JP5907277B2 - 燃料電池スタック、及び燃料電池スタックに用いるシールプレート - Google Patents

燃料電池スタック、及び燃料電池スタックに用いるシールプレート Download PDF

Info

Publication number
JP5907277B2
JP5907277B2 JP2014543388A JP2014543388A JP5907277B2 JP 5907277 B2 JP5907277 B2 JP 5907277B2 JP 2014543388 A JP2014543388 A JP 2014543388A JP 2014543388 A JP2014543388 A JP 2014543388A JP 5907277 B2 JP5907277 B2 JP 5907277B2
Authority
JP
Japan
Prior art keywords
seal
plate
seal member
fuel cell
cell stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014543388A
Other languages
English (en)
Other versions
JP2015510218A (ja
Inventor
沼尾 康弘
康弘 沼尾
和弘 影山
和弘 影山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2014543388A priority Critical patent/JP5907277B2/ja
Publication of JP2015510218A publication Critical patent/JP2015510218A/ja
Application granted granted Critical
Publication of JP5907277B2 publication Critical patent/JP5907277B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0297Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0276Sealing means characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • H01M8/2485Arrangements for sealing external manifolds; Arrangements for mounting external manifolds around a stack
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/249Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/10Fuel cells in stationary systems, e.g. emergency power source in plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

本発明は、複数の燃料電池セルを積層して成る燃料電池スタック、及びこの燃料電池スタックに用いるシールプレートに関するものである。
本発明に係る燃料電池スタックに関連する技術としては、特許文献1に開示された「燃料電池スタック構造」がある。
特許文献1の燃料電池スタック構造は、燃料電池セルを複数重ねてセルモジュールを構成し、そのセルモジュールをセル積層方向に複数かつ直列に配列し、セルモジュール間をビードガスケットにてシールしたものである。
また、上記ビードガスケットに接触する端部セルが備えるセパレータの面剛性をセルモジュール内の中央セルが備えるセパレータの面剛性よりも大きくしている。具体的には、端部セルのセパレータに平板を重ねて、端部セルのセパレータの面剛性を中央セルのセパレータの面剛性よりも大きくしている。
特開2005−190706号公報
上記した関連技術では、ビードガスケットを備えた平板と端部セルのセパレータとは接着剤で接合されている。このため、ビードガスケットが劣化すると、燃料電池として発電できるにもかかわらず、そのセルモジュールは廃棄せざるを得ず、非効率であった。
そこで本発明は、複数の燃料電池セルを積層したセルモジュールを継続して使用することが可能な燃料電池スタック及び燃料電池スタックに用いるシールプレートを提供することを目的としている。
上記目的を達成するため、本発明の第1態様に係る燃料電池スタックは、外周部に絶縁部材を有する膜電極接合体を一対のセパレータで挟持して成る複数の燃料電池セルを積層し、且つ隣接する燃料電池セルの絶縁部材同士を接着して成るセルモジュールと、積層した前記セルモジュールの間に介装されるシールプレートと、を備える。シールプレートは、燃料電池セルを流通する二種類の発電用ガスを互いに分離して流入出させるための複数のマニホールド孔と、各マニホールド孔の辺縁部に、各マニホールド孔を流通する発電用ガスをシールするための第1のシール部材と、備える。
本発明の第2態様に係わるシールプレートは、複数の燃料電池セルを互いに積層して一体化した少なくとも二つ以上のセルモジュール間に介装して用いられるシールプレートであって、燃料電池セルを流通する二種類の発電用ガスを互いに分離して流入出させるためのマニホールド孔が形成されたプレート基板と、マニホールド孔の辺縁部に設けられた、マニホールド孔を流通する発電用ガスをシールするためのシール部材と、を備える。シール部材は、マニホールド孔の辺縁部に設けたシール基台と、シール基台の表面から突出するシールリップとを有する。シールリップは、マニホールド孔の内側へ偏移している。
図1は、本発明の第1の実施形態に係る燃料電池スタックの概略外観を示す斜視図である。 図2(A)は、セルモジュールを構成するセパレータ、膜電極接合体及びシールプレートの配置を説明するための一方側の面を示す平面図であり、図2(B)は、他方側の面を示す平面図である。 図3(A)は、図2(A)に示す膜電極接合体を拡大して示す平面図であり、図3(B)は、図2(A)に示すカソード側セパレータを拡大して示す平面図である。 図4は、図2のシールプレートを拡大して示す平面図である。 図5は、図1の燃料電池スタックの一部を拡大して示す、図4に示すC‐C線に沿う断面図である。 図6(A)は、水素含有ガス供給用のマニホールド孔の辺縁部に設けたシール部材を中心とした詳細を示す部分拡大図であり、図6(B)は、図6(A)の包囲線Iで示す部分の拡大図である。 図7(A)は、燃料電池スタックの一部を拡大して示す、図4に示すD‐D線に沿う断面図であり、図7(B)は、図7(A)の包囲線IIIで示す部分の拡大図である。 図8(A)は、マニホールド孔の辺縁部に設けた他例に係るシール部材を中心とした詳細を示す部分拡大図であって、図4に示すE‐E線に沿う断面図であり、図8(B)は、図8(A)の包囲線IVで示す部分の拡大図である。 図9(A)は、他例に係る内周シール部材を中心とした詳細を示す部分拡大図であって、図4に示すC‐C線に沿う断面図であり、図9(B)は、図9(A)の包囲線Vで示す部分の拡大図である。 図10は、本発明の第2の実施形態に係るシールプレートを示す平面図である。 図11は、本発明の第3の実施形態に係るシールプレートを示す平面図である。 図12は、本発明の第4の実施形態に係るシールプレートを示す平面図である。 図13は、本発明の第5の実施形態に係るシールプレートを示す平面図である。 図14は、図4に示すV−V線に沿う断面を拡大して示す断面図であり、セパレータとともにその相対的な位置関係を示している。 図15は、図14に比べてプレート基板の厚みを大きくした例であって、図4に示すV−V線に沿う断面と同等の位置における断面を拡大して示す断面図である。 図16は、図4に示すV−V線に沿う断面と同等の位置における断面を拡大して示す断面図である。 図17は、図4に示すV−V線に沿う断面と同等の位置における断面を拡大して示す断面図である。 図18は、本発明の第6の実施形態に係るシールプレートを示す平面図である。 図19は、本発明の第7の実施形態に係るシールプレートを示す平面図である。 図20は、本発明の第8の実施形態に係るシールプレートを示す平面図である。 図21は、図20に示すシールプレートの端部を拡大して示す平面図である。 図22(A)は、本発明の第9の実施形態に係るシールプレートを示す平面図であり、図22(B)は、図22(A)のVII‐VII線に沿う断面を部分的に拡大して示す断面図である。 図23は、本発明の他例に係るシールプレートを示す平面図である。 図24は、本発明の第10の実施形態に係る燃料電池スタックを説明するための要部の断面図である。 図25(A)は、図24のセルモジュールを示す平面図であり、図25(B)は、燃料電池スタックの斜視図である。
〈第1実施形態〉
以下に、本発明を実施するための形態について、図面を参照して説明する。図1は、本発明の一実施形態に係る燃料電池スタックの概略外観斜視図、図2(A)は、セルモジュールを構成するセパレータ、膜電極接合体及びシールプレートの配置を説明する一方側の面の平面図であり、図2(B)は、他方側の面の平面図である。図3(A)は、カソード側セパレータの拡大平面図であり、図3(B)は、膜電極接合体の拡大平面図である。図4は、シールプレートの拡大平面図である。図5は、図1の燃料電池スタックの一部を拡大して示す部分拡大図であって、図4に示すC‐C線に沿う断面図である。
図1に示す一例に係る燃料電池スタックAは、積層された複数のモジュールMを有する。互いに隣接するセルモジュールM,M同士の間には、シールプレートP1が介装されている。これらのセルモジュールMは、エンドプレート10,11により図示上下両側から挟圧されている。
セルモジュールMは、所要の枚数からなる燃料電池セル20を積層したものである。セルモジュールMの外壁面は後述するセルフレーム30の鍔部32と接着剤9によって構成されている。これにより、セルモジュールMの内部への浸水を防止するとともに電気的な絶縁を図っている。なお、図1には、5枚の燃料電池セル20を積層して接着したものを例示している。燃料電池セル20の枚数を限るものではなく、また、接着剤層を省略して示している。
上記した燃料電池セル20は、セルフレーム30(図2,3参照)の両側に設けられた、一対のセパレータ40,41を有する。セルフレーム30(図2,3参照)の両側には、それぞれ異なる二種類の発電用ガスを流通させるためのガス流通路F1,F2が区画して形成されている。二種類の発電用ガスは、水素含有ガスと酸素含有ガスである。一対のセパレータは、アノード側セパレータ40及びカソード側セパレータ41である。
セルフレーム30は、絶縁部材であって、具体的には樹脂製である。本実施形態においては、セルフレーム30は、燃料電池セル20の積層方向Zから見た正面視において横長方形の形状であって、一定の板厚を有する基板31を有する。基板31の全周囲にわたって、表裏両面に突出する鍔部32が形成されている。セルフレーム30の中央部分には膜電極接合体33が配設されている。膜電極接合体33の両側(両端部)に隣接して、マニホールド部ML,MRが配設されている。
膜電極接合体33は、MEA(Membrane Electrode Assembly)とも呼称されるものであり、例えば固体高分子から成る電解質膜と、電解質膜を挟持する一対の電極とを備える。
マニホールド部ML,MRは、水素含有ガス、酸素含有ガス及び冷却流体の流入出を夫々行うためのものであり、マニホールド部ML,MRと膜電極接合体33との間には、水素含有ガス又は酸素含有ガスが流通する領域であるディフューザ領域Dが形成されている。本実施形態における冷却流体は、例えば水である。
一方のマニホールド部MLはマニホールド孔M1〜M3を備える。各マニホールド孔M1〜M3は、酸素含有ガス供給用(M1)、冷却流体供給用(M2)及び水素含有ガス供給用(M3)であり、積層方向Zに連続して酸素含有ガス、冷却流体、水素含有ガスの流通路をなしている。
他方のマニホールド部MRはマニホールド孔M4〜M6を備える。各マニホールド孔M4〜M6は、水素含有ガス排出用(M4)、冷却流体排出用(M5)及び酸素含有ガス排出用(M6)であり、積層方向Zに連続して水素含有ガス、冷却流体、酸素含有ガスの流通路をなしている。なお、供給用と排出用は一部又は全部が逆の位置関係でもよい。
ディフューザ領域Dは、セルフレーム30とセパレータ40,41との各間、すなわち、セルフレーム30の両面側に夫々形成されている。ディフューザ領域Dには、図示しない円錐台形にした複数の突起が所要の間隔で夫々配設してある。
ここで、図2(A)は、アノード側セパレータ40、カソード側セパレータ41、セルフレーム30及び膜電極接合体33、並びにシールプレートP1の一方側の面を示す平面図である。図2(B)は、図2(A)に示す各部材を図2上下方向の軸回りに裏返して、各部材の他方側の面を示す平面図である。よって、図2(A)に示す各部材は、最下段に示すシールプレートP1が上側となるように順次積層する。また、図2(B)に示す各部材は、最上段に示すアノード側セパレータ40が上側となるように順次積層する。
セルフレーム30には、図2及び図3(A)に示すように、外縁部の全周にわたる部分、及びマニホールド孔M1〜M6の周囲の部分に、接着シール80が連続的に設けてある。このとき、図2(A)に示すセルフレーム30のカソード面においては、酸素含有ガスを流通させるために、接着シール80は、酸素含有ガスの供給用及び排出用のマニホールド孔M1,M6の部分を開放し、それ以外のマニホールド孔M2〜M5を囲繞している。
図2(B)に示すセルフレーム30のアノード面では、水素含有ガスを流通させるために、接着シール80は、水素含有ガスの供給用及び排出用のマニホールド孔M3,M4の部分を開放し、それ以外のマニホールド孔M1,M2,M5及びM6を囲繞している。
セパレータ40,41は、図2及び図3(B)に示すように、それぞれステンレス等の金属板をプレス成形したものであり、セルフレーム30の鍔部32の内側領域に配設可能の大きさの横長方形に形成してある。
セパレータ40(41)、とくにカソード側のセパレータ41は、図3(B)に示すように、膜電極接合体33に対向する中央部分に、長手方向に連続して形成された凹凸部41a(40a),41b(40b)を有する。セパレータ40(41)の両端部には、図3(A)のセルフレーム30の各マニホールド孔M1〜M6に対応するマニホールド孔M1〜M6が形成してある。
セパレータ40,41には、セルフレーム30と同様に、外縁部の全周にわたる部分、及びマニホールド孔M1〜M6の周囲の部分に、接着シール80が連続的に設けてある。このとき、酸素含有ガス、水素含有ガス及び冷却流体を夫々の層間に流通させるために、接着シール80は、図2(A)及び(B)に示すように、夫々の層間に該当するマニホールド孔M1〜M6の部分を開放し、それ以外のマニホールド孔M1〜M6を囲繞している。
隣接する燃料電池セル20,20同士で相対向するセパレータ40,41の間に、冷却流体の流通路(以下、「冷却用流通路」という。)F3を区画して形成している。隣接する二つのセルモジュールM,M同士の間の空間、より具体的には、最外側に配置した燃料電池セル20,20同士が対向して当接する、鍔部32により囲繞される空間にも冷却用流通路F3が形成されている。そして、セルモジュールM,M同士の間の冷却用流通路F3に、本発明の第1の実施形態に係るシールプレートP1を介装している。
本発明の第1の実施形態に係るシールプレートP1は、燃料電池セル20とは別体として形成されている。シールプレートP1は、図2及び図4に示すように、プレート基板50と、プレート基板50の両端部に開口されたマニホールド部ML,MRと、中央部分に第1の例に係る圧力損失調整部B1とを備える。
プレート基板50は、導電性の一枚の金属板を成形したものであり、積層方向の平面視において燃料電池セル20とほぼ同じ形状で同じ大きさに形成してある。プレート基板50を導電性の金属板で形成することにより、経時的に安定した通電性を保つことができる。プレート基板50に形成されているマニホールド部ML,MRは、上記したセルフレーム30等に形成したものと同等である。
シールプレートP1は、セルモジュールMのマニホールド孔M1〜M6に対応するマニホールド孔M1〜M6を有する。シールプレートP1は、セルモジュールM,M間に介装したときに、互いのマニホールド孔M1〜M6を連続させて一連の流通路を形成する。
シールプレートP1は、第1シール部材としてのシール部材51〜54を備える。シール部材51〜54は、マニホールド孔M1,M3,M4,M6の辺縁部に設けられ、酸素含有ガス及び水素含有ガスの流通に用いるマニホールド孔M1,M3,M4,M6を区画する。シール部材51〜54は、互いに独立して形成してある。なお、当然のことながら、冷却流体の流通に用いるマニホールド孔M2,M4は、シール部材を設けずに、開放状態である。
シールプレートP1は、図5にも示すように、プレート基板50の最外周縁部に沿って設けられた第2シール部材としての外周シール部材55を備える。シールプレートP1は、第1シール部材(51〜54)と第2シール部材(55)との間に設けられた第3のシール部材を備える。この実施形態に係わる第3のシール部材は、外周シール部材55の内側に所要の間隔をおいて平行に配置した内周シール部材56である。これらのシール部材51〜56には、より好ましい実施形態として、電気的絶縁性を有する材料から成るものを採用することができる。なお、図5において符号9で示すものは接着剤である。
また、各シール部材51〜54は互いに独立した構造を有するので、各シール部材51〜54の設計(高さ、幅、形状)を独立して設定することができる。シールする部位により流体が異なり、流体に応じてシール部材の劣化環境が異なる。このため、劣化環境に応じてシール部材51〜54の設計を個別に行なうことができ、燃料電池スタックAの信頼性を向上させられる。
ここで、燃料電池スタックAは、図5に示すように、燃料電池セル20同士を接合する接着剤9と第3のシール部材である内周シール部材56とが、セルモジュールMの積層方向から見て重複するように配置してある。図5の例では、セルフレーム30と各セパレータ40,41とを接合する接着剤9と第3のシール部材である内周シール部材56とが、セルモジュールMの積層方向から見て重複するように配置してある。
圧力損失調整部B1は、図4に示すように、冷却用流通路F3を流通する冷却流体の圧力損失を低減又は調整する機能を有する。具体的には、圧力損失調整部B1は、アクティブエリア、又はアクティブエリア近傍、若しくはそれら双方の領域において冷却用流通路の断面を低減させることによって圧力損失を低減又は調整する。
冷却用流通路の断面の低減は、冷却流体の流通方向(X方向)及び当該X方向と直交する方向Yの双方を含むものである。「アクティブエリア」は、上記した膜電極接合体33に対向する領域のことである。具体的には、「アクティブエリア」は、積層方向(Z方向)から見て、膜電極接合体33が配置された領域と重複する領域である。
圧力損失調整部B1は、アクティブエリアに設けられている。圧力損失調整部B1は、プレート基板50の長軸中心線O1に平行に形成された上流側スリット列60及び下流側スリット列61と、長軸線O1と直交する短軸中心線O2に平行な二つのスリット62,62とを備える。長軸中心線O1は、プレート基板50の短辺を二分することを想定し、短軸中心線O2は、そのプレート基板50の長辺を二分することを想定している。
上流側スリット列60は、冷却流体の流通方向(X方向)の上流側に配列した8本のスリット60aからなり、スリット60aは、X方向と平行にしかつ互いに同じ長さ及び幅にて配列されている。下流側スリット列61は、冷却流体の流通方向(X方向)の下流側に配列した8本のスリット61aからなり、スリット61aは、スリット60aと同じくX方向と平行にしかつ互いに同じ長さ及び幅にて配列されている。
シールプレートP1は、隣接するセルモジュールM,M同士の間の冷却用流通路F3における圧力損失を低減又は調整することができる。例えば、隣接する燃料電池セル20,20同士の間にも冷却用流通路を有する燃料電池スタックにおいては、全ての冷却用流路における冷却流体の流量のばらつきを抑制することができる。
このように、燃料電池スタックAは、概略として、外周部にセルフレーム(絶縁部材)30を有する膜電極接合体33を一対のセパレータ40,41で挟持して成る燃料電池セル20を備える。燃料電池セル20を複数積層するとともに隣接する燃料電池セル20の絶縁部材同士の間を接着してセルモジュールMを構成する。燃料電池スタックAは、セルモジュールMを複数積層した構造を有している。
燃料電池スタックAは、セルモジュールM同士の間に介装されるシールプレートP1を備える。シールプレートP1は、燃料電池セル20を流通する二種類の発電用ガスを互いに分離して流入出させるための複数のマニホールド孔M1,M3,M4,M6を有する。シールプレートP1は、各マニホールド孔M1,M3,M4,M6の辺縁部に形成され、各マニホールド孔を流通する発電用ガスをシールするための第1のシール部材51〜54を備えている。
これにより、シール部材51〜54を備えたシールプレートP1をセルモジュールMに対して容易に取外し可能となる。よって、シール部材51〜54が劣化してもシールプレートP1のみ交換すればよく、燃料電池セル20並びにセルモジュールMを継続的に使用することができる。
シールプレートP1は、その外周部に沿って、燃料電池セル20との間をシールする第2のシール部材としての外周シール部材55を備えている。これにより、外部からの雨水等の浸入を確実に阻止することができる。
シールプレートP1は、第1のシール部材51〜54と第2のシール部材としての外周シール部材55との間に、第3のシール部材としての内周シール部材56を備えている。これにより、外部からの雨水等の浸入を阻止するのに加えて、冷却用流通路F3を流通する冷却流体の漏出を確実に防止することができる。
第1〜第3のシール部材51〜56として電気絶縁性を有する部材を採用する。これにより、上記の防水や漏出防止の効果に加えて、燃料電池セル20とシールプレートP1との間において、発電領域(アクティブエリア)以外の領域の絶縁性を確保して、発電領域での導電性を高めている。
燃料電池スタックAは、燃料電池セル20同士を接合する接着剤9と第3のシール部材としての内周シール部材56とを、セルモジュールMの積層方向から見て重複するように配置した。接着剤9及び内周シール部材56の弾性作用により、膜電極接合体33の膨潤等によって生じる燃料電池スタックAの積層方向の変位を吸収することができる。よって、各燃料電池セル20に作用する面圧を一定にすることができる。また、図5に示すように、セルフレーム30と各セパレータ40,41とを接合する接着剤9と内周シール部材56とを積層方向から見てに重複するように配置する。これにより、上記の変位吸収機能をより高めることができる。
以下、図6〜図9に基づいて、上記燃料電池スタックAの細部の他例を説明する。
図6(A)は、図5で示すシール部材51の周囲を拡大した断面図であり、図6(B)は、図6(A)の包囲線Iで示す部分を拡大した断面図である。図6(A)は、酸素含有ガス供給用のマニホールド孔M1の辺縁部に連成されたシール部材51を示す。シール部材51は、断面横長方形のシール基台51aと、シール基台51aの上面から突出した、断面三角形を有するシールリップ51bとを有する。
シール部材51は、シールに関与するものであり、弾性変形可能な公知のゴム材からなる。シール基台51aの下面は段差形状を有し、シール部材51は、マニホールド孔M1の近傍におけるプレート基板50の一主面(図示上面)50aと側壁面50bを被覆している。シールリップ51bは、プレート基板50の側壁面50bよりもマニホールド孔M1の内方(図6において右方)に偏移している。すなわち、シールリップ51bは、マニホールド孔M1を形成したプレート基板50の側方に偏移させて形成してある。
シールリップ51bの先端は、上側に隣接する燃料電池セル20のカソード側のセパレータ41に接触しており、セパレータ40,41及びプレート基板50の3つの部材のうち、図6に包囲線IIで示す部位のように、アノード側セパレータ40とプレート基板50が互いに間隙の生じないゼロタッチで当接(直接当接)していても、シール部材51は、図6(B)中に符号52aで示す如くプレート基板50との接着厚さを確保することができる。シール部材51は、カソード側セパレータ41とプレート基板50の間だけでなく、アノード側セパレータ40とプレート基板50の間をもシールすることができる。つまり、一つのシール部材51で、セパレータ40,41及びプレート基板50の3つの部材間をシールすることができ、部材間の簡略化及び小型化を実現する。
シール部材51をプレート基板50の両面に渡って連続して設けると、セパレータ40,41やプレート基板50の変位などに伴って割れや断裂が生じ易くなる。これに対し、シール部材51は、プレート基板50の主面50aから側壁面50bを被覆している。つまり、シール部材51は、プレート基板50の片面に設けてある。このため、セパレータ40,41やプレート基板50が変位しても、割れや断裂を防止することができる。なお、本実施形態においては、シール部材51を例として説明しているが、他のシール部材52〜54についても同様である。
図7(A)は、図4に示すD‐D線に沿って、燃料電池スタックAの一部を拡大して示す断面図である。図7(B)は、図7(A)の包囲線IIIで示す部分を拡大した断面図である。すなわち、図7には、水素含有ガス供給用のマニホールド孔M3を区画するプレート基板50の各辺縁部と、これの辺縁部に形成したシール部材52を示している。
シール部材52は、横長方形の断面形状を有するシール基台52aと、シール基台52aの下面から突出した、断面三角形を有するシールリップ52bとを有する。シール部材52は、シール部材51と同様にシールに関与するものであり、弾性変形可能な公知の例えばゴム材である。
シール基台52aの上面には段差が形成され、シール部材52は、マニホールド孔M3を区画するプレート基板50の一主面(図示下面)50cと側壁面50bを被覆している。シールリップ52bは、プレート基板50の側壁面50bよりもマニホールド孔M3の内方(図7において左方)に偏移している。すなわち、シールリップ52bは、マニホールド孔M3を形成したプレート基板50の側方に偏移させて形成してあり、プレート基板50の主面から外れた位置に形成してある。
シールリップ52bの先端は、下側に隣接する燃料電池セル20のアノード側セパレータ40に接触している。セパレータ40,41及びプレート基板50の3つの部材のうち、図7に包囲線IIIで示す部位のように、カソード側セパレータ41とプレート基板50が互いに間隙の生じないゼロタッチで当接(直接当接)している。シール部材52は、アノード側セパレータ40とプレート基板50の間だけでなく、カソード側セパレータ41とプレート基板50の間をもシールすることができる。
つまり、一つのシール部材52は、セパレータ40,41及びプレート基板50の3つの部材間をシールすることができ、部材間の簡略化及び小型化を実現する。さらに、シール部材52は、図6に示すシール部材51と同様に、セパレータ40,41やプレート基板50が変位しても、割れや断裂を防止することができる。
図6に示すシール部材51と、図7に示すシール部材52は、プレート基板50の上下面に相対的に配設される。すなわち、シールリップ51b、52bは、プレート基板50の表面と裏面のそれぞれに設けられ、プレート基板50の中心軸(長軸中心線O1)を中心として対称な位置に設けられている。具体的には、図4に示す冷却媒体の流通方向(X方向)と平行な長軸中心線O1を中心にして、マニホールド孔M1に形成したシール部材51の上向きのシールリップ51bと、マニホールド孔M3に形成したシール部材52の下向きのシールリップ52bとを、プレート基板50の上下面に相対的に配設する。これにより、シールを安定して行なうことができる。
一つのシール部材で3枚のプレート(2つの空間)のシールをする場合において、マニホールド孔部分において直接当接する2枚の部材の組み合わせが異なる。このため、シール部材51,52を上下に相対的に配置することで、夫々の組合せの相違に対応することができ、プレート基板50の両面において安定したシールを実現する。また、ガス流路とシール部材の高さを両立させることができるのでシール部材の小型化を図ることができる。これと共に、シール部材の高さ(厚み)を充分に確保でき、シールの信頼性を向上させられる。
図8(A)は、図4に示すE‐E線に沿う断面図であり、図8(B)は、図8(A)に包囲線IVで示す部分の拡大図である。図8(A)は、マニホールド孔M4の辺縁部に連続して形成された他例に係るシール部材及びその周辺部を拡大した断面図である。なお、上述した実施形態において説明したものと同等のものについては、それらと同一の符号を付して説明を省略する。
マニホールド孔M4を区画するプレート基板50の辺縁部50dは、プレート基板50の表面から上側に向けて折曲されている。これに対して、シール部材53は、辺縁部50dの全周にわたって無端状(環状)に形成してある。
シール部材53は、弾性変形可能な公知の材料、例えばゴム材である。シール部材53は、断面横長方形にしたシール基台53aと、シール基台53aの上面から突出した断面三角形を有するシールリップ53bとを有する。シール部材51、52と同様にシールに関与するものである。
シール基台53aの外半部は、マニホールド孔M4を区画するプレート基板50の二つの主面(図示上下面)50a,50c及び側壁面50bを被覆するように成形され、シール部材53はプレート基板50に固定されている。これにより、シールリップ53bは、プレート基板50の側壁面50bよりもマニホールド孔M4の内方(図8において右方)に偏移している。すなわち、シールリップ53bは、マニホールド孔M4を形成したプレート基板50の側方に偏移している。
シール部材53は、シール部材51、52と同様に、セパレータ40,41及びプレート基板50の3つの部材間をシールすることができる。このほかにも、マニホールド孔M4の内周面を全体的に被覆することで、絶縁性をより高めることができる。
図9(A)は、他例に係る内周シール部材及びその周辺を拡大した断面図であって、図4に示すC‐C線に沿う断面である。図9(B)は、図9(A)中の包囲線Vで示す部分を拡大した断面図である。なお、上述した実施形態において説明したものと同等のものについては、それらと同一の符号を付して説明を省略する。
プレート基板50には、内周シール部材56Aが配設されている。プレート基板50には、内周シール部材56Aの高さを勘案して、シール配設凹部50e,50eが上下両面に設けられている。内周シール部材56Aは、弾性変形可能な公知の材料、例えばゴム材からなる。内周シール部材56Aは、断面横長方形のシール基台56aと、シール基台56aの表面から突出した断面三角形のシールリップ56bとを備える。
プレート基板50にシール配設凹部50e,50eを形成することにより、プレート基板50を部分的に薄肉化すると同時に、内周シール部材56Aを厚肉化し得る。これにより、許容圧縮量の大きい(シメシロの大きい)シール部材を採用することができる。さらに、シール部材をなすゴムの圧縮率を低減させることができ、シール部材のロバスト性が向上し、へたり寿命が延びる。
各シール部材51〜56を備えたシールプレートP1は、先述した燃料電池スタックAに適用される。シールプレートP1は、セルモジュールMに対して容易に取外し可能なため、シール部材51〜56が劣化してもシールプレートP1のみ交換すればよい。このため、燃料電池セル20並びにセルモジュールMの継続使用に貢献することができる。
また、図9(A)に示す燃料電池スタックにおいては、第2シール部材(55)のセル積層方向の厚さが、第1シール部材51(52〜54)の厚さよりも大きい。つまり、第2シール部材は、シールプレートP1の外周部に設けた外周シール部材55であり、隣接するセルフレーム30同士の間をシールする。このため、外周シール部材55は、マニホールド孔の辺縁部に設けた第1シール部材51(52〜54)よりも大きい厚さ(高さ)が必要である。そこで、第1のシール部材51〜54及び第2のシール部材55のセル積層方向の厚さ(高さ)関係を上述のようにすることで、絶縁性に関するロバスト性を高めることができる。
図10〜図14は、本発明の第2〜第5の実施形態に係るシールプレートを示す平面図である。なお、上述した実施形態において説明したものと同等のものについては、それらと同一の符号を付して説明を省略する。
〈第2実施形態〉
図10に示すように、第2の実施形態に係るシールプレートP2は、第2の例に係る圧力損失調整部B2を備える。圧力損失調整部B2は、プレート基板50の長軸中心線O1に平行に形成された上流側スリット列60A及び下流側スリット列61Aと、プレート基板50の長軸線O1と直交する短軸中心線O2に平行な二つのスリット62,62とを有する。
上流側スリット列60Aは、冷却流体の流通方向(X方向)の上流側に配列した10本のスリット60bからなる。本実施形態においては、長軸中心線O1を挟む両側に、互いに所要の間隔W1をおいて5本のスリット60bずつ振り分けて配列している。各スリット60bは、上記したスリット60aよりも幅狭であり、かつ互いに同じ長さ及び幅に形成しているとともに、互いに平行にして配列されている。
下流側スリット列61Aは、冷却流体の流通方向(X方向)の下流側に配列した10本のスリット61bからなる。各スリット61bは、スリット60bと同じ形状で同じ大きさを有し、且つ同じ配列にしたものである。本実施形態においては、長軸中心線O1を挟む両側に、互いに所要の間隔W1をおいて5本のスリット61bずつ振り分けて配列している。
シールプレートP2は、隣接するセルモジュールM,M同士の間の冷却用流通路F3における圧力損失を低減又は調整することができる。例えば、隣接する燃料電池セル20,20同士の間にも冷却用流通路を有する燃料電池スタックにおいて、シールプレートP2は、全ての冷却用流路における冷却流体の流量のばらつきを抑制することができる。
〈第3実施形態〉
図11に示すように、第3の実施形態に係るシールプレートP3は、第3の例に係る圧力損失調整部B3を有する。圧力損失調整部B3は、プレート基板50の長軸中心線O1に平行に形成された上流側スリット列60B及び下流側スリット列61Bと、プレート基板50の長軸線O1と直交する短軸中心線O2に平行な二つのスリット62,62とを有する。
上流側スリット列60Bは、冷却流体の流通方向(X方向)の上流側に配列した15本のスリット60cを備える。スリット60cは、短辺間に等間隔に且つ互いに平行に配列されている。下流側スリット列61Bは、冷却流体の流通方向(X方向)の下流側に配列した8本のスリット61cからなる。スリット61cは、スリット60cと同じ形状、大きさであり、スリット60cの配置間隔の二倍の間隔で配列されている。
シールプレートP3は、先の実施形態と同様に、隣接するセルモジュールM,M同士の間の冷却用流通路F3における圧力損失を低減又は調整することができる。このほか、冷却用流通路F3の上流側と下流側の圧力損失を調整することもできる。さらに、例えば、隣接する燃料電池セル20,20同士の間にも冷却用流通路を有する燃料電池スタックにおいて、シールプレートP3は、全ての冷却用流路における冷却流体の流量のばらつきを抑制することができる。
〈第4実施形態〉
図12に示すように、第4の実施形態に係るシールプレートP4は、第4の例に係る圧力損失調整部B4を有する。圧力損失調整部B4は、プレート基板50の長軸中心線O1に平行に形成された上流側スリット列60C及び下流側スリット列61Cと、プレート基板50の長軸線O1と直交する短軸中心線O2に平行な二つのスリット62,62とを有する。
上流側スリット列60Cは、冷却流体の流通方向(X方向)の上流側に配列した8本のスリット60dからなる。スリット60dは、短辺間に等間隔にしかつ互いに平行にして配列されている。スリット60dは、図4のスリット60aと同じ形状及び大きさである。下流側スリット列61Cは、冷却流体の流通方向(X方向)の下流側に配列した7本のスリット61dからなる。スリット61dは、短辺間に等間隔に且つ互いに平行に配列されている。スリット61dは、スリット60dと同じ形状で同じ大きさであり、X方向から見て、それらスリット60dの間に位置している。
シールプレートP4は、先の実施形態と同様に、隣接するセルモジュールM,M同士の間の冷却用流通路F3における圧力損失を低減又は調整することができる。このほか、冷却用流通路F3の上流側と下流側の圧力損失を調整することもできる。さらに、例えば、隣接する燃料電池セル20,20同士の間にも冷却用流通路を有する燃料電池スタックにおいて、シールプレートP4は、全ての冷却用流路における冷却流体の流量のばらつきを抑制することができる。
〈第5実施形態〉
図13に示すように、第5の実施形態に係るシールプレートP5は、第5の例に係る圧力損失調整部B5を有する。圧力損失調整部B5は、プレート基板50の長軸中心線O1に平行に形成された上流側スリット列60D及び下流側スリット列61Dと、プレート基板50の長軸線O1と直交する短軸中心線O2に平行な二つのスリット62,62とを有する。
上流側スリット列60Dは、冷却流体の流通方向(X方向)の上流側に配列した8本のスリット60e〜60h、60e〜60hを有する。スリット60e〜60h、60e〜60hは、短辺間に等間隔にし且つ互いに平行に配列されている。スリット60e〜60hは、短辺の両外側から長軸中心線O1にかけて次第に全長が短くなるように順次配列されている。下流側スリット列61Dは、冷却流体の流通方向(X方向)の下流側に配列した8本のスリット60e〜60h、60e〜60hを有する。下流側のスリット60e〜60h、60e〜60hは、上流側のスリット60e〜60h、60e〜60hと同じ構成を有する。
シールプレートP5にあっても、先の実施形態と同様に、隣接するセルモジュールM,M同士の間の冷却用流通路F3における圧力損失を低減又は調整することができる。例えば、隣接する燃料電池セル20,20同士の間にも冷却用流通路を有する燃料電池スタックにおいて、シールプレートP5は、全ての冷却用流路における冷却流体の流量のばらつきを抑制することができる。
ここで、図14は、上記した図4に示すV−V線に沿う断面を拡大して示す断面図であり、シールプレートP1とセパレータ40、41との相対的な位置関係を示している。また、図15は、図14のプレート基板50に比べてプレート基板50’の厚みを大きくした例を示す。なお、上述した実施形態において説明したものと同等のものについては、それらと同一の符号を付して説明を省略する。
図14に示すシールプレートP1とセパレータ40,41とは、以下に示す位置関係で接合されている。すなわち、プレート基板50のスリット60aは、セパレータ40,41の凸部40b,41bに対向せず、凹部40a,41aに臨んでいる。スリット60aの幅が凹部40a,41aの開口部の寸法W2よりも小さい場合、凹部40a,41aを面内方向(積層方向に垂直な方向)に偏らせる。これにより、凹部40a、41a内におけるスリット60aの位置を調整し、プレート基板50の凹部40a,41a内への突出寸法W3、W4を調整することができる。
このように、プレート基板50の凹部40a,41a内への突出寸法W3、W4を調整することによって、冷却用流路の圧力損失を低減若しくは調整することができる。また、シールプレートP1とセパレータ40,41を上記の位置関係にした場合には、図15にプレート基板50´を示すように、その厚みを大きくしても調整することができる。
セルモジュールMの積層方向(Z方向)におけるシールプレートP1(プレート基板50’)の厚さは、セパレータ40,41の厚さよりも厚い。シールプレートP1は、シールプレートP1の外周に設けられた第2のシール部材(外周シール部材55)によって、冷却水をシールする。外部との間の絶縁性を確保するために、外周シール部材55とプレート基板50、50’とは強固に固定されることが望ましい。このとき、弾性を持つ外周シール部材55とプレート基板50、50’とを固定するためには、プレート基板50’の厚さが一枚のセパレータ40、41の厚さよりも厚い必要がある。なぜなら、外周シール部材55を固定するためにセパレータ40、41では薄いからである。そこで、積層方向(Z方向)におけるプレート基板50’の厚さを、1枚のセパレータ40,41の厚さよりも大きくする。これにより、外周シール部材55とプレート基板50、50’とを強固に固定することができる。なお、プレート基板50’の厚さは、外周シール部材55との間の固定力を考慮した最低限の厚さが好ましい。積層方向(Z方向)の燃料電子スタックAの厚さを不要に増大させることを防止できる。
図16,17は、図4のV‐V線に沿う切断面の一部を拡大して示す断面図である。図16及び図17に示すように、セパレータ40,41の間にシールプレートP1が挿入されている。図16では、セパレータ40,41の凹部40a,41a及び凸部40b,41bの配列ピッチは、プレート基板50に形成されたスリット60aの配列ピッチの2分の1倍になっている。スリット60aの幅は、凹部40a,41aの開口部の寸法W2とほぼ同じである。
図17では、セパレータ40,41の凹部40a,41a及び凸部40b,41bの配列ピッチは、プレート基板50に形成したスリット60aの配列ピッチと同じである。スリット60aの幅は、凹部40a,41aの開口部の寸法W2と同じである。
図16,17に示すように、プレート基板50のスリット60aを形成していない部分は、一対のセパレータ40,41の凸部40b,41bで挟持されている。よって、導電性を阻害することなく、面圧の抜け(部分的な減少)を防止できるとともに、セパレータ40、41等に変形を生じさせることがない。
図18,19は、本発明の第6,第7の実施形態に係るシールプレートP6、P7を示す平面図である。なお、上述した実施形態において説明したものと同等のものについては、それらと同一の符号を付して説明を省略する。
〈第6実施形態〉
本発明に係る第6の実施形態に係るシールプレートP6は、第6の例に係る圧力損失調整部B6,B6を有する。圧力損失調整部B6,B6は、冷却用流通路を流通する冷却流体の圧力損失を低減或いは調整する機能を有する。具体的には、圧力損失調整部B6,B6は、シールプレートP6のアクティブエリア近傍の領域において冷却用流通路の断面を低減させることによって圧力損失を低減或いは調整する。
圧力損失調整部B6,B6は、両ディフューザ領域D1に配設されている。圧力損失調整部B6,B6は、長軸中心線O1から短辺の両側部に向けて積層方向Zから見た開口面積が増大する開口(以下、「開口B6」と記す。)からなる。開口B6は、短軸中心線O2に平行な長辺70a、長軸中心線O1に平行な短辺70b,70b及び長辺70cにより区画される。長辺70cは、短辺の両側部から長軸中心線O1に向けて内側に突出している。
シールプレートP6は、先の実施形態と同様に、隣接するセルモジュールM,M同士の間の冷却用流通路F3における圧力損失を低減又は調整することができる。とくに、開口の冷却流体の流通方向(X方向)の長さを、プレート基板50の短辺方向の中心で小さくし、端辺の両端部で大きくできる。よって、チャネル間の圧力損失の調整を行なうことができる。例えば、隣接する燃料電池セル20,20同士の間にも冷却用流通路を有する燃料電池スタックにおいては、全ての冷却用流路における冷却流体の流量のばらつきを抑制することができる。
〈第7実施形態〉
本発明に係る第7の実施形態に係るシールプレートP7は、第7の例に係る圧力損失調整部B7,B7を有する。圧力損失調整部B7,B7は、アクティブエリア近傍の領域、本実施形態においては、両ディフューザ領域D1に配設されている。圧力損失調整部B7は、長軸中心線O1から短辺の両側部に向けて積層方向Zから見た開口面積が増大する開口(以下、「開口B7」と記す。)である。開口B7は、短軸中心線O2に平行な長辺70a、長軸中心線O1に平行な短辺70b,70b及び長辺70cにより区画されている。開口B7は、長軸中心線O1に重なる連結片70dにより分割されている。長辺70cは、短辺の両側部から長軸中心線O1に向けて内側に突出している。
シールプレートP7は、先の実施形態と同様に、隣接するセルモジュールM,M同士の間の冷却用流通路F3における圧力損失を低減又は調整することができる。とくに、開口の冷却流体の流通方向(X方向)の長さを、プレート基板50の短辺方向の中心で小さくし、短辺の両側部で大きくできる。このため、チャネル間の圧力損失の調整を行なうことができる。また、例えば、隣接する燃料電池セル20,20同士の間にも冷却用流通路を有する燃料電池スタックにおいては、全ての冷却用流路における冷却流体の流量のばらつきを抑制することができる。
〈第8実施形態〉
図20は、本発明の第8の実施形態に係るシールプレートP8を示す平面図である。図21は、図20に示すシールプレートの端部を拡大した平面図であって、セパレータが備える接着シール80を重ねて示している。なお、上述した各実施形態において説明したものと同等のものについては、それらと同一の符号を付して説明を省略する。
本発明の第8の実施形態に係るシールプレートP8は、圧力損失調整部B8を備える。圧力損失調整部B8は、冷却用流通路F3を流通する冷却流体の圧力損失を低減或いは調整する機能を有する。具体的には、圧力損失調整部B8は、アクティブエリア、又はアクティブエリア近傍、若しくはそれら双方の領域において冷却用流通路F3の断面を低減させる。これにより、圧力損失を低減調整する。冷却用流通路の断面の低減は、冷却流体の流通方向(X方向)及び当該X方向と直交する方向Yの双方を含むものである。
圧力損失調整部B8は、アクティブエリア近傍の両ディフューザ領域D1に配設してある。圧力損失調整部B8は、図21に示すように、セルモジュールM間に形成した冷却用流通路F3に流通する冷却流体の圧力損失を低減調整するための開口部71を有する。開口部71は、冷却流体の流通方向(X方向)に交差する方向Yに架設した補強用の長連結片71c及び短連結片71dを有している。
具体的には、開口部71は、X方向の逆方向に向かう凸形状を有する。開口部71は、短軸中心線O2に平行な細長い長方形の大開口部71aと、長軸中心線O1上に配設された小開口部71bとを有する。また、開口部71は、大開口部71aの短軸中心線O2寄りの短辺間に架設された長連結片71cを有する。長連結片71cにより大開口部71aの一部が区分されて、短軸中心線O2に沿ったスリット62が形成される。さらに、開口部71は、小開口部71bの中間部分に架設された短連結片71dを有する。
このとき、短連結片71dは、セルフレーム30に配設した接着シール80のシール部分80aに対向する位置に配設してある。短連結片71dがシール部分80aを押さえることができる。長連結片71cは、セルフレーム30のディフューザ領域Dに対向する位置に配設されている。これらの長短の連結片71c、71dは、セルフレーム30のディフューザDの変形を抑える働きをする。
燃料電池セル20の一部をなすセパレータ(図21に接着シールのみを示す)にシール部材(80)が配設されている。シールプレートP8のうち、シール部材(80)が配設されていない部位にスリット62を形成する。
これにより、シールプレートP8は、先の実施形態と同様に、隣接するセルモジュールM,M同士の間の冷却用流通路F3における圧力損失を低減又は調整することができる。また、例えば、隣接する燃料電池セル20,20同士の間にも冷却用流通路を有する燃料電池スタックにおいては、全ての冷却用流路における冷却流体の流量のばらつきを抑制することができる。
短連結片71dは、図21に示すように、短軸方向に配置されるシール部分80aに対向する領域に配設される。スリット62は、シール部材(80)が配設されていない領域に配設される。例えばガス圧が冷却水圧よりも大きくなって、ガス圧と冷却水圧との差圧がシール部材80に作用する場合を考える。この場合、シール部材80が接着シールであれば剥がす方向への力、シール部材80が圧縮シールであればシメシロ(許容圧縮量)を減らす方向への力をそれぞれ作用させない。これにより、シール部材80の信頼性や耐久性を向上させることができる。
シールプレートP8は、セルモジュールM間に形成した冷却用流通路F3に流通する冷却流体の圧力損失を低減或いは調整するための開口部71を有する。開口部71が、冷却流体の流通方向(X方向)に交差する方向Yに架設した長短の補強用連結片71c、71dを有する。よって、開口部71による圧力損失の調整機能を確保しつつセルフレーム30のディフューザDの変形を抑えることができる。
すなわち、燃料電池スタックAは、シールプレートP8に開口部71を設けることで上述の如く圧力損失を調整し得る。起動時などに発電用ガスの圧力を意図的に増減させて運転する場合、シールプレートP8やセルフレーム30が厚さ方向に変形すると共に、発電用ガスや冷却流体の流量が不安定になって脈動が生じることがある。そこで、シールプレートP1の開口部71に補強用連結片71c、71dを設ける。これにより、運転状態に左右されることなく、シールプレートP8やセルフレーム30の変形を防止して、冷却用流通路F3の容量を安定させる。これにより、冷却流体の流量も安定し、良好な冷却機能と発電機能を維持し得るものとなる。
〈第9実施形態〉
図22(A)は、本発明の第9の実施形態に係るシールプレートP9を示す平面図であり、図22(B)は、図22(A)のVII‐VII線に沿う切断面を部分的に拡大して示す断面図である。なお、上述した実施形態において説明したものと同等のものについては、それらと同一の符号を付して説明を省略する。
図22に示す本発明の第9の実施形態に係るシールプレートP9は、第9の例に係る圧力損失調整部B9を有する。圧力損失調整部B9は、プレート基板50の長軸中心線O1に平行に形成された上流側溝列60E及び下流側溝列61Eと、長軸中心線O1と直交する短軸中心線O2に平行な二つのスリット62,62とを有する。
上流側スリット列60Eは、冷却流体の流通方向(X方向)の上流側に配列した8本の溝60iからなる。本実施形態においては、長軸中心線O1を挟む両側に、互いに所要の間隔W1をおいて4本の溝60iがそれぞれ配列されている。図22(B)に示すように、溝60iは、プレート基板50の両面の対向する部位を、エッチングや絞り加工により削り取ることにより、所要の厚みだけ薄く形成したものである。溝60iは、スリット60aとほぼ同じ幅であり、且つ互いに同じ長さ及び間隔にて形成されており、互いに平行にして配列してある。
下流側溝列61Eは、冷却流体の流通方向(X方向)の下流側に配列した8本の溝61jからなる。溝61jは、溝60iと同じ形状で同じ大きさのものであり、溝60iと同じ配列を有する。
シールプレートP9は、貫通したスリットを有するシールプレートと同様に、隣接するセルモジュールM,M同士の間の冷却用流通路F3における圧力損失を低減又は調整することができる。とくに、溝60i,60jの深さを調整することによっても、圧力損失の低減又は調整を図ることができる。例えば、隣接する燃料電池セル20,20同士の間にも冷却用流通路を有する燃料電池スタックにおいては、全ての冷却用流路における冷却流体の流量のばらつきを抑制することができる。
上述したシールプレートP1〜P9は、燃料電池スタックAに適用して、以下の効果を得ることができる。すなわち、シールプレートP1〜P9はセルモジュールMに対して容易に取外しできる。このため、一つのシールプレートP1〜P9のシール部材51〜56が劣化しても当該シールプレートP1〜P9のみ交換すればよく、セルモジュールMを継続使用できる。また、一つのセルモジュールMが故障した場合には、そのセルモジュールMのみ交換すればよく、シールプレートP1〜P9を継続使用することができる。
さらに、シールプレートP1〜P9を燃料電池スタックAの一つの冷却用流通路F3に介装したときに、他の冷却用流通路F3との間で圧力損失(又は冷却水流量)を整合させることができる。さらに、セルモジュールM内で積層方向の端部に配設した燃料電池セル20と、セルモジュールMの中央部に配設した燃料電池セル20との間で、冷却流体の流量ばらつきを低減することができる。なお、圧力損失調整部の構成は、燃料電池スタック及びシールプレートの各種条件などに応じて、上記各実施形態に例示したものを適宜組み合わせることが可能である。
上述した各実施形態においては、隣接するセルモジュールMの間に区画される空間を冷却媒体の流通路とした例について説明したが、その空間を流通路としない場合でもシールプレートを介装した構成にすることができる。この場合、シールプレートのプレート基板に形成する内周シール部材56は、図23に示すように、プレート基板50の一方の短辺側に配置したマニホールド孔M1〜M3、及び他方の短辺側に配置したマニホールド孔M4〜M6を夫々囲繞するように形成することができる。
〈第10実施形態〉
図24は、本発明の第10実施形態に係わる燃料電池スタックAを示す断面図である。図25(A)は、図24に示すセルモジュールMを示す平面図であり、図25(B)は燃料電池スタックAを示す斜視図である。ここで、図25(A)は、シール部材を説明するために、セルモジュールMにシールプレートのシール部材のみを重ねて示したものである。なお、先の各実施形態と同一の構成部位は、同一符号を付して詳細な説明を省略する。
燃料電池スタックAは、個々の燃料電池セル20の電圧測定を行うために、各燃料電池セル20の一方のセパレータ(図示例ではカソード側セパレータ)41は、外周部の一部に設けられた延長部41Eと、延長部41Eに連続してスタック外側へ突出する電圧測定用タブ41Tとを有している。
図24に示すように、燃料電池セル20のセルフレーム30と延長部41Eとの間、及び隣接する燃料電池セル20のセルフレーム30と延長部41Eとの間に、絶縁性を有する接着シール部90が設けられている。接着シール部90は、燃料電池セル20のセルフレーム30と延長部41Eとの間、及び隣接する燃料電池セル20のセルフレーム30と延長部41Eとの間を密封している。これにより、セパレータ41間の短絡や、外部からの雨水等の侵入を防止している。また、電圧測定用タブ41Tを、各燃料電池セル20の積層方向から見て同じ位置に設ける。つまり、電圧測定用タブ41Tを、図25(B)に示す如く積層方向に直列に配置して、電圧測定用タブ41Tの列に図示しないコネクタを装着する。
電圧測定用タブ41Tの長軸方向の両側にコネクタシール部材57を設ける。コネクタシール部材57は、少なくともセルモジュールMのセル積層方向に延びる連続した膜状部材である。コネクタシール部材57は、積層方向の一端側(図24では下端側、図25(B)では上端側)において、シールプレートP1の外周シール部材55に接触して連続的に延長されている。コネクタシール部材57は、外周シール部材55とは別体である。
さらに、コネクタシール部材57は、セルモジュールMとシールプレートP1とを交互に積層して燃料電池スタックAを構成した際に、セル積層方向の他端側(図24では上端側、図25(B)では下端側)において、隣接するセルモジュールMのコネクタシール部材57と接触する。これにより、各セルモジュールMのコネクタシール部材57は、スタック積層方向に連続状態になる。
燃料電池スタックAは、先の各実施形態と同様に、シール部材51〜57が劣化してもシールプレートP1のみ交換すればよく、セルモジュールMを継続使用できる。このほかに、スタック外側に突出した電圧測定用タブ41Tの周囲の防水性を高めることができる。
燃料電池スタックAは、コネクタシール部材57が、セル積層方向にわたって連続した膜状の部材であるため、電圧測定用タブ41Tに接続したコネクタに密着し易く、双方の接続部分の防水性をより高めることができる。
燃料電池スタックAは、コネクタシール部材57が、シールプレートP1の外周シール部材55と別体であり且つ連続状態になっている。このため、上記した防水性の向上のほか、シールプレートP1だけを取り外すことが可能であり、あるいはコネクタシール部材57だけを取り外すことも可能である。
なお、コネクタシール部材57は、複数のセルモジュールM又は燃料電池スタックAの全体にわたる一体構造にしたり、外周シール部材55と一体構造にしたり、燃料電池スタックAの組み立て後に互いに接合して一体化したりすることが可能である。
以上、実施例に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
例えば、上述した各実施形態においては、各セルモジュールMを構成する燃料電池セル20を互いに同一の積層枚数にしているが、各セルモジュールMを構成する燃料電池セル20の数を互いに異なる枚数としてもよい。
上述した各実施形態においては、シールプレートを導電性の金属材で形成したものを例として示したが、少なくともアクティブエリアを導電性材で形成すればよい。通常、シールプレートは、経時的に安定した導電性を確保するために表面処理を行うが、この場合もアクティブエリアのみに表面処理を行えばよい。これにより、処理の効率化を図ることができる。また、アクティブエリア部の材料としてカーボン材を用いてもよい。この場合は表面処理は不要となる。
各実施形態に示す圧力損失調整部が複数のスリット又は溝を有するものとして説明したが、スリットと溝とを混在させた構成にしてもよい。
特願2012−053310号(出願日:2012年3月9日)、及び特願2012−275479号(出願日:2012年12月18日)の全内容は、ここに援用される。
本発明の実施形態によれば、シール部材を備えたシールプレートはセルモジュールに対して容易に取外し可能なため、シール部材が劣化してもシールプレートのみ交換すればよく、セルモジュールを継続使用できる。よって、本発明は産業上利用可能である。
20 燃料電池セル
30 セルフレーム(絶縁部材)
33 膜電極接合体
40,41 セパレータ
50 プレート基板
51〜54 シール部材(第1シール部材)
51a,52b シールリップ
55 外周シール部材(第2シール部材)
56 内周シール部材(第3シール部材)
56b シールリップ
71 開口部
71c 長連結片(補強用連結片)
71d 短連結片(補強用連結片)
A 燃料電池スタック
M セルモジュール
M1〜M6 マニホールド孔
P1〜P9 シールプレート

Claims (14)

  1. 外周部に絶縁部材を有する膜電極接合体を一対のセパレータで挟持して成る複数の燃料電池セルを積層し、且つ隣接する燃料電池セルの絶縁部材同士を接着して成るセルモジュールと、
    積層した前記セルモジュールの間に介装されるシールプレートと、を備え、
    前記シールプレートは、
    前記燃料電池セルを流通する二種類の発電用ガスを互いに分離して流入出させるための複数のマニホールド孔と、
    各マニホールド孔の辺縁部に、前記各マニホールド孔を流通する発電用ガスをシールするための第1のシール部材と、
    を備えたことを特徴とする燃料電池スタック。
  2. 前記シールプレートが、前記シールプレートの外周部に沿って、前記シールプレートと前記燃料電池セルとの間をシールする第2のシール部材を備えていることを特徴とする請求項1に記載の燃料電池スタック。
  3. 前記第2のシール部材は、電気絶縁性を有し、前記セパレータよりも外側に配置されていることを特徴とする請求項2に記載の燃料電池スタック。
  4. 前記セルモジュールの積層方向における前記シールプレートの厚さは、前記セパレータの厚さよりも大きいことを特徴とする請求項2又は3に記載の燃料電池スタック。
  5. 前記シールプレートは、冷却水を流入出させるためのマニホールド孔を有し、
    当該マニホールド孔は、シールされていない
    ことを特徴とする請求項2に記載の燃料電池スタック。
  6. 前記シールプレートが、前記第1のシール部材と前記第2のシール部材との間に、第3のシール部材を備えていることを特徴とする請求項2に記載の燃料電池スタック。
  7. 前記第1〜第3のシール部材が、電気絶縁性を有することを特徴とする請求項6に記載の燃料電池スタック。
  8. 前記燃料電池セル同士を接着する接着剤と第3のシール部材とは、前記セルモジュールの積層方向から見て重複するように配置されていることを特徴とする請求項6又は7に記載の燃料電池スタック。
  9. 前記第2のシール部材の前記セルモジュールの積層方向の厚さが、第1のシール部材の前記セルモジュールの積層方向の厚さよりも大きいことを特徴とする請求項2〜8のいずれか1項に記載の燃料電池スタック。
  10. 複数の燃料電池セルを互いに積層して一体化した少なくとも二つ以上のセルモジュール間に介装して用いられるシールプレートであって、
    前記燃料電池セルを流通する二種類の発電用ガスを互いに分離して流入出させるためのマニホールド孔が形成されたプレート基板と、
    前記マニホールド孔の辺縁部に設けられた、前記マニホールド孔を流通する発電用ガスをシールするためのシール部材と、を備え、
    前記シール部材は、
    前記マニホールド孔の辺縁部に設けたシール基台と、
    前記シール基台の表面から突出するシールリップとを有し、
    前記シールリップは、前記マニホールド孔が形成された前記プレート基板の側壁面よりも前記マニホールド孔の中心に近い位置に配置されていることを特徴とするシールプレート。
  11. 前記シールリップは、前記プレート基板の表面と裏面のそれぞれに設けられ、前記プレート基板の中心軸を中心として対称な位置に設けられていることを特徴とする請求項10に記載のシールプレート。
  12. 前記プレート基板の外周縁部をシールする外周シール部材を更に有することを特徴とする請求項10又は11に記載のシールプレート。
  13. 前記シールリップは前記プレート基板の上に位置しており、前記シール部材を配設したプレート基板の前記シール部材を配設した部位は、その他の部位に比べて薄肉化したことを特徴とする請求項10〜12のいずれか1項に記載のシールプレート。
  14. 前記プレート基板は、前記シールプレートのアクティブ領域近傍の前記プレート基板の断面積を削減することにより、前記セルモジュール間に形成された冷却用流通路を流通する冷却流体の圧力損失を低減或いは調整するための開口部
    却流体の流通方向に交差する方向に前記開口部を跨いで架設した補強用連結片
    を有することを特徴とする請求項10〜13のいずれか1項に記載のシールプレート。
JP2014543388A 2012-03-09 2013-03-07 燃料電池スタック、及び燃料電池スタックに用いるシールプレート Active JP5907277B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014543388A JP5907277B2 (ja) 2012-03-09 2013-03-07 燃料電池スタック、及び燃料電池スタックに用いるシールプレート

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012053310 2012-03-09
JP2012053310 2012-03-09
JP2012275479 2012-12-18
JP2012275479 2012-12-18
JP2014543388A JP5907277B2 (ja) 2012-03-09 2013-03-07 燃料電池スタック、及び燃料電池スタックに用いるシールプレート
PCT/JP2013/001444 WO2013132860A1 (en) 2012-03-09 2013-03-07 Fuel cell stack and seal plate used for the same

Publications (2)

Publication Number Publication Date
JP2015510218A JP2015510218A (ja) 2015-04-02
JP5907277B2 true JP5907277B2 (ja) 2016-04-26

Family

ID=48142041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014543388A Active JP5907277B2 (ja) 2012-03-09 2013-03-07 燃料電池スタック、及び燃料電池スタックに用いるシールプレート

Country Status (6)

Country Link
US (1) US10418649B2 (ja)
EP (1) EP2823526B1 (ja)
JP (1) JP5907277B2 (ja)
CN (1) CN104170132B (ja)
CA (1) CA2866812C (ja)
WO (1) WO2013132860A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2823525B1 (en) * 2012-03-09 2015-11-18 Nissan Motor Co., Ltd. Seal plate and fuel cell stack using the same
JP5839122B2 (ja) * 2012-07-02 2016-01-06 日産自動車株式会社 燃料電池スタック
EP2924792B1 (en) * 2012-11-22 2019-01-16 Nissan Motor Co., Ltd. Fuel cell stack
JP6082362B2 (ja) * 2014-05-30 2017-02-15 本田技研工業株式会社 燃料電池
JP2016004739A (ja) * 2014-06-19 2016-01-12 トヨタ自動車株式会社 燃料電池
EP3297081B1 (en) * 2015-05-13 2020-06-10 Nissan Motor Co., Ltd. Fuel cell stack
WO2017013710A1 (ja) 2015-07-17 2017-01-26 日産自動車株式会社 燃料電池スタック
JP6493817B2 (ja) * 2015-10-05 2019-04-03 日産自動車株式会社 燃料電池スタック
US11799096B2 (en) * 2020-10-20 2023-10-24 Honda Motor Co., Ltd. Power generation cell and fuel cell stack
US20220393219A1 (en) * 2021-06-08 2022-12-08 Bloom Energy Corporation Fuel plenum and fuel cell stack including same
CN116895781B (zh) * 2023-09-04 2023-12-15 上海治臻新能源股份有限公司 一种燃料电池单电池及燃料电池电堆

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3489181B2 (ja) * 1994-03-10 2004-01-19 トヨタ自動車株式会社 燃料電池の単電池およびその製造方法
DE19821767C2 (de) 1998-05-14 2000-06-08 Siemens Ag Stapel aus Brennstoffzellen mit Flüssigkeitskühlung und Verfahren zur Kühlung eines BZ-Stapels
JP3951484B2 (ja) * 1998-12-16 2007-08-01 トヨタ自動車株式会社 燃料電池
JP3776300B2 (ja) * 2000-09-11 2006-05-17 本田技研工業株式会社 燃料電池スタック
US6596427B1 (en) * 2000-11-06 2003-07-22 Ballard Power Systems Inc. Encapsulating seals for electrochemical cell stacks and methods of sealing electrochemical cell stacks
JP3571696B2 (ja) * 2001-01-30 2004-09-29 本田技研工業株式会社 燃料電池及び燃料電池スタック
JP4405097B2 (ja) * 2001-03-06 2010-01-27 本田技研工業株式会社 燃料電池スタックおよびその運転方法
CA2403342C (en) * 2001-09-17 2007-07-31 Honda Giken Kogyo Kabushiki Kaisha Fuel cell stack
US6924052B2 (en) * 2002-04-24 2005-08-02 General Motors Corporation Coolant flow field design for fuel cell stacks
TW581327U (en) * 2002-12-04 2004-03-21 Asia Pacific Fuel Cell Tech Integrated dual electrode plate module of fuel cell set
JP4109570B2 (ja) * 2003-05-08 2008-07-02 本田技研工業株式会社 燃料電池
US6942941B2 (en) * 2003-08-06 2005-09-13 General Motors Corporation Adhesive bonds for metalic bipolar plates
JP4956890B2 (ja) * 2003-11-25 2012-06-20 トヨタ自動車株式会社 燃料電池
JP4862243B2 (ja) 2003-12-24 2012-01-25 トヨタ自動車株式会社 燃料電池スタック
JP4928067B2 (ja) * 2004-03-25 2012-05-09 本田技研工業株式会社 燃料電池及び燃料電池用金属セパレータ
EP1653537A1 (de) * 2004-10-29 2006-05-03 Sgl Carbon Ag Kühlplattenmodul für einen Brennstoffzellenstack
WO2007129642A1 (ja) * 2006-05-01 2007-11-15 Honda Motor Co., Ltd. 燃料電池
JP2008218278A (ja) * 2007-03-06 2008-09-18 Mitsubishi Materials Corp 平板積層型の燃料電池
JP4930176B2 (ja) * 2007-05-07 2012-05-16 トヨタ自動車株式会社 燃料電池、燃料電池用メタルセパレータ及び燃料電池の製造方法
JP5133616B2 (ja) * 2007-06-28 2013-01-30 本田技研工業株式会社 燃料電池
JP5306615B2 (ja) 2007-08-09 2013-10-02 本田技研工業株式会社 燃料電池
JP4526093B2 (ja) * 2008-04-04 2010-08-18 東海ゴム工業株式会社 燃料電池モジュール
JP5412804B2 (ja) * 2008-11-19 2014-02-12 日産自動車株式会社 燃料電池スタック
CN102227842B (zh) 2008-11-28 2014-03-12 日产自动车株式会社 密封构造及具有该密封构造的燃料电池
JP5219774B2 (ja) * 2008-12-17 2013-06-26 東海ゴム工業株式会社 燃料電池用接着性シール部材
WO2010100906A1 (ja) * 2009-03-04 2010-09-10 パナソニック株式会社 高分子電解質型燃料電池用ガスケット
JP5097159B2 (ja) * 2009-04-01 2012-12-12 東海ゴム工業株式会社 燃料電池モジュールの製造方法、および燃料電池の製造方法
JP2010287367A (ja) * 2009-06-10 2010-12-24 Toyota Motor Corp 燃料電池を構成する発電モジュール
DE102009041179A1 (de) * 2009-09-11 2011-03-24 Emitec Gesellschaft Für Emissionstechnologie Mbh Fördervorrichtung für ein Reduktionsmittel
KR101173864B1 (ko) * 2010-06-10 2012-08-14 삼성에스디아이 주식회사 연료전지 시스템용 스택
EP2823525B1 (en) * 2012-03-09 2015-11-18 Nissan Motor Co., Ltd. Seal plate and fuel cell stack using the same

Also Published As

Publication number Publication date
US20150050577A1 (en) 2015-02-19
EP2823526A1 (en) 2015-01-14
CN104170132A (zh) 2014-11-26
WO2013132860A1 (en) 2013-09-12
CA2866812A1 (en) 2013-09-12
JP2015510218A (ja) 2015-04-02
CA2866812C (en) 2017-03-14
CN104170132B (zh) 2016-08-24
EP2823526B1 (en) 2015-11-18
US10418649B2 (en) 2019-09-17

Similar Documents

Publication Publication Date Title
JP5907277B2 (ja) 燃料電池スタック、及び燃料電池スタックに用いるシールプレート
JP5846315B2 (ja) シールプレート及びこれを用いた燃料電池スタック
JP6118225B2 (ja) 燃料電池用樹脂枠付き電解質膜・電極構造体
EP2579376B1 (en) Fuel cell
CN109980240B (zh) 发电单电池
JP5482991B2 (ja) 燃料電池の密封構造
US9196911B2 (en) Fuel cell gas diffusion layer integrated gasket
JP6778249B2 (ja) 燃料電池スタック
CN112018407A (zh) 燃料电池
JP5077528B2 (ja) 燃料電池用ガスケット
JP2006331783A (ja) 燃料電池用単セル
US11777110B2 (en) Fuel cell
JP5365162B2 (ja) 燃料電池
US9843063B2 (en) Fuel cell
JP6150060B2 (ja) フレーム付き膜電極接合体、燃料電池用単セル及び燃料電池スタック
JP2006344434A (ja) 燃料電池
JP7236913B2 (ja) 燃料電池用分離板組立体およびこれを含む燃料電池スタック
JP5332399B2 (ja) 燃料電池用セパレータ及びそれを用いた燃料電池
JP2007250206A (ja) 燃料電池
JP7083867B2 (ja) 金属セパレータ及び燃料電池スタック
JP2011048970A (ja) 燃料電池
JP6132819B2 (ja) 燃料電池
CN113937316A (zh) 燃料电池用金属隔板以及发电单电池
JP2009037863A (ja) 燃料電池
JP2021015766A (ja) 燃料電池用金属セパレータ、接合セパレータ及び発電セル

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160307

R151 Written notification of patent or utility model registration

Ref document number: 5907277

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151