JP5915531B2 - 組織評価方法 - Google Patents

組織評価方法 Download PDF

Info

Publication number
JP5915531B2
JP5915531B2 JP2012531709A JP2012531709A JP5915531B2 JP 5915531 B2 JP5915531 B2 JP 5915531B2 JP 2012531709 A JP2012531709 A JP 2012531709A JP 2012531709 A JP2012531709 A JP 2012531709A JP 5915531 B2 JP5915531 B2 JP 5915531B2
Authority
JP
Japan
Prior art keywords
fluorescent
particles
nanoparticles
antibody
tissue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012531709A
Other languages
English (en)
Other versions
JPWO2012029342A1 (ja
Inventor
拓司 相宮
拓司 相宮
秀樹 郷田
秀樹 郷田
岡田 尚大
尚大 岡田
中野 寧
寧 中野
幸祐 権田
幸祐 権田
元博 武田
元博 武田
憲明 大内
憲明 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=45772458&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP5915531(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Publication of JPWO2012029342A1 publication Critical patent/JPWO2012029342A1/ja
Application granted granted Critical
Publication of JP5915531B2 publication Critical patent/JP5915531B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/30Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/588Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with semiconductor nanocrystal label, e.g. quantum dots
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/74Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving hormones or other non-cytokine intercellular protein regulatory factors such as growth factors, including receptors to hormones and growth factors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/74Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving hormones or other non-cytokine intercellular protein regulatory factors such as growth factors, including receptors to hormones and growth factors
    • G01N33/743Steroid hormones
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/30Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
    • G01N2001/302Stain compositions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks
    • G01N2021/6441Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks with two or more labels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/71Assays involving receptors, cell surface antigens or cell surface determinants for growth factors; for growth regulators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/72Assays involving receptors, cell surface antigens or cell surface determinants for hormones
    • G01N2333/723Steroid/thyroid hormone superfamily, e.g. GR, EcR, androgen receptor, oestrogen receptor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/91Transferases (2.)
    • G01N2333/912Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • G01N2333/91205Phosphotransferases in general

Description

本発明は、組織染色方法、組織評価方法および生体物質検出方法に関する。
病理診断では、まず採取した組織を固定するために脱水し、パラフィンによるブロック化といった処理を行った後、2〜8μmの厚さの薄片に切り、パラフィンを取り除き、染色して顕微鏡観察を行う。病理医は、この顕微鏡画像の中で、細胞の核の大きさや形の変化、組織としてのパターンの変化等の形態学的な情報、染色情報をもとに診断を行っている。画像のデジタル化技術の発達に伴い、病理診断の分野においても、顕微鏡やデジタルカメラ等を用いてデジタルカラー画像として入力された病理画像から、病理医が病理診断を行う際に必要となる情報を抽出・計測して表示する自動化された病理診断支援装置が普及してきている。
例えば、特許文献1には、病理画像から細胞核領域及び細胞質領域をそれぞれ特定する核・細胞質分布推定手段と、病理画像から腺腔領域(細胞組織を殆ど含まない領域)を特定する腺腔分布抽出手段と、癌細胞が存在するか否かを判定する癌部位推定手段と、癌の進行度を判定する進行度判定手段と、癌細胞の分布図や進行度等を表示する画像表示手段と、を有する病理診断支援装置が開示されている。
また、特許文献2には、正常部位と癌部位をそれぞれ選択的に染色するような2種類の染料で病理標本を染色し、更にスペクトル画像からランベルト・ベールの法則を用いて染色濃度を評価し、癌細胞の有無を判定する癌細胞の検出方法が開示されている。
しかし、いずれの評価法を用いた場合でも、組織染色方法は従来の色素染色法(例えばヘマトキシリン−エオジン染色)、酵素を用いた色素染色法(例えばDAB染色)であり、その染色濃度は温度、時間等の環境条件により大きく左右され、病理診断支援装置の正確な定量測定性能を生かし切れていない。
また、色素に代わる標識試薬として感度性能が高い蛍光色素が組織染色の研究に用いられているが(非特許文献1参照)、発明者らが、特許文献3に開示されている細胞識別・定量方法により、有機蛍光色素であるFITCを用い作製した病理切片を蛍光顕微鏡下で観察したところ、その発光輝度は極めて弱く、極微量のバイオマーカーを発光レベルによって自動判別することはできず、更なる改善が必要であることがわかった。
特開2004−286666号公報 特表2001−525580号公報 特開昭63−66465号公報
「病理と臨床 Vol.25 2007年臨時増刊号 診断に役立つ免疫組織化学」文光堂 2007年
これに対し、近年、抗体医薬を中心とした分子標的薬治療の広がりに伴い、分子標的薬をより効率的に使用するため、正確な診断法の必要性が高まってきている。病理診断においても、より正確に疾病の診断を行うため、極微量のバイオマーカーを組織切片上で定量的に検出することが求められている。しかし、従来の病理組織染色方法では、安定した定量性能、微量検出性能を得ることは困難であった。
本発明は、上記の従来技術における問題に鑑みてなされたものであり、微量の生体物質(バイオマーカー)を定量的に検出することを課題とする。
上記課題を解決するために、
本発明によれば、
蛍光物質を複数集積した蛍光物質集積粒子に生体物質認識部位が結合されたものを染色試薬として用いて組織切片を染色し、
当該染色された組織切片の蛍光輝点の数と各蛍光輝点の輝度とを計測し、
当該計測された蛍光輝点の数及び各蛍光輝点の輝度に基づいて、前記染色された組織切片に結合している蛍光物質集積粒子の粒子数を算出し、
当該算出された蛍光物質集積粒子の粒子数に基づいて、前記染色された組織切片における前記生体物質認識部位に対応する生体物質の発現レベルを評価する組織評価方法が提供される。
本発明によれば、微量の生体物質を定量的に検出することができるのに加え、組織切片から計測された蛍光輝点の数及び各蛍光輝点の輝度に基づいて、組織切片に結合している蛍光物質集積粒子の粒子数を算出し、その粒子数に基づいて、生体物質の発現レベルを評価するので、生体物質の定量評価において、安定した評価結果を得ることができる。
1細胞当たりの粒子数と1細胞当たりの輝度の経時変化を示すグラフである。
以下、本発明を実施するための形態について説明するが、本発明はこれらに限定されない。
本実施形態では、組織染色方法と、これを利用した組織評価方法および生体物質検出方法とを、提供する。
本実施形態にかかる組織染色方法では、生体物質認識部位が結合した蛍光物質を集積したナノ粒子を用いる。
本実施形態にかかる組織評価方法では、生体物質認識部位が結合された蛍光物質又は蛍光物質集積粒子を用い、その輝点の数に基づいて組織切片上に存在するバイオマーカーと結合した蛍光物質又は蛍光物質集積粒子の数を求める。
本実施形態にかかる生体物質検出方法は、病理切片から生体物質を特異的に検出する方法であり、基本的には、(1)染色試薬を用いて病理切片を染色する工程と、(2)染色後の病理切片から生体物質を検出する工程とを、有している。
特に、(2)の工程では、染色試薬として2種類のナノ粒子を使用する。
一方のナノ粒子には、一定の生体物質認識部位が結合され、かつ、一定の蛍光物質が内包されている。他方のナノ粒子には、一方のナノ粒子の生体物質認識部位とは異なる生体物質認識部位が結合され、かつ、一方のナノ粒子の蛍光物質とは異なる蛍光波長を有する蛍光物質が内包されている。すなわち、各ナノ粒子には、互いに異なる生体物質認識部位が結合され、蛍光波長が互いに異なる蛍光物質が内包されている。そのため、蛍光物質に起因する蛍光波長の違いから、生体物質認識部位に応じた2種の生体物質を検出することができるし、生体物質認識部位の選定から、将来的には現在未確認の抗原を特定することもできると考えられる。
なお、本発明の好ましい実施形態では、2種類のナノ粒子を用いた例を示すが、生体物質認識部位と蛍光物質(蛍光波長)とが互いに異なれば、3種類以上のナノ粒子を用いて3種類以上の生体物質を検出するものとしてもよい。
蛍光物質などの種類や特性、生体物質検出方法の詳細は下記のとおりである。
〔蛍光物質〕
本発明で用いられる蛍光物質としては、有機蛍光色素、量子ドット(半導体粒子)、希土類粒子を挙げることができる。200〜700nmの範囲内の波長の紫外〜近赤外光により励起されたときに、400〜900nmの範囲内の波長の可視〜近赤外光の発光を示すことが好ましい。
有機蛍光色素としては、フルオレセイン系色素分子、ローダミン系色素分子、Alexa Fluor(インビトロジェン社製)系色素分子、BODIPY(インビトロジェン社製)系色素分子、カスケード系色素分子、クマリン系色素分子、エオジン系色素分子、NBD系色素分子、ピレン系色素分子、Texas Red系色素分子、シアニン系色素分子等を挙げることができる。
具体的には、5−カルボキシ−フルオレセイン、6−カルボキシ−フルオレセイン、5,6−ジカルボキシ−フルオレセイン、6−カルボキシ−2’,4,4’,5’,7,7’−ヘキサクロロフルオレセイン、6−カルボキシ−2’,4,7,7’−テトラクロロフルオレセイン、6−カルボキシ−4’,5’−ジクロロ−2’,7’−ジメトキシフルオレセイン、ナフトフルオレセイン、5−カルボキシ−ローダミン、6−カルボキシ−ローダミン、5,6−ジカルボキシ−ローダミン、ローダミン 6G、テトラメチルローダミン、X−ローダミン、及びAlexa Fluor 350、Alexa Fluor 405、Alexa Fluor 430、Alexa Fluor 488、Alexa Fluor 500、Alexa Fluor 514、Alexa Fluor 532、Alexa Fluor 546、Alexa Fluor 555、Alexa Fluor 568、Alexa Fluor 594、Alexa Fluor 610、Alexa Fluor 633、Alexa Fluor 635、Alexa Fluor 647、Alexa Fluor 660、Alexa Fluor 680、Alexa Fluor 700、Alexa Fluor 750、BODIPY FL、BODIPY TMR、BODIPY 493/503、BODIPY 530/550、BODIPY 558/568、BODIPY 564/570、BODIPY 576/589、BODIPY 581/591、BODIPY 630/650、BODIPY 650/665(以上インビトロジェン社製)、メトキシクマリン、エオジン、NBD、ピレン、Cy5、Cy5.5、Cy7等を挙げることができる。単独でも複数種を混合したものを用いてもよい。
量子ドットとしては、II−VI族化合物、III−V族化合物、又はIV族元素を成分として含有する量子ドット(それぞれ、「II−VI族量子ドット」、「III−V族量子ドット」、「IV族量子ドット」ともいう。)のいずれかを用いることができる。単独でも複数種を混合したものを用いてもよい。
具体的には、CdSe、CdS、CdTe、ZnSe、ZnS、ZnTe、InP、InN、InAs、InGaP、GaP、GaAs、Si、Geが挙げられるが、これらに限定されない。
上記量子ドットをコアとし、その上にシェルを設けた量子ドットを用いることもできる。以下、本明細書中シェルを有する量子ドットの表記法として、コアがCdSe、シェルがZnSの場合、CdSe/ZnSと表記する。例えば、CdSe/ZnS、CdS/ZnS、InP/ZnS、InGaP/ZnS、Si/SiO2、Si/ZnS、Ge/GeO2、Ge/ZnS等を用いることができるが、これらに限定されない。
量子ドットは必要に応じて、有機ポリマー等により表面処理が施されているものを用いてもよい。例えば、表面カルボキシ基を有するCdSe/ZnS(インビトロジェン社製)、表面アミノ基を有するCdSe/ZnS(インビトロジェン社製)等が挙げられる。
希土類粒子としては、例えば、酸化ネオジム、塩化ネオジム、硝酸ネオジム、酸化イッテルビウム、塩化イッテルビウム、硝酸イッテルビウム、酸化ランタン、塩化ランタン、硝酸ランタン、酸化イットリウム、塩化イットリウム、硝酸イットリウム、塩化プラジオセム、塩化エルビウム、オルトリン酸、リン酸アンモニウム、リン酸二水素アンモニウム等を用いることができる。
〔蛍光物質を複数集積した粒子〕
本発明において蛍光物質を複数集積した粒子とは、蛍光物質がナノ粒子内部に分散されたもの(蛍光物質を複数内包したナノ粒子(蛍光物質内包ナノ粒子))、粒子外部に集積したもの、粒子の内部、外部によらず集積したものをいい、蛍光物質とナノ粒子自体とが化学的に結合していても、していなくてもよい。
ナノ粒子を構成する素材は特に限定されるものではなく、ポリスチレン、ポリ乳酸、シリカ等を挙げることができる。
本発明で用いられる蛍光物質を複数集積した粒子は、公知の方法により作製することが可能である。
例えば、有機蛍光色素を内包したシリカナノ粒子は、ラングミュア 8巻 2921ページ(1992)に記載されているFITC内包シリカ粒子の合成を参考に合成することができる。FITCの代わりに所望の有機蛍光色素を用いることで種々の有機蛍光色素内包シリカナノ粒子を合成することができる。
量子ドットを内包したシリカナノ粒子は、ニュー・ジャーナル・オブ・ケミストリー 33巻 561ページ(2009)に記載されているCdTe内包シリカナノ粒子の合成を参考に合成することができる。
量子ドットを外包したシリカナノ粒子は、ケミカル・コミュニケーション 2670ページ(2009)に記載されているCdSe/ZnSを5−amino−1−pentanolとAPSでキャッピングした粒子を表面に集積したシリカナノ粒子の合成を参考に合成することができる。
有機蛍光色素を内包したポリスチレンナノ粒子は、米国特許4326008(1982)に記載されている重合性官能基をもつ有機色素を用いた共重合法や、米国特許5326692(1992)に記載されているポリスチレンナノ粒子への有機蛍光色素の含浸法を用いて作製することができる。
量子ドットを内包したポリマーナノ粒子は、ネイチャー バイオテクノロジー 19巻631ページ(2001)に記載されているポリスチレンナノ粒子への量子ドットの含浸法を用いて作製することができる。
本発明で用いられる蛍光物質を複数集積した粒子の平均粒径は特に限定されないが、30〜800nm程度のものを用いることができる。平均粒径が30nm未満の場合には、集積粒子に含まれる蛍光物質が少なく、目的とする生体物質の定量評価が困難となり、800nmを超える場合には、病理組織での生体物質との結合が困難となるためである。なお、平均粒径は、40〜500nmの範囲内であることがより好ましい。ここで、平均粒径を40〜500nmとしたのは、40nm未満の場合には、高価な検出系が必要となり、500nmを超える場合には、物理的な大きさから定量範囲が狭まるためである。また、粒径のばらつきを示す変動係数(=(標準偏差/平均値)×100%)は特に限定されないが、20%のものを用いることができる。平均粒径は、走査型電子顕微鏡(SEM)を用いて電子顕微鏡写真を撮影し十分な数の粒子について断面積を計測し、各計測値を円の面積としたときの円の直径を粒径として求めた。本願においては、1000個の粒子の粒径の算術平均を平均粒径とした。変動係数も、1000個の粒子の粒径分布から算出した値とした。
〔緩衝液〕
緩衝液とは、抗原−抗体反応に適した環境を安定して維持するための溶媒である。例えば、リン酸緩衝液生理的食塩水(PBS)、リン酸緩衝液、Tris緩衝液、MES緩衝液、クエン酸−リン酸緩衝液等である。
〔生体物質認識部位と蛍光物質を集積したナノ粒子との結合〕
本発明に係る生体物質認識部位とは、目的とする生体物質と特異的に結合及び/又は反応する部位である。例えば、ヌクレオチド鎖、タンパク質、抗体等が挙げられる。具体的には、細胞表面に存在するタンパク質であるHER2に特異的に結合する抗HER2抗体、細胞核に存在するエストロゲン受容体(ER)に特異的に結合する抗ER抗体、細胞骨格を形成するアクチンに特異的に結合する抗アクチン抗体等があげられる。中でも抗HER2抗体及び抗ER抗体を蛍光物質集積ナノ粒子に結合させたものは、乳癌の投薬選定に用いることができ、好ましい。
生体物質認識部位と蛍光物質集積ナノ粒子の結合の態様としては特に限定されず、共有結合、イオン結合、水素結合、配位結合、物理吸着及び化学吸着等が挙げられる。結合の安定性から共有結合等の結合力の強い結合が好ましい。
また、生体物質認識部位と蛍光物質集積ナノ粒子の間を連結する有機分子があってもよい。例えば、生体物質との非特異的吸着を抑制するため、ポリエチレングリコール鎖を用いることができ、Thermo Scientific社製SM(PEG)12を用いることができる。
蛍光物質集積シリカナノ粒子へ生体物質認識部位を結合させる場合、蛍光物質が有機蛍光色素の場合でも、量子ドットの場合でも、希土類粒子の場合でも同様の手順を適用することができる。
例えば、無機物と有機物を結合させるために広く用いられている化合物であるシランカップリング剤を用いることができる。このシランカップリング剤は、分子の一端に加水分解でシラノール基を与えるアルコキシシリル基を有し、他端に、カルボキシル基、アミノ基、エポキシ基、アルデヒド基等の官能基を有する化合物であり、上記シラノール基の酸素原子を介して無機物と結合する。
具体的には、メルカプトプロピルトリエトキシシラン、グリシドキシプロピルトリエトキシシラン、アミノプロピルトリエトキシシラン、ポリエチレングリコール鎖をもつシランカップリング剤(例えば、Gelest社製PEG−silane no.SIM6492.7)等が挙げられる。シランカップリング剤を用いる場合、二種以上を併用してもよい。
有機蛍光色素集積シリカナノ粒子とシランカップリング剤との反応手順は、公知の手法を用いることができる。
例えば、得られた有機蛍光色素集積シリカナノ粒子を純水中に分散させ、アミノプロピルトリエトキシシランを添加し、室温で12時間反応させる。反応終了後、遠心分離又はろ過により表面がアミノプロピル基で修飾された有機蛍光色素集積シリカナノ粒子を得ることができる。続いてアミノ基と抗体中のカルボキシル基とを反応させることで、アミド結合を介し抗体を有機蛍光色素集積シリカナノ粒子と結合させることができる。必要に応じて、EDC(1−Ethyl−3−[3−Dimethylaminopropyl]carbodiimide Hydrochloride:Pierce社製)のような縮合剤を用いることもできる。
必要により、有機分子で修飾された有機蛍光色素集積シリカナノ粒子と直接結合しうる部位と、分子標的物質と結合しうる部位とを有するリンカー化合物を用いることができる。
具体例として、アミノ基と選択的に反応する部位とメルカプト基と選択的に反応する部位の両方をもつsulfo−SMCC(Sulfosuccinimidyl 4[N−maleimidomethyl]−cyclohexane−1−carboxylate:Pierce社製)を用いると、アミノプロピルトリエトキシシランで修飾した有機蛍光色素集積シリカナノ粒子のアミノ基と、抗体中のメルカプト基を結合させることで、抗体結合した有機蛍光色素集積シリカナノ粒子ができる。
蛍光物質集積ポリスチレンナノ粒子へ生体物質認識部位を結合させる場合、蛍光物質が有機蛍光色素の場合でも、量子ドットの場合でも、希土類粒子の場合でも同様の手順を適用することができる。すなわち、アミノ基等の官能基をもつポリスチレンナノ粒子へ有機蛍光色素、量子ドット又は希土類粒子を含浸することにより、官能基もつ蛍光物質集積ポリスチレンナノ粒子を得ることができ、以降EDC又はsulfo−SMCCを用いることで、抗体結合した蛍光物質集積ポリスチレンナノ粒子ができる。
〔染色方法(生体物質検出方法)〕
以下、本発明の染色方法(生体物質検出方法)について述べる。
本発明の染色方法は病理切片組織に限定せず、細胞染色にも適用可能である。
本発明の染色方法が適用できる切片の作製法は特に限定されず、公知の方法により作製されたものを用いることができる。
1)脱パラフィン工程
キシレンを入れた容器に、病理切片を浸漬させ、パラフィンを除去する。温度は特に限定されるものではないが、室温で行うことができる。浸漬時間は、3分以上30分以下であることが好ましい。また、必要により浸漬途中でキシレンを交換してもよい。
次いで、エタノールを入れた容器に病理切片を浸漬させ、キシレンを除去する。温度は特に限定されるものではないが、室温で行うことができる。浸漬時間は、3分以上30分以下であることが好ましい。また、必要により浸漬途中でエタノールを交換してもよい。
次いで、水を入れた容器に、病理切片を浸漬させ、エタノールを除去する。温度は特に限定されるものではないが、室温で行うことができる。浸漬時間は、3分以上30分以下であることが好ましい。また、必要により浸漬途中で水を交換してもよい。
2)賦活化処理
公知の方法にならい、目的とする生体物質の賦活化処理を行う。
賦活化条件に特に定めはないが、賦活液としては、0.01Mクエン酸緩衝液(pH6.0)、1mMEDTA溶液(pH8.0)、5%尿素、0.1Mトリス塩酸緩衝液等を用いることができる。加熱機器は、オートクレーブ、マイクロウェーブ、圧力鍋、ウォーターバス等を用いることができる。温度は特に限定されるものではないが、室温で行うことができる。温度は50−130℃、時間は5−30分で行うことができる。
次いで、水、PBSを入れた容器に、賦活化処理後の切片を浸漬させ、洗浄を行う。温度は特に限定されるものではないが、室温で行うことができる。浸漬時間は、3分以上30分以下であることが好ましい。また、必要により浸漬途中でPBSを交換してもよい。
3)生体物質認識部位が結合された蛍光物質集積ナノ粒子を用いた染色
生体物質認識部位が結合された蛍光物質集積ナノ粒子のPBS分散液を病理切片に載せ、目的とする生体物質と反応させる。蛍光物質集積ナノ粒子と結合させる生体物質認識部位を変えることにより、さまざまな生体物質に対応した染色が可能となる。
複数(2種以上)の生体物質を検出しようとする場合は、生体物質認識部位が異なる蛍光物質内包ナノ粒子PBS分散液をそれぞれ調製し、病理切片に載せ、目的とする生体物質との反応を行う。病理切片に載せる際に、それぞれの蛍光物質内包ナノ粒子PBS分散液をあらかじめ混合してもよいし、別々に順次載せてもよい。混合比は特に限定されるものではないが、本発明の効果が表れるには両者の比は1:1〜5:1でよい。
蛍光物質集積ナノ粒子のPBS分散液には、BSA含有PBS等、公知のブロッキング剤やTween20等の界面活性剤を含有させてもよい。
温度は特に限定されるものではないが、室温で行うことができる。反応時間は、30分以上24時間以下であることが好ましい。
蛍光物質集積ナノ粒子による染色を行う前に、BSA含有PBS等、公知のブロッキング剤を滴下することが好ましい。
次いで、PBSを入れた容器に、染色後の切片を浸漬させ、未反応蛍光物質集積ナノ粒子の除去を行う。PBS溶液にはTween20等の界面活性剤を含有させてもよい。温度は特に限定されるものではないが、室温で行うことができる。浸漬時間は、3分以上30分以下であることが好ましい。また、必要により浸漬途中でPBSを交換してもよい。
組織の形態観察のため、ヘマトキシリン−エオジン染色を行ってもよい。
カバーガラスを切片に載せ、封入する。必要に応じて市販の封入剤を使用してもよい。
4)蛍光顕微鏡下の観察
染色した病理切片に対し蛍光顕微鏡を用いて、目的とする生体物質の発現レベルを輝点数又は発光輝度に基づいて評価する。
輝点数又は発光輝度の計測では、用いた蛍光物質の吸収極大波長及び蛍光波長に対応した励起光源は及び蛍光検出用光学フィルターを選択する。
輝点数又は発光輝度の計測は、画像解析ソフト、例えば、公開解析ソフトImageJ、株式会社ジーオングストローム社製の全輝点自動計測ソフトG−Countを用いて行うことができる。
次に、本発明を上記実施形態に基づいて具体的に実施した実施例について説明するが、本発明はこれらに限定されない。
[手順1:蛍光物質内包粒子の合成]
テトラメチルローダミン(インビトロジェン社製TAMRA−SE)6.6mgと3−アミノプロピルトリメトキシシラン(3−aminopropyltrimetoxysilane、信越シリコーン社製、KBM903)3μLをDMF中で混合し、オルガノアルコキシシラン化合物を得た。得られたオルガノアルコキシシラン化合物0.6mlを48mlのエタノール、0.6mlのTEOS(テトラエトキシシラン)、2mlの水、2mlの28%アンモニア水と3時間混合した。
上記工程で作製した混合液を10000Gで20分遠心分離を行い、上澄みを除去した。エタノールを加え、沈降物を分散させ、再度遠心分離を行った。同様の手順でエタノールと純水による洗浄を2回ずつ行った。
得られたテトラメチルローダミン内包・シリカナノ粒子のSEM観察を行い、200粒子の粒子径を測定したところ、平均粒径104nm、変動係数は12%であった。
同様の方法で、Cy5−SE(ロシュ社製)を用いて平均粒子径20、42、103、204、498nmのCy5内包・シリカナノ粒子を得た。
また、同様の方法で、FITC−SE(インビトロジェン社製)を用いて平均粒子径106nmのFITC内包・シリカナノ粒子を得た。
[手順2:蛍光物質内包粒子への抗体の結合]
手順1で得られた蛍光物質内包シリカナノ粒子(テトラメチルローダミン内包・シリカナノ粒子、Cy5内包・シリカナノ粒子、FITC内包・シリカナノ粒子)のそれぞれを、EDTA(エチレンジアミン四酢酸)を2mM含有したPBS(リン酸緩衝液生理的食塩水)を用いて3nMに調整し、この溶液に最終濃度が10mMとなるようSM(PEG)12(サーモサイエンティフィック社製、succinimidyl−[(N−maleomidopropionamid)−dodecaethyleneglycol]ester)を混合し、1時間反応させた。この混合液を10000Gで20分遠心分離を行い、上澄みを除去した後、EDTAを2mM含有したPBSを加え、沈降物を分散させ、再度遠心分離を行った。同様の手順による洗浄を3回行うことで抗体結合用シリカナノ粒子を得た。
一方、抗ヒトER抗体を1Mジチオスレイトール(DTT)で還元処理を行い、ゲルろ過カラムにより過剰のDTTを除去することにより、シリカ粒子に結合可能な還元化抗体溶液を得た。
上記で得られた抗体結合用シリカナノ粒子と還元化抗体溶液とを、EDTAを2mM含有したPBS中で混合し、1時間反応させた。10mMメルカプトエタノールを添加し、反応を停止させた。得られた溶液を10000Gで20分遠心分離を行い、上澄みを除去した後、EDTAを2mM含有したPBSを加え、沈降物を分散させ、再度遠心分離を行った。同様の手順による洗浄を3回行うことで抗ヒトER抗体結合・蛍光物質内包シリカナノ粒子を得た。
[手順3:蛍光物質内包粒子を用いた組織染色]
手順2で作製した抗ヒトER抗体結合・蛍光物質内包シリカナノ粒子を用いてヒト乳房組織の免疫染色を行った。染色切片は、コスモバイオ社製の組織アレイスライド(CB−A712)を用いた。組織アレイスライドを脱パラフィン処理した後、組織アレイスライドを浸漬する液体をキシレン、エタノール、水の順に置換して洗浄し、10mMクエン酸緩衝液(pH6.0)中で15分間オートクレーブ処理することで、抗原の賦活化処理を行った。抗原の賦活化処理後の組織アレイスライドは、PBS緩衝液を用いて洗浄後、湿潤箱中で1時間1%BSA含有PBS緩衝液を用いてブロッキング処理を行った。
ブロッキング処理後、1%BSA含有PBS緩衝液で0.05nMに希釈した各抗ヒトER抗体結合・蛍光物質内包シリカナノ粒子を組織切片と3時間反応させた。抗ヒトER抗体結合・蛍光物質内包シリカナノ粒子と反応させた後、組織アレイスライドをPBS緩衝液で洗浄し、Merck Chemicals社製Aquatexを用いて封入した。
[手順4:蛍光物質内包粒子を用いて染色した組織の輝点計測]
手順3で染色した組織切片についてオリンパス社製DSU共焦点顕微鏡を用いて画像を取得し、ジーオングストローム社製の輝点計測ソフトウェア、G−countを用いて輝点の計測を行った。
Cy5の観察は、励起フィルター(640/30nmのバンドパスフィルター)、ビームスプリッター(660nm)、蛍光フィルター(690/50nmのバンドパスフィルター)のフィルターセットを用いた。
テトラメチルローダミンの観察は、励起フィルター(550/25nmのバンドパスフィルター)、ビームスプリッター(570nm)、蛍光フィルター(605/70nmのバンドパスフィルター)のフィルターセットを用いた。
FITCの観察は、励起フィルター(470/40nmのバンドパスフィルター)、ビームスプリッター(495nm)、蛍光フィルター(525/50nmのバンドパスフィルター)のフィルターセットを用いた。
組織アレイスライド中の予めDAB染色で染色濃度が異なることが予測された8スポットについて、各30細胞の輝点の数を計測し、1細胞当たりの輝点の数(平均値)を求めた。また、同様に、8スポットについて、各30細胞の発光輝度を計測し、1細胞当たりの発光輝度(平均値)を求めた。
[比較例:蛍光色素単体を用いた組織染色]
比較例として、Cy5、テトラメチルローダミン、FITC蛍光色素単体に抗ヒトER抗体を結合させたものを用い、手順3と同様の方法で組織アレイスライドを染色し、手順4と同様の方法で組織の輝点を計測した。
具体的には、組織アレイスライド中の8スポットについて、各30細胞の輝点の数及び発光輝度を計測し、1細胞当たりの輝点の数及び1細胞当たりの発光輝度を求めた。
[実験結果A]
まず、標識体に含まれる蛍光色素の違い(すなわち、発光波長の違い)によるバイオマーカー(ER)の検出感度の差について検討した。
表1に、Cy5内包・シリカナノ粒子(平均粒子径103nm)、テトラメチルローダミン内包・シリカナノ粒子(平均粒子径104nm)、FITC内包・シリカナノ粒子(平均粒子径106nm)のそれぞれを用いた場合に計測された1細胞当たりの輝点数を示す。表1において、「−」は、バックグラウンドレベル以上の輝点がないことを示し、「+」は、発光が強く、周囲の輝点と区別がつかないことを示している。
Figure 0005915531
表1に示すように、いずれの蛍光物質内包粒子を用いた場合でも、輝点数の差によりバイオマーカーの定量評価が可能となっている。ただし、スポット番号2の組織切片について、Cy5内包・シリカナノ粒子及びテトラメチルローダミン内包・シリカナノ粒子を用いた場合には、輝点数を計測可能であったのに対し、FITC内包・シリカナノ粒子を用いた場合には、バックグラウンドレベル以上の輝点は計測されなかった。すなわち、励起波長が長いCy5(励起波長650nm、発光波長670nm)、テトラメチルローダミン(励起波長550nm、発光波長570nm)の内包粒子の方が、FITC(励起波長495nm、発光波長520nm)の内包粒子と比べて、より微量のバイオマーカーを検出できることがわかる。
[実験結果B]
次に、標識体の粒子径の違いによるバイオマーカー(ER)の検出感度の差について検討した。
表2に、Cy5内包・シリカナノ粒子(平均粒子径20、42、103、204、498nm)のそれぞれと、Cy5色素単体(比較例)とを用いた場合に計測された1細胞当たりの輝点数を示す。表2において、「−」は、バックグラウンドレベル以上の輝点がないことを示し、「+」は、発光が強く、周囲の輝点と区別がつかないことを示している。
Figure 0005915531
表2に示すように、平均粒子径が42、103、204、498nmのCy5内包・シリカナノ粒子を用いた場合には、輝点数を計測可能な各スポットにおいて、輝点数の差によりバイオマーカーの定量評価が可能となっている。しかし、平均粒子径が498nmのCy5内包・シリカナノ粒子を用いた場合には、スポット番号6の組織切片において輝点の区別がつかなくなっており、バイオマーカーが高頻度に発現している場合の定量範囲が狭まることがわかる。
また、Cy5色素単体を用いた場合、平均粒子径20nmのCy5内包・シリカナノ粒子を用いた場合には、スポット番号1〜4の組織切片では、バックグラウンドレベル以上の輝点がなく、スポット番号5〜8の組織切片では、周囲の輝点と区別がつかないため、微量のバイオマーカーに対する輝点レベルの定量評価が不可能なことがわかる。
[実験結果C]
次に、蛍光色素内包粒子と蛍光色素単体とによるバイオマーカー(ER)の検出感度を輝点数で比較した。
表3に、Cy5内包・シリカナノ粒子(平均粒子径103nm)、テトラメチルローダミン内包・シリカナノ粒子(平均粒子径104nm)、FITC内包・シリカナノ粒子(平均粒子径106nm)、Cy5、テトラメチルローダミン、FITCのそれぞれを用いた場合に計測された1細胞当たりの輝点数を示す。表3において、「−」は、バックグラウンドレベル以上の輝点がないことを示し、「+」は、発光が強く、周囲の輝点と区別がつかないことを示している。
Figure 0005915531
表3から、蛍光色素単体を用いて組織染色を行った場合には、スポット番号1〜4の組織切片では、バックグラウンドレベル以上の輝点がなく、スポット番号5〜8の組織切片では、周囲の輝点と区別がつかないため、微量のバイオマーカーに対する輝点レベルの定量評価が不可能なことがわかる。
一方、標識体として蛍光物質内包粒子を用いた場合には、微量のバイオマーカーに対しても、精度良く定量的に検出することができる。
[実験結果D]
次に、蛍光色素内包粒子と蛍光色素単体とによるバイオマーカー(ER)の検出感度を発光輝度で比較した。
表4に、Cy5内包・シリカナノ粒子(平均粒子径103nm)、テトラメチルローダミン内包・シリカナノ粒子(平均粒子径104nm)、FITC内包・シリカナノ粒子(平均粒子径106nm)、Cy5、テトラメチルローダミン、FITCのそれぞれを用いた場合に、DSU共焦点顕微鏡により取得された画像データに基づいて計測された1細胞当たりの発光輝度を示す。発光輝度の単位はa.u.(任意単位)である。表4において、「0」は、バックグラウンドレベル以下の発光であることを示している。
Figure 0005915531
表4から、蛍光色素単体を用いた場合と比較して、蛍光物質内包粒子を用いた場合には、より微量なバイオマーカーを検出可能なことがわかる。
以上説明したように、蛍光物質を複数集積した粒子に生体物質認識部位が結合されたものを染色試薬として用いることにより、組織切片を蛍光観察する際の1粒子当たりの輝度が高くなるため、微量のバイオマーカー(生体物質認識部位に対応する生体物質)を感度良く、定量的に検出することができる。
また、蛍光物質を複数内包した粒子を用いる場合には、蛍光物質が粒子に内包されることにより、蛍光物質の耐久性が高まる。
[手順1:蛍光物質集積粒子の合成]
テトラメチルローダミン(インビトロジェン社製TAMRA−SE)(励起波長550nm、発光波長570nm)6.6mgと3−アミノプロピルトリメトキシシラン(3−aminopropyltrimetoxysilane、信越シリコーン社製、KBM903)3μLをDMF中で混合し、オルガノアルコキシシラン化合物を得た。得られたオルガノアルコキシシラン化合物0.6mlを48mlのエタノール、0.6mlのTEOS(テトラエトキシシラン)、2mlの水、2mlの28%アンモニア水と3時間混合した。
上記工程で作製した混合液を10000Gで20分遠心分離を行い、上澄みを除去した。エタノールを加え、沈降物を分散させ、再度遠心分離を行った。同様の手順でエタノールと純水による洗浄を2回ずつ行った。
得られたテトラメチルローダミン集積・シリカナノ粒子のSEM観察を行い、200粒子の粒子径を測定したところ、平均粒径104nm、変動係数は12%であった。
同様の方法で、Cy5−SE(ロシュ社製)(励起波長650nm、発光波長670nm)を用いて平均粒子径103nmのCy5集積・シリカナノ粒子を得た。
[手順2:蛍光物質集積粒子と量子ドットへの抗体の結合]
手順1で得られた蛍光物質集積シリカナノ粒子(テトラメチルローダミン集積・シリカナノ粒子、Cy5集積・シリカナノ粒子)のそれぞれを、EDTA(エチレンジアミン四酢酸)を2mM含有したPBS(リン酸緩衝液生理的食塩水)を用いて3nMに調整し、この溶液に最終濃度が10mMとなるようSM(PEG)12(サーモサイエンティフィック社製、succinimidyl−[(N−maleomidopropionamid)−dodecaethyleneglycol]ester)を混合し、1時間反応させた。この混合液を10000Gで20分遠心分離を行い、上澄みを除去した後、EDTAを2mM含有したPBSを加え、沈降物を分散させ、再度遠心分離を行った。同様の手順による洗浄を3回行うことで抗体結合用シリカナノ粒子を得た。
一方、抗ヒトER抗体を1Mジチオスレイトール(DTT)で還元処理を行い、ゲルろ過カラムにより過剰のDTTを除去することにより、シリカ粒子に結合可能な還元化抗体溶液を得た。
上記で得られた抗体結合用シリカナノ粒子と還元化抗体溶液とを、EDTAを2mM含有したPBS中で混合し、1時間反応させた。10mMメルカプトエタノールを添加し、反応を停止させた。得られた溶液を10000Gで20分遠心分離を行い、上澄みを除去した後、EDTAを2mM含有したPBSを加え、沈降物を分散させ、再度遠心分離を行った。同様の手順による洗浄を3回行うことで抗ヒトER抗体結合・蛍光物質集積シリカナノ粒子を得た。
インビトロジェン社製QD655抗体標識キット(Q22021MP)を用いて量子ドットに抗ヒトER抗体を結合させた。抗体の結合はキットの処方にしたがい、SMCCによる量子ドットの活性化、DTTによる抗体の還元工程を経て、量子ドットと抗体の結合反応を行うことで行った。
[手順3:蛍光物質集積粒子と量子ドットを用いた組織染色]
手順2で作製した抗ヒトER抗体結合・蛍光物質集積シリカナノ粒子と抗ヒトER抗体結合・量子ドットを用いてヒト乳房組織の免疫染色を行った。染色切片は、コスモバイオ社製の組織アレイスライド(CB−A712)を用いた。組織アレイスライドを脱パラフィン処理した後、組織アレイスライドを浸漬する液体をキシレン、エタノール、水の順に置換して洗浄し、10mMクエン酸緩衝液(pH6.0)中で15分間オートクレーブ処理することで、抗原の賦活化処理を行った。抗原の賦活化処理後の組織アレイスライドは、PBS緩衝液を用いて洗浄後、湿潤箱中で1時間1%BSA含有PBS緩衝液を用いてブロッキング処理を行った。
ブロッキング処理後、1%BSA含有PBS緩衝液で0.05nMに希釈した各抗ヒトER抗体結合・蛍光物質集積シリカナノ粒子又は抗ヒトER抗体結合・量子ドットを組織切片と3時間反応させた。その後、組織アレイスライドをPBS緩衝液で洗浄し、Merck Chemicals社製Aquatexを用いて封入した。
[手順4:染色した組織の輝点、輝度、粒子数計測]
手順3で染色した組織切片についてオリンパス社製DSU共焦点顕微鏡を用いて画像を取得し、ジーオングストローム社製の輝点計測ソフトウェア、G−countを用いて輝点の計測を行った。
Cy5の観察は、励起フィルター(640/30nmのバンドパスフィルター)、ビームスプリッター(660nm)、蛍光フィルター(690/50nmのバンドパスフィルター)のフィルターセットを用いた。
テトラメチルローダミンの観察は、励起フィルター(550/25nmのバンドパスフィルター)、ビームスプリッター(570nm)、蛍光フィルター(605/70nmのバンドパスフィルター)のフィルターセットを用いた。
QD655の観察は、励起フィルター(350/50nmのバンドパスフィルター)、ビームスプリッター(400nm)、蛍光フィルター(590nmのロングパスフィルター)のフィルターセットを用いた。
組織アレイスライド中の予めDAB染色で染色濃度が異なることが予測された8スポットについて、各60細胞の輝点の数と各輝点の輝度を計測した。
[実験結果A]
まず、蛍光物質集積粒子や量子ドットを用いた場合に得られた各輝点の輝度分布(輝度毎の輝点数)に基づいて、1粒子当たりの輝度を求めた。具体的には、輝度分布から、最も頻度の高い輝度を1粒子当たりの輝度とする。
Cy5集積・シリカナノ粒子、テトラメチルローダミン集積・シリカナノ粒子、QD655のそれぞれを用い、8スポット(各スポットにつき各60細胞)から輝点を計測した。その結果、Cy5集積・シリカナノ粒子を用いた測定では輝度82の輝点数が最も多く、テトラメチルローダミン集積・シリカナノ粒子を用いた測定では輝度69の輝点数が最も多く、QD655を用いた測定では輝度64の輝点数が最も多かった。
表5に、Cy5集積・シリカナノ粒子、テトラメチルローダミン集積・シリカナノ粒子、QD655のそれぞれを用いた場合の、8スポット全体(60細胞×8スポット)から計測された各輝点の輝度分布を示す。輝度の単位はa.u.(任意単位)である。表5は、輝度が0−30、31−60、61−90、91−120、121−150、151−180、181−210、211−255の範囲の輝点数を示している。
Figure 0005915531
表5から、Cy5集積・シリカナノ粒子では、輝度が61−90、151−180、211−255の範囲にピークが存在していることがわかる。Cy5集積・シリカナノ粒子では、輝度82の輝点数が最も多いため、輝度151−180に含まれる輝点は2粒子分の合計輝度であり、輝度211−255に含まれる輝点は3粒子分の合計輝度であることがわかる。このように、輝度分布に基づいて、蛍光物質集積粒子や量子ドット1粒子当たりの輝度を求めることができる。
[実験結果B]
次に、実験結果Aの結果に基づいて、Cy5集積・シリカナノ粒子では1粒子当たりの輝度を82、テトラメチルローダミン集積・シリカナノ粒子では1粒子当たりの輝度を69、QD655では1粒子当たりの輝度を64と仮定して、各スポットでの「1細胞当たりの輝度の和」を「1粒子当たりの輝度」で割ることで、各スポットでの「1細胞当たりの粒子数」を求めた。
表6に、Cy5集積・シリカナノ粒子、テトラメチルローダミン集積・シリカナノ粒子、QD655のそれぞれを用いた場合の、各スポットでの1細胞当たりの粒子数を示す。表6において、「−」は、バックグラウンドレベル以上の輝点がないことを示している。
Figure 0005915531
表6に示すように、Cy5集積・シリカナノ粒子、テトラメチルローダミン集積・シリカナノ粒子、QD655のそれぞれについて、1細胞当たりの粒子数の差によりバイオマーカーの発現レベルを定量的に評価することができる。しかし、より微量のバイオマーカーに対する輝点レベルの定量評価(スポット番号2、3)においては、Cy5集積・シリカナノ粒子、テトラメチルローダミン集積・シリカナノ粒子を用いた場合の方が、QD655を用いた場合よりも、検出感度が優れていることがわかる。
[実験結果C]
次に、蛍光物質集積粒子又は量子ドットを用いて染色した組織における輝点の経時変化について検討した。
手順3で染色した組織切片を作製してから0日、3日、30日、90日後に、手順4に従って組織アレイスライド中のスポット番号6の組織切片の60細胞に含まれる輝点の数と各輝点の輝度を計測した。次いで、実験結果Bと同様の方法で、1細胞当たりの粒子数を算出した。また、各輝点の輝度の和を細胞数で割ることにより、1細胞当たりの輝度を算出した。
図1に、Cy5集積・シリカナノ粒子、テトラメチルローダミン集積・シリカナノ粒子、QD655のそれぞれを用いた場合の、スポット番号6の組織切片について算出された1細胞当たりの粒子数と1細胞当たりの輝度の経時変化を示す。
図1から、1細胞当たりの輝度は、組織切片の作製から時間が経過するにつれて次第に減少しているが、1細胞当たりの粒子数は、組織切片作製後90日後も安定した数値を示すことがわかる。すなわち、各粒子が発する蛍光輝度は次第に減少するが、組織切片に存在するバイオマーカーと結合した粒子の数は変化しない。したがって、1細胞当たりの粒子数の差に基づいてバイオマーカーの発現レベルを定量的に評価することで、より安定した評価結果を得ることができる。
[実験結果D]
次に、蛍光物質集積粒子や量子ドットを用いて染色した場合と蛍光色素単体を用いた場合とを比較した。
蛍光色素単体を用いた場合の例として、Cy5、テトラメチルローダミンに抗ヒトER抗体を結合させたものを用い、手順3と同様の方法で組織アレイスライドを染色し、手順4と同様の方法で組織アレイスライド中の8スポットについて、各60細胞に含まれる輝点の数と各輝点の輝度を計測した。次いで、実験結果Bと同様の方法で、1細胞当たりの粒子数を算出した。
表7に、Cy5集積・シリカナノ粒子、テトラメチルローダミン集積・シリカナノ粒子、QD655、Cy5、テトラメチルローダミンのそれぞれを用いた場合の、各スポットでの1細胞当たりの粒子数を示す。表7において、「−」は、バックグラウンドレベル以上の発光がないことを示し、「+」は、バックグラウンドレベル以上の発光はあるが、輝点の判定はできないことを示している。
Figure 0005915531
表7から、蛍光色素単体での組織染色では、バイオマーカーに対する輝点レベルでの定量評価が不可能であることがわかる。
以上説明したように、組織切片から計測された蛍光輝点の数に基づいて、生体物質の発現レベルを評価するので、生体物質の定量評価において、安定した評価結果を得ることができる。
また、蛍光物質を複数集積した蛍光物質集積粒子を用いることにより、蛍光観察時の1粒子当たりの輝度が高くなるため、微量の生体物質を感度良く、定量的に検出することができる。
[蛍光物質内包ナノ粒子a〜fの合成]
[合成例1:蛍光有機色素内包シリカ:Cy5内包シリカナノ粒子の合成]
下記工程(1)〜(4)の方法により、「ナノ粒子a」を作製した。
工程(1):Cy5のN−ヒドロキシスクシンイミドエステル誘導体(GEヘルスケア社製)1mg(0.00126mmol)とテトラエトキシシラン 400μL(1.796mmol)とを混合した。
工程(2):エタノール40mL、14%アンモニア水10mLを混合した。
工程(3):工程(2)で作製した混合液を室温下撹拌しているところに、工程(1)で調製した混合液を添加した。添加開始から12時間撹拌を行った。
工程(4):反応混合物を10000gで60分遠心分離を行い、上澄みを除去した。エタノールを加え、沈降物を分散させ、再度遠心分離を行った。同様の手順でエタノールと純水による洗浄を一回ずつ行った。
得られたシリカナノ粒子aの走査型電子顕微鏡(SEM;日立社製S−800型)観察を行ったところ、平均粒径は110nm、変動係数は12%であった。
[合成例2:蛍光有機色素内包シリカ:TAMRA内包シリカナノ粒子の合成]
下記工程(1)〜(4)の方法により、「ナノ粒子b」を作製した。
工程(1):TAMRAのN−ヒドロキシスクシンイミドエステル誘導体(GEヘルスケア社製)2mg(0.00126mmol)とテトラエトキシシラン400μL(1.796mmol)とを混合した。
工程(2):エタノール40mL、14%アンモニア水10mLを混合した。
工程(3):工程(2)で作製した混合液を室温下撹拌しているところに、工程(1)で調製した混合液を添加した。添加開始から12時間撹拌を行った。
工程(4):反応混合物を10000gで60分遠心分離を行い、上澄みを除去した。エタノールを加え、沈降物を分散させ、再度遠心分離を行った。同様の手順でエタノールと純水による洗浄を一回ずつ行った。
得られたシリカナノ粒子bの走査型電子顕微鏡(SEM;日立社製S−800型)観察を行ったところ、平均粒径は100nm、変動係数は15%であった。
[合成例3:量子ドット内包シリカ:発光波長655nmのCdSe/ZnS内包シリカナノ粒子の合成]
下記工程(1)〜(4)の方法により、「ナノ粒子c」を作製した。
工程(1):CdSe/ZnSデカン分散液(インビトロジェン社Qdot655)10μLとテトラエトキシシラン40μLとを混合した。
工程(2):エタノール4mL、14%アンモニア水1mLを混合した。
工程(3):工程(2)で作製した混合液を室温下撹拌しているところに、工程(1)で作製した混合液を添加した。添加開始から12時間撹拌を行った。
工程(4):反応混合物を10000gで60分遠心分離を行い、上澄みを除去した。エタノールを加え、沈降物を分散させ、再度遠心分離を行った。同様の手順でエタノールと純水による洗浄を1回ずつ行った。
得られたシリカナノ粒子cのSEM観察を行ったところ、平均粒径は130nm、変動係数は13%であった。
[合成例4:量子ドット内包シリカ:発光波長585nmのCdSe/ZnS内包シリカナノ粒子の合成]
下記工程(1)〜(4)の方法により、「ナノ粒子d」を作製した。
工程(1):CdSe/ZnSデカン分散液(インビトロジェン社Qdot585)10μLとテトラエトキシシラン40μLとを混合した。
工程(2):エタノール4mL、14%アンモニア水1mLを混合した。
工程(3):工程(2)で作製した混合液を室温下撹拌しているところに、工程(1)で作製した混合液を添加した。添加開始から12時間撹拌を行った。
工程(4):反応混合物を10000gで60分遠心分離を行い、上澄みを除去した。エタノールを加え、沈降物を分散させ、再度遠心分離を行った。同様の手順でエタノールと純水による洗浄を1回ずつ行った。
得られたシリカナノ粒子dのSEM観察を行ったところ、平均粒径は120nm、変動係数は12%であった。
[合成例5:蛍光有機内包ポリスチレンナノ粒子:Cy5内包ポリスチレンナノ粒子の合成]
下記工程(1)〜(3)の方法により、「ナノ粒子e」を作製した。
工程(1):Cy5のN−ヒドロキシスクシンイミドエステル誘導体(GEヘルスケア社製)1mg(0.00126mmol)を、ジクロロメタン60μL、エタノール120μLに溶解させた。
工程(2):表面官能基アミノ基で粒径100nmポリスチレンナノ粒子水分散液(micromod社製)1.5mLを激しく撹拌しているところに、工程(1)で作製した混合液を添加した。添加開始から12時間撹拌を行った。
工程(3):反応混合物を10000gで60分遠心分離を行い、上澄みを除去した。エタノールを加え、沈降物を分散させ、再度遠心分離を行った。同様の手順でエタノールと純水による洗浄を1回ずつ行った。
得られたポリスチレンナノ粒子eのSEM観察を行ったところ、平均粒径は100nm、変動係数は5%であった。
[合成例6:蛍光有機内包ポリスチレンナノ粒子:TAMRA内包ポリスチレンナノ粒子の合成]
下記工程(1)〜(3)の方法により、「ナノ粒子f」を作製した。
工程(1):TAMRAのN−ヒドロキシスクシンイミドエステル誘導体(GEヘルスケア社製)2mg(0.00126mmol)を、ジクロロメタン60μL、エタノール120μLに溶解させた。
工程(2):表面官能基アミノ基で粒径100nmポリスチレンナノ粒子水分散液(micromod社製)1.5mLを激しく撹拌しているところに、工程(1)で作製した混合液を添加した。添加開始から12時間撹拌を行った。
工程(3):反応混合物を10000gで60分遠心分離を行い、上澄みを除去した。エタノールを加え、沈降物を分散させ、再度遠心分離を行った。同様の手順でエタノールと純水による洗浄を1回ずつ行った。
得られたポリスチレンナノ粒子fのSEM観察を行ったところ、平均粒径は100nm、変動係数は6%であった。
[蛍光物質内包シリカナノ粒子への抗体の結合]
蛍光物質内包シリカナノ粒子a〜dに対し、以下の手順により抗体結合を行った。
詳しくは、ナノ粒子a,cに対して工程(1)〜(7),工程(8)〜(9),工程(12)〜(14)の操作をおこなって抗体を結合し「粒子A,C」を形成し、ナノ粒子b,dに対して工程(1)〜(7),工程(10)〜(11),工程(15)〜(17)の操作をおこなって抗体を結合し「粒子B,D」を形成した。
工程(1):1mgのナノ粒子a〜dを純水5mLに分散させた。アミノプロピルトリエトキシシラン水分散液100μLを添加し、室温で12時間撹拌した。
工程(2):反応混合物を10000gで60分遠心分離を行い、上澄みを除去した。
工程(3):エタノールを加え、沈降物を分散させ、再度遠心分離を行った。同様の手順でエタノールと純水による洗浄を1回ずつ行った。得られたアミノ基修飾したシリカナノ粒子a〜dのFT−IR測定を行ったところ、アミノ基に由来する吸収が観測でき、アミノ基修飾できたことを確認できた。
工程(4):工程(3)で得られたアミノ基修飾したシリカナノ粒子a〜dを、EDTA(エチレンジアミン四酢酸)を2mM含有したPBS(リン酸緩衝液生理的食塩水)を用いて3nMに調整した。
工程(5):工程(4)で調整した溶液に最終濃度10mMとなるようSM(PEG)12(サーモサイエンティフィック社製、succinimidyl−[(N−maleomidopropionamid)−dodecaethyleneglycol]ester)を混合し、1時間反応させた。
工程(6):反応混合液を10000gで60分遠心分離を行い、上澄みを除去した。
工程(7):EDTAを2mM含有したPBSを加え、沈降物を分散させ、再度遠心分離を行った。同様の手順による洗浄を3回行った。最後に500μLPBSを用い再分散させた。
工程(8):100μgの抗ヒトER抗体を100μLのPBSに溶解させたところに、1Mジチオスレイトール(DTT)を添加し、30分反応させた。
工程(9):反応混合物についてゲルろ過カラムにより過剰のDTTを除去し、還元化抗ヒトER抗体溶液を得た。
工程(10):100μgの抗HER2抗体を100μLのPBSに溶解させたところに、1Mジチオスレイトール(DTT)を添加し、30分反応させた。
工程(11):反応混合物についてゲルろ過カラムにより過剰のDTTを除去し、還元化抗HER2抗体溶液を得た。
工程(12):粒子aまたは粒子cを出発原料にして、工程(7)で得られた粒子分散液と工程(9)で得られた還元化抗ヒトER抗体溶液とをPBS中で混合し、1時間反応させた。
工程(13):10mMメルカプトエタノール4μLを添加し、反応を停止させた。
工程(14):反応混合物を10000gで60分遠心分離を行い、上澄みを除去した後、EDTAを2mM含有したPBSを加え、沈降物を分散させ、再度遠心分離を行った。同様の手順による洗浄を3回行った。最後に500μLのPBSを用い再分散させ、抗ヒトER抗体結合した蛍光物質内包シリカナノ粒子Aおよび粒子Cを得た。
工程(15):粒子bまたは粒子dを出発原料にして、工程(7)で得られた粒子分散液と工程(11)で得られた還元化抗HER2抗体溶液とをPBS中で混合し、1時間反応させた。
工程(16):10mMメルカプトエタノール4μLを添加し、反応を停止させた。
工程(17):反応混合物を10000gで60分遠心分離を行い、上澄みを除去した後、EDTAを2mM含有したPBSを加え、沈降物を分散させ、再度遠心分離を行った。同様の手順による洗浄を3回行った。最後に500μLのPBSを用い再分散させ、抗HER2抗体結合した蛍光物質内包シリカナノ粒子Bおよび粒子Dを得た。
[蛍光物質内包ポリスチレンナノ粒子への抗体の結合]
蛍光物質内包ポリスチレンナノ粒子e,fに対し、以下の手順により抗体結合を行った。
詳しくは、ナノ粒子eに対して工程(1)〜(2),工程(5)〜(7)の操作をおこなって抗体を結合し「粒子E」を形成し、ナノ粒子fに対して工程(3)〜(4),工程(8)〜(10)の操作をおこなって抗体を結合し「粒子F」を形成した。
工程(1):100μgの抗ヒトER抗体を100μLのPBSに溶解させたところに、1Mジチオスレイトール(DTT)を添加し、30分反応させた。
工程(2):反応混合物についてゲルろ過カラムにより過剰のDTTを除去し、還元化抗ヒトER抗体溶液を得た。
工程(3):100μgの抗HER2抗体を100μLのPBSに溶解させたところに、1Mジチオスレイトール(DTT)を添加し、30分反応させた。
工程(4):反応混合物についてゲルろ過カラムにより過剰のDTTを除去し、還元化抗HER2抗体溶液を得た。
工程(5):粒子eの分散液と工程(2)で得られた還元化抗ヒトER抗体溶液とをPBS中で混合し、1時間反応させた。
工程(6):10mMメルカプトエタノール4μLを添加し、反応を停止させた。
工程(7):反応混合物を10000gで60分遠心分離を行い、上澄みを除去した後、EDTAを2mM含有したPBSを加え、沈降物を分散させ、再度遠心分離を行った。同様の手順による洗浄を3回行った。最後に500μLのPBSを用い再分散させ、抗ヒトER抗体結合した蛍光物質内包ポリスチレンナノ粒子Eを得た。
工程(8):粒子fの分散液と工程(4)で得られた還元化抗ヒトHER2抗体溶液とをPBS中で混合し、1時間反応させた。
工程(9):10mMメルカプトエタノール4μLを添加し、反応を停止させた。
工程(10):反応混合物を10000gで60分遠心分離を行い、上澄みを除去した後、EDTAを2mM含有したPBSを加え、沈降物を分散させ、再度遠心分離を行った。同様の手順による洗浄を3回行った。最後に500μLのPBSを用い再分散させ、抗HER2抗体結合した蛍光物質内包ポリスチレンナノ粒子Fを得た。
[蛍光物質への抗体結合]
比較として、抗ヒトER抗体をCy5に結合させた「色素G」と、抗HER2抗体をTAMRAに結合させた「色素H」とを、以下の手順により作製した。
詳しくは、工程(1)〜(2),工程(5)〜(6),工程(9)〜(11)の操作をおこなって色素Gを形成し、工程(3)〜(4),工程(7)〜(8),工程(12)〜(14)の操作をおこなって色素Hを形成した。
工程(1):100μgの抗ヒトER抗体を100μLのPBSに溶解させたところに、1Mジチオスレイトール(DTT)を添加し、30分反応させた。
工程(2):反応混合物についてゲルろ過カラムにより過剰のDTTを除去し、還元化抗ヒトER抗体溶液を得た。
工程(3):100μgの抗HER2抗体を100μLのPBSに溶解させたところに、1Mジチオスレイトール(DTT)を添加し、30分反応させた。
工程(4):反応混合物についてゲルろ過カラムにより過剰のDTTを除去し、還元化抗HER2抗体溶液を得た。
工程(5):Cy5のN−ヒドロキシスクシンイミドエステル誘導体(GEヘルスケア社製)1mg(0.00126mmol)を、EDTA(エチレンジアミン四酢酸)を2mM含有したPBS(リン酸緩衝液生理的食塩水)を用いて3nMに調整した。
工程(6):工程(5)で調整した溶液に最終濃度10mMとなるようSM(PEG)12(サーモサイエンティフィック社製、succinimidyl−[(N−maleomidopropionamid)−dodecaethyleneglycol]ester)を混合し、1時間反応させた。
工程(7):TAMRAのN−ヒドロキシスクシンイミドエステル誘導体(GEヘルスケア社製)2mg(0.00126mmol)を、EDTA(エチレンジアミン四酢酸)を2mM含有したPBS(リン酸緩衝液生理的食塩水)を用いて3nMに調整した。
工程(8):工程(7)で調整した溶液に最終濃度10mMとなるようSM(PEG)12(サーモサイエンティフィック社製、succinimidyl−[(N−maleomidopropionamid)−dodecaethyleneglycol]ester)を混合し、1時間反応させた。
工程(9):工程(6)で得られた反応混合物に、工程(2)で得られた還元化抗ヒトER抗体溶液をPBS中で混合し、1時間反応させた。
工程(10):10mMメルカプトエタノール4μLを添加し、反応を停止させた。
工程(11):ゲルろ過カラムにより過剰のメルカプトエタノールを除去し、Cy5結合した還元化抗ER2抗体溶液(色素G)を得た。
工程(12):工程(6)で得られた反応混合物に工程(4)で得られた還元化抗HER2抗体溶液をPBS中で混合し、1時間反応させた。
工程(13):10mMメルカプトエタノール4μLを添加し、反応を停止させた。
工程(14):ゲルろ過カラムにより過剰のメルカプトエタノールを除去し、TAMRA結合した還元化抗HER2抗体溶液(色素H)を得た。
以上の処理により形成した粒子A〜F,色素G〜Hの特性を表8に示す。
Figure 0005915531
[評価実験:(1)粒子A〜F,色素G〜Hを用いた組織染色]
作製した粒子A〜F,色素G〜Hを用いてヒト乳房組織の免疫染色を行った。
染色切片はコスモバイオ社製の組織アレイスライド(CB-A712)を用いた。あらかじめDAB染色によりERおよびHER2染色濃度を観察し、(1)ER発現量が高くてHER2発現量も高い、(2)ER発現量が高くてHER2発現量が低い、(3)ER発現量が低くてHER2発現量も低い異なる3種のロットを用意し、それぞれ染色を行った。
(1):キシレンを入れた容器に病理切片を30分浸漬させた。途中3回キシレンを交換した。
(2):エタノールを入れた容器に病理切片を30分浸漬させた。途中3回エタノールを交換した。
(3):水を入れた容器に、病理切片を30分浸漬させた。途中3回水を交換した。
(4):10mMクエン酸緩衝液(pH6.0)に病理切片を30分浸漬させた。
(5):121℃で10分オートクレーブ処理を行った。
(6):PBSを入れた容器に、オートクレーブ処理後の切片を30分浸漬させた。
(7):1%BSA含有PBSを組織に載せて、1時間放置した。
(8):1%BSA含有PBSで0.05nMに希釈した抗ヒトER抗体結合した蛍光体内包ナノ粒子A10μLと、1%BSA含有PBSで0.05nMに希釈した抗HER2抗体結合した蛍光体内包ナノ粒子B10μLとを混合し、組織に載せて3時間放置した。
(9):1%BSA含有PBSで0.05nMに希釈した抗ヒトER抗体結合した蛍光体内包ナノ粒子C10μLと、1%BSA含有PBSで0.05nMに希釈した抗HER2抗体結合した蛍光体内包ナノ粒子D10μLとを混合し、(8)とは別なスライドの組織に載せて3時間放置した。
(10):1%BSA含有PBSで0.05nMに希釈した抗ヒトER抗体結合した蛍光体内包ナノ粒子E10μLと、1%BSA含有PBSで0.05nMに希釈した抗HER2抗体結合した蛍光体内包ナノ粒子F10μLとを混合し、(8)および(9)とは別なスライドの組織に載せて3時間放置した。
(11):1%BSA含有PBSで0.05nMに希釈した抗ヒトER抗体結合した色素G10μLと、1%BSA含有PBSで0.05nMに希釈した抗HER2抗体結合した色素H10μLとを混合し、(8)〜(10)とは別なスライドの組織に載せて3時間放置した。
(12):PBSを入れた容器に、染色後の切片をそれぞれ30分浸漬させた。
(13):Merck Chemicals社製Aquatexを滴下後、カバーガラスを載せ封入した。
[評価実験:(2)粒子A〜F,色素G〜Hを用いて染色した組織の輝点計測]
染色した組織切片に励起光を照射して蛍光発光させ、その組織切片からオリンパス社製DSU共焦点顕微鏡を用いて画像を取得し、ジーオンオングストロング社製輝点計測ソフト、G−countを用いて輝点数および発光輝度を計測した。
Cy5およびQdot655については、励起波長633nm、検出波長660nmとした。TAMRAおよびQdot585については、励起波長543nm、検出波長580nmとして観察を行った。
輝点数は、組織アレイスライド中の8スポットについて各30細胞の輝点を計測し、その平均値を求めた。発光輝度は、8スポットそれぞれについて視野全体の蛍光強度を合算し、その平均値を求めた。
表9,表10に、3種のロットと粒子A〜F,色素G〜Hの組合せとに応じた「実験例1〜7」における輝点数および発光輝度の計測結果を示す。
Figure 0005915531
Figure 0005915531
表9から、蛍光有機色素を単独で抗体に結合した実験例4では、蛍光強度が弱くバックグランド光と区別がつかず、標的とする生体物質が検出できなかった。これに対し、蛍光物質内包粒子を用いた実験例1〜3では、蛍光強度が高く、標的とする生体物質の検出が容易に可能となった。
表10から、ER2およびHER2の発現量の異なる切片を用いた実験例5〜7では、それぞれの発現量に応じて輝点数および蛍光強度が変化しており、蛍光物質,生体物質認識部位が互いに異なる粒子を染色試薬として使用すれば、複数の生体物質の発現レベルを同一切片で計測できることがわかった。
本発明は、微量の生体物質を定量的に検出するのに好適に利用することができる。

Claims (2)

  1. 蛍光物質を複数集積した蛍光物質集積粒子に生体物質認識部位が結合されたものを染色試薬として用いて組織切片を染色し、
    当該染色された組織切片の蛍光輝点の数と各蛍光輝点の輝度とを計測し、
    当該計測された蛍光輝点の数及び各蛍光輝点の輝度に基づいて、前記染色された組織切片に結合している蛍光物質集積粒子の粒子数を算出し、
    当該算出された蛍光物質集積粒子の粒子数に基づいて、前記染色された組織切片における前記生体物質認識部位に対応する生体物質の発現レベルを評価する組織評価方法。
  2. 請求項1に記載の組織評価方法において、
    前記計測された蛍光輝点の数及び各蛍光輝点の輝度から輝度分布を求め、
    当該輝度分布に基づいて前記蛍光物質集積粒子1粒子当たりの輝度を算出し、
    前記計測された各蛍光輝点の輝度の和及び前記算出された蛍光物質集積粒子1粒子当たりの輝度に基づいて、前記染色された組織切片に結合している蛍光物質集積粒子の粒子数を算出し、
    当該算出された蛍光物質集積粒子の粒子数に基づいて、前記染色された組織切片における前記生体物質の発現レベルを評価する組織評価方法。
JP2012531709A 2010-08-30 2011-03-15 組織評価方法 Active JP5915531B2 (ja)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2010191621 2010-08-30
JP2010191621 2010-08-30
JP2010193155 2010-08-31
JP2010193155 2010-08-31
JP2010193153 2010-08-31
JP2010193153 2010-08-31
PCT/JP2011/055991 WO2012029342A1 (ja) 2010-08-30 2011-03-15 組織染色方法、組織評価方法および生体物質検出方法

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP2014253709A Division JP5924396B2 (ja) 2010-08-30 2014-12-16 組織染色用蛍光標識体
JP2014253705A Division JP2015062032A (ja) 2010-08-30 2014-12-16 組織染色用蛍光標識体
JP2015058870A Division JP6128153B2 (ja) 2010-08-30 2015-03-23 組織染色方法および生体物質検出方法

Publications (2)

Publication Number Publication Date
JPWO2012029342A1 JPWO2012029342A1 (ja) 2013-10-28
JP5915531B2 true JP5915531B2 (ja) 2016-05-11

Family

ID=45772458

Family Applications (5)

Application Number Title Priority Date Filing Date
JP2012531709A Active JP5915531B2 (ja) 2010-08-30 2011-03-15 組織評価方法
JP2014253705A Pending JP2015062032A (ja) 2010-08-30 2014-12-16 組織染色用蛍光標識体
JP2014253709A Active JP5924396B2 (ja) 2010-08-30 2014-12-16 組織染色用蛍光標識体
JP2015058870A Active JP6128153B2 (ja) 2010-08-30 2015-03-23 組織染色方法および生体物質検出方法
JP2015206829A Active JP6112173B2 (ja) 2010-08-30 2015-10-21 組織染色用蛍光標識体および生体物質検出方法

Family Applications After (4)

Application Number Title Priority Date Filing Date
JP2014253705A Pending JP2015062032A (ja) 2010-08-30 2014-12-16 組織染色用蛍光標識体
JP2014253709A Active JP5924396B2 (ja) 2010-08-30 2014-12-16 組織染色用蛍光標識体
JP2015058870A Active JP6128153B2 (ja) 2010-08-30 2015-03-23 組織染色方法および生体物質検出方法
JP2015206829A Active JP6112173B2 (ja) 2010-08-30 2015-10-21 組織染色用蛍光標識体および生体物質検出方法

Country Status (4)

Country Link
US (4) US10809167B2 (ja)
EP (3) EP3225990B1 (ja)
JP (5) JP5915531B2 (ja)
WO (1) WO2012029342A1 (ja)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10809167B2 (en) * 2010-08-30 2020-10-20 Konica Minolta, Inc. Tissue staining method with staining agent containing particle holding plural phosphors
WO2012133047A1 (ja) * 2011-03-25 2012-10-04 コニカミノルタエムジー株式会社 免疫組織染色法、およびこれを用いた抗体医薬の有効性を判定する方法
US20140220598A1 (en) 2011-09-09 2014-08-07 Tohoku University Biological substance detection method
JP2013200287A (ja) * 2012-03-26 2013-10-03 Kawasaki Gakuen Ki−67インデックス算定二重染色法を用いた陽性率測定方法
WO2013146694A1 (ja) * 2012-03-28 2013-10-03 コニカミノルタ株式会社 生体物質の検出方法
US9483684B2 (en) 2012-03-30 2016-11-01 Konica Minolta, Inc. Medical image processor and storage medium
US9903797B2 (en) 2013-03-08 2018-02-27 Konica Minolta, Inc. Staining agent for staining tissue, production method for staining agent for staining tissue and tissue staining kit including staining agent for staining tissue
JP6107244B2 (ja) * 2013-03-08 2017-04-05 コニカミノルタ株式会社 蛍光色素標識用樹脂粒子及びその製造方法並びに該粒子を含む組織免疫染色用キット
JP6104703B2 (ja) * 2013-05-17 2017-03-29 日本電子株式会社 電子顕微鏡観察用染色剤および電子顕微鏡観察用試料の染色方法
EP3086110A4 (en) 2013-12-18 2017-06-21 Konica Minolta, Inc. Image processing device, pathological diagnosis support system, image processing program, and image processing method
JP6237194B2 (ja) * 2013-12-18 2017-11-29 コニカミノルタ株式会社 染色方法
WO2015133523A1 (ja) 2014-03-06 2015-09-11 コニカミノルタ株式会社 蛍光体集積ナノ粒子標識剤、およびこれを用いた蛍光免疫染色法
WO2015141856A1 (ja) * 2014-03-20 2015-09-24 コニカミノルタ株式会社 プローブ試薬および該プローブ試薬を用いたfish
EP3124969B1 (en) * 2014-03-24 2019-05-01 Konica Minolta, Inc. Biological-material quantitation method based on multiple-antigen immunostaining
JP5835536B1 (ja) * 2014-03-26 2015-12-24 コニカミノルタ株式会社 組織評価方法、画像処理装置、病理診断支援システム及びプログラム
WO2015159776A1 (ja) * 2014-04-16 2015-10-22 コニカミノルタ株式会社 蛍光体集積ナノ粒子、これを用いた染色試薬、キットおよび蛍光免疫染色法
WO2015163211A1 (ja) * 2014-04-21 2015-10-29 コニカミノルタ株式会社 生体物質定量方法、画像処理装置、病理診断支援システム及び画像処理プログラム
EP3136098B1 (en) 2014-04-23 2020-12-09 Konica Minolta, Inc. Medium for resin particles containing fluorescent dye
JP5768945B1 (ja) * 2014-07-11 2015-08-26 コニカミノルタ株式会社 生体物質定量方法、画像処理装置、病理診断支援システム及びプログラム
EP3232195B1 (en) * 2014-12-12 2020-04-29 Konica Minolta, Inc. Diluent for fluorescent nano particles, kit for immunofluorescent staining which utilizes same, solution for immunofluorescent staining, immunofluorescent staining method, and gene staining method
US10746740B2 (en) * 2015-01-22 2020-08-18 Konica Minolta, Inc. Biological substance quantitation method, pathological diagnosis support system, and recording medium storing computer readable program
JP6372370B2 (ja) * 2015-01-23 2018-08-15 コニカミノルタ株式会社 生体物質定量方法、画像処理装置、及びプログラム
JP6740906B2 (ja) * 2015-02-12 2020-08-19 コニカミノルタ株式会社 抗体結合蛍光体集積ナノ粒子、抗体結合蛍光体集積ナノ粒子の製造方法および免疫染色キット
JP6687018B2 (ja) * 2015-03-25 2020-04-22 コニカミノルタ株式会社 目的生体物質の検出方法および検出システム
JP6766804B2 (ja) * 2015-04-07 2020-10-14 コニカミノルタ株式会社 核酸プローブ
JP6547424B2 (ja) * 2015-06-01 2019-07-24 コニカミノルタ株式会社 蛍光画像の合焦システム、合焦方法および合焦プログラム
US10962453B2 (en) * 2015-06-16 2021-03-30 Konica Minolta, Inc. Pathological specimen, method for producing pathological specimen, and method for acquiring fluorescence image
WO2016204027A1 (ja) * 2015-06-18 2016-12-22 コニカミノルタ株式会社 目的生体物質の解析装置、解析システム、解析方法および解析プログラム
US20180209907A1 (en) * 2015-07-17 2018-07-26 Konica Minolta Inc. Target Biological Substance Analysis Method And Analysis System
US11105807B2 (en) 2015-09-28 2021-08-31 Konica Minolta, Inc. Method for estimating pathological tissue diagnosis result (Gleason score) of prostate cancer
JP6911855B2 (ja) * 2016-07-05 2021-07-28 コニカミノルタ株式会社 生体物質定量方法、画像処理装置、病理診断支援システム及びプログラム
JP6922444B2 (ja) * 2016-11-11 2021-08-18 コニカミノルタ株式会社 蛍光ナノ粒子を用いた、病理学的完全奏効(pCR)の予測を支援するための検査支援方法
US11275087B2 (en) 2016-11-11 2022-03-15 Konica Minolta, Inc. Test support method for supporting prediction of pathological complete response (pCR) using fluorescent nanoparticles
US11662348B2 (en) * 2017-02-28 2023-05-30 Konica Minolta, Inc. Method for detecting constituent component of antibody-drug conjugate
EP3699588A4 (en) 2017-10-19 2020-11-25 Konica Minolta, Inc. METHOD OF MEASURING THE QUANTITY OF BIOMATERIAL, IMAGE PROCESSING DEVICE, SYSTEM TO SUPPORT PATHOLOGY DIAGNOSIS AND PROGRAM
WO2019172097A1 (ja) 2018-03-07 2019-09-12 コニカミノルタ株式会社 画像処理方法、画像処理装置及びプログラム
US11428656B2 (en) 2018-07-05 2022-08-30 AhuraTech LLC Electroluminescent methods and system for real-time measurements of physical properties
US11393387B2 (en) 2018-07-05 2022-07-19 AhuraTech LLC Open-circuit electroluminescence
US11460403B2 (en) 2018-07-05 2022-10-04 AhuraTech LLC Electroluminescent methods and devices for characterization of biological specimens
JPWO2020050373A1 (ja) * 2018-09-06 2020-03-12
WO2020142280A1 (en) * 2018-12-31 2020-07-09 Dow Silicones Corporation Bioconjugated molecule, method of preparing same, and diagnostic method
WO2020166469A1 (ja) * 2019-02-15 2020-08-20 コニカミノルタ株式会社 情報提供方法、情報提供装置及びプログラム
JPWO2022059601A1 (ja) * 2020-09-16 2022-03-24
CN113777053B (zh) * 2021-09-10 2023-04-14 南京诺源医疗器械有限公司 基于量子点荧光与多光谱相机的高通量检测方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228654A (ja) * 2001-01-30 2002-08-14 Yamato Scient Co Ltd 組織マッピング方法及び組織マップ分析装置
JP2004077389A (ja) * 2002-08-21 2004-03-11 Hitachi Software Eng Co Ltd 半導体ナノ粒子を含む機能性蛍光試薬
JP2004132838A (ja) * 2002-10-10 2004-04-30 Link Genomics Kk 被検生物学的試料の新規染色方法およびそれに使用されるアッセイ用キット
JP2006519376A (ja) * 2003-02-27 2006-08-24 ダコサイトメーション・デンマーク・アクティーゼルスカブ 免疫組織化学、免疫細胞化学および分子細胞遺伝学のための標準
JP2008541015A (ja) * 2005-04-28 2008-11-20 ベンタナ・メデイカル・システムズ・インコーポレーテツド ナノ粒子コンジュゲート

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4326008A (en) 1976-08-27 1982-04-20 California Institute Of Technology Protein specific fluorescent microspheres for labelling a protein
US4199613A (en) 1977-10-11 1980-04-22 Miles Laboratories, Inc. Staining method by capillary action
JP2522773B2 (ja) 1986-09-08 1996-08-07 新技術事業団 細胞識別・定量方法
US4911098A (en) 1987-12-28 1990-03-27 Shiraimatsu & Co., Ltd. Automatic straining apparatus for slide specimens
US5544650A (en) * 1988-04-08 1996-08-13 Neuromedical Systems, Inc. Automated specimen classification system and method
US5326692B1 (en) 1992-05-13 1996-04-30 Molecular Probes Inc Fluorescent microparticles with controllable enhanced stokes shift
US5995645A (en) 1993-08-18 1999-11-30 Applied Spectral Imaging Ltd. Method of cancer cell detection
JP3130538B2 (ja) 1996-06-10 2001-01-31 株式会社 分子バイオホトニクス研究所 高感度蛍光アッセイ
US6642062B2 (en) * 1998-09-03 2003-11-04 Trellis Bioinformatics, Inc. Multihued labels
JP4075278B2 (ja) 1999-03-31 2008-04-16 三菱化学株式会社 蛍光性重合体微粒子及びその製造方法、並びにこれを利用した蛍光免疫分析試薬及び蛍光免疫分析法
ATE294960T1 (de) * 2000-06-14 2005-05-15 Univ Texas Dielektrisch-hergestellte mikropartikel
SE0201750D0 (sv) * 2002-06-06 2002-06-06 Chalmers Technology Licensing Selective Chromophores
US7648678B2 (en) * 2002-12-20 2010-01-19 Dako Denmark A/S Method and system for pretreatment of tissue slides
JP2004286666A (ja) 2003-03-24 2004-10-14 Olympus Corp 病理診断支援装置および病理診断支援プログラム
JP4181435B2 (ja) * 2003-03-31 2008-11-12 日油株式会社 ポリエチレングリコール修飾半導体微粒子、その製造法及び生物学的診断用材料
GB0315991D0 (en) 2003-07-08 2003-08-13 Dakocytomation Denmark As Standard
US7413868B2 (en) 2003-11-05 2008-08-19 Trellis Bioscience, Inc. Use of particulate labels in bioanalyte detection methods
JP2005345764A (ja) 2004-06-03 2005-12-15 Olympus Corp 走査型光学装置
JP2007023058A (ja) * 2005-07-12 2007-02-01 Fujifilm Holdings Corp 金属酸化物又は金属硫化物ナノ粒子蛍光体を用いる癌検出方法
EP1946112A2 (en) * 2005-08-03 2008-07-23 Ventana Medical Systems, Inc. Predictive methods for cancer chemotherapy
US8168447B2 (en) * 2005-10-07 2012-05-01 University Of Florida Research Foundation, Inc. Multiple component nanoparticles for multiplexed signaling and optical encoding
WO2007074722A1 (ja) * 2005-12-27 2007-07-05 The Furukawa Electric Co., Ltd. 蛍光ナノシリカ粒子、ナノ蛍光材料、それを用いたバイオチップ及びそのアッセイ法
JP4748542B2 (ja) 2006-02-24 2011-08-17 古河電気工業株式会社 フローサイトメトリーによる生体分子の定量システム、及び定量方法
JPWO2008032599A1 (ja) 2006-09-14 2010-01-21 コニカミノルタエムジー株式会社 半導体ナノ粒子集合体、その製造方法、及びそれを用いた生体物質標識剤
WO2008035569A1 (fr) 2006-09-19 2008-03-27 Konica Minolta Medical & Graphic, Inc. réactif de détection de biomolécule et procédé de détection de biomolécule utilisant le réactif
US7777233B2 (en) * 2007-10-30 2010-08-17 Eastman Kodak Company Device containing non-blinking quantum dots
US8481263B2 (en) * 2007-11-06 2013-07-09 Ambergen Bead-ligand-nascent protein complexes
WO2010016289A1 (ja) * 2008-08-06 2010-02-11 コニカミノルタエムジー株式会社 量子ドットを含有する蛍光標識剤
US20100047859A1 (en) * 2008-08-22 2010-02-25 Jin-Kyu Lee Silica-based fluorescent nanoparticles
JP4444363B2 (ja) * 2009-03-23 2010-03-31 古河電気工業株式会社 積層構造のシリカナノ粒子の製造方法、積層構造のシリカナノ粒子、及びそれを用いた標識試薬
JP5698131B2 (ja) 2009-06-26 2015-04-08 国立大学法人東北大学 輸入リンパ管流入部検出方法及び特定細胞同定方法
CN106421817A (zh) * 2009-07-02 2017-02-22 斯隆-凯特林癌症研究院 基于二氧化硅的荧光纳米颗粒
US10809167B2 (en) * 2010-08-30 2020-10-20 Konica Minolta, Inc. Tissue staining method with staining agent containing particle holding plural phosphors
EP3124969B1 (en) * 2014-03-24 2019-05-01 Konica Minolta, Inc. Biological-material quantitation method based on multiple-antigen immunostaining
EP3258264B1 (en) * 2015-02-10 2020-12-02 Konica Minolta, Inc. Biological substance quantitation method
EP3252452A1 (en) * 2016-05-25 2017-12-06 The Board of Trustees of the Leland Stanford Junior University Method for imaging and analysis of a biological specimen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228654A (ja) * 2001-01-30 2002-08-14 Yamato Scient Co Ltd 組織マッピング方法及び組織マップ分析装置
JP2004077389A (ja) * 2002-08-21 2004-03-11 Hitachi Software Eng Co Ltd 半導体ナノ粒子を含む機能性蛍光試薬
JP2004132838A (ja) * 2002-10-10 2004-04-30 Link Genomics Kk 被検生物学的試料の新規染色方法およびそれに使用されるアッセイ用キット
JP2006519376A (ja) * 2003-02-27 2006-08-24 ダコサイトメーション・デンマーク・アクティーゼルスカブ 免疫組織化学、免疫細胞化学および分子細胞遺伝学のための標準
JP2008541015A (ja) * 2005-04-28 2008-11-20 ベンタナ・メデイカル・システムズ・インコーポレーテツド ナノ粒子コンジュゲート

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6015030463; 渡邉朋信: '生体超微細1分子可視化技術によるナノDDSとがん標的治療に関する研究 共焦点レーザー顕微システムを用いたi' 生体超微細1分子可視化技術によるナノDDSとがん標的治療に関する研究 平成18年度 総括・分担研究年度終了報 , 2007, Page.15-17 *
JPN6015030464; 長谷川朝美、外5名: 'ピンファイバービデオスコープ法による細胞内タンパク質の1分子可視化' バイオメディカル分析科学シンポジウム講演要旨集 Vol.17th, 20040603, Page.39-40 *

Also Published As

Publication number Publication date
WO2012029342A1 (ja) 2012-03-08
US10809167B2 (en) 2020-10-20
US20210404919A1 (en) 2021-12-30
JP2016029387A (ja) 2016-03-03
US20150160103A1 (en) 2015-06-11
EP3225990A1 (en) 2017-10-04
EP2613145A4 (en) 2015-08-05
US10627325B2 (en) 2020-04-21
EP2613145A1 (en) 2013-07-10
US20130157895A1 (en) 2013-06-20
US20210003486A1 (en) 2021-01-07
EP3779433A3 (en) 2021-05-19
JP6128153B2 (ja) 2017-05-17
JP2015062032A (ja) 2015-04-02
JP2015111167A (ja) 2015-06-18
JP6112173B2 (ja) 2017-04-12
EP3779433A2 (en) 2021-02-17
JP2015062033A (ja) 2015-04-02
JP5924396B2 (ja) 2016-05-25
JPWO2012029342A1 (ja) 2013-10-28
EP2613145B1 (en) 2017-06-28
EP3225990B1 (en) 2020-07-08

Similar Documents

Publication Publication Date Title
JP6112173B2 (ja) 組織染色用蛍光標識体および生体物質検出方法
JP5906623B2 (ja) 生体物質発現レベル評価システム
JP2016512345A (ja) 多重化組織用のデジタル的に強化された顕微鏡
WO2013146694A1 (ja) 生体物質の検出方法
US10746740B2 (en) Biological substance quantitation method, pathological diagnosis support system, and recording medium storing computer readable program
JP6721030B2 (ja) 病理標本、病理標本の作製方法
JP5887823B2 (ja) 組織評価方法
JP6687018B2 (ja) 目的生体物質の検出方法および検出システム
JP5863057B2 (ja) 組織評価方法
JP2012194013A (ja) 免疫組織化学染色方法及び反応試薬
WO2018123677A1 (ja) 画像処理方法及び画像処理システム
US20200182881A1 (en) A method of analysing a sample for at least one analyte

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151002

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20151124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160321

R150 Certificate of patent or registration of utility model

Ref document number: 5915531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150