JP5908524B2 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP5908524B2
JP5908524B2 JP2014087359A JP2014087359A JP5908524B2 JP 5908524 B2 JP5908524 B2 JP 5908524B2 JP 2014087359 A JP2014087359 A JP 2014087359A JP 2014087359 A JP2014087359 A JP 2014087359A JP 5908524 B2 JP5908524 B2 JP 5908524B2
Authority
JP
Japan
Prior art keywords
type
region
emitter
main surface
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014087359A
Other languages
English (en)
Other versions
JP2014158041A (ja
Inventor
中村 勝光
勝光 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014087359A priority Critical patent/JP5908524B2/ja
Publication of JP2014158041A publication Critical patent/JP2014158041A/ja
Application granted granted Critical
Publication of JP5908524B2 publication Critical patent/JP5908524B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は半導体装置に関し、より特定的には、高耐圧半導体装置であるIGBT(Insulated Gate Bipolar Transistor)を備える半導体装置に関する。
数百Vを超える電圧を制御する高耐圧半導体装置(パワーデバイス)の分野では、その取扱う電流も大きなことから、発熱、すなわち損失を抑えた素子特性が要求される。また、それらの電圧・電流を制御するゲートの駆動方式としては、駆動回路が小さく、そこでの損失の小さな電圧駆動素子が望ましい。
近年、上記のような理由で、この分野では電圧駆動が可能で、損失の少ない素子として、絶縁ゲートバイポーラトランジスタ、すなわちIGBTが主流となってきている。このIGBTの構造は、MOS(Metal Oxide Semiconductor)トランジスタのドレインの不純物濃度を低くして耐圧を保たせるとともに、ドレイン抵抗を低くするためにドレイン側をダイオードとしたものとみなすことができる構造である。
このようなIGBTにおいてはダイオードがバイポーラ動作をするため、本願においては、IGBTのMOSトランジスタのソース側をエミッタ側と呼び、ドレイン側をコレクタ側と呼ぶ。
電圧駆動素子であるIGBTでは一般に、コレクタとエミッタ間に数百Vの電圧が印加され、その電圧が±数V〜数十Vのゲート電圧によって制御される。また、IGBTはインバータとして用いられることが多く、ゲートがオン状態にある場合にはコレクタ・エミッタ間の電圧は低いが、大電流が流れ、ゲートがオフ状態にある場合には電流は流れないがコレクタ・エミッタ間の電圧は高くなっている。
通常は、上記のようなモードでIGBTの動作が行なわれるため、損失はオン状態での電流・電圧積である定常損失と、オン状態とオフ状態とが切替わる過渡時のスイッチング損失とに分けられる。オフ状態でのリーク電流・電圧積は非常に小さいため無視することができる。
一方、たとえば負荷が短絡した場合など異常な状態にあっても、素子の破壊を防ぐことも重要である。この場合は、コレクタ・エミッタ間に数百Vの電源電圧が印加されたまま、ゲートがオンし、大電流が流れることになる。
MOSトランジスタとダイオードとを直列に接続した構造を持つIGBTでは、MOSトランジスタの飽和電流で最大電流が制限される。このため、上記のような短絡時にも電流制限が働き、一定の時間発熱することによる素子の破壊を防ぐことができる。
従来のIGBTの構造は、たとえば特開2004−247593号公報(特許文献1)に開示されている。特許文献1のIGBTは、ゲート電極と、ソース(エミッタ)電極と、ドレイン(コレクタ)電極と、n型基板とを主に備えている。n型基板の上面にはトレンチが形成されており、ゲート電極はこのトレンチの内部に埋め込まれている。n型基板内の上部にはp型ベース層が形成されており、p型ベース層の内部にはn+型ソース層とp+型ドレイン層とが形成されている。n+型ソース層とp+型ドレイン層とはn型基板の表面において互いに隣接している。そしてゲート電極と、n+型ソース層およびp型ベース層とは、n型基板の内部においてゲート絶縁膜を挟んで対向している。エミッタ電極はn+型ソース層およびp+型ドレイン層と電気的に接触している。n型基板の下面にはp+型ドレイン層が形成されており、コレクタ電極はn型基板の下面側においてp+型ドレイン層に接触している。n型基板の内部におけるp型ベース層とp+型ドレイン層との間には、n-型エピタキシャル層およびn型バッファ層が埋め込まれている。n-型エピタキシャル層はp型ベース層およびn型バッファ層と接触しており、n型バッファ層はp+型ドレイン層と接触している。
また、特許文献1と同様の構造を有するIGBTは、たとえば特開2006−49933号公報(特許文献2)、特開2002−359373号公報(特許文献3)、特開平9−260662号公報(特許文献4)、米国特許第6,815,767号明細書(特許文献5)、米国特許第6,953,968号明細書(特許文献6)、および米国特許第6,781,199号明細書(特許文献7)にも開示されている。
特開2004−247593号公報 特開2006−49933号公報 特開2002−359373号公報 特開平9−260662号公報 米国特許第6,815,767号明細書 米国特許第6,953,968号明細書 米国特許第6,781,199号明細書
パワーデバイスにおいては、1つのパッケージモジュール中に複数のIGBTおよびダイオードのチップを有しており、複数のIGBTは互いに並列に接続されている。パワーデバイスに使用されるIGBTの特性として重要なのが、オン電圧VCE(sat)の温度依存性である。ここでオン電圧VCE(sat)とは、任意の定格電流(密度)JCを得るために必要なコレクタ・エミッタ間の電圧である。オン電圧VCE(sat)の温度依存性が正、つまりIGBTの温度上昇とともにオン電圧VCE(sat)が大きくなることが、互いに並列に接続された複数のIGBTを動作させる(つまり、IGBTを並列的に動作させる)ことに適している。仮にオン電圧VCE(sat)の温度依存性が負であると、IGBTを並列的に動作させる場合に、オン電圧VCE(sat)の低いIGBTに電流が集中する。その結果、パッケージモジュールが誤作動を発生しやすくなり、破壊などの問題が起きやすくなる。
従って、本発明の目的は、並列的な動作に適した半導体装置を得ることである。
本発明の一の局面に従う半導体装置は、半導体基板と素子とを備えている。半導体基板は、互いに対向する第1主面および第2主面を有している。素子は、第1主面側に形成されたゲート電極と、第1主面側に形成された第1電極と、第2主面に接触して形成された第2電極とを有している。素子は、ゲート電極に加えられる電圧によりチャネルに電界を発生させ、かつチャネルの電界によって第1電極と第2電極との間の電流を制御する。半導体基板と第2電極との界面におけるスパイクの密度は0以上3×108個/cm2以下である。
本発明の他の局面に従う半導体装置は、半導体基板と素子とを備えている。半導体基板は、互いに対向する第1主面および第2主面を有している。素子は、第1主面側に形成されたゲート電極と、第1主面側に形成された第1電極と、第2主面に接触して形成された第2電極とを有している。素子は、ゲート電極に加えられる電圧によりチャネルに電界を発生させ、かつチャネルの電界によって第1電極と第2電極との間の電流を制御する。半導体装置は第2主面に形成されたコレクタ領域をさらに備えている。コレクタ領域は、第2電極と接触する第1導電型のコレクタ拡散層と、コレクタ拡散層よりも第1主面側に形成された第2導電型のバッファ拡散層と、第2導電型のドリフト拡散層とを有している。ドリフト拡散層はバッファ拡散層よりも低い不純物濃度を有しており、かつバッファ拡散層と隣接してバッファ拡散層よりも第1主面側に形成されている。ドリフト拡散層を構成する不純物の単位面積あたりの原子数に対する前記バッファ拡散層を構成する不純物の単位面積あたりの原子数の比は0.05以上100以下である。
本発明によれば、並列的な動作に適した半導体装置が得られる。
本発明の実施の形態1における半導体装置の構成を示す概略断面図である。 本発明の実施の形態1における半導体装置の製造方法の第1工程を示す概略断面図である。 本発明の実施の形態1における半導体装置の製造方法の第2工程を示す概略断面図である。 本発明の実施の形態1における半導体装置の製造方法の第3工程を示す概略断面図である。 本発明の実施の形態1における半導体装置の製造方法の第4工程を示す概略断面図である。 本発明の実施の形態1における半導体装置の製造方法の第5工程を示す概略断面図である。 本発明の実施の形態1における半導体装置の製造方法の第6工程を示す概略断面図である。 本発明の実施の形態1における半導体装置の製造方法の第7工程を示す概略断面図である。 本発明の実施の形態1における半導体装置の製造方法の第8工程を示す概略断面図である。 本発明の実施の形態1における半導体装置の製造方法の第9工程を示す概略断面図である。 本発明の実施の形態1における半導体装置の製造方法の第10工程を示す概略断面図である。 スパイクが形成されたp型コレクタ領域とコレクタ電極との界面の状態を模式的に示す断面図である。 スパイクが形成されたp型コレクタ領域とコレクタ電極との界面の状態を模式的に示す平面図である。 本発明の実施の形態1におけるコレクタ・エミッタ間電圧VCE(sat)と電流密度JCとの関係の温度依存性を示す図である。 本発明の実施の形態1におけるスパイク密度とオン電圧の変化量との関係を示す図である。 本発明の実施の形態1におけるデバイスのオペレーション温度とVCE(sat)との関係のスパイク密度依存性を示す図である。 本発明の実施の形態1におけるコレクタ電極の膜厚とスパイク密度との関係を示す図である。 図1のXVIII−XVIII線に沿った濃度分布である。 図1のXIX−XIX線に沿った濃度分布である。 本発明の実施の形態2におけるCP,P/CP,Nと、VCE(sat)およびエネルギロスEOffとの関係を示す図である。 本発明の実施の形態2における1200Vクラスの耐圧を有するIGBTにおけるCP,P/CP,Nと、VCE(sat)およびリーク電流密度JCESとの関係を示す図である。 本発明の実施の形態2におけるVCE(sat)とJCとの関係のCP,P/CP,N依存性を示す図である。 本発明の実施の形態2におけるSN/SN-と、VCE(sat)および降伏電圧BVCESとの関係を示す図である。 本発明の実施の形態2におけるCS,PおよびCP,Pと、VCE(sat)との関係の温度依存性を示す図である。 本発明の実施の形態2におけるデバイスのオペレーション温度とVCE(sat)との関係のCS,PおよびCP,P依存性を示す図である。 本発明の実施の形態2における、5×1015≦CS,P、1×1016≦CP,Pの場合のJC−VCE特性の温度依存性を示す図である。 本発明の実施の形態2における、5×1015>CS,P、1×1016>CP,Pの場合のJC−VCE特性の温度依存性を示す図である。 本発明の実施の形態2におけるDP,NまたはDN-と、VCE(sat)およびBVCESとの関係を示す図である。 図1のXVIII−XVIII線に沿った濃度分布の他の例である。 本発明の実施の形態2におけるSN*/SNとVCE(sat)との関係を示す図である。 本発明の実施の形態2における第2主面からの深さxとVCE(sat)との関係を示す図である。 本発明の実施の形態2におけるτx/τN-とVCE(sat)との関係を示す図である。 本発明の実施の形態2における第2主面からの深さxとキャリアライフタイムとの関係の一例を示す図である。 本発明の実施の形態2におけるレーザアニールの出力および拡散炉の温度と、キャリアライフタイムとの関係を示す図である。 本発明の実施の形態2におけるイオン注入量と、キャリア活性化率、VCE(sat)およびBVCESとの関係を示す図である。 本発明の実施の形態3における半導体基板の第2主面を模式的に示す拡大断面図である。 本発明の実施の形態3における中心線平均粗さRaおよび最大高さRmaxと、破壊強度およびキャリアライフタイムとの関係を示す図である。 本発明の実施の形態3におけるRaおよびRmaxと、JCESおよびVCE(sat)との関係を示す図である。 本発明の実施の形態4における半導体装置のMOSトランジスタ部分の構成を示す断面図である。 本発明の実施の形態4における半導体装置の第1の変形例の構成を示す断面図である。 本発明の実施の形態4における半導体装置の第2の変形例の構成を示す断面図である。 本発明の実施の形態4における半導体装置の第3の変形例の構成を示す断面図である。 本発明の実施の形態5におけるMOSトランジスタ構造の派生構造を示す概略断面図である。 本発明の実施の形態5におけるMOSトランジスタ構造の派生構造を示す概略断面図である。 本発明の実施の形態5におけるMOSトランジスタ構造の派生構造を示す概略断面図である。 本発明の実施の形態5におけるMOSトランジスタ構造の派生構造を示す概略断面図である。 本発明の実施の形態5におけるMOSトランジスタ構造の派生構造を示す概略断面図である。 本発明の実施の形態5におけるMOSトランジスタ構造の派生構造を示す概略断面図である。 本発明の実施の形態5におけるMOSトランジスタ構造の派生構造を示す概略断面図である。 本発明の実施の形態5におけるMOSトランジスタ構造の派生構造を示す概略断面図である。 本発明の実施の形態5におけるMOSトランジスタ構造の派生構造を示す概略断面図である。 本発明の実施の形態5におけるMOSトランジスタ構造の派生構造を示す概略断面図である。 本発明の実施の形態5におけるMOSトランジスタ構造の派生構造を示す概略断面図である。 本発明の実施の形態5におけるMOSトランジスタ構造の派生構造を示す概略断面図である。 本発明の実施の形態5におけるMOSトランジスタ構造の派生構造を示す概略断面図である。 本発明の実施の形態5におけるMOSトランジスタ構造の派生構造を示す概略断面図である。 本発明の実施の形態5におけるMOSトランジスタ構造の派生構造を示す概略断面図である。 本発明の実施の形態5におけるMOSトランジスタ構造の派生構造を示す概略断面図である。 本発明の実施の形態5におけるMOSトランジスタ構造の派生構造を示す概略断面図である。 本発明の実施の形態5におけるMOSトランジスタ構造の派生構造を示す概略断面図である。 本発明の実施の形態5におけるMOSトランジスタ構造の派生構造を示す概略断面図である。 本発明の実施の形態5におけるMOSトランジスタ構造の派生構造を示す概略断面図である。 本発明の実施の形態5におけるMOSトランジスタ構造の派生構造を示す概略断面図である。 本発明の実施の形態5におけるMOSトランジスタ構造の派生構造を示す概略断面図である。 本発明の実施の形態5におけるMOSトランジスタ構造の派生構造を示す概略断面図である。 本発明の実施の形態5におけるMOSトランジスタ構造の派生構造を示す概略断面図である。 本発明の実施の形態5におけるMOSトランジスタ構造の派生構造を示す概略断面図である。 本発明の実施の形態5におけるMOSトランジスタ構造の派生構造を示す概略断面図である。 本発明の実施の形態5におけるMOSトランジスタ構造の派生構造を示す概略断面図である。 本発明の実施の形態5におけるMOSトランジスタ構造の派生構造を示す概略断面図である。 本発明の実施の形態5におけるMOSトランジスタ構造の派生構造を示す概略断面図である。 本発明の実施の形態5におけるMOSトランジスタ構造の派生構造を示す概略断面図である。 本発明の実施の形態5におけるMOSトランジスタ構造の派生構造を示す概略断面図である。 本発明の実施の形態5におけるMOSトランジスタ構造の派生構造を示す概略断面図である。 本発明の実施の形態5におけるMOSトランジスタ構造の派生構造を示す概略断面図である。 本発明の実施の形態5におけるMOSトランジスタ構造の派生構造を示す概略断面図である。 本発明の実施の形態5におけるMOSトランジスタ構造の派生構造を示す概略断面図である。 本発明の実施の形態5におけるMOSトランジスタ構造の派生構造を示す概略断面図である。 本発明の実施の形態6における平面ゲート型IGBTの各種の構成を示す概略断面図である。 本発明の実施の形態6における平面ゲート型IGBTの各種の構成を示す概略断面図である。 本発明の実施の形態6における平面ゲート型IGBTの各種の構成を示す概略断面図である。 本発明の実施の形態6における平面ゲート型IGBTの各種の構成を示す概略断面図である。 本発明の実施の形態6における平面ゲート型IGBTの各種の構成を示す概略断面図である。 図79〜図83に示す構成におけるゲート電極5aの真下のキャリア(n型不純物)の濃度分布を模式的に示す図である。 n型不純物拡散領域を形成した場合と形成しない場合とにおける、VCEとJCとの関係を示す図である。 本発明の実施の形態6におけるSN14a/SN-と、VCE(sat)、JC,BreakおよびVG,Breakとの関係とを示す図である。 本発明の実施の形態7における半導体装置のレイアウトを示す平面図である。 図87のLXXXVIII−LXVIII線に沿った断面図である。 図87のLXXXIX−LXXXIX線に沿った断面図である。 図88のXC−XC線に沿った不純物濃度分布である。 本発明の実施の形態7におけるY/XとBVCESとの関係を示す図である。 本発明の実施の形態7におけるDTとBVCESとの関係、およびDTとEP/CSまたはEP/N-との関係を示す図である。 本発明の実施の形態7におけるDT,PwellとBVCESおよびΔBVCESとの関係を示す図である。 本発明の実施の形態7における平面ゲート型IGBTの各種の構成を示す概略断面図である。 本発明の実施の形態7における平面ゲート型IGBTの各種の構成を示す概略断面図である。 CSおよびXCSとVCEおよびESCとの関係を示す図である。 本発明の実施の形態7における半導体装置におけるn型エミッタ領域3およびp+不純物拡散領域6のレイアウトを示す平面図である 本発明の実施の形態7における半導体装置におけるn型エミッタ領域3およびp+不純物拡散領域6のレイアウトの変形例を示す平面図である 本発明の実施の形態7におけるαとVCE(sat)およびESCとの関係を示す図である。 本発明の実施の形態8におけるゲートパッドのレイアウトを模式的に示す平面図である。 ゲート電圧の発振現象を説明するための図である。 ゲート電圧の発振現象を説明するための図である。 本発明の実施の形態9におけるIGBTの主接合にブレークダウン電圧よりもわずかに低い逆バイアスを印加した時の図1のXIX−XIX線に沿った電界強度分布を模式的に示す図である。 本発明の実施の形態9における接合面の電界強度と降伏電圧との関係を示す図である。
以下、本発明の実施の形態について図面に基づいて説明する。
(実施の形態1)
図1は、本発明の実施の形態1における半導体装置の構成を示す概略断面図である。図1を参照して、本実施の形態の半導体装置は、たとえば600〜6500Vの耐圧を有する半導体装置を想定すると、50〜800μmの厚みt1を有する半導体基板に形成されたトレンチ型IGBTである。半導体基板は互いに対向する第1主面(上面)および第2主面(下面)を有している。n-ドリフト層(ドリフト拡散層)1は、たとえば600〜6500Vの耐圧を有する半導体装置を想定すると、1×1012〜1×1015cm-3の濃度を有している。この半導体基板の第1主面側に、たとえば濃度が約1×1015〜1×1018cm-3で第1主面からの拡散深さが約1.0〜4.0μmのp型半導体よりなるp型ボディ領域2が形成されている。p型ボディ領域2(ボディ拡散層)内の第1主面には、たとえば濃度が1×1018〜1×1020cm-3で、第1主面からの拡散深さが約0.3〜2.0μmのn型半導体よりなるn型エミッタ領域3が形成されている。このn型エミッタ領域3(第2エミッタ拡散層)と隣り合うように第1主面には、p型ボディ領域2への低抵抗コンタクトをとるためのp+不純物拡散領域6(第1エミッタ拡散層)が、たとえば1×1018〜1×1020cm-3程度の濃度で、第1主面からの拡散深さがn型エミッタ領域3の深さ以下で形成されている。
第1主面には、n型エミッタ領域3とp型ボディ領域2とを突き抜けてn-ドリフト層1に達するゲート用溝1aが形成されている。このゲート用溝1aは、第1主面からたとえば3〜10μmの深さを有しており、ゲート用溝1aのピッチは、たとえば2.0μm〜6.0μmである。このゲート用溝1aの内表面には、ゲート絶縁膜4aが形成されている。このゲート絶縁膜4aは、たとえばゲート絶縁膜の特性、信頼性およびデバイス歩留りを向上させる目的で、CVD法により形成されたシリコン酸化膜と熱酸化法により形成されたシリコン酸化膜もしくは窒素がSi/SiO2界面に偏析しているシリコン窒化酸化膜との積層構造を有している。
ゲート用溝1a内を埋め込むように、たとえばリンが高濃度に導入された多結晶シリコンや、W/TiSi2などのメタル材料よりなるゲート電極5aが形成されている。なお、ゲート電極5aの低抵抗化のためにゲート電極5aの表面にシリサイド層(たとえばTiSi2、CoSiなど)が形成されていてもよい。このゲート電極5aの上面には、たとえばシリコン酸化膜よりなる絶縁膜22Aが形成されている。またゲート電極5aは、ゲート電位Gを与える制御電極に電気的に接続されている。なお、ゲート電極5aは第1主面側に形成されていればよい。
このようにゲート用溝1aとゲート絶縁膜4aとゲート電極5aとからゲートトレンチが構成されている。またn-ドリフト層1とn型エミッタ領域3とゲート電極5aとから、n-ドリフト層1をドレインとし、n型エミッタ領域3をソースとし、ゲート絶縁膜4aを挟んでゲート電極5aと対向するp型ボディ領域2の部分をチャネルとする絶縁ゲート型電界効果トランジスタ部(ここでは、MOSトランジスタ)が構成されている。すなわち、このMOSトランジスタは、ゲート電極5aに加えられる電圧によりチャネルに電界を発生させ、かつチャネルの電界によってエミッタ電極11とコレクタ電極12との間の電流を制御する。このMOSトランジスタが第1主面には複数個配置されている。
第1主面上には、たとえばシリケートガラスよりなる絶縁膜9と、CVD法により形成されたシリコン酸化膜よりなる絶縁膜22Bとが形成されており、これらの絶縁膜9、22Bには第1主面に達するコンタクトホール9aが設けられている。コンタクトホール9aの内表面および絶縁膜9、22Bの上面に沿うようにバリアメタル層10が形成されている。このバリアメタル層10と半導体基板との接する部分にはシリサイド層21aが形成されている。このバリアメタル層10およびシリサイド層21aを介して、n型エミッタ領域3およびp+不純物拡散領域6には、エミッタ電位Eを与えるエミッタ電極11(第1電極)が電気的に接続されている。なお、エミッタ電極11は第1主面側に形成されていればよい。
また、半導体基板の第2主面側にはp型コレクタ領域8(コレクタ拡散層)と、n型バッファ領域7(バッファ拡散層)とが形成されている。p型コレクタ領域8にはコレクタ電位Cを与えるコレクタ電極12(第2電極)が電気的に接続されている。コレクタ電極12は半導体基板の第2主面側に形成されており、コレクタ電位Cを与える。このコレクタ電極12の材質は、たとえばアルミニウム化合物である。n型バッファ領域7は、p型コレクタ領域8よりも第1主面側に形成されている。n-ドリフト層1はn型バッファ領域7よりも低い不純物濃度を有しており、かつn型バッファ領域7と隣接してn型バッファ領域7よりも第1主面側に位置している。p型コレクタ領域8と、n型バッファ領域7と、n-ドリフト層1とによりコレクタ領域が構成されている。
特にn型バッファ領域7を設けることにより、n型バッファ領域7がない場合に比べて、主接合リーク特性が減少し、耐圧が上昇する。また、ターンオフ時のICの波形でテール電流が少なくなり、その結果、スイッチングロス(EOFF)が低減する。
また、n型バッファ領域7の拡散深さが浅くなるのは、MOSトランジスタ側の不純物拡散領域が形成された後にn型バッファ領域7を形成するためである。すなわち、MOSトランジスタ側の不純物拡散領域への高温熱処理による悪影響を抑止するために、n型バッファ領域7を形成する際に、低温アニール技術、もしくはレーザアニールのように局所的に高温化するアニーリング技術を用いるためである。
本実施の形態の半導体装置においては、たとえばインバータ接続時には、エミッタ電位を基準に、制御電極のゲート電位Gはオフ状態では−15Vに、オン状態では+15Vに設定されたパルス状の制御信号であり、コレクタ電極12のコレクタ電位Cはゲート電位Gに従って概ね電源電圧と飽和電圧との間の電圧とされる。
次に、本実施の形態の製造方法について説明する。
図2〜図11は、本発明の実施の形態1における半導体装置の製造方法を工程順に示す概略断面図である。まず図2を参照して、n-ドリフト層1を含む半導体基板の第1主面に、たとえばピーク濃度が1×1015〜1×1018cm-3、第1主面からの拡散深さが1.0〜4.0μmのp型ボディ領域2が形成される。次に、第1主面上に、マスク層31が形成される。
図3を参照して、マスク層31がパターニングされる。このパターニングされたマスク層31をマスクとして、たとえばイオン注入などが施されることにより、p型ボディ領域2内の第1主面に表面濃度が1.0×1018〜1.0×1020cm-3、第1主面からの拡散深さが0.3〜2.0μmのn型エミッタ領域3が形成される。この後、マスク層31が除去される。
図4を参照して、第1主面上に、たとえば熱酸化により形成されたシリコン酸化膜32と、CVD法により形成されたシリコン酸化膜33とが順に形成される。このシリコン酸化膜32、33が、通常の写真製版技術およびエッチング技術によりパターニングされる。このパターニングされたシリコン酸化膜32、33をマスクとして半導体基板に異方性エッチングが施される。これにより、n型エミッタ領域3とp型ボディ領域2とを突き抜けてn-ドリフト層1に達するゲート用溝1aが形成される。
図5を参照して、等方性プラズマエッチングおよび犠牲酸化などの処理を行なうことにより、ゲート用溝1aの開口部と底部とが丸くなり、かつゲート用溝1aの側壁の凹凸が平坦化される。また上記の犠牲酸化により、ゲート用溝1aの内表面に犠牲酸化膜32aが熱酸化膜32と一体化するように形成される。このように等方性プラズマエッチングおよび犠牲酸化を施すことにより、ゲート用溝1aの内表面に形成されるゲート絶縁膜の特性を向上させることが可能となる。この後、酸化膜32、32a、33が除去される。
図6を参照して、上記酸化膜の除去により、半導体基板の第1主面およびゲート用溝1aの内表面が露出する。
図7を参照して、ゲート用溝1aの内表面および第1主面に沿うように、たとえばシリコン酸化膜よりなるゲート絶縁膜4aが形成される。ゲート用溝1a内を埋め込むように、たとえばリンが高濃度に導入された多結晶シリコンもしくは不純物の導入されていない多結晶シリコンにリンがイオン注入により導入された材料や、W(タングステン)/TiSi2(チタンシリサイド)などのメタル材料からなる導電層5が表面全面に形成される。
なおゲート絶縁膜4aとしては、ゲート絶縁膜としての特性、信頼性およびデバイス歩留まりを向上させる目的で、CVD法により形成したシリコン酸化膜と熱酸化により形成したシリコン酸化膜もしくは窒素がシリコンと酸化シリコンとの界面に偏析した窒化酸化膜とからなる積層構造が用いられることが好ましい。
この後、通常の写真製版技術およびエッチング技術により、導電層5がパターニングされる。
図8を参照して、このパターニングにより、導電層がゲート用溝1a内に残存されてゲート電極5aが形成される。ここで、ゲート電極5aの低抵抗化のためにゲート電極5aの表面にシリサイド層(たとえばTiSi2、COSiなど)が形成されてもよい。この後、ゲート電極5aの上面が酸化されることにより、たとえばシリコン酸化膜よりなる絶縁膜22Aが形成される。この後、たとえば第1主面における表面濃度が1.0×1018〜1.0×1020cm-3、第1主面からの拡散深さがn型エミッタ領域3よりも浅いp+不純物拡散領域6が形成される。
図9を参照して、第1主面上にたとえばシリケートガラスよりなる絶縁膜9と、CVD法により形成したシリコン酸化膜よりなる絶縁膜22Bとが順に形成される。この絶縁膜9、22Bに、通常の写真製版技術およびエッチング技術によりコンタクトホール9aが形成される。
図10を参照して、たとえば金属層よりなるバリアメタル層10がスパッタリング法により形成される。この後、ランプアニールが施されてバリアメタル層10と半導体基板との接触部にシリサイド層21aが形成される。この後、エミッタ電極11が形成される。
図11を参照して、半導体基板の第2主面側のn-ドリフト層1が研磨される。この研磨により、半導体基板の厚みt1は、MOSトランジスタの必要な耐圧に応じて調整される。たとえば600V〜6500Vの耐圧を有するIGBTを製造するには、n-ドリフト層1の厚みt3(図1)は50〜800μmとなる。研磨後は、研磨された面の結晶性を回復するために、半導体基板の第2主面のエッチングなどが行なわれる。
その後、半導体基板の第2主面にたとえばイオン注入法によりn型不純物およびp型不純物を注入した後に、不純物を拡散させる。もしくは、n型不純物およびp型不純物を注入した直後に、それぞれの不純物の注入深さに応じた熱処理を行なう。その結果、n型バッファ領域7およびp型コレクタ領域8が形成される。さらにコレクタ電極12が形成されて図1に示す半導体装置が完成する。コレクタ電極12は、たとえばアルミニウムその他の、p型コレクタ領域8とのオーミック接触性が得られるメタル材料からなる。
なお、本実施の形態においては、図11に示すようにエミッタ電極11を形成した後にn-ドリフト層1の第2主面を研磨し、n型バッファ領域7およびp型コレクタ領域8を形成してもよい。また、図2に示すようにp型ボディ領域2を形成する前に第2主面を研磨してもよい。また、図9に示すようにコンタクトホール9aの開口後もしくは開口前に第2主面を研磨し、n型バッファ領域7およびp型コレクタ領域8を形成してもよい。
本実施の形態において、半導体基板とコレクタ電極12との界面におけるスパイク密度(p型コレクタ領域8を形成する半導体材料とコレクタ電極12中のp型コレクタ領域8側のメタル材料との反応により形成される合金からなるスパイクの密度)は0以上3×108個/cm2以下である。
図12および図13は、スパイクが形成されたp型コレクタ領域とコレクタ電極との界面の状態を模式的に示す図である。図12は断面図、図13は平面図である。図12および図13を参照して、p型コレクタ領域8とコレクタ電極12との界面には、通常、複数のスパイクが形成されている。スパイクとは、コレクタ電極12を構成する材料とp型コレクタ領域8を構成する材料との合金よりなる、たとえば四角錐や八角錐の形状を有する突起(または凹部)である。ここで、コレクタ電極12が多層膜で形成されている場合には、スパイクは、p型コレクタ領域8に直接接触する層12aを構成する材料とp型コレクタ領域8を構成する材料との合金より形成される。
スパイク密度は、たとえば以下の方法によって測定される。始めに、薬液を用いてコレクタ電極12を溶解し、半導体基板から除去する。そして、露出された半導体基板の第2主面を顕微鏡で観察し、第2主面に存在する四角錐や八角錐などの凹部の個数を数える。その結果、得られた個数を観察した面積で割った値をスパイク密度と定義する。
スパイク密度が大きくなると、低温(298K以下)でのp型コレクタ領域8の不純物のイオン化率が低下し、p型コレクタ領域8からn型バッファ領域7へのキャリア(ホール)の実効的な注入効率が低下する。このため、IGBTのJc−VCE特性はスパイク密度に依存する。
スパイク密度を0以上3×108個/cm2以下とすることによって、以下の効果を得ることができる。図14は、本発明の実施の形態1におけるコレクタ・エミッタ間電圧と電流密度との関係の温度依存性を示す図である。図14を参照して、VCE(sat)は、任意の定格電流密度に対応するエミッタ・コレクタ間電圧である。298Kおよび398Kの温度では、スパイク密度が3×108個/cm2以上の場合であっても3×108個/cm2以下の場合であってもほぼ同じ曲線となっている。一方、233Kの温度では、スパイク密度が3×108個/cm2以下の場合のエミッタ・コレクタ間電圧が著しく増加している。
図15は、本発明の実施の形態1におけるスパイク密度とオン電圧の変化量との関係を示す図である。図15は、p型コレクタ領域8およびn型バッファ領域7の条件(濃度、深さ)を一定にした場合の結果である。また、図15におけるオン電圧の変化量ΔVonは、298Kにおけるコレクタ・エミッタ間電圧VCE(sat)(298K)から233Kにおけるコレクタ・エミッタ間電圧VCE(sat)(233K)を引いた値である。図15を参照して、スパイク密度Dspikeが3×108個/cm2以下の場合には、298Kにおけるコレクタ・エミッタ間電圧VCE(sat)は、233Kにおけるコレクタ・エミッタ間電圧VCE(sat)以上の値である。一方、スパイク密度Dspikeが3×108個/cm2を超える場合には、298Kにおけるコレクタ・エミッタ間電圧VCE(sat)は、233Kにおけるコレクタ・エミッタ間電圧VCE(sat)未満の値となる。
図16は、本発明の実施の形態1におけるデバイスのオペレーション温度とコレクタ・エミッタ間電圧との関係のスパイク密度依存性を示す図である。図16を参照して、スパイク密度Dspikeが3×108個/cm2以下の場合には、電圧VCE(sat)の温度依存性が正であるのに対して、スパイク密度Dspikeが3×108個/cm2以上の場合には、298K未満の領域で電圧VCE(sat)の温度依存性が負である。
以上より、本実施の形態のように半導体基板とコレクタ電極12との界面におけるスパイク密度を0以上3×108個/cm2以下とすることにより、コレクタ・エミッタ間電圧VCEの温度依存性を正にすることができる。その結果、IGBTを並列的に動作させる場合に、電圧VCEの低いIGBTへの電流の集中がなくなり、並列的な動作に適した半導体装置を得ることができる。
スパイク密度は、たとえばコレクタ電極の材質、熱処理条件、またはコレクタ電極の膜厚によって制御することができる。コレクタ電極の材質としては、Al、AlSi、Ti、および金属を含むシリサイドが適している。金属を含むシリサイドとしては、Tiを含むシリサイド、Niを含むシリサイド、またはCoを含むシリサイドが挙げられる。また、コレクタ電極の材質としては、たとえばAlやAlSiなどの、接触する半導体層(図1ではp型コレクタ領域8)との間でオーミック抵抗性を示す材料が好ましい。半導体基板の材質としては、Si、SiC、GaN、またはGeが適している。特にコレクタ電極としてシリサイドを使用した場合には、半導体基板とコレクタ電極との界面にスパイクが存在しなくなる。シリサイドよりなるコレクタ電極は、Si、SiC、GaN、またはGeなどよりなる半導体基板の第2主面にTi、Co、またはNiなどよりなる金属を形成し、熱処理を施すことにより形成される。
また、コレクタ電極の膜厚は200nm以上であることが好ましい。図17は、本発明の実施の形態1におけるコレクタ電極の膜厚とスパイク密度との関係を示す図である。図17を参照して、コレクタ電極の膜厚が200nm以上である場合には、スパイク密度が3×108個/cm2以下となっている。一方、製造限界の観点から、コレクタ電極の膜厚は10000nm以下であることが好ましい。
上記のような、コレクタ電極の材質、熱処理条件、またはコレクタ電極の膜厚を適宜組み合わせることにより、スパイク密度を0以上3×108個/cm2以下とすることができる。
なお、本実施の形態においては図1に示す構成を有するIGBTである場合について示した。しかし、本発明の半導体装置は、図1の構成のものに限定されず、互いに対向する第1主面および第2主面を有する半導体基板と、素子とを備えるものであればよい。この素子は、第1主面側に形成されたゲート電極と、第1主面側に形成された第1電極と、前記第2主面に接触して形成された第2電極とを有している。この素子は、ゲート電極に加えられる電圧によりチャネルに電界を発生させ、かつチャネルの電界によって第1電極と前記第2電極との間の電流を制御する。さらに、ダイオードのようなデバイス構造でもよい。
(実施の形態2)
図18は、図1のXVIII−XVIII線に沿った濃度分布である。図19は、図1のXIX−XIX線に沿った濃度分布である。なお、図18には、従来におけるp型不純物またはn型不純物の濃度分布もあわせて示されている。
図18および図19を参照して、濃度CS,Pは、コレクタ電極12とp型コレクタ領域8との界面(半導体基板の第2主面)におけるp型コレクタ領域8の不純物濃度であり、濃度CP,Pは、p型コレクタ領域8の不純物濃度の最大値である。濃度CP,Nは、n型バッファ領域7の不純物濃度の最大値である。濃度Csubは、n-ドリフト層1の不純物濃度である。深さDpは、p型コレクタ領域8とn型バッファ領域7との接合面までの第2主面からの深さである。深さDP,Nは、n型バッファ領域7における濃度CP,Nとなる位置までの第2主面からの深さである。深さDN-は、n型バッファ領域7とn-ドリフト層1との接合面までの第2主面からの深さである。なお、後述の図29で示すようにn型中間層7aが形成されている場合には、深さDNは、n型バッファ領域7とn型中間層7aとの接合面の第2主面からの深さである。τPはp型コレクタ領域8のキャリアライフタイムであり、τNはn型バッファ領域7のキャリアライフタイムであり、τN-はn-ドリフト層1のキャリアライフタイムである。τXは第2主面からxの深さにある位置のキャリアライフタイムである。SNはn型バッファ領域7を構成する不純物の単位面積あたりの原子数(atom/cm2)であり、SN-はn-ドリフト層1を構成する不純物の単位面積あたりの原子数(atom/cm2)である。所望の領域における不純物の単位面積あたりの原子数は、その領域における不純物濃度プロファイルを深さ方向全体にわたって積分することによって求められる。
本願発明者は、p型コレクタ領域8とn型バッファ領域7とn-ドリフト層1との関係を以下の条件とすることによって、IGBTの異常動作を抑止できることを見出した。ここで、IGBTの異常動作を抑止するとは、以下のことを意味している。
a.298K以下の温度でJc−VCE特性にスナップバック(snap back)特性が発生しないこと。
b.298K以下の低温でもIGBTがオンすること。
c.所望の耐圧を有する、または398K以上においてIGBTが熱暴走しないこと。
図20は、本発明の実施の形態2におけるCP,P/CP,Nと、VCE(sat)およびターンオフ時のエネルギロスEOffとの関係を示す図である。EOffとは、スイッチングデバイスがターンオフする際のエネルギロスである。Vsnap-backとは、スナップバック特性が生じた場合の図22中に示すポイントAでのコレクタ・エミッタ間電圧である。図21は、本発明の実施の形態2におけるIGBTにおけるCP,P/CP,Nと、VCE(sat)およびリーク電流密度JCESとの関係を示す図である。リーク電流密度JCESとは、ゲート・エミッタ間をショートした状態でのコレクタ・エミッタ間のリーク電流密度である。図20および図21を参照して、n型バッファ領域7の不純物濃度の最大値に対するp型コレクタ領域8の不純物濃度の最大値の比CP,P/CP,NがCP,P/CP,N<1の場合には、スナップバック特性が発生し、それに伴なうスナップバック電圧Vsnap-backが発生する。その結果、図22に示すように、CP,P/CP,N<1の場合には、任意の電流密度に対するVCE(sat)が増加する。また、CP,P/CP,N>1×103の場合には、JCESが増加し、IGBTの熱暴走が発生する。以上より、IGBTの異常動作を抑止するためには、1≦CP,P/CP,N≦1×103であることが好ましい。
図23は、本発明の実施の形態2におけるSN/SN-と、VCE(sat)および降伏電圧BVCESとの関係を示す図である。降伏電圧BVCESとは、コレクタ・エミッタ間をショートさせた状態でのコレクタ・エミッタ間の降伏電圧である。図23を参照して、n-ドリフト層1を構成する不純物の単位面積あたりの原子数(atom/cm2)に対するn型バッファ領域7を構成する不純物の単位面積あたりの原子数(atom/cm2)の比SN/SN-が0.05≦SN/SN-の場合には、高い降伏電圧BVCESが得られている。また、SN/SN-がSN/SN-≦100の場合には、スナップバック特性が抑制されており、かつエミッタ・コレクタ間電圧VCE(sat)も低く抑えられている。以上より、IGBTの異常動作を抑止し、並列動作を可能とするためには、0.05≦SN/SN-≦100であることが好ましい。
図24は、本発明の実施の形態2におけるCS,PおよびCP,Pと、VCE(sat)との関係の温度依存性を示す図である。図24を参照して、233K、298K、および398Kいずれの温度の場合でも、5×1015≦CS,P、1×1016≦CP,Pとすることで、エミッタ・コレクタ間電圧VCE(sat)が大きく低下している。また、製造限界を考慮すると、CS,P≦1.0×1022cm-3、CP,P≦1.0×1022cm-3であることが好ましい。
図25は、本発明の実施の形態2におけるデバイスのオペレーション温度とVCE(sat)との関係のCS,PおよびCP,P依存性を示す図である。図26および図27は、本発明の実施の形態2におけるJC−VCE特性の温度依存性を示す図である。図24〜図27を参照して、5×1015≦CS,P、1×1016≦CP,Pの場合にはVCE(sat)の温度依存性が正になることが分かる。
以上より、IGBTの異常動作を抑止するためには、5×1015≦CS,P、1×1016≦CP,Pであることが好ましい。
図28は、本発明の実施の形態2におけるDP,NまたはDN-と、VCE(sat)およびBVCESとの関係を示す図である。図28を参照して、n型バッファ領域7における濃度CP,Nとなる位置までの第2主面からの深さDP,Nが0.4μm≦DP,Nの場合、またはn型バッファ領域7とn-ドリフト層1との接合面の第2主面からの深さDN-が0.4μm≦DN-の場合には、高い降伏電圧BVCESおよび低いエミッタ・コレクタ間電圧VCE(sat)が得られている。一方、DP,N>50μmの場合またはDN->50μmの場合には、スナップバック特性が発生している。
以上より、IGBTの異常動作を抑止するためには、0.4μm≦DP,N≦50μm、0.4μm≦DN-≦50μmであることが好ましい。
図29は、図1のXVIII−XVIII線に沿った濃度分布の他の例である。図29を参照して、コレクタ領域はn型中間層7aをさらに有していてもよい。n型中間層7aの不純物濃度の最大値CP,N*は、n型バッファ領域7の不純物濃度の最大値CP,Nよりも低く、n-ドリフト層1の不純物濃度Csubよりも高い。またn型中間層7aは、n型バッファ領域7およびn-ドリフト層1の両方に接触している。深さDNは、n型バッファ領域7とn型中間層7aとの接合面の第2主面からの深さである。深さDN*は、n型中間層7aとn-ドリフト層1との接合面の第2主面からの深さである。SN*はn型中間層7aを構成する不純物の単位面積あたりの原子数(atom/cm2)である。n型中間層7aは、n型バッファ領域7の一部へ不純物イオンを注入することによって形成されてもよい。また、プロトンの照射などの方法で、ライフタイムキラーとなる結晶欠陥を生成するイオンをn型バッファ領域7の一部へ注入することによって形成されてもよい。
図30は、本発明の実施の形態2におけるSN*/SNとVCE(sat)との関係を示す図である。図30を参照して、n型バッファ領域7を構成する不純物の単位面積あたりの原子数(atom/cm2)に対するn型中間層7aを構成する不純物の単位面積あたりの原子数(atom/cm2)の比SN*/SNが0.5<SN*/SNの場合に、スナップバック特性が発生している。
以上より、IGBTの異常動作を抑止するためには、0<SN*/SN≦0.5であることが好ましい。
図31は、本発明の実施の形態2における第2主面からの深さxとVCE(sat)との関係を示す図である。図32は、本発明の実施の形態2におけるτx/τN-とVCE(sat)との関係を示す図である。図33は、本発明の実施の形態2における第2主面からの深さxとキャリアライフタイムとの関係の一例を示す図である。特に図33を参照して、第2主面近傍の半導体基板内には、p型コレクタ領域8およびn型バッファ領域7を形成するためのイオン注入の際に欠陥が導入される。n型バッファ領域7を形成する際にはp型コレクタ領域8を形成する際よりも深く不純物を注入する必要があるため、n型バッファ領域7はp型コレクタ領域8よりも高温でアニールする必要がある。その結果、n型バッファ領域7にアニールによる熱ストレスが発生し、n型バッファ領域7のキャリアライフタイムτNはp型コレクタ領域8のキャリアライフタイムτPよりも低くなる。また、n型バッファ領域7およびp型コレクタ領域8のキャリアライフタイムは、n-ドリフト層1のキャリアライフタイムτN-よりも低くなる。
そこで、特に第2主面からの深さxが0.50μm≦x≦60.0μmである領域において、n-ドリフト層1のキャリアライフタイムτN-に対する第2主面から深さxの位置のキャリアライフタイムτxの比τx/τN-を、1×10-6≦τx/τN-≦1とすることにより、特に図31および図32に示すように、コレクタ・エミッタ間電圧VCE(sat)が著しく低減される。
ここで、キャリアライフタイムが低下する原因は、p型コレクタ領域8およびn型バッファ領域7を形成する際のイオン注入の際に、p型コレクタ領域8およびn型バッファ領域7に欠陥が導入されることにある。キャリアライフタイムを向上するためには、欠陥が導入された部分をアニールする方法が有効である。次に、アニール技術とキャリアライフタイムとの関係を示す。
図34は、本発明の実施の形態2におけるレーザアニールの出力および拡散炉の温度と、キャリアライフタイムとの関係を示す図である。図34を参照して、拡散炉でアニールを行なう場合には、拡散炉の温度を高くしすぎるとキャリアライフタイムが低下する。また、レーザアニール技術において高出力エネルギでレーザアニールを行なう場合には、キャリアライフタイムの低下が起きる。また、レーザは半導体基板の内部で減衰する性質を有しているので、半導体基板の第2主面からp型コレクタ領域8とn型バッファ領域7との接合面までの深さが深すぎると、レーザアニールの出力を高くする必要があり、レーザアニールによってキャリアライフタイムを向上することが難しくなる。このことを考慮して、半導体基板の第2主面からp型コレクタ領域8とn型バッファ領域7との接合面までの深さは0より大きく1.0μm以下であることが好ましい。
図35は、本発明の実施の形態2におけるイオン注入量と、キャリア活性化率、VCE(sat)およびBVCESとの関係を示す図である。図35を参照して、n型バッファ領域7およびp型コレクタ領域8の各々の活性化率は、n型バッファ領域7およびp型コレクタ領域8のイオン注入量、またはイオンの種類などに依存する。図35では、p型コレクタ領域8における活性化率とn型バッファ領域7における活性化率とが互いに異なっており、p型コレクタ領域8における活性化率はn型バッファ領域7における活性化率よりも低くなっている。これにより、IGBTが正常に動作し、降伏電圧BVCESを高くすることができる。特に、p型コレクタ領域8における活性化率が0より大きく90%以下である場合に、コレクタ・エミッタ間電圧VCE(sat)が大きく低減されている。
なお、活性化率は、以下の式(1)にて算出される。
活性化率:{(SR(spreading-resistance)測定などの方法で算出される抵抗値より得られる不純物濃度(cm-3))/(SIMS(Secondary Ionization Mass Spectrometer)を用いて測定される不純物濃度(cm-3))}×100 ・・・(1)
上記コレクタ構造を用いることで、正常なIGBTの動作を保障することができ、高い耐圧を保持することができ、IGBTの熱暴走を抑制することができる。また、デバイス特性を改善する際にN-ドリフト層を薄厚化した上で、VCE(sat)−EOFFのトレードオフ特性の自由度(制御性)を得ることができる。
(実施の形態3)
IGBTの重要なデバイス特性であるVCE(sat)−Eoff特性を改善するためには、n-ドリフト層1の薄膜化を行なうことが有効である。しかし、図11に示すように半導体基板の第2主面を研磨する場合には、研磨面の表面粗さが、IGBTの種々の特性に影響を与えることを本願発明者は見出した。
図36は、本発明の実施の形態3における半導体基板の第2主面を模式的に示す拡大断面図である。図36を参照して、本実施の形態において規定される中心線平均粗さとは、JIS(Japanese Industrial Standard)に規定される中心線平均粗さRaであり、平均線からの絶対値偏差の平均値である。また、最大高さとは、JISに規定される最大高さRmaxであり、基準長さにおける最低の谷底から(高さHmin)と最大の山頂(高さHmax)までの高さ(Rmax=Hmax−Hmin)である。
図37は、本発明の実施の形態3における中心線平均粗さおよび最大高さと、破壊強度およびキャリアライフタイムとの関係を示す図である。図37を参照して、0<Ra≦200nm、0<Rmax≦2000nmの場合には、高い破壊強度およびキャリアライフタイムを得ることができる。また、図38は、本発明の実施の形態3における中心線平均粗さおよび最大高さと、JCESおよびVCE(sat)との関係を示す図である。図38を参照して、0<Ra≦200nm、0<Rmax≦2000nmの場合には、低いコレクタ・エミッタ間電圧VCE(sat)および低いリーク電流密度JCESを得ることができる。
以上により、0<Ra≦200nmまたは0<Rmax≦2000nmとすることによって、IGBTの種々の特性を向上することができる。
(実施の形態4)
本実施の形態においては、実施の形態1〜3の構成により得られる効果と同様の効果の得られるMOSトランジスタの構成を示す。
図39は、本発明の実施の形態4における半導体装置のMOSトランジスタ部分の構成を示す断面図である。図39を参照して、本実施の形態のMOSトランジスタ部分の構造Dにおいては、n-ドリフト層1がp型ボディ領域2とpn接合を構成する領域付近に比較的高濃度のn型不純物拡散領域14(埋込拡散層)が設けられている点において、図1に示す構造Cと異なっている。n型不純物拡散領域14は、p型ボディ領域2とn-ドリフト層1との間に形成されている。なお、図示しないが、図39の構造Dの下部には、図1の構造Aが形成されている。
なお、これ以外の構成については、図1に示す構造Cの構成とほぼ同じであるため、同一の部材については同一の符号を付し、その説明を省略する。
n型不純物拡散領域14を設けた構成は、図39の構成に限定されず、たとえば図40および図41に示す構成であってもよい。つまり、エミッタトレンチが設けられた構成にn型不純物拡散領域14が設けられてもよい。
図40は、本発明の実施の形態4における半導体装置の変形例の構成を示す断面図である。図40を参照して、この構造Eにおいては、2つのMOSトランジスタに挟まれる領域にエミッタトレンチが設けられている。エミッタトレンチは、エミッタ用溝1bと、エミッタ用絶縁膜4bと、エミッタ用導電層5bとから構成されている。エミッタ用溝1bは、p型ボディ領域2およびn型不純物拡散領域14を突き抜けてn-ドリフト層1に達している。エミッタ用絶縁膜4bは、このエミッタ用溝1bの内表面に沿うように形成されている。エミッタ用導電層5bは、エミッタ用溝1b内を埋め込むように形成されており、その上層のエミッタ電極11と電気的に接続されている。エミッタトレンチは何本形成されてもよく、複数の溝のうち少なくとも1つの溝にゲートトレンチが形成されればよい。
エミッタ電極11の下層にはバリアメタル層10が形成されており、このバリアメタル層10とエミッタ用導電層5bとの間にはシリサイド層21bが形成されている。
2つのエミッタトレンチに挟まれる第1主面にはp型ボディ領域2への低抵抗コンタクトを取るためのp+不純物拡散領域6が形成されており、その上にはシリサイド層21aが形成されている。
このような構成において、n-ドリフト層1がp型ボディ領域2とpn接合を構成する領域付近に比較的高濃度のn型不純物拡散領域14が設けられている。
なお、これ以外の構成については、図39に示す構造Dの構成とほぼ同じであるため、同一の部材については同一の符号を付し、その説明を省略する。
また図41に示す構造Fは、図40に示す構造Eと比較して、エミッタトレンチの側壁であって、第1主面にn型不純物拡散領域3を追加した点において異なる。
なおこれ以外の構成については図39に示す構造Eの構成とほぼ同じであるため、同一の部材については同一の符号を付しその説明を省略する。
図40および図41においては、エミッタ用溝1b内を埋め込むエミッタ用導電層5bがエミッタ電位となる場合について説明したが、このエミッタ用導電層5bはフローティング電位を有していてもよい。その構成を以下に説明する。
図42を参照して、エミッタ用溝1b内を埋め込むエミッタ用導電層5bがエミッタ電極11と電気的に分離されており、フローティングな電位を有している。この場合、エミッタ用溝1b内を埋め込むエミッタ用導電層5b上にはたとえばシリコン酸化膜よりなる絶縁膜22Aと、たとえばシリケートガラスよりなる絶縁膜9と、たとえばシリコン酸化膜よりなる絶縁膜22Bとが形成されている。
なおこれ以外の構成については、図40に示す構造Eの構成とほぼ同じであるため、同一の部材については同一の符号を付し、その説明を省略する。
本実施の形態で設けられるn型不純物拡散領域14は、p型ボディ領域2が形成される前にイオン注入および拡散により形成される。この後、p型ボディ領域2が形成され、さらに実施の形態1と同様の後工程を経ることにより本実施の形態の各種の半導体装置(図39〜図42)が製造される。
また、MOSトランジスタ構造E(図40)、F(図41)、G(図42)の各々は、エミッタ電位もしくはフローティング電位のトレンチを有することにより、MOSトランジスタ構造C(図1)、D(図39)よりも実効的なゲート幅が少なくなっている。その結果、構造E、F、Gは、構造C、Dよりも流れる電流が少なく飽和電流を抑制する効果を有する。
さらに構造E、F、Gは、構造Dよりも低電圧/低電流密度のところでON電圧が大きくなる。またMOSトランジスタ構造DにおいてON電圧が低下するのは、コレクタ構造Aでn-ドリフト層1が厚くても、USP6,040,599に記載されたn型不純物拡散領域14によるキャリア蓄積効果があるからである。MOSトランジスタ構造Dでは、従来構造よりn-ドリフト層1が厚くても、ON電圧を低下させる効果がある。
MOSトランジスタ構造E、F、Gでは、飽和電流が低くなる効果により、デバイスが無負荷状態でスイッチングしたときに、従来構造やMOSトランジスタ構造C、Dよりも長い時間任意の電流を保持することができる。つまり、MOSトランジスタ構造E、F、Gでは、デバイスの飽和電流を抑え、かつ破壊耐量を向上させる効果がある。
さらに、ON電圧を下げる効果があるMOSトランジスタ構造Dでは、無負荷状態でのスイッチング時に発振現象が発生する。しかし、MOSトランジスタ構造E、F、Gでは、n型不純物拡散領域14が存在してもエミッタ電位もしくはフローティング電位になるエミッタ用導電層5bが存在することにより発振現象を防止する効果がある。
(実施の形態5)
図43〜図78は、実施の形態4と同じ効果が得られるMOSトランジスタ構造の各種の派生構造を示す概略断面図である。図43〜図78に示すどの構造でも、実施の形態4に示すMOSトランジスタ構造による効果を得ることができる。
以下に、図43〜図78に示す各MOSトランジスタ構造について説明する。
図43に示す構成は、2つのMOSトランジスタ部に挟まれる領域にエミッタ電位となる1つのエミッタトレンチが設けられている点およびゲート用溝1aの一方側面にのみn型エミッタ領域3が形成されている点において図40に示す構造Eの構成と異なる。
図44に示す構成は、複数のエミッタ用溝1b内が、一体化された単一の層よりなるエミッタ用導電層5bによって埋め込まれている。またエミッタ用導電層5bは、シリサイド層21bを介して、バリアメタル層10とエミッタ電極11とに電気的に接続されている。このシリサイド層21bは各エミッタ用溝1b間を繋ぐブリッジ上に形成されている。またシリサイド層21bが形成された領域以外のエミッタ用導電層5b上には、絶縁膜22A、9、22Bが形成されている。
これ以外の構成については、上述した図40に示す構造Eの構成とほぼ同じであるため、同一の部材については同一の符号を付し、その説明を省略する。
図45に示す構成は、エミッタ用溝1bの両側壁であって第1主面にn型不純物拡散領域3が追加されている点において図44に示す構成と異なる。
図46に示す構成は、エミッタ用溝1b内を埋め込むエミッタ用導電層5bがフローティング電位となっている点において図44の構成と異なる。この場合、エミッタ用導電層5bの全面上に絶縁膜22A、9、22Bが形成されており、エミッタ用導電層5bはエミッタ電極11と電気的に絶縁されている。
図47に示す構成は、エミッタ用溝1bの両側壁であって第1主面にn型不純物拡散領域3が追加されている点において図43に示す構成と異なる。
図48に示す構成は、エミッタ用導電層5bの上面がエミッタ用溝1bよりも上方に突出している点において図43に示す構成と異なる。この場合、エミッタ用導電層5bは、その一部表面上に形成されたシリサイド層21bを介して、バリアメタル層10およびエミッタ電極11と電気的に接続されている。またシリサイド層21bが形成された領域以外のエミッタ用導電層5b上には、絶縁膜22A、9、22Bが形成されている。
図49に示す構成は、エミッタ用溝1bの両側面であって第1主面にn型不純物拡散領域3が追加されている点において図48に示す構成と異なる。
図50に示す構成は、p型ボディ領域2がゲート用溝1aの側壁付近にのみ形成されている点において図40に示す構造Eの構成と異なる。
図51に示す構成は、p型ボディ領域2がゲート用溝1aの側壁付近にのみ形成されている点において図41に示す構造Fの構成と異なる。
図52に示す構成は、エミッタ用溝1b内を埋め込むエミッタ用導電層5bがフローティング電位となっている点において図50に示す構成と異なる。この場合、エミッタ用導電層5b上には、絶縁膜22A、9、22Bが形成されている。
図53に示す構成は、2つのゲートトレンチに挟まれる領域にのみp型ボディ領域2が形成されている点において図43に示す構成と異なる。
図54に示す構成は、p型ボディ領域2がゲート用溝1aの側壁付近にのみ形成されている点において図44に示す構成と異なる。
図55に示す構成は、p型ボディ領域2がゲート用溝1aの側壁付近にのみ形成されている点において図45に示す構成と異なる。
図56に示す構成は、p型ボディ領域2がゲート用溝1aの側壁付近にのみ形成されている点において図46に示す構成と異なる。
図57に示す構成は、エミッタ用溝1bの両側壁であって第1主面にn型不純物拡散領域3が追加されている点において図53に示す構成と異なる。
図58に示す構成は、2つのゲートトレンチに挟まれる領域にのみp型ボディ領域2が形成されている点において図48に示す構成と異なる。
図59に示す構成は、2つのゲートトレンチに挟まれる領域にのみp型ボディ領域2が形成されている点において図49に示す構成と異なる。
図60に示す構成は、図40に示す構造Eにおいてエミッタトレンチが存在した領域にトレンチを形成せずに、上記のMOSトランジスタ構造E〜Gとゲート幅(W)が同じになるようにゲートトレンチを形成した構成、つまりゲートトレンチの間をエミッタ電位となるように任意の寸法まで広げた構成である。
この場合、2つのゲートトレンチに挟まれる第1主面にはp型ボディ領域との低抵抗コンタクトを取るためのp+不純物拡散領域6が延在している。このp+不純物拡散領域6およびn型エミッタ領域3と接するようにシリサイド層21aが形成されている。p+不純物拡散領域6およびn型エミッタ領域3は、このシリサイド層21aとバリアメタル層10とを介してエミッタ電極11に電気的に接続されている。
なお、これ以外の構成については、上述した図40の構成とほぼ同じであるため、同一の部材については同一の符号を付し、その説明を省略する。
図61に示す構成は、図43においてエミッタトレンチが存在した領域にトレンチを形成せずに、上記のMOSトランジスタ構造E〜Gとゲート幅が同じになるようにゲートトレンチを形成した構成、つまりゲートトレンチの間をエミッタ電位となるように任意の寸法まで広げた構成である。
この構成においてもゲートトレンチに挟まれる第1主面にp型ボディ領域への低抵抗コンタクトを取るためにp+不純物拡散領域6が延在している。このp+不純物拡散領域6およびn型エミッタ領域3と接するようにシリサイド層21aが形成されている。p+不純物拡散領域6およびn型エミッタ領域3は、このシリサイド層21aとバリアメタル層10とを介してエミッタ電極11に電気的に接続されている。
なお、これ以外の構成については、上述した図43の構成とほぼ同じであるため、同一の部材については同一の符号を付し、その説明を省略する。
図62は、p型ボディ領域2がゲート用溝1aの側壁付近にのみ形成されている点において図60に示す構成と異なる。
図63に示す構成は、2つのゲートトレンチに挟まれる領域にのみp型ボディ領域2が形成されている点において図61に示す構成と異なる。
上記においては、ゲート電極5aの上面がゲート用溝1a内に位置する場合について説明したが、ゲート用溝1a上に突出していてもよい。ゲート電極5aの上面がゲート用溝1aの上面に突出した構成を図64〜図74に示す。
図64は図40に示す構造Eの構成、図65は図41に示す構成、図66は図42に示す構成、図67は図43に示す構成、図68は図44に示す構成、図69は図45に示す構成、図70は図46に示す構成、図71は図47に示す構成、図72は図48に示す構成、図73は図49に示す構成、図74は図50に示す構成において、ゲート電極5aの上面がゲート用溝1a上に突出した構成に対応している。なお、図66に示す構成は、エミッタ用溝1b内を埋め込むエミッタ用導電層5bの上面もエミッタ用溝1b上に突出している。
なお、上記においてはトレンチ型ゲート構造について説明したが、平面ゲート型のIGBTにおいても実施の形態1〜4の構成を適用することができる。図75〜図78は平面ゲート型IGBTの構成を示す概略断面図である。
図75を参照して、平面ゲート型IGBTは、たとえば厚さが約50μm以上250μmの半導体基板に形成されている。たとえば濃度が1×1014cm-3のn-ドリフト層1の第1主面側には、p型半導体よりなるp型ボディ領域2が選択的に形成されている。p型ボディ領域2は、たとえば1×1015〜1×1018cm-3の濃度を有し、第1主面から約1.0〜4.0μmの拡散深さを有している。p型ボディ領域2内の第1主面には、たとえば濃度が1×1018〜1×1020cm-3以上で、第1主面からの拡散深さが約0.3〜2.0μmのn型半導体よりなるn型エミッタ領域3が形成されている。このn型エミッタ領域3の隣には、p型ボディ領域2への低抵抗コンタクトを取るためのp+不純物拡散領域6がたとえば1×1018〜1×1020cm-3程度で、第1主面からの拡散深さがn型エミッタ領域3の深さ以下で形成されている。
-ドリフト層1とn型エミッタ領域3とに挟まれるp型ボディ領域2と対向するように第1主面上にゲート絶縁膜4を介してゲート電極5aが形成されている。
このn-ドリフト層1とn型エミッタ領域3とゲート電極5aにより、n-ドリフト層1をドレインとし、n型エミッタ領域3をソースし、ゲート絶縁膜4を挟んでゲート電極5aと対向するp型ボディ領域2の部分をチャネルとする絶縁ゲート型電界効果トランジスタ部(ここではMOSトランジスタ部)が構成されている。
2つのMOSトランジスタ部に挟まれる第1主面上には、エミッタ電位となるエミッタ用導電層5bが形成されている。このエミッタ用導電層5bとゲート電極5aとの材質には、たとえばリンを高濃度に導入した多結晶シリコン、高融点金属材料、高融点金属シリサイドまたはそれらの複合膜が用いられる。
第1主面上には絶縁膜9が形成されており、この絶縁膜9には第1主面の一部表面に達するコンタクトホール9aが形成されている。このコンタクトホール9aの底部にはバリアメタル層10が形成されている。このバリアメタル層10を介してエミッタ用導電層5b、p+不純物拡散領域6およびn型エミッタ領域3とに、エミッタ電位Eを与えるエミッタ電極11が電気的に接続されている。
またn-ドリフト層1の第2主面側には、n型バッファ領域7とp型コレクタ領域8とが順に形成されている。p型コレクタ領域8には、コレクタ電位Cを与えるコレクタ電極12が電気的に接続されている。このコレクタ電極12の材質は、たとえばアルミニウム化合物である。
本実施の形態において、半導体基板とコレクタ電極12との界面(つまり、p型コレクタ領域8とコレクタ電極12との界面)におけるスパイク密度は0以上3×108個/cm2以下である。
なお、図75の構成に対して、図76に示すようにn型不純物拡散領域14が追加されてもよく、また図77に示すようにn型バッファ領域7が省略されてもよく、また図78に示すようにn型不純物拡散領域14が追加されかつn型バッファ領域7が省略されてもよい。
(実施の形態6)
本実施の形態においては、図75〜図78に示す平面ゲート型IGBTの他の構成について説明する。図79〜図83は、本発明の実施の形態6における平面ゲート型IGBTの各種の構成を示す概略断面図である。
図79を参照して、平面ゲート型IGBTは、たとえば厚さが約50μm以上800μmの半導体基板に形成されている。n-ドリフト層1の図中左側の第1主面には、p型半導体よりなるp型ボディ領域2が選択的に形成されている。p型ボディ領域2は、たとえば1×1015〜1×1018cm-3の濃度を有し、第1主面から約1.0〜4.0μmの拡散深さを有している。p型ボディ領域2内の第1主面には、たとえば濃度が1×1018〜1×1020cm-3以上で、第1主面からの拡散深さが約0.3〜2.0μmのn型半導体よりなるn型エミッタ領域3が形成されている。このn型エミッタ領域3の図中左側には、n型エミッタ領域3と間隔をおいて、p型ボディ領域2への低抵抗コンタクトを取るためのp+不純物拡散領域6が形成されている。p+不純物拡散領域6は、たとえば1×1018〜1×1020cm-3程度で、第1主面からの拡散深さがn型エミッタ領域3の深さ以下で形成されている。
-ドリフト層1とn型エミッタ領域3とに挟まれるp型ボディ領域2と対向するように第1主面上にゲート絶縁膜4を介してゲート電極5aが形成されている。ゲート電極5aは図中右端まで延在しており、図中右側ではゲート絶縁膜4を介してn-ドリフト層1と対向している。
このn-ドリフト層1とn型エミッタ領域3とゲート電極5aにより、n-ドリフト層1をドレインとし、n型エミッタ領域3をソースとし、ゲート絶縁膜4を挟んでゲート電極5aと対向するp型ボディ領域2の部分をチャネルとする絶縁ゲート型電界効果トランジスタ部(ここでは、MOSトランジスタ)が構成されている。
第1主面上には絶縁膜9およびエミッタ電極11が形成されている。絶縁膜9は第1主面におけるn型エミッタ領域3およびp型ボディ領域2と、ゲート電極5aとを覆っている。エミッタ電極11はp+不純物拡散領域6と絶縁膜9とを覆っており、p+不純物拡散領域6およびn型エミッタ領域3にエミッタ電位Eを与える。
またn-ドリフト層1の第2主面側には、n型バッファ領域7とp型コレクタ領域8とが順に形成されている。p型コレクタ領域8には、コレクタ電位Cを与えるコレクタ電極12が電気的に接続されている。
本実施の形態において、半導体基板とコレクタ電極12との界面(つまり、p型コレクタ領域8とコレクタ電極12との界面)におけるスパイク密度は0以上3×108個/cm2以下である。
図80に示す構成は、平面的に見て絶縁膜9が形成されていない領域において、p型ボディ領域2がさらに深く(さらに第2主面側に近く)形成されている点において、図79の構成とは異なっている。このようなp型ボディ領域2は、絶縁膜9をマスクとしてp型不純物を第1主面に注入する工程を加えることにより形成される。
図81に示す構成は、p型ボディ領域2の側面に隣接するようにn-ドリフト層1内にn型不純物拡散領域14aが形成されている点において、図79の構成とは異なっている。
図82に示す構成は、平面的に見て絶縁膜9が形成されていない領域において、p型ボディ領域2がさらに深く(さらに第2主面側に近く)形成されている点において、図81の構成とは異なっている。
図83に示す構成は、p型ボディ領域2の底面に隣接するようにn-ドリフト層1内にn型不純物拡散領域14aがさらに形成されている点において、図81の構成とは異なっている。
図81〜図83に示す構造のように、p型ボディ領域2に隣接してn型不純物拡散領域14aを形成することにより、図84に示すように、IGBTがオン状態の場合のエミッタ側(第1主面側)のキャリア濃度が増加する。その結果、IGBTの特性を向上することができる。図85は、n型不純物拡散領域を形成した場合と形成しない場合とにおける、VCEとJCとの関係を示す図である。図85を参照して、n型不純物拡散領域14aを形成した場合には、電流密度JCに対するエミッタ・コレクタ間電圧VCEが低減されている。
図86は、本発明の実施の形態6におけるSN14a/SN-と、VCE(sat)、JC,BreakおよびVG,Breakとの関係とを示す図である。ここで、SN14a/SN-とは、n-ドリフト層1を構成する不純物の単位面積あたりの原子数(atom/cm2)SN-に対するn型不純物拡散領域14aを構成する不純物の単位面積あたりの原子数(atom/cm2)SN14aの比である。JC,Breakとは、RBSOA(Reverse Bias Safety Operation Area)モードでデバイスが遮断可能な電流密度であり、VG,Breakとは、SCSOA(Short Circuit Safe Operation Area)モードでデバイスが遮断可能なゲート電圧である。図86を参照して、0<SN14a/SN-≦20である場合には、高い遮断性能が得られており、かつ低いコレクタ・エミッタ間電圧VCE(sat)が得られている。したがって、RBSOAおよびSCSOAを確保した上でオン電圧を低減するためには、n型不純物拡散領域14aが0<SN14a/SN-≦20を満たすことが好ましい。
(実施の形態7)
図87は、本発明の実施の形態7における半導体装置のレイアウトを示す平面図である。図88は、図87のLXXXVIII−LXVIII線に沿った断面図であり、図89は、図87のLXXXIX−LXXXIX線に沿った断面図である。図90は、図88のXC−XC線に沿った不純物濃度分布である。なお、図87において斜線で示す部分は、p型不純物拡散領域41が形成されている領域である。また、図87においては、1つのゲート電極配線11aに沿って形成されたゲート用溝1a(図中点線)のみを示しているが、実際には、それぞれのゲート電極配線11aに沿って複数のゲート用溝1a(あるいはエミッタ用溝1b)が形成されている。図87〜図90を参照して、本実施の形態におけるIGBTの構成について説明する。
特に図87を参照して、エミッタ電極11とゲート電極配線11aとは図中横方向に交互に配置されており、かつ図中縦方向に延在している。チップ中央部にあるゲート電極配線11aの図中下方端部には、他の配線と電気的に接続するためのゲートパッド28が設けられている。また、複数のゲート用溝1aの各々は、ゲート電極配線11aの真下において、ゲート電極配線11aの延在方向に沿って図中縦方向に配列している。複数のゲート用溝1aの各々は、その長方形の平面形状の短辺の延在方向(図中縦方向)に沿って配列している。図中縦方向で隣接するゲート用溝1a同士の間には、p型ボディ領域2およびn型不純物拡散領域14が形成されている。また、図中横方向で隣接するエミッタ電極11同士の間(すなわち、ゲート用溝1aの端部)には、p型不純物拡散領域41(ウェル層)が形成されている。p型不純物拡散領域41は、ゲート電極配線11aの真下において、エミッタ電極11に沿って図中縦方向に延在している。
特に図88を参照して、n型不純物拡散領域14は、p型ボディ領域2とn-ドリフト層1との間に形成されている。n型不純物拡散領域14は、図90に示すように、n-ドリフト層1の不純物濃度よりも高い不純物濃度を有している。n型不純物拡散領域14が存在している場合、ゲート用溝1aおよびエミッタ用溝1b(たとえば図40)のうち少なくともいずれか一方を、n型不純物拡散領域14における不純物濃度が1×1016cm-3となる位置よりも第2主面側に突出させることで、高い耐圧(BVCES)を保持可能になる。図88に示す構成は、図39に示す構造Dの構成と実質的に同じである。
特に図89を参照して、ゲート用溝1a内を埋め込むゲート電極5aは、ゲート用溝1a外部の第1主面上にも延びており、その延びた部分においてゲート電極配線11aと電気的に接続されている。ゲート電極配線11aの下層にはバリアメタル層10が位置し、バリアメタル層10とゲート電極5aとが接する領域にシリサイド層21aが形成されている。ゲート電極配線11aおよびエミッタ電極11上にパッシベーション膜15が形成されている。p型不純物拡散領域41は、ゲート用溝1aよりも深い位置に(第2主面側に)達している。
なお、図87で示されている溝は全てゲート電極5aが埋め込まれたゲート用溝1aであるが、これらの溝のうち少なくとも1つがゲート用溝であればよく、その他の溝はたとえばエミッタ用溝であってもよい。
ここで、図88を参照して、ゲート用溝1aと隣接する他の溝(図では右側のゲート用溝1a)とのピッチをピッチXと規定する。また、半導体基板の第1主面からゲートトレンチを構成するゲート用溝1aの底部までの深さを深さYと規定する。また、p型ボディ領域2とn型不純物拡散領域14との接合面(n型不純物拡散領域14が形成されていない場合には、p型ボディ領域2とn-ドリフト層1との接合面)からのゲート用溝1aの突出量を突出量DTと規定する。さらに図89を参照して、p型不純物拡散領域41とn-ドリフト層1との接合面からゲート用溝1aの底部までの距離(深さ)を深さDT,Pwellと規定する。
本願発明者は、トレンチ型ゲート構造のIGBTにおいて、ゲート用トレンチを以下の条件で設計することによって、IGBTの耐圧(降伏電圧)を向上できることを見出した。
図91は、本発明の実施の形態7におけるY/XとBVCESとの関係を示す図である。図91を参照して、半導体基板の第1主面からゲートトレンチを構成するゲート用溝1aの底部までの深さYがゲート用溝1aと隣接する他の溝とのピッチよりも大きい場合(つまり1.0≦Y/Xの場合)には、高い降伏電圧BVCESが得られている。
図92は、本発明の実施の形態7におけるDTとBVCESとの関係、およびDTとEP/CSまたはEP/N-との関係を示す図である。ここでEP/CSとは、p型ボディ領域2とn型不純物拡散領域14との接合面における電界強度を意味しており、EP/N-とは、n型不純物拡散領域14が形成されていない場合のp型ボディ領域2とn-ドリフト層1との接合面における電界強度を意味している。図92を参照して、p型ボディ領域2とn型不純物拡散領域14との接合面からのゲート用溝1aの突出量DTが1.0μm≦DTである場合には、電界強度EP/CSまたはEP/N-が低減されており、かつ高い降伏電圧BVCESが得られている。
図93は、本発明の実施の形態7におけるDT,PwellとBVCESおよびΔBVCESとの関係を示す図である。ここでΔBVCESとは、ゲート電位を0V(エミッタ電位と同電位)とした場合のBVCESからゲート電位を−20Vとした場合のBVCESを引いた値を意味している。図93を参照して、ゲート用溝1aの底面からp型不純物拡散領域41の底面(p型不純物拡散領域41とn-ドリフト層1との接合面)までの深さDT,PwellがDT,Pwell≦1.0μmの場合には、高い降伏電圧BVCESが得られており、降伏電圧の変動量ΔBVCESも低く抑えられている。
以上により、1.0≦Y/X、1.0μm≦DT、または0<DT,Pwell≦1.0μmの条件を満たすようにゲート用溝1a、エミッタ用溝1bを製造することによって、IGBTの耐圧を向上できる。
なお、図88においては、n型不純物拡散領域14がゲート用溝1a同士の間全体にわたって形成されている構成について説明したが、n型不純物拡散領域14は、以下の図94および図95に示すように、複数の溝同士の間の一部にのみ形成されていてもよい。
図94および図95は、本発明の実施の形態7におけるトレンチゲート型IGBTの各種の構成を示す概略断面図である。図94に示す構成においては、n型不純物拡散領域14がゲートトレンチの周囲にのみ形成されている。n型不純物拡散領域14は、ゲート用溝1aに接触し、かつエミッタ用溝1bに接触しないように形成されている。一方、図95に示す構成では、n型不純物拡散領域14がエミッタトレンチの周囲にのみ形成されている。n型不純物拡散領域14は、2つのエミッタ用溝1bの各々に接触し、かつゲート用溝1aに接触しないように形成されている。
なお、これ以外の構成については、図40に示す構造Eの構成とほぼ同じであるため、同一の部材については同一の符号を付し、その説明を省略する。
本願発明者は、n型不純物拡散領域14の幅およびエミッタ用溝1bからの距離を制御することによって、コレクタ・エミッタ間電圧を低減でき、破壊エネルギを向上できることを見出した。
図96は、WCSおよびXCSとVCEおよびESCとの関係を示す図である。ここで、WCSは平面的に見た場合の、エミッタ用溝1bの周囲に存在する領域におけるn型不純物拡散領域14の幅であり、XCSはエミッタ用溝1bからn型不純物拡散領域14の端部までの距離である。図96を参照して、n型不純物拡散領域14の幅WCSが6μm≦WCS≦9μmの場合、またはエミッタ用溝1bからn型不純物拡散領域14の端部までの距離XCSが0.5μm≦XCS≦2μmの場合には、コレクタ・エミッタ間電圧VCEが低減され、かつ高い短絡時の破壊エネルギESCが得られる。
図97は、本発明の実施の形態7における半導体装置におけるn型エミッタ領域3およびp+不純物拡散領域6の平面レイアウトを示す図である。図97を参照して、ゲート電極5aおよびエミッタ用導電層5bの各々が図中縦方向に延在しており、ゲート電極5aとエミッタ用導電層5bとの間、およびエミッタ用導電層5b同士の間にn型エミッタ領域3が形成されている。そして、n型エミッタ領域3は図中縦方向に延在しているおり、n型エミッタ領域3に挟まれた領域にp+不純物拡散領域6が周期的に形成されている。また、図98に示すように、n型エミッタ領域3とp+不純物拡散領域6とがゲート電極5aまたはエミッタ用導電層5bの延在方向(図中縦方向)に沿って交互に形成されていてもよい。
ここで、図97および図98に示すように、ゲート電極5aの延在方向に沿ったn型エミッタ領域3の幅をWSOと規定し、ゲート電極5aの延在方向に沿ったp+不純物拡散領域6の幅をWPCと規定する。本願発明者は、WSOとWPCとの関係を制御することによって、コレクタ・エミッタ間電圧を低減でき、破壊エネルギを向上できることを見出した。
図99は、本発明の実施の形態7におけるαとVCE(sat)およびESCとの関係を示す図である。α(%)は、α=(WSO/WSO+WPC)×100で定義される値である。図99を参照して、αが8.0%≦α≦20.0%の範囲である場合には、低いコレクタ・エミッタ間電圧VCE(sat)が得られ、高い破壊エネルギESCが得られる。
(実施の形態8)
図100は、本発明の実施の形態8におけるゲートパッドの平面レイアウトを模式的に示す図である。図100を参照して、本実施の形態においては、ゲート電極配線11a(図87)の電流経路の一部が、局所的に高い抵抗を有する抵抗体28aによって形成されている。図100では、配線(表面ゲート配線)とゲート電極配線11aとを電気的に接続するためのゲートパッド28の一部が抵抗体28aによって形成されている。抵抗体28aの各々は、ゲートパッド28の中央部に設けられた開口部において、互いに対向するように突き出ている。抵抗体28aはたとえば図1または図75に示すゲート電極5aと同一の構造を有していてもよい。
図101および図102は、ゲート電圧の発振現象を説明するための図である。トレンチゲート構造のIGBTやMOSトランジスタなどでは、スイッチング速度が速くなると、図101に示すような電流Icの変動時に、コレクタ・エミッタ間電圧VCEが発振する。この原因は、デバイスが発振してしまうようなLCR回路定数になることにある。そこで、抵抗体28aを設けることにより、デバイスが発振しにくいLCR回路定数となる。その結果、図102に示すように、ゲート電圧Vgeの発振現象を抑制することができる。
(実施の形態9)
IGBTにおけるVCE(sat)−EOFF特性を向上するためには、n-ドリフト層1の厚みを薄くすることが効果的であるが、n-ドリフト層1の厚みを薄くすると、高耐圧を実現することが難しくなる。そこで本願発明者は、p型ボディ領域2とn型不純物拡散領域14との接合面の電界強度EP/CS(n型不純物拡散領域14が形成されていない場合にはp型ボディ領域2とn-ドリフト層1との接合面の電界強度EP/N-)と、n型バッファ領域7とn-ドリフト層1との接合面の電界強度EN/N-との関係に着目することで、IGBTの耐圧を向上できることを見出した。
図103は、本発明の実施の形態9におけるIGBTの主接合にブレークダウン電圧よりもわずかに低い逆バイアスを印加した時の図1のXIX−XIX線に沿った電界強度分布を模式的に示す図である。図104は、本発明の実施の形態9における接合面の電界強度と降伏電圧との関係を示す図である。
図103を参照して、IGBTの主接合にブレークダウン電圧よりもわずかに低い逆バイアスを印加した時の半導体内の電界は、半導体基板の第1主面からp型ボディ領域2とn-ドリフト層1との接合面までの領域において急激に増加し、その後、n-ドリフト層1内では緩やかに減少し、n-ドリフト層1とn型バッファ領域7において急激に減少している。また、p型ボディ領域2およびn型バッファ領域7内で電界が0となっている。図104を参照して、n-ドリフト層1とp型ボディ領域2との接合面の電界強度EP/N-が0<EP/N-≦3.0×1015(V/cm)の場合に、高い降伏電圧BVCESが得られる。また、n型バッファ領域7とn-ドリフト層1との接合面の電界強度EN/N-が2.0×1014≦EN/N-(V/cm)の場合に、高い降伏電圧BVCESが得られる。EN/N-はEP/N-以下であることが好ましい。
なお、実施の形態1〜8で説明した構造または数値範囲は、適宜組み合わせることができる。
以上に開示された実施の形態はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は、以上の実施の形態ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての修正や変形を含むものと意図される。
本発明は、並列的な動作に適した高耐圧半導体装置、特にIGBTを備える半導体装置として適している。
1 n-ドリフト層、1a ゲート用溝、1b エミッタ用溝、2 p型ボディ領域、3 n型エミッタ領域またはn型不純物拡散領域、4,4a ゲート絶縁膜、4b エミッタ用絶縁膜、5 導電層、5a ゲート電極、5b エミッタ用導電層、6 p+不純物拡散領域、7 n型バッファ領域、7a n型中間層、8 p型コレクタ領域、9,22A,22B 絶縁膜、9a コンタクトホール、10 バリアメタル層、11 エミッタ電極、11a ゲート電極配線、12,12a コレクタ電極、14,14a n型不純物拡散領域、15 パッシベーション膜、21a,21b シリサイド層、28 ゲートパッド、28a 抵抗体、31 マスク層、32,33 シリコン酸化膜、32a 犠牲酸化膜、41 p型不純物拡散領域。

Claims (1)

  1. 互いに対向する第1主面および第2主面を有する半導体基板と、
    前記第1主面側に形成されたゲート電極(5a)と、前記第1主面側に形成された第1電極(11)と、前記第2主面に接触して形成された第2電極(12)とを有する素子とを備え、
    前記素子は、前記ゲート電極に加えられる電圧によりチャネルに電界を発生させ、かつ前記チャネルの電界によって前記第1電極と前記第2電極との間の電流を制御し、
    前記チャネルとなる第1導電型のボディ拡散層(2)と、
    前記ボディ拡散層内に形成され、前記第1電極に接触する第2導電型のエミッタ拡散層(3)と、
    前記第2主表面に形成され、第2導電型のドリフト拡散層(1)と第1導電型のコレクタ拡散層(8)とを含み、前記第2電極に電気的に接続されるコレクタ領域と、
    前記ボディ拡散層と前記ドリフト拡散層との間に形成された第2導電型の埋込拡散層(14)と
    を備え、
    前記半導体基板の前記第1主面にはゲート用溝(1a)が形成されており、前記ゲート用溝(1a)内には前記ゲート電極(5a)が埋め込まれており、
    前記半導体基板の前記第1主面には複数の溝(1a、1b)が形成されており、かつ前記複数の溝の各々は平面的に見て一の方向に配列しており、かつ前記ゲート用溝(1a)は前記複数の溝のうち少なくとも1つであり、
    前記複数の溝の各々に隣接して前記第1の主面に形成され、かつ平面的に見て前記一の方向に延在し、かつ前記複数の溝の各々よりも深く形成された第1導電型のウェル層(41)をさらに備え、
    前記半導体基板の厚さ50〜800μmであり
    前記ボディ拡散層の不純物濃度1×1015cm−3〜1×1018cm−3、前記ボディ拡散層の前記第1主表面からの拡散深さ1.0μm〜4.0μmであり
    前記エミッタ拡散層の不純物濃度1×1018cm−3〜1×1020cm−3、前記エミッタ拡散層の前記第1主表面からの拡散深さ0.3μm〜2.0μmであり
    前記ドリフト拡散層の不純物濃度1×1012cm−3〜1×1015cm−3 であり
    前記埋込拡散層の不純物濃度、前記ドリフト拡散層の不純物濃度よりも高い不純物濃度であり
    前記ゲート用溝の深さ3μm〜10μmであり
    前記溝は、前記埋込拡散層における不純物濃度が1×1016cm−3となる位置よりも前記第2主表面側に突出しており
    前記ゲート用溝の底面から前記ウェル層の底部までの深さ(DT,Pwell)は、0よりも
    大きく1.0μm以下である、半導体装置。
JP2014087359A 2014-04-21 2014-04-21 半導体装置 Active JP5908524B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014087359A JP5908524B2 (ja) 2014-04-21 2014-04-21 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014087359A JP5908524B2 (ja) 2014-04-21 2014-04-21 半導体装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010505147A Division JPWO2009122486A1 (ja) 2008-03-31 2008-03-31 半導体装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016058154A Division JP6280148B2 (ja) 2016-03-23 2016-03-23 半導体装置

Publications (2)

Publication Number Publication Date
JP2014158041A JP2014158041A (ja) 2014-08-28
JP5908524B2 true JP5908524B2 (ja) 2016-04-26

Family

ID=51578693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014087359A Active JP5908524B2 (ja) 2014-04-21 2014-04-21 半導体装置

Country Status (1)

Country Link
JP (1) JP5908524B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10026803B1 (en) 2016-12-27 2018-07-17 Mitsubishi Electric Corporation Semiconductor device, power conversion device, and method of manufacturing semiconductor device
US11101133B2 (en) 2018-08-17 2021-08-24 Mitsubishi Electric Corporation Semiconductor device and manufacturing method thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106062960B (zh) 2014-09-30 2019-12-10 富士电机株式会社 半导体装置及半导体装置的制造方法
JP6406454B2 (ja) 2015-07-07 2018-10-17 富士電機株式会社 半導体装置
WO2017010393A1 (ja) 2015-07-16 2017-01-19 富士電機株式会社 半導体装置および半導体装置の製造方法
JP6832645B2 (ja) * 2016-07-20 2021-02-24 ローム株式会社 半導体装置
CN106783988A (zh) * 2017-01-05 2017-05-31 江苏中科君芯科技有限公司 具有高抗短路能力的igbt器件
DE112018003086T5 (de) * 2017-11-13 2020-03-05 Fuji Electric Co., Ltd. Halbleitervorrichtung und verfahren zur herstellung einerhalbleitervorrichtung

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3976374B2 (ja) * 1997-07-11 2007-09-19 三菱電機株式会社 トレンチmosゲート構造を有する半導体装置及びその製造方法
WO2002061845A1 (en) * 2001-02-01 2002-08-08 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10026803B1 (en) 2016-12-27 2018-07-17 Mitsubishi Electric Corporation Semiconductor device, power conversion device, and method of manufacturing semiconductor device
US11101133B2 (en) 2018-08-17 2021-08-24 Mitsubishi Electric Corporation Semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2014158041A (ja) 2014-08-28

Similar Documents

Publication Publication Date Title
KR101191281B1 (ko) 반도체장치
JP5908524B2 (ja) 半導体装置
US10269946B2 (en) Semiconductor device and method of manufacturing the same
JP5025071B2 (ja) 半導体装置およびその製造方法
US9614106B2 (en) Semiconductor device
JP5605073B2 (ja) 半導体装置
JP5384878B2 (ja) 半導体装置およびその製造方法
JP6289683B2 (ja) 半導体装置
US10068999B2 (en) Vertical power component
JP6089818B2 (ja) 半導体装置及びその製造方法
WO2017130374A1 (ja) パワー半導体装置及びパワー半導体装置の製造方法
JP6280148B2 (ja) 半導体装置
US20150144989A1 (en) Power semiconductor device and method of manufacturing the same
JP6513168B2 (ja) 半導体装置
JP6026767B2 (ja) 半導体装置およびその製造方法
JP2011176026A (ja) 半導体素子の製造方法
TW201232781A (en) Semiconductor device and method for manufacturing same
WO2016001182A2 (en) Semiconductor device
JP2019057674A (ja) 半導体装置
CN111295765A (zh) 半导体装置
JP2004266298A (ja) 縦型半導体装置
KR20150056433A (ko) 전력 반도체 소자 및 그 제조 방법
JP2010147366A (ja) 半導体装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160323

R150 Certificate of patent or registration of utility model

Ref document number: 5908524

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250