CN110325265A - 改进的用于膜反应器的双层膜 - Google Patents

改进的用于膜反应器的双层膜 Download PDF

Info

Publication number
CN110325265A
CN110325265A CN201780085814.1A CN201780085814A CN110325265A CN 110325265 A CN110325265 A CN 110325265A CN 201780085814 A CN201780085814 A CN 201780085814A CN 110325265 A CN110325265 A CN 110325265A
Authority
CN
China
Prior art keywords
hydrogen
film
permeable membrane
membrane device
protective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201780085814.1A
Other languages
English (en)
Inventor
F·戈鲁奇
A·埃拉蒂贝
圣 安娜兰德 M·范
塔纳卡 D·A·帕切科
葛撒拉嘎 E·费尔南德斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Turknalia Research And Innovation Corp
Eindhoven Technical University
Original Assignee
Turknalia Research And Innovation Corp
Eindhoven Technical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Turknalia Research And Innovation Corp, Eindhoven Technical University filed Critical Turknalia Research And Innovation Corp
Publication of CN110325265A publication Critical patent/CN110325265A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0069Inorganic membrane manufacture by deposition from the liquid phase, e.g. electrochemical deposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0072Inorganic membrane manufacture by deposition from the gaseous phase, e.g. sputtering, CVD, PVD
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/106Membranes in the pores of a support, e.g. polymerized in the pores or voids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/108Inorganic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1218Layers having the same chemical composition, but different properties, e.g. pore size, molecular weight or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • B01D71/0223Group 8, 9 or 10 metals
    • B01D71/02231Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • B01D71/0227Metals comprising an intermediate layer for avoiding intermetallic diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/025Aluminium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/027Silicium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/0271Perovskites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2475Membrane reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • B01J35/59Membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • B01J8/009Membranes, e.g. feeding or removing reactants or products to or from the catalyst bed through a membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • C01B3/503Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion characterised by the membrane
    • C01B3/505Membranes containing palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/20Specific housing
    • B01D2313/205Specific housing characterised by the shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/20Specific housing
    • B01D2313/206Specific housing characterised by the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/20Specific housing
    • B01D2313/206Specific housing characterised by the material
    • B01D2313/2062Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/022Asymmetric membranes
    • B01D2325/0233Asymmetric membranes with clearly distinguishable layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/028321-10 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/10Catalysts being present on the surface of the membrane or in the pores
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • C01B2203/041In-situ membrane purification during hydrogen production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • C01B2203/1223Methanol
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • C01B2203/1229Ethanol
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1247Higher hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/82Several process steps of C01B2203/02 - C01B2203/08 integrated into a single apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electrochemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

提供一种氢渗透膜装置,其包括多孔陶瓷层以及沉积在介孔陶瓷层上的多孔Pd薄膜或多孔Pd合金薄膜,所述多孔陶瓷层具有包括氧化锆、氧化钇稳定的氧化锆(YSZ)、γ/Al2O3和/或YSZ‑γ/Al2O3的材料。

Description

改进的用于膜反应器的双层膜
发明领域
本发明一般涉及生产氢气。更具体地说,本发明涉及双层膜,其具有被纳米多孔陶瓷保护层覆盖的Pd薄膜。
发明背景
众所周知,钯基薄膜用作具有高纯度氢作为产物的氢分离装置。在过去的几十年中,人们花费了大量的研究工作来生产具有高氢气通量、大渗透选择性和低价格的膜。目前,正在通过甲烷(或其它原料,例如乙醇和甲醇)的蒸汽重整、随后用Pd基膜(或其它技术)分离氢气来研究用于小规模应用的超纯氢生产。将膜整合到反应器中以产生氢气、并在原位分离氢气,实现了减少工艺单元所需数量。此外,该工艺整合产生了许多其它积极方面,例如,由于连续去除其中一种产物而导致原料向氢气的转化增加,从而使根据勒夏特列(Le)原理的平衡发生变换。
主要研究了两种类型的膜反应器概念:填充床和流化床。由于低传热速率以及浓度极化,填充床膜反应器的性能严重受损于热(冷)点,具有高渗透选择性的膜尤为如此,例如Pd支承膜。在流化床膜反应器(FBMR)中,催化剂在反应器内的剧烈运动和循环提高了质量和传热速率。膜辅助流化床膜反应器的工业开发受到产氢能力和所需膜数量的影响,其取决于选择性层的厚度。自支承膜需要大量的膜,而薄膜支承的膜似乎是最吸引人的选择。层越薄,渗透的H2通量越大,因此,所需的膜面积越小(因此从Pd成本来看,具有双重益处)。但是,薄层(<4-5μm)通常不是完全致密的,并且通常存在其它气体可以通过的一些小孔,从而降低了所渗透氢气的纯度。即使膜呈现出高渗透选择性,一旦其整合到流化床膜反应器,其必须抵抗流化催化剂冲刷作用的侵蚀。
众所周知,钯基薄膜用作具有高纯度氢作为产物的氢分离装置。在过去的几十年中,人们花费了大量的研究工作来生产具有高氢气通量、大渗透选择性和低价格的膜。目前,正在通过甲烷(或其它原料,例如乙醇和甲醇)的蒸汽重整、随后用Pd基膜(或其它技术)分离氢气来研究用于小规模应用的超纯氢生产。将膜整合到反应器中以产生氢气、并在原位分离氢气,实现了减少工艺单元所需数量。此外,该工艺整合产生了许多其它积极方面,特别是,由于连续去除其中一种产物而导致原料向氢气的转化增加,从而平衡根据勒夏特列(Le)原理移动。
主要研究了两种类型的膜反应器概念:填充床和流化床。由于低传热速率以及浓度极化,填充床膜反应器的性能严重受损于热(冷)点,特别是具有高渗透选择性的膜,例如Pd支承膜。在流化床膜反应器(FBMR)中,催化剂在反应器内的剧烈运动和循环提高了质量和传热速率。膜辅助流化床膜反应器的工业开发受到产氢能力和所需膜数量的影响,其取决于选择性层的厚度。自支承膜需要大量的膜,而薄膜支承的膜似乎是最引人注意的选择。层越薄,渗透的H2通量越大,因此,所需的膜面积越小(因此从Pd成本来看,具有双重益处)。但是,薄层(<4-5μm)通常不是完全致密的,并且通常存在其它气体可以通过的一些小孔,从而降低了所渗透氢气的纯度。即使膜呈现出高渗透选择性,一旦其整合到流化床膜反应器,其必须抵抗流化催化剂冲刷作用的侵蚀。
与陶瓷支承膜相比,金属支承膜提供了高得多的机械强度,并且相对容易整合到反应器中。然而,其在高温(>400℃)下在流化床反应器中长期使用是受限的,因为由于存在于选择性层中的原子移动、或者由于流化颗粒的磨损,可能出现缺陷。
所需要的是待整合到流化床膜反应器中的具有高渗透率和渗透选择性以及对颗粒的耐磨性的氢渗透膜。
发明内容
为了解决本领域的需要,提供一种氢渗透膜装置,所述装置包括氢选择性Pd薄膜或Pd合金薄膜以及多孔保护层,所述多孔保护层沉积在具有包括如下材料的选择性薄膜上:氧化锆、氧化钇稳定的氧化锆(YSZ)、γ/Al2O3和/或YSZ-γ/Al2O3、二氧化硅、二氧化钛、氧化镁、二氧化铈、氮化物和碳化硅。
根据本发明的一个方面,多孔陶瓷保护层的孔径范围为1nm至400nm、或1nm至50nm、或2nm至20nm。
在另一方面,本发明还包括多孔支承层。此处,多孔支承层包括金属、陶瓷或金属和陶瓷。此外,陶瓷多孔支承层包含包括氧化物、氮化物和/或碳化物的材料。根据该实施方式,多孔支承层包括范围2nm至50000nm的孔径。
在本发明的另一方面,氢选择性Pd层或Pd合金层的厚度范围为0.5μm至150μm。
根据本发明的另一方面,多孔陶瓷保护层的厚度范围为0.5μm至150μm。
在本发明的一个方面中,多孔陶瓷层通过在孔内引入催化剂而成为催化的,催化剂为例如ZnO、Pt、Ni、Rh、Ru、Ag、Pd或金属的混合物,例如Pt-Rh、Pd-Ag、Pt-Pd。
在另一方面,本发明包括包封氢渗透膜的壳体,其中,壳体包括滞留端和渗透端。根据该实施方式的一个方面,壳体包括一种材料,该材料包括:不锈钢、碳化物、陶瓷和/或哈斯特洛伊耐蚀镍基合金(Hastelloy)。此处,将壳体设置在产氢反应容器中,其中,所产生的氢气从壳体滞留端流到壳体渗透端。在另一方面,壳体的形状可以是管状、微通道、平面和/或平行板。
附图简述
图1A-1B显示根据本发明一个实施方式的(1A)用于渗透测量的装置的PID、(1B)具有双层膜的反应器容器。
图2A-2E显示根据本发明实施方式的(2A)具有选择性(Pd基)膜和多孔保护层的双层系统,(2B)在选择性膜下还包括多孔无机载体,(2C)由两个子层组成的保护层,以及双层膜DS-2(2D)和DS-3(2E)的SEM横截面图像。
图3显示了根据本发明的实施方式,在400℃下在空气中活化后在300℃至500℃测量的氢气通量作为氢气压力差的函数。
图4显示了根据本发明的实施方式,在400℃下在空气中活化后,基于H2渗透性的阿雷尼乌斯图。
图5显示了根据本发明的实施方式,DS-2膜在300-500℃的温度范围和1巴的压力差下的H2/N2渗透选择性和H2渗透性。
图6显示了根据本发明实施方式的表2“文献中记载的Pd基支承膜的渗透性质”。
图7显示了在长期测试期间膜DS-2的氢气和氮气渗透性以及理想的渗透选择性。最初250小时不存在玻璃珠。其余测试在鼓泡流化状态下的颗粒存在下进行。根据本发明实施方式,测试期间的温度、压力和U/Umf概况如上图所示。
图8A-8D显示在50至100%的H2体积纯度的情况下,DS-2在400℃下的氢气跨膜通量相对于所计算二元混合物的n值(0.783)的驱动力:(8A)H2-N2、(8B)使用玻璃珠的H2-N2、(8C)H2-CO2以及(8D)使用玻璃珠的H2-CO2。根据本发明实施方式的总进料流量:10L min-1(分钟-1)。
图9A-9C显示出在存在玻璃珠和不存在玻璃珠的情况下,在不同总流速下,400℃下二元混合物的DS-2的H2跨膜通量:根据本发明实施方式,(9A)具有50体积%H2的H2-N2混合物,(9B)具有90体积%H2的H2-N2混合物,(9C)具有50体积%和90体积%H2的H2-CO2混合物。
图10显示了在选择性层处具有4重量%银的长期测试DS-1膜。在400小时后引入支承在促进的氧化铝颗粒上的Rh。温度和压力概况如上所示。根据本发明,在测试(3)期间保持U/Umf恒定。
图11显示了在550℃下DS-3膜的长期测试,其中在选择性层处具有4重量%的银。根据本发明,在测试开始时引入支承于促进的氧化铝颗粒上的Rh。
图12显示了根据本发明,在鼓泡流化状态下,在Rh基催化剂存在下,M33和M15-DS在4巴压力差下的氢气渗透选择性和理想渗透选择性。
图13显示常规PdAg膜和两个双层膜在400℃的归一化(normalized)H2通量。根据本发明,用于各测试的粒度总结于错误!参照源不可见。
具体实施方式
本文提供了待整合到流化床膜反应器中的氢渗透膜,其具有高渗透率和渗透选择性以及对颗粒的耐磨性。根据本发明的一个实施方式,通过在非常薄的选择性Pd基层顶部上沉积保护层来生产膜。在另一个实施方式中,通过同时ELP(无电镀敷)制备Pd-Ag层,并且通过浸涂制备保护层。对于金属多孔载体的实施方式,在沉积氢选择性层之前,通过浸涂来沉积陶瓷相互扩散阻挡层。
根据一个实施方式,本发明包括一种氢渗透膜装置,其具有多孔基材、沉积在所述多孔基材上的钯核心层、沉积在所述钯核心层上的Pd-Ag层以及沉积在所述Pd-Ag层上的介孔陶瓷层,其中,钯核心层的钯核心沉积在多孔基材的孔中。
通过单一气体测试和二元气体混合物测试研究膜的渗透特性。根据本发明,陶瓷支承的双层膜显示出高氢气渗透性和H2/N2渗透选择性。此外,在长期测试期间,呈现了流化条件下膜对两种类型颗粒(玻璃珠和在促进的氧化铝上的Rh)的耐受性。此外,在流化条件下提供与TiO2基催化剂的相互作用,并与不具有保护层的常规膜进行比较。
已经在流化条件下测试了本发明的常规金属支承膜和双层(DS)膜,并且比较其性能以研究膜的长期稳定性。发现在400-500℃的温度范围中,常规支承膜在流化催化剂存在下的初始理想H2/N2渗透选择性发生了明显的衰减,而本发明的DS膜保持了比相同条件下高得多的选择性。
现在来看DS膜的制备,根据一个实施方式,由拉舍特·克洛斯特·韦尔斯多夫公司(Rauschert Kloster Veilsdorf)提供由具有不对称几何形状的α-Al2O3制成的多孔管状基材(10/4mm,外径(o.d)/内径(i.d.)),并用作具有孔径100nm顶层的多孔载体。按照之前记载的方法,使用玻璃密封剂(ASF-1761,旭硝子玻璃株式会社(Asahi Glass Co.))来连接多孔基材和致密陶瓷管。
如前所述,在同时沉积Pd-Ag层之前,通过如下过程用钯核活化多孔基质:将载体浸入乙酸钯的氯仿溶液中,然后用肼还原。将具有钯种的管状载体浸入镀浴中以使Pd-Ag层共沉积。在该实施例中使用的浴的组成总结在表1中。在64℃进行1小时共沉积。在沉积的后45分钟,从管内部施加真空以封闭载体的孔。
表1.无电镀覆浴的化学组成:
在Pd-Ag层沉积之后,用蒸馏水洗涤样品,干燥过夜,并在还原气氛(10体积%H2/90体积%N2)中在550℃下退火4小时。在加热(3℃/分钟)和冷却步骤期间进料氮气。最终,通过浸涂技术在Pd-Ag层的顶部沉积薄(<1μm)的介孔陶瓷层(50%YSZ/50%γ-Al2O3)。
在另一实施方式中,通过将陶瓷扩散阻挡层涂覆到哈斯特洛伊耐蚀镍基合金X(0.2μm中等级别)多孔载体上来制备金属支承膜。氢选择性层(4-5μm)包括Pd和Ag,并通过无电镀敷进行沉积。在DS膜上,通过浸涂然后在550℃下煅烧来沉积多孔陶瓷层(保护层)。
现在来看DS膜的物理化学表征,通过扫描电子显微镜(FEI Quanta 250 FEG)来分析DS膜的横截面。对于每个膜,进行至少四次测量以确定层厚度。通过ICP-OES(VarianVista MPX电感耦合等离子体发射光谱仪)测量该层沉积之前和之后镀浴中银和钯的浓度来计算选择性层中的Pd-Ag组成。保护层的孔径和表面积通过BET表征。
对于渗透测量,陶瓷支承膜的一端连接到致密金属管,另一端使用石墨封圈(graphite ferules)用金属阀门(metallic tap)封闭。施加7Nm,用扭矩扳手将连接器拧紧到膜上。具有连接器的膜的总长度为150mm。一旦拧紧密封件,通过从膜内部进料氦气进行泄漏测试,同时将膜浸没在乙醇中。没有从密封部分检测到气泡,表明密封件被适当地拧紧。最终,使膜干燥以去除乙醇并整合到反应器中。用于气体渗透测量的渗透装置(单一气体测试和气体混合物)显示在图1A中。壳管模块由不锈钢制成,内径为42.7mm。壳侧的气体压力由连接到保留侧的背压控制器来控制。膜的渗透侧保持在大气压下。在实验过程中没有施加吹扫气体,而氢气通量用自动质量流量计(Defender 220)测量,氮气用流速>0.2mL/分钟的自动肥皂膜流量计(Horiba,型号VP1)和流速<0.2mL/分钟的另一个肥皂泡流量计测量。单一气体测试在300-500℃的温度下用氮气和氢气进行。使用H2-N2和H2-CO2混合物的混合气体渗透测试在400℃下进行。本发明还可以构造成从气体混合物分离/纯化氢气。
图1B显示本发明反应器容器的示意性截面图。进料气体混合物,并使之沿着反应器容器分布气体混合物与产氢催化剂床反应。纯氢气通过氢选择性复合膜并收集。
在单个反应器中同时整合金属支承膜,以评估和比较两种膜在相同条件下的性能。
图2A-2E显示本发明的一些示例性实施方式,其中图2A显示包括选择性膜和多孔保护层的双层系统在一个方面中,使保护层沉积在选择性膜的缺陷上,以改进膜的选择性。此处,选择性膜是致密的(例如,钯或其合金,钙钛矿)或微孔的(例如,碳)选择性膜。根据另一实施方式,选择性膜是任意无机的氢选择性膜材料。在另一个实施方式中,膜是如图2A所示自支承的,或者是如图2B所示支承在多孔无机载体上,图2B显示了多孔无机载体。此外,多孔保护层由一种材料或材料的混合物组成,例如,金属氧化物(如,氧化铝、ZrO2、YSZ、二氧化硅、二氧化钛、二氧化铈、氧化镁)、氮化物和/或碳化硅。
在本发明的其它实施方式中,保护层由一层或多层组成。图2C显示由两个子层组成的保护层。在一个实施方式中,保护层的厚度为0.2μm至6μm,更优选500nm至2μm,或者其厚度为0.5μm至150μm。多孔保护层可以通过各种技术涂覆在膜上,所述技术包括但不限于溶胶-凝胶、浸涂、湿粉喷雾、原子等离子体喷雾、喷涂、溅射(PVD-磁控溅射)、或化学气相沉积(CVD)。
选择性层和保护层的厚度通过DS-2(图2D)膜和DS-3(图2E)膜的横截面SEM图像测定。DS-2和DS3的选择性层的厚度分别测定为~1μm(±0.26)和~1.8(±0.23)μm。DS-2保护层的选择性层的厚度测定为~0.5μm(±0.06),在DS-3的情况下,保护层的厚度略厚,为~0.67μm(±0.10)。已经对钯、银、铝和氧进行了DS-3膜横截面的EDS绘图。从这些图确认了Pd-Ag选择性层设置在氧化铝载体和陶瓷保护层之间。保护层的表面积(300m2g-1)和孔径(1-5nm)通过BET表征。
DS膜可以具有任意形状或尺寸,但是优选是管状或平面的。此外,将保护层构造成保护免受机械损失,例如,在流化床条件下。
在另一实施方式中,本发明构造成生产氢气,其保护在反应器中合适催化剂的催化剂床(流化式或填充式)。此处,现有实施方式包括将含碳气体(甲醇、乙醇、甲烷或丙烷)的混合物和蒸汽(和/或氧气)的混合物引入含有催化剂的反应器容器。此外,现有的实施方式包括:通过氢选择性膜从混合物中分离氢气。
在另一实施方式中,将保护层构造成在涉及产氢的反应器中阻止催化剂和选择性膜之间的化学反应。例如,含有ZnO或TiO2的催化剂可以与Pd膜反应,降低氢气渗透性能。
在其它实施方式中,将保护层构造成消除或减少选择性膜表面上形成碳,例如,在含有有机气体的反应中沉积碳(例如用Pd膜进行丙烷脱氢)。保护层进一步构造成降低氢气渗透或破坏膜的H2S与氢选择性膜反应的屏障。保护层可以是与H2S反应的材料层,使得该气体不会到达选择性层。在另一方面,保护层被官能化以用作催化膜反应器。例如,通过将催化剂引入孔中来产生氢气,然后使得所产生的氢气通过选择性膜。此外,通过将活性化合物引入孔中使保护层官能化,所述活性化合物可以与可能损害选择性膜的物质相互作用。
现在来看在空反应器中的膜渗透性质。描绘通过Pd基膜的氢气通量的等式用西弗茨定律写为如下:
其中,J是氢气通量,Pe是渗透率,t是选择性层的厚度,pH2是分别在渗透侧和保留侧的氢气分压,并且n是压力指数。
在图3中显示不同温度(300-500℃)和不同跨膜压力下通过DS-膜的氢气通量。发现相对于压力指数值n为0.783(在空气中在400℃下活化2分钟后),氢气通量(J)和的最佳拟合。对于Pd基膜,在速率限制步骤扩散通过大部分钯的情况下,压力指数应等于0.5。因为所测定的n值偏离0.5,这可能表明在介孔保护层(1-5nm孔径)中的多孔载体中(100nm孔径)的粘性流动和/或克努森扩散对整体氢气渗透速率的影响;如果这两种情况都是速率限制,则n值将是一致的。此外,薄膜中的速率限制步骤是表面反应,而不是体扩散。因此,n值大于0.5。
在300-500℃温度范围内测量的通量用于估算氢气渗透通过膜的活化能。根据如下提供的阿雷尼乌斯(Arrhenius)关系,渗透性取决于温度
其中,Q是膜的渗透性,Qo是指前因子,Ea是活化能,R是通用气体常数,并且T是绝对温度。该等式的假设之一是压力指数n不随温度变化。
通过将所计算的渗透性的自然对数绘制为1/RT的函数(参见图4),确定活化能为5.11kJ mol-1。该活化能是集总值,包括穿过介孔保护层、致密金属层和载体的渗透性。该值类似于Melendez等[10]记载的值,其记载了具有相似银含量(5.7至9重量%)且具有相同的选择性层厚度(0.46至1.29μm)的膜的活化能为5.47至7.81kJ mol-1。许多参数可能影响活化能,例如选择性层的厚度、层的晶粒微观结构和制备方法。
在单一气体测试期间测量的氢气和氮气通量用于计算膜的H2/N2理想渗透选择性。在图5中显示不同温度(300-500℃)和1巴压力差下的氢气渗透性和H2/N2渗透选择性。可能是由于渗透通过其中不存在Pd-Ag层的介孔保护层,300℃和500℃下、1巴压差下的氮气泄漏量分别为2·10-10mol m-2s-1Pa-1和1.7·10-10mol m-2s-1Pa-1,显示了努森渗透机理。
在图6的错误!参照源不可见中,列出了所记载的Pd基支承膜的渗透性能,其薄于3μm。据记载,1.4μm厚的Pd77Ag23层支承在微通道反应器中,并且在300℃和1巴的压力差下的氢气通量为22.5·10-6mol m-2s-1Pa-1。在测试开始时该膜的选择性为5700。然而,测试7天后,该值下降至390。关于管状Pd基支承膜,还记载了通过PVD-MS制备并转移到PSS管中的~1.9-3.9μm厚Pd77Ag23膜的最大氢气通量。在400℃下,1巴压力差下的H2通量为14.9·10- 6mol m-2s-1Pa-1,而选择性为7700。对于支承在陶瓷多孔基材上的非常薄(0.49μm)的Pd91Ag9膜,记载了类似的通量。然而,该高通量是以低渗透选择性(48)为代价实现的。测试具有不同厚度的膜,并且测量400℃下高H2渗透性为9.2·10-6mol m-2s-1Pa-1的具有较大厚度膜的最佳选择性(3500)。记载了400℃下的通量和选择性的最佳组合,其测量了2.5μm厚的Pd80Ag20膜在1巴压力差下H2通量为5.1·10-6mol m-2s-1Pa-1,并且选择性超过10000。根据本发明,制备了具有~1μm的选择性层的膜(具有5重量%Ag的DS-2),其具有类似的通量(4.6·10-6mol m-2s-1Pa-1)和~26000H2/N2渗透选择性。在本研究中记载的结果是在高渗透性和选择性的组合上所记载的最好结果之一。
一旦已在不存在玻璃珠的情况下用单一气体和二元气体混合物进行测试来研究膜(DS-2)性质,如图7所示,在具有灰色背景的前250小时,将反应器冷却至室温以便引入粒度为250-350μm的玻璃珠。催化剂的体积足以完全覆盖膜。随后,再次将反应器加热至350℃,颗粒流化(U/Umf=2)100小时。然后,使流化速度增加至U/Umf=3,并且温度增加至400℃(跨膜压力为1巴)。在重复引入颗粒之前进行相同的二元气体混合物测试,以评估流化颗粒的存在对床-膜传质限制的影响。总流速从10L分钟-1变化至20L分钟-1。因此,由于流化速度和颗粒混合增加,膜表面遭受更多磨损。H2/N2的渗透选择性约为25000,而在引入颗粒后,选择性开始下降直至长期试验结束(975小时后选择性降低至5500)。在用玻璃珠进行的流化测试期间,保留侧下游的过滤器堵塞两次。将温度降低至300℃,从而能够清洁过滤器(参见图7中的温度和压力峰值)。发现灰色粉末,并通过XRD表征。所获得的衍射图对应于玻璃珠(主要由SiO2组成)。这表明在测试期间颗粒破裂可能是由于反应器壁和膜表面的侵蚀。一旦长期测试结束并且模块冷却,观察到保护层从膜表面移除。随着选择性降低,进行泄漏测试以对泄漏的位置进行定位。如上所述,用氦气从膜的内侧将膜加压至1巴,同时将其浸没在乙醇。膜缓慢浸渍以评估膜的哪个部分导致气体泄漏。发现密封部(顶部和底部密封部)导致泄漏,而不是膜表面。因此,即使移除保护层,选择性层仍然是完整的。可以预期,由于硬玻璃颗粒与膜表面的碰撞,保护层会被去除。为了对此进行评估,使用与玻璃相比硬度更高的实际催化剂颗粒进行其它测试。
对于二元混合物,用H2-N2和H2-CO2的二元混合物测试膜DS-2(具有5重量%的银),氢气进料含量从50体积%变化至100体积%。渗透试验在400℃下进行,总进料流速固定在10L分钟-1。在流化的玻璃珠的存在下重复这些实验。在该情况中,研究了不同的进料流速(10、15和20L分钟-1)。在所有情况下,渗透侧保持在大气压下。
图8A和图8B显示出即使只有10体积%的N2或CO2与H2混合,N2或CO2存在下,氢气通量也会显著下降。对于所有研究的混合物,H2通量的减少非常相似,因此没有观察到CO2与膜的相互作用(也没有反向水煤气变换(water gas shift))。这些结果表明:在气相中形成浓度传质边界层,这降低了膜表面附近的H2浓度。对于具有高H2渗透性的膜,这种被称为浓度极化的现象变得显著,即使滞留侧的H2体积百分比仍然很高亦是如此。
一旦将玻璃珠引入反应器(图8B和图8D),就进行相同的二元气体混合物测试。结果表明,与空管实验相比,流化床测试情况下的H2渗透通量略高,这证明由于颗粒运动,流化床使气体混合增加,从而减少了外部传质限制的程度(即,膜表面附近浓度分布的厚度减小)。然而,对于各混合物,仅在低跨膜压力下观察到该改进。例如,对于具有50体积%H2的H2-N2混合物,当氢气的分压小于1.4巴时,玻璃珠存在下的H2通量较大(图9A)。而对于具有90体积%H2的进料,该值增加至1.7巴(图11B)。高于该压力,流化床中的氢气通量低于空管中测量的氢气通量。这可能与另一现象的出现有关。在高通量下,颗粒被拖向膜表面,并且形成靠近膜的致密区,这将引起额外的传质阻力,从而使通量下降。
总进料流速还影响氢气通量,如图9A-9C所示。在玻璃珠的存在下,锁着总进料流速上升,渗透的H2通量也增加。然而,渗透侧的氢气回收下降,并且膜表面积相对于进料流速下降,因此膜对氢气回收的影响下降。对于H2-CO2混合物也观察到相同的趋势(参见图8C)。
现在来看Rh促进氧化铝,以及陶瓷支承的DS膜。在流化条件下用Johnson提供的催化剂对在选择性层中具有4重量%银的另一种膜(DS-1)进行更长时间的测试。催化剂由负载0.5重量%铑的改性氧化铝颗粒(100-300μm尺寸)组成。与玻璃颗粒不同,促进的氧化铝支承Rh颗粒是非球形和更硬的。因此,与玻璃珠实验相比,预期与膜表面的磨损更严重,预期选择性下降更快。在将膜整合到反应器之前,400℃的氮渗透为4.15·10-10mol m-2s-1Pa-1,并且膜表面上的缺陷已经在密封泄漏测试中进行了识别。在第一个350小时期间,该值上升(参见图8A-8C)。进行氢气和氮气渗透测试直至渗透性恒定(350小时)。在此期间,进行单一气体测试和二元气体混合物测试(其结果并未包括在本文中)。此时,在1巴压差下,膜在300℃和500℃下的理想渗透选择性分别为~2800和~3700,并且N2渗透性增加直至~1.4·10-9mol m-2s-1Pa-1。然后,将反应器冷却至200℃,并且引入催化剂以完全浸没膜。在400℃和1巴的压力差下,床在自由鼓泡状态(U/Umf=3)下流化。对H2和N2渗透性进行超过1500小时的监测。在此期间,理想的渗透选择性保持在约2000,并且H2通量保持在3.35·10-6mol m-2s-1Pa-1。然后,温度升高至450℃,并且保持7天。最后,温度升高至500℃。从图10中可以清楚地看出,当温度升至450℃时,氮气泄漏开始急剧上升。在实验结束时,500℃下的氮气泄漏为3·10-8mol m-2s-1Pa-1
在室温下更详细地研究膜表面和密封部。在该长期测试后,观察到保护层保留在膜表面处,表面磨损并不是先前膜该层被去除的主要原因。通过将膜浸入乙醇中并引入1atm(大气压)的气体压力进行氦泄漏测试。在两端的密封部观察到泄漏,但是在顶部密封部观察到更大量的泄漏。为了量化膜表面对总氮气泄漏的贡献,两个密封部都用气密树脂覆盖。计算出膜表面的氮气泄漏仅为总泄漏的8%。因此,可以得出结论:在长期测试(~2500小时)后膜性能仅受到8%影响,并且在密封部发现主要泄漏。
具有4重量%银的第三膜(DS-3)已在550℃和1巴的压力差下在流化条件下测试~700小时,并且使用与先前膜DS-1相同的催化剂(氧化铝基催化剂,参见图11)。DS-3在550℃下的氢气渗透性(1.3·10-6mol m-2s-1Pa-1)低于DS-2在500℃下的氢气渗透性(3.2·10- 6mol m-2s-1Pa-1)。这可能部分与DS-3选择性层(~1.86μm)比DS-2选择性层(~1μm)更厚有关,但保护层厚度的差异有关(对于DS-2和DS-3分别为~0.5μm和~0.67μm)也可能发挥了作用。
如图9A-9C所示,理想H2/N2渗透性没有DS-2高。这不仅与DS-3较低的氢气渗透性有关,而且与膜表面上发现的导致氮气泄漏的大缺陷有关。在前250小时内N2泄漏增加极快。当理想渗透选择性降低至约50时停止实验。如对DS-1膜所做的那样,在用气密树脂覆盖密封部之前和之后通过用氦气对内侧加压来量化室温下的泄漏贡献。对于从测试开始具有缺陷的DS-3,膜对于泄漏的总贡献为20%。此外,应进行研究已改进支承膜在陶瓷载体上的密封。
已经在流化条件下测试了常规金属支承膜和双层(DS)膜,以比较长期测试中其在FBMR中的性能。
首先在空反应器中用纯气体(H2和N2)在300-500℃的温度范围内测试膜,以获得主要膜的渗透特性,例如氢气渗透性、理想的H2/N2选择渗透性、活化能和n值(总结在表2中)。观察到膜在500℃和4巴的压力差下表现出非常相似的氢气渗透性(1.34-1.55·10-6mol m-2s-1Pa-1)。在相同条件下金属支承膜(M33)的渗透选择性高于90000,而对于双层膜,渗透选择性几乎是无限的。发现这两个膜的活化能是非常类似的,并且低于10kJ mol-1。在添加保护层厚,压力指数(n值)从0.62增加至0.71,这可能与多孔保护层中的粘性流动和克努森扩散有关。因为这两个机理显示出一致的压力指数,添加多孔层可能导致n值增加,如本研究中所观察到的。
表2.空反应器中的常规金属支承膜(M33)和双层膜(M15-DS)的主要参数
在500℃和ΔP=4巴下测量
一旦将催化剂整合到反应器中,在第一小时期间,M33膜的理想渗透选择性下降至~14000。当在400℃和500℃运行时,在615小时后该值进一步下降直至~1000,这是由于在4巴压力差下氮气泄漏从8.76·10-11增加到1.4·10-9mol m-2s-1Pa-1所致(图12)。另一方面,DS-膜(M15-DS)在相同条件下并未显示出任意氮气泄漏,这显示出比常规金属支承膜更好的耐磨性。在以鼓泡流化状态测试期间,设备进行两次冷却,但是两个膜的泄漏并未由于该温度变化而增加(图12)。
这些结果表明,在流化条件下双层膜呈现更好的性能。未来的研究将致力于测试双层膜在较高温度下的性能。
向金属支承的Pd基膜添加多孔保护层使膜在流化条件下的性能稳定性增加,为其在流化床膜反应器中的应用铺平了道路。事实上,观察到没有保护层的膜明显导致在流化下氮气泄漏的增加,而在400-500℃和4巴压差下运行,双层膜保持稳定超过615小时。
关于基于二氧化钛的催化剂,据报道陶瓷支承的常规Pd基膜(E54)在基于TiO2的颗粒存在下发生相互作用。当颗粒在膜反应器中流化时氢气通量衰减,如图13所示。膜的事后析误分析(post-morten analysis)显示在膜表面存在Ti,这意味着发生了强烈的化学相互作用。在该测试用使用的粒度为76μm至106μm。使用具有更大粒度分布(100-305μm)的陶瓷支承的双层体(DS-44)进行了相同的测试。氢气通量在大于140小时内并不会衰减(参见图13)。此外,在高于10000的FBMR中,DS-44的H2/N2的渗透选择性保持几乎相等。为了知道较小的颗粒是否可以与膜相互作用,将细颗粒(<100μm)整合到反应器中。为此,将反应器在氮气中冷却至室温。氮气泄漏从400℃下的3.7·10-10mol m-2s-1Pa-1上升至20℃下的2.4·10- 9mol m-2s-1Pa-1。这种N2泄漏的增加可能与密封部有关,并且在整合小颗粒的测试之后进行研究。一旦将反应器加热至400℃,就将膜暴露于氢气。测量的氢气通量大于之前没有细颗粒的实验。此外,H2通量在测试期间没有衰减,因此没有观察到颗粒和膜之间的相互作用。各试验中使用的各膜和粒度的描述总结在表3中。可以观察到,对于E54和对于颗粒在100-305μm之间的DS-44,在开始时空反应器中和FBMR中测量的氢气渗透性较低。然而,在50小时后,DS-44几乎恢复了初始值(在空的反应器中),而E54继续减少。对于具有<305μm颗粒的DS-44的情况,在FBMR的第一个小时内,H2渗透性略微增加,并且在超过110小时内保持恒定。由于氮气泄漏,选择性低于之前的测试。发现通过密封部的泄漏约为总泄漏的90%。
表3.具有TiO2基颗粒的FBMR中所测试膜的主要参数
a考虑在空反应器中和在400℃下流化50小时后测得的H2
b当反应器冷却以使100μm以下的颗粒积聚时,氮气泄漏增加。在用小颗粒测试后发现,89%的泄漏是由于密封部分造成的。
本发明现在根据多个示例性实施方式进行描述,这些实施方式应被认为是说明性而非限制性的。因此,本发明的具体实施方式能够有多种变化,可由本领域技术人员由本文中的描述得到。应认为所有这种变化形式都在本发明的精神和范围内且由下述权利要求及其等同形式涵盖。

Claims (13)

1.一种氢渗透膜装置,其包括:
a.氢选择性Pd薄膜或Pd合金薄膜;以及
b.多孔保护层,其包含选自下组的材料:氧化锆、氧化钇稳定的氧化锆(YSZ)、γ/Al2O3、YSZ-γ/Al2O3、二氧化硅、二氧化钛、氧化镁、二氧化铈、氮化物和碳化硅。
2.如权利要求1所述的氢渗透膜装置,其中,所述多孔保护层的孔径范围为1nm至400nm、或1nm至50nm、或2nm至20nm。
3.如权利要求1所述的氢渗透膜装置,所述氢渗透膜还包括多孔支承层。
4.如权利要求3所述的氢渗透膜装置,其中,所述多孔支承层包含:金属、陶瓷、或金属和陶瓷。
5.如权利要求4所述的氢渗透膜装置,其中,所述陶瓷多孔支承层包含选自下组的材料:氧化物、氮化物和碳化物。
6.如权利要求3所述的氢渗透膜装置,其中,所述多孔支承层的孔径范围为2nm至50000nm。
7.如权利要求1所述的氢渗透膜装置,其中,所述氢选择性Pd层或所述Pd合金层的厚度范围为0.5μm至150μm。
8.如权利要求1所述的氢渗透膜装置,其中,所述多孔保护层的厚度范围为0.5μm至150μm。
9.如权利要求1所述的氢渗透膜装置,其中,所述多孔保护层在所述孔中还包含催化剂,其中,所述催化剂选自下组:Pt、Ni、Rh、Ru、Ag和Pd。
10.如权利要求1所述的氢渗透膜装置,所述氢渗透膜装置还包括壳体,该壳体包封所述氢渗透膜,其中,所述壳体包括滞留端和渗透端。
11.如权利要求10所述的氢渗透膜装置,其中,所述壳体包含选自下组的材料:不锈钢、碳化物、陶瓷和哈斯特洛伊耐蚀镍基合金。
12.如权利要求10所述的氢渗透膜装置,其中,将所述壳体设置在产氢反应容器中,其中,所产生的氢从所述壳体滞留端流到所述壳体渗透端。
13.如权利要求10所述的氢渗透膜装置,其中,所述壳体的形状选自下组:管状、微通道、平面和平行板。
CN201780085814.1A 2016-12-08 2017-12-07 改进的用于膜反应器的双层膜 Pending CN110325265A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662431733P 2016-12-08 2016-12-08
US62/431,733 2016-12-08
PCT/EP2017/081835 WO2018104455A2 (en) 2016-12-08 2017-12-07 Advanced double skin membranes for membrane reactors

Publications (1)

Publication Number Publication Date
CN110325265A true CN110325265A (zh) 2019-10-11

Family

ID=60582611

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780085814.1A Pending CN110325265A (zh) 2016-12-08 2017-12-07 改进的用于膜反应器的双层膜

Country Status (6)

Country Link
US (1) US11395988B2 (zh)
EP (2) EP3551322A2 (zh)
JP (1) JP7212618B2 (zh)
CN (1) CN110325265A (zh)
BR (1) BR112019011707B1 (zh)
WO (1) WO2018104455A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111545076A (zh) * 2020-05-11 2020-08-18 广东石油化工学院 一种电场稳定液态金属复合膜及其制备方法和应用
CN113041970A (zh) * 2021-03-17 2021-06-29 南京理工大学 一种内置扰流结构催化膜式反应器
CN117023718A (zh) * 2023-08-22 2023-11-10 扬州市职业大学(扬州开放大学) 一种高清洁度的薄膜过滤装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113747972A (zh) * 2019-03-05 2021-12-03 联邦科学和工业研究组织 钌促催化剂组合物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1398197A (zh) * 2000-12-05 2003-02-19 住友电气工业株式会社 氢渗透性结构体及其制造方法
JP2006095521A (ja) * 2004-09-06 2006-04-13 National Institute Of Advanced Industrial & Technology 複合膜、その製造方法及び水素分離膜
US20080176060A1 (en) * 2006-08-14 2008-07-24 University Of Houston System Pd NANOPORE AND PALLADIUM ENCAPSULATED MEMBRANES
CN103702748A (zh) * 2011-07-22 2014-04-02 韩国能源技术研究院 氢分离膜保护层及其涂覆方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1135328A1 (en) 1998-12-02 2001-09-26 Massachusetts Institute Of Technology Integrated palladium-based micromembranes for hydrogen separation and hydrogenation/dehydrogenation reactions
US7972417B2 (en) * 2005-03-31 2011-07-05 Bossard Peter R Hydrogen gas separator system having a micro-channel construction for efficiently separating hydrogen gas from a mixed gas source
EP2550378A4 (en) * 2010-03-22 2014-02-19 T3 Scient Llc HYDROGEN SELECTIVE PROTECTIVE COATING, COATED ARTICLE, AND PROCESS
JP5898037B2 (ja) 2012-10-03 2016-04-06 日本特殊陶業株式会社 保持部材及び水素製造装置
KR101494186B1 (ko) * 2013-03-26 2015-02-17 한국에너지기술연구원 수소 분리막 및 그의 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1398197A (zh) * 2000-12-05 2003-02-19 住友电气工业株式会社 氢渗透性结构体及其制造方法
JP2006095521A (ja) * 2004-09-06 2006-04-13 National Institute Of Advanced Industrial & Technology 複合膜、その製造方法及び水素分離膜
US20080176060A1 (en) * 2006-08-14 2008-07-24 University Of Houston System Pd NANOPORE AND PALLADIUM ENCAPSULATED MEMBRANES
CN103702748A (zh) * 2011-07-22 2014-04-02 韩国能源技术研究院 氢分离膜保护层及其涂覆方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DAVID A. PACHECO TANAKA ET AL.: "Preparation of "pore-fill" type Pd-YSZ-γ-Al2O3 composite membrane supported on α-Al2O3 tube for hydrogen separation", 《JOURNAL OF MEMBRANE SCIENCE》 *
JIAFENG YU ET AL.: "Synthesis of zeolite membrane as a protective layer on metallic Pd composite membrane for hydrogen purification", 《JOURNAL OF MATERIALS CHEMISTRY A》 *
TANAKA, DAP ET AL.: "Fabrication of Hydrogen-Permeable Composite Membranes Packed with Palladium Nanoparticles", 《ADVANCED MATERIALS》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111545076A (zh) * 2020-05-11 2020-08-18 广东石油化工学院 一种电场稳定液态金属复合膜及其制备方法和应用
CN111545076B (zh) * 2020-05-11 2021-04-09 广东石油化工学院 一种电场稳定液态金属复合膜及其制备方法和应用
CN113041970A (zh) * 2021-03-17 2021-06-29 南京理工大学 一种内置扰流结构催化膜式反应器
CN113041970B (zh) * 2021-03-17 2021-11-26 南京理工大学 一种内置扰流结构催化膜式反应器
CN117023718A (zh) * 2023-08-22 2023-11-10 扬州市职业大学(扬州开放大学) 一种高清洁度的薄膜过滤装置
CN117023718B (zh) * 2023-08-22 2024-04-16 扬州市职业大学(扬州开放大学) 一种高清洁度的薄膜过滤装置

Also Published As

Publication number Publication date
JP7212618B2 (ja) 2023-01-25
EP4046704A1 (en) 2022-08-24
BR112019011707B1 (pt) 2022-11-16
EP3551322A2 (en) 2019-10-16
US11395988B2 (en) 2022-07-26
WO2018104455A2 (en) 2018-06-14
BR112019011707A2 (pt) 2019-10-15
WO2018104455A3 (en) 2018-07-19
US20200391154A1 (en) 2020-12-17
JP2020500705A (ja) 2020-01-16

Similar Documents

Publication Publication Date Title
CN110325265A (zh) 改进的用于膜反应器的双层膜
Weber et al. Hydrogen selective palladium-alumina composite membranes prepared by Atomic Layer Deposition
Gao et al. Electroless plating synthesis, characterization and permeation properties of Pd–Cu membranes supported on ZrO2 modified porous stainless steel
Zhang et al. A modified electroless plating technique for thin dense palladium composite membranes with enhanced stability
Pacheco Tanaka et al. Fabrication of hydrogen‐permeable composite membranes packed with palladium nanoparticles
Kanezashi et al. Hydrogen permeation characteristics and stability of Ni-doped silica membranes in steam at high temperature
Arratibel et al. Attrition-resistant membranes for fluidized-bed membrane reactors: Double-skin membranes
Zhang et al. High-temperature stability of palladium membranes on porous metal supports with different intermediate layers
JP2005528198A (ja) 水素選択シリカ膜
Bosko et al. NaA zeolite as an effective diffusion barrier in composite Pd/PSS membranes
US8900344B2 (en) Hydrogen selective protective coating, coated article and method
Guo et al. A novel approach for the preparation of highly stable Pd membrane on macroporous α-Al2O3 tube
US8048199B2 (en) Method of making a leak stable gas separation membrane system
Zhang et al. Hydrogen transport through thin palladium–copper alloy composite membranes at low temperatures
Arratibel et al. N2, He and CO2 diffusion mechanism through nanoporous YSZ/γ-Al2O3 layers and their use in a pore-filled membrane for hydrogen membrane reactors
Shu et al. Gas permeation and isobutane dehydrogenation over very thin Pd/ceramic membranes
Chang et al. Propane dehydrogenation over a hydrogen permselective membrane reactor
WO2013133771A1 (en) Catalytic hollow fibers
JP4823442B2 (ja) ガス分離材及びその製造方法並びにリアクター
Amer et al. Enhancing hydrogen separation efficiency: Insights from the permeability study of nickel-based composite membranes
JP2010036080A (ja) 高温高圧・多湿環境下で長時間劣化しない高温耐性水素ガス分離材
JP5354516B2 (ja) 水素分離体
JP2006314876A (ja) 水素分離装置
Plazaola Attrition-resistant membranes for hydrogen separation in fluidized-bed membrane reactors
Uemiya et al. Preparation of highly permeable membranes for hydrogen separation using a CVD technique

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20200602

Address after: Dobidia, Aston, Spain

Applicant after: Arcane Hydrogen Technology Co., Ltd

Address before: Eindhoven

Applicant before: TECHNISCHE UNIVERSITEIT EINDHOVEN

Applicant before: Tecnalia Research & Innovation