JP5898037B2 - 保持部材及び水素製造装置 - Google Patents

保持部材及び水素製造装置 Download PDF

Info

Publication number
JP5898037B2
JP5898037B2 JP2012221545A JP2012221545A JP5898037B2 JP 5898037 B2 JP5898037 B2 JP 5898037B2 JP 2012221545 A JP2012221545 A JP 2012221545A JP 2012221545 A JP2012221545 A JP 2012221545A JP 5898037 B2 JP5898037 B2 JP 5898037B2
Authority
JP
Japan
Prior art keywords
hydrogen
holding member
reactor
granular catalyst
hydrogen separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012221545A
Other languages
English (en)
Other versions
JP2014073926A (ja
Inventor
英昭 彦坂
英昭 彦坂
田中 裕之
裕之 田中
昌弘 梶谷
昌弘 梶谷
高木 保宏
保宏 高木
伊藤 正也
正也 伊藤
孝弥 井関
孝弥 井関
高生 久米
高生 久米
池田 陽一
陽一 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2012221545A priority Critical patent/JP5898037B2/ja
Publication of JP2014073926A publication Critical patent/JP2014073926A/ja
Application granted granted Critical
Publication of JP5898037B2 publication Critical patent/JP5898037B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は、原料ガスの改質を行う粒状触媒を保持する保持部材、及び、粒状触媒と保持部材と水素ガスを選択して分離する水素分離体とを備えた水素製造装置に関する。
従来より、例えば、燃料電池に供給する水素を製造する装置として、天然ガス等の原料ガスを改質して水素を生成する触媒と、水素のみを透過させる金属製の水素透過膜(水素分離金属層)を有する筒状の水素分離体とを、反応器(反応容器)内に配置した水素製造装置が開発されている。
例えば下記特許文献1には、金属製の反応管の内部に、外側表面に水素透過膜を有する水素分離体を配置するとともに、水素分離体と反応管の内壁との間に、ペレット状(粒状)に成形された多数の触媒をパックドベッド状に充填した水素製造装置が開示されている。
この水素製造装置では、高温の水蒸気を含む原料ガスが、粒状触媒に接触して、水蒸気改質反応等が生じることにより、水素ガス等が生成される。
例えばメタンの水蒸気改質では、下記式(1)及び式(2)の反応式に従って、水素、一酸化炭素、二酸化炭素に分解される。
CH4+H2O ←→ CO+3H2O ・・・(1)
CO+H2O ←→ CO2+H2 ・・・(2)
従って、分解されたガスなどから、水素分離体によって水素を選択的に透過させることにより、高純度の水素を得ることができる。
また、上述した水素製造装置では、粒状触媒を充填するという構成によって、水素透過膜と粒状触媒とを近接して配置することができるので、水素の製造効率が高いという特徴がある。
特開2005−58823号公報
しかしながら、水素製造装置には、通常、高温の状態と低温の状態という熱サイクルが加えられるので、反応管が膨張と収縮とを繰り返し、そのため、上述した特許文献1に記載の技術では、水素分離体が破損するという問題があった。
つまり、金属製の反応管が高温になって膨張すると、粒状触媒はその膨張した空間を満たすように下降するが、反応管が低温になって収縮すると、その下方に詰まった状態の粒状触媒は殆ど移動できないので、反応管によって内側に押圧されることになる。その結果、内側に押圧された粒状触媒はセラミックス製の水素分離体を押圧するので、その押圧によって水素分離体が破損することがあった。
本発明は、上述した課題を解決するためになされたものであり、その目的は、反応器内に、粒状触媒と水素分離体とを収容した場合に、水素分離体が破損しにくい(粒状触媒を保持する)保持部材及び水素製造装置を提供することにある。
(1)本発明は、第1態様として、水素のみを選択して透過させる筒状の水素分離体と、原料ガスから水素を生成させる触媒を有する粒状触媒と、を収容した金属製の反応器内にて、前記粒状触媒を保持する保持部材であって、前記保持部材は、セラミックス製織布、セラミックス製不織布、グラスウールのいずれか1種から構成された、ガスの透過が可能な通気性を有するシート状部材であることを特徴とする。
本第1態様では、保持部材は、粒状触媒を保持した状態で反応器に収容される。ここで、保持とは、少なくとも反応器に粒状触媒を充填する際に(好ましくは反応器の作動中においても)、反応器内にて粒状触媒が移動しないようにその状態を保つことである。
従って、保持部材に保持された粒状触媒と水素分離体とを反応器に収容した水素製造装置においては、高温(例えば550℃)の状態と低温(例えば室温)の状態という熱サイクルが加えられることにより、反応器の膨張と収縮とが繰り返されても、水素分離体が破損しにくいという効果がある。
例えば、保持部材と水素分離体との間に粒状触媒を保持する場合には、保持部材によって粒状触媒の(反応器側への)移動が抑制されるので、反応器が高温になって膨張したときでも、従来の粒状触媒のみが充填された装置のように、粒状触媒が(膨張して広がった)下方の空間を満たすように移動しない。そのため、反応器が低温になって収縮しても、粒状触媒は反応器によって内側に押圧されないので、粒状触媒に押圧されて水素分離体が破損するという問題は生じ難い。
また、例えば、反応器と保持部材との間に粒状触媒を保持する場合には、反応器が高温になって膨張すると、粒状触媒は(膨張して広がった)下方の空間を満たすように移動するので、反応器が低温になって収縮すると、粒状触媒は水素分離体側に押圧される。しかし、粒状触媒と水素分離体との間には保持部材が存在するので、その保持部材が、粒状触媒の移動を抑制するとともに粒状触媒が水素分離体と直接に接することを防ぐので、水素分離体の破損を低減することができる。
このように、粒状触媒を保持部材によって保持することにより、水素製造装置の起動や停止時の熱サイクルによる水素分離体の破損を低減できるという顕著な効果を奏する。
また、本第1態様では、保持部材は、セラミックス製織布、セラミックス製不織布、グラスウールのいずれか1種である。
これらの保持部材は、水素分離体より柔軟で応力を緩和するクッション性を有するので、周囲より水素分離体に加わる力を緩和することができる。よって、水素分離体の破損を効果的に低減できる。
(2)本発明の第2態様として、水素のみを選択して透過させる筒状の水素分離体と、
原料ガスから水素を生成させる触媒を有する粒状触媒と、ガスの透過が可能な通気性を有するシート状部材である保持部材と、を金属製の反応器に収容した水素製造装置であって、前記保持部材は、前記反応器内にて前記粒状触媒を保持する保持部材であり、前記反応器の内周面と前記水素分離体の外周面との間に、前記保持部材を備えるとともに、該保持部材と前記水素分離体の外周面との間に前記粒状触媒を充填したことを特徴とする。
本第2態様では、上述したように、粒状触媒を保持部材によって保持することにより、水素製造装置の起動や停止時の熱サイクルによる水素分離体の破損を低減できるという顕著な効果を奏する。
また、本第2態様では、反応器の内周面と水素分離体の外周面との間に、保持部材を備えるとともに、この保持部材と水素分離体の外周面との間に粒状触媒が充填されている。
従って、水素製造装置に高温の状態と低温の状態という熱サイクルが加えられることにより、反応器の膨張と収縮とが繰り返されても、保持部材に保持された粒状触媒の位置は変わり難いので、反応器によって押圧され難く、よって、水素分離体が破損し難いという効果がある。
また、保持部材によって、粒状触媒を水素分離体に近接して(又は接触して)配置することができるので、水素を製造する効率が高いという効果がある。
特に、保持部材がクッション性を有している場合には、周囲より粒状触媒に加わる力を緩和できるので、その点からも水素分離体の破損を低減できるという利点がある。
)本発明では、第態様として、前記保持部材は、セラミックス製織布、セラミックス製不織布、金属製織布、金属製不織布、セラミックス製メッシュ、金属製メッシュ、グラスウールのいずれか1種であることを特徴とする。
本第態様は、保持部材の材料として好適な材料を例示している。これらの保持部材は、水素分離体より柔軟で応力を緩和するクッション性を有するので、周囲より水素分離体に加わる力を緩和することができる。よって、水素分離体の破損を効果的に低減できる。
)本発明では、第態様として、前記保持部材は、前記水素分離体を貫挿可能な貫通孔を有する筒状の部材であることを特徴とする。
本第態様は、保持部材の形状として好適な形状を例示している。つまり、保持部材が筒状の部材である場合には、水素分離体に外嵌するように、保持部材(従って粒状触媒)を配置することができる。よって、保持部材及び粒状触媒の配置が容易であるとともに、
その様に配置された粒状触媒によって、効率的に原料ガスの改質を行うことができる。
(5)本発明では、第5態様として、前記反応器の内周面と前記保持部材との間に、前記原料ガスの流通が可能な間隙を有する。
本第5態様では、反応器の内周面と保持部材との間に間隙があるので、反応器の膨張と収縮とが繰り返されても、保持部材(従って粒状触媒)が押圧されることがなく、よって、水素分離体が一層破損され難いという効果がある。
(6)本発明では、第6態様として、前記粒状触媒と前記水素分離体の外表面との間に、他の前記保持部材を有することを特徴とする。
本第6形態では、粒状触媒と水素分離体との間に保持部材があるので、仮に外側から内側(水素分離体側)に力が加わっても、その力が水素分離体に伝わり難く、よって、水素分離体が破損し難いという効果がある。
また、粒状触媒は丸いので、水素分離体と直接に接触する場合には、非常に小さな面積で接触する。そのため、大きな応力が加わるので水素分離体が破損し易い。ところが、本第6形態では、粒状触媒と水素分離体との間に保持部材があり、粒状触媒が直接に水素分離体に接触し難いので、その点からも水素分離体が破損し難いという利点がある。
この様に、本第6態様では、粒状触媒の両側に保持部材があるので、単一の保持部材を用いた場合よりも、水素分離体の破損を一層低減できるという利点がある。
なお、粒状触媒の両側の保持部材としては、一体の部材(例えばシート状の部材が曲げられたもの)を用いることができる。
(7)本発明は、第7態様として、水素のみを選択して透過させる筒状の水素分離体と、原料ガスから水素を生成させる触媒を有する粒状触媒と、セラミックス製織布、セラミックス製不織布、グラスウールのいずれか1種から構成された、ガスの透過が可能な通気性を有するシート状部材である保持部材と、を金属製の反応器に収容した水素製造装置であって、前記保持部材は、前記反応器内にて、前記粒状触媒を保持する保持部材であり、前記反応器の内周面と前記水素分離体の外周面との間に、前記保持部材を備えるとともに、前記反応器の内周面と前記保持部材との間に前記粒状触媒を充填したことを特徴とする。
本第7態様では、反応器の内周面と水素分離体の外周面との間に、保持部材を備えるとともに、反応器の内周面と保持部材との間に粒状触媒が充填されている。
従って、上述した様に、水素製造装置に高温の状態と低温の状態という熱サイクルが加えられることにより、反応器の膨張と収縮とが繰り返されても、保持部材によって、粒状触媒から水素分離体に加わる力が阻止又は緩和されるので、水素分離体の破損を低減できるという利点がある。
また、保持部材は、クッション性を有するので、水素分離体の破損を低減できるという利点がある。
(8)本発明は、第8態様として、前記保持部材は、前記水素分離体を貫挿可能な貫通孔を有する筒状の部材であることを特徴とする。
本第8態様は、前記第2態様と同様な効果を奏する。
(9)本発明は、第9態様として、前記反応器の内周面と前記保持部材との間に、前記原料ガスの流通が可能な間隙を有することを特徴とする。
本第9態様は、前記第3態様と同様な効果を奏する。
(10)本発明は、第10態様として、前記粒状触媒と前記水素分離体の外表面との間に、他の前記保持部材を有することを特徴とする。
本第10態様は、前記第4態様と同様な効果を奏する。
11)本発明では、第11態様として、前記反応器及び前記保持部材は筒状であり、前記反応器と軸方向を揃えて前記水素分離体が立設されるとともに、該水素分離体の外側に、前記保持部材が嵌められていることを特徴とする。
本第11態様は、水素製造装置として好適な構成を例示している。この構成の場合には、容易に水素製造装置を製造することができる。
実施例1の水素製造装置を軸方向に沿って破断して模式的に示す断面図である。 実施例1における水素分離体を軸方向に沿って破断して示す断面図である。 実施例1における水素分離体の一部を破断して拡大して示す説明図である。 実施例1の保持部材を示す斜視図である。 実施例1の水素製造装置の要部(図1のA部)を拡大して模式的に示す説明図である。 他の例である穴あき円盤状金属板を示す斜視図である。 実施例1における水素製造装置を軸方向に沿って破断して示す断面図である。 実施例2の水素製造装置の要部を拡大して模式的に示す説明図である。 実施例3、4の水素製造装置を軸方向に沿って破断して模式的に示す断面図である。 実験に用いる比較例の水素製造装置を軸方向に沿って破断して模式的に示す断面図である。
以下、本発明の実施形態について説明する。
<粒状触媒の構成>
本発明における粒状触媒としては、例えば外径(平均粒径)が0.1mm〜30mmの成形触媒である粒状触媒が挙げられる。
粒状触媒に用いられる触媒としては、ニッケル、銅、鉄、白金、パラジウム、亜鉛、及びこれらの混合物や合金などが挙げられる。
この触媒を担持する担持体としては、多孔質セラミックスが挙げられ、この多孔質セラミックスとしては、アルミナ、ジルコニア、安定化ジルコニア、セリア、ドープセリア、ムライト、シリカ、及びこれらの混合物が挙げられる。
上述した粒状触媒を製造する方法としては、例えば、セラミックス粉末と造孔材にバインダを加えた材料を用い、プレス成形法や転動造粒法によって粒状(球状)の成形体を作製し、その後、成形体を脱脂、焼成した後に、金属触媒成分を含有した溶液に浸漬し、乾燥、熱処理することにより、成形触媒とする方法を採用できる。
また、他の製造方法として、金属酸化物とセラミックス(例えば酸化ニッケルとジルコニア)と造孔材にバインダを加えた材料を用い、プレス成形法や転動造粒法によって粒状(球状)の成形体を作製し、その後、成形体を脱脂、焼成した後に還元処理を施し、金属酸化物を還元することにより触媒とする方法が挙げられる。
なお、粒状触媒としては、市販品を用いてもよい。
<保持部材の構成>
本発明の保持部材は、反応器内において、複数の粒状触媒を保持でき、且つ、原料ガスが透過できるものであればよく、例えばメッシュ(網)、織布、不織布からなるシート状の部材を採用できる。なお、保持部材の厚みとしては、0.1mm〜10mmの範囲を採用できる。
この保持部材の材料としては、水素製造装置に加わる低温や高温(例えば550℃)の温度条件において劣化しにくい耐熱性や、改質雰囲気(還元雰囲気)でも劣化しにくい安定性、更には、外力によって変形可能な柔軟性を備えたものが好ましい。
例えばセラミックス(アルミナ、シリカ、ムライト、ジルコニア、安定化ジルコニア、マグネシア、及びこれらの混合物や化合物等)、金属(ニッケル、ステンレス等)、グラスウールなどが挙げられる。
なお、柔軟性としては、水素分離体、粒状触媒、及び反応器より柔軟であればよく、且つ、粒状触媒を保持する保持力を備えているものが好ましい。
<水素分離体の構成>
水素分離体としては、水素分離金属層とそれを支持する支持体の構成を採用できる。
支持体の材料としては、セラミックスが挙げられ、支持体の構造としては、一部又は全体が多孔質セラミックスからなる構造を採用できる。
この多孔質セラミックスからなる部分(多孔質部)は、全体又は一部が水素を含むガスの透過が可能であり、その材料としては、イットリア安定化ジルコニア、安定化ジルコニア、アルミナ、マグネシア、セリア、ドープドセリア、及びこれらの混合物などが挙げられる。
また、多孔質部の例えば軸方向端部などに、ガスの透過の無い緻密部を接合して水素分離体を構成してもよい。ここで、「ガス透過性の無い」とは、水素が分離される原料ガスの透過を防止できればよく、例えば相対密度70%以上の緻密さが挙げられる。
なお、前記緻密部を構成する材料としてはセラミックスが挙げられ、このセラミックスとしては、イットリア安定化ジルコニア、安定化ジルコニア、アルミナ、マグネシア、セリア、ドープドセリアおよびこれらの混合物などが挙げられる。
一方、水素分離金属層を構成する水素分離金属(水素透過性金属)としては、Pd単体、Pd合金(例えばPdAg合金、PdCu合金、PdAu合金)等が挙げられる。水素脆化の抑制の点からは、Pd単体よりもPdAg合金もしくはPdCu合金が望ましい。また、(例えば450℃以上の)高温で使用される水素製造装置の場合には、PdAg合金が望ましい。
この水素分離金属層としては、支持体の表面や内部に水素分離金属を配置した構成を採用できる。例えば多孔質の支持体の細孔内に水素分離金属を充填することにより、水素分離金属層を形成することができる。
<水素製造装置の構成>
本発明の水素製造装置は、例えば円筒形状等の反応器内に、1又は複数の水素分離体及び1又は複数の(粒状触媒を保持した)保持部材を配置したものであり、水素分離体は、例えば金属継手等によって反応器に取り付けられる。
例えば先端が閉塞された筒状の水素分離体を用いる場合には、その先端側が反応器内に配置されるとともに、後端(基端側)に金属継手が固定され、この金属継手が反応器に固定される構造を採用できる。
前記反応器としては、例えばステンレスからなる金属製の容器が挙げられる。
以下では、天然ガス等の原料ガスから高純度の水素を製造することができる水素製造装置の実施例について説明する。
a)まず、本実施例の水素製造装置の概略構成について説明する。
図1に模式的に示す様に、本実施例の水素製造装置1は、原料ガスを改質して(水素の多い)水素リッチの改質ガスとするとともに、その改質ガスから水素を選択的に分離して、高純度の水素を得ることができる装置である。
この水素製造装置1は、後に詳述する様に、原料ガスを改質する粒状触媒3と、粒状触媒3を保持する筒状の保持部材5と、粒状触媒3が落下しないように保持部材5を基端側(同図下方)で結束する金属ワイヤ7と、改質ガスから水素を分離する試験管形状の水素分離体9と、水素分離体9の基端側に取り付けられた筒状の金属継手11と、粒状触媒3及び保持部材5及び水素分離体9等を収容する筒状の反応器(反応容器)13とを備えている。
具体的には、反応器13の下端の基板(下基板)15に、(水素分離体9の先端側を上方にして)金属継手11によって水素分離体9が固定され、その水素分離体9に所定の間隙17を保って保持部材5が外嵌され、その間隙17に複数の粒状触媒3が充填されている。
また、保持部材5の上端は、例えば金属ワイヤ16によって閉じられている。一方、保持部材5の下端は、金属継手11の外周面を覆うように下方に伸びており、この金属継手11上にて金属ワイヤ7によって結束されている。
また、反応器13の上部には、原料ガスが導入される原料導入孔19が形成され、反応器13の下部には、反応後等のオフガスが排出されるガス排出孔21が形成されている。更に、水素分離体9の中心孔23は金属継手11の中心孔25と連通しており、水素分離体9によって分離された水素は、水素分離体9の中心孔23及び金属継手11の中心孔25を介して、反応器13から取り出されるように構成されている。
b)次に、本実施例の要部である水素分離体9、保持部材5、及び粒状触媒3と、それらの配置等について説明する。
<水素分離体9の構成>
図2に示す様に、水素分離体9は、その閉塞された先端側(同図上側)には、主として多孔質セラミックス(YSZ)からなり、水素を分離する機能を有する試験管状の水素分離部27が設けられ、その開放された基端側(同図下側)には、ガス透過性が無く且つ強度が高い緻密質セラミックス(YSZ)からなる筒状の緻密部29が設けられている。以下、各構成について説明する。
前記緻密部29は、円筒形状のセラミックス体であり、ガスの透過ができない程度に十分には緻密化され、その強度は水素分離部27よりも大きくされている。
前記水素分離部27は、その外周側から導入されたガス(ここでは粒状触媒3によって改質された改質ガス)から、水素を選択的に分離して、水素分離部27の軸中心の中心孔23に供給する部材である。
この水素分離部27は、図3に拡大して示す様に、一端が閉塞された試験管状の多孔質部31と、多孔質部31の外側表面を覆う多孔質層33とから、一体に構成されている。なお、緻密部29と多孔質部31とからセラミックス支持体35(図2参照)が構成されている。
このうち、多孔質部31は、気孔率は例えば40%であり、ガス(水素)を透過可能な構造を有している。
また、前記多孔質層33は、多孔質セラミックス製の被覆層であり、ガスが透過可能な構造を有している。詳しくは、多孔質層33は、多孔質部31の外側表面を覆う第1多孔質層37と、第1多孔質層37の外側表面を覆う第2多孔質層39と、第2多孔質層39の外側表面を覆う多孔質保護層41とから、一体に構成されている。
なお、第1、第2多孔質層39、41は、同様な多孔質の構造を有しており、このセラミックス部分を内側多孔質層43と称する。
特に、第2多孔質層39の細孔の内部には、例えばPd等の水素透過性金属が充填されている。この水素透過性金属は、改質ガスから水素のみを選択して透過させることによって、改質ガスから水素を分離する金属である。
つまり、第2多孔質層39の内部において、水素透過性金属が充填されて第1多孔質層37の外側の全体を層状に覆う部分が、水素分離金属層(水素透過膜)45である。
<保持部材5の構成>
図4に示す様に、保持部材5は、軸中心に貫通孔6を有する円筒形状であり、この保持部材5の内径は、水素分離体9に所定幅(例えば1mmの幅)の間隙17を介して外嵌できるように、水素分離体9の外径(例えばφ10mm)よりも若干大きく(例えばφ20mm)設定されている。なお、保持部材5の厚みは、例えば0.4mmである。
また、保持部材5は、多数の微細な開口を有するシート状の材料、例えばアルミナの繊維を編んで作製されたセラミックス織布からなるので、径方向に対して外力を緩和できる柔軟性及び適度な弾性(クッション性)を有している。詳しくは、周囲の部材である粒状触媒3、水素分離体9、反応器13よりも高い柔軟性を有している。
<粒状触媒3の構成>
図5に拡大して示す様に、粒状触媒3は、例えば外径(平均粒径)がφ2mmの球状の成形触媒であり、前記間隙17に充填可能なように、その間隙17の幅よりも寸法が小さく設定されている。
この粒状触媒3は、改質ガスが通過可能ように、例えばアルミナからなる多孔質セラミックスを担持体(多孔質担持体)としており、この担持体に例えばNiからなる触媒が担持されている。
<各部材の配置>
本実施例では、上述した様に、水素分離体9の外周側に、所定の間隙17を介して筒状の保持部材5が嵌められており、この水素分離体9と保持部材5との間の間隙17に、多数の粒状触媒3が充填されている。
また、反応器13の内周面と保持部材5との間には、間隙(空間)46が設けられている。つまり、粒状触媒3は、保持部材5によって、反応器13の内周面に接触しないように、保持部材5と水素分離体9との間に保持されており、反応器13が熱サイクルによって膨張・収縮した場合でも、移動しない構成となっている。
なお、本実施例では、粒状触媒3が落下しないように、保持部材5の下端が金属継手11上にて金属ワイヤ7によって結束されているが、例えば図6に示す様に、粒状触媒3が落下しないように下方より支える下方部材として、金属継手11に外嵌可能な穴あき円盤状金属板47を使用してもよい。
c)次に、水素分離体9を反応器13に取り付ける構成について簡単に説明する。
図7に示す様に、水素分離体9の基端側には、金属継手11が取り付けられている。
この金属継手11は、水素分離体9の開放端側が挿入された筒状の取付金具51と、水素分離体9の外周面と取付金具51の内周面との間に配置された円筒形の(膨張黒鉛からなる)シール部材53と、水素分離体9に外嵌されてシール部材53を押圧する円筒形の押圧金具55と、押圧金具55に外嵌されて(取付金具51に螺合して)押圧金具55を押圧する筒状の固定金具57とを備えている。
前記取付金具51は、先端側筒状部59と鍔部61とネジ部63を備えており、軸中心には、ガス(水素)の流路となる貫通孔(中空部)65が形成され、中空部65には、水素分離体9の基端側の端部が収容されている。なお、水素分離体9に金属継手11が取り付けられて、水素製造装置67が構成されている。
d)次に、本実施例の水素製造装置1の製造方法について説明する。
<水素分離体9の製造方法>
図示しないが、まず、ゴム型に、イットリア安定化ジルコニア造粒粉、次に、造孔材として48体積%の有機ビーズを添加したイットリア安定化ジルコニア造粒粉の順番に充填し、その後、プレス成形法により、円筒有底管形状(試験管形状)に成形して、成形体を作製した。
次に、この成形体を、脱脂後、1400℃で焼結することにより、外径10mm×長さ300mmの緻密部29と多孔質部31とが一体化されたセラミックス支持体35を作製した。
次に、イットリア安定化ジルコニア粉末を有機溶媒中に分散させたスラリーを作製し、ディップコーティング法により、セラミックス支持体35の多孔質部31上に、(内側多孔質層43となる)内側多孔質形成層(図示せず)を作製した。
次に、内側多孔質形成層を、1200℃に加熱して焼き付けを行い、多孔質部31の表面に内側多孔質層43を備えたセラミックス支持体35を形成した。
次に、内側多孔質層43の表面に、周知のPdの核付け処理を行った後、内側多孔質層43上に、イットリア安定化ジルコニアのスラリーをディップコーティングして、(多孔質保護層41となる)保護層形成層(図示せず)を作製した。
次に、前記と同様に焼き付けることにより、内側多孔質層43上に多孔質保護層41を形成した。
次に、無電解めっき法により、内側多孔質層43の内部のPd核を成長させ、Pdめっき層(図示せず)を形成した。
次に、電解めっき法により、Pdめっき層上にAgめっき層(図示せず)を形成した。この電解めっき法としては、内部給電方式を採用できる。この内部給電方式では、図示しないが、例えば、(多孔質層33を形成した)セラミックス支持体35の内側(中心孔23)に電解液(例えばNaCl溶液)を導入し、外側に電解めっき液(硝酸銀溶液)を導入し、電解液中の電極と電解めっき液中の電極との間に電流を流すことによってめっきを行うことができる。
次に、熱処理を行うことによって、PdとAgとの合金化を行って、PdAgからなる水素分離金属層45を形成した。これにより、水素分離体9を完成した。
<粒状触媒3の製造方法>
図示しないが、まず、アルミナ粉末と、造孔材として50体積%の有機ビーズと、有機バインダとを混合した材料を用い、プレス成形法によって球状に成形して成形体を作製した。
次に、この成形体を脱脂した後、1400℃で焼結することにより、外径φ2mmの球状の多孔質担持体(図示せず)を作製した。
次に、硝酸ニッケル水溶液中に、前記多孔質担持体を浸漬し、乾燥した。
次に、乾燥後の多孔質担持体を、600℃にて大気中で熱処理した後、600℃にて水素中で還元処理を行って粒状触媒3とした。
即ち、アルミナ製の多孔質セラミックスからなる多孔質担持体に、触媒としてニッケル(Ni)を担持した粒状触媒3を作製した。
<保持部材5の製造方法>
図示しないが、保持部材5は、市販のアルミナからなる筒状のセラミックス織布を、水素分離体9等の寸法に応じて適切な長さに切断したものである。なお、組み付け時には、保持部材5が広がらないように、金属管等を用いて(例えば金属管を保持部材5に外嵌するようにして)保持部材5を固定してもよい。
<水素製造装置1の組付方法>
前記図1に示す様に、上述した方法にて製造された水素分離体9と粒状触媒3と保持部材5を、例えば外径φ50mm×内径φ40mm×長さ600mmの円筒状の反応器13内に配置した。
具体的には、まず、金属継手11に水素分離体9を内嵌し、次に、水素分離体9に保持部材5を外嵌した。なお、保持部材5は金属継手11の外周を覆う位置まで配置した。
次に、金属ワイヤ7を用い、金属継手11上にて保持部材5の下端を結束した。
その後、反応器13内に、金属継手11によって(保持部材5で覆われた)水素分離体9を固定した。
次に、水素分離体9と保持部材5との間の間隙17に粒状触媒3を充填し、その後、金属ワイヤ16によって、保持部材5の上端を閉塞した。
従って、この様に構成された水素製造装置1においては、原料導入孔19から(水蒸気を含む)原料ガスが供給されると、粒状触媒3にて水蒸気改質が行われて改質ガスが生成される。そして、この改質ガスは、水素分離体9の水素分離金属層45にて水素が分離されて、中心孔23に排出され、更に、この水素は、水素分離体9の中心孔23から金属継手11の中心孔25を介して、反応器13外に取り出される。
e)次に、本実施例の効果を説明する。
本実施例では、粒状触媒3を保持部材5で保持した状態で反応器13に収容している。従って、保持部材5に保持された粒状触媒3と水素分離体9とを反応器13に収容した水素製造装置1においては、高温の状態と低温の状態という熱サイクルが加えられることにより、反応器13の膨張と収縮とが繰り返されても、水素分離体9が破損しにくいという効果がある。
詳しくは、本実施例では、保持部材5と水素分離体9との間に粒状触媒3を保持されているので、反応器13が高温になって膨張したときでも、従来の粒状触媒のみが充填された装置のように、粒状触媒が(膨張して広がった)下方の空間を満たすように移動しない。そのため、反応器13が低温になって収縮しても、粒状触媒3は反応器13によって内側に押圧されないので、粒状触媒3に押圧されて水素分離体9が破損するという問題は生じ難い。
このように、本実施例では、粒状触媒3を保持部材5によって保持することにより、水素製造装置1の起動や停止時の熱サイクルによる水素分離体9の破損を低減できるという顕著な効果を奏する。
また、本実施例では、保持部材5として、水素分離体9より柔軟で応力を緩和するクッション性を有するセラミックス製織布を用いるので、反応器13が収縮しても、周囲より粒状触媒3に加わる力を緩和することができ、よって、水素分離体9の破損を一層好適に低減できる。
更に、本実施例では、保持部材5が筒状の部材であるので、水素分離体9に外嵌するように、保持部材5(従って粒状触媒3)を配置することができる。よって、保持部材5及び粒状触媒3の配置が容易であるとともに、その様に配置された粒状触媒3によって、効率的に原料ガスの改質を行うことができる。
しかも、本実施例では、保持部材5によって、粒状触媒3を水素分離体9に近接して(接触して)配置することができるので、水素を製造する効率が高いという効果がある。
その上、本実施例では、反応器13の内周面と保持部材5との間に空間46があるので、反応器13の膨張と収縮とが繰り返されても、保持部材5(従って粒状触媒3)が押圧されることがなく、よって、水素分離体9が一層破損され難いという効果がある。
また、本実施例では、反応器13及び保持部材5は筒状であり、反応器13と軸方向を揃えて水素分離体9が立設されるとともに、その水素分離体9の外側に、保持部材5が嵌められている。この構造の場合には、容易に水素製造装置1を製造できるとともに、簡易な構造によって、効率良く水素を製造することができる。
f)次に、本発明の効果を確認するために行った実験例1について説明する。
本実験例1は、本実施例1の水素製造装置1を用い、熱サイクルを加えた場合の水素分離体9の破損の程度を、製造される水素の純度によって調べたものである。
具体的には、水素製造装置1を、室温(25℃)から550℃まで昇温し、前記実施例1と同様に、粒状触媒3側に原料ガス(天然ガス+水蒸気)を導入し、水素分離体9の中心孔23内に水素を抽出する水素製造試験を行った。その結果、得られた水素の純度は99.99体積%以上であった。
また、前記実験後に、室温まで降温した後、550℃まで再度昇温して水素を製造する動作、即ち、水素製造装置1の起動・停止試験を繰り返し行った。
その結果、100回以上の起動・停止後も、水素純度は99.99体積%以上が維持され、本発明の有効性が示された。
次に、実施例2について説明するが、前記実施例1と同様な内容の説明は省略する。
a)まず、本実施例の水素製造装置の構成等について説明する。
図8に要部を示す様に、本実施例の水素製造装置71では、前記実施例1と同様な外径φ10mmの水素分離体73を用いており、その水素分離体73の外周面に密着するように、前記実施例1と同様な内径φ12mmの円筒形状のセラミックス織布からなる保持部材75が嵌められている。なお、保持部材75の上端は、前記実施例1と同様に閉じられている。
特に、本実施例では、保持部材75と内径φ25mmの金属製の反応器77との間の間隙79に、前記実施例1と同様な外径φ2mmの粒状触媒81が充填されている。
また、本実施例では、下記の様にして水素製造装置71を製造した。
まず、水素分離体73に保持部材75を外嵌し、その先端を閉じた。その後、水素分離体73を反応器77に取り付け、更に、反応器77と保持部材75との間(片側の幅6.5mm)の間隙79に、粒状触媒81を充填した。
b)上述した構成によって、本実施例では、下記の効果を奏する。
本実施例では、反応器77と保持部材75との間に粒状触媒81を保持するので、反応器77が高温になって膨張すると、粒状触媒81が(膨張して広がった)下方の空間を満たすように移動するので、反応器77が低温になって収縮すると、粒状触媒81は水素分離体73側に押圧される。しかし、粒状触媒81と水素分離体73との間には保持部材75が配置されているので、その保持部材75が、粒状触媒81の移動を抑制する(従って水素分離体73への押圧力を低減する)。よって、水素分離体73の破損を低減することができる。
また、粒状触媒81は丸いので、水素分離体73と直接に接触する場合には、非常に小さな面積で接触する。そのため、大きな応力が加わるので水素分離体が破損し易いが、本実施例では、粒状触媒81と水素分離体73との間に保持部材75があり、粒状触媒81が直接に保持部材75に接触しないので、その点からも水素分離体73が破損し難いという利点がある。
更に、本実施例においても、保持部材75として、水素分離体73より柔軟で応力を緩和するクッション性を有するセラミックス製織布を用いるので、反応器77が収縮しても、粒状触媒81から水素分離体73に加わる力を緩和することができ、よって、水素分離体73の破損を一層好適に低減できる。
c)次に、本発明の効果を確認するために行った実験例2について説明する。
本実験例2では、本実施例2の水素製造装置71を用い、熱サイクルを加えた場合の水素分離体73の破損の程度を、製造される水素の純度によって調べたものである。
具体的には、上述した前記実験例1と同様な方法で、最初の水素製造試験を行った。その結果、得られた水素の純度は99.99体積%以上であった。
また、前記実験後に、前記実験例1と同様に、水素製造装置71の起動・停止試験を繰り返し行った。
その結果、100回以上の起動・停止後も、水素純度は99.99体積%以上が維持され、本発明の有効性が示された。
次に、実施例3について説明するが、前記実施例1と同様な内容の説明は省略する。
a)まず、本実施例の水素製造装置の構成について説明する。
図9に要部を示す様に、本実施例の水素製造装置91では、前記実施例1と同様な外径φ10mmの水素分離体93を用い、その水素分離体93の外周面に密着するように、前記実施例1と同様な内径φ12mmの円筒形状のセラミックス織布からなる保持部材(内側保持部材)95が嵌められている。なお、内側保持部材95の上端は、前記実施例1と同様に閉じられている。
また、内側保持部材95の外側には、(内側保持部材95より大きな)内径φ20mmの前記実施例1と同様な円筒形状のセラミックス織布からなる保持部材(外側保持部材)97が嵌められている。
そして、内側保持部材95と外側保持部材97との間(片側の幅4mm)の間隙99には、前記実施例1と同様な外径φ2mmの粒状触媒101が充填されている。
なお、本実施例では、反応器103の内径はφ40mmであり、この反応器103の内周面と外側保持部材97との間には、所定幅(片側10mm)の間隙(空間)105を有している。
b)次に、本実施例の水素製造装置91の製造方法について説明する。
まず、前記実施例1と同様な水素分離体93に内側保持部材95を外嵌し、その先端を閉じ、更に、内側保持部材95に対して外側保持部材97を外嵌した。
その後、水素分離体93を反応器103に取り付け、更に、内側保持部材95と外側保持部材97との間(片側の幅4mm)の間隙99に粒状触媒101を充填した。
この様にして製造された本実施例の水素製造装置91は、前記実施例1と実施例2の構成を備えているので、前記実施例1と実施例2の両方の効果を奏する。
つまり、本実施例では、粒状触媒101の両側に保持部材95、97があるので、単一の保持部材を用いた場合よりも、水素分離体93の破損を一層低減できるという利点がある。
c)次に、本発明の効果を確認するために行った実験例3について説明する。
本実験例3では、本実施例3の水素製造装置91を用い、熱サイクルを加えた場合の水素分離体93の破損の程度を、製造される水素の純度によって調べたものである。
具体的には、上述した前記実験例1と同様な方法で、最初の水素製造試験を行った。その結果、得られた水素の純度は99.99体積%以上であった。
また、前記実験後に、前記実験例1と同様に、水素製造装置91の起動・停止試験を繰り返し行った。
その結果、100回以上の起動・停止後も、水素純度は99.99体積%以上が維持され、本発明の有効性が示された。
次に、実施例4について説明するが、前記実施例3と同様な内容の説明は省略する。なお、本実施例の水素製造装置における各部材の配置は前記実施例3と同様であるので、前記図9を用い同様な部材番号を利用して説明する。
前記図9に要部を示す様に、本実施例の水素製造装置では、前記実施例3と同様な外径φ10mmの水素分離体93を用い、その水素分離体93の外周面に密着するように、内径φ12mmの円筒形状のステンレスメッシュからなる保持部材(内側保持部材)95が嵌められている。なお、内側保持部材95の上端は、前記実施例3と同様に閉じられている。
また、内側保持部材95の外側には、(内側保持部材95より大きな)内径φ20mmの円筒形状のステンレスメッシュからなる保持部材(外側保持部材)97が嵌められている。
なお、本実施例の水素製造装置の製造方法及び効果は、前記実施例3と同様である。
<比較例の実験例>
次に、本発明の範囲外の比較例の実験例について説明する。
図10に示す様に、本比較例の水素製造装置111を作製した。この水素製造装置111は、上述した従来技術と同様に、内径φ25mmの円筒形状の金属製の反応器113中に、外径10mmの水素分離体115を設置し、反応器113と水素分離体115との片側の幅7.5mmの間隙117にφ2mmの粒状触媒119を充填した。
そして、室温から550℃まで昇温し、粒状触媒119側に原料ガスを導入し、水素分離体115内に水素を抽出する水素製造試験を行った。その結果、得られる水素純度は99.99体積%以上であった。
また、起動・停止を3回繰り返して水素製造試験を実施したところ、水素純度は99.99体積%を下回った。その後も起動・停止を繰り返す度に、水素純度が段階的に低下した。
なお、5回の起動・停止後に、降温し、水素分離体を取り出したところ、表面に粒状触媒痕が見られ、水素分離体の破損が確認された。
これによって、本発明の範囲外の比較例では、本発明の各実施例1〜3に比べて、水素分離体の破損を低減できないことが確認された。
尚、本発明は前記実施形態や実施例になんら限定されるものではなく、本発明を逸脱しない範囲において種々の態様で実施しうることはいうまでもない。
1、71、91、111…水素製造装置
3、81、101、119…粒状触媒
5、75、95、97、…保持部材
9、73、93、115…水素分離体
13、77、103、113…反応器
17、46、79、99、105、117…間隙

Claims (11)

  1. 水素のみを選択して透過させる筒状の水素分離体と、
    原料ガスから水素を生成させる触媒を有する粒状触媒と、
    を収容した金属製の反応器内にて、前記粒状触媒を保持する保持部材であって、
    前記保持部材は、セラミックス製織布、セラミックス製不織布、グラスウールのいずれか1種から構成された、ガスの透過が可能な通気性を有するシート状部材であることを特徴とする保持部材。
  2. 水素のみを選択して透過させる筒状の水素分離体と、
    原料ガスから水素を生成させる触媒を有する粒状触媒と、
    ガスの透過が可能な通気性を有するシート状部材である保持部材と、
    を金属製の反応器に収容した水素製造装置であって、
    前記保持部材は、前記反応器内にて前記粒状触媒を保持する保持部材であり、
    前記反応器の内周面と前記水素分離体の外周面との間に、前記保持部材を備えるとともに、該保持部材と前記水素分離体の外周面との間に前記粒状触媒を充填したことを特徴とする水素製造装置。
  3. 前記保持部材は、セラミックス製織布、セラミックス製不織布、金属製織布、金属製不織布、セラミックス製メッシュ、金属製メッシュ、グラスウールのいずれか1種であることを特徴とする請求項に記載の水素製造装置。
  4. 前記保持部材は、前記水素分離体を貫挿可能な貫通孔を有する筒状の部材であることを特徴とする請求項又はに記載の水素製造装置。
  5. 前記反応器の内周面と前記保持部材との間に、前記原料ガスの流通が可能な間隙を有することを特徴とする請求項2〜4のいずれか1項に記載の水素製造装置。
  6. 前記粒状触媒と前記水素分離体の外表面との間に、他の前記保持部材を有することを特徴とする請求項2〜5のいずれか1項に記載の水素製造装置。
  7. 水素のみを選択して透過させる筒状の水素分離体と、
    原料ガスから水素を生成させる触媒を有する粒状触媒と、
    セラミックス製織布、セラミックス製不織布、グラスウールのいずれか1種から構成された、ガスの透過が可能な通気性を有するシート状部材である保持部材と、
    を金属製の反応器に収容した水素製造装置であって、
    前記保持部材は、前記反応器内にて、前記粒状触媒を保持する保持部材であり、
    前記反応器の内周面と前記水素分離体の外周面との間に、前記保持部材を備えるとともに、前記反応器の内周面と前記保持部材との間に前記粒状触媒を充填したことを特徴とする水素製造装置。
  8. 前記保持部材は、前記水素分離体を貫挿可能な貫通孔を有する筒状の部材であることを特徴とする請求項7に記載の水素製造装置。
  9. 前記反応器の内周面と前記保持部材との間に、前記原料ガスの流通が可能な間隙を有することを特徴とする請求項7又は8に記載の水素製造装置。
  10. 前記粒状触媒と前記水素分離体の外表面との間に、他の前記保持部材を有することを特徴とする請求項7〜9のいずれか1項に記載の水素製造装置。
  11. 前記反応器及び前記保持部材は筒状であり、
    前記反応器と軸方向を揃えて前記水素分離体が立設されるとともに、該水素分離体の外側に、前記保持部材が嵌められていることを特徴とする請求項2〜10のいずれか1項に記載の水素製造装置。
JP2012221545A 2012-10-03 2012-10-03 保持部材及び水素製造装置 Expired - Fee Related JP5898037B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012221545A JP5898037B2 (ja) 2012-10-03 2012-10-03 保持部材及び水素製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012221545A JP5898037B2 (ja) 2012-10-03 2012-10-03 保持部材及び水素製造装置

Publications (2)

Publication Number Publication Date
JP2014073926A JP2014073926A (ja) 2014-04-24
JP5898037B2 true JP5898037B2 (ja) 2016-04-06

Family

ID=50748397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012221545A Expired - Fee Related JP5898037B2 (ja) 2012-10-03 2012-10-03 保持部材及び水素製造装置

Country Status (1)

Country Link
JP (1) JP5898037B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6594726B2 (ja) * 2014-09-30 2019-10-23 三菱ケミカル株式会社 水素分離装置及び水素分離方法
JP6886753B2 (ja) * 2015-10-29 2021-06-16 宏之 小原 水素生成装置及び水素生成方法
CN110325265A (zh) * 2016-12-08 2019-10-11 埃因霍温科技大学 改进的用于膜反应器的双层膜
WO2023153135A1 (ja) * 2022-02-08 2023-08-17 日本碍子株式会社 膜反応器、および、膜反応装置の運転方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2631244B2 (ja) * 1990-10-19 1997-07-16 川崎重工業株式会社 燃料電池用水素製造方法及び装置
JP5039370B2 (ja) * 2006-12-06 2012-10-03 三菱重工業株式会社 水素製造用反応管及びそれを備えた水素製造装置、水素製造方法
JP2010042397A (ja) * 2008-07-14 2010-02-25 Ngk Insulators Ltd 水素分離装置及び水素分離装置の運転方法
JP5467780B2 (ja) * 2009-03-02 2014-04-09 日本碍子株式会社 水素分離装置および水素分離装置の運転方法

Also Published As

Publication number Publication date
JP2014073926A (ja) 2014-04-24

Similar Documents

Publication Publication Date Title
JP5898037B2 (ja) 保持部材及び水素製造装置
US10294160B2 (en) Manufacturing of a ceramic article from a metal preform or metal matrix composite preform provided by 3D-printing or 3D-weaving
KR101346465B1 (ko) 수소-풍부 기체로부터 일산화탄소를 제거하기 위한, 백금,구리 및 철을 함유하는 개선된 선택적 산화 촉매
JP5588581B2 (ja) 水素製造装置
JP2014169222A (ja) 水素製造装置
EP2474376A1 (en) Hydrogen storage alloy and hydrogen storage unit using same
JP2007301514A (ja) 水素分離材及びその製造方法
JP5155343B2 (ja) 水素分離装置及び水素分離装置の製造方法
US8889588B2 (en) High-durability metal foam-supported catalyst for steam carbon dioxide reforming and method for preparing the same
JP6219625B2 (ja) 水素分離体及びその製造方法
US20100055516A1 (en) Nickel substrates
JP2014114179A (ja) 成形触媒及び水素製造装置
JP6358839B2 (ja) 水素製造装置及びその製造方法
RU2001111599A (ru) Каталитический реактор для получения синтез-газа
KR101626649B1 (ko) 금속 폼 형태의 연료개질용 촉매 및 상기 촉매를 구비한 마이크로 채널구조 연료개질기
JP4911916B2 (ja) 水素分離装置
JP6197301B2 (ja) 水素製造装置
JP6668115B2 (ja) アンモニア製造装置、NOx浄化装置
KR101336765B1 (ko) 탄화수소 개질촉매 제조방법
JP2006314876A (ja) 水素分離装置
JP5057684B2 (ja) 水素製造装置
JP2004216275A (ja) 水素分離体の製造方法
JP5410936B2 (ja) 水素製造装置
JP2010095413A (ja) 水素製造装置
JP5410937B2 (ja) 水素製造装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151204

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20151217

TRDD Decision of grant or rejection written
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160303

R150 Certificate of patent or registration of utility model

Ref document number: 5898037

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees