JP4405097B2 - 燃料電池スタックおよびその運転方法 - Google Patents
燃料電池スタックおよびその運転方法 Download PDFInfo
- Publication number
- JP4405097B2 JP4405097B2 JP2001061499A JP2001061499A JP4405097B2 JP 4405097 B2 JP4405097 B2 JP 4405097B2 JP 2001061499 A JP2001061499 A JP 2001061499A JP 2001061499 A JP2001061499 A JP 2001061499A JP 4405097 B2 JP4405097 B2 JP 4405097B2
- Authority
- JP
- Japan
- Prior art keywords
- stack
- sub
- reaction
- gas
- supply
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04119—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0258—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0258—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
- H01M8/0263—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0267—Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/241—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2457—Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
- H01M8/2483—Details of groupings of fuel cells characterised by internal manifolds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/249—Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0082—Organic polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04097—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/249—Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
- H01M8/2495—Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies of fuel cells of different types
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Description
【発明の属する技術分野】
本発明は、固体高分子電解質膜をアノード側電極とカソード側電極とで挟んで構成される接合体を有する単位セルを備え、複数個の前記単位セルを重ね合わせて構成される燃料電池スタックおよびその運転方法に関する。
【0002】
【従来の技術】
通常、固体高分子型燃料電池(PEFC)は、高分子イオン交換膜(陽イオン交換膜)からなる電解質膜を採用しており、この電解質膜の両側に、それぞれカーボンを主体とする基材に貴金属系の触媒電極層を接合したアノード側電極およびカソード側電極を対設して構成される接合体(電解質・電極接合体)を、セパレータ(バイポーラ板)によって挟持することにより構成される単位セル(単位発電セル)を備えており、通常、この単位セルを所定数だけ積層して燃料電池スタックとして使用されている。
【0003】
この種の燃料電池において、アノード側電極に供給された燃料ガス、例えば、主に水素を含有するガス(以下、水素含有ガスともいう)は、触媒電極上で水素がイオン化され、電解質を介してカソード側電極側へと移動する。その間に生じた電子が外部回路に取り出され、直流の電気エネルギとして利用される。なお、カソード側電極には、酸化剤ガス、例えば、主に酸素を含有するガスあるいは空気(以下、酸素含有ガスともいう)が供給されているために、このカソード側電極において、水素イオン、電子および酸素が反応して水が生成される。
【0004】
ところで、上記の燃料電池スタックでは、電解質膜が乾燥すると、高出力密度運転を維持することができなくなり、前記電解質膜を適切に加湿する必要がある。このため、従来から種々の加湿方式が採用されている。例えば、燃料電池スタックの外部にバブラー等の加湿器を備えており、反応ガス(燃料ガス/酸化剤ガス)を加湿して接合体に水分を供給することによって、前記接合体を構成する電解質膜を加湿する外部加湿法や、加湿器(加湿構造)を単位セル内部に備えて前記電解質膜を加湿する内部加湿法や、該内部加湿法に属し該電解質膜の内部における電気化学反応の結果発生した生成水を利用して加湿する自己加湿法等が知られている。
【0005】
【発明が解決しようとする課題】
しかしながら、上記の外部加湿法では、燃料電池スタックの外部に付加装置として加湿器が設けられるため、燃料電池全体が大型化してしまい、占有スペースが拡大するという問題が指摘されている。しかも、特に燃料電池の負荷を急激に上昇させた際等に、加湿器の追従性が問題となる場合がある。
【0006】
また、上記の内部加湿法は、電解質膜の内部に埋め込まれた吸水糸による加湿法や、アノード側から水透過板を通した加湿法や、電解質膜のアノード側に吸水糸を接触させる加湿法が一般的である。ところが、この種の方式では、何らかの原因で加湿が不十分になった際、適切な補修が困難であるという問題が指摘されている。
【0007】
さらに、上記の自己加湿法は、例えば、電解質膜内に白金の微粒子を分散させ、アノード側電極およびカソード側電極から進入してくる水素ガスおよび酸素ガスの反応により前記電解質膜内部から水を生成させる方式や、電解質膜の厚さを非常に薄くしてカソード側電極側で生成される水を拡散させ、アノード側電極側に水を補給する方式が一般的である。しかしながら、この種の方式では、特別な電解質膜を製作しなければならず、コストが高騰するとともに、所望の特性を十分に備えた電解質膜を得ることが困難であるという問題がある。
【0008】
本発明はこの種の問題を解決するものであり、特別な加湿装置を使用することがなく、所望の加湿状態を確実に得るとともに、効率的な発電が遂行可能な燃料電池スタックおよびその運転方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明の請求項1および請求項10に係る燃料電池スタックおよびその運転方法では、固体高分子電解質膜をアノード側電極とカソード側電極とで挟んで構成される接合体を有する単位セルを備え、複数個の前記単位セルを重ね合わせて構成されるとともに、各単位セルに反応ガスである燃料ガスおよび酸化剤ガスをそれぞれ供給および排出する供給流路および排出流路を設ける第1および第2サブスタックとの少なくとも2個のサブスタックを備えており、一方の前記反応ガスの供給方向上流側に配置される前記第1サブスタックの前記排出流路が、一方の前記反応ガスの供給方向下流側に配置される前記第2サブスタックの前記供給流路に直列的に連通されている。
【0010】
そこで、供給流路を介して、第1サブスタックに、この第1サブスタックの運転に必要な量の一方の反応ガスが供給されるとともに、前記供給流路とは独立して、第2サブスタックに、前記第1サブスタックに供給される一方の前記反応ガスよりも低湿度の一方の反応ガスが供給される。
【0011】
このため、第1サブスタックで生成された生成水を利用し、低湿度の反応ガスを加湿して第2サブスタックに加湿した反応ガスを供給することができ、燃料電池スタック全体の加湿水量が有効に低減されて加湿構造の小型化を図ることが可能になる。加湿水量自体が減少するため、外部加湿装置の小型化が図られる一方、内部加湿機構が不要化あるいは小型化されるからである。
【0012】
また、第1サブスタックの排出流路と第2サブスタックの供給流路の接続部位に配置される中間プレートは、追加反応ガス供給流路を前記第2サブスタックの前記供給流路に連通させる連通部を設けている(請求項2)。従って、第1および第2サブスタック間の配管が簡素化され、燃料電池スタック全体の小型化を図るとともに、配管長が短尺化されて配管内での結露を防止することができる。
【0013】
しかも、第2サブスタックの供給流路に、第1サブスタックに供給される反応ガスよりも低湿度の反応ガスが供給され(請求項11)、この第2サブスタックに低湿度の反応ガスを供給しても、前記第2サブスタック内の湿度を十分に維持することができる。このため、電流密度分布を均一に維持し、発電性能の向上および耐久性の向上が可能になる。
【0014】
さらに、第2サブスタックを構成する各単位セルは、追加反応ガス供給流路をこの第2サブスタックの供給流路に連通させることにより、混合された反応ガスを各接合体に供給している(請求項3および請求項12)。これにより、各単位セルの湿度を均一にして第2サブスタック内の湿度分布を均一化することができる。
【0015】
ここで、第2サブスタックを構成する単位セルの個数は、第1サブスタックを構成する単位セルの個数よりも多い数に設定されている(請求項4および請求項13)。従って、燃料電池スタック全体に供給される反応ガスに含まれる加湿水量が一層削減されるとともに、反応ガスの利用率を向上させることが可能になる。
【0016】
さらにまた、単位セルの個数の少ない第1サブスタックに、この第1サブスタックの運転に必要な量の酸化剤ガスおよび水分が供給され、この第1サブスタックの排出流路から、セル個数の多い第2サブスタックの供給流路に排出されている(請求項14)。その際、第1サブスタックでは、反応により生成水が生成され、第2サブスタックに供給される低湿度の酸化剤ガスが十分に加湿される。このため、燃料電池スタック全体に供給される加湿水量を有効に削減することができる。
【0017】
また、第1サブスタックに、供給流路を介してこの第1サブスタックの運転に必要な量の燃料ガスおよび水分が供給され、この第1サブスタックの排出流路から、単位セルの個数が同数以下に設定された第2サブスタックの供給流路に排出されている(請求項15)。その際、第1サブスタックに供給された燃料ガスに含まれる加湿水は、加湿水量が減少することなく第2サブスタックに供給されるため、燃料電池スタック全体の燃料ガスに含まれる加湿水量を削減するとともに、燃料ガスの使用量が削減可能になる。
【0019】
さらにまた、本発明の請求項5および請求項16に係る燃料電池スタックおよびその運転方法では、固体高分子電解質膜をアノード側電極とカソード側電極とで挟んで構成される接合体を有する単位セルを備え、複数個の前記単位セルを重ね合わせて構成されるとともに、各接合体の反応面に反応ガスである燃料ガスおよび酸化剤ガスをそれぞれ供給する供給流路を設けている。
【0020】
そこで、接合体の少なくとも一方の反応面を構成し、供給流路に連通する供給方向上流側の第1反応面に、前記第1反応面の反応に必要な量の前記反応ガスが供給されるとともに、前記供給流路とは独立して、供給方向下流側の第2反応面に、前記第1反応面に供給される反応ガスよりも低湿度の反応ガスが供給される。このため、第1反応面で生成された生成水を利用して、第2反応面を加湿することができ、加湿水量が有効に低減されて外部加湿装置や内部加湿機構を含む加湿構造の小型化を図ることが可能になる。
【0021】
また、第1反応面から第2反応面にわたって蛇行形状の反応ガス流路が設けられるとともに、前記反応ガス流路の折り返し部位に追加反応ガス供給流路を連通させるための連通部が備えられている(請求項6)。その際、第2反応面の面積は、第1反応面の面積よりも大きく設定されている(請求項7および請求項18)。従って、燃料電池スタック全体に供給される加湿水量が一層削減されるとともに、反応ガスの利用率を向上させることが可能になる。
【0022】
さらに、本発明の請求項8に係る燃料電池スタックでは、供給流路を介して、第1サブスタックに、この第1サブスタックの運転に必要な量の反応ガスが供給されるとともに、前記供給流路とは独立して、第2サブスタックに、前記第1サブスタックに供給される反応ガスよりも低湿度の反応ガスが供給される。一方、接合体の少なくとも一方の反応面を構成し、供給流路に連通する供給方向上流側の第1反応面に、前記第1反応面の反応に必要な量の前記反応ガスが供給されるとともに、前記供給流路とは独立して、供給方向下流側の少なくとも1つの第2反応面に前記第1反応面に供給される反応ガスよりも低湿度の反応ガスが供給される。これにより、加湿水量が有効に低減されて加湿構造の小型化を図ることが可能になる。
【0023】
さらにまた、使用済みの反応ガスの一部を燃料電池スタックの反応ガス入口側に戻している(請求項9および請求項19)。従って、使用済みの反応ガスに含まれている水分を循環させることで、燃料電池スタック全体の加湿を行うことができ、無加湿運転が容易に遂行可能になる。
【0024】
【発明の実施の形態】
図1は、本発明の第1の実施形態に係る燃料電池スタック10の一部分解斜視説明図である。
【0025】
燃料電池スタック10は、反応ガス、例えば、酸化剤ガスの流れ方向(矢印X方向)に配列される第1サブスタック12、第2サブスタック14および第3サブスタック16を備え、前記第1乃至第3サブスタック12、14および16間には、中間プレート18a、18bが介装される。第1乃至第3サブスタック12、14および16は、それぞれ所定組数のセルアセンブリ20a、20bおよび20cを矢印X方向に重ね合わせて構成される。なお、第1の実施形態では、燃料ガスの流れ方向は、酸化剤ガスの流れ方向とは反対方向に設定されているが、同一方向であってもよい。
【0026】
図2に示すように、セルアセンブリ20a、20cは、第1単位セル24と第2単位セル26とを重ね合わせて構成されており、前記第1および第2単位セル24、26は、第1および第2接合体28、30を備える。
【0027】
第1および第2接合体28、30は、固体高分子電解質膜32a、32bと、前記電解質膜32a、32bを挟んで配設されるカソード側電極34a、34bおよびアノード側電極36a、36bとを有する。カソード側電極34a、34bおよびアノード側電極36a、36bは、カーボンを主体とする基材に貴金属系の触媒電極層を接合して構成されており、その面には、例えば、多孔質層である多孔質カーボンペーパ等からなるガス拡散層が配設されている。
【0028】
図2および図3に示すように、第1接合体28のカソード側電極34a側に第1セパレータ38が配設され、第2接合体30のアノード側電極36b側に第2セパレータ40が配設されるとともに、前記第1および第2接合体28、30間に中間セパレータ42が配設される。第1および第2セパレータ38、40の外側の面側には、薄板状の壁板44が設けられる。
【0029】
図2に示すように、第1および第2接合体28、30、第1および第2セパレータ38、40並びに中間セパレータ42の長辺側の一端縁部には、第1および第2単位セル24、26の重ね合わせ方向(矢印A方向)に互いに連通して、酸素含有ガスまたは空気である酸化剤ガス(反応ガス)を通過させるための酸化剤ガス供給路(反応ガス供給流路)46aと、酸化剤ガス排出路(反応ガス排出流路)46bと、前記酸化剤ガス供給路46aに供給される加湿された酸化剤ガスよりも低湿度の酸化剤ガス(以下、低加湿の酸化剤ガスという)を通過させるための低加湿酸化剤ガス供給路(追加反応ガス供給流路)47と、水素含有ガス等の燃料ガス(反応ガス)を通過させるための燃料ガス中間連通孔48とが設けられる。
【0030】
第1および第2接合体28、30、第1および第2セパレータ38、40並びに中間セパレータ42の長辺側の他端縁部には、矢印A方向に互いに連通して、酸化剤ガスを通過させるための酸化剤ガス中間連通孔50と、燃料ガスを通過させるための燃料ガス供給路(反応ガス供給流路)52aと、燃料ガス排出路(反応ガス排出流路)52bと、前記燃料ガス供給路52aに供給される加湿された燃料ガスよりも低湿度の燃料ガス(以下、低加湿の燃料ガスという)を通過させるための低加湿燃料ガス供給路(追加反応ガス供給流路)53と、冷却媒体を通過させるための冷却媒体供給路54aと、冷却媒体排出路54bとが設けられる。
【0031】
第1セパレータ38は、金属薄板で構成されるとともに、第1接合体28の反応面(発電面)に対応する部位が凹凸形状、例えば、波形状に設定される。第1セパレータ38は、図4に示すように、第1接合体28のカソード側電極34aに対向する側に複数本の酸化剤ガス流路(反応ガス流路)56を設けるとともに、前記酸化剤ガス流路56は、長辺方向(矢印B方向)に直線状に延在してそれぞれの両端が酸化剤ガス供給路46aと酸化剤ガス中間連通孔50とに連通する。
【0032】
図2および図3に示すように、第1セパレータ38は、壁板44の一方の面に対向する側に複数本の冷却媒体流路58を設ける。冷却媒体流路58は、長辺方向(矢印B方向)に直線状に延在しており、一端が冷却媒体供給路54aに連通するとともに、他端側が壁板44に形成された、あるいは、別部材に形成された中間折り返し部である孔部60を介して前記壁板44の他方の面側から冷却媒体排出路54bに連通する。
【0033】
第2セパレータ40は、上記の第1セパレータ38と略同様に構成されており、第2接合体30のアノード側電極36bに対向する側に複数本の燃料ガス流路(反応ガス流路)62を設けるとともに、前記燃料ガス流路62は、長辺方向(矢印B方向)に直線状に延在してそれぞれの両端が燃料ガス中間連通孔48と燃料ガス排出路52bとに連通する。
【0034】
中間セパレータ42は、上記の第1および第2セパレータ38、40と略同様に構成されており、第1接合体28のアノード側電極36aに対向する側に複数本の燃料ガス流路(反応ガス流路)66を設けるとともに、前記燃料ガス流路66は、長辺方向(矢印B方向)に直線状に延在してそれぞれの両端が燃料ガス排出路52bと燃料ガス中間連通孔48とに連通する。
【0035】
図3に示すように、中間セパレータ42は、第2接合体30のカソード側電極34bに対向する側に複数本の酸化剤ガス流路(反応ガス流路)68を設けるとともに、前記酸化剤ガス流路68は、長辺方向(矢印B方向)に直線状に延在してそれぞれの両端が酸化剤ガス中間連通孔50と酸化剤ガス排出路46bとに連通する。
【0036】
図5に示すように、セルアセンブリ20bは、上記のセルアセンブリ20a、20cと略同様に構成されており、同一の構成要素には同一の参照符号を付して、その詳細な説明は省略する。
【0037】
このセルアセンブリ20bは、酸化剤ガス供給路(反応ガス供給流路)46cおよび酸化剤ガス排出路(反応ガス排出流路)46dを備えており、前記酸化剤ガス供給路46cがセルアセンブリ20aの酸化剤ガス排出路46bに直列的に連通するとともに、前記酸化剤ガス排出路46dがセルアセンブリ20cの酸化剤ガス供給路46aに直列的に連通する。図6に示すように、低加湿の酸化剤ガスは、セルアセンブリ20a、20bおよび20cの低加湿酸化剤ガス供給路47に供給されており、中間プレート18aの連結通路(連通部)70を介してセルアセンブリ20bの酸化剤ガス供給路46cに供給されるとともに、中間プレート18bの連結通路(連通部)74を介してセルアセンブリ20cの酸化剤ガス供給路46aに供給される。
【0038】
同様に、セルアセンブリ20bは、燃料ガス供給路(反応ガス供給流路)52cおよび燃料ガス排出路(反応ガス排出流路)52dを備え、前記燃料ガス供給路52cがセルアセンブリ20cの燃料ガス排出路52bに直列的に連通するとともに、前記燃料ガス排出路52dがセルアセンブリ20aの燃料ガス供給路52aに直列的に連通する。
【0039】
図7に示すように、中間プレート18aの長辺側一端縁部には、酸化剤ガス流路46e、46fと低加湿酸化剤ガス供給路47とが設けられ、セルアセンブリ20aの酸化剤ガス排出路46bおよびセルアセンブリ20bの酸化剤ガス供給路46cに連通する前記酸化剤ガス流路46eと、前記低加湿酸化剤ガス供給路47とが、連結通路70を介して連通する。
【0040】
中間プレート18aの長辺側他端縁部には、冷却媒体供給路54a、冷却媒体排出路54b、低加湿燃料ガス供給路53および燃料ガス流路52e、52fが設けられる。燃料ガス流路52eは、セルアセンブリ20aの燃料ガス供給路52aに連通しており、この燃料ガス流路52eと低加湿燃料ガス供給路53とが、連結通路(連通部)72を介して連通する。
【0041】
図8に示すように、中間プレート18bは、中間プレート18aと同様に構成されており、セルアセンブリ20aの酸化剤ガス供給路46aに連通する酸化剤ガス流路46fと低加湿酸化剤ガス供給路47とが、連結通路74を介して連通するとともに、セルアセンブリ20bの燃料ガス供給路52cに連通する燃料ガス流路52fと低加湿燃料ガス供給路53とが、連結通路(連通部)76を介して連通する。
【0042】
図9は、上記のように構成される燃料電池スタック10を組み込む燃料電池システム80の概略構成図である。
【0043】
この燃料電池システム80は、大気を圧縮して燃料電池スタック10に供給するためのコンプレッサ(圧縮器)82を備え、このコンプレッサ82の出口側には、主供給路84と追加供給路86とが連通する。主供給路84は、加湿器88を介して第1サブスタック12の酸化剤ガス供給路46aに連通するとともに、追加供給路86は、加湿器90を介して低加湿酸化剤ガス供給路47に連通する。なお、加湿器90は、必要に応じて設ければよく、また、使用する際にも、比較的小さな加湿能力を有していればよい。
【0044】
このように構成される燃料電池スタック10の動作について、本発明に係る運転方法との関連で以下に説明する。
【0045】
図9に示すように、燃料電池システム80を構成するコンプレッサ82の作用下に、空気または酸素含有ガスである酸化剤ガスが、主供給路84に圧送されて加湿器88により所定の湿度に調整された後、燃料電池スタック10に供給される一方、水素含有ガス等の燃料ガスが、所定の湿度に調整された後、図示しない供給機構を介して前記燃料電池スタック10に、前記酸化剤ガスとは反対側から供給される。
【0046】
燃料電池スタック10内では、まず、第1サブスタック12を構成するセルアセンブリ20aの酸化剤ガス供給路46aに酸化剤ガスが供給されるとともに、第3サブスタック16を構成するセルアセンブリ20cの燃料ガス供給路52aに燃料ガスが供給される(図1参照)。さらに、冷却媒体供給路54aには、純水やエチレングリコールやオイル等の冷却媒体が供給される。
【0047】
このため、図3に示すように、第1および第2接合体28、30では、カソード側電極34a、34bに供給される酸化剤ガスと、アノード側電極36a、36bに供給される燃料ガスとが、触媒層内で触媒反応により消費され、発電が行われる。
【0048】
この場合、第1の実施形態では、第1サブスタック12に対して、この第1サブスタック12の運転に必要な量の酸化剤ガスおよび水分(実際上、予め加湿された所定量の酸化剤ガス)が供給される。従って、第1サブスタック12を構成する各セルアセンブリ20aでは、反応に必要な量の酸化剤ガスが加湿された状態で供給されるため、前記第1サブスタック12内で所望の反応(発電)が有効に行われる。
【0049】
各セルアセンブリ20a内では、反応により生成水が得られ、この生成水が酸化剤ガス排出路46bに沿って矢印X方向に移動し、第2サブスタック14を構成するセルアセンブリ20bの酸化剤ガス供給路46cに導入される。その際、第1および第2サブスタック12、14間には、中間プレート18aが介装されており、セルアセンブリ20aの酸化剤ガス排出路46bに連通する酸化剤ガス流路46eが、連結通路70を介して低加湿酸化剤ガス供給路47に連通している。
【0050】
これにより、酸化剤ガス流路46eには、追加供給路86を介して低湿度の酸化剤ガスが供給され、この酸化剤ガスは、セルアセンブリ20aの酸化剤ガス排出路46bに沿って移動する生成水によって加湿された状態で、セルアセンブリ20bの酸化剤ガス供給路46cに供給される。従って、第2サブスタック14では、各セルアセンブリ20bに加湿された酸化剤ガスが確実に供給され、所望の反応が遂行される。
【0051】
さらに、各セルアセンブリ20bでは、反応によって生成された生成水が酸化剤ガス排出路46dに排出される。このため、中間プレート18bで連結通路76を介して低加湿酸化剤ガス供給路47に連通する第3サブスタック16の酸化剤ガス供給路46aには、低湿度で供給された酸化剤ガスが、生成水により十分に加湿された状態で供給される。
【0052】
一方、第3サブスタック16側から供給される燃料ガスは、上記の酸化剤ガスと同様に、この第3サブスタック16に対して、この第3サブスタック16の運転に必要な量の燃料ガスおよび水分(実際上、予め加湿された所定量の燃料ガス)が供給される。第1および第2接合体28、30では、燃料ガスに含まれている加湿水がそのまま燃料ガス排出路52bに排出されるため、この加湿水が第2サブスタック14に移動し、低加湿燃料ガス供給路53から供給された低湿度の燃料ガスを加湿して第2サブスタック14に供給する。
【0053】
これにより、第1の実施形態では、酸化剤ガスに対して第1サブスタック12を加湿するのに必要な加湿水のみを供給するだけでよく、燃料ガスに対して第3サブスタック16を加湿するのに必要な加湿水のみを供給するだけでよい。実際上、第1の実施形態を使用すると、燃料ガスでは、従来の加湿水量に比べて62%の削減が可能になった。この結果、燃料電池スタック10全体に供給される加湿水量を大幅に削減することができ、加湿構造を大幅に小型化することが可能になるという効果が得られる。
【0054】
図10は、本発明の第2の実施形態に係る燃料電池スタック100の概略構成図である。なお、第1の実施形態に係る燃料電池スタック10と同一の構成要素には同一の参照符号を付して、その詳細な説明は省略する。
【0055】
燃料電池スタック100は、第1サブスタック102と第2サブスタック104とを備え、それぞれ所定個数、例えば、78個の単位セル106と122個の単位セル108を流れ方向(矢印X方向)に重ね合わせて構成される。第1および第2サブスタック102、104間には、低湿度の酸化剤ガスおよび燃料ガスを前記第2サブスタック104(または第1サブスタック102)に供給するために、図示しない低加湿反応ガス供給路が設けられるとともに、酸化剤ガスおよび燃料ガスの流路が直列的に接続されている。
【0056】
図11に示すように、単位セル106は、接合体110aと、この接合体110aを挟んで配置される第1および第2セパレータ112a、114aとを備える。単位セル106の長辺方向(矢印B方向)一端縁部には、酸化剤ガス供給路46a、冷却媒体供給路54aおよび燃料ガス排出路52bが設けられるとともに、前記単位セル106の長辺方向他端縁部には、燃料ガス供給路52a、冷却媒体排出路54bおよび酸化剤ガス排出路46bが設けられる。
【0057】
第1セパレータ112aは、カソード側電極34a側の面に複数本の酸化剤ガス流路116aを設ける。この酸化剤ガス流路116a、酸化剤ガス供給路46aに一端側が連通して長辺方向に折り返して蛇行した後、酸化剤ガス排出路46bに連通する。第2セパレータ114aのアノード側電極36a側の面には、第1セパレータ112aと同様に、両端を燃料ガス供給路52aと燃料ガス排出路52bとに連通する蛇行形状の燃料ガス流路(図示せず)が設けられる。
【0058】
図12に示すように、単位セル108は、接合体110bと第1および第2セパレータ112b、114bとを備えるとともに、酸化剤ガス供給路46a、酸化剤ガス排出路46b、燃料ガス供給路52aおよび燃料ガス排出路52bが、単位セル106とは反対の位置に設定されている。第1セパレータ112bに設けられる酸化剤ガス流路116bは、酸化剤ガス供給路46aから酸化剤ガス排出路46bに向かって蛇行している。
【0059】
このように構成される燃料電池スタック100の動作について、以下に説明する。なお、酸化剤ガス側についてのみ説明する。
【0060】
まず、第1サブスタック102の運転に必要な量(78セル分)の酸化剤ガスが、加湿された状態で前記第1サブスタック102に供給される。第1サブスタック102では、酸化剤ガスの入口湿度が65%、利用率が0.5、酸素分圧が36kPaに設定される。
【0061】
第1サブスタック102では、酸化剤ガスが第1セパレータ112aの酸化剤ガス流路116aに供給され、蛇行しながらカソード側電極34aにより消費されて発電が行われる。その際、反応によって生成水が生じ、この生成水が酸化剤ガス排出路46bに排出される。生成水は、酸化剤ガス排出路46bに連通する第2サブスタック104内の酸化剤ガス供給路46aに導入されるとともに、この酸化剤ガス供給路46aには、低加湿酸化剤ガス供給路47から低湿度の酸化剤ガスが供給される。
【0062】
ここで、低湿度の酸化剤ガスは、85セル分の流量で、利用率が1/1.4に設定されており、生成水を介して加湿された状態で、第2サブスタック104内に供給される。第2サブスタック104では、酸化剤ガスの入口湿度が65%、利用率が0.5、酸素分圧が26kPaに設定される。
【0063】
これにより、第2の実施形態では、78セル分の加湿水量を供給するだけで、燃料電池スタック100全体(200セル)の加湿が良好に遂行され、加湿構造の小型化が容易に図られるという効果が得られる。しかも、全体の利用率が1/1.63で200セルの運転が可能になり、利用率を有効に向上させることができる。
【0064】
図13は、本発明の第3の実施形態に係る燃料電池スタック120の概略構成図である。なお、第2の実施形態に係る燃料電池スタック100と同一の構成要素には同一の参照符号を付して、その詳細な説明は省略する。
【0065】
燃料電池スタック120は、第1サブスタック102と第2サブスタック104と第3サブスタック122とを備え、それぞれ所定個数、例えば、41個の単位セル106と65個の単位セル108と94個の単位セル106とを矢印X方向に重ね合わせて構成される。第1乃至第3サブスタック102、104および122間には、低湿度の酸化剤ガスおよび燃料ガスを供給流路に供給するための図示しない中間プレート等が介装されるとともに、酸化剤ガスおよび燃料ガスの流路が直列的に接続されている。
【0066】
このように構成される燃料電池スタック120では、第1サブスタック102の運転に必要な量(41セル分)の酸化剤ガスが、加湿された状態で前記第1サブスタック102に供給される。第1サブスタック102では、酸化剤ガスの入口湿度が65%、利用率が0.5、酸素分圧が36kPaに設定される。
【0067】
次いで、第2サブスタック104には、46セル分の低湿度の酸化剤ガスが供給され(利用率が1/1.4)、前記酸化剤ガスが第1サブスタック102から排出される生成水により加湿されて前記第2サブスタック104内に導入される。さらに、第3サブスタック122には、61セル分の低湿度の酸化剤ガスが供給される(利用率が1/1.3)。
【0068】
その際、第2サブスタック104では、酸化剤ガスの入口湿度が65%、利用率が0.5、酸素分圧が26kPaに設定され、第3サブスタック122では、酸化剤ガスの入口湿度が65%、利用率が0.5、酸素分圧が21kPaに設定される。
【0069】
これにより、第3の実施形態では、41セル分の加湿水量を供給するだけで、燃料電池スタック120全体(200セル)の加湿が良好に遂行されるとともに、全体の利用率が1/1.47で200セルの運転が可能になり、第2の実施形態と同様の効果が得られる。
【0070】
図14は、本発明の第4の実施形態に係る燃料電池スタックを構成する上流側の第1サブスタック140の要部分解斜視図であり、図15は、前記燃料電池スタックを構成する下流側の第2サブスタック142の要部分解斜視図である。なお、第2の実施形態に係る燃料電池スタック100と同一の構成要素には同一の参照符号を付して、その詳細な説明は省略する。
【0071】
図14に示すように、第1サブスタック140は単位セル144を備え、この単位セル144の長辺方向(矢印B方向)一端縁部には、酸化剤ガス供給路46a、冷却媒体供給路54a、低加湿燃料ガス供給路53および燃料ガス排出路52bが設けられるとともに、前記単位セル144の長辺方向他端縁部には、燃料ガス供給路52a、冷却媒体排出路54b、低加湿酸化剤ガス供給路47および酸化剤ガス排出路46bが設けられる。
【0072】
図15に示すように、第2サブスタック142は単位セル146を備えるとともに、酸化剤ガス供給路46aと低加湿酸化剤ガス供給路47とが、連結通路(混合部)148を介して連通している。
【0073】
このように構成される第4の実施形態では、第2サブスタック142を構成する各単位セル146毎に、低加湿酸化剤ガス供給路47から連結通路148を介して、酸化剤ガス供給路46aに低湿度の酸化剤ガスが供給される。この酸化剤ガスは、第1サブスタック140から排出された生成水により加湿されて酸化剤ガス流路116bに供給される。
【0074】
これにより、第2サブスタック142では、各単位セル146毎に低加湿乃至無加湿の酸化剤ガスが供給されるため、燃料電池スタック全体の加湿水量が大幅に削減される等、第1乃至第3の実施形態と同様の効果が得られる。
【0075】
ところで、第1乃至第4の実施形態では、サブスタック毎あるいは単位セル毎に低湿度の酸化剤ガスを供給するように構成されているが、反応面内を分割して低湿度の酸化剤ガスを供給することができる。すなわち、図16は、本発明の第5の実施形態に係る燃料電池スタックを構成する単位セル150の要部分解斜視図である。なお、図10に示す第2の実施形態に係る燃料電池スタック100を構成する単位セル106と同一の構成要素には同一の参照符号を付して、その詳細な説明は省略する。
【0076】
単位セル150は、接合体152と、この接合体152を挟んで配置される第1および第2セパレータ154、156とを備える。単位セル150の長辺方向(矢印B方向)一端縁部には、酸化剤ガス供給路46a、低加湿燃料ガス供給路(追加反応ガス供給流路)158、冷却媒体供給路54aおよび燃料ガス排出路52bが設けられるとともに、前記単位セル150の長辺方向他端縁部には、燃料ガス供給路52a、低加湿酸化剤ガス供給路(追加反応ガス供給流路)160、冷却媒体排出路54bおよび酸化剤ガス排出路46bが設けられる。
【0077】
第1セパレータ154は、カソード側電極34a側の酸化剤ガス供給面に複数本の酸化剤ガス流路116aを設けるとともに、この酸化剤ガス流路116aと低加湿酸化剤ガス供給路160とが連通部162を介して連通する。第1セパレータ154の酸化剤ガス供給面は、酸化剤ガス供給路46aから低加湿酸化剤ガス供給路160に連なる上流側の第1酸化剤ガス供給面164と、前記低加湿酸化剤ガス供給路160から酸化剤ガス排出路46bに連なるとともに、前記第1酸化剤ガス供給面164よりも面積の大きな第2酸化剤ガス供給面166とを設けている。
【0078】
図17に示すように、第2セパレータ156のアノード側電極36a側の燃料ガス供給面には、両端を燃料ガス供給路52aと燃料ガス排出路52bとに連通する蛇行形状の燃料ガス流路116cが設けられ、この燃料ガス流路116cと低加湿燃料ガス供給路158とが連通部168を介して連通する。第2セパレータ156の燃料ガス供給面は、燃料ガス供給路52aから低加湿燃料ガス供給路158に連なる上流側の第1燃料ガス供給面170と、前記低加湿燃料ガス供給路158から燃料ガス排出路52bに連なるとともに、前記第1燃料ガス供給面170よりも面積の大きな第2燃料ガス供給面172とを設けている。
【0079】
このように構成される第5の実施形態では、第1酸化剤ガス供給面164の反応に必要とされる量の酸化剤ガスおよび加湿水を、前記第1酸化剤ガス供給面164に供給するだけで、反応による生成水の発生により以降の加湿水の供給が不要になる。このため、加湿水量を有効に削減することができ、加湿構造の小型化が容易に遂行されるという効果が得られる。なお、燃料ガスは、酸化剤ガスと同様に、第1燃料ガス供給面170の反応に必要とされる量の酸化剤ガスおよび加湿水だけを供給すればよく、加湿水量の削減が可能になる。
【0080】
図18は、本発明の第6の実施形態に係る燃料電池スタックを構成する単位セル180の要部正面図である。
【0081】
単位セル180は、例えば、カソード側電極に酸化剤ガスを供給するためのセパレータ182を備え、このセパレータ182の面内には、酸化剤ガスの供給方向上流側に配置され、酸化剤ガス供給路46aに連なる第1酸化剤ガス供給面184が設けられる。この第1酸化剤ガス供給面184は、単位セル180の積層方向に連通した第1低加湿酸化剤ガス供給路186を介して第2酸化剤ガス供給面188に連なるとともに、この第2酸化剤ガス供給面188は、前記第1低加湿酸化剤ガス供給路186および第2低加湿酸化剤ガス供給路190を介して第3酸化剤ガス供給面192に連なる。さらに、第3酸化剤ガス供給面192は、第2低加湿酸化剤ガス供給路190および第3低加湿酸化剤ガス供給路194から第4酸化剤ガス供給面196を介して酸化剤ガス排出路46bに連なる。
【0082】
第1酸化剤ガス供給面184は、最小面積に設定されており、第2乃至第4酸化剤ガス供給面188、192および196は、それぞれ面積が2倍ずつ増加している。
【0083】
このように構成される第6の実施形態では、第1酸化剤ガス供給面184の反応に必要とされる量の酸化剤ガスおよび加湿水を、前記第1酸化剤ガス供給面184に供給するだけで、反応による生成水の発生により、第2乃至第4酸化剤ガス供給面188、192および196に対する加湿水の供給が不要になる。このため、加湿水量を一挙に削減することができ、加湿構造の小型化が容易に遂行されるという効果が得られる。
【0084】
図19は、本発明の第7の実施形態に係る燃料電池スタック200の概略説明図である。この燃料電池スタック200は、複数個、例えば、200個の単位セル202を備える。
【0085】
燃料電池スタック200の入口側および出口側には、酸化剤ガス供給路204および酸化剤ガス排出路206が設けられるとともに、前記酸化剤ガス排出路206から前記酸化剤ガス供給路204に生成水を戻すためのリターン流路208が設けられている。
【0086】
これにより、使用済みの酸化剤ガスに含まれている生成水が、リターン流路208を介して酸化剤ガス供給路204に戻されるため、燃料電池スタック200全体の加湿を良好に行うことができ、無加湿運転が容易に遂行可能になるという効果が得られる。なお、上記では、酸化剤ガス側についてのみ説明したが、燃料ガス側においても同様に適用することができる。
【0087】
また、図19において、酸化剤ガス排出路206に近接して湿度センサ210を設置しておき、燃料電池スタック200の出口湿度が所定値以上になった際、酸化剤ガス供給路204から前記燃料電池スタック200に供給される酸化剤ガスの加湿を停止することが可能になる。
【0088】
なお、第1乃至第7の実施形態は、個別に構成しているが、これらを必要に応じて適宜組み合わせることも可能である。
【0089】
【発明の効果】
本発明に係る燃料電池スタックおよびその運転方法では、第1サブスタックの排出流路が反応ガスの供給方向下流側に配置される第2サブスタックの供給流路に直列的に接続されており、前記第1サブスタックで生成された生成水を利用して、前記第2サブスタックを加湿することができ、燃料電池スタック全体の加湿水量が有効に低減されて加湿構造の小型化を図ることが可能になる。
【0090】
また、本発明では、接合体の少なくとも一方の反応面を構成する上流側の第1反応面に、前記第1反応面の反応に必要な量の前記反応ガスが供給されるとともに、下流側の第2反応面に無加湿の反応ガスが供給される。このため、第1反応面で生成された生成水を利用して、第2反応面を加湿することができ、加湿水量が有効に低減されて加湿構造の小型化を図ることが可能になる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る燃料電池スタックの一部分解斜視説明図である。
【図2】前記燃料電池スタックを構成するセルアセンブリの分解斜視図である。
【図3】前記セルアセンブリ内の流れ図である。
【図4】前記セルアセンブリを構成する第1セパレータの正面図である。
【図5】前記燃料電池スタックを構成する別のセルアセンブリの分解斜視図である。
【図6】前記燃料ガススタック内の酸化剤ガスの流れ説明図である。
【図7】一方の中間プレートの正面図である。
【図8】他方の中間プレートの正面図である。
【図9】前記燃料電池スタックが組み込まれる燃料電池システムの概略構成図である。
【図10】本発明の第2の実施形態に係る燃料電池スタックの概略構成図である。
【図11】一方の単位セルの分解斜視図である。
【図12】他方の単位セルの分解斜視図である。
【図13】本発明の第3の実施形態に係る燃料電池スタックの概略構成図である。
【図14】本発明の第4の実施形態に係る燃料電池スタックを構成する第1サブスタックの要部分解斜視図である。
【図15】前記燃料電池スタックを構成する第2サブスタックの要部分解斜視図である。
【図16】本発明の第5の実施形態に係る燃料電池スタックを構成する単位セルの要部分解斜視図である。
【図17】前記単位セルを構成する第2セパレータの正面説明図である。
【図18】本発明の第6の実施形態に係る燃料電池スタックを構成する単位セルの要部正面図である。
【図19】本発明の第7の実施形態に係る燃料電池スタックの概略説明図である。
【符号の説明】
10、100、120、200…燃料電池スタック
12、14、16、102、104、122、140、142…サブスタック
18a、18b…中間プレート 20a〜20c…セルアセンブリ
24、26、106、108、144、146、150、180、202…単位セル
28、30、110a、110b、152…接合体
38、40、112a、112b、114a、114b、154、156、182…セパレータ
46a、46c、204…酸化剤ガス供給路
46b、46d、206…酸化剤ガス排出路
46e、46f、56、68、116a、116b…酸化剤ガス流路
47、160、186、190、194…低加湿酸化剤ガス供給路
52a、52c…燃料ガス供給路 52b、52d…燃料ガス排出路
53、158…低加湿燃料ガス供給路
62、66…燃料ガス流路 80…燃料電池システム
88、90…加湿器
164、166、184、188、192、196…酸化剤ガス供給面
170、172…燃料ガス供給面 208…リターン流路
Claims (19)
- 固体高分子電解質膜をアノード側電極とカソード側電極とで挟んで構成される接合体を有する単位セルを備え、複数個の前記単位セルを重ね合わせて構成されるとともに、各単位セルに反応ガスである燃料ガスおよび酸化剤ガスをそれぞれ供給および排出する供給流路および排出流路を設ける燃料電池スタックであって、
所定数の前記単位セルを重ね合わせて一方の前記反応ガスの供給方向上流側に配置される第1サブスタックと、
所定数の前記単位セルを重ね合わせて一方の前記反応ガスの供給方向下流側に配置される第2サブスタックと、
の少なくとも2個のサブスタックを備え、
前記第1サブスタックの前記排出流路が、前記第2サブスタックの前記供給流路に直列的に連通されるとともに、
前記供給流路とは独立して、前記第2サブスタックに、前記第1サブスタックに供給される一方の前記反応ガスよりも低湿度の一方の反応ガスを供給するための追加反応ガス供給流路が設けられることを特徴とする燃料電池スタック。 - 請求項1記載の燃料電池スタックにおいて、前記第1サブスタックの前記排出流路と前記第2サブスタックの前記供給流路の接続部位に配置される中間プレートを備え、
前記中間プレートは、前記追加反応ガス供給流路を前記第2サブスタックの前記供給流路に連通させる連通部を設けることを特徴とする燃料電池スタック。 - 請求項1記載の燃料電池スタックにおいて、前記第2サブスタックを構成する各単位セルは、前記追加反応ガス供給流路を該第2サブスタックの前記供給流路に連通させることにより、混合された一方の前記反応ガスを各接合体に供給するための混合部を設けることを特徴とする燃料電池スタック。
- 請求項1乃至3のいずれか1項に記載の燃料電池スタックにおいて、一方の前記反応ガスは酸化剤ガスであり、
前記第2サブスタックを構成する前記単位セルの個数は、前記第1サブスタックを構成する前記単位セルの個数よりも多い数に設定されることを特徴とする燃料電池スタック。 - 固体高分子電解質膜をアノード側電極とカソード側電極とで挟んで構成される接合体を有する単位セルを備え、複数個の前記単位セルを重ね合わせて構成されるとともに、各接合体の反応面に反応ガスである燃料ガスおよび酸化剤ガスをそれぞれ供給する供給流路を設ける燃料電池スタックであって、
前記接合体の少なくとも一方の反応面は、一方の前記反応ガスの供給方向上流側に配置され、前記供給流路に連通する第1反応面と、
一方の前記反応ガスの供給方向下流側に配置される第2反応面と、
の少なくとも2つの反応面を備え、
前記単位セルは、前記供給流路とは独立して、前記第2反応面に、前記第1反応面に供給される一方の前記反応ガスよりも低湿度の一方の反応ガスを供給するための追加反応ガス供給流路を設けることを特徴とする燃料電池スタック。 - 請求項5記載の燃料電池スタックにおいて、前記第1反応面から前記第2反応面にわたって蛇行形状の反応ガス流路が設けられるとともに、
前記反応ガス流路の折り返し部位に前記追加反応ガス供給流路を連通させるための連通部を備えることを特徴とする燃料電池スタック。 - 請求項5または6記載の燃料電池スタックにおいて、前記第2反応面の面積は、前記第1反応面の面積よりも大きく設定されることを特徴とする燃料電池スタック。
- 固体高分子電解質膜をアノード側電極とカソード側電極とで挟んで構成される接合体を有する単位セルを備え、複数個の前記単位セルを重ね合わせて構成されるとともに、各単位セルに反応ガスである燃料ガスおよび酸化剤ガスをそれぞれ供給および排出する供給流路および排出流路を設ける燃料電池スタックであって、
所定数の前記単位セルを重ね合わせて一方の前記反応ガスの供給方向上流側に配置される第1サブスタックと、
所定数の前記単位セルを重ね合わせて一方の前記反応ガスの供給方向下流側に配置される第2サブスタックと、
の少なくとも2個のサブスタックを備え、
前記第1サブスタックの前記排出流路が、前記第2サブスタックの前記供給流路に直列的に連通されるとともに、
前記供給流路とは独立して、前記第2サブスタックに、前記第1サブスタックに供給される一方の前記反応ガスよりも低湿度の一方の反応ガスを供給するための追加反応ガス供給流路が設けられる一方、
前記接合体の少なくとも一方の反応面は、一方の前記反応ガスの供給方向上流側に配置され、前記供給流路に連通する第1反応面と、
一方の前記反応ガスの供給方向下流側に配置される第2反応面と、
を備え、
前記単位セルは、前記供給流路とは独立して、前記第2反応面に、前記第1反応面に供給される一方の前記反応ガスよりも低湿度の一方の反応ガスを供給するための追加反応ガス供給流路が設けられることを特徴とする燃料電池スタック。 - 請求項1、5または8記載の燃料電池スタックにおいて、前記燃料電池スタックの反応ガス出口側から反応ガス入口側に使用済みの一方の前記反応ガスの一部を戻すためのリターン流路を備えることを特徴とする燃料電池スタック。
- 固体高分子電解質膜をアノード側電極とカソード側電極とで挟んで構成される接合体を有する単位セルを備え、複数個の前記単位セルを重ね合わせて構成されるとともに、各単位セルに反応ガスである燃料ガスおよび酸化剤ガスをそれぞれ供給および排出する供給流路および排出流路を設ける第1および第2サブスタックの少なくとも2個のサブスタックを備えており、一方の前記反応ガスの供給方向上流側に配置される前記第1サブスタックの前記排出流路が、一方の前記反応ガスの供給方向下流側に配置される前記第2サブスタックの前記供給流路に直列的に連通される燃料電池スタックの運転方法であって、
前記第1サブスタックに、前記供給流路を介して該第1サブスタックの運転に必要な量の一方の前記反応ガスを供給し、前記排出流路から排出するとともに、
前記排出流路に連通する前記第2サブスタックの前記供給流路とは独立して、該第2サブスタックに、前記第1サブスタックに供給される一方の前記反応ガスよりも低湿度の一方の反応ガスを供給することを特徴とする燃料電池スタックの運転方法。 - 請求項10記載の運転方法において、前記第1サブスタックの前記排出流路と前記第2サブスタックの前記供給流路の接続部位から該供給流路に、前記第1サブスタックに供給される一方の前記反応ガスよりも低湿度の一方の反応ガスを供給することを特徴とする燃料電池スタックの運転方法。
- 請求項10記載の運転方法において、前記第2サブスタックを構成する各単位セルに、前記第1サブスタックに供給される一方の前記反応ガスよりも低湿度の一方の反応ガスを供給することにより、混合された一方の前記反応ガスを各接合体に供給することを特徴とする燃料電池スタックの運転方法。
- 請求項10乃至12のいずれか1項に記載の運転方法において、一方の前記反応ガスは前記酸化剤ガスであり、
前記第2サブスタックを構成する前記単位セルの個数は、前記第1サブスタックを構成する前記単位セルの個数よりも多い数に設定されることを特徴とする燃料電池スタックの運転方法。 - 請求項13記載の運転方法において、前記第1サブスタックに、前記供給流路を介して該第1サブスタックの運転に必要な量の前記酸化剤ガスおよび水分を供給することを特徴とする燃料電池スタックの運転方法。
- 請求項10乃至12のいずれか1項に記載の運転方法において、一方の前記反応ガスは前記燃料ガスであり、
前記第1サブスタックを構成する前記単位セルの個数が、前記第2サブスタックを構成する前記単位セルの個数と同等以上に設定され、
前記第1サブスタックに、前記供給流路を介して該第1サブスタックの運転に必要な量の前記燃料ガスおよび水分を供給し、前記排出流路から排出するとともに、
前記排出流路に連通する前記第2サブスタックの前記供給流路とは独立して、該第2サブスタックに、前記第1サブスタックに供給される前記燃料ガスよりも低湿度の前記燃料ガスを供給することを特徴とする燃料電池スタックの運転方法。 - 固体高分子電解質膜をアノード側電極とカソード側電極とで挟んで構成される接合体を有する単位セルを備え、複数個の前記単位セルを重ね合わせて構成されるとともに、各接合体の反応面に反応ガスである燃料ガスおよび酸化剤ガスをそれぞれ供給する供給流路を設ける燃料電池スタックの運転方法であって、
前記接合体の少なくとも一方の反応面を構成し、前記供給流路に連通する供給方向上流側の第1反応面に、前記第1反応面の反応に必要な量の一方の前記反応ガスを供給するとともに、
前記供給流路とは独立して、供給方向下流側の少なくとも1つの第2反応面に、前記第1反応面に供給される一方の反応ガスよりも低湿度の一方の反応ガスを供給することを特徴とする燃料電池スタックの運転方法。 - 請求項16記載の運転方法において、前記供給流路に連通する供給方向上流側の第1反応面に、前記第1反応面の反応に必要な量の一方の前記反応ガスおよび水分を供給することを特徴とする燃料電池スタックの運転方法。
- 請求項16または17記載の運転方法において、前記第2反応面の面積は、前記第1反応面の面積よりも大きく設定されることを特徴とする燃料電池スタックの運転方法。
- 請求項10または16のいずれか1項に記載の運転方法において、使用済みの一方の前記反応ガスの一部を前記燃料電池スタックの反応ガス入口側に戻すことを特徴とする燃料電池スタックの運転方法。
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001061499A JP4405097B2 (ja) | 2001-03-06 | 2001-03-06 | 燃料電池スタックおよびその運転方法 |
TW091104014A TW543233B (en) | 2001-03-06 | 2002-03-05 | Fuel cell stack and operating method thereof |
AT02702729T ATE308805T1 (de) | 2001-03-06 | 2002-03-05 | Polymerelektrolyt-brennstoffzellenstapel und zugehöriges betriebsverfahren |
US10/469,878 US7459231B2 (en) | 2001-03-06 | 2002-03-05 | Polymer electrolyte fuel cell stack and operating method thereof |
DE60207050T DE60207050T2 (de) | 2001-03-06 | 2002-03-05 | Polymerelektrolyt-brennstoffzellenstapel und zugehöriges betriebsverfahren |
EP02702729A EP1366536B1 (en) | 2001-03-06 | 2002-03-05 | Polymer electrolyte fuel cell stack and operating method thereof |
PCT/JP2002/002011 WO2002071525A2 (en) | 2001-03-06 | 2002-03-05 | Polymer electrolyte fuel cell stack and operating method thereof |
CA002439967A CA2439967C (en) | 2001-03-06 | 2002-03-05 | Polymer electrolyte fuel cell stack and operating method thereof |
MYPI20020772A MY127979A (en) | 2001-03-06 | 2002-03-05 | Polymer electrolyte fuel cell stack and operating method thereof |
CNB028083385A CN1277327C (zh) | 2001-03-06 | 2002-03-05 | 燃料电池堆及其工作方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001061499A JP4405097B2 (ja) | 2001-03-06 | 2001-03-06 | 燃料電池スタックおよびその運転方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002260695A JP2002260695A (ja) | 2002-09-13 |
JP4405097B2 true JP4405097B2 (ja) | 2010-01-27 |
Family
ID=18920785
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001061499A Expired - Fee Related JP4405097B2 (ja) | 2001-03-06 | 2001-03-06 | 燃料電池スタックおよびその運転方法 |
Country Status (10)
Country | Link |
---|---|
US (1) | US7459231B2 (ja) |
EP (1) | EP1366536B1 (ja) |
JP (1) | JP4405097B2 (ja) |
CN (1) | CN1277327C (ja) |
AT (1) | ATE308805T1 (ja) |
CA (1) | CA2439967C (ja) |
DE (1) | DE60207050T2 (ja) |
MY (1) | MY127979A (ja) |
TW (1) | TW543233B (ja) |
WO (1) | WO2002071525A2 (ja) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4516229B2 (ja) * | 2001-03-06 | 2010-08-04 | 本田技研工業株式会社 | 固体高分子型セルアセンブリ |
JP4250877B2 (ja) * | 2001-08-07 | 2009-04-08 | ソニー株式会社 | 電源装置 |
JP4612977B2 (ja) | 2001-09-14 | 2011-01-12 | 本田技研工業株式会社 | 燃料電池スタックおよびその反応ガス供給方法 |
JP4064135B2 (ja) * | 2002-03-26 | 2008-03-19 | 本田技研工業株式会社 | 燃料電池スタック |
JP3699063B2 (ja) * | 2002-06-26 | 2005-09-28 | 本田技研工業株式会社 | 燃料電池およびその制御方法 |
EP1496558A1 (en) * | 2003-07-11 | 2005-01-12 | Asia Pacific Fuel Cell Technologies, Ltd. | Water draining structure for gas reaction plate of fuel cell stack |
EP1683225A1 (en) * | 2003-10-21 | 2006-07-26 | Alberta Research Council, Inc. | Controlling solid oxide fuel cell operation |
JP2006164606A (ja) * | 2004-12-03 | 2006-06-22 | Mitsubishi Electric Corp | 燃料電池用セパレータ及び燃料電池スタック |
JP4507971B2 (ja) * | 2005-04-27 | 2010-07-21 | 株式会社エクォス・リサーチ | 燃料電池装置 |
US20060246331A1 (en) * | 2005-04-29 | 2006-11-02 | Steinbroner Matthew P | Partitioned fuel cell stacks and fuel cell systems including the same |
US20070077474A1 (en) * | 2005-10-04 | 2007-04-05 | Goebel Steven G | Fuel cell system water mass balancing scheme |
JP4572252B2 (ja) * | 2008-10-30 | 2010-11-04 | 本田技研工業株式会社 | 燃料電池スタック |
KR20120094464A (ko) | 2009-07-06 | 2012-08-24 | 토프쉐 푸엘 셀 에이/에스 | 연료 전지 스택 또는 전기분해 전지 스택에서의 조합된 흐름 패턴 |
KR101091662B1 (ko) | 2010-02-01 | 2011-12-08 | 기아자동차주식회사 | 가습성능이 향상되는 연료전지 시스템 |
JP4516630B2 (ja) * | 2010-03-25 | 2010-08-04 | 本田技研工業株式会社 | 固体高分子型セルアセンブリ |
FR2960704B1 (fr) * | 2010-05-27 | 2012-07-27 | Air Liquide | Plaque de pile a combustible, pile comportant une telle plaque et son utilisation |
JP5404594B2 (ja) * | 2010-12-27 | 2014-02-05 | 本田技研工業株式会社 | 燃料電池 |
US10418649B2 (en) * | 2012-03-09 | 2019-09-17 | Nissan Motor Co., Ltd. | Fuel cell stack and seal plate used for the same |
JP5839307B2 (ja) * | 2012-11-22 | 2016-01-06 | 日産自動車株式会社 | 燃料電池スタック |
DE102015220950A1 (de) * | 2015-10-27 | 2017-04-27 | Volkswagen Ag | Kathodenversorgung für eine Mehrfach-Brennstoffzelle sowie Verfahren zum Versorgen von Teilbrennstoffzellen mit einem Kathoden-Betriebsmedium |
DE102020127689A1 (de) | 2020-10-21 | 2022-04-21 | Audi Aktiengesellschaft | Brennstoffzellenstapel, Brennstoffzellenvorrichtung sowie Verfahren zum Betreiben einer Brennstoffzellenvorrichtung |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE59306256D1 (de) | 1992-11-05 | 1997-05-28 | Siemens Ag | Verfahren und Einrichtung zur Wasser- und/oder Inertgasentsorgung eines Brennstoffzellenblocks |
JP3555178B2 (ja) * | 1994-05-24 | 2004-08-18 | トヨタ自動車株式会社 | 固体高分子型燃料電池 |
US6479177B1 (en) * | 1996-06-07 | 2002-11-12 | Ballard Power Systems Inc. | Method for improving the cold starting capability of an electrochemical fuel cell |
US5776625A (en) * | 1997-06-18 | 1998-07-07 | H Power Corporation | Hydrogen-air fuel cell |
DE19732305A1 (de) * | 1997-07-26 | 1999-01-28 | Volkswagen Ag | Verfahren und Vorrichtung zum Befüllen eines Brennstoffzellenstacks |
US5935726A (en) | 1997-12-01 | 1999-08-10 | Ballard Power Systems Inc. | Method and apparatus for distributing water to an ion-exchange membrane in a fuel cell |
US6033794A (en) * | 1997-12-10 | 2000-03-07 | The United States Of America As Represented By The United States Department Of Energy | Multi-stage fuel cell system method and apparatus |
US6015634A (en) | 1998-05-19 | 2000-01-18 | International Fuel Cells | System and method of water management in the operation of a fuel cell |
US6251534B1 (en) * | 1999-09-23 | 2001-06-26 | Plug Power Inc. | Fuel cell cascade flow system |
US6569298B2 (en) * | 2000-06-05 | 2003-05-27 | Walter Roberto Merida-Donis | Apparatus for integrated water deionization, electrolytic hydrogen production, and electrochemical power generation |
CA2403342C (en) * | 2001-09-17 | 2007-07-31 | Honda Giken Kogyo Kabushiki Kaisha | Fuel cell stack |
JP4064135B2 (ja) * | 2002-03-26 | 2008-03-19 | 本田技研工業株式会社 | 燃料電池スタック |
-
2001
- 2001-03-06 JP JP2001061499A patent/JP4405097B2/ja not_active Expired - Fee Related
-
2002
- 2002-03-05 US US10/469,878 patent/US7459231B2/en not_active Expired - Fee Related
- 2002-03-05 EP EP02702729A patent/EP1366536B1/en not_active Expired - Lifetime
- 2002-03-05 CA CA002439967A patent/CA2439967C/en not_active Expired - Fee Related
- 2002-03-05 TW TW091104014A patent/TW543233B/zh not_active IP Right Cessation
- 2002-03-05 MY MYPI20020772A patent/MY127979A/en unknown
- 2002-03-05 CN CNB028083385A patent/CN1277327C/zh not_active Expired - Fee Related
- 2002-03-05 DE DE60207050T patent/DE60207050T2/de not_active Expired - Lifetime
- 2002-03-05 WO PCT/JP2002/002011 patent/WO2002071525A2/en active IP Right Grant
- 2002-03-05 AT AT02702729T patent/ATE308805T1/de not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
CA2439967A1 (en) | 2002-09-12 |
EP1366536B1 (en) | 2005-11-02 |
DE60207050D1 (de) | 2005-12-08 |
TW543233B (en) | 2003-07-21 |
ATE308805T1 (de) | 2005-11-15 |
CN1277327C (zh) | 2006-09-27 |
US20040161649A1 (en) | 2004-08-19 |
WO2002071525A8 (en) | 2003-04-10 |
JP2002260695A (ja) | 2002-09-13 |
DE60207050T2 (de) | 2006-07-13 |
US7459231B2 (en) | 2008-12-02 |
EP1366536A2 (en) | 2003-12-03 |
MY127979A (en) | 2007-01-31 |
CN1503999A (zh) | 2004-06-09 |
CA2439967C (en) | 2008-10-14 |
WO2002071525A2 (en) | 2002-09-12 |
WO2002071525A3 (en) | 2002-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4405097B2 (ja) | 燃料電池スタックおよびその運転方法 | |
JP4037698B2 (ja) | 固体高分子型セルアセンブリ | |
JP4344484B2 (ja) | 固体高分子型セルアセンブリ | |
JP3971969B2 (ja) | 固体高分子型燃料電池 | |
US7201990B2 (en) | Fuel cell stack | |
JP4064135B2 (ja) | 燃料電池スタック | |
JP2003203669A (ja) | 燃料電池スタック | |
JP4612977B2 (ja) | 燃料電池スタックおよびその反応ガス供給方法 | |
JP4185734B2 (ja) | 燃料電池スタック | |
JP4031952B2 (ja) | 燃料電池 | |
JP4886128B2 (ja) | 燃料電池スタック | |
JP3963716B2 (ja) | 燃料電池スタック | |
JP3914418B2 (ja) | 燃料電池スタック | |
JP4908699B2 (ja) | 燃料電池スタック | |
JP3615508B2 (ja) | 燃料電池スタック | |
JP2003157865A (ja) | 燃料電池スタック | |
JP3829116B2 (ja) | 燃料電池およびその運転方法 | |
JP2005228542A (ja) | 燃料電池 | |
JP2007095352A (ja) | 燃料電池システム | |
AU2002236214A1 (en) | Polymer electrolyte fuel cell stack and operating method thereof | |
JP2007095463A (ja) | 燃料電池システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080902 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081028 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091027 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091104 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121113 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131113 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |