JP5990553B2 - 携帯端末用プログラム、携帯端末、自動車運転特性診断システム、自動車加速度算出方法 - Google Patents

携帯端末用プログラム、携帯端末、自動車運転特性診断システム、自動車加速度算出方法 Download PDF

Info

Publication number
JP5990553B2
JP5990553B2 JP2014088009A JP2014088009A JP5990553B2 JP 5990553 B2 JP5990553 B2 JP 5990553B2 JP 2014088009 A JP2014088009 A JP 2014088009A JP 2014088009 A JP2014088009 A JP 2014088009A JP 5990553 B2 JP5990553 B2 JP 5990553B2
Authority
JP
Japan
Prior art keywords
mobile terminal
acceleration
detected
vehicle
portable terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014088009A
Other languages
English (en)
Other versions
JP2015207186A (ja
JP2015207186A5 (ja
Inventor
昇 木山
昇 木山
辰昭 長船
辰昭 長船
祖父江 恒夫
恒夫 祖父江
高橋 利光
利光 高橋
喜文 泉
喜文 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2014088009A priority Critical patent/JP5990553B2/ja
Priority to EP15164453.1A priority patent/EP2937814A1/en
Priority to US14/692,367 priority patent/US20150298705A1/en
Publication of JP2015207186A publication Critical patent/JP2015207186A/ja
Publication of JP2015207186A5 publication Critical patent/JP2015207186A5/ja
Application granted granted Critical
Publication of JP5990553B2 publication Critical patent/JP5990553B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W40/09Driving style or behaviour
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/08Insurance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/22Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/59Context or environment of the image inside of a vehicle, e.g. relating to seat occupancy, driver state or inner lighting conditions
    • G06V20/597Recognising the driver's state or behaviour, e.g. attention or drowsiness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Multimedia (AREA)
  • Marketing (AREA)
  • Technology Law (AREA)
  • General Business, Economics & Management (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Development Economics (AREA)
  • Transportation (AREA)
  • Mathematical Physics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)
  • Time Recorders, Dirve Recorders, Access Control (AREA)
  • Television Signal Processing For Recording (AREA)
  • Telephone Function (AREA)
  • Telephonic Communication Services (AREA)

Description

本発明は、携帯端末用プログラムおよび携帯端末と、この携帯端末を用いた自動車運転特性診断システムおよび自動車加速度算出方法に関する。
近年、ドライバーの利用状況に応じて自動車の保険料を決定する保険サービスが提供されている。このような保険サービスでは、各ドライバーの事故リスクに応じて適切な保険料を決定するために、例えば優良運転者免許証(ゴールド免許)を保有している場合は保険料を安くしたり、年間走行距離に応じて保険料を変化させたりするなど、各ドライバーの運転特性を考慮して保険料を設定する必要がある。
上記のような運転特性の評価方法では、事故リスクとの関連性が統計的に判明しているパラメータが一般に利用される。しかしながら、例えば普段は全く運転しないドライバーが優良運転者免許証を保有している場合や、運転の習熟度が浅いために年間走行距離に応じて事故リスクが変動しない場合などのように、統計的傾向から外れる特定のドライバーについては、事故リスクを正しく見積もることができない。そのため、事故リスクの高いドライバーには高い保険料を、事故リスクの低いドライバーには低い保険料をそれぞれ適切に適用することが難しいという問題点がある。
上記のような問題への対策方法として、自動車の走行履歴(プローブデータ)を活用して、各ドライバーの運転特性を個別に診断し、保険料金への反映に活用するサービスが検討されている。各ドライバーの運転特性は、自動車運転時のアクセルやブレーキの傾向、特に急アクセルや急ブレーキの回数などを基準に算出される。自動車の加速度を算出する手段として、カーナビゲーション端末を利用するだけではなく、スマートフォンなどの携帯端末や、より精度の高い加速度センサを搭載した携帯端末用クレードルを利用する場合もある。たとえば特許文献1には、自動車のダッシュボード上に装着されたクレードルに携帯端末を固定し、クレードルに内蔵された高精度のセンサ部での検出結果を用いて、携帯端末のセンサ部で検出した自動車の挙動情報を補完することが開示されている。
特許第4729137号
特許文献1に開示された従来技術において、携帯端末のセンサ部で自動車の挙動を検出したり、その検出結果をクレードルのセンサ部での検出結果を用いて補完したりするためには、自動車の移動方向と、クレードルおよび携帯端末のセンサ部の検出軸方向とが、互いに既知の関係にある必要がある。したがって、例えばドライバーが携帯端末の画面を見やすいように傾けてしまった場合には、携帯端末のセンサ部の検出軸方向が変化してしまうため、自動車の挙動を正確に検出できなくなる。その結果、正しく運転特性を診断できないという問題点がある。
本発明は、上記のような従来技術の課題を解消するためになされたものである。その主な目的は、ドライバーの運転特性を診断するために、携帯端末の設置状況に関わらず、携帯端末を用いて自動車の挙動を正確に検出することにある。
本発明の一態様による携帯端末用プログラムは、3軸方向の加速度を検出する加速度センサおよび演算装置を備えた携帯端末において実行されるプログラムであって、前記携帯端末が静止状態であるか否かを判断し、前記携帯端末が静止状態であると判断した場合に、前記携帯端末の静止状態を検出すると共に、前記携帯端末の傾斜角度を算出する第1の処理を、前記演算装置に実行させ、前記携帯端末が搭載された自動車が直進状態であるか否かを判断し、前記自動車が直進状態であると判断した場合に、前記自動車の直進状態を検出すると共に、前記自動車の進行方向に対する前記携帯端末の回転角を算出する第2の処理を、前記第1の処理において前記携帯端末の静止状態を検出済みである場合に、前記演算装置に実行させ、前記傾斜角度および前記回転角に基づいて、前記加速度センサにより検出された加速度を前記自動車の加速度に変換する第3の処理を、前記第1の処理において前記携帯端末の静止状態を検出済みであり、かつ前記第2の処理において前記自動車の直進状態を検出済みである場合に、前記演算装置に実行させるものである。
本発明による携帯端末は、3軸方向の加速度を検出する加速度センサを備え、上記の携帯端末用プログラムを実行するものである。
本発明による自動車運転特性診断システムは、上記の携帯端末と、前記携帯端末と無線通信を行うセンタ装置とを備え、前記携帯端末は、前記携帯端末が搭載された自動車の加速度を検出して前記センタ装置に送信し、前記センタ装置は、前記携帯端末から送信された前記自動車の加速度の履歴に基づいて、前記自動車のドライバーに対する運転特性診断を行うものである。
本発明による自動車加速度算出方法は、3軸方向の加速度を検出する加速度センサを備えた携帯端末を用いて、前記携帯端末が搭載された自動車の加速度を算出する方法であって、前記携帯端末が静止状態であるか否かを判断し、前記携帯端末が静止状態であると判断した場合に、前記携帯端末の静止状態を検出して前記携帯端末の傾斜角度を算出し、前記携帯端末の静止状態を検出済みである場合に、前記自動車が直進状態であるか否かを判断し、前記自動車が直進状態であると判断した場合に、前記自動車の直進状態を検出して前記自動車の進行方向に対する前記携帯端末の回転角を算出し、前記携帯端末の静止状態を検出済みであり、かつ前記自動車の直進状態を検出済みである場合に、前記傾斜角度および前記回転角に基づいて、前記加速度センサにより検出された加速度を前記自動車の加速度に変換することにより、前記自動車の加速度を算出するものである。
本発明によれば、ドライバーの運転特性を診断するために、携帯端末の設置状況に関わらず、携帯端末を用いて自動車の挙動を正確に検出することができる。
携帯端末による自動車運転特性診断システムの構成例を示す図である。 携帯端末の3軸加速度センサが検出する加速度の3軸の定義の一例を示す図である。 地球に対する加速度の3軸の定義の一例を示す図である。 自動車に対する加速度の3軸の定義の一例を示す図である。 テレマティクスセンタの記憶装置に蓄積されるユーザ情報およびプローブ情報のフォーマットの一例を示す図である。 プローブ情報の収集および蓄積に関する処理の流れを示す図である。 動画データの収集および蓄積に関する処理の流れを示す図である。 端末座標系から自動車座標系への回転行列を算出する処理の流れを示す図である。 端末静止判定の処理の流れを示す図である。 自動車直進判定の処理の流れを示す図である。 ドライバーの運転特性の診断および診断結果の表示に関する処理の流れを示す図である。 自車両の運転開始前に携帯端末の入出力装置に表示される画面の一例を示す図である。 自車両の運転開始後に携帯端末の入出力装置に表示される画面の一例を示す図である。 携帯端末の入出力装置に表示される自動車運転特性診断結果の画面の一例を示す図である。
以下では、図1〜図14を参照しながら、本発明の一実施形態を説明する。
図1に、本発明の一実施形態に関する、携帯端末による自動車運転特性診断システムの構成例を示す。
図1に示す携帯端末による自動車運転特性診断システムは、運転時のプローブデータを収集し送信する携帯端末100と、携帯端末100からプローブデータを受信し運転特性を診断するテレマティクスセンタ200と、これらの間で通信を可能とするネットワーク300から構成される。ネットワーク300には、例えば携帯電話網、インターネット網、無線LAN等の近距離無線通信網や、あるいはそれら複数の組み合わせで構成されたものなどが挙げられる。
携帯端末100は、演算装置110と、記憶装置120と、入出力装置130と、3軸加速度センサ140と、位置測位センサ150と、カメラ160と、3軸地磁気センサ170と、通信部180からなる。携帯端末100としては、例えば自動車に搭載されるPND(Portable Navigation Device)、スマートフォン、ドライブレコーダや、これらを自動車に固定するためのクレードルなど、それらの組み合わせにて構成されることが考えられる。以下では、この携帯端末100が搭載された自動車を「自車両」と称する。
演算装置110は、例えばCPU(Central Processing Unit)やRAM(Random Access Memory)などから構成され、所定の動作プログラムを実行することで、携帯端末100の各種機能を実現するための処理を行う。この演算装置110は、プローブ蓄積処理部111、プローブ送信処理部112、加速度変換処理部113、動画撮影処理部114、動画編集処理部115、動画送信処理部116、車両状態検出処理部117および運転特性表示処理部118を機能的に有する。これらの機能は、演算装置110においてそれぞれ所定のプログラムが実行されることにより実現されるものである。すなわち、演算装置110で実行されるプログラムにより、プローブ蓄積処理部111、プローブ送信処理部112、加速度変換処理部113、動画撮影処理部114、動画編集処理部115、動画送信処理部116、車両状態検出処理部117および運転特性表示処理部118として演算装置110を機能させることができる。
プローブ蓄積処理部111は、3軸加速度センサ140、位置測位センサ150および3軸地磁気センサ170の各センサから取得したセンサ値に基づいてプローブデータを収集し、記憶装置120に蓄積させる。プローブ蓄積処理部111で収集されたプローブデータは、記憶装置120にプローブ情報122として蓄積される。
プローブ送信処理部112は、通信部180を用いて、記憶装置120に蓄積されたプローブ情報122をテレマティクスセンタ100に送信する。これにより、携帯端末100で収集されたプローブデータが通信部180からネットワーク300を介してテレマティクスセンタ100に送信される。
加速度変換処理部113は、記憶装置120に蓄積されたプローブ情報122と自車両の状態から、自車両の前後・左右・上下方向の加速度を計算するための処理を実行する。なお、この加速度変換処理部113が行う処理については、後で詳しく説明する。
動画撮影処理部114は、カメラ160を利用して自車両の前方等の風景を撮影することにより、自車両の運転中の風景を表す運転動画を取得する。動画撮影処理部114で撮影された運転動画のデータは、記憶装置120に動画データ123として蓄積される。
動画編集処理部115は、記憶装置120に蓄積された動画データ123から必要な部分を切り抜いて抽出することで、運転動画の編集を行う。
動画送信処理部116は、通信部180を用いて、動画編集処理部115で編集された運転動画をテレマティクスセンタ100に送信する。これにより、携帯端末100で撮影された自車両の運転風景に関する運転動画が通信部180からネットワーク300を介してテレマティクスセンタ100に送信される。
車両状態検出処理部117は、記憶装置120に蓄積されたプローブ情報122に基づいて、現在の携帯端末100や自車両の状態を特定するための処理を実行する。なお、この車両状態検出処理部117が行う処理については、後で詳しく説明する。
運転特性表示処理部118は、自車両のドライバーに対する運転特性の診断結果をテレマティクスセンタ100に問い合わせ、これに応じてテレマティクスセンタ100から送信される運転特性診断結果を通信部180により受信して入出力装置130に表示する。なお、運転特性表示処理部118は、プローブデータを送信する携帯端末100のみに限らず、他の情報端末に搭載されていてもよい。例えば、自車両のドライバーが所有する他の携帯端末や、PC(Personal Conputer)などが運転特性表示処理部118を所有し、テレマティクスセンタ200に対して対象ドライバーの運転特性診断結果を問い合わせても良い。
記憶装置120は、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)、フラッシュメモリ、ROM(Read Only Memory)などから構成される。この記憶装置120には、ユーザ情報121、プローブ情報122、動画データ123および地図情報124が格納される。ユーザ情報121は、携帯端末100を所有するシステム利用者を管理するための情報である。地図情報124は、各地の道路の位置情報や接続情報、勾配情報などを含む。なお、地図情報124は、テレマティクスセンタ200の記憶装置220に蓄積されていても良い。その場合、携帯端末100が地図情報124を利用する場合には、ネットワーク300を介してテレマティクスセンタ200に問い合わせることなどが考えられる。また、演算装置110が実行するプログラムや、プログラムの実行に必要な各種のデータ群なども記憶装置120に格納されている。
入出力装置130は、入力装置として機能する各種の操作部材と、出力装置として機能する画像表示部や音声出力部とを有する。この入出力装置130は、例えばタッチパネル、キーボード、マウス、スピーカなどの組み合わせからなる。
3軸加速度センサ140は、携帯端末100が受ける3軸方向の加速度を検出し、その検出結果を演算装置110に出力する。
位置測位センサ150は、携帯端末100の位置(すなわち自車両の位置)を検出し、その検出結果を演算装置110に出力する。この位置測位センサ150は、例えばGPS(Grobal Positioning System)などの規格に基づいて、衛星から送信される電波を受信し、その電波に含まれる時刻情報から位置を算出する。なお、位置測位センサ150を利用することで、現在時刻を検出することもできる。
カメラ160は、動画撮影機能を有しており、携帯端末100を自車両に設置したときに、その撮影方向が車外風景を撮影可能な位置および向きに取り付けられている。
3軸地磁気センサ170は、携帯端末100が受ける地磁気から携帯端末100の3軸方向の方位角を検出する方位角センサである。この3軸地磁気センサ170により検出された方位角は、演算装置110に出力される。なお、地磁気センサ以外の方位角センサを利用して携帯端末100の3軸方向の方位角を検出しても良い。
通信部180は、有線LAN(Local Area Network)や無線LANなどの有線通信あるいは無線通信あるいはその両方に必要な通信規格に準拠するネットワークカードなどから構成され、テレマティクスセンタ100と各種通信プロトコルに基づきデータを送受信する。テレマティクスサーバ200から送信されるデータは、通信部180から運転特性表示処理部118へ渡される。
テレマティクスセンタ200は、演算装置210と、記憶装置220と、通信部230から構成される。
演算装置210は、例えばCPUやRAMなどから構成され、所定の動作プログラムを実行することで、テレマティクスセンタ200の各種機能を実現するための処理を行う。演算装置210は、プローブ受信処理部211、動画データ受信処理部212および運転特性診断処理部213を機能的に有する。これらの機能は、演算装置210においてそれぞれ所定のプログラムが実行されることにより実現されるものである。すなわち、演算装置210で実行されるプログラムにより、プローブ受信処理部211、動画データ受信処理部212および運転特性診断処理部213として演算装置210を機能させることができる。
プローブ受信処理部211は、プローブ送信処理部112により携帯端末100からネットワーク300を介して送信されたプローブデータを受信する。受信されたプローブデータは、記憶装置220にプローブ情報222として蓄積される。
動画データ受信処理部212は、動画送信処理部116により携帯端末100から送信された自車両の運転風景に関する運転動画を受信する。受信された運転動画は、記憶装置220に動画データ223として蓄積される。
運転特性診断処理部213は、運転特性表示処理部118からの問い合わせに応じて、記憶装置220に蓄積されているプローブ情報222に基づいて、自車両のドライバーに対する運転特性を診断する。運転特性診断処理部213による運転特性の診断結果は、通信部230により、ネットワーク300を介して携帯端末100に送信される。なお、テレマティクスセンタ200は、運転特性診断処理部213の処理結果を、携帯端末100以外の情報端末やセンタに対して送信しても良い。この場合、例えば自動車保険会社のシステムを構築するセンタに対して、ドライバーの保険料を決定するために運転特性診断結果を送信することなどが考えられる。
記憶装置220は、例えば、HDD、SSD、フラッシュメモリ、ROMなどから構成される。この記憶装置220には、ユーザ情報221、プローブ情報222、動画データ223が格納される。ユーザ情報221は、携帯端末100を用いてプローブデータを送信するシステム利用者を管理するための情報であり、携帯端末100の記憶装置120に蓄積されているユーザ情報121に対応している。また、演算装置210が実行するプログラムや、プログラムの実行に必要な各種のデータ群なども記憶装置220に格納されている。
通信部230は、有線LANや無線LANなどの有線通信あるいは無線通信あるいはその両方に必要な通信規格に準拠するネットワークカードなどから構成され、携帯端末100と各種プロトコルに基づきデータを送受信する。携帯端末100から送信されるデータは、通信部230からプローブ受信処理部211や動画データ受信処理部212へ渡される。
図2に、携帯端末100の3軸加速度センサ140が検出する加速度の3軸の定義について一例を示す。
図2において、携帯端末100には、例えばスマートフォンのようにタッチパネルなどの表示装置が入出力装置130の一部として装着されている。この時、3軸加速度センサ140が検出する加速度の軸を3つ、図2に示すようにそれぞれ定義する。具体的には、入出力装置130の表示面に対して、携帯端末100の上下方向(長手方向)に並行なx軸と、入出力装置130の表示面に対して、携帯端末100の左右方向(短手方向)に並行なy軸と、入出力装置130の表示面に対して垂直なz軸とを定義する。各軸の正方向は、x軸は画面上方向、y軸は画面右方向、z軸は画面下方向であると定義する。したがって、例えば携帯端末100がスマートフォンであれば、その画面が上を向く様に平坦な机に置いた場合、重力加速度はz軸に正の方向に表れる。
入出力装置130の上側を飛行機の機首に見立てた場合、x軸はRoll(ロール)回転軸、y軸はPicth(ピッチ)回転軸、z軸はYaw(ヨー)回転軸に一致する。なお、各回転軸における正の方向の回転とは、ロール回転ではy軸をz軸に向ける方向に、ピッチ回転ではz軸をx軸に向ける方向に、ヨー回転ではx軸をy軸に向ける方向にそれぞれある位置ベクトルを回転することであると定義される。なお、以降では、携帯端末100が表現する加速度の3軸にて表現される座標系を「端末座標系」あるいは「xyz座標系」と表記する。
また、携帯端末100において、3軸地磁気センサ170を利用することで得られる携帯端末100の方位角は、図2に示す携帯端末100のx軸の向きによって定義される。例えば、x軸が真北方向を向いているときの方位角を0とした場合、3軸地磁気センサ170は、真北方向に対するx軸のずれ角として方位角を検出する。
図3に、地球上の特定の地点における、加速度の3軸の定義について一例を示す。
図3において、地球400上の特定の地点に対して、加速度の軸を3つ、図3に示すようにそれぞれ定義する。具体的には、特定地点と地球400の中心の2点を通る直線から成るZ軸と、Z軸に垂直で、北極点と南極点と特定地点の3点を通る平面に並行なX軸と、Z軸とX軸に垂直なY軸とを定義する。この場合、X軸は経線に、Y軸は緯線に平行である。各軸の正方向は、X軸は北方向、Y軸は東方向、Z軸は地球400の中心方向であると定義する。したがって、地球400上に静止する物体に対して、重力加速度はZ軸の正方向に表れる。なお、以降では、地球400が表現する加速度の3軸にて表現される座標系を「地球座標系」あるいは「XYZ座標系」と表記する。
ここで、端末座標系の位置ベクトルを地球座標系の位置ベクトルに変換するための回転式を下記の数式1に示す。
Figure 0005990553
(数式1)
数式1では、xyz座標系をx軸回りにα回転してx’y’z’座標系に変換する行列をRx(α)と、x’y’z’座標系をy’軸回りにβ回転してx’’y’’z’’座標系に変換する行列をRy’(β)と、x’’y’’z’’座標系をz’’軸回りにγ回転して変換する行列をRz’’(γ)とそれぞれ表記している。図2に示した端末座標系を図3に示した地球座標系に変換する場合、回転の順序をロール回転軸、ピッチ回転軸、ヨー回転軸の順と定義すると、オイラー角の定義に基づく回転行列は数式1の通りとなる。以降、全ての回転行列は、オイラー角の定義に基づく「ロール回転軸(x軸あるいはX軸あるいはX’軸)」、「ピッチ回転軸(y軸あるいはY軸あるいはY’軸)」、「ヨー回転軸(z軸あるいはZ軸あるいはZ’軸)」の順で算出されるものであると定めるが、本発明はその順に限定するものではない。
また、数式1で表現される回転角α,β,γは、携帯端末100の地球座標系に対する設置状態の傾斜角度ともみなすことができる。
図4に、自車両における、加速度の3軸の定義について一例を示す。
図4において、自車両である自動車500に対して、加速度の軸を3つ、図4に示すようにそれぞれ定義する。具体的には、自動車500の中心と地球の中心の2点を通る直線からなるZ’軸と、Z’軸に垂直で、自動車500の正面方向、すなわち自動車500が全くハンドル操作をせずに加速した場合に進む方向に平行な、自動車500の前後方向を示すX’軸と、Z’軸およびX’軸に垂直で、自動車500の左右方向を示すY’軸とを定義する。各軸の正方向は、X’軸は自動車500の進行方向、Y’軸は自動車500の進行方向に対する右方向、Z’軸は地球の中心方向であると定義する。この時、Z’軸は図3に示したZ軸と一致する。なお、以降では、自動車500が表現する加速度の3軸にて表現される座標系を「自動車座標系」あるいは「X’Y’Z’座標系」と表記する。
なお、図4の自動車座標系は、重力の方向が一致することから、自動車座標系の位置ベクトルは図3に示した地球座標系の位置ベクトルをZ軸(Z’軸)周りに回転することで得ることができる。
図5に、図1に示した携帯端末による自動車運転特性診断システムにおいて、テレマティクスセンタ200の記憶装置220に蓄積されるユーザ情報221とプローブ情報222のフォーマットの一例を示す。
図5において、ユーザ情報221は、ユーザID600、車種情報601、端末機種情報602、年齢603、性別604、運転歴605、年間走行距離606、事故回数607から構成される。
ユーザID600は、プローブデータをアップロードする各ユーザ(ドライバー)を一意に特定するための識別子である。テレマティクスセンタ200には、サービス利用者として登録されている複数のユーザが所持する各携帯端末100に対して、それぞれ固有のユーザIDが割り当てられている。この各携帯端末100に対して割り当てられたユーザIDの情報が、記憶装置220にユーザID600として記録される。
車種情報601は、各ユーザが運転する自車両の車種を表す情報である。
端末機種情報602は、各ユーザが運転特性診断に利用する携帯端末100の機種を表す情報である。
年齢603、性別604、運転歴605は、各ユーザの年齢、性別、運転歴をそれぞれ表す。年間走行距離606、事故回数607は、各ユーザの昨年の年間走行距離、累計事故回数をそれぞれ表す。
図5において、プローブ情報222は、プローブID610、ユーザID611、トリップID612、データ取得時刻613、位置座標614、端末座標系3軸加速度615、端末座標系3軸差分加速度616、設置角度617、自動車座標系3軸加速度618から構成される。
プローブID610は、プローブ情報222が表す各プローブデータを一意に特定するための識別子である。テレマティクスセンタ200には、前述のユーザIDが割り当てられた各ユーザが所持する携帯端末100から、所定のタイミングでプローブデータが送信される。携帯端末100からプローブデータを受信すると、テレマティクスセンタ200は、その各々に対して固有のプローブIDを割り当てる。こうして各プローブデータに対して割り当てられたプローブIDの情報が、記憶装置220にプローブID610として記録される。
ユーザID611は、各プローブデータをアップロードしたユーザを表す情報であり、ユーザ情報221に含まれるユーザID600と対応付けられている。
トリップID612は、各プローブデータの、出発地から目的地までのある一連の移動(トリップ)を一意に特定するための識別子である。すなわち、出発地から目的地まで自車両が移動する際に、当該自車両に搭載された携帯端末100において収集された一連の各プローブデータには、トリップID612として同じ識別子が付される。
データ取得時刻613、位置座標614は、各プローブデータを取得した時刻と位置をそれぞれ表す。
端末座標系3軸加速度615は、各プローブデータを取得したときに3軸加速度センサ140が取得した端末座標系における加速度の値である。端末座標系3軸差分加速度616は、端末座標系3軸加速度615が表す加速度の値から、重力加速度による影響を除外した値を表す。
設置角度617は、各プローブデータを取得したときの携帯端末100の地球座標系に対する設置角度を示す。自動車座標系3軸加速度618は、端末座標系3軸加速度615が表す端末座標系における加速度の値を、自動車座標系の加速度の値に変換した値を示す。なお、これらの値の算出方法については、後で詳細に説明する。
なお、端末座標系3軸加速度616および設置角度617は、後述する図8において、携帯端末100の静止状態を検出済みでない場合はその値を算出できない。そのため、当該取得時刻におけるプローブデータの値には、図5に示すように「Null」が入る。
同様に、自動車座標系3軸加速度618は、後述する図8において、自車両の直進状態を検出済みでない場合はその値を算出できない。そのため、当該取得時刻におけるプローブデータの値には、図5に示すように「Null」が入る。
なお、携帯端末100の記憶装置120に蓄積されるユーザ情報121とプローブ情報122のフォーマットも、図5に示したのと同様の構造を有している。ただし、ユーザ情報121とプローブ情報122には、図5のユーザ情報221とプローブ情報222とは異なり、当該ユーザに関する情報のみが記録される。
次に、図1に示した携帯端末による自動車運転特性診断システムにおいて、携帯端末100とテレマティクスセンタ200でそれぞれ実行される処理について、図6〜図8に示す処理フローを参照して説明する。なお、以降の図6〜図8に示す処理フローは、自車両の移動を検知し、必要な計算を実施した上で、端末座標系を自動車座標系に変換する回転行列を導出するためのものである。これにより、携帯端末100の3軸加速度センサ140で検知した3軸方向の加速度を、自車両の前後・左右・上下方向の加速度に変換することが目的である。なお、以降の実施例では、図6〜図8に示す携帯端末100の処理は、全て並列で行われるものとして説明する。ただし、図6〜図8の処理を並列で実行しなくても構わない。
図6に、携帯端末100のプローブ蓄積処理部111、プローブ送信処理部112および加速度変換処理部113と、テレマティクスセンタ200のプローブ受信処理部211とによる、プローブ情報の収集および蓄積に関する処理の流れを示す。この図6の処理フローに示す処理は、携帯端末100の演算装置110およびテレマティクスセンタ200の演算装置210において、それぞれ所定のプログラムを実行することで行われる。
図6において、携帯端末100のプローブ蓄積処理部111は、携帯端末100が自車両、すなわち図4に示した自動車500に設置され、ドライバーが自車両の運転を開始したか否かを確認する(S700)。運転開始を検知する方法は、例えば図12に示す様に、運転開始前に「運転開始」を入力するためのボタン1301を入出力装置130に表示し、ドライバーがこのボタン1301を押下すると、運転開始と判断する方法などが考えられる。または、携帯端末100のセンサ値の変化を運転開始の判断基準として用いても良い。例えば、3軸加速度センサ140の検出値が一定値を超えた場合や、位置測位センサ150により検出された位置情報が急激に変異した場合などに、運転開始と判断することができる。
プローブ蓄積処理部111が運転開始を検出できなかった場合(S700:No)には、再度運転開始を確認するため、S700の判定処理を継続して実行する。なお、上記の通りボタン1301の押下を運転開始と見立てる場合は、S700はイベントドリブンな処理であってもよい。また、センサ値の変化を運転開始と見立てる場合は、S700はループ処理であれば良い。
プローブ蓄積処理部111が運転開始を検出した場合(S700:Yes)には、運転開始から終了までの一連の運転行動を特定するため、トリップID612を一意な値として生成する。その後、一定時間待機した後(S701)、3軸加速度センサ140、位置測位センサ150、3軸地磁気センサ170の各センサから、携帯端末100の端末座標系での加速度、現在地および方位角と、それらのセンサ値を取得した日時を取得する(S702)。なお、携帯端末100の位置情報は、自車両の位置情報としてとらえることが可能である。
なお、S701での一定時間待機の処理は実施せずに、携帯端末100の演算装置110が処理できる範囲で、各センサからリアルタイムにセンサ値を取得しても良い。
次に、加速度変換処理部113は、プローブ蓄積処理部111が取得した端末座標系での加速度を自動車座標系に変換する処理を行う。まず、加速度変換処理部113は、携帯端末100の静止状態を検出済みであるかを確認する(S703)。静止状態の検出方法については、図8により後述する。
携帯端末100の静止状態が未検出である場合(S703:No)は、自動車座標系の加速度を算出できない。そのため、加速度変換処理部113は処理を終了し、処理フローを後述のS710に進める。
携帯端末100の静止状態を検出済みである場合(S703:Yes)は、まず加速度変換処理部113は、検出済みの携帯端末100の静止状態をドライバーの指示に応じて解除できるようにするため、後述の図13に示すボタン1405を入出力装置130に表示する(S704)。そして、記憶装置120に蓄積されている地図情報124から、自車両が走行している道路の傾きを表す情報として、S702で取得した現在地における、携帯端末100の方位角に対する道路の勾配角度情報を取得する(S705)。以降では、S705で取得した道路の勾配角度を、地球座標系におけるX軸回転角LCxおよびY軸回転角LCyで表す。なお、この2つの回転角は、地球座標系をY軸回転、X軸回転の順に回転する際のオイラー系における回転角を示しているものとする。なお、道路の勾配情報を考慮しない場合は、S705を省略しても良い。
続いて、加速度変換処理部113は、S702で取得した各センサ値のうち端末座標系の加速度に基づいて、重力加速度を除外した携帯端末100の加速度を算出する(S706)。ここでは、S702で取得した端末座標系の3軸での加速度の値から、携帯端末100が静止状態にあると判定されたときに検出された端末座標系の3軸での加速度の値を差し引くことにより、重力加速度を除外した携帯端末100の加速度を算出することができる。なお、携帯端末100が静止状態にあるか否かの判定は、後述する図8のS903において、車両状態検出処理部117により行われる。
なお、携帯端末100が静止状態にあるときに検出された端末座標系の加速度では、現在地の道路勾配角度が考慮されていない。そのため、道路の勾配角度を考慮する場合には、S705で取得した道路の勾配角度を表すX軸回転角LCx、Y軸回転角LCyを用いて、静止時に得られた端末座標系の加速度を回転変換し、これをS702で取得した端末座標系の加速度から差し引くことが好ましい。この時、S705で取得したX軸回転角LCx及びY軸回転角LCyは、携帯端末100が真北を向いている場合には、それぞれロール回転角(x軸)およびピッチ回転角(y軸)に相当する。一方で、携帯端末100が真北を向いていない場合には、S702で取得した端末の方位角に応じて、端末座標系におけるロール回転角とピッチ回転角を導出する必要がある。例えば、携帯端末100が真東を向いている場合には、X軸回転角LCxは端末座標系のピッチ回転角(y軸)に、Y軸回転角LCyは端末座標系のロール回転角に相当する。このように、S702で取得した方位角に基づいて、道路の勾配角度を端末座標系のロールおよびピッチに対する回転角を算出し、静止時に得られた端末座標系の加速度を回転変換する。具体的には、X軸回転角LCx及びY軸回転角LCyの勾配である道路上に、方位角A(北向きとの差がA)である端末が道路に平行となる様に設置されていた場合、x軸に対する勾配角度はarctan(tan(LCx)sin(A)+tan(LCy)cos(A))となり、y軸に対する勾配角度はarctan(tan(LCx)cos(A)−tan(LCy)sin(A))となる。
以上により、自車両が走行している道路の傾きに基づいて、3軸加速度センサ140により検出された加速度を補正した上で、重力加速度を除外した携帯端末100の加速度を算出することができる。一方、道路の勾配角度を無視する場合には、S702で取得した端末座標系の加速度から、静止時の端末座標系の加速度の値をそのまま差し引くことで、重力加速度を除外した携帯端末100の加速度を算出することができる。
次に、加速度変換処理部113は、自車両の直進状態を検出済みであるかを確認する(S707)。直進状態の検出方法については、図8により後述する。
自車両の直進状態が未検出である場合(S707:No)は、自動車座標系の加速度を算出できない。そのため、加速度変換処理部113は処理を終了し、処理フローを後述のS710に進める。
自車両の直進状態を検出済みである場合(S707:Yes)は、加速度変換処理部113は、検出済みの自車両の直進状態をドライバーの指示に応じて解除できるようにするため、後述の図13に示すボタン1406を入出力装置130に表示する(S708)。S708ではさらに、自車両の進行方向を示すため、後述の図13に示す矢印画像1404を入出力装置130に表示する。そして、S702で取得した各センサ値のうち端末座標系の加速度に基づいて、自車両の加速度を算出する(S709)。ここでは、S702で取得した端末座標系の3軸での加速度に対して、端末座標系から自動車座標系への変換用の回転角φ、θ、ψを用いて行列回転計算を行うことにより、自車両の3軸での加速度を算出することができる。この行列回転計算は、後述する数式6に示す計算式にて行われる。
なお、回転角φ、θは、後述する図9のS1004において、車両状態検出処理部117により、携帯端末100が静止状態のときに、地球座標系のX軸、Y軸に対する端末座標系のx軸、y軸の傾斜角度としてそれぞれ算出されるものである。一方、回転角ψは、後述する図10のS1107において、車両状態検出処理部117により、自車両が直進状態のときに、自車両の進行方向を表す自動車座標系のX’軸に対する端末座標系のx’’軸の、z’’軸周りの回転角として算出されるものである。この回転角ψは、S708で矢印画像1404の向きを決定するためにも利用される。ここで、x’’軸、z’’軸は、後述するように、回転角φおよびθによる回転変換後のx軸、z軸をそれぞれ表している。すなわち、S709では、携帯端末100の傾斜角度と、自車両の進行方向に対する携帯端末100の回転角とに基づいて、3軸加速度センサ140により検出された端末座標系の加速度を自車両の加速度に変換することができる。
なお、上記の回転角φ、θ、ψでは、現在地の道路勾配角度が考慮されていない。そのため、道路の勾配角度を考慮する場合には、S705で取得した道路の勾配角度を表すX軸回転角LCx、Y軸回転角LCyを、S706に示す処理と同様に携帯端末100の方位角を考慮した上でx軸、y軸の回転角に変換した後、回転角φ、θにそれぞれ加えた上で、数式6に示す計算式にて行列回転計算を行うことが好ましい。これにより、自車両が走行している道路の傾きに基づいて、携帯端末100の傾斜角度を補正した上で、3軸加速度センサ140により検出された加速度を自車両の加速度に変換することができる。一方、道路の勾配角度を無視する場合には、回転角φ、θをそのまま用いて、3軸加速度センサ140により検出された加速度を自車両の加速度に変換することができる。
次に、プローブ蓄積処理部111は、S702で携帯端末100のセンサにより取得した各センサ値と、S706、S709でそれぞれ算出した携帯端末100および自車両の加速度の値と、後述する図9のS1004において算出される携帯端末100の傾斜角度とを、記憶装置120にプローブ情報122として格納する(S710)。ただし、S706およびS709の少なくとも一方が実行されなかった場合は、それぞれに該当する値として、前述のように「Null」を入力する。具体的には、S706が実行されなかった場合は、図5の端末座標系3軸差分加速度616および設置角度617に「Null」が入力され、S709が実行されなかった場合は、自動車座標系3軸加速度618に「Null」が入力される。さらにこのとき、プローブID610と、S700で生成したトリップID612と、ユーザID611とが付与されて、記憶装置120に格納される。プローブID610は、格納時に一意な値が生成される。
次に、プローブ蓄積処理部111は、ドライバーが運転を終了したか否かを確認する(S711)。運転終了を確認する方法は、例えば図13に示す様に、運転開始後に「運転終了」を入力するためのボタン1301を入出力装置130に設置し、ドライバーがこのボタン1301を押下すると、運転終了と判断する方法などが考えられる。または、携帯端末100のセンサ値の変化を運転開始の判断基準として用いても良い。例えば、3軸加速度センサ140の検出値や、位置測位センサ150により検出された位置情報が一定時間以上変動しなかった場合などに、運転終了と判断することができる。この場合、運転終了時刻は、S711を実行した時刻から遡って特定しても良い。
プローブ蓄積処理部111が運転終了を検出できなかった場合(S711:No)には、再度プローブデータの蓄積を実行するため、処理フローをS701に戻す。
プローブ蓄積処理部111が運転終了を検出した場合(S711:Yes)には、プローブ送信処理部112は、今回の運転で収集され、プローブ情報122として記憶装置120に蓄積されたプローブデータを、テレマティクスセンタ200に対して送信する(S712)。なお、上記の通りボタン1301の押下を運転終了と見立てる場合は、S711はイベントドリブンな処理であってもよい。また、センサ値の変化を運転開始と見立てる場合は、S711はループ処理であれば良い。このとき、運転終了時に、運転開始時から収集し続けたプローブデータを一括に送信するのではなく、定期的にテレマティクスセンタ200に送信しても良い。
テレマティクスセンタ200のプローブ受信処理部211では、携帯端末100から送信されるプローブデータを受信し、受信したプローブデータを記憶装置220にプローブ情報222として蓄積する(S720)。
携帯端末100のプローブ蓄積処理部111、プローブ送信処理部112および加速度変換処理部113と、テレマティクスセンタ200のプローブ受信処理部211では、以上説明したようにして、プローブ情報の収集および蓄積に関する処理が実行される。
図7に、携帯端末100の動画撮影処理部114、動画編集処理部115および動画送信処理部116と、テレマティクスセンタ200の動画データ受信処理部212とによる、動画データの収集および蓄積に関する処理の流れを示す。この図7の処理フローに示す処理は、携帯端末100の演算装置110およびテレマティクスセンタ200の演算装置210において、それぞれ所定のプログラムを実行することで行われる。
図7において、携帯端末100の動画撮影処理部114は、携帯端末100が自車両、すなわち図4に示した自動車500に設置され、ドライバーが運転を開始したか否かを確認する(S800)。この処理は、前述の図6の処理フローにおけるS700と同一のものである。なお、S700とS800の処理を共通化しても良い。
動画撮影処理部114が運転開始を検出できなかった場合(S800:No)には、再度運転開始を確認するため、S800の判定処理を継続して実行する。
動画撮影処理部114が運転開始を検出した場合(S800:Yes)には、カメラ160を利用して、自車両の運転風景に関する運転動画の撮影を開始する(S801)。その後、一定時間待機した後(S802)、携帯端末100が自車両の急加速あるいは急減速を検出したかを確認する(S803)。なお、S802での一定時間待機の処理は必ずしも必要ではなく、実施しない、すなわち待機時間を0秒としても良い。自車両の急加減速は、急アクセル、急ブレーキ、急ハンドルを起因として発生することが考えられる。したがって、S803にて急加速あるいは急減速を確認する手段としては、図6のS709で算出した自車両の加速度、すなわち自動車座標系での自車両の前後方向あるいは左右方向の加速度が一定以上であるかを確認する方法などが考えられる。なお、S709が実行されなかった場合を想定し、例えばS702で取得した端末座標系の加速度値の平方和が一定以上であることを、急加減速の確認手段として用いても良い。
動画撮影処理部114が急加減速を検出できなかった場合(S803:No)には、動画撮影を継続し、処理フローをS808に進める。
動画撮影処理部114が急加減速を検出した場合(S803:Yes)には、一定時間待機した後(S804)、運転動画の撮影を終了する。これにより、S803で急加減速として検出した自車両の加速度に基づいて、運転動画の撮影終了タイミングを決定し、そのタイミングに応じて撮影を終了する。そして、撮影開始から終了までの動画データを記憶装置120に動画データ123として蓄積する(S805)。
その後、動画編集処理部115は、S805で記憶装置120に蓄積された動画データ123のうち、撮影終了時から一定秒数だけ前の時点を起点として、そこから撮影終了までの動画データを抽出する。そして、動画送信処理部116により、抽出した動画データをテレマティクスセンタ200に送信する(S806)。テレマティクスセンタ200の動画データ受信処理部212は、携帯端末100からS806で送信された動画データを受信し、受信した動画データを記憶装置220に動画データ223として蓄積する(S810)。携帯端末100は、S806の実行後、運転動画の撮影を再開し(S807)、S808に進む。なお、動画編集や動画データの送信には、一般的に画像処理やデータ送信に多大な時間が必要である。そのため、動画編集処理部115および動画送信処理部116は、動画撮影処理部114と非同期に動作しても良い。すなわち、動画撮影処理部114は、S805の実行後、直ちにS807を実行しても良い。
動画撮影処理部114は、S803で上記のようにして急加減速の確認処理を行った後、ドライバーが運転を終了したか否かを確認する(S808)。この処理は、前述の図6の処理フローにおけるS711と同一のものである。なお、S711とS808の処理を共通化しても良い。
動画撮影処理部114が運転終了を検出できなかった場合(S808:No)には、再度急加減速の有無を確認するため、処理フローをS802に戻す。
動画撮影処理部114が運転終了を検出した場合(S808:Yes)には、カメラ160による運転動画の撮影を終了する(S809)。
携帯端末100の動画撮影処理部114、動画編集処理部115および動画送信処理部116と、テレマティクスセンタ200の動画データ受信処理部212では、以上説明したようにして、動画データの収集および蓄積に関する処理が実行される。
図8に、携帯端末100の車両状態検出処理部117による、端末座標系から自動車座標系への回転行列を算出する処理の流れを示す。この図8の処理フローに示す処理は、携帯端末100の演算装置110において、所定のプログラムを実行することで行われる。
図8において、携帯端末100の車両状態検出処理部117は、携帯端末100が自車両、すなわち図4に示した自動車500に設置され、ドライバーが運転を開始したか否かを確認する(S900)。この処理は、前述の図6の処理フローにおけるS700および図7の処理フローにおけるS800と同一のものである。なお、S700、S800およびS900の処理を共通化しても良い。
車両状態検出処理部117が運転開始を検出できなかった場合(S800:No)には、再度運転開始を確認するため、S900の判定処理を継続して実行する。
車両状態検出処理部117が運転開始を検出した場合(S900:Yes)には、一定時間(T秒)待機した後(S901)、図6のS710でプローブ情報122として記憶装置120に蓄積された運転開始からのプローブデータを、現在時刻から前のT秒分だけ抽出する(S902)。ここで、S902の処理は、T秒ごとに繰り返し実行される。そのため、S902で抽出されるプローブデータは、S902を前回実行した以降にプローブ蓄積処理部111によって蓄積されたプローブデータを意味する。なお、S902で抽出するプローブデータの範囲は、これに限定されない。例えば固定で1秒とするなど、S901にて一定時間待機した秒数に依存しなくても良い。
次に、車両状態検出処理部117は、S902にて抽出したプローブデータを基に、携帯端末100が静止状態にあるか否かを判定するための端末静止判定を実行する(S903)。このS903の処理の詳細については、図9の処理フローを参照して後述する。S903の実行結果から、S902でプローブデータを抽出した期間、携帯端末100が静止(停止)状態にあったかを確認する(S904)。
車両状態検出処理部117が携帯端末100の静止状態を検出できなかった場合(S904:No)は、自車両が走行状態にあったり、ドライバーが携帯端末100を動かしていたりしたことで、携帯端末100が静止状態になかったと判断する。この場合、車両状態検出処理部117は、S906の自動車直進判定を実行するべきかを確認するため、以前のS903の処理で既に静止状態を検出済みであるかを確認する(S905)。
今回のトリップ開始以降、まだ静止状態を一度も検出したことがない場合(S905:No)には、自車両の直進状態を検出できない。そのため、S906の自動車直進判定を実行せず、処理フローをS907に進める。
今回のトリップ開始以降、既に静止状態を検出していた場合(S905:Yes)には、自車両が直進状態にあるかを確認するために、S906の自動車直進判定を実行する。このS906の処理の詳細については、図10の処理フローを参照して後述する。S906を実行した後は、処理フローをS907に進める。
また、車両状態検出処理部117が携帯端末100の静止状態を検出した場合(S904:Yes)は、自車両が停止していたと判断する。そのため、S906の自動車直進判定を実行せず、処理フローをS907に進める。
車両状態検出処理部117は、S904、S905またはS906の実行後、ドライバーが運転を終了したか否かを確認する(S907)。この処理は、前述の図6の処理フローにおけるS711および図7の処理フローにおけるS808と同一のものである。なお、S711、S808およびS907の処理を共通化しても良い。
車両状態検出処理部117が運転終了を検出できなかった場合(S907:No)には、最新の車両状態を再度確認するため、処理フローをS901に戻す。
車両状態検出処理部117が運転終了を検出した場合(S907:Yes)には、処理を終了する。
図9に、図8のS903で実行される端末静止判定の処理の流れを示す。
図9において、車両状態検出処理部117は、図8のS902において抽出したT秒分のプローブデータに対して、端末座標系にて取得した3軸加速度センサ140のセンサ値の、x軸、y軸、z軸それぞれの分散を算出する(S1000)。次に、S1000で算出した各軸の加速度センサ値の分散が、いずれも一定値A以下であるかを確認する(S1001)。
各軸の加速度センサ値の分散が一定値A以下ではない場合(S1001:No)には、携帯端末100が静止状態になかったと判断し、端末静止判定の処理を終了する。
各軸の加速度センサ値の分散が一定値A以下であった場合(S1001:Yes)には、携帯端末100が静止状態であったと判定する。この場合、図8のS902で抽出したT秒分のプローブデータに含まれる位置情報が表す各位置の重心を、携帯端末100が静止していた位置であると特定する(S1002)。なお、重心ではなく、T秒分のプローブデータの内、例えば最新時刻のデータに含まれる位置情報が表す位置を、携帯端末100の静止位置として利用しても良い。
以上説明したようなS1000〜S1003の処理により、携帯端末100は、3軸加速度センサ140で検出された加速度の変化に基づいて、自身の静止状態を検出することができる。
次に、車両状態検出処理部117は、記憶装置120に格納されている地図情報124から、S1002で特定した静止位置における道路の勾配角度情報を、現在地の道路傾斜角として取得する(S1003)。このとき、現在地に対して北向きを基準として取得することにより、地球座標系のX軸回転角及びY軸回転角を取得することができる。以降では、S1003で取得した道路の勾配角度を、地球座標系におけるX軸回転角LSx、Y軸回転角LSyで表すこととする。なお、この2つの回転角は、地球座標系をY軸回転、X軸回転の順に回転する際のオイラー系における回転角を示しているものとする。なお、道路の勾配情報を考慮しない場合は、S1003を省略しても良い。
続いて、車両状態検出処理部117は、S902において抽出したT秒分のプローブデータに含まれる3軸加速度センサ140のセンサ値に基づいて、地球座標系に対する携帯端末100の傾斜角度(設置角度)を算出する(S1004)。ここでは、各軸の加速度センサ値が重力加速度を表していると見なして、以下の数式2、3、4に示す算出式を用いて、携帯端末100の傾斜角度を算出する。
Figure 0005990553
(数式2)
Figure 0005990553
(数式3)
Figure 0005990553
(数式4)
数式2は、前述の数式1の両辺に、Rx(α)、Ry’(β)、Rz’’(γ)それぞれの逆行列を左から順に掛けて変形したものである。すなわち、各軸の回転行列の逆行列(例えばRx(α))は、回転角の正負の符号を反転した回転行列(例えばRx(−α))に一致するため、数式2に示す式となる。
なお、S902において抽出したT秒分のプローブデータのx軸、y軸、z軸それぞれの加速度の平均値(それぞれGx、Gy、Gzと表現した場合)は、地球座標系におけるZ軸への重力加速度を表している。したがって、道路の勾配角度を無視する場合には、数式1に基づき、端末座標系の加速度の平均値(Gx、Gy、Gz)を携帯端末100の傾斜角度(α,β,γ)に基づいて回転すると、地球座標系での加速度(0,0、G)に一致すると見なすことができる。ここでGは、数式4に示す通り、Gx,Gy,Gzの平方和の平方根であり、重力加速度を意味する。
上記の条件と、数式2に基づく変換とを利用することで、数式3に示す等式が成立する。ここで、Gx,Gy,GzおよびGは既知の値であることから、x軸周りの回転角αおよびy軸周りの回転角βを算出することができる。すなわち、携帯端末100の傾斜角を知ることができる。なお、数式3が示す通り、ヨー回転軸に基づく回転(回転角γ)は、携帯端末100をz軸周りに回転する動きであるため、x軸、y軸、z軸の加速度センサ値に影響を与えない。したがって、ヨー回転軸に基づく回転を表す回転角γは、T秒分のプローブデータに含まれる3軸地磁気センサ170のセンサ値から導出する。以降では、S1004にて算出される携帯端末100の傾斜角度α,β,γを、順にφ,θ,δと表記する。
S1004で算出される携帯端末100の傾斜角度φ,θ,δの内、x軸周りの回転角に相当する傾斜角度φおよびy軸周りの回転角に相当する傾斜角度θには、道路の勾配角度がそれぞれ含まれている。そのため、道路の勾配角度を考慮する場合はまず、S1003で取得した道路傾斜角LSx、LSyを、S706に示す処理と同様に携帯端末100の方位角を考慮した上でx軸、y軸の回転角に変換する。そして、傾斜角度φ,θから変換した値をそれぞれ差し引いた値を、平坦な地面における携帯端末100の傾斜角度φ,θとして求める。これにより、自車両が走行している道路の傾きに基づいて、携帯端末100の傾斜角度φ,θ,δを補正することができる。また、S1004で携帯端末100の傾斜角度を算出する際に用いられるT秒分のプローブデータのx軸、y軸、z軸の加速度の平均値にも、道路の勾配角度が影響している。そのため、S1003で取得した道路勾配角度分だけ行列回転することで、その影響を除外してデータを蓄積することが好ましい。
なお、上記の例では、Gx,Gy,Gzとして、T秒分のプローブデータのx軸、y軸、z軸の加速度の平均値を利用したが、例えば最新時刻のセンサ値を代わりに利用しても良い。また、3軸加速度センサ140が誤差を含む可能性があることから、重力加速度は数式4を利用して導出するのではなく、固定値(例えばG=9.80665)を利用しても良い。
次に、車両状態検出処理部117は、今回のトリップ内で以前に実行した端末静止判定において、携帯端末100の静止状態を既に検出していたかを確認する(S1005)。
以前には携帯端末100の静止状態を検出していなかった場合(S1005:No)には、今回の検出が初回である。この場合、車両状態検出処理部117は、携帯端末100が静止状態にあることを示す「静止状態」のフラグ設定を行う(S1006)。そして、S1004で算出した携帯端末100の傾斜角度φ,θ,δを、演算装置110内の所定の記憶領域に記憶する。
以前にも携帯端末100の静止状態を検出していた場合(S1005:Yes)には、既に算出していた携帯端末100の傾斜角度φ,θ,δと、今回の処理で算出した携帯端末100の傾斜角度φ,θ,δとについて、それぞれの差分を算出する(S1007)。そして、算出した各差分の絶対値が、それぞれ一定値B以上であるかを確認する(S1008)。
傾斜角度の差分の絶対値が全て一定値B以上でない場合(S1008:No)には、携帯端末100の設置角度は大きく変化していないと判断できる。この場合、携帯端末100の設置角度の精度を向上させるため、前回の静止判定リセットから今回までに求められた傾斜角度φ,θ,δの各平均値を、静止状態における携帯端末100の傾斜角度として記憶する(S1009)。
傾斜角度の差分の絶対値が1つでも一定値B以上である場合(S1008:Yes)には、携帯端末100の設置角度が大きく変化した、すなわちドライバーが携帯端末100を動かしたことが想定される。そのため、今回算出した傾斜角度φ,θ,δを携帯端末100の新しい設置角度として記憶した上で、静止状態が再設定されたことから、自車両の直進状態の検出状態を未検出状態にリセットする(S1010)。
図8のS903では、以上説明したようにして、端末静止判定の処理が行われる。
図10に、図8のS906で実行される自動車直進判定の処理の流れを示す。
図10において、車両状態検出処理部117は、図8のS902において抽出したT秒分のプローブデータに対して、3軸地磁気センサ170を介して得られた携帯端末100のヨー回転角(方位角)の分散を算出する(S1100)。そして、算出した方位角の分散値が一定値C以下であるかを確認する(S1101)。
方位角の分散値が一定値C以下ではない場合(S1101:No)には、自車両が進行方向に真っ直ぐ移動しておらず、方位角が一定の値になるような走行をしていなかったと判断し、自動車直進判定の処理を終了する。例えば自車両が右または左にカーブする道路を走行していたなどの場合には、方位角が一定の値にはならない。
方位角の分散が一定値C以下であった場合(S1101:Yes)には、自車両が直進状態にあったと判定する。この場合、図8のS902で抽出したT秒分のプローブデータに含まれる端末座標系の差分加速度、すなわち図5の端末座標系3軸差分加速度616の平均を算出する(S1102)。なお、図10の自動車直進判定を行う場合は、図8のS905にて携帯端末100の静止状態を検出済みであるか確認しているため、必ず端末座標系の差分加速度を取得可能である。以降では、S1102にて算出される端末座標系の差分加速度の平均値を、端末座標系のx軸、y軸、z軸の順に、Mx,My,Mzと表記する。
続いて、車両状態検出処理部117は、S1102で算出した端末座標系の差分加速度の平均値Mx,My,Mzについて、その平方和の平方根であるMを算出する(S1103)。ここでは、以下の数式5に示す算出式を用いてMを算出する。
Figure 0005990553
(数式5)
S1103で算出されるMの値は、端末座標系の差分加速度の平均値をベクトルと見立てたときの、そのベクトルの絶対値に相当する。したがって、Mの値は、T秒間に携帯端末100が検出した自車両の前後、左右、上下方向の加速度の平均に相当する。
なお、S1102で算出される端末座標系の差分加速度の平均値Mx,My,Mzではなく、端末座標系の差分加速度の合計値を用いて、S1103の処理を行っても良い。
次に、車両状態検出処理部117は、S1103で算出したMの値、すなわち重力加速度を除外した携帯端末100の加速度の平均値が、一定値D以上であるかを確認する(S1104)。
S1103で算出したMの値が一定値D以下であった場合(S1104:No)には、自車両がほとんど移動しておらず、その結果、携帯端末100で検出される端末座標系の差分加速度は、各軸共にほぼ0に近い値となっていると判断できる。すなわち、自車両は直進移動をしておらず、ほぼ静止していたと判断できる。この場合、自車両が直進状態になかったと判断し、自動車直進判定の処理を終了する。
S1103で算出したMの値が一定値D以上であった場合(S1104:Yes)には、方位角の変動がほとんどなく、かつ、自車両の移動によって端末座標系での加速度の変化があったと判断できる。そのため、この場合は自車両が直進方向に走行中であり、S1103で算出したMの値が示すベクトルの絶対値は、全て自車両の前後方向の加速度を表しているものと判定する(S1105)。
以上説明したようなS1100〜S1105の処理により、携帯端末100は、図9の端末静止判定処理で携帯端末100の静止状態を検出済みであるときに、3軸地磁気センサ170で検出された方位角の変化と、3軸加速度センサ140で検出された加速度の変化とに基づいて、自車両の直進状態を検出することができる。
なお、自車両が直進方向に走行中であることを判定する方法は、S1101およびS1104で説明したような方位角や加速度の変化量を用いる方法でなくても良い。例えば、方位角と加速度のいずれか一方のみの変化量に基づいて、自車両が直進方向に走行中であるか否かを判定しても良い。また、T秒間における携帯端末100の位置座標の変化が一定以上であったなど、位置情報を用いて自車両が直進方向に走行中であるかを判断しても良い。すなわち、各センサで検出した方位角、位置および加速度の少なくとも一つの変化に基づいて、自車両が直進方向に走行中であるか否かを判定することができる。
また、携帯端末100を自車両に設置した場合、通常は、入出力装置130の表示面がドライバーの方を向いた状態で設置されるはずである。したがって、自車両が加速した場合には、z軸の正の方向に加速度が検出されるはずであり、反対に自車両が減速あるいはバックした場合には、z軸の負の方向に加速度が検出されるはずである。このことを利用して、S1102で算出した端末座標系の差分加速度の平均値Mx,My,Mzのうち、z軸の平均値Mzが負である場合には、自車両が減速またはバック中であったと判断し、S1104の条件分岐をNoとして取り扱っても良い。
続いて、車両状態検出処理部117は、記憶装置120に格納されている地図情報124から、図8のS902で抽出したT秒分のプローブデータが表す自車両の移動軌跡の重心の位置座標における道路の勾配角度情報を、直進中の道路傾斜角として取得する(S1106)。このとき、現在地に対して北向きを基準として取得することにより、地球座標系のX軸回転角及びY軸回転角を取得することができる。以降では、S1106で取得した道路の勾配角度を、地球座標系におけるX軸回転角LDx、Y軸回転角LDyで表すこととする。なお、この2つの回転角は、図9のS1003と同様に、地球座標系をY軸回転、X軸回転の順に回転する際のオイラー系における回転角を示しているものとする。なお、道路の勾配情報を考慮しない場合は、S1106を省略しても良い。
また、S1106において、T秒間のプローブデータが表す自車両の移動軌跡の重心ではなく、移動軌跡上の特定の一点、例えば最新時刻の位置座標での道路の勾配角度を利用しても良い。
そして、車両状態検出処理部117は、S902において抽出したT秒分のプローブデータに含まれる3軸加速度センサ140のセンサ値に基づいて、端末座標系を自動車座標系に変換するためのヨー回転角、すなわち自車両の進行方向に対する携帯端末100の回転角を算出する(S1107)。ここでは、以下の数式6、7、8に示す算出式を用いて、ヨー回転角を算出する。
Figure 0005990553
(数式6)
Figure 0005990553
(数式7)
Figure 0005990553
(数式8)
数式6は、前述の数式1と同様の定義に基づき、xyz座標系をx軸回りにφ回転し、y’軸回りにθ回転し、z’’軸回りにψ回転することで、xyz座標系をX’Y’Z’座標系に変換する回転行列を示している。
ここで、φおよびθの値は、図9のS1004で携帯端末100の傾斜角度として算出されるφ,θを利用することができる。
道路の勾配角度を無視する場合には、数式6、7においてRx(φ)Ry’(θ)で表される回転行列は、端末座標系を地球座標系に直すための回転行列の一部であり、z’’軸周りの回転成分を含まないものである。すなわち、携帯端末100の向きを、x軸、y軸がそれぞれ地面に平行(ただし、x軸は北を向いているとは限らない)となるような向きに変換するための回転行列に相当する。この時、z’’軸はZ軸と一致することになる。
そのため、数式7に示す通り、S1102で算出した端末座標系の差分加速度の平均値Mx,My,Mzを回転行列Rx(φ)Ry’(θ)にて回転すると、必ずz’’軸の加速度の値は0に一致する。したがって、数式7に示す通り、Mx,My,Mzを回転行列Rx(φ)Ry’(θ)にて回転した値をxψ、yψ、0と表現した場合、自動車座標系は地球座標系をZ軸(Z’軸)回転にて得られることから、このxψ、yψ、0を適切な回転角ψでz’’軸周りに回転することで、自動車座標系の値に変換することができる。この時、S1102では自車両が直進している際に得られたプローブデータからMx,My,Mzを算出していることから、xψ、yψ、0の回転後の値は、X’軸、Y’軸、Z’軸の順に、M,0,0とそれぞれ一致する。
よって、数式7を変換することで、数式8に示す等式が成立する。数式8において、M,xψ、yψの値はいずれも既知であるか、あるいは算出可能な値である。したがって、数式8からz軸周りの回転角ψを算出することができる。この回転角ψと、図9のS1004で算出される携帯端末100の傾斜角度φ,θから、端末座標系を自動車座標系に変換するための回転角φ、θ、ψを得ることができる。
なお、端末座標系の差分加速度の平均値Mx,My,Mzは、携帯端末の傾斜角度だけではなく、道路の勾配角度を含む値となっている。したがって、道路の勾配角度を考慮する場合は、上記の回転行列Rx(φ)Ry’(θ)でMx,My,Mzを回転したとしても、携帯端末100の向きを、x軸、y軸がそれぞれ道路に平行となるような向きに変換しただけであり、平坦な地面に平行となるような向きに変換したことにはならない。したがってこの場合は、回転角φ、θ、ψの内、x軸周りの回転角φおよびy軸周りの回転角θについては、これらの値にS1106で取得した道路傾斜角LDx、LDyを、S706に示す処理と同様に携帯端末100の方位角を考慮した上でx軸、y軸の回転角LDx’及びLDy’に変換した後、LDx’及びLDy’それぞれを差し引いた値を回転行列において利用する。すなわち、Rx(φ−LDx’)Ry’(θ−LDy’)を回転行列として利用する。またこの場合、φ−LDx’,θ−LDy’,ψを、端末座標系を自動車座標系に変換するための回転角φ、θ、ψと見なす。これにより、自車両が走行している道路の傾きではなく、平坦な地面に基づいて、回転角φ、θ、ψを補正することができる。
次に、車両状態検出処理部117は、今回のトリップ内で以前に実行した自動車直進判定において、自車両の直進状態を既に検出していたかを確認する(S1108)。
以前には自車両の直進状態を検出していなかった場合(S1108:No)には、今回の検出が初回である。この場合、車両状態検出処理部117は、自車両が直進状態にあることを示す「直進状態」のフラグ設定を行う(S1009)。そして、S1107で算出した端末座標系を自動車座標系に変換するための回転角φ、θ、ψを、演算装置110内の所定の記憶領域に記憶する。
以前にも直進状態を検出していた場合(S1108:Yes)には、端末座標系から自動車座標系に変換するための回転角の精度を向上させるため、前回の直進判定リセットから今回までに求められた回転角φ、θ、ψの各平均値を、端末座標系を自動車座標系に変換するための回転角として記憶する(S1100)。
図8のS906では、以上説明したようにして、自動車直進判定の処理が行われる。
図11に、携帯端末100の運転特性表示処理部118と、テレマティクスセンタ200の運転特性診断処理部213とによる、ドライバーの運転特性の診断および診断結果の表示に関する処理の流れを示す。この図11の処理フローに示す処理は、携帯端末100の演算装置110およびテレマティクスセンタ200の演算装置210において、それぞれ所定のプログラムを実行することで行われる。
図11において、運転特性表示処理部118は、ドライバーの要望に応じて、対象となるドライバーの運転特性の診断結果をテレマティクスセンタ200に問い合わせる(S1200)。問い合わせの方法としては、例えば図12に示す様に、「運転診断結果の表示」を入力するためのボタン1302を入出力装置130に設置し、ドライバーがこのボタン1302を押下すると、運転特性診断を問い合わせる必要があると判断する方法などが考えられる。また、問い合わせ時には、問い合わせたドライバーを特定するためのユーザIDも合わせて送信する。
テレマティクスセンタ200の運転特性診断処理部213は、携帯端末100からの運転特性の診断結果の問い合わせを受信する(S1210)。そして、記憶装置220に蓄積されているプローブ情報222のうちで、受信した問い合わせに含まれるユーザIDに対応するプローブデータを、運転診断に利用するプローブデータとして抽出する(S1211)。このとき、対象となるプローブデータの抽出範囲を限定しても良い。例えば問い合わせがあった日時から過去1年間分など、時間を基準として抽出範囲を設定する方法が考えられる。なお、抽出範囲として指定する期間をドライバーが携帯端末100を介して入力しても良い。
次に、運転特性診断処理部213は、S1211で抽出したプローブデータに基づいて、自車両の前後方向の加速度の傾向を示す統計値としての分散と歪度を算出する(S1212)。さらに、対象ドライバーと類似する複数のドライバーについても、同一対象期間のプローブデータを抽出した上で、同様に当該ドライバーの車両の加速度の傾向を示す統計値である分散と歪度を算出する。ドライバーの類似性を特定する方法としては、例えばユーザ情報221に含まれるドライバー情報において、車種情報601や年齢603などの内容が類似または一致することを条件として利用することが考えられる。そして、算出したその他複数のドライバーの統計値と比較して、問い合わせのあったドライバーの運転特性診断を算出する(S1213)。運転特性診断の算出方法としては、周知の様々な手法を用いることができる。そして、対象期間にアップロードされた動画を動画データ223から抽出した上で、診断結果と合わせて携帯端末100に送信する(S1214)。
携帯端末100の運転特性表示処理部118は、テレマティクスセンタ200から送信される運転特性診断結果を受信する(S1201)。その後、例えば図14の画面により、受信した運転特性診断結果を、急加減速を検出した付近の再生動画と併せて、入出力装置130に表示する(S1202)。
図12に、自車両の運転開始前に携帯端末100の入出力装置130に表示される画面の一例を示す。
図12において、携帯端末100の入出力装置130には、動画の撮影状況を表示するプレビュー画面1300と、運転開始または運転終了をドライバーが明示的に宣言するためのボタン1301と、ドライバーが運転特性診断を実施したい場合に押下するためのボタン1302と、ドライバーへの通知事項を示す通知領域1303とが表示される。
運転開始前には、例えば「運転開始」などの、運転開始時に押下することをドライバーに促すための文字がボタン1301に表示される。ドライバーがこのボタン1301を押下した場合には、携帯端末100は運転開始を検出する。これにより、図6のS700、図7のS800および図8のS900において、運転終了の条件分岐にそれぞれ遷移することができる。この時、図7のS801によって動画撮影が開始されるため、プレビュー画面1300には携帯端末100のカメラ160が撮影した動画画像が表示される。
ボタン1302が押下された場合には、図11のS1200が実行され、S1201にて応答結果として得られる運転特性診断結果を表示する。その表示方法の具体例については、後述する図14に示す。
通知領域1303には、任意の角度で携帯端末100を自車両内に設置(固定)するようにドライバーを促すための文字が表示される。
図13に、自車両の運転開始後に携帯端末100の入出力装置130に表示される画面の一例を示す。
図13において、携帯端末100の入出力装置130には、図2と同様のプレビュー画面1300、ボタン1301およびボタン1302に加えて、ドライバーへの通知事項を示す通知領域1400〜1403と、自車両の進行方向を示す矢印画像1404と、検出済みの携帯端末100の静止状態や自車両の直進状態を解除するためのボタン1405、1406とが表示される。
運転開始後には、例えば「運転終了」などの、自動車運転の終了時に押下することを促すための文字がボタン1301に表示される。ドライバーがこのボタン1301を押下した場合には、携帯端末100は運転終了を検出する。これにより、図6のS711、図7のS808および図8のS907において、運転終了の条件分岐にそれぞれ遷移することができる。
自車両の運転開始後、通知領域1400には、図8のS903で行われる端末静止判定により、携帯端末100の静止状態を検出済みであるか否かを示す文字が表示される。通知領域1401には、図8のS906で行われる自動車直進判定により、自車両の直進状態を検出済みであるか否かを示す文字が表示される。通知領域1402には、図7のS803で急加減速を検出したか否かを示す文字と、S805にて撮影した動画データをテレマティクスセンタ200に対して送信しているか否かを示す文字とが表示される。ここでは、例えば「急アクセル」「急ブレーキ」「急ハンドル」などの詳細な要因が表示されても良い。ボタン1301の押下により運転終了を検出すると、通知領域1403には、図6のS712でプローブデータをテレマティクスセンタ200に対して送信していることを示す文字が表示される。
矢印画像1404は、自車両の運転開始後、図8のS906で行われる自動車直進判定において自車両が直進方向に走行中であると判定されると、その判定結果に基づいて表示される。この矢印画像1404が示す矢印の向きは、携帯端末100のx軸方向に対するz軸回りの回転角、すなわち図10のS1107で算出される回転角ψに基づいて決定される。
なお、入出力装置130には、図8のS903で検出した携帯端末100の静止状態を解除するためのボタン1405や、図8のS906で検出した自車両の直進状態を解除するためのボタン1406を表示しても良い。ボタン1405が押下された場合には、それまでの車両状態検出処理部117の処理結果に関わらず、直ちに携帯端末100の静止状態および自車両の直進状態をリセットする。一方、ボタン1406が押下された場合には、携帯端末100の静止状態についてはリセットせず、自車両の直進状態のみをリセットする。なお、ボタン1405は、携帯端末100が静止状態にあると判定されていない時は表示されず、判定直後に表示されるように制御しても良い。同様に、ボタン1406は、自車両が直進状態にあると判定されていない時は表示されず、判定直後に表示されるように制御しても良い。
図14に、携帯端末100の入出力装置130に表示される自動車運転特性診断結果の画面の一例を示す。
図14において、携帯端末100の入出力装置130には、以前撮影した動画を再生するための再生閲覧画面1500、再生する動画を選択するためのボタン1501、運転特性診断結果を表示するための診断結果表示領域1502が表示される。
再生閲覧画面1500には、ボタン1501を利用して動画を選択した際に、その動画を再生する。動画の選択方法としては、例えば各動画の撮影日時をプルダウン形式で表示し、その一覧からドライバーに選択してもらう方法などが考えられる。なお、選択方法としては、例えば地図画面を表示し、地図上に動画撮影位置のアイコンを設置することで、ドライバーにアイコンを選択してもらうなどの方法であっても良い。
診断結果表示領域1502には、運転特性診断結果として、自車両の前後方向の加速度の統計値が図11のS1202で表示される。具体的には、横軸には加速度の分散の大きさを示し、縦軸には加速度の歪度の大きさを示したグラフ座標系を診断結果表示領域1502に表示し、この座標系でドライバーの運転履歴から算出された自車両の加速度の分散および歪度に対応する座標の位置に、診断結果を示す画像1503を表示する。加えて図中に示すように、グラフ座標系を複数の領域に分割するための境界線を表示し、その各領域に対して、運転特性診断のスコア(ランク)がどの程度かを示す文字を表示する。これにより、ドライバーの運転特性診断結果を表示する。
以上説明した本発明の実施形態によれば、以下の作用効果を奏する。
(1)携帯端末100は、3軸方向の加速度を検出する3軸加速度センサ140と、演算装置110とを備える。この携帯端末100で実行される携帯端末100用のプログラムは、携帯端末100の静止状態を検出し、携帯端末100の傾斜角度をS1004で算出する図9の端末静止判定処理と、携帯端末100が搭載された自車両の直進状態を検出し、自車両の進行方向に対する携帯端末100の回転角をS1107で算出する図10の自動車直進判定処理と、算出した携帯端末100の傾斜角度および自車両の進行方向に対する携帯端末100の回転角に基づいて、3軸加速度センサ140により検出された加速度を自車両の加速度に変換する図6のS709の処理とを、演算装置110に実行させる。これにより、携帯端末100を、車両状態検出処理部117および加速度変換処理部113として機能させる。このようにしたので、ドライバーの運転特性を診断するために、携帯端末100の設置状況に関わらず、携帯端末100を用いて自車両の挙動を正確に検出することができる。
(2)図9の端末静止判定処理では、S1000〜S1003において、3軸加速度センサ140により検出された加速度の変化に基づいて、携帯端末100の静止状態を検出する。また、図10の自動車直進判定処理では、S1101〜S1105において、3軸地磁気センサ170により検出された方位角、位置測位センサ150により検出された位置、および3軸加速度センサ140により検出された加速度の少なくとも一つの変化に基づいて、自車両の直進状態を検出する。このようにしたので、携帯端末100の静止状態や自車両の直進状態を確実に検出することができる。
(3)図9の端末静止判定処理におけるS1003、S1004の処理と、図6のS705、S709の処理では、自車両が走行している道路の傾きを取得し、取得した道路の傾きに基づいて、携帯端末100の傾斜角度を補正しても良い。このようにすれば、自車両が走行している道路の傾きを考慮して、3軸加速度センサ140により検出された加速度を自車両の加速度に正確に変換することができる。
(4)図6のS708の処理では、図10の自動車直進判定処理で算出される回転角に基づいて、自車両の進行方向を示す矢印画像1404を入出力装置130に表示させる。すなわち、携帯端末100で実行される携帯端末100用のプログラムは、自車両の進行方向を検出し、検出した自車両の進行方向を入出力装置130に表示する処理を携帯端末100に実行させる。このようにしたので、携帯端末100において自車両の進行方向が正しく認識されているかをドライバーに分かりやすく示すことができる。
(5)図6のS704の処理では、図9の端末静止判定処理で検出された携帯端末100の静止状態を解除するための操作ボタン1405を、タッチパネルである入出力装置130にさらに表示させる。また、図6のS708の処理では、図10の自動車直進判定処理で検出された自車両の直進状態を解除するための操作ボタン1406を入出力装置130にさらに表示させる。このようにしたので、携帯端末100において携帯端末100の静止状態や自車両の直進状態が誤って認識されたときに、ドライバーの指示により、これらの状態を速やかに解除することができる。
(6)携帯端末100で実行される携帯端末100用のプログラムは、自車両の運転風景に関する運転動画をカメラ160により撮影し(S801)、自車両の加速度に基づいてこの運転動画の撮影終了タイミングを決定する(S803〜S805)処理を、演算装置110に実行させる。このようにしたので、急加速や急減速等の危険な運転が行われると、その時の運転風景を表す運転動画を自動的に収集することができる。
(7)携帯端末100は、携帯端末100が搭載された自車両の加速度を検出してテレマティクスセンタ200に送信する(S702、S712)。テレマティクスセンタ200は、携帯端末100から送信された自車両の加速度の履歴に基づいて、自車両のドライバーに対する運転特性診断を行う(S1211〜S1213)。このようにしたので、携帯端末100から送信される自車両の加速度検出結果を利用して、正確な運転特性診断を行うことができる。
なお、以上説明した実施形態では、テレマティクスセンタ200において運転特性診断を行う例を説明したが、携帯端末100において運転特性診断を行うようにしてもよい。すなわち、記憶装置120に格納されたプローブ情報122を利用することで、3軸加速度センサ140で検出した自車両の加速度の履歴に基づいて、自車両の前後方向に対する加速度の分散や歪度を算出し、これに基づいて運転特性診断を行うことができる。
以上説明した実施形態や各種の変化例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されない。本発明は上述した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。
100:携帯端末
110:演算装置
111:プローブ蓄積処理部
112:プローブ送信処理部
113:加速度変換処理部
114:動画撮影処理部
115:動画編集処理部
116:動画送信処理部
117:車両状態検出処理部
118:運転特性表示処理部
120:記憶装置
130:入出力装置
140:3軸加速度センサ
150:位置測位センサ
160:カメラ
170:3軸地磁気センサ
180:通信部
200:テレマティクスセンタ
210:演算装置
211:プローブ受信処理部
212:動画データ受信処理部
213:運転特性診断処理部
220:記憶装置
230:通信部
300:ネットワーク

Claims (12)

  1. 3軸方向の加速度を検出する加速度センサおよび演算装置を備えた携帯端末において実行されるプログラムであって、
    前記携帯端末が静止状態であるか否かを判断し、前記携帯端末が静止状態であると判断した場合に、前記携帯端末の静止状態を検出すると共に、前記携帯端末の傾斜角度を算出する第1の処理を、前記演算装置に実行させ
    前記携帯端末が搭載された自動車が直進状態であるか否かを判断し、前記自動車が直進状態であると判断した場合に、前記自動車の直進状態を検出すると共に、前記自動車の進行方向に対する前記携帯端末の回転角を算出する第2の処理を、前記第1の処理において前記携帯端末の静止状態を検出済みである場合に、前記演算装置に実行させ
    前記傾斜角度および前記回転角に基づいて、前記加速度センサにより検出された加速度を前記自動車の加速度に変換する第3の処理を、前記第1の処理において前記携帯端末の静止状態を検出済みであり、かつ前記第2の処理において前記自動車の直進状態を検出済みである場合に、前記演算装置に実行させることを特徴とする携帯端末用プログラム。
  2. 請求項1に記載の携帯端末用プログラムにおいて、
    直前の前記第1の処理において前記携帯端末の静止状態が検出されておらず、かつ過去の前記第1の処理において前記携帯端末の静止状態を検出済みである場合に、前記第2の処理を前記演算装置に実行させることを特徴とする携帯端末用プログラム。
  3. 請求項1または2に記載の携帯端末用プログラムにおいて、
    過去の前記第1の処理において算出された前記携帯端末の傾斜角度と、直前の前記第1の処理において算出された前記携帯端末の傾斜角度との差が所定値以上である場合に、前記第2の処理において前記演算装置が前記自動車の直進状態を検出済みであっても、前記自動車の直進状態を解除させることを特徴とする携帯端末用プログラム。
  4. 請求項1乃至3のいずれか一項に記載の携帯端末用プログラムにおいて、
    前記携帯端末は、3軸方向の方位角を検出する方位角センサおよび位置を検出する位置センサの少なくとも一つをさらに備え、
    前記第1の処理では、前記加速度センサにより検出された加速度の変化に基づいて、前記携帯端末静止状態であるか否かを判断し、
    前記第2の処理では、前記方位角センサにより検出された方位角、前記位置センサにより検出された位置、および前記加速度センサにより検出された加速度の少なくとも一つの変化に基づいて、前記自動車直進状態であるか否かを判断することを特徴とする携帯端末用プログラム。
  5. 請求項1乃至4のいずれか一項に記載の携帯端末用プログラムにおいて、
    前記第1の処理および前記第3の処理では、前記自動車が走行している道路の勾配を取得し、取得した前記道路の勾配に基づいて前記傾斜角度を補正することを特徴とする携帯端末用プログラム。
  6. 請求項1乃至のいずれか一項に記載の携帯端末用プログラムにおいて、
    前記携帯端末は、画像表示部をさらに備え、
    前記回転角に基づいて前記自動車の進行方向を前記画像表示部に表示させることを特徴とする携帯端末用プログラム。
  7. 請求項1乃至5のいずれか一項に記載の携帯端末用プログラムにおいて、
    前記携帯端末は、タッチパネルをさらに備え
    前記第1の処理において前記携帯端末の静止状態を検出済みである場合に、前記第1の処理で検出された前記携帯端末の静止状態を解除するための操作ボタンを、前記タッチパネルに表示させ
    前記第2の処理において前記自動車の直進状態を検出済みである場合に、前記第2の処理で検出された前記自動車の直進状態を解除するための操作ボタンを、前記タッチパネルに表示させることを特徴とする携帯端末用プログラム。
  8. 請求項1乃至のいずれか一項に記載の携帯端末用プログラムにおいて、
    前記携帯端末は、動画を撮影するカメラをさらに備え、
    前記自動車の運転風景に関する運転動画を前記カメラにより撮影し、前記自動車の加速度に基づいて前記運転動画の撮影終了タイミングを決定する処理を前記演算装置にさらに実行させることを特徴とする携帯端末用プログラム。
  9. 請求項1乃至のいずれか一項に記載の携帯端末用プログラムにおいて、
    前記自動車の加速度の履歴に基づいて、前記自動車のドライバーに対する運転特性診断を前記携帯端末に行わせることを特徴とする携帯端末用プログラム。
  10. 3軸方向の加速度を検出する加速度センサを備え、請求項1乃至のいずれか一項に記載の携帯端末用プログラムを実行することを特徴とする携帯端末。
  11. 請求項10に記載の携帯端末と、
    前記携帯端末と無線通信を行うセンタ装置とを備え、
    前記携帯端末は、前記携帯端末が搭載された自動車の加速度を検出して前記センタ装置に送信し、
    前記センタ装置は、前記携帯端末から送信された前記自動車の加速度の履歴に基づいて、前記自動車のドライバーに対する運転特性診断を行うことを特徴とする自動車運転特性診断システム。
  12. 3軸方向の加速度を検出する加速度センサを備えた携帯端末を用いて、前記携帯端末が搭載された自動車の加速度を算出する方法であって、
    前記携帯端末が静止状態であるか否かを判断し、前記携帯端末が静止状態であると判断した場合に、前記携帯端末の静止状態を検出して前記携帯端末の傾斜角度を算出し、
    前記携帯端末の静止状態を検出済みである場合に、前記自動車が直進状態であるか否かを判断し、前記自動車が直進状態であると判断した場合に、前記自動車の直進状態を検出して前記自動車の進行方向に対する前記携帯端末の回転角を算出し、
    前記携帯端末の静止状態を検出済みであり、かつ前記自動車の直進状態を検出済みである場合に、前記傾斜角度および前記回転角に基づいて、前記加速度センサにより検出された加速度を前記自動車の加速度に変換することにより、前記自動車の加速度を算出することを特徴とする自動車加速度算出方法。
JP2014088009A 2014-04-22 2014-04-22 携帯端末用プログラム、携帯端末、自動車運転特性診断システム、自動車加速度算出方法 Expired - Fee Related JP5990553B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014088009A JP5990553B2 (ja) 2014-04-22 2014-04-22 携帯端末用プログラム、携帯端末、自動車運転特性診断システム、自動車加速度算出方法
EP15164453.1A EP2937814A1 (en) 2014-04-22 2015-04-21 Program product, portable device, vehicle driving characteristic diagnosis system, and vehicle acceleration calculation method
US14/692,367 US20150298705A1 (en) 2014-04-22 2015-04-21 Program product, portable device, vehicle driving characteristic diagnosis system, and vehicle acceleration calculation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014088009A JP5990553B2 (ja) 2014-04-22 2014-04-22 携帯端末用プログラム、携帯端末、自動車運転特性診断システム、自動車加速度算出方法

Publications (3)

Publication Number Publication Date
JP2015207186A JP2015207186A (ja) 2015-11-19
JP2015207186A5 JP2015207186A5 (ja) 2016-04-14
JP5990553B2 true JP5990553B2 (ja) 2016-09-14

Family

ID=53177093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014088009A Expired - Fee Related JP5990553B2 (ja) 2014-04-22 2014-04-22 携帯端末用プログラム、携帯端末、自動車運転特性診断システム、自動車加速度算出方法

Country Status (3)

Country Link
US (1) US20150298705A1 (ja)
EP (1) EP2937814A1 (ja)
JP (1) JP5990553B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018136193A (ja) * 2017-02-22 2018-08-30 パーク二四株式会社 加速度センサオートアライメント装置およびコンピュータプログラム
WO2019065052A1 (ja) * 2017-09-26 2019-04-04 ジヤトコ株式会社 携帯端末、携帯端末に実行させるプログラム、キャリブレーションシステム及びキャリブレーション方法
JP2021099374A (ja) * 2020-03-17 2021-07-01 ベイジン バイドゥ ネットコム サイエンス テクノロジー カンパニー リミテッドBeijing Baidu Netcom Science Technology Co., Ltd. 車両加速度計の前進軸のキャリブレーション方法及び装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI646503B (zh) * 2014-12-30 2019-01-01 香港商富智康〈香港〉有限公司 照片方位校正系統及方法
JP6174105B2 (ja) 2015-12-07 2017-08-02 ヤフー株式会社 判定装置、判定方法及び判定プログラム
JP6731252B2 (ja) * 2015-12-28 2020-07-29 パイオニア株式会社 挙動事故検知装置、サーバ装置、制御方法、プログラム及び記憶媒体
CN106934193B (zh) * 2015-12-30 2020-12-08 优信拍(北京)信息科技有限公司 车辆信息获取方法及装置
JP6535606B2 (ja) * 2016-01-14 2019-06-26 株式会社日立製作所 携帯端末用プログラム、携帯端末、情報通信システム、車両加速度算出方法
US11615476B2 (en) 2016-12-22 2023-03-28 Sony Corporation Information processing device and method
JP2018147211A (ja) * 2017-03-06 2018-09-20 損害保険ジャパン日本興亜株式会社 情報処理装置、情報処理方法、情報処理プログラムおよび情報処理システム
JP6271793B2 (ja) * 2017-04-28 2018-01-31 ヤフー株式会社 判定装置、判定方法及び判定プログラム
JP6392937B2 (ja) * 2017-06-09 2018-09-19 ヤフー株式会社 推定装置、推定方法及び推定プログラム
JP6899740B2 (ja) * 2017-08-31 2021-07-07 キムラユニティー株式会社 運転支援システム及び運転支援方法及び運転支援システム用サーバコンピュータ
JP6553148B2 (ja) * 2017-10-05 2019-07-31 ヤフー株式会社 判定装置、判定方法及び判定プログラム
US20200286183A1 (en) * 2017-10-06 2020-09-10 Sony Corporation Information processing apparatus, and information processing method, and program
DE112019004143T5 (de) * 2018-08-17 2021-06-10 Sony Corporation Informationsverarbeitungsvorrichtung, informationsverarbeitungssystem, informationsverarbeitungsverfahren und programm
KR102505471B1 (ko) * 2018-10-08 2023-03-06 주식회사 에이치엘클레무브 레이더 장착 각도 검출 장치 및 그 방법
US11190916B2 (en) * 2019-02-22 2021-11-30 At&T Mobility Ii Llc Connected vehicle network access optimization using an intermediary platform
JP2024013066A (ja) * 2022-07-19 2024-01-31 矢崎総業株式会社 ドライバ評価装置及びドライバ評価システム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6532419B1 (en) * 1998-09-23 2003-03-11 Magellan Dis, Inc. Calibration of multi-axis accelerometer in vehicle navigation system
JP2000356647A (ja) * 1999-06-14 2000-12-26 Denso Corp 加速度センサのオフセット誤差検出方法及び装置、車両用現在位置検出装置、ナビゲーション装置
JP4153798B2 (ja) * 2003-01-29 2008-09-24 株式会社日立製作所 安全運転診断方法および安全運転診断装置
JP2006145217A (ja) * 2004-11-16 2006-06-08 Matsushita Electric Ind Co Ltd 進行方向表示装置
JP2007093448A (ja) * 2005-09-29 2007-04-12 Aichi Steel Works Ltd モーションセンサ及びこれを用いた携帯電話機
JP4816340B2 (ja) * 2006-08-31 2011-11-16 ソニー株式会社 ナビゲーション装置、位置検出方法及び位置検出プログラム
US8989982B2 (en) * 2008-08-29 2015-03-24 Sony Corporation Velocity calculation device, velocity calculation method, and navigation device
JP2011043342A (ja) * 2009-08-19 2011-03-03 Sanyo Electric Co Ltd 移動体搭載用機器
JP4729137B1 (ja) * 2011-03-03 2011-07-20 株式会社データ・テック 移動体に搭載される運行管理装置、携帯情報端末、運行管理サーバ、コンピュータプログラム
US9581615B2 (en) * 2011-09-30 2017-02-28 Ntelligent Mechatronic Systems Inc. Method of correcting the orientation of a freely installed accelerometer in a vehicle
JP6123443B2 (ja) * 2013-04-09 2017-05-10 株式会社デンソー 危険車両通知装置、危険車両通知プログラム、危険車両通知プログラムを記録した記録媒体

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018136193A (ja) * 2017-02-22 2018-08-30 パーク二四株式会社 加速度センサオートアライメント装置およびコンピュータプログラム
WO2019065052A1 (ja) * 2017-09-26 2019-04-04 ジヤトコ株式会社 携帯端末、携帯端末に実行させるプログラム、キャリブレーションシステム及びキャリブレーション方法
JPWO2019065052A1 (ja) * 2017-09-26 2020-04-02 ジヤトコ株式会社 携帯端末、携帯端末に実行させるプログラム、キャリブレーションシステム及びキャリブレーション方法
JP2021099374A (ja) * 2020-03-17 2021-07-01 ベイジン バイドゥ ネットコム サイエンス テクノロジー カンパニー リミテッドBeijing Baidu Netcom Science Technology Co., Ltd. 車両加速度計の前進軸のキャリブレーション方法及び装置
JP7158109B2 (ja) 2020-03-17 2022-10-21 阿波▲羅▼智▲聯▼(北京)科技有限公司 車両加速度計の前進軸のキャリブレーション方法及び装置

Also Published As

Publication number Publication date
JP2015207186A (ja) 2015-11-19
US20150298705A1 (en) 2015-10-22
EP2937814A1 (en) 2015-10-28

Similar Documents

Publication Publication Date Title
JP5990553B2 (ja) 携帯端末用プログラム、携帯端末、自動車運転特性診断システム、自動車加速度算出方法
US9888364B2 (en) Localizing a smartphone in a moving vehicle
JP6535606B2 (ja) 携帯端末用プログラム、携帯端末、情報通信システム、車両加速度算出方法
CN109213144A (zh) 人机接口(hmi)架构
WO2016035281A1 (ja) 車載システム、情報処理方法、およびコンピュータプログラム
CN110349291A (zh) 用于车辆的数据记录器装置
CN112945230B (zh) 车辆行车状态的识别方法、装置、计算机设备和存储介质
US9633488B2 (en) Methods and apparatus for acquiring, transmitting, and storing vehicle performance information
US20210406546A1 (en) Method and device for using augmented reality in transportation
US20230351823A1 (en) Information processing device, information processing method and program
CN113950612A (zh) 用于2d路径规划器的道路模型流形
JP6057605B2 (ja) ドライブレコーダ
US20170344123A1 (en) Recognition of Pickup and Glance Gestures on Mobile Devices
US20230314153A1 (en) Processing System Having A Machine Learning Engine For Providing A Common Trip Format (CTF) Output
US20220289204A1 (en) Driving diagnosis device and driving diagnosis method
CN104778852B (zh) 信息处理设备和移动终端
US20220281485A1 (en) Control apparatus, system, vehicle, and control method
JP2019016227A (ja) 情報処理方法、情報処理装置及び情報処理プログラム
JP7257116B2 (ja) 姿勢同定方法及びプログラム
KR20150120433A (ko) 차량 성능 정보를 취득, 송신 및 저장하는 방법 및 장치
JP7079041B2 (ja) 情報処理装置、プログラム、及び、情報処理方法
US11302123B2 (en) Information recording device, information recording method, and program for recording information
CN111845726B (zh) 一种车辆碰撞的检测方法、装置、电子设备及存储介质
US20220292885A1 (en) Driving diagnostic device and driving diagnostic method
JP2021085666A (ja) 情報処理装置及びプログラム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160224

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160224

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20160224

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160815

R150 Certificate of patent or registration of utility model

Ref document number: 5990553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees