JP5928438B2 - 交流電動機の制御装置 - Google Patents

交流電動機の制御装置 Download PDF

Info

Publication number
JP5928438B2
JP5928438B2 JP2013229563A JP2013229563A JP5928438B2 JP 5928438 B2 JP5928438 B2 JP 5928438B2 JP 2013229563 A JP2013229563 A JP 2013229563A JP 2013229563 A JP2013229563 A JP 2013229563A JP 5928438 B2 JP5928438 B2 JP 5928438B2
Authority
JP
Japan
Prior art keywords
current
phase
value
motor
estimated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013229563A
Other languages
English (en)
Other versions
JP2015091168A (ja
Inventor
隆士 小俣
隆士 小俣
崇文 大和田
崇文 大和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2013229563A priority Critical patent/JP5928438B2/ja
Priority to US14/533,411 priority patent/US9473059B2/en
Publication of JP2015091168A publication Critical patent/JP2015091168A/ja
Application granted granted Critical
Publication of JP5928438B2 publication Critical patent/JP5928438B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/20Estimation of torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • B60L15/025Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit using field orientation; Vector control; Direct Torque Control [DTC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/427Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Control Of Ac Motors In General (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

本発明は、3相のうち1相の相電流を電流センサにより検出して交流電動機の通電を制御する交流電動機の制御装置に関する。
近年、低燃費、低排気エミッションの社会的要請から車両の動力源として交流電動機を搭載した電気自動車やハイブリッド自動車が注目されている。例えば、ハイブリッド自動車においては、二次電池等からなる直流電源と交流電動機とを、インバータ等で構成された電力変換装置を介して接続し、直流電源の直流電圧をインバータで交流電圧に変換して交流電動機を駆動するようにしたものがある。
このようなハイブリッド自動車や電気自動車に搭載される交流電動機の制御装置において、運転者によるアクセル信号、ブレーキ信号等を取得し運転状態に応じたトルク指令値を演算する上位制御部と、上位制御部から指令されたトルク指令値に基づき交流電動機の駆動を制御する下位制御部とを備え、上位制御部と下位制御部との間での通信により制御異常を監視する技術が知られている。
例えば特許文献1のモータ制御装置は、下位制御部であるモータ制御CPUが演算したdq軸電流のうちトルクに寄与するq軸電流を上位制御部である車両制御CPUに送信し、トルク指令についての上下限値と比較することで出力トルクの方向が正しいか否かを判定し、モータ制御CPU20の演算が正常に行われているかどうか監視する。
一方、交流電動機に通電される相電流を検出する電流センサを1相のみに設け、下位制御部において、1相の電流検出値に基づき推定した電流推定値をフィードバックすることで交流電動機の通電を制御する「1相制御」の技術が知られている(例えば特許文献2、3参照)。電流センサを1相のみに設けることで、電流センサの数を減らし、インバータの3相出力端子近傍の小型化や交流電動機の制御系統のコスト低減を図っている。
特開2000−23499号公報 特開2008−86139号公報 特開2004−159391号公報
特許文献1の装置による出力トルクの異常監視では、インバータからモータへの出力電流は、U相、V相、W相の各相電流が検知されフィードバック変換部に入力されている。すなわち、電流センサが3相に設けられる構成が前提となっている。ここで、キルヒホッフの法則を用い、2相の電流センサの検出値から他の1相の電流値を算出する技術を適用したとしても、少なくとも2相の電流検出値に基づきフィードバック制御する構成を前提とするものである。したがって、3相のうち1相の電流検出値に基づきフィードバック制御する構成の制御装置に適用することはできない。
また、1相制御に関し、特許文献2の技術は、d軸電流指令及びq軸電流指令を逆dq変換して得られる3相電流指令値のうちセンサ相以外の2相の電流指令値を、そのまま2相の電流推定値とするものである。特許文献3の技術は、dq軸電流指令の電流指令位相角とセンサ相の電気角とを加算したセンサ相の電流位相角を用いて、センサ相以外の2相の電流値を推定するものであり、dq軸電流指令を座標上の角度に変換してそのまま用いている。
このように、特許文献2、3による1相制御の技術では、1相の電流検出値しかないことにより不足する情報を補うため、電流指令値をそのままの状態で検出値の代わりに用いて推定値を算出している。つまり、基本的に検出値に基づいて推定値を算出していないため、実際の実機状態を正しく把握することが困難である。したがって、このような推定値に基づいて出力トルクを適切に監視することはできない。
また、特許文献1の装置では、下位制御部から上位制御部にq軸電流のみを送信しているため、上位制御部は、基本的に、q軸電流の正負に基づく出力トルクの方向を判定することができるにすぎない。出力トルクの値に関して、特にIPM(埋込永久磁石)型の交流電動機の場合、指令トルクと大きく異なる範囲の異常を除き、q軸電流の情報のみでは出力トルクを正確に推定し、異常を判定することができない。
本発明は上述の課題に鑑みて成されたものであり、その目的は、交流電動機に対するトルク指令値を演算する上位制御部と、3相のうち1相の相電流を検出して交流電動機の通電を制御する下位制御部とを備える制御装置において、下位制御部からの情報に基づき、上位制御部が交流電動機の出力トルクを適切に監視する交流電動機の制御装置を提供することにある。
本発明は、上位制御部と下位制御部とを備え、3相のうち1相のセンサ相に流れる電流を電流センサにより検出して交流電動機の駆動を制御する交流電動機の制御装置に係る発明である。
上位制御部は、交流電動機に対するトルク指令値を演算するトルク指令演算部、及び、トルク指令値に対する交流電動機の出力トルクが正常範囲内にあるか否かを判定する出力トルク監視を実行する出力トルク監視部を有する。
下位制御部は、上位制御部と互いに通信し、上位制御部から受信したトルク指令値に基づいてインバータへの通電を制御することで交流電動機の駆動を制御し、且つ、交流電動機の通電状態及び回転状態に関する情報を取得しつつ制御状態に関する情報を上位制御部に送信する。
上位制御部と下位制御部とは、両方が協働して、力トルク監視に用いる監視用情報としてdq軸電流推定値を演算するものである。
下位制御部は、1相のセンサ相の電流検出値、及び交流電動機の電気角に基づき、電流指令値を用いる推定演算を除く推定演算によって、センサ相以外の相である推定相の電流推定値を推定し、当該推定相の電流推定値、センサ相の電流検出値及び交流電動機の電気角を上位制御部に送信する。上位制御部は、受信した推定相の電流推定値及びセンサ相の電流検出値を変換してdq軸電流推定値を演算する。そして、出力トルク監視部は、演算されたdq軸電流推定値に基づいて、出力トルク監視を実行することを特徴とする。
ここで、「交流電動機」は、交流駆動のモータ、発電機、及びモータジェネレータを含むものであり、例えば、ハイブリッド自動車や電気自動車の主機として用いられ駆動輪を駆動するためのトルクを発生するモータジェネレータが該当する。また、例えば、車両制御CPUが「上位制御部」に該当し、モータ制御CPUが「下位制御部」に該当する。
また、「dq軸電流推定値」は、d軸電流推定値及びq軸電流推定値の意味である。
本発明では、上位制御部下位制御部の協働により、1相のセンサ相の電流検出値、及び交流電動機の電気角に基づく推定演算により推定した電流推定値に基づいて、出力トルク監視に用いる監視用情報としてdq軸電流推定値を演算する。したがって、3相のうち1相の相電流を検出して交流電動機の通電を制御する制御装置において、下位制御部からの情報に基づき、上位制御部が交流電動機の出力トルクを適切に監視することができる。
また、本発明では、出力トルク監視部においてdq軸電流推定値に基づいて、或いは、dq軸電流推定値から算出したトルク推定値に基づいて、出力トルクの異常を判定する。したがって、q軸電流のみを上下限値と比較する特許文献1の従来技術のように出力トルクの方向を判定するだけでなく、IPM型の電動機に適用する場合を含め、出力トルクの値を正確に評価し、異常を判定することができる。
本発明における「出力トルク監視に用いる監視用情報」は、dq軸電流推定値である。下位制御部が電流フィードバック制御に用いる情報に基づいて出力トルク監視を実行することで、下位制御部による演算異常を適確に発見しやすくなる。
ここで、出力トルク監視に用いられる推定値は、実際の実機状態を把握できるものであることが求められる。その点、電流指令値を単に変換してそのままの状態で用いる推定演算では、実際の実機状態を正しく把握することが困難であり、適切な出力トルク監視を行うことができない。
そこで、「電流指令値を用いない推定演算」により、「基本的に検出値に基づいて」出力トルクを監視する。なお、仮に「電流指令値を用いる推定演算」を用いる場合、単に電流指令値を不足情報の代わりとして用いるのでなく、検出値に基づいて電流指令値を補正するような形で検出値の情報を可及的に反映させることが好ましい。これにより、実際の実機状態を把握可能な推定値を得ることができ、適切な出力トルク監視を行うことができる。
本発明の実施形態による交流電動機の制御装置が適用されるハイブリッド自動車の駆動システムの構成を示す図である。 本発明の実施形態による交流電動機の制御装置の全体構成図である。 本発明の第1〜第3実施形態による電動機制御装置に共通のモータ制御CPUのブロック図である。 センサ相を基準にした固定座標系(α−β座標系)を説明する図である。 本発明の第1実施形態による電動機制御装置のブロック図である。 本発明の第1実施形態による出力トルク監視のフローチャートである。 (a)第1パターンの出力トルク監視部のブロック図、(b)正常範囲の判定基準を示すタイムチャートである。 (a)第2パターンの出力トルク監視部のブロック図、(b)正常範囲の判定基準を示すタイムチャートである。 (a)第3パターンの出力トルク監視部のブロック図、(b)正常範囲の判定基準を示すタイムチャートである。 (a)第4パターンの出力トルク監視部のブロック図、(b)正常範囲の判定基準を示すタイムチャートである。 本発明の第2実施形態による電動機制御装置のブロック図である。 本発明の第2実施形態による出力トルク監視のフローチャートである。 本発明の第3実施形態による電動機制御装置のブロック図である。 本発明の第3実施形態による出力トルク監視のフローチャートである。 本発明の第4実施形態によるモータ制御CPUのブロック図である。 本発明の第5実施形態による電流推定部のブロック図である。 本発明のその他の実施形態による監視体系のブロック図である。
以下、本発明による交流電動機の制御装置の実施形態を図面に基づいて説明する。特に第1実施形態が「特許請求の範囲に記載の発明を実施するための形態」に相当する。
最初に、複数の実施形態に共通の構成について、図1、図2を参照して説明する。この実施形態による「交流電動機の制御装置」としての電動機制御装置10は、ハイブリッド自動車を駆動するシステムに適用される。
[交流電動機の制御装置の構成]
図1に示すように、ハイブリッド自動車の駆動システムは、交流電動機2、インバータ12、直流電源8、及び電動機制御装置10等を含む。
交流電動機2は、例えば電動車両の駆動輪6を駆動するためのトルクを発生する電動機である。本実施形態の交流電動機2は、永久磁石式同期型の三相交流電動機である。
電動車両には、ハイブリッド自動車、電気自動車、燃料電池車等、電気エネルギによって駆動輪6を駆動する車両が含まれるものとする。本実施形態の電動車両は、エンジン3を備えたハイブリッド車両であり、交流電動機2は、駆動輪6を駆動するためのトルクを発生する電動機としての機能、及び、エンジン3や駆動輪6から伝わる車両の運動エネルギにより駆動されて発電可能な発電機としての機能を有する、所謂モータジェネレータ(図中、「MG」と記す。)である。
交流電動機2は、例えば変速機等のギア4を介して車軸5に接続される。これにより、交流電動機2の駆動力は、ギア4を介して車軸5を回転させることにより、駆動輪6を駆動する。
直流電源8は、例えばニッケル水素またはリチウムイオン等の二次電池や電気二重層キャパシタ等、充放電可能な蓄電装置である。直流電源8は、インバータ12と接続され、インバータ12を介して交流電動機2と電力の授受が可能に構成されている
電動機制御装置10は、「上位制御部」としての車両制御CPU40、及び「下位制御部」としてのモータ制御CPU20を備える。車両制御CPU40及びモータ制御CPU20は、マイクロコンピュータ等により構成され、内部にはいずれも図示しないCPU、ROM、I/O、及び、これらを接続するバスライン等を備えている。また、車両制御CPU40とモータ制御CPU20とは、互いに通信する。
なお、電動機制御装置、モータ制御CPU及び車両制御CPUの符号「10」、「20」、「40」は、後述する実施形態毎の符号「101」、「201」、「401」等に対し、複数の実施形態に共通の総括的符号として用いる。
車両制御CPU40は、予め記憶されたプログラムを実行することによるソフトウェア処理や、専用の電子回路によるハードウェア処理により、電動車両全体を制御する。
車両制御CPU40は、いずれも図示しないアクセルセンサからのアクセル信号、ブレーキスイッチからのブレーキ信号、シフトスイッチからのシフト信号、及び、車両の速度に関する車速信号等の各種センサやスイッチ等から信号を取得し、これらの信号等に基づいて車両の運転状態を検出する。そして、トルク指令演算部41(図2参照)にて、運転状態に応じたトルク指令値trq*を演算し、モータ制御CPU20に送信する。
また、車両制御CPU40は、エンジン3の運転を制御する図示しないエンジン制御回路に対し指令信号を出力する。
モータ制御CPU20は、車両制御CPU40から受信したトルク指令値trq*に基づいて、ソフトウェア処理やハードウェア処理により、インバータ12への通電を制御することで交流電動機2の駆動を制御する。
図2に示すように、インバータ12には、図示しない昇圧コンバータによる直流電源の昇圧電圧がシステム電圧VHとして入力される。インバータ12は、ブリッジ接続される図示しない6つのスイッチング素子を有する。スイッチング素子には、例えばIGBT(Insulated Gate Bipolar Transistor)、MOS(Metal Oxide Semiconductor)トランジスタ、バイポーラトランジスタ等を用いることができる。
モータ制御CPU20のPWM信号生成部25から出力されるPWM信号UU、UL、VU、VL、WU、WLに基づいてスイッチング素子のオン/オフが制御される。これにより、インバータ12は、交流電動機2に印加される3相交流電圧vu、vv、vwを制御する。交流電動機2は、インバータ12により生成された3相交流電圧vu、vv、vwが印加されることにより駆動が制御される。
電流センサ13は、交流電動機2のいずれか1相の電流を検出する。本実施形態では、電流センサ13は、W相の電流を検出する。以下、電流センサ13が電流を検出するW相を「センサ相」という。電流センサ13は、W相の相電流をセンサ相の電流検出値iw_snsとして検出し、モータ制御CPU20に出力する。
以下、本実施形態の説明では、センサ相をW相とする構成を前提として説明する。ただし、他の実施形態では、U相又はV相をセンサ相としてもよい。
回転角センサ14は、交流電動機2の図示しないロータ近傍に設けられ、電気角θeを検出し、モータ制御CPU20に出力する。また、回転角センサ14により検出された電気角θeに基づき、交流電動機2のロータの回転数Nが算出される。以下、「交流電動機2のロータの回転数N」を、単に「交流電動機2の回転数N」という。
本実施形態の回転角センサ14は、レゾルバであるが、その他の実施形態では、ロータリエンコーダ等、他種のセンサを用いてもよい。
モータ制御CPU20は、電流センサ13が検出したセンサ相の電流検出値iw_sns、及び、回転角センサ14が検出した電気角θeを取得する。これらのセンサ相の電流検出値iw_sns及び電気角θeは、「交流電動機の通電状態及び回転状態に関する情報」に相当する。モータ制御CPU20は、これらの情報に基づき、例えばセンサ相以外の相の電流推定値を演算し、インバータ12への通電を制御する。
モータ制御CPU20は、回転角センサ14が検出した電気角θeに基づく交流電動機2の回転数N、及び、車両制御CPU40からのトルク指令値trq*に応じて、交流電動機2を「電動機としての力行動作」により電力を消費し、又は「発電機としての回生動作」により電力を生成する。具体的には、回転数N及びトルク指令値trq*の正負によって、以下の4つのパターンで動作を切り替える。
<1.正転力行> 回転数Nが正でトルク指令値trq*が正のとき、電力消費。
<2.正転回生> 回転数Nが正でトルク指令値trq*が負のとき、発電。
<3.逆転力行> 回転数Nが負でトルク指令値trq*が負のとき、電力消費。
<4.逆転回生> 回転数Nが負でトルク指令値trq*が正のとき、発電。
回転数N>0(正転)で、トルク指令値trq*>0である場合、または、回転数N<0(逆転)でトルク指令値trq*<0である場合、インバータ12は、スイッチング素子のスイッチング動作により、直流電源8側から供給される直流電力を交流電力に変換してトルクを出力する(力行動作する)ように、交流電動機2を駆動する。
一方、回転数N>0(正転)で、トルク指令値trq*<0である場合、または、回転数N<0(逆転)でトルク指令値trq*>0である場合、インバータ12は、スイッチング素子のスイッチング動作により、交流電動機2が発電した交流電力を直流電力に変換し、直流電源8側へ供給することにより、回生動作する。
さらに、本実施形態では、センサ相の電流検出値iw_sns、電気角θe、及び、これらに基づいて演算した電流推定値等の「制御状態に関する情報」を、モータ制御CPU20から車両制御CPU40に送信することを特徴とする。
車両制御CPU40の出力トルク監視部44は、モータ制御CPU20から送信された制御状態の情報に基づいて、後述するように出力トルク監視を実行し、その結果を判定信号Sjによりトルク指令演算部41に送信する。
[モータ制御CPUの構成]
次に、第1〜第3実施形態に共通のモータ制御CPU20の構成について、図3、図4を参照して説明する。ここで、第1、第2、第3実施形態のモータ制御CPUの符号を、それぞれ「201」、「202」、「203」と示す。なお、モータ制御CPU201、202、203の構成は、図3に示す範囲では同一であり、後述する図5、図11、図13において、車両制御CPU40に送信する「制御状態に関する情報」の種類が異なる。
図3に示すように、モータ制御CPU201、202、203は、dq軸電流指令値演算部21、電流減算器22、PI演算部23、逆dq変換部24、PWM信号生成部25及び電流推定部301を有し、電流フィードバック制御方式によって交流電動機2の通電を制御する。電流フィードバック制御方式は、dq軸電流指令値id*、iq*に対してdq軸電流推定値id_est、iq_estをフィードバックする制御方式であり、いわゆる正弦波制御モードや過変調制御モードが含まれる。
dq軸電流指令値演算部21は、車両制御CPU40から指令されたトルク指令値trq*に基づき、交流電動機2の回転座標系(d−q座標系)におけるdq軸電流指令値id*、iq*を演算する。本実施形態では、dq軸電流指令値id*、iq*は、予め記憶されているマップを参照することにより演算される。他の実施形態では数式等から演算するように構成してもよい。
電流減算器22は、d軸電流減算器221及びq軸電流減算器222を有する。d軸電流減算器221では、電流推定部301にて算出されてフィードバックされるd軸電流推定値id_estとd軸電流指令値id*との差であるd軸電流偏差Δidを算出する。また、q軸電流減算器222では、電流推定部301にて算出されてフィードバックされるq軸電流推定値iq_estとq軸電流指令値iq*との差であるq軸電流偏差Δiqを算出する。
PI演算部23は、d軸PI演算部231及びq軸PI演算部232を有する。d軸PI演算部231では、d軸電流推定値id_estをd軸電流指令値id*に追従させるべく、d軸電流偏差Δidが0に収束するようにd軸電圧指令値vd*をPI演算により算出する。また、q軸PI演算部232では、q軸電流推定値iq_estをq軸電流指令値iq*に追従させるべく、q軸電流偏差Δiqが0に収束するようにq軸電圧指令値vq*をPI演算により算出する。
逆dq変換部24では、回転角センサ14から取得される電気角θeに基づき、d軸電圧指令値vd*及びq軸電圧指令値vq*を、U相電圧指令値vu*、V相電圧指令値vv*、及びW相電圧指令値vw*に変換する。
PWM信号生成部25では、インバータ12のスイッチング素子のオン/オフの切替えに係るPWM信号UU、UL、VU、VL、WU、WLを、3相電圧指令値vu*、vv*、vw*、及び、インバータ12に印加されるシステム電圧VHに基づいて算出する。
そして、PWM信号UU、UL、VU、VL、WU、WLに基づいてインバータ12のスイッチング素子のオン/オフが制御されることより、3相交流電圧vu、vv、vwが生成され、この3相交流電圧vu、vv、vwが交流電動機2に印加されることにより、トルク指令値trq*に応じたトルクが出力されるように、交流電動機2の駆動が制御される。
電流推定部301は、他相電流推定部31及びdq変換部34を有している。
そもそも電流センサ13が2相に設けられている電動機制御装置では、キルヒホッフの法則(式(1))により、電流センサ13が設けられていない残りの1相の電流を容易に算出可能である。
iu+iv+iw=0 ・・・(1)
それに対し、電流センサ13を1相(W相)にのみ設ける制御装置では、センサ相以外の相のうち少なくとも1相の電流を推定する必要がある。
電流推定部301の他相電流推定部31は、センサ相以外のU相、V相のいずれかの相の電流を推定する。以下、電流を推定する相を「推定相」という。以下の説明では、主にU相を推定相として扱い、V相を括弧書きにして、推定相の電流推定値を「iu(v)_est」のように示す。同じくdq変換部34について「u(v)w→dq」と示す。
また、本実施形態では、他相電流推定部31に対し、dq軸電流指令値演算部21からdq軸電流指令値id*、iq*が入力されない点が後述する第4実施形態のモータ制御CPU204と異なる。すなわち、他相電流推定部31は、dq軸電流指令値id*、iq*、或いはそれを逆dq変換した3相電流指令値iu*、iv*、iw*を用いない推定演算によって、推定相の電流推定値iu(v)_estを演算することを特徴とする。
ここで、他相電流推定部31が、電流指令値を用いず、センサ相の電流検出値iw_sns及び電気角θeの情報に基づいてセンサ相以外の相の電流推定値を推定する演算方法は、その方法によって得られる推定値が実際の実機状態を把握可能なものであれば、どのようなものでもよい。一例として、特開2013−172594号公報に開示された推定演算方法の概要を説明する。なお、数式の導出等の詳細な説明は省略する。
この方法は、α−β座標系におけるα軸電流iαとβ軸電流iβとに基づいて算出したセンサ相基準電流位相θxから、推定相であるU相の電流推定値iu_estを算出することを特徴とする。図4に示すように、α軸はセンサ相であるW相の軸に一致し、β軸はα軸に直交する。センサ相基準電流位相θxは、α軸と、電流振幅Iaの電流ベクトル(Ia∠θx)とがなす、センサ相の電流検出値iw_snsに同期した角度である。
まず、α軸電流検出値iα_snsは、センサ相の電流検出値iw_snsに基づき、式(2)のように表される。
Figure 0005928438
次に、センサ相の電流検出値に基づいてα軸電流iαを算出するタイミング間での「電気角移動量Δθe[rad]に対するα軸電流iαの変化量」、すなわち、「α軸電流iαの今回値と前回値との差」に基づいて、α軸電流の微分値Δiαを、式(3)により算出する。
Δiα=−{iα(n)−iα(n−1)}/Δθe ・・・(3)
そして、α軸電流iαとβ軸電流iβが「sin波とcos波」の関係にあり、α軸電流iαとβ軸電流iβとの位相差が90[°]であることに着目し、α軸電流の微分値Δiαに基づいてβ軸電流推定値iβ_estを演算する。
続いて、α軸電流検出値iα_sns及びβ軸電流推定値iβ_estに基づき、式(4)により、センサ相基準電流位相θxを算出する。
Figure 0005928438
推定相をU相とすると、次に、センサ相基準電流位相θx、及び、センサ相の電流検出値iw_snsを用い、式(5)により、推定相の電流推定値iu_estを算出する。或いは、マップを参照することにより算出してもよい。
Figure 0005928438
こうして他相電流推定部31が算出した推定相の電流推定値iu_estは、dq変換部34に出力される。dq変換部34は、推定相の電流推定値iu_estとセンサ相の電流検出値iw_snsとを、電気角θeに基づき、式(6)によりdq変換し、dq軸電流推定値id_est、iq_estを算出する。
Figure 0005928438
この推定演算方法によると、センサ相を基準にした固定座標系(α−β座標系)におけるα軸電流iαとβ軸電流iβとに基づいてセンサ相基準電流位相θxを算出し、センサ相基準電流位相θxとセンサ相の電流検出値iw_snsとに基づいて推定相の電流推定値iu_estを算出する。したがって、実際の電流位相θxの高調波成分や通常起こり得る変動の影響等の実際の実機状態を反映して、推定相の電流推定値iu_estを精度良く算出することができる。
[電動機制御装置の構成]
次に、モータ制御CPU20と車両制御CPU40とを合わせた電動機制御装置10全体の構成について実施形態毎に説明する。第1実施形態の図5、第2実施形態の図11、第3実施形態の図13では、実施形態毎に、電動機制御装置10、モータ制御CPU20及び車両制御CPU40の符号の末尾に「1」、「2」、「3」等の数字を付して区別する。また、図3におけるモータ制御CPU201、202、203の上段に記載した構成要素について、スペースの都合により符号の記載を省略する。
(第1実施形態)
本発明の第1実施形態の電動機制御装置101の構成、及び、その構成に対応する出力トルク監視処理のフローチャートについて、図5、図6を参照して説明する。
図5に示すように、第1実施形態の電動機制御装置101では、モータ制御CPU201から車両制御CPU401に対し、推定相の電流推定値iu(v)_est、センサ相の電流検出値iw_sns及び電気角θeを「制御状態に関する情報」として送信する。
すなわち、モータ制御CPU201において電流推定部301の他相電流推定部31が算出した推定相の電流推定値iu(v)_estは、dq変換部34に出力されると共に、車両制御CPU40に送信される。
車両制御CPU401は独自にdq変換部43を有しており、モータ制御CPU201から送信された情報をdq変換部34にてdq変換し、dq軸電流推定値id_cal、iq_calを算出する。ここで、dq軸電流の記号に付される「est」と「cal」は、いずれも推定値であって、技術的思想上は同じものである。
しかし、車両制御CPU401のマイコンとモータ制御CPU201のマイコンとの処理能力等の違いにより、同じ情報に基づいて演算した演算結果が必ずしも同一値になるとは限らない。そこで、モータ制御CPU201のdq変換部34がdq変換し減算器22にフィードバックされるdq軸電流推定値を「est」で表し、車両制御CPU401のdq変換部34がdq変換したdq軸電流推定値を「cal」で表すこととする。
車両制御CPU401のdq変換部43が算出したdq軸電流推定値id_cal、iq_calは、出力トルク監視部44に出力される。出力トルク監視部44は、取得したdq軸電流推定値id_cal、iq_calに基づいて出力トルク監視を実行する。
この出力トルク監視は、トルク指令演算部41が指令したトルク指令値trq*に対し、交流電動機2の出力トルクが正常範囲内にあるか否かを判定することで、モータ制御CPU201の制御演算が正常に実行されていることを監視するものである。出力トルク監視部44の詳細な構成については後述する。
次に、第1実施形態の電動機制御装置101による出力トルク監視ルーチンについて図6を参照して説明する。以下のフローチャートの説明で、記号Sは「ステップ」を示す。また、本実施形態では、3相のうちセンサ相としてW相を選択し、推定相としてU相又はV相を選択する構成を例示しているため、フローチャートの説明においても、この例による構成を前提として説明する。
この出力トルク監視ルーチンは、車両制御CPU401及びモータ制御CPU201の電源オン期間中に所定の演算周期で繰り返し実行される。本ルーチンが起動すると、最初のS10では、モータ制御CPU201がセンサ相の電流検出値iw_sns及び電気角θeを取得する。S20では、モータ制御CPU201が、例えば、上述したα−β座標系での推定演算方法によって推定相の電流推定値iu(v)_estを推定する。
S41では、モータ制御CPU201から車両制御CPU401に、推定相の電流推定値iu(v)_est、センサ相の電流検出値iw_sns及び電気角θeを送信する。
S60では、車両制御CPU401がdq軸電流推定値id_cal、iq_calを算出する。S70では、出力トルク監視部44がdq軸電流推定値id_cal、iq_calを取得する。
S80では、出力トルク監視部44にて出力トルクが正常範囲であるか否か判定する。その具体的な判定基準については、図7〜図10を参照して後述する。出力トルク監視部44は、出力トルクが正常範囲にあるとき(S80:YES)、正常判定し(S81)、出力トルクが正常範囲にないとき(S80:NO)、異常判定する(S82)。
以上で出力トルク監視ルーチンを終了する。
出力トルク監視の結果は、出力トルク監視部44からトルク指令演算部41へ判定信号Sjとして送信される。出力トルクが異常と判定された場合、トルク指令演算部41は、フェールセーフの観点から、例えばトルク指令値trq*を0にしたり、モータ制御CPU201に対しインバータ12の駆動をシャットダウンするように指令したりすることで車両を安全に停止させることが好ましい。また、例えばインジケータを点灯させ、運転者に異常状態を通知するようにしてもよい。
次に、出力トルク監視部44の詳細構成、及びその構成による正常範囲の判定基準について、図7〜図10を参照し、4とおりのパターンを説明する。この4パターンは、判定対象とする推定値について、dq軸電流とするかトルクとするか、正常範囲の設定について、指令値に基づいて決めるかマップを参照するか、の組合せによるものである。
図7〜図10では、車両制御CPU40が推定したdq軸電流推定値id_cal、iq_cal、及び、モータ制御CPU20推定したdq軸電流推定値id_est、iq_estを包括して「dq軸電流推定値id_est、iq_est」と表す。
図7(a)に示す第1パターンの出力トルク監視部441は、電流指令値変換部451にて、トルク指令演算部41が指令したトルク指令値trq*を、計算式又はマップ等によりdq軸電流指令値id*、iq*に変換する。電流比較部453は、dq軸電流推定値id_est、iq_estを取得すると共に、電流指令値変換部451が変換したdq軸電流指令値id*、iq*が入力される。
図7(b)に示すように、電流比較部453は、d軸電流及びq軸電流について、例えば「dq軸電流指令値±X[A]」というように、dq軸電流指令値id*、iq*を基準とする所定範囲を正常範囲として設定する。そして、取得したdq軸電流推定値id_est、iq_estを正常範囲と比較し、正常範囲内であれば正常、正常範囲から外れていれば異常と判定し、判定信号Sjをトルク指令演算部41に送信する。
図8(a)に示す第2パターンの出力トルク監視部442は、トルク指令演算部41が指令したトルク指令値trq*に基づいて選定された電流判定マップ454から、d軸電流、q軸電流それぞれについて正常範囲を設定する。
図8(b)に示すように、取得したdq軸電流推定値id_est、iq_estが正常範囲内であれば正常、正常範囲から外れていれば異常と判定し、判定信号Sjをトルク指令演算部41に送信する。
図9(a)に示す第3パターンの出力トルク監視部443は、取得したdq軸電流推定値id_est、iq_estに基づき、トルク推定部462にてトルク推定値trq_estを、式(7)又はマップ等により演算する。
trq_est
=p×{iq_est×ψ+(Ld−Lq)×id_est×iq_est}
・・・(7)
記号は、以下のとおりである。
p:交流電動機の極対数
Ld、Lq:d軸自己インダクタンス、q軸自己インダクタンス
ψ:永久磁石の電機子鎖交磁束
なお、適用される交流電動機2がSPM(表面永久磁石)型電動機の場合、Ld=Lqであり、式(7)の第2項が0となるため、式(8)のように書き換えられる。
trq_est=p×iq_est×ψ ・・・(8)
すなわち、SPM型電動機の場合には、トルク推定値trq_estは、q軸電流推定値iq_estのみに依存することとなる。
一方、適用される交流電動機2がIPM(埋込永久磁石)型電動機の場合、Ld≠Lqであるため、式(7)の第2項が非ゼロ値となる。つまり、トルク推定値trq_estは、d軸電流推定値id_est及びq軸電流推定値iq_estの両方に依存する。
図9(b)に示すように、トルク比較部463は、トルク指令演算部41が指令したトルク指令値trq*に対し、例えば「トルク指令値±X[Nm]」というように、トルク指令値trq*を基準とする所定範囲を正常範囲として設定する。そして、トルク推定部462が推定したトルク推定値trq_estを正常範囲と比較し、正常範囲内であれば正常、正常範囲から外れていれば異常と判定し、判定信号Sjをトルク指令演算部41に送信する。
図10(a)に示す第4パターンの出力トルク監視部444は、図9(a)に示す第3パターン同様、取得したdq軸電流推定値id_est、iq_estに基づき、トルク推定部462にてトルク推定値trq_estを推定する。また、出力トルク監視部444は、トルク指令演算部41が指令したトルク指令値trq*に基づいて選定されたトルク判定マップ464から、トルクの正常範囲を設定する。
図10(b)に示すように、トルク推定部462が推定したトルク推定値trq_estが正常範囲内であれば正常、正常範囲から外れていれば異常と判定し、判定信号Sjをトルク指令演算部41に送信する。
上記各パターンで正常範囲の設定に用いるdq軸電流指令値id*、iq*、トルク指令値trq*又は閾値は、比較される推定演算値と同期した値とする。例えば、前回値のトルク指令値trq*に基づき交流電動機2を制御した結果、得られた推定演算値について判定する場合、正常範囲の設定に用いる指令値又は閾値は、前回値、或いは、通信遅れや制御の応答遅れを考慮した過去値とする。
なお、第3、第4パターンにおいて正常範囲と比較する判定対象はトルク推定値trq_estであるが、出力トルク監視部44に入力される物理量は、あくまでdq軸電流推定値id_est、iq_estであって、トルク推定値trq_estがモータ制御CPU201から送信されるわけではない。つまり、特許請求の範囲に記載の「出力トルク監視に用いる監視用情報」は、この場合もdq軸電流推定値であることに変わりない。
以上のように、車両制御CPU401の出力トルク監視部44は、4つのパターンのいずれを選択して、交流電動機2の現実の出力トルクが正常であるか否か判定してもよい。また、後述する第2、第3実施形態の車両制御CPU402、403においても、出力トルク監視部44の構成として、いずれのパターンを選択してもよい。
(第1実施形態の効果)
(1)本実施形態の電動機制御装置101は、3相のうち1相のセンサ相に流れる電流を電流センサ13により検出し交流電動機2の駆動を制御する制御装置において、下位制御部であるモータ制御CPU201と上位制御部である車両制御CPU401とが協働し、「出力トルク監視に用いる監視用情報」としてのdq軸電流推定値id_cal、iq_calを演算する。
詳しくは、モータ制御CPU201がセンサ相の電流検出値iw_sns及び電気角θeに基づく推定演算により推定相の電流推定値iu(v)_estを推定し、この電流推定値iu(v)_est、センサ相の電流検出値iw_sns、及び電気角θeを「制御状態に関する情報」として車両制御CPU401に送信する。車両制御CPU401は、受信した情報に基づいて、dq軸電流推定値id_cal、iq_calを演算する。
このような構成により、下位制御部であるモータ制御CPU201からの情報に基づき、上位制御部である車両制御CPU401が交流電動機2の出力トルクを適切に監視することができる。
(2)本実施形態では、出力トルク監視部44において、dq軸電流推定値id_est、iq_estに基づいて、或いは、dq軸電流推定値id_est、iq_estから算出したトルク推定値trq_estに基づいて、出力トルクの異常を判定する。したがって、q軸電流のみを上下限値と比較する特許文献1の従来技術のように出力トルクの方向を判定するだけでなく、IPM型の電動機に適用する場合を含め、出力トルクの値を正確に評価し、異常を判定することができる。
(3)本実施形態では、「出力トルク監視に用いる監視用情報」として、dq軸電流推定値id_est、iq_estが用いられる。モータ制御CPU201が電流フィードバック制御に用いる情報に基づいて出力トルク監視を実行することで、モータ制御CPU201による演算異常を適確に発見しやすくなる。
(4)1相のセンサ相の電流検出値に基づく「1相制御」において、特許文献2(特開2008−86139号公報)、特許文献3(特開2004−159391号公報)に開示された従来技術では、電流指令値をそのままの状態で用いて推定値を算出している。すなわち、これらの従来技術は、不足する情報を補うため「検出値の代わりに指令値を用いる」ものであり、「基本的に検出値に基づいて」推定値を推定するものではない。
ところで、交流電動機の電流ベクトルは、制御誤差やフィードバック制御等の影響により、電流指令値に対応した指令電流ベクトルに対して変動しながら、指令電流ベクトルに追従している。そのため、実際の電流位相と指令電流位相との間には「ずれ」が生じている。また、指令値は変動したとしても変化に乏しいため、指令値に基づいて推定した推定値から実際の実機状態を正しく把握することは困難である。したがって、このように電流指令値を用いて推定した推定値によって、適切な出力トルク監視を行うことはできない。
それに対し、本実施形態のモータ制御CPU201の電流推定部301は、dq軸電流指令値id*、iq*を用いない推定演算により、センサ相の電流検出値iw_sns及び電気角θeに基づいて推定相の電流推定値iu(v)_estを推定する。つまり、検出値の代わりに指令値を用いるのではなく、検出値に基づく推定値と検出値とによって、「基本的に検出値に基づいて」出力トルクを監視する。したがって、実際の実機状態を正しく把握することができるため、適切な出力トルク監視を行うことができる。
(第2実施形態)
次に、本発明の第2実施形態について、図11、図12を参照して説明する。
第2実施形態及び次の第3実施形態の制御ブロック図及びフローチャートの説明では、第1実施形態と実質的に同一の構成又はステップに同一の符号を付して説明を省略する。
図11に示すように、第2実施形態の電動機制御装置102では、モータ制御CPU202から車両制御CPU402に対し、dq軸電流推定値id_est、iq_estを「制御状態に関する情報」として送信する。
すなわち、モータ制御CPU202において電流推定部301のdq変換部34が算出したdq軸電流推定値id_est、iq_estは、減算器22にフィードバックされると共に、車両制御CPU402に送信される。
車両制御CPU402は、第1実施形態の車両制御CPU401のようにdq変換部43を有しておらず、モータ制御CPU202からのdq軸電流推定値id_est、iq_estは、出力トルク監視部44に直接送信される。出力トルク監視部44は、受信したdq軸電流推定値id_est、iq_estに基づいて出力トルク監視を実行する。
図12のフローチャートは、第1実施形態の図6のフローチャートに対し、S41及びS60に代えてS30及びS42を実行する点が異なる。
S30では、モータ制御CPU202がdq軸電流推定値id_est、iq_estを算出する。S42では、モータ制御CPU202から車両制御CPU402にdq軸電流推定値id_est、iq_estを送信する。
なお、第2実施形態の出力トルク監視部44が車両制御CPU402からdq軸電流推定値id_est、iq_estを取得するS70は、第1実施形態の出力トルク監視部44が車両制御CPU401内でdq軸電流推定値id_cal、iq_calを取得するS70と実質的に同一のステップとして扱う。
第2実施形態は、モータ制御CPU202が演算したdq軸電流推定値id_est、iq_estを車両制御CPU402に送信することで、モータ制御CPU202の演算結果を最大限に利用するものである。したがって、第1実施形態と同様の作用効果を奏する他、モータ制御CPU202と車両制御CPU402との合計の演算負荷を低減することができる。
(第3実施形態)
次に、本発明の第3実施形態について、図13、図14を参照して説明する。
図13に示すように、第3実施形態の電動機制御装置103では、モータ制御CPU203から車両制御CPU403に対し、センサ相の電流検出値iw_sns及び電気角θeを「制御状態に関する情報」として送信する。
すなわち、モータ制御CPU203が電流センサ13から取得したセンサ相の電流検出値iw_sns、及び回転角センサ14から取得した電気角θeの情報を、モータ制御CPU203内部でフィードバック制御演算に用いるのと並行して、同じ情報を、そのまま車両制御CPU403に送信する。この場合、モータ制御CPU203と車両制御CPU403との間の高速通信や高速サンプリングが可能であることが望ましい。
車両制御CPU403は、他相電流推定部42及びdq変換部43を有している。他相電流推定部42は、センサ相の電流検出値iw_sns及び電気角θeに基づいて、推定相の電流推定値iu(v)_estを推定する。
第1実施形態と同様、dq変換部43は、センサ相の電流検出値iw_sns、及び推定相の電流推定値iu(v)_estをdq変換し、dq軸電流推定値id_cal、iq_calを算出して、出力トルク監視部44に出力する。出力トルク監視部44は、dq変換部43から取得したdq軸電流推定値id_cal、iq_calに基づいて出力トルク監視を実行する。
図14のフローチャートは、第1実施形態の図6のフローチャートに対し、S20及びS41に代えてS43及びS50を実行する点が異なる。
S43では、モータ制御CPU203から車両制御CPU403にセンサ相の電流検出値iw_sns及び電気角θeを送信する。S50では、車両制御CPU403が推定相の電流推定値iu(v)_estを推定する。
第3実施形態では、車両制御CPU403は、モータ制御CPU203の演算結果を援用することなく、送信されたセンサ相の電流検出値iw_sns及び電気角θeの情報に基づいて、自身でdq軸電流推定値id_cal、iq_calを算出する。したがって、第1実施形態と同様の作用効果を奏する他、モータ制御CPU203による演算異常の影響を受けるおそれがないため、出力トルク監視の信頼性が向上する。
(第4実施形態)
上記第1〜第3実施形態のモータ制御CPU201、202、203の電流推定部301(図3参照)は、他相電流推定部31において、dq軸電流指令値id*、iq*、或いは、これを逆dq変換した3相電流指令値iu*、iv*、iw*を用いることなく推定相の電流推定値iu_estを推定する。
これに対し、図15に示すように、第4実施形態のモータ制御CPU204における電流推定部304では、他相電流推定部32において、センサ相の電流検出値iw_sns及び交流電動機2の電気角θeに基づいて、dq軸電流指令値id*、iq*を用いて推定相の電流推定値iu_estを推定する。そして、dq変換部34にて、センサ相の電流検出値iw_snsと、「dq軸電流指令値id*、iq*を用いて推定した」推定相の電流推定値iu_estとをdq変換し、dq軸電流推定値id_est、iq_estを推定する。
上述のとおり、特許文献2、3の従来技術のように、電流指令値をそのままの状態で用いて算出した推定値からは、実際の実機状態を正しく把握することが困難であるので、そのような推定値を用いるだけの形態は、本実施形態の範囲から除外される。
一方、電流指令値を用いて推定値を推定演算する方法であっても、単に電流指令値を不足情報の代わりとして用いるのでなく、検出値に基づいて電流指令値を補正するような形で検出値の情報を可及的に反映させることにより、実際の実機状態を把握可能な推定値を得ることができる。
そこで、電流指令値を用いる場合の好ましい推定演算の例として、特開2013−172592号公報、特開2013−172593号公報に開示された推定演算方法について概要を説明する。
この方法は、第1実施形態で例示した演算方法と同様、α−β座標系におけるα軸電流iα及びβ軸電流iβに基づいて算出したセンサ相基準電流位相θxから、推定相であるU相の電流推定値iu_estを算出するものである。第1実施形態で示した方法に対しβ軸電流iβの算出方法のみが異なり、その後の演算プロセスは同じである。
この方法によると、センサ相以外の2相の電流指令値iu*、iv*を用いた式(9)、又は、センサ相以外の1相の電流指令値iv*とセンサ相の電流検出値iw_snsとを用いた式(10)により、β軸電流推定値iβ_estを算出する。
Figure 0005928438
この演算方法では、電流指令値を用いてβ軸電流推定値iβ_estを算した後、センサ相の電流検出値iw_snsに基づくα軸電流iαと、β軸電流推定値iβ_estとに基づいてセンサ相基準電流位相θxを算出し(式(4))、さらに、センサ相基準電流位相θxとセンサ相の電流検出値iw_snsに基づいて推定相の電流推定値iu_estを算出する(式(5))。このように、推定演算のプロセスにセンサ相の電流検出値iw_snsが繰り返し使われることで、電流指令値が推定値に寄与する寄与率が相対的に低くなっており、「基本的に検出値に基づいた」推定値を得ることができる。
よって、第4実施形態は、第1〜第3実施形態と同様の作用効果を奏する。
(第5実施形態)
電流指令値を用いてセンサ相以外の相の電流推定値iu_est、iv_estを推定する電流推定部の別の実施形態について、図16を参照して説明する。
図16に示すように、電流推定部305は、逆dq変換部35、誤差計算部36、誤差重畳部37を有している。
逆dq変換部35は、dq軸電流指令演算部21が指令したdq軸電流指令値id*、iq*及び電気角θeが入力され、dq軸電流指令値id*、iq*を逆dq変換し、3相電流指令値iu*、iv*、iw*を算出する。
誤差計算部36は、W相電流指令値iw*とセンサ相であるW相の電流検出値iw_snsとの差分である制御誤差Δiwを所定の演算周期で繰り返し計算する。
誤差重畳部37は、制御誤差Δiwの位相を±120[°]ずらすなどしてU相、V相の電流指令値iu*、iv*にそれぞれ重畳し、U相、V相の電流推定値iu_est、iv_estを推定する。
このように、「変動成分」であるセンサ相の電流検出値iw_snsに基づく制御誤差Δiwの情報を電流指令値に含ませることで、実際の実機状態を反映した電流推定値iu_est、iv_estを得ることができる。
なお、誤差重畳部37が出力したU相、V相の電流推定値iu_est、iv_estは、さらにdq変換部34にて、センサ相の電流検出値iw_snsと共にdq軸電流推定値id_est、iq_estにdq変換されてもよい。
(その他の実施形態)
(ア)図2に示すように、上記実施形態では、トルク指令演算部41及び出力トルク監視部44を有する車両制御CPU40が「上位制御部による監視体系」を構成している。
その他の「上位制御部による監視体系」の構成例を図17(a)、(b)に示す。図17(a)に示すように、トルク指令演算部41を有する車両制御CPU48と、出力トルク監視部44を有する異常監視用CPU49とを分離し、専ら異常監視用CPU49が監視体系を構成するようにしてもよい。この例では、異常監視用CPU49による判定結果を判定信号Sjとして車両制御CPU48に送信する。
また、図17(b)に示すように、トルク指令演算部41及び出力トルク監視部44を有する車両制御CPU40に加えてさらに別の異常監視用CPU49を設け、二重の監視体系を構成してもよい。
(イ)上記実施形態を包括的に示す図2では、モータ制御CPU20の制御対象であるインバータ12、及び、モータ制御CPU20への情報ソースである電流センサ13を、二点鎖線で示す電動機制御装置10の範囲外として図示している。しかし、これは思想上の区別にすぎず、物理的な構成を意味しない。例えば、モータ制御CPU20、インバータ12及び電流センサ13は、物理的に1枚の基板上に実装されてもよい。
また、車両制御CPU40及びモータ制御CPU20は、それぞれ独立の基板に実装されてもよく、共通に1枚の基板に実装されてもよい。上記(ア)のように、上位制御部が複数のCPUから構成される形態においても同様である。
(ウ)上記第1〜第3実施形態では、電流指令値を用いない推定演算として、α−β座標系においてα軸電流の微分値Δiαに基づいてβ軸電流iβを算出する演算方法を採用している。これ以外の推定演算として、例えば所定の演算周期で漸近推定演算を繰り返し実行してもよい。この漸近推定演算では、前回の演算で算出されたd軸電流推定値id_est及びq軸電流推定値iq_estに基づくセンサ相の軸方向成分であるセンサ相電流基準値iw_bfと、今回のセンサ相の電流検出値iw_snsと、の差である推定誤差Δiwに基づいて算出された「補正ベクトル」をdq軸平面上にて積算することによりdq軸電流推定値を推定する。さらには、検出値のみに基づく推定方法であれば、上述の推定方法以外のどのような方法でもよく、その方法は限定しない。
(エ)電流指令値を用い、指令値と検出値とに基づいて行う推定演算についても、上記第4、第5実施形態の推定方法に限らず、どのような方法でもよい。
(オ)本発明の制御装置の制御対象である交流電動機は、1相のセンサ相の電流検出値に基づいて制御されることが前提となる。しかし、必ずしも電流センサ13が1相だけに設けられていることを意味するものではない。例えば、制御用以外の監視用等の電流センサが別に設けられていてもよい。また、通常時は2相に設けられた電流センサの検出値に基づいて制御し、2相のうちいずれか1相の電流センサの故障時に正常な1相のみで制御する状態に移行した場合に、本発明の構成を適用してもよい。
なお、電流センサにより相電流を検出するセンサ相は、上記実施形態のW相に限らず、U相又はV相としてもよい。それに応じてセンサ相以外の推定相も変更してよい。
(カ)本発明の制御装置が適用する制御方式は、上記実施形態に記載の正弦波制御モードや過変調制御モードに限らず、電流1周期に1パルスを印加する矩形波制御モードなど、どのような制御方式を用いてもよい。
(キ)上記実施形態の交流電動機は、永久磁石式同期型の三相交流電動機であったが、他の実施形態では、誘導電動機やその他の同期電動機であってもよい。また、上記実施形態の交流電動機は、電動機としての機能、及び発電機としての機能を併せ持つ所謂モータジェネレータであったが、他の実施形態では、発電機としての機能を持たなくてもよい。
(ク)本発明による交流電動機の制御装置は、上記実施形態のようにインバータと交流電動機を一組設けたシステムに限らず、インバータと交流電動機を二組以上設けたシステムに適用してもよい。また、1台のインバータに複数台の交流電動機を並列接続させた電車等のシステムに適用してもよい。
(ケ)本発明による交流電動機の制御装置は、図1に示す構成のハイブリッド自動車の交流電動機に限定されず、どのような構成の電動車両の交流電動機に適用してもよい。また、電動車両以外の交流電動機に適用してもよい。
以上、本発明は、上記実施形態になんら限定されるものではなく、発明の趣旨を逸脱しない範囲において種々の形態で実施可能である。
2・・・交流電動機、
10・・・電動機制御装置(交流電動機の制御装置)、
12・・・インバータ、
13・・・電流センサ、
20・・・モータ制御CPU(下位制御部)、
40・・・車両制御CPU(上位制御部)、
41・・・トルク指令演算部、
44・・・出力トルク監視部。

Claims (1)

  1. 3相のうち1相のセンサ相に流れる電流を電流センサ(13)により検出し、交流電動機(2)の駆動を制御する交流電動機の制御装置(10)であって、
    前記交流電動機に対するトルク指令値を演算するトルク指令演算部(41)、及び、前記トルク指令値に対する前記交流電動機の出力トルクが正常範囲内にあるか否かを判定する出力トルク監視を実行する出力トルク監視部(44)を有する上位制御部(40)と、
    前記上位制御部と互いに通信し、前記上位制御部から受信したトルク指令値に基づいてインバータ(12)への通電を制御することで前記交流電動機の駆動を制御し、且つ、前記交流電動機の通電状態及び回転状態に関する情報を取得しつつ制御状態に関する情報を前記上位制御部に送信する下位制御部(20)と、
    を備え、
    前記上位制御部(401)と前記下位制御部(201)とは、両方が協働して、出力トルク監視に用いる監視用情報としてdq軸電流推定値を演算するものであり、
    前記下位制御部は、前記1相のセンサ相の電流検出値、及び前記交流電動機の電気角に基づき、電流指令値を用いる推定演算を除く推定演算によって、前記センサ相以外の相である推定相の電流推定値を推定し、当該推定相の電流推定値、前記センサ相の電流検出値及び前記交流電動機の電気角を前記上位制御部に送信し、
    前記上位制御部は、受信した前記推定相の電流推定値及び前記センサ相の電流検出値を変換してdq軸電流推定値を演算し、
    前記出力トルク監視部は、演算されたdq軸電流推定値に基づいて、前記出力トルク監視を実行することを特徴とする交流電動機の制御装置。
JP2013229563A 2013-11-05 2013-11-05 交流電動機の制御装置 Expired - Fee Related JP5928438B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013229563A JP5928438B2 (ja) 2013-11-05 2013-11-05 交流電動機の制御装置
US14/533,411 US9473059B2 (en) 2013-11-05 2014-11-05 Control apparatus for AC motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013229563A JP5928438B2 (ja) 2013-11-05 2013-11-05 交流電動機の制御装置

Publications (2)

Publication Number Publication Date
JP2015091168A JP2015091168A (ja) 2015-05-11
JP5928438B2 true JP5928438B2 (ja) 2016-06-01

Family

ID=53006546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013229563A Expired - Fee Related JP5928438B2 (ja) 2013-11-05 2013-11-05 交流電動機の制御装置

Country Status (2)

Country Link
US (1) US9473059B2 (ja)
JP (1) JP5928438B2 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6099724B1 (ja) * 2015-11-10 2017-03-22 三菱電機株式会社 電動機制御装置
JP6809093B2 (ja) * 2016-09-29 2021-01-06 株式会社デンソー モータ制御装置およびこれを用いた電動パワーステアリング装置
JP6292545B1 (ja) * 2016-10-11 2018-03-14 株式会社安川電機 モータ制御システム、モータ制御装置、モータ制御方法
EP3333034A1 (en) * 2016-12-07 2018-06-13 Visedo Oy A device and a method for controlling an electromechanical power transmission chain
CN108931085A (zh) * 2017-05-24 2018-12-04 杭州三花研究院有限公司 控制系统以及控制方法
JP6856465B2 (ja) * 2017-07-13 2021-04-07 ファナック株式会社 ブレーキ検査装置およびモータ制御装置
JP6818155B2 (ja) * 2017-09-05 2021-01-20 株式会社日立製作所 交流電動機の監視装置および監視方法、ならびに電動機駆動システムの監視装置および監視方法
JP6962176B2 (ja) * 2017-12-20 2021-11-05 株式会社デンソー 電力変換装置の制御装置
CN108657020A (zh) * 2018-04-30 2018-10-16 武汉理工大学 一种新能源汽车自动智能防后遛的整车控制方法与装置
CN108900121B (zh) * 2018-07-10 2021-02-19 东莞市李群自动化技术有限公司 电机初始相位和相序检测方法及永磁同步电机控制系统
US20210309209A1 (en) * 2018-09-27 2021-10-07 Aisin Aw Co., Ltd. Control device for vehicle drive device technical field
CN109318756A (zh) * 2018-11-05 2019-02-12 长沙拓扑陆川新材料科技有限公司 一种用于电动车辆的电能控制系统
JP7331778B2 (ja) * 2020-05-22 2023-08-23 株式会社デンソー モータ制御装置
US11569763B2 (en) * 2020-11-30 2023-01-31 Nidec Motor Corporation System and method for addressing failure-to-start condition in electric motor with internal magnets
CN112937313A (zh) * 2021-02-08 2021-06-11 重庆长安新能源汽车科技有限公司 纯电动车电机转矩控制方法及装置、存储介质
CN115476701B (zh) * 2022-10-17 2024-06-18 潍柴动力股份有限公司 一种电机扭矩确定方法及装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5047699A (en) * 1989-06-26 1991-09-10 Sundstrand Corporation VSCF start system motor current estimator
JPH09107602A (ja) * 1995-10-09 1997-04-22 Hitachi Ltd 電気車の制御装置
JP3397694B2 (ja) * 1998-07-06 2003-04-21 トヨタ自動車株式会社 モータ制御装置
US6137258A (en) * 1998-10-26 2000-10-24 General Electric Company System for speed-sensorless control of an induction machine
JP4168730B2 (ja) 2002-11-05 2008-10-22 日産自動車株式会社 3相交流電動機の制御装置
JP4956123B2 (ja) 2006-09-28 2012-06-20 三洋電機株式会社 モータ制御装置
JP5605312B2 (ja) * 2011-06-08 2014-10-15 株式会社デンソー 回転機の制御装置
JP5534252B2 (ja) 2012-02-22 2014-06-25 株式会社デンソー 交流電動機の制御装置
JP5488845B2 (ja) 2012-02-22 2014-05-14 株式会社デンソー 交流電動機の制御装置
JP5621998B2 (ja) 2012-02-22 2014-11-12 株式会社デンソー 交流電動機の制御装置
JP5757304B2 (ja) 2012-11-01 2015-07-29 株式会社デンソー 交流電動機の制御装置

Also Published As

Publication number Publication date
US9473059B2 (en) 2016-10-18
US20150123577A1 (en) 2015-05-07
JP2015091168A (ja) 2015-05-11

Similar Documents

Publication Publication Date Title
JP5928438B2 (ja) 交流電動機の制御装置
US9903931B2 (en) Diagnostic device for voltage sensors
JP5929873B2 (ja) 交流電動機の制御装置
JP5939228B2 (ja) 交流電動機の制御装置
US9413281B2 (en) Apparatus for controlling AC motor
JP5929874B2 (ja) 交流電動機の制御装置
JP5807847B2 (ja) 交流電動機の制御装置
JP5958253B2 (ja) 交流電動機の制御装置
US9590551B2 (en) Control apparatus for AC motor
JP5772843B2 (ja) 交流電動機の制御装置
JP5958250B2 (ja) 交流電動機の制御装置
JP5803951B2 (ja) 回転電機駆動システム
JP5741611B2 (ja) 交流電動機の制御装置
JP2014082854A (ja) 交流電動機の制御装置
JP5910583B2 (ja) 交流電動機の制御装置
JP2017093150A (ja) 電圧センサ異常診断装置
JP5812021B2 (ja) 交流電動機の制御装置
JP2015080290A (ja) モータ制御システム
JP5884747B2 (ja) 交流電動機の制御装置
JP6451600B2 (ja) 電圧センサ異常診断装置
JP2015231276A (ja) 同期モータの制御装置、及び、これを備える車両制御システム
JP6287566B2 (ja) 交流電動機の制御装置
JP6136998B2 (ja) 交流電動機の制御装置
JP2015082853A (ja) モータ制御システム
JP2015162928A (ja) 交流電動機の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160411

R151 Written notification of patent or utility model registration

Ref document number: 5928438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees