これを用いた熱膨張性シート、パテ及び塗料に関する。
従来、建築材料の分野においては、耐火性能が重要視され、耐火性能を有する種々の材料が開発されている。膨張性黒鉛は、加熱により体積が急激に膨張する性質があり、この特性を利用して膨張性黒鉛を樹脂に含有させたシート状(以下、熱膨張性シートと呼ぶ)や、不定形物(パテ、塗料、被覆物)を製造して空間内に納め、火災時に熱で膨張を生起して火の回りを遅くする延焼防止材として用いられている。この際に膨張性黒鉛と併用される樹脂材料は、耐火性能として、樹脂材料自体の高い不燃性・難燃性の実現だけではなく、火災時に効果的な断熱層を形成し、これによって火炎及び煙の遮断機能を発揮できることが要求される。
このような機能を有する樹脂材料としては、ポリ塩化ビニル系樹脂があり、例えば、特許文献1には、ポリ塩化ビニル系樹脂の有する難燃性と成形性を利用した熱膨張性塩化ビニル系樹脂組成物が提案されている。この樹脂組成物によれば、膨張性および膨張後の形状保持性を良好に維持しつつ、押出成形等で連続製造が容易であるとされており、成形体を膨張させて得られる構造体は、従来と同等の耐火性を有し、火災と炎を遮断するのに必要な機械的強度を有するものであるとされている。具体的には、ポリ塩化ビニル系樹脂に各種滑剤を特定量配合することで、金型に対する滑り性が付与され、成形性および成形体の表面平滑性が向上するとともに、組成物の金型等の金属面に対する粘着性を抑え、プレートアウトが抑制され、炭酸カルシウム等の無機充填剤を特定量配合すると、熱容量増大による難燃性向上の役割を果たすとしている。
特許第4250153号公報
本発明者らは、上記のような従来の熱膨張性塩化ビニル系樹脂組成物について詳細に検討していく過程で、塩化ビニル系樹脂と特定の無機物質との組み合わせによっては、従来、知られていなかった挙動を示すことを知見し、更に、この点を利用することで、火炎及び煙の遮断機能をより効果的に発揮し得る熱膨張性塩化ビニル系樹脂組成物、及び該組成物によって形成したシート状や固形状やペースト状や液状等の製品(熱膨張性シート・パテ・塗料・被覆物等)とできることを見出した。
ここで、熱膨張性シート・パテ・塗料・被覆物は、同一技術思想の基に構成されているので、以下の説明で、熱膨張性シートを代表例として熱膨張性シート等と呼ぶが、製品の形態は、シート状のものに限定されるものではない。効果的な熱膨張性シート等とするためには、火災発生時に、熱膨張性シート等がより低温で膨張して膨張体となり、得られる膨張体の膨張率が高く、均一な膨張体となり、しかも、膨張体の形状が保持されて、炎の風圧で容易に吹き飛ばされることがない十分な機械的強度を有するものとなることが望まれる。これに対し、近年、熱膨張性シート等の耐火性能の向上を目的として、膨張開始温度の低温化が望まれるようになってきており、膨張開始温度が低い膨張性黒鉛材料等の材料開発が進んでいる。これは、火災初期の低い温度で、例えば、窓枠等に設置した熱膨張性シート等によって効果的な断熱層が形成されれば、より高い延焼防止効果を得ることができ、極めて有用であることによる。本発明者らは、このような膨張開始温度の低温化が進んだ材料を用いた場合に特に有用な樹脂組成物を提供できる技術の開発が急務であるとの認識の下、上記知見について詳細な検討を行った。
したがって、本発明の目的は、低温域においても火炎及び煙の遮断機能を効果的に発揮し得、膨張後における膨張体が形状保持性及び機械的強度に優れるものになる熱膨張性塩化ビニル系樹脂組成物及びこれを用いた熱膨張性シート等の製品を提供することにある。
上記の目的は、以下の本発明によって達成される。即ち、本発明は、ベースとなる塩化ビニル系樹脂に、該樹脂用の可塑剤と膨張性黒鉛と難燃材と、更に前記塩化ビニル系樹脂の脱塩酸触媒とを含有してなり、該脱塩酸触媒は、前記塩化ビニル系樹脂52質量部と前記可塑剤42.8質量部に、脱塩酸触媒を5.2質量部添加してなる配合の試料Aを、180℃で15分、次いで190℃で15分加熱した際に、前記試料Aの重量減が25質量%以上となる物質であり、且つ、該物質の添加量の範囲が、前記塩化ビニル系樹脂52質量部と前記可塑剤42.8質量部に、更に前記塩化ビニル系樹脂100質量部に対して所望となる量の脱塩酸触媒を添加した試料Bについて、180℃で15分、次いで190℃で15分加熱後に、前記試料Bの重量減が25質量%以上となる範囲内であり、更に、800℃で加熱して得られる膨張体の粘結力が0.8kgf以上であることを特徴とする熱膨張性塩化ビニル系樹脂組成物を提供する。
本発明の熱膨張性塩化ビニル系樹脂組成物の好ましい形態としては、下記のものが挙げられる。前記脱塩酸触媒が、金属亜鉛、酸化亜鉛、炭酸亜鉛、塩化亜鉛及び塩化鉄からなる群から選ばれる少なくともいずれかであること;前記脱塩酸触媒の添加量が、前記塩化ビニル系樹脂に対して2.5質量%以上であること;前記難燃材が、ポリリン酸アンモニウムであること;前記熱膨張性黒鉛が、膨張開始温度が180〜240℃である低温膨張性のものであること;更に熱安定剤を含むことが挙げられる。
また、本発明の熱膨張性塩化ビニル系樹脂組成物の好ましい形態としては、;前記脱塩酸触媒が酸化亜鉛であって、その添加量が塩化ビニル樹脂100に対して2.5質量%以上であること;前記脱塩酸触媒が金属亜鉛粉末であって、その添加量が、塩化ビニル樹脂100に対して4.5質量%以上であること;前記脱塩酸触媒が塩化亜鉛であって、その添加量が、塩化ビニル樹脂100に対して10.0質量%以上であること;これらに加えて、更に、前記塩化ビニル系樹脂、前記膨張性黒鉛及び前記難燃材が、以下の割合で含有されていることが挙げられる。
塩化ビニル系樹脂:100質量部、
熱膨張性黒鉛:50〜150質量部、
難燃材:50〜150質量部、
本発明は、別の実施形態として、上記いずれかに記載の熱膨張性塩化ビニル系樹脂組成物製であり、且つ、厚みが0.5mm〜2.0mmであることを特徴とする熱膨張性シートを提供する。
本発明は、別の実施形態として、上記いずれかに記載の熱膨張性塩化ビニル系樹脂組成物に溶剤を加えてペースト状にしたことを特徴とするパテを提供する。
本発明は、別の実施形態として、上記いずれかに記載の熱膨張性塩化ビニル系樹脂組成物に溶剤を加えて塗料状にしたことを特徴とする塗料を提供する。
本発明によれば、膨張後における形状保持性及び機械的強度に優れ、低温域から火炎及び煙の遮断機能を効果的に発揮し得、膨張後における膨張体が形状保持性及び機械的強度に優れるものになる熱膨張性塩化ビニル系樹脂組成物及びこれを用いた熱膨張性シート、パテ、塗料等の有用な各種製品が提供される。本発明によれば、低温時から、火災と炎とを効果的に遮断することができる良好な膨張体となる熱膨張性塩化ビニル系樹脂組成物が提供されるので、例えば、窓枠等に設置した場合に延焼防止材として効果的に機能し得る、膨張後の形状保持性及び機械的強度に優れる熱膨張性シートの提供が可能になる。その他ペースト状にしたことで、解放空間に充填して使用できるパテや、塗料状としたことで、金属製或いは木製の柱や壁、或いは電線等に塗工することで、熱膨張性の被覆物を形成できる、上記した機能性が付与された各種製品の提供が可能になる。
本発明の実施例の熱膨張性シートと比較例の従来の熱膨張性シートを、200℃〜800℃に加熱した場合の発泡倍率を示す試験結果を示した図である。
以下、本発明の好ましい実施形態を挙げて本発明を詳細に説明する。本発明者らは、下記の認識の下、塩化ビニル系樹脂をベースとし、これに、該樹脂用の可塑剤と膨張性黒鉛と難燃材とを配合してなる熱膨張性塩化ビニル系樹脂組成物について鋭意検討した結果、下記の驚くべき事実を知見し、これを利用することで、低温時から、火災と炎とを効果的に遮断することができる膨張体となる熱膨張性塩化ビニル系樹脂組成物を見出して本発明に至った。
具体的には、本発明者らは、ベースとする塩化ビニル系樹脂(可塑剤を含有)に、種々の金属粉末や無機化合物等の物質を添加して加熱試験をした結果、何も添加しない塩化ビニル系樹脂の場合には殆ど減量が生じない180〜240℃の低い温度域において、特定の物質を添加した場合のみ、著しく塩化ビニル系樹脂(可塑剤を含有)の重量の減少を引き起こし、脱塩酸(ポリエン化)、炭化が促進した状態となることを知見した。即ち、上記の低い温度領域で加熱試験を行った場合に、何も添加しない状態の塩化ビニル系樹脂(可塑剤を含有)の加熱試験後のものは、透明又は不透明な軟らかい状態のものになるのに対し、特定の物質を添加した場合の加熱試験後の塩化ビニル系樹脂(可塑剤を含有)は、黒色化しており、脆いが硬い、全く異なる状態のものになるという事実を見出した。
本発明者らは、上記事実を利用し、且つ、有効に発現するように構成することで、従来にない、低い温度領域において火炎及び煙の遮断機能を効果的に発揮し得、膨張後における膨張体が形状保持性及び機械的強度に優れるものになる熱膨張性塩化ビニル系樹脂組成物とできると考え、更なる検討を行った結果、本発明を達成した。以下に、本発明に至った経緯について説明する。
延焼防止の機能として重要な項目は、体積の膨張性(膨張倍率)と、膨張が火災時の初期の比較的低い温度で開始することにあり、先に述べたように、近年、熱膨張性シートの耐火性能の向上を目的として、膨張開始温度の低温化が望まれ、膨張開始温度が低い膨張性黒鉛材料等の材料開発が進んでいる。具体的には、膨張開始温度として180〜240℃が望まれている。更に重要なことは、火災の高温時に発生する火風力で、膨張した部分が吹き飛ぶことを極力押える粘結力を有することであり、国土交通省の現段階の認定試験では、800℃の火回りで20分間の火の通過を防ぐこととされている。
これに対し、熱膨張性樹脂組成物における体積の膨張倍率は、使用する膨張性黒鉛材料の選択と、その添加部数によって増減できる。膨張性黒鉛は、黒鉛の層間に酸を浸み込ませて有り、温度の上昇でこの酸の膨張により体積が膨れるが、使用する酸の選択により膨張の開始温度を変えることができる。特に酸として有機酸を使用すると膨張開始温度を低温化させることができる。また、先に挙げたように、従来技術では、膨張時における強度保持粘結力のために非焼性の無機材料を骨材として使用している。無機材料としては、通常、金属の酸や塩、或いは、酸化物、硫化物の組成の化合物が用いられている。更に、不燃化や難燃化を目的として、リンやホウ酸の化合物が用いられている。代表的なものとしては、ポリリン酸化合物が挙げられる。
更に、熱膨張性樹脂組成物には、必要に応じて、老化防止剤や各種の安定剤が適宜に選択されて添加されている。ベースとなる樹脂は、上記に挙げたような全ての成分を含有させ、適切な形状に整えるため結合成分として用いられる。樹脂としては、一般的な殆どの樹脂、例えば、エポキシ系樹脂、ポリウレタン系樹脂、ブチルゴム、ポリエステル系樹脂、塩化ビニル系樹脂、シリコーン系樹脂等を用いることができ、使用上、特別な制限はない。これ等の樹脂は、通常、高温下で燃焼し、消失するので、従来技術では、先に述べた骨材と異なり、高温時火回り後の膨張体の強度の保持(粘結力)成分としては考慮されていない。従って、火災時の最大の要請項目である膨張体の火風力に対抗する力、即ち、粘結力を引き出すことは困難である。シリコーン系樹脂の場合でも、燃焼時にシリカに変化するが、その残渣は、脆く、骨材の添加効果の一部に見なされるにすぎない。このため、従来技術では、成形可能な範囲で多量の骨材を熱膨張性樹脂組成物中に添加するか、或いは、目的の空間内にできる限りの熱膨張性樹脂組成物からなる熱膨張性シート等の膨張性成形物を押し込むことで対応している。しかしながら、骨材を多量に添加すると膨張性成形物の可撓性が失われ、空間内への装着性に問題が発生しやすくなる。また、膨張性成形物を多量に用いることは、コストアップになると同時に、空間に余計な設計を施す必要が生じ、経済性に劣る。
本発明は、これらの従来技術に鑑み、全く新たな観点から、低い温度領域での火炎及び煙の遮断機能を効果的に発揮し得、膨張後における膨張体が形状保持性及び機械的強度に優れるものになる熱膨張性塩化ビニル系樹脂組成物及びこれを用いた熱膨張性シートの提供を可能にする。具体的には、塩化ビニル系樹脂をベースとなる樹脂とした場合に、先に述べたように、180〜240℃の低温域において、著しい塩化ビニル系樹脂(可塑剤を含有、以下も同様)の重量の減少を引き起こし、脱塩酸(ポリエン化)、炭化が促進された状態となる、いわゆる、脱塩酸触媒として機能し得る物質の存在を見出し、このことを利用することで従来にない挙動を示す熱膨張性塩化ビニル系樹脂組成物及びこれを用いた熱膨張性シートの提供を可能にした。
先述したように、本発明者らは、塩化ビニル系樹脂に種々の金属粉末や無機化合物等を添加して加熱試験した結果、極めて低い温度域の170〜240℃で、特定の物質のみが著しく塩化ビニル系樹脂の重量の減少を引き起こし、脱塩酸(ポリエン化)や炭化が促進され、これらの物質が脱塩酸触媒として機能することを見出した。同時に、塩化ビニル系樹脂の重量の減少、即ち、減量%の大きい、具体的には25%以上であることが確認された物質を使用し、更に、膨張性黒鉛及びリン化合物等の難燃材を存在させた状態とすることで、高温で膨張した生成物は、極めて火風力に抵抗する粘結力の高い性質を示すものになることを確認した。この場合に選択された金属や無機物等は、骨材として動くのではなく、塩化ビニル系樹脂のポリエン化及び炭化に対する触媒として働くものと推定される。このことは、その添加量が、通常、無機物等を骨材として使用する場合の骨材量をはるかに下回っていることからもわかる。なお、塩化ビニル系樹脂が、金属のカチオンによって脱塩酸することは、工業技術院東京工業試験所(1950年10月11日)第9報(以下、文献1と呼ぶ)、工業技術院東京工業試験所(1950年10月11日)第10報(以下、文献2と呼ぶ)、工業技術院東京工業試験所(1950年10月11日)第11報(以下、文献3と呼ぶ)、J.A.C.S.61,3241(’36)Marvel(以下、文献4と呼ぶ)等の文献に記載されており、上記の推論が正しいことを裏付けている。
その中で、効果の高い金属イオンとしてZn++、Al+++、Hg+等が挙げられている。但し、これ等の文献内容は、塩化ビニル系樹脂のコンタミ成分として安定性に対する考察として述べられている。このため、これらの文献の実験に用いられた添加量は微量であり、且つ、水系に塩化ビニル系樹脂を分散させて、水系の色相の変化を観察している。例えば、文献2の実験では、塩化ビニル系樹脂に対して各種の金属塩化物を0.1%添加して150℃に加熱し、標準色票と同一明度になるまでの時間を測定して、金属種の効果を考察している。本発明では、前記した金属や無機物等の脱塩酸触媒を、塩化ビニル系樹脂組成物の構成材料として用いており、その添加量は、コンタミをはるかに超えた量であり、例えば、2.5〜10質量%添加し、且つ、固形の状態系であり、更に、これらの文献の記載に比べて高温域での検証の結果を基にしている点で、これらの文献に記載されている事項とは異なり、異なる知見も得ている。上記検討の結果、本発明でも、Zn++が有効なことが確認され、その効果は他の金属カチオンをはるかに超えていた。しかし、本発明者らの検討によれば、Zn++だけでなく金属亜鉛粉末も極めて有効な脱塩酸反応の触媒作用を示した。文献1〜3では、Zn++は、脱塩酸後のポリマー鎖に配位すると報告している。文献4の著者のMarvelは、塩化ビニル樹脂をジオキサン樹脂中で活性亜鉛と反応させて87.2%の塩素が除かれたと報告している。そして、同氏は、下記に示したように、塩化ビニル樹脂をアルカリで処理した場合は、ポリエン構造を、また、亜鉛で処理した場合は、亜鉛が配位した構造を、それぞれ提起している。
Figure 0005992589
Figure 0005992589
しかしながら、本発明者らは、今回の検討結果として、亜鉛を含む点で同様の化合物あっても、その触媒効果には極めて差があることが見出した。即ち、下記に述べるように、本発明者らが行った本発明で規定する180℃×15分・190℃×15分の加熱試験、及び、170℃×40分(単独加熱)加熱、200〜280℃の温度域でそれぞれ10分間の単独の加熱を行った試験で、塩化ビニル系樹脂に対する金属亜鉛粉末及び亜鉛化合物の脱塩酸に対する効果を検討した結果、亜鉛を含む点で同様の化合物の中でも、その挙動に大きな差異があることが明らかになった。金属亜鉛粉末以外に、酸化亜鉛、炭酸亜鉛及び塩化亜鉛等は、大きい触媒効果を示した。しかし、ホウ酸亜鉛、硫酸亜鉛、ステアリン酸亜鉛は、殆ど効果を示さなかった。具体的には、金属亜鉛粉末、酸化亜鉛は、低温域で(185℃で15分、次に195℃で15分での試験)で著しい効果を示したが、硫酸亜鉛或いはステアリン酸亜鉛は、他の金属塩と同程度の低い効果しか示さないことを確認した。また、金属亜鉛粉末、酸化亜鉛は、一定の添加量(5質量%)を超えると効果を示したのに対し、塩化亜鉛は、このような添加量では若干効果が少なく、同程度の効果を得るためには、20質量%以上添加することが必要であった。また、金属亜鉛粉末、酸化亜鉛の場合、添加量が塩化ビニル系樹脂に対して10質量%を超えると効果は飽和的になった。
これ等に対し、金属粉末の、Mg、Al、鉄等では、無添加の塩化ビニル系樹脂で行った試験の脱塩酸量とほぼ同じであり、特別な触媒効果は得られなかった。また、一般的に使用される金属化合物について、同一条件で減量効果を試験した結果、塩化鉄もよい傾向を示すことがわかった。酸化亜鉛、金属亜鉛粉末以外の添加物の場合も、温度を上げて280℃に達すると酸化亜鉛と同程度の脱塩酸状況となった。この点は、文献3で種々のメーカーの塩化ビニル樹脂を単独で加熱した時に230〜280℃間で急激な重量減少を示すという指摘と一致している。そこで、上記検討の結果得られた金属粉末及び金属化合物の脱塩酸に対する効果の差異を基に、塩化ビニル系樹脂に膨張性黒鉛と難燃材であるリン酸化合物とを配合した系における高温(800℃)での燃焼試験を行い、燃焼試験後の膨張体の粘結力を測定した。
その結果、驚くべきことに、上記した試験の結果、比較的低温域(180〜240℃)で脱塩酸に効果が認められた金属粉末及び金属化合物を添加した系では、大きい粘結力を示した。一方、この低温域における脱塩酸効果が少なかった化合物等では、280℃近辺で同じような脱塩酸効果を示しても、高温(800℃)での燃焼試験後の膨張体の粘結力は、極めて小さい数値しか示さなかった。具体的には、塩化ビニル系樹脂に膨張性黒鉛と難燃材であるリン化合物を配合し、各種の金属粉末或いは金属化合物を添加した時の高温(800℃)燃焼試験後の膨張体の粘結力を確認した結果、金属亜鉛粉末、酸化亜鉛(ZnO)は、極めて良好な数値を示した。無添加の場合や、他の金属化合物を添加した場合も高温時に脱塩酸状態になるのに、高温での燃焼試験後の膨張体の粘結力が、金属亜鉛粉末やZnOに比べて著しく劣っている事由は、定かではないが、膨張開始温度域と減量開始温度と関連していると推定している。
本発明者らは、その理由を、熱膨張性黒鉛の膨張開始温度である180〜240℃と、前記した塩化ビニル系樹脂の脱塩酸による急激な加熱減量が生じた温度域の温度が重なっている事実と、下記の事実から、これらのことに起因して上記顕著な効果が得られたものと考えている。即ち、上記温度域で減量した塩化ビニル系樹脂の残渣は、極めて固い状態であった。これ等の事実から、膨張開始温度を過ぎてその後に膨張していく熱膨張性黒鉛の中に、この脱塩酸で硬くなった塩化ビニル系樹脂が補強材の如く絡まっていくと推定される。一方、無添加及び低温域で脱塩酸効果を示さなかった化合物を添加した状態では、280℃近辺で塩化ビニル系樹脂の減量(脱塩酸)が始まるが、その時は、既に充分に膨張した黒鉛は、嵩高くなっているので、この温度で脱塩酸した塩化ビニル系樹脂は遊離状態になり、補強の効果を示さないのではないかと推定される。膨張開始温度域の180〜240℃で黒鉛の膨張化と脱塩酸による炭化(ポリエン化)したポリマーの共存がポイントとなっていると考えられる。いずれの理由にしても、結果として、低温域の燃焼試験で脱塩酸触媒効果を著しく示す配合を適用した熱膨張性塩化ビニル系樹脂組成物は、高温燃焼試験後の膨張体の粘結力も高いとの相関性が明確に示された。なお、金属化合物以外に、低温域の燃焼試験での脱塩酸に寄与する可能性を検討すべく、有機アミン、ホウ酸メラミン、ポリリン酸アンモニウム、過塩素酸アンモニウム/硫酸鉄、更には、通常、塩化ビニル系樹脂の安定剤として使用されるステアリン酸亜鉛やラジカル発生剤等を添加して効果を確認したが、特別な効果は得られなかった。
上記の事実は、文献3において、著者の水谷等も加熱による変化がポリエン化かどうかは断定できないが、架橋構造の生成は考え難いとしていることと一致している。後述する実施例に示したように、塩化ビニル系樹脂に、金属亜鉛粉末を添加した系、酸化カルシウム(酸化Ca)を添加した系及び未添加物の系をそれぞれ加熱した時に、金属亜鉛粉末の場合は、明らかに酸の生成が認められたが、酸化Caを添加した系や未添加物の系では殆ど酸は生成しなかった。従って、金属亜鉛粉末の添加が塩化ビニル系樹脂の脱塩酸を促進していることが明らかである。以上の諸結果より、塩化ビニル系樹脂中に、膨張性黒鉛と本発明で規定する金属化合物等を共存させた熱膨張性塩化ビニル系樹脂組成物とした状態で加熱して得られる膨張体の粘結力と、本発明で規定する低温時における塩化ビニル系樹脂の重量減(ポリエン化)には明らかな相関性が認められた。
本発明者らの検討によれば、膨張性黒鉛の塩化ビニル系樹脂に対する割合は重要な要素ではないが、多すぎると加熱膨張後の膨張体の密度が小さくなり、また、多いと膨張倍率が小さくて延焼防止の役割を果たさない。膨張倍率は、試験前の厚みで800℃加熱後の膨張体の垂直な高さの比で計算され、10倍以上〜20倍以下が好ましい。この範囲を得るためには、塩化ビニル系樹脂100質量部に対して、膨張性黒鉛の配合部数は、50〜150質量部が好ましい。
熱膨張性塩化ビニル系樹脂組成物の機能を評価するために用いた高温燃焼試験後の膨張体の粘結力の測定は、公式で示された方法はなく、自社法にて行った。具体的には、熱膨張性塩化ビニル系樹脂組成物を、1.6mmの厚みの、表面積が20mm×20mmの試料を作製し、この試料を800℃で加熱して測定用の膨張体を得た。得られた膨張体を台に載せ、膨張体の最上部に、100mmφの円柱を密着させ、前記膨張体を前記円柱で、底部から5mmの高さまで押しつぶした。そして、その間に測定された、前記円柱によって感知される最大抗力をkgfで示した。そして、本発明では、この数値が0.8kgf以上である場合を、本発明で目的とする粘結力を実現した樹脂組成物として判断した。本発明で使用する難燃材としては、従来より、リン化合物やアンチモン化合物が用いられているが、組成物の成形のしやすさと難燃効果から、ポリリン酸アンモニウムが特に好ましいことを確認した。難燃剤の、塩化ビニル系樹脂に対する配合割合は、少ないと難燃化の向上効果が期待できず、多すぎると樹脂組成物の粘度が高くなり配合しにくくなるので好ましくない。これ等の点から塩化ビニル系樹脂100質量部に対して50〜150質量部とすることが好ましい。以下、本発明に使用する各成分について説明する。
<塩化ビニル系樹脂>
本発明の熱膨張性塩化ビニル系樹脂組成物を構成する塩化ビニル系樹脂には、(1)塩化ビニル単独重合体、或いは、(2)塩化ビニル及び塩化ビニルと共重合可能な不飽和結合を有する単量体の共重合体であって、且つ、塩化ビニルを50質量%以上含有する塩化ビニル系共重合体等が使用できる。
塩化ビニルと共重合可能な不飽和結合を有する単量体としては、例えば、酢酸ビニル、プロピオン酸ビニル等のビニルエステル;アクリル酸、メタクリル酸;アクリル酸メチル、アクリル酸エチル等のアクリル酸エステル;メタクリル酸メチル、メタクリル酸エチル等のメタクリル酸エステル;エチレン、プロピレン等のオレフィン;アクリロニトリル;スチレン等の芳香族ビニル;塩化ビニリデン等を挙げることができる。
本発明で用いる塩化ビニル系樹脂の平均重合度は特に限定されないが、好ましくは、400〜3,000であり、さらに好ましくは、1,000〜2,000である。平均重合度が、400未満であると、得られる成形体の機械的特性が劣ることがある。平均重合度が、3,000を超えると、成形時における塩化ビニル系樹脂の溶融粘度が高くなり、成形が困難になることがある。なお、溶融粘度を低下させるために成形温度を上昇させると、塩化ビニル系樹脂が分解を起こしてしまい良好な成形物を得ることが困難となる。本発明の熱膨張性塩化ビニル系樹脂組成物は、成形法にもよるが、その粘度が、25℃で、5000〜20000mPa・secであるものを用いることが好ましい。塩化ビニル系樹脂は、一種単独で用いても二種以上を併用してもよい。
<可塑剤>
本発明の熱膨張性塩化ビニル系樹脂組成物には、塩化ビニル系樹脂の可塑剤を含有させることが好ましい。可塑剤としては、例えば、ビス(2−エチルヘキシル)フタレート、ジイソノニルフタレート、ジイソデシルフタレート、ジトリデシルフタレート、高級アルコールの混合フタル酸エステル等のフタル酸誘導体(特にはフタル酸エステル);トリス(2−エチルヘキシル)トリメリテート、トリ(n−オクチル)トリメリテート、トリイソオクチルトリメリテート等のトリメリット酸誘導体(特にはトリメリット酸エステル);ビス(2−エチルヘキシル)アジペート、ジイソノニルアジペート、ジイソデシルアジペート、高級アルコールの混合アジピン酸エステル等のアジピン酸誘導体(特にはアジピン酸エステル);ビス(2−エチルヘキシル)アゼレート、ジイソオクチルアゼレート、ジ−(n−ヘキシル)アゼレート等のアゼライン酸誘導体(特にはアゼライン酸エステル);ビス(2−エチルヘキシル)セバケート、ジイソオクチルセバケート等のセバシン酸誘導体(特にはセバシン酸エステル);フェノール系アルキルスルホン酸エステル等のスルホン酸誘導体(特にはスルホン酸エステル);エポキシ化大豆油、エポキシ化あまに油等のエポキシ誘導体(特にはエポキシ化エステル)等の可塑剤;アジピン酸、アゼライン酸、セバシン酸、フタル酸等のジカルボン酸と、エチレングリコール、プロピレングリコール、ブチレングリコール等の2価アルコールとの重合型エステルであるポリエステル系可塑剤等を使用することができる。これらの可塑剤の中でも、移行性、抽出性、ブリード性等の面から高分子量の可塑剤が好ましい。なお、可塑剤は、一種単独で用いても二種以上を併用してもよい。
上記した可塑剤の添加量は、塩化ビニル系樹脂100質量部に対して、10〜100質量部程度であり、好ましくは20〜80質量部程度である。この添加量が10質量部未満であると、溶融粘度が高く、シート状の製品を形成する場合の成形性が悪くなり、また、成形体が脆くて壊れ易くなるので好ましくない。一方、この添加量が100質量部を超えると、成形体の難燃性が低下するとともに、燃焼時の発煙量が多くなるので好ましくない。
<熱膨張性黒鉛>
本発明の熱膨張性塩化ビニル系樹脂組成物を構成する熱膨張性黒鉛は、例えば、熱膨張性シートとして、窓枠等の空間内に納めた場合に、火災時等の温度上昇によって該シートを膨張させるための発泡成分となるものである。熱膨張性黒鉛は、天然に産出される鱗片状黒鉛の層間に化合物を挿入して中和したもので、熱によって含有している化合物がガスを発生し、その結果、鱗片状の黒鉛が膨張する。
天然に産出される鱗片状黒鉛の粉末を、濃硫酸、硝酸、セレン酸等の無機酸、或いは、酢酸、ギ酸等の有機酸、濃硝酸、過塩素酸、過塩素酸塩、過マンガン酸塩、重クロム酸塩、過酸化水素等の強酸化剤とで処理したものであることが好ましい。上述のように処理した黒鉛は、例えば、アンモニア、脂肪族低級アミン、アルカリ金属化合物、アルカリ土類金属化合物等で、中和処理することが好ましい。
脂肪族低級アミンとしては、例えば、モノメチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、プロピルアミン、ブチルアミン等を挙げることができる。アルカリ金属化合物及びアルカリ土類金属化合物としては、例えば、カリウム、ナトリウム、カルシウム、バリウム、マグネシウム等の水酸化物、酸化物、炭酸塩、硫酸塩、有機酸塩等を挙げることができる。
先に述べたように、火災初期の延焼防止のためには、熱膨張性黒鉛の低温での膨張開始が必要であり、膨張開始温度は、180〜240℃であることが好ましい。特に、本発明の熱膨張性塩化ビニル系樹脂組成物は、先に述べたように、180〜240℃の低温域で、塩化ビニル系樹脂の重量の減少を引き起こし、脱塩酸(ポリエン化)や炭化が促進して硬くなる。このため、膨張開始温度が180〜240℃であるような低温膨張性のものを使用した場合も、膨張していく熱膨張性黒鉛の中に、硬くなった塩化ビニル系樹脂が補強材の如く絡まっていくと考えられ、低い温度域から火炎及び煙の遮断機能を効果的に発揮し得る性能の熱膨張性塩化ビニル系樹脂組成物とすることができる。即ち、上記のように構成した熱膨張性塩化ビニル系樹脂組成物を使用すれば、本発明によって提供される熱膨張性シートは、火災初期のより早い段階で、延焼防止効果が発揮されるものになる。
本発明で使用する熱膨張性黒鉛は、平均粒径が100〜600μmの範囲であるものが好ましく、120〜500μmの範囲であるものが、さらに好ましい。平均粒径がこのような範囲を満たすと、膨張性、作業性及び形状保持性が良好なものとなる。
また、熱膨張性黒鉛の添加量は、塩化ビニル系樹脂100質量部に対して、50〜150質量部程度であることが好ましく、より好ましくは、70〜100質量部である。この添加量が少なすぎると、膨張による難燃効果が十分に得られず、多くなりすぎると、組成物の成形加工が困難になるとともに、発泡(膨張)した際の形状保持性が悪くなる。
<難燃剤>
本発明の熱膨張性塩化ビニル系樹脂組成物は、難燃剤を含有してなる。難燃剤としては、例えば、リン化合物やアンチモン化合物が用いられているが、本発明では、リン化合物の中でも特にポリリン酸アンモニウムを用いることが好ましい。本発明者らの検討によれば、難燃材として、特にポリリン酸アンモニウムを用いると、例えば、コンマコート成形法を利用してある程度の厚みのある熱膨張性シートを得る場合において、その成形性に優れたものになる。また、熱膨張性シートが熱で発泡(膨張)して形成される膨張体は、より崩れのない、炎の圧力で容易には吹き飛ばない、形状保持性に優れたものとなる。本発明者らの検討によれば、これらの効果は、他のリン酸塩を用いた場合と比較して明らかに異なり、効果の点で優位性があった。本発明者らの検討によれば、上記のポリリン酸アンモニウムを用いたことによる効果の優位性は、本発明で規定した脱塩酸触媒との併用によって得られており、理由は定かではないが、これらの成分を併用したことによって有用な相乗効果が得られることを確認している。
ポリリン酸の具体例としては、ピロリン酸、トリポリリン酸、ペンタポリリン酸等を挙げることができる。また、その添加量は、塩化ビニル系樹脂100質量部に対して50〜150質量部であることが好ましく、より好ましくは、70〜100質量部である。この添加量が少なすぎると、難燃効果、膨張時の形状保持効果が現れず、多すぎると、組成物の成形加工が困難になる傾向があると共に、膨張率が低くなるので好ましくない。
<その他の任意成分>
(熱安定剤)
本発明の塩化ビニル系樹脂組成物を成形する際には、熱分解を抑制するために熱安定剤を添加することが好ましい。熱安定剤としては、例えば、Pb系或いはSn系や、Ba/Znの複合系或いはCa/Znの複合系等の、一般的に硬質塩化ビニル系樹脂に用いられるものを使用することができる。これら熱安定剤は、一種単独で用いても二種以上を併用してもよい。また、この熱安定剤を添加する場合の添加量は、塩化ビニル系樹脂100質量部に対して0.1〜10質量部程度であり、より好ましくは、0.5〜5質量部程度である。
(改質剤)
また、本発明の熱膨張性塩化ビニル系樹脂組成物を用いて熱膨張性シートを形成する際の、成形性や物性を向上させるために、組成物中に、アクリル系の加工助剤、アクリロニトリル−ブタジエン−スチレン共重合体(ABS樹脂)、メタクリル酸メチル−ブタジエン−スチレン共重合体(MBS樹脂)、アクリル系ポリマー、塩素化ポリエチレン等の改質剤等を、本発明の効果を損なわない範囲で添加してもよい。
(発泡剤)
さらに、発泡性(膨張性)を増すために、補助発泡剤として、例えば、アゾジカルボンアミド等のアゾ化合物、4,4’−オキシビス(ベンゼンスルホニルヒドラジド)等のヒドラジン化合物、N,N’−ジニトロソペンタメチレンテトラミン等のニトロソ化合物、炭酸水素ナトリウム等の重炭酸塩等を添加してもよい。
<脱塩酸触媒>
前記したように、本発明の熱膨張性塩化ビニル系樹脂組成物は、本発明で規定する「塩化ビニル系樹脂の脱塩酸触媒として機能する物質を特定量配合」させたことを特徴としている。先に、本発明を特徴づける脱塩酸触媒の作用・効果について説明したが、この脱塩酸触媒として機能する物質を用いたことで、本発明の熱膨張性塩化ビニル系樹脂組成物は、低温域から火炎及び煙の遮断機能を効果的に発揮し得、膨張後における膨張体が形状保持性及び機械的強度に優れるものになるものとなる。
本発明を特徴づける脱塩酸触媒は、後述する、本発明で規定する表1に記載の配合の試料Aを180℃で15分、次いで190℃で15分加熱した際に、前記試料Aの重量減が25質量%以上となる物質である。後述するように、上記した定義に合致する物質としては、例えば、金属亜鉛、酸化亜鉛、炭酸亜鉛、塩化亜鉛及び塩化鉄等が挙げられる。この点の詳細については、検討例及び実施例等をもって後述する。
また、脱塩酸触媒の添加量は、本発明で規定したように、脱塩酸触媒となる物質の添加量の範囲が、前記塩化ビニル系樹脂52質量部と前記可塑剤42.8質量部に、更に前記塩化ビニル系樹脂100質量部に対して所望となる量の脱塩酸触媒を添加した試料Bについて、180℃で15分、次いで190℃で15分加熱後に、前記試料Bの重量減が25質量%以上となる範囲内である。すなわち、本発明において重要なことは、180℃で15分、次いで190℃で15分加熱後に、塩化ビニル系樹脂とその可塑剤との重量減が25質量%以上あることにあるので、脱塩酸触媒の添加量は、添加することで上記目的を達成する必要がある。これに対し、本発明者らの検討によれば、本発明者が見出した塩化ビニル系樹脂に対して脱塩触媒として機能する物質は種々のものがあるが、本発明の顕著な効果をより良好に発揮されるための添加量は、添加する物質によって若干異なることがわかった。そこで、本発明では、上記した特定の試料Bの重量減が25質量%以上となる範囲内、と規定した。
本発明を特徴づける脱塩酸触媒の添加量についても、検討例及び実施例をもって詳細に説明するが、例えば、脱塩酸触媒が酸化亜鉛である場合の添加量は、2.5質量%以上であればよく、脱塩酸触媒が金属亜鉛粉末である場合の添加量は、4.5質量%以上であればよく、脱塩酸触媒が塩化亜鉛である場合の添加量は、10.0質量%以上であれば、いずれも充分に、本発明の顕著な効果が得られる。なお、必要以上に多く配合しても、当然のことながら本発明の顕著な効果が得られるが、添加量を増やしたことによる効果の向上は差ほど認められなくなる。一方、あまり多すぎると、経済的でないことに加え、例えば、成形加工時の組成物の溶融粘度が高くなり、成形性が損なわれる等の別の問題が生じる場合もあるので好ましくない。
なお、本発明においては、本発明の効果を損なわない範囲で、必要に応じて、本発明で規定する以外の無機化合物からなる充填剤を併用することも可能であるが、その場合の添加量は、少なくすることが好ましい。本発明で規定する脱塩酸触媒の詳細については、後述する。
必要に応じて添加できる他の無機充填剤としては、従来公知の下記に挙げるようなものが使用できる。例えば、アルミナ、酸化チタン、酸化カルシウム、酸化マグネシウム、酸化鉄、酸化錫、酸化アンチモン、フェライト類等の金属酸化物;水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、ハイドロタルサイト等の含水無機物;塩基性炭酸マグネシウム、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、炭酸ストロンチウム、炭酸バリウム等の金属炭酸塩;硫酸カルシウム、石膏繊維、けい酸カルシウム等のカルシウム塩;シリカ、珪藻土、ドーンナイト、硫酸バリウム、タルク、クレー、マイカ、モンモリロナイト、ベントナイト、活性白土、セピオライト、イモゴライト、セリサイト、ガラス繊維、ガラスビーズ、シリカ系バルン、窒化アルミニウム、窒化ホウ素、窒化けい素、カーボンブラック、グラファイト、炭素繊維、炭素バルン、木炭粉末、各種金属粉、チタン酸カリウム、硫酸マグネシウムチタン酸ジルコン酸鉛、アルミニウムボレート、硫化モリブデン、炭化けい素、ステンレス繊維、ホウ酸亜鉛、各種磁性粉、スラグ繊維、フライアッシュ、脱水汚泥等を挙げることができる。
<組成物の調製方法>
本発明の熱膨張性塩化ビニル系樹脂組成物は、上記した本発明で必須とする成分、及び必要に応じて添加する任意成分を、例えば、ディゾルバーミキサー、ニーダーミキサー等の混練装置を用いて混練することにより得ることができる。混練は、混練装置内の組成物の温度が、20〜50℃となるように行うことが好ましい。その後に熱膨張性シートを成形する方法にもよるが、例えば、コンマコート成形法で熱膨張性シートを成形する場合であれば、熱膨張性塩化ビニル系樹脂組成物を好適なペースト状とすることを要するので、25℃における粘度が5000〜20000mPa・sec程度になるように調整することが好ましい。この組成物に溶剤を加えてペースト状にしてパテとしても利用できる。また、塩化ビニル系樹脂に親和性のある溶剤を適量使用して、塗料化し、塗料(被覆剤)としても用いられる。塩化ビニル系樹脂に親和性のある溶剤としては、例えば、テトラハイドロフランやトルエン等を挙げることができる。
<熱膨張性シートの成形方法>
本発明の熱膨張性塩化ビニル系樹脂組成物は、例えば、簡便なコンマコート成形法を利用することで、容易に熱膨張性シートを成形することができる。ペースト状の熱膨張性塩化ビニル系樹脂組成物を離型性のある基材(原紙)上にコートすることで、適宜な厚みのシートを容易に得ることができる。本発明の熱膨張性シートは、0.5mm〜2.0mm程度であることが好ましいが、本発明の熱膨張性塩化ビニル系樹脂組成物を用い、コンマコート成形法を適用することで容易に得られる。この際、押出成形やカレンダー成形で熱膨張性シートを作製する場合と異なり、樹脂組成物を熱と圧力とで溶融する必要がないので、これらの方法において生じていたシートを冷却した際の収縮の問題が抑制され、良好な状態の均一なシートが得られる。
(熱膨張性シート)
本発明の熱膨張性シートは、上述の熱膨張性塩化ビニル系樹脂組成物をコンマコート成形することによって得られたものである。本発明の熱膨張性シートは、例えば、ガスバーナー等による炎、熱風等によって膨張温度(通常、180℃)以上に加熱することにより膨張する。熱によって膨張した膨張体は、それ自体で形状を保持することができるだけでなく、火炎と煙とを遮断するのに十分な機械的強度を有する。従って、本発明の熱膨張性シートを住宅、ビル等の建物の窓枠(例えば、サッシと壁との間)等に用いることで、火災等の際にも成形体は燃焼せずに窓ガラスを保持し、火炎が裏面に伝播することを防止することができる。本発明の熱膨張性シートは、その他、防火戸等の隙間等の耐火性が必要とされる用途又は防火に必要な場所に用いることができる。
次に、検討例、実施例及び比較例を挙げて本発明をより詳細に説明する。本発明はこれらの例によってなんら限定されるものではない。尚、文中「部」又は「%」とあるのは、特に規定されていなければ質量基準である。
実施例及び比較例で使用した主な成分は以下の通りである。脱塩酸触媒に該当するか否かに用いた物質は、いずれも試薬として販売されているものである。
・塩化ビニル系樹脂
塩化ビニル系樹脂には、平均重合度が1,650の、東ソー社製のリューロンペースト772A(商品名)を用いた。以下、PVCと略記する場合がある。
・可塑剤
塩化ビニル系樹脂の可塑剤であるフタル酸ジオクチル(新日本理化社製、サンソサイザーDOP(商品名))を用いた。以下、DOPと略記する場合がある。
・熱膨張性黒鉛
熱膨張性黒鉛には、膨張開始温度が180℃、平均粒径が180μmの三洋貿易社製のSYZR802(商品名)を用いた。
・難燃材
難燃材には、CBC社製のポリリン酸アンモニウム系化合物であるテラージュC−70(商品名)を用いた。
・熱安定剤
熱安定剤には、Zn/Caの複合系のものを使用した。具体的には、大協化成(株)製のLX−550を用いた。
〔検討例1〕−脱塩酸触媒に該当する物質の選択1
以下のようにして、本発明で規定する脱塩酸触媒に該当する物質を選択した。表1に記載したPVC樹脂液の基準配合の中の添加物として、種々の物質をそれぞれに配合した樹脂液を試料Aとして用意し、加熱試験前に、その重さを測定した。
Figure 0005992589
上記で用意した本発明で規定する試料Aである各配合液について、0.5〜1.0mm程度の厚みになるように、上面がオープン状態の容器に注ぎ、それぞれ、180℃で15分、次いで190℃で15分の加熱を行った後、加熱後の試料Aの残渣物の重さを測った。そして、加熱前に測った重さに対する残渣物の重さの比を算出し、これを試料Aにおける残量%として表2に示した。残量%に並べて括弧書きで重量減%を示した。また、表2中に、試料Aの加熱試験後に得られた残渣物の色相と硬さを併せて示した。残渣物の色相は、目視で観察し、その硬さは、残渣物を手で触った感触を記載した。「可撓性」と記載したものは、樹脂が軟らかい状態であることを意味している。また、「脆いが可撓性有」と記載したものは、目視観察では、残渣物は炭化して黒かったが、「脆くて硬い」としたものとは明らかに手で触った感触が異なっており、柔軟な感触が残っていたことを意味する。
Figure 0005992589
表2に示したように、上記した試料Aについての加熱試験の結果、No.17の酸化亜鉛と、No.21の金属亜鉛粉末は、残渣物の残量%が54%(減量46%)、55%(減量45%)と、無添加或いは他の物質を添加した系に比べて極めて少なく(減量が大きく)、更に、加熱後の残渣物は黒色の極めて硬いものとなることを確認した。また、No.19の炭酸亜鉛の場合も、残渣物の残量%が64%(減量36%)と少なく、上記と同様に、試料Aについての加熱後の残渣物は、黒色の極めて硬いものであった。更に、No.11の塩化鉄を添加した試料Aでは、残渣物の残量%が72%(減量28%)で、No.22の塩化亜鉛を添加した試料Aでは、残渣物の残量%が74%(減量26%)であったが、これらの残渣物は、いずれも目視観察では炭化した黒いものであったが、No.17やNo.21の場合とは明らかに手で触った感触が異なっており、柔軟な感触が若干残っていた。
〔検討例2〕−脱塩酸触媒に該当する物質の選択2
添加物の物質の種類を表3に示した、有機物、アミン、ラジカル発生剤、酸化剤等に替えた以外は検討例1と同様にして、試料Aについての加熱試験を行い、得られた結果を表3に示した。表3でも残量%に並べて括弧書きで重量減%を示した。なお、表3中のDABCOは、複素環式アミンである1,4−ジアザビシクロ[2.2.2]オクタンの略記である。表3に示したように、検討例2で検討した物質(添加物)は、いずれも本発明の効果をもたらすものではないことが確認された。このことから、低温域における塩化ビニル系樹脂の加熱では、酸化反応やラジカルによる架橋効果は、該樹脂の重量減に寄与していないと判断できる。
Figure 0005992589
〔検討例3〕-実施例で使用する脱塩酸触媒の添加量の決定
検討例1で行った本発明で規定する試料Aに対する加熱試験で、試料の重量減が25質量%以上であり、その中でも、残量%が極めて少ない(試料Aの重量減が大きい)ことを確認した、本発明を構成する脱塩酸触媒として有用な酸化亜鉛と金属亜鉛粉末と塩化亜鉛をそれぞれに用い、これらの添加量の範囲を下記の方法で決定した。表4に示したように、酸化亜鉛と金属亜鉛粉末と塩化亜鉛の添加量をそれぞれに変化させた本発明で規定する試料Bを用意し、検討例1と同様にして、用意した各試料Bについての加熱試験を行った。表4に、得られた結果を示した。表4においても、残量%に並べた括弧書きした値が重量減%であるが、その値が25%以上である範囲が、本発明で規定する各脱塩酸触媒の添加量となる。表中に実施例とできる量であるか否かを記載した。表4に示したように、脱塩酸触媒とする物質によって、本発明の顕著な効果が得られる添加範囲が異なることを確認した。しかし、いずれの物質の場合も、塩化ビニル系樹脂100質量部に対して10質量部程度の少ない添加で、本発明の顕著な効果が実現できることがわかった。また、表4に示されているように、脱塩酸触媒の添加によって得られる、低温域における塩化ビニル系樹脂の重量減の効果の発現は、添加量を必要以上に多くしても飽和することがわかった。
Figure 0005992589
〔検討例4〕−添加物質による加熱によって生じる塩化ビニル系樹脂の減量の相違
前述した表1の基本配合において、添加する物質を表5に示した種々のものにした試料Aについて、加熱温度を変化させた時の加熱後の残量%を表5に示した。残量%に並べた括弧書きが重量減%である
Figure 0005992589
表5に示したように、酸化亜鉛は、他の物質と異なり、220℃で著しい減量を示し、240℃以上では減量%は殆ど変わらなかった。これに対し、膨張性黒鉛の膨張開始温度は、180〜240℃であり、酸化亜鉛を添加することによって得られた塩化ビニル系樹脂の残量効果を示す温度域と重なっている。他の物質も280℃の高温になると、大きな減量を示すが、この温度では既に膨張性黒鉛は、かなりの倍率で体積が膨張をしている点で異なり、本発明者らは、このことが本発明の顕著な効果が得られた理由であると考えている。
〔検討例5〕−脱塩酸触媒としての機能等についての考察
表6に示した配合品を試験管に5g採取し、試験管の上部にガス捕集の管を接続した栓をつけた。試験管を180℃15分間、次いで190℃15分間加熱をして発生したガスを捕集瓶中の水に吸収させた。NaOH水溶液で中和滴定を行い中和に要したNaOH量から発生したガス中の酸の量を検出した。ガスは、強い塩酸性の臭いを示した。PVCの分解に伴う脱塩酸と仮定したときの発生モル数とそれによる配合品中のPVCの減量を算出した。また、配合品中の他の成分が消失しないと仮定した時の残量%と、実測の残量%を表6中に示した。No.6−1の酸化亜鉛を添加した系は、No.6−2と6−3に示した添加物無し及び酸化Caを添加物とした系に比べて塩酸の発生が非常に大きいことが確認された。但し、減量の実測値は、それ以上の値になったので、脱塩酸に伴う減量以外に配合品中他の成分、恐らくは、可塑剤であるDOPの消失が生じていると判断される。同温度処理で酸化亜鉛を添加した系以外は減量が殆ど無いことから、脱塩酸によるPVCの構造変化で可塑剤の保留性が失われて大きな減量を生じたと考えられるが、この点については未確認である。なお、減量の数値が表2のNo17と異なるのは実験方法の差異に依るものである。即ち表2の実験はオープン状態であり、表6は試験管の上部をガス補修瓶に接続しているので、可塑剤の放出効果に差が出ると考えられる。
Figure 0005992589
〔検討例6〕−熱膨張性塩化ビニル系樹脂組成物の発泡倍率と粘結力についての考察
検討例1〜5で得られた知見に基づき、表7に示したように、膨張性黒鉛と難燃剤としてポリリン酸アンモニウムと、各種の添加物を配合して熱膨張性塩化ビニル系樹脂組成物をそれぞれ用意した。そして、用意した配合品を800℃まで加熱した時の発泡倍率と粘結力を測定し、得られた結果を表8に示した。
Figure 0005992589
発泡倍率と粘結力は、それぞれ下記のようにして求めた値である。
発泡倍率=試験後の膨張体の垂直高さ/試験前の厚み
粘結力=加熱試験後の膨張体を100φの円柱で押して、5mmまで圧縮する間に測定された最大抗力(kgf)
Figure 0005992589
〔実施例及び比較例〕
上記で本発明で規定する脱塩酸触媒に該当することが明らかとなった酸化亜鉛、金属亜鉛粉末、炭酸亜鉛を、塩化ビニル系樹脂100質量部に対して表9に示した質量部でそれぞれ配合した、表7に記載した配合の配合品を用意し、各配合品についての800℃加熱時の燃焼試験後の膨張体の発泡倍率と粘結力を表9に示した。表9中に、本発明の実施例に該当するものを示した。なお、表9中に示した残量%は、検討例−3で行った検討結果であり、この値に並べて括弧書きで記載した重量減%が25%以上である添加量の場合が本発明に使用可能になる。
Figure 0005992589
表9に示されているように、添加物の種類によって添加量の範囲は多少異なるが、塩化ビニル系樹脂100質量部に対して5〜10質量部の範囲で本発明の顕著な効果を示し、燃焼試験後の膨張体は、粘力の大きい形状保持性及び機械的強度に優れるものになる。また、表9に示されているように、添加量の増加とともに粘結力が良化するが、この点も、添加量を10質量部超と多くしても粘結力は大きく変化していないことを確認した。
〔検討例7〕−燃焼試験での発泡挙動についての考察
表7に記載した配合で、添加物として、本発明で規定した脱塩酸触媒として機能する酸化亜鉛と、そのような機能がないことを確認した炭酸カルシウムとを選択し、それぞれの配合物を用意した。そして、この組成の配合物を、それぞれ100〜800℃まで加熱した。加熱は、グラフ中の測定点の温度で20分間維持するようにして行い、その時点における発泡倍率を順次測定して図示している。結果として、図1に示したように、本発明で規定する試料Aの重量減の効果が大きく、しかも燃焼試験後の膨張体が粘結力の有るものとなる酸化亜鉛も、それらの効果を示さない炭酸カルシウムもほぼ同じ曲線を示した。従って、発泡の挙動は、変わらないことが確認された。

Claims (10)

  1. 塩化ビニル系樹脂に、該樹脂用の可塑剤と、膨張開始温度が180〜240℃である膨張性黒鉛と難燃材と、更に前記膨張開始温度における前記塩化ビニル系樹脂の脱塩酸を促進するための脱塩酸触媒とを含有してなる、火焔初期の延焼防止のための熱膨張性塩化ビニル系樹脂製材料であり、
    前記脱塩酸触媒は、前記塩化ビニル系樹脂として、平均重合度が400〜3,000の塩化ビニル系樹脂を52質量部前記可塑剤として、フタル酸ジオクチルを42.8質量部に、脱塩酸触媒を5.2質量部添加してなる配合の試料Aを、180℃で15分、次いで190℃で15分加熱した際に、前記試料Aの重量減が25質量%以上となる物質であり、且つ、
    該物質の前記塩化ビニル系樹脂100質量部に対しての添加量が、前記平均重合度が400〜3,000の塩化ビニル系樹脂を52質量部と前記フタル酸ジオクチル42.8質量部に、更に前記平均重合度が400〜3,000の塩化ビニル系樹脂100質量部に対して所望となる量の脱塩酸触媒を添加した試料Bについて、180℃で15分、次いで190℃で15分加熱後に、前記試料Bの重量減が25質量%以上となる範囲内であり、
    前記塩化ビニル系樹脂100質量部に、前記熱膨張性黒鉛を50〜150質量部の範囲で含み、
    前記難燃材が、ポリリン酸アンモニウム系化合物であり、
    更に、800℃で加熱して得られる膨張体の粘結力が0.8kgf以上であることを特徴とする熱膨張性塩化ビニル系樹脂製材料。
  2. 前記脱塩酸触媒が、金属亜鉛、酸化亜鉛、塩化亜鉛及び塩化鉄からなる群から選ばれる少なくともいずれかである請求項1に記載の熱膨張性塩化ビニル系樹脂材料。
  3. 更に熱安定剤を含む請求項1又は2に記載の熱膨張性塩化ビニル系樹脂製材料。
  4. 前記脱塩酸触媒が酸化亜鉛であって、その添加量が、塩化ビニル樹脂100に対して2.5質量%以上である請求項1に記載の熱膨張性塩化ビニル系樹脂製材料。
  5. 前記脱塩酸触媒が金属亜鉛粉末であって、その添加量が、塩化ビニル樹脂100に対して4.5質量%以上である請求項1に記載の熱膨張性塩化ビニル系樹脂製材料。
  6. 前記脱塩酸触媒が塩化亜鉛であって、その添加量が、塩化ビニル樹脂100に対して10.0質量%以上である請求項1に記載の熱膨張性塩化ビニル系樹脂製材料。
  7. その形状が、シート状であり、且つ、厚みが0.5mm〜2.0mmである請求項1〜のいずれか1項に記載の熱膨張性塩化ビニル系樹脂製材料。
  8. 窓枠に設置するための請求項に記載の熱膨張性塩化ビニル系樹脂製材料。
  9. その形状が、ペースト状又は塗料状である請求項1〜のいずれか1項に記載の熱膨張性塩化ビニル系樹脂製材料。
  10. 火焔初期の延焼防止のための熱膨張性塩化ビニル系樹脂材料の製造方法であって、
    前記塩化ビニル系樹脂100質量部に対して、膨張開始温度が180〜240℃である熱膨張性黒鉛を50〜150質量部の範囲で、難燃材であるポリリン酸アンモニウム系化合物を50〜150質量部の範囲でそれぞれ用い、更に前記膨張開始温度における、前記塩化ビニル系樹脂の脱塩酸を促進するための脱塩酸触媒と、前記塩化ビニル系樹脂の可塑剤とを用いて、これらを含有してなる熱膨張性塩化ビニル系樹脂製材料を製造する際に、
    前記で使用する脱塩酸触媒を、前記塩化ビニル系樹脂として、平均重合度が400〜3,000の塩化ビニル系樹脂を52質量部前記可塑剤として、フタル酸ジオクチルを42.8質量部に、脱塩酸触媒を5.2質量部添加してなる配合の試料Aを、180℃で15分、次いで190℃で15分加熱した際に、前記試料Aの重量減が25質量%以上となる物質から選択し、且つ、
    前記選択した物質の前記塩化ビニル系樹脂100質量部に対しての添加量を、前記平均重合度が400〜3,000の塩化ビニル系樹脂を52質量部と前記フタル酸ジオクチル42.8質量部に、更に前記塩化ビニル系樹脂100質量部に対して所望となる量の脱塩酸触媒を添加した試料Bについて、180℃で15分、次いで190℃で15分加熱後に、前記試料Bの重量減が25質量%以上となる範囲内となるように決定することを特徴とする熱膨張性塩化ビニル系樹脂製材料の製造方法。
JP2015175216A 2015-09-04 2015-09-04 熱膨張性塩化ビニル系樹脂製材料及び熱膨張性塩化ビニル系樹脂製材料の製造方法 Active JP5992589B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015175216A JP5992589B1 (ja) 2015-09-04 2015-09-04 熱膨張性塩化ビニル系樹脂製材料及び熱膨張性塩化ビニル系樹脂製材料の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015175216A JP5992589B1 (ja) 2015-09-04 2015-09-04 熱膨張性塩化ビニル系樹脂製材料及び熱膨張性塩化ビニル系樹脂製材料の製造方法

Publications (2)

Publication Number Publication Date
JP5992589B1 true JP5992589B1 (ja) 2016-09-14
JP2017048354A JP2017048354A (ja) 2017-03-09

Family

ID=56921011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015175216A Active JP5992589B1 (ja) 2015-09-04 2015-09-04 熱膨張性塩化ビニル系樹脂製材料及び熱膨張性塩化ビニル系樹脂製材料の製造方法

Country Status (1)

Country Link
JP (1) JP5992589B1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017137476A (ja) * 2016-02-02 2017-08-10 積水化学工業株式会社 耐火性樹脂組成物
JP6228658B1 (ja) * 2016-12-28 2017-11-08 株式会社レグルス 熱膨張性塩化ビニル系樹脂材料及び熱膨張性塩化ビニル系樹脂材料の製造方法
JP2018070880A (ja) * 2016-10-24 2018-05-10 積水化学工業株式会社 熱膨張性耐火性シート
JP2018100408A (ja) * 2016-12-19 2018-06-28 積水化学工業株式会社 耐火樹脂組成物及び耐火樹脂成形体
JP2018204016A (ja) * 2016-02-02 2018-12-27 積水化学工業株式会社 耐火性樹脂組成物
JP2021066830A (ja) * 2019-10-25 2021-04-30 株式会社レグルス 樹脂組成物、熱膨張性のシート状又はパテ状の耐火製品及び樹脂組成物の製造方法
CN112778667A (zh) * 2021-01-06 2021-05-11 广西和乐金属表面处理有限公司 一种pvc阻燃密封胶条及其制备方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS517048A (ja) * 1973-07-12 1976-01-21 Ferro Corp
JPS54127456A (en) * 1978-03-13 1979-10-03 Uniroyal Inc Composition having smoking decreasing property
JPS5652810A (en) * 1979-10-05 1981-05-12 Hitachi Cable Insulated electric wire
JPS5817129U (ja) * 1981-07-27 1983-02-02 三菱電線工業株式会社 防護カバ
JPS5995941A (ja) * 1982-11-24 1984-06-02 井関農機株式会社 籾摺機のロ−ル間隙自動制御装置
JP2001192520A (ja) * 1999-07-16 2001-07-17 Takiron Co Ltd 難燃性塩化ビニル系樹脂成形体
JP2002071082A (ja) * 2000-08-28 2002-03-08 Sekisui Chem Co Ltd 吸音耐火管
JP2002174367A (ja) * 2000-09-25 2002-06-21 Sekisui Chem Co Ltd 耐火膨張性パッキンを有する配管構造
US20040110870A1 (en) * 2002-12-04 2004-06-10 Liu Matthew T. Fire protection coating composition
JP2006348228A (ja) * 2005-06-17 2006-12-28 Shin Etsu Chem Co Ltd 熱膨張性塩化ビニル系樹脂組成物およびその成形体
JP2009074689A (ja) * 2007-08-29 2009-04-09 Sekisui Chem Co Ltd 給排水用配管材及びその製造方法
JP2009126963A (ja) * 2007-11-26 2009-06-11 Hitachi Cable Ltd 難燃性塩化ビニル樹脂組成物及び難燃性塩化ビニル樹脂被覆電線
WO2013080562A1 (ja) * 2011-11-29 2013-06-06 積水化学工業株式会社 建材用熱膨張性多層パッキン
WO2014162718A1 (ja) * 2013-03-31 2014-10-09 積水化学工業株式会社 熱膨張性耐火材料およびそれを用いた樹脂サッシの防火構造

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS517048A (ja) * 1973-07-12 1976-01-21 Ferro Corp
JPS54127456A (en) * 1978-03-13 1979-10-03 Uniroyal Inc Composition having smoking decreasing property
JPS5652810A (en) * 1979-10-05 1981-05-12 Hitachi Cable Insulated electric wire
JPS5817129U (ja) * 1981-07-27 1983-02-02 三菱電線工業株式会社 防護カバ
JPS5995941A (ja) * 1982-11-24 1984-06-02 井関農機株式会社 籾摺機のロ−ル間隙自動制御装置
JP2001192520A (ja) * 1999-07-16 2001-07-17 Takiron Co Ltd 難燃性塩化ビニル系樹脂成形体
JP2002071082A (ja) * 2000-08-28 2002-03-08 Sekisui Chem Co Ltd 吸音耐火管
JP2002174367A (ja) * 2000-09-25 2002-06-21 Sekisui Chem Co Ltd 耐火膨張性パッキンを有する配管構造
US20040110870A1 (en) * 2002-12-04 2004-06-10 Liu Matthew T. Fire protection coating composition
JP2006348228A (ja) * 2005-06-17 2006-12-28 Shin Etsu Chem Co Ltd 熱膨張性塩化ビニル系樹脂組成物およびその成形体
JP2009074689A (ja) * 2007-08-29 2009-04-09 Sekisui Chem Co Ltd 給排水用配管材及びその製造方法
JP2009126963A (ja) * 2007-11-26 2009-06-11 Hitachi Cable Ltd 難燃性塩化ビニル樹脂組成物及び難燃性塩化ビニル樹脂被覆電線
WO2013080562A1 (ja) * 2011-11-29 2013-06-06 積水化学工業株式会社 建材用熱膨張性多層パッキン
WO2014162718A1 (ja) * 2013-03-31 2014-10-09 積水化学工業株式会社 熱膨張性耐火材料およびそれを用いた樹脂サッシの防火構造

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017137476A (ja) * 2016-02-02 2017-08-10 積水化学工業株式会社 耐火性樹脂組成物
JP2017141463A (ja) * 2016-02-02 2017-08-17 積水化学工業株式会社 耐火性樹脂組成物
JP2018204016A (ja) * 2016-02-02 2018-12-27 積水化学工業株式会社 耐火性樹脂組成物
JP2018070880A (ja) * 2016-10-24 2018-05-10 積水化学工業株式会社 熱膨張性耐火性シート
JP2019167541A (ja) * 2016-10-24 2019-10-03 積水化学工業株式会社 熱膨張性耐火性シート
JP7000377B2 (ja) 2016-10-24 2022-01-19 積水化学工業株式会社 熱膨張性耐火性シート
JP2018100408A (ja) * 2016-12-19 2018-06-28 積水化学工業株式会社 耐火樹脂組成物及び耐火樹脂成形体
JP2019056120A (ja) * 2016-12-19 2019-04-11 積水化学工業株式会社 耐火樹脂組成物及び耐火樹脂成形体
JP7323280B2 (ja) 2016-12-19 2023-08-08 積水化学工業株式会社 耐火樹脂組成物及び耐火樹脂成形体
JP2018109091A (ja) * 2016-12-28 2018-07-12 株式会社レグルス 熱膨張性塩化ビニル系樹脂材料及び熱膨張性塩化ビニル系樹脂材料の製造方法
JP6228658B1 (ja) * 2016-12-28 2017-11-08 株式会社レグルス 熱膨張性塩化ビニル系樹脂材料及び熱膨張性塩化ビニル系樹脂材料の製造方法
JP2021066830A (ja) * 2019-10-25 2021-04-30 株式会社レグルス 樹脂組成物、熱膨張性のシート状又はパテ状の耐火製品及び樹脂組成物の製造方法
CN112778667A (zh) * 2021-01-06 2021-05-11 广西和乐金属表面处理有限公司 一种pvc阻燃密封胶条及其制备方法

Also Published As

Publication number Publication date
JP2017048354A (ja) 2017-03-09

Similar Documents

Publication Publication Date Title
JP5992589B1 (ja) 熱膨張性塩化ビニル系樹脂製材料及び熱膨張性塩化ビニル系樹脂製材料の製造方法
JP7419459B2 (ja) 樹脂組成物
JP6792026B2 (ja) 熱膨張性耐火樹脂組成物
JP4250153B2 (ja) 熱膨張性塩化ビニル系樹脂組成物およびその成形体
JP6247368B2 (ja) 耐火性樹脂組成物
JP6228658B1 (ja) 熱膨張性塩化ビニル系樹脂材料及び熱膨張性塩化ビニル系樹脂材料の製造方法
JP5352017B1 (ja) 押出成形用塩素化塩化ビニル樹脂組成物
JP6908483B2 (ja) 耐火性樹脂組成物
JP2008180068A (ja) 建築用配管材およびこの建築用配管材の成形方法
JP6263307B1 (ja) 熱膨張性樹脂組成物及び熱膨張性樹脂製材料
JP2019052308A (ja) 熱膨張性耐火シート
JP2019167541A (ja) 熱膨張性耐火性シート
JP2024051159A (ja) 耐火性樹脂組成物、耐火シート及び建具
JP6755819B2 (ja) 耐火樹脂成形体およびそれを備えた建具
JPH09309990A (ja) 塩化ビニル系樹脂組成物
JP2022028679A (ja) 熱膨張性塩化ビニル系樹脂材料、熱膨張性シート及び窓枠又はドア枠
JP2022164721A (ja) 熱膨張性耐火材
JP2021195460A (ja) 熱膨張性耐火材
JP2000043035A (ja) 耐火性樹脂組成物の製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160817

R150 Certificate of patent or registration of utility model

Ref document number: 5992589

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250