JP5897117B2 - 冷媒圧縮機および冷凍サイクル機器 - Google Patents

冷媒圧縮機および冷凍サイクル機器 Download PDF

Info

Publication number
JP5897117B2
JP5897117B2 JP2014516549A JP2014516549A JP5897117B2 JP 5897117 B2 JP5897117 B2 JP 5897117B2 JP 2014516549 A JP2014516549 A JP 2014516549A JP 2014516549 A JP2014516549 A JP 2014516549A JP 5897117 B2 JP5897117 B2 JP 5897117B2
Authority
JP
Japan
Prior art keywords
refrigerant
motor
sealed container
rotor
compression mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014516549A
Other languages
English (en)
Other versions
JPWO2013175566A1 (ja
Inventor
小山 昌喜
昌喜 小山
笹尾 桂史
桂史 笹尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Publication of JPWO2013175566A1 publication Critical patent/JPWO2013175566A1/ja
Application granted granted Critical
Publication of JP5897117B2 publication Critical patent/JP5897117B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0096Heating; Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/04Measures to avoid lubricant contaminating the pumped fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/06Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/02Rotary-piston machines or pumps of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C2/025Rotary-piston machines or pumps of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents the moving and the stationary member having co-operating elements in spiral form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/026Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • F04C29/045Heating; Cooling; Heat insulation of the electric motor in hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet

Description

本発明は、冷媒圧縮機および冷凍サイクル機器に関し、特に、密閉容器内に冷媒が吸入された後に当該密閉容器内の冷媒を吸い込んで圧縮する圧縮機構部を有する低圧チャンバ方式の冷媒圧縮機、および冷凍サイクル機器に関する。
冷媒を圧縮する圧縮機構部とこの圧縮機構部を駆動するモータとを密閉容器内に収納した冷媒圧縮機として、密閉容器内の圧力が冷媒の吐出圧力となる高圧チャンバ方式の冷媒圧縮機が存在する。しかし、高圧チャンバ方式の冷媒圧縮機では、密閉容器内が高温高圧となるため、モータのコイル温度が上昇して、例えば一般的なフェライト磁石を用いたモータではモータ効率が低下するという課題がある。
一方、密閉容器内の圧力が冷媒の吸入圧力となる低圧チャンバ方式の冷媒圧縮機が存在する。この低圧チャンバ方式の冷媒圧縮機では、低温低圧の吸入冷媒によりモータを冷却することができる。しかし、密閉容器内に吸入された冷媒がモータを冷却することにより、冷媒(ガス)の密度低下が生じるため、冷凍サイクルを循環する冷媒循環量が減少し、冷凍能力が低下して、更に冷凍サイクルの効率も低下するという問題がある。そのため、低圧チャンバ方式の冷媒圧縮機では、吸入冷媒をモータの熱的影響を受けずに圧縮機構部に導く構造が採用されている。
例えば、特開昭63−50695号公報(特許文献1)には、「この発明は、密閉ケース1内を圧縮機部5で仕切る他、圧縮機部5のローラ6と電動機部2のロータ4とを結ぶシャフト15内に軸方向に沿う貫通孔16の電動機部2側と対向する密閉ケース1に吸込管20を設ける他、圧縮機部5に貫通孔16からの吸込ガスを受ける吸込孔19を設けることにより、電動機部2の熱に触れずに吸込ガスを圧縮機部5側へ導き、気液分離して後、吸込孔19からシリンダ室へ吸入させる。」と記載されている(公報第2頁右下欄第5行〜第14行参照)。
また、特開平9−236092号公報(特許文献2)には、「第2の発明の要旨はするところは、圧縮機構及びその駆動モータを内蔵する密閉ハウジング内に冷媒ガスを吸入して上記圧縮機構に吸い込ませるとともに上記圧縮機構の圧縮室に液冷媒の一部を噴射する液インジェクション回路を備えた冷凍装置用密閉型圧縮機において、冷媒ガスの吸込管を冷媒ガスが直接上記圧縮機構に導かれる位置において上記密閉ハウジングに接続するとともに上記液インジェクション回路を分岐してその一方を液冷媒が上記モータに向かって噴射される位置に接続したことを特徴とする冷凍装置用密閉型圧縮機にある。」と記載されている(段落[0015]参照)。
特開昭63−50695号公報 特開平9−236092号公報
しかしながら、前記特許文献1に記載の圧縮機では、密閉ケース1内に吸入した冷媒はモータからの熱的影響を受けないで済むが、一方で、モータは冷却されずに高温となる。このため、使用温度が高いほど効率の低下する例えばフェライト磁石を用いたモータでは、モータ効率が低下するという問題がある。また、前記特許文献1に記載の圧縮機は、ガスと共に吸い込まれる液冷媒を分離するために、回転する気液分離板21を用いているが(図1参照)、この気液分離板21の回転により流速の上がる冷媒流に液冷媒が混合しやすく、気液分離効率が小さいという問題もある。
前記特許文献2に記載の圧縮機では、密閉ハウジング内に吸入した冷媒の過熱による密度低下を防止しつつ、更にモータの高効率化を図るため、液インジェクション回路により、凝縮器で凝縮液化した液冷媒をモータに噴射して冷却している。このようにモータ使用温度の低減による高効率化を図っているものの、モータ冷却用の液インジェクション回路を別途必要とする。このため、冷凍サイクル構成が複雑で、更に制御も複雑になり、コストアップとなる問題がある。また、圧縮機内で噴射された液冷媒とガス冷媒との気液分離が困難であり、特に圧縮機の回転数(回転速度)が高く、冷媒循環量が多い運転条件においては、液冷媒が圧縮機構部に吸い込まれやすく、密閉ハウジング内に吸入した冷媒の気液分離が困難である。しかも、発熱量の最も大きい巻線に液冷媒が噴射されないため、効果的なモータの冷却ができないという問題がある。
本発明は前記した事情に鑑みてなされたものであり、本発明の目的は、密閉容器内に吸入された圧縮対象となる冷媒の密度低下を防止することにより冷凍能力の低下を防止できると共に、モータ温度を低下させることによりモータ効率を向上させることができ、低コストで、信頼性が高く、高効率な冷媒圧縮機、および冷凍サイクル機器を提供することにある。
前記した目的を達成するために、本発明の一側面を反映する冷媒圧縮機は、密閉容器と、前記密閉容器に収納され、前記密閉容器内に冷媒が吸入された後に当該密閉容器内の冷媒を吸い込んで圧縮する圧縮機構部と、前記密閉容器に収納され、前記圧縮機構部を駆動するモータと、冷媒を前記密閉容器内に吸入するための吸入管と、前記吸入管の出口に対向して設けられ、前記吸入管から吸入した冷媒を衝突させて気液分離した液冷媒を前記モータの巻線上に落下させるカバーと、前記吸入管から吸入した冷媒が前記カバーに衝突させられて気液分離したガス冷媒を、前記圧縮機構部に設けられた圧縮室の入口に導く吸込通路と、を備える冷媒圧縮機であって、前記モータは、前記密閉容器内に固定されるステータと、回転するロータとを有し、前記ロータの外周には、上から下に向かって当該ロータの回転方向と反対方向に捻じれた溝が形成されており、前記冷媒圧縮機は、前記ロータを固定支持するシャフトと、前記ステータに巻回された前記巻線のうちの前記ロータの下方に位置する下側巻線部の一部と同じ高さに配置され、前記シャフトに固定される板体と、を備えることを特徴とする。
また、本発明の一側面を反映する冷凍サイクル機器は、前記冷媒圧縮機を冷凍または空調用の冷媒圧縮機として備えることを特徴とする。
本発明によれば、密閉容器内に吸入された圧縮対象となる冷媒の過熱を防止できると共に、確実な吸入冷媒の気液分離を行うことができ、冷凍サイクルに特別な変更を施すことなく、液冷媒により、モータにおいて発熱量の最も大きい巻線の冷却が可能となる。
すなわち、密閉容器内に吸入された圧縮対象となる冷媒の密度低下を防止することにより冷凍能力の低下を防止できると共に、モータ温度を低下させることによりモータ効率を向上させることができ、低コストで、信頼性が高く、高効率な冷媒圧縮機、および冷凍サイクル機器を提供することができる。
本発明の冷媒圧縮機の第1実施形態に係るロータリ圧縮機を示す縦断面図である。 図1に示されるカバーおよびその支持構造の斜視図である。 本発明の第2実施形態に係るロータリ圧縮機を示す縦断面図である。 本発明の第3実施形態に係るロータリ圧縮機におけるカバーの斜視図である。 本発明の第4実施形態に係るスクロール圧縮機を示す縦断面図である。
次に、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。
≪第1実施形態≫
まず、図1および図2を参照しながら本発明の第1実施形態について説明する。
図1は、本発明の第1実施形態に係るロータリ圧縮機100を示す縦断面図である。
第1実施形態では、本発明の冷媒圧縮機について、密閉容器内が低温低圧の吸入ガス空間となる低圧チャンバ方式のロータリ圧縮機(ローリングピストン形圧縮機)100を例に挙げて説明する。また、ここでは、圧縮機構部がモータよりも下方に配置される冷媒圧縮機の例について説明する。
図1に示すように、ロータリ圧縮機100は、エアコンなどの空調装置や冷凍装置などの冷凍空調用に使用される冷媒圧縮機である。このロータリ圧縮機100は、筐体を成す密閉容器103を有しており、密閉容器103の上部に設けられた吸入管104から密閉容器103内に冷媒が導かれて、密閉容器103内が冷媒の吸入圧力となる低圧チャンバ方式の冷媒圧縮機である。密閉容器103内の下側には圧縮機構部101が配置されており、密閉容器103内の上側には圧縮機構部101に回転動力を与えるモータ102が配置されている。ここで、圧縮機構部101およびモータ102は、密閉容器103内に密閉して収納されている。
モータ102は、ロータ102aとステータ102bとを有している。ステータ102bは、密閉容器103の内壁面に固定支持されている。ロータ102aは、シャフト105に固定支持されている。そして、ステータ102bのスロット部(図示せず)に巻回された巻線126に通電することにより、ロータ102aに回転動力が付与される。
圧縮機構部101は、シリンダ106、ローラ107、およびベーン108を有しており、ロータリ式の圧縮機構部である。シリンダ106は、密閉容器103の内壁面に固定支持されたフレーム109の下側に固定されている。ローラ107は、円筒形状を呈しており、シャフト105の偏心部105aに回転可能に嵌め合わされており、シリンダ106内で偏心回転運動する。シャフト105は、フレーム109に設けられた上軸受110と、シリンダ106の下側に固定された下軸受111とにより回転自在に支持されている。なお、偏心部105aは、シャフト105の上軸受110および下軸受111により支持される部分の軸心に対して偏心した軸心を有する。
ベーン108は、ローラ107の外周面と常時接触運動するように、シリンダ106に取り付けられている。このベーン108は、スプリング112により常にローラ107の外周面に押し付けられており、ローラ107の偏心回転運動に合わせて、シリンダ106内で往復運動する。このベーン108により、シリンダ106の内部に圧縮室(図示せず)が形成される。
圧縮室は、シリンダ106に設けられた吸込ポート(図示せず)に連通しており、下軸受111に設けられた吐出ポート(図示せず)を介して下軸受111の下側に形成された吐出室113に連通している。また、吐出ポートには、吐出弁(図示せず)が設けられている。吐出管114が、吐出室113から密閉容器103の外側へ延びており、ロータリ圧縮機100の横(側方)に設けられているオイルセパレータ115に連通している。圧縮機構部101により圧縮された冷媒は、オイルセパレータ115を介して冷凍サイクル(図示せず)に放出される。
モータ102の上方には、カバー117aが備えられている。このカバー117aは、平面視した形状が、ロータ102aの外径よりも大きく、ステータ102bの巻線126が装着されるスロット部の径と同程度の直径を持つ円形を呈しており、3次元的な形状が上に凸状となった球面の一部を成す形状(略半球殻形状)を呈している。カバー117aは、吸入管104の出口に対向して設けられており、密閉容器103内に吸入された圧縮対象となる冷媒が当該カバー117aの上面に衝突して気液分離したもののうちの液冷媒が巻線126上に落下する位置に配置されている。
図2は、図1に示されるカバー117aおよびその支持構造の斜視図である。図2に示すように、カバー117aは、密閉容器103(図1参照)の内壁面に固定支持されるリング形状の支持板117bに、支持脚117cを介して溶接やねじ締結等により固定されている。支持板117bには、ガス冷媒の通気を良くするためのガス孔117dが複数個設けられている。
図1に戻り、ロータリ圧縮機100は、更に、吸込通路118を備えている。この吸込通路118は、その一端がカバー117aよりも上方の密閉容器103内の上部に連通し、密閉容器103の外側を通って、他端がシリンダ106に設けられた吸込ポート(図示せず)に接続されて連通している。
次に、前記のように構成された第1実施形態の作用について説明する。
第1実施形態に係るロータリ圧縮機100においては、気液混合の状態で冷凍サイクルから戻される冷媒は、吸入管104から密閉容器103内に導かれる。密閉容器103内に導かれた冷媒は、吸入管104の出口から流出した直後に、カバー117aに衝突する。カバー117aに衝突した冷媒のうち、密度の大きい液冷媒は、略半球殻形状のカバー117aの上表面に沿って外方に流れて外周端縁から下方に流れ、ステータ102bのスロット部に巻回された巻線126のうちのロータ102aの上方に位置する上側巻線部126a上に落下する。
このため、ステータ102bの巻線126は、カバー117aの外周端縁から落下した液冷媒によって冷却される。更に、液冷媒は、ロータ102aの外周とステータ102bの内周との間の隙間、およびステータ102bの外周と密閉容器103の内壁面との間に設けられる冷媒通路122を通って、ステータ102bの下部に位置する下部空間に流れる。この際に、液冷媒は、ロータ102aおよびステータ102bの表面を冷却し、フレーム109の上部に位置する空間に溜まる。
モータ102の発熱量は、モータ102を構成する各部の損失により決まり、最も大きい損失は、主に通電時の導線の電気抵抗によって決まる巻線126の損失(いわゆる銅損)である。したがって、吸入管104から吸入した冷媒のうちの液冷媒がステータ102bの巻線126上に落下するようにカバー117aを構成することにより、液冷媒を用いて最も発熱量の大きいステータ102bの巻線126を積極的に冷却することができる。これにより、効果的にモータ102を冷却することが可能となる。
因みに、フレーム109の上部に位置する空間には、吸入冷媒と共に、冷凍サイクルを循環する微量の潤滑油も溜まることになる。このため、フレーム109には油戻し通路125が設けられており、油戻し通路125を通ってフレーム109の上部に位置する空間からシリンダ106に設けられた吸込ポート(図示せず)へ潤滑油を戻している。
一方、カバー117aに衝突した冷媒のうち、密度の小さいガス冷媒は、ステータ102bの上部に位置する上部空間に滞留し、カバー117aの上方に配置された吸込通路118の入口に吸い込まれる。吸込通路118の入口に吸い込まれたガス冷媒は、吸込通路118を通って圧縮機構部101に流れる。このため、圧縮対象となるガス冷媒は、モータ102からの熱的影響を殆ど受けずに、すなわち当該ガス冷媒の温度の上昇を極力抑えて、圧縮機構部101に供給される。
吸込通路118からの冷媒は、圧縮機構部101におけるシリンダ106の内面とローラ107の外面との間に形成されベーン108により仕切られる圧縮室(図示せず)に、吸込ポート(図示せず)を経て流入する。圧縮室に流入した冷媒は、シャフト105の回転により偏心回転するローラ107によって圧縮され、所定の吐出圧力となったところで、吐出弁(図示せず)が開成して吐出室113に流入する。吐出室113に流入した冷媒は、吐出管114を通ってオイルセパレータ115に流入する。オイルセパレータ115では、冷媒と共に圧縮室から流出した潤滑油が分離回収され、冷媒は冷凍サイクルに流出される。因みに、回収された潤滑油は、油戻し管116を通って密閉容器103内に戻される。
前記したように、本発明の第1実施形態に係るロータリ圧縮機100は、密閉容器103と、密閉容器103に収納され、密閉容器103内に吸入した冷媒を吸い込んで圧縮する圧縮機構部101と、密閉容器103に収納され、圧縮機構部101を駆動するモータ102と、冷媒を密閉容器103内に吸入するための吸入管104と、吸入管104の出口に対向して設けられ、吸入管104から吸入した冷媒を衝突させて気液分離した液冷媒をモータ102の巻線126上に落下させるカバー117aと、吸入管104から吸入した冷媒がカバー117aに衝突させられて気液分離したガス冷媒を、圧縮機構部101に設けられた圧縮室の入口に導く吸込通路118と、を備えている。
この第1実施形態では、密閉容器103内が低温低圧の吸入ガス空間となり、圧縮機構部101がモータ102よりも下方に配置されるロータリ圧縮機100において、気液混合状態で冷媒圧縮機に戻される吸入冷媒は、密閉容器103内において気液分離され、液冷媒の圧縮機構部101への吸込みによる信頼性低下が防止される。分離されたガス冷媒は、モータ102からの過熱を極力抑えた状態で圧縮機構部101に導かれ、分離された液冷媒は、モータ102におけるステータ102bの巻線126の冷却に用いられる。
したがって、第1実施形態によれば、密閉容器103内に吸入された圧縮対象となる冷媒の過熱を防止できると共に、確実な吸入冷媒の気液分離を行うことができ、冷凍サイクルに特別な変更を施すことなく、液冷媒により、モータ102において発熱量の最も大きい巻線126の冷却が可能となる。
すなわち、密閉容器103内に吸入された圧縮対象となる冷媒の密度低下を防止することにより冷凍能力の低下を防止できると共に、モータ102の温度を低下させることによりモータ102の効率を向上させることができ、低コストで、信頼性が高く、高効率な冷媒圧縮機としてのロータリ圧縮機100を提供することができる。
なお、前記した第1実施形態では、ロータリ圧縮機100を例に挙げて説明したが、圧縮機構部がモータよりも下方に配置されるスクロール圧縮機でも同様の構成が可能であり、本発明の適用が可能である。
≪第2実施形態≫
次に、図3を参照しながら本発明の第2実施形態について説明する。
図3は、本発明の第2実施形態に係るロータリ圧縮機100aを示す縦断面図である。第2実施形態では、ステータ102bの上部巻線126aの冷却だけでなくステータ102bの下部巻線部126bの冷却も可能な冷媒圧縮機の例を説明する。
第2実施形態では、第1実施形態と同様に、低圧チャンバ方式のロータリ圧縮機100aを例に挙げて説明する。第2実施形態の構成のうち図1に示す第1実施形態に係るロータリ圧縮機100と同一の機能を有する部分については、同一の符号を付して適宜説明を省略する。第1実施形態に係るロータリ圧縮機100との主な相違点は、ロータ102aの外周面にスキュー溝(溝)102cが形成されたスキューモータと呼ばれるモータ102を使用している点、及びロータ102aの下方にディスク(板体)121を配置した点である。
図3に示すように、ロータ102aの外周面には、上から下に向かって当該ロータ102aの回転方向と反対方向に捻じれ、ロータ102aの上端から下端まで連続的につながっているスキュー溝102cが形成されている。ここで、ロータ102aは、上方から見て反時計回りに回転する。このようなスキュー溝102cが形成されたロータ102aを有するモータ102を使用することにより、トルク変動が小さくなってモータ102の振動、騒音の低減効果が得られる。
また、ロータ102aの下方には、ディスク121が設けられている。このディスク121は、シャフト105に固定されており、ステータ102bのスロット部に巻回された巻線126のうちのロータ102aの下方に位置する下側巻線126bの一部と同じ高さに配置されている。更に、シャフト105の偏心重量をキャンセルするためのバランスウェイト123が、ディスク121の下側に一体に取り付けられている。
次に、前記のように構成された第2実施形態の作用について説明する。
第2実施形態に係るロータリ圧縮機100aにおいては、ステータ102bの上部に位置する上部空間において、ステータ102bの上側巻線部126aを冷却した液冷媒がステータ102bの上部に溜まり、この液冷媒をロータ102aの外周面に形成されたスキュー溝102cによってロータ102aの下部に導くことができる。この際に、液冷媒は、ロータ102a外周面およびステータ102b内周面を冷却することができる。
更に、ロータ102aの下部に導かれた液冷媒は、ディスク121上に落下し、回転するディスク121上で受ける遠心力により、ステータ102bの下側巻線126bにはね掛けられる。これにより、ステータ102bの下側巻線126bを液冷媒で冷却することができ、更に効果的にモータ102の冷却を行うことができる。
ここで、ステータ102bの上部に溜まった液冷媒を、ロータ102aのスキュー溝102cによる粘性ポンプ効果によって、積極的にロータ102aの下部に移送することができる。これにより、第1実施形態においてステータ102bの外周と密閉容器103の内壁面との間に設けられている冷媒通路122(図1参照)を省略することができる。このため、ステータ102bを構成する鋼板において有効に磁区を形成することができ、モータ102の効率の向上も期待できる。
このような第2実施形態に係るロータリ圧縮機100aによれば、前記した第1実施形態と同様の作用効果を奏することができることに加えて、モータ102において発熱量の大きいステータ102bの巻線126をステータ102bの上下両方から効果的に冷却することができる。これにより、モータ102の使用温度を更に低減することができ、より高効率な冷媒圧縮機を提供することができる。
また、ロータ102aの外周面にスキュー溝102cが形成されたスキューモータを使用することによる振動、騒音低減も達成できる。ただし、振動、騒音が元々問題ない場合や、ロータ製造上の都合で連続的なスキュー溝を形成するスキューモータを採用できない場合には、ロータの外周面にステップ状の溝(垂直方向に不連続に変化する部分を有するもののロータ102aの上端から下端までつながっている溝)を有する疑似スキューモータを使用してもよい。あるいは、通常のモータにおいてロータの外周面に斜め溝を形成してもよい。なお、この場合にはロータに装着される磁石はロータの軸方向に平行である。このように疑似スキューモータを使用したり通常のモータのロータの外周面に斜め溝を形成した場合でも、同様のモータ冷却効果を得ることができるので、高効率な冷媒圧縮機を提供することができる。
なお、前記した第2実施形態では、第1実施形態と同様にロータリ圧縮機100aを例に挙げて説明したが、圧縮機構部がモータよりも下方に配置されるスクロール圧縮機でも同様の構成が可能であり、本発明の適用が可能である。
≪第3実施形態≫
次に、図4を参照しながら本発明の第3実施形態について説明する。
図4は、本発明の第3実施形態に係るロータリ圧縮機におけるカバー119の斜視図である。第3実施形態では、より低コストで吸入冷媒の気液分離を行うことができる冷媒圧縮機の例を説明する。
第3実施形態では、図4に示すカバー構造体119が、前記した第1実施形態、第2実施形態に係るロータリ圧縮機100,100aにおけるカバー117aおよびその支持構造に代えて、使用されている。前記実施形態と同じ構成については同じ符号を使用すると共に、重複する説明を省略する。
図4に示すように、カバー構造体119は、略半球殻形状のカバー119aと、カバー119aに一体に設けられ密閉容器103(図1参照)の内壁面に固定支持されるリング形状の支持板(支持体)119bとを備えている。すなわち、カバー119aは、当該カバー119aを固定支持するための支持板119bと共に、一枚の板材から一体成形されている。カバー119aの外周側に、液冷媒を分離して滴下するための液孔119eが複数個形成されており、更にその外周側にガス冷媒の通気を良くするためのガス孔119fが複数個形成されている。
したがって、第3実施形態によれば、前記実施形態と同様の作用効果を奏することができることに加えて、前記したカバー119aは、当該カバー119aを固定支持するための支持板119bと共に、1枚の板材からプレス成型することが可能であるため、より低コストとなる構成で、気液分離を行うことが可能となる。
≪第4実施形態≫
次に、図5を参照しながら本発明の第4実施形態について説明する。
図5は、本発明の第4実施形態に係るスクロール圧縮機200を示す縦断面図である。
第4実施形態では、本発明の冷媒圧縮機について、密閉容器内が低温低圧の吸入ガス空間となる低圧チャンバ方式のスクロール圧縮機200を例に挙げて説明する。また、ここでは、圧縮機構部がモータよりも上方に配置される冷媒圧縮機の例について説明する。
図5に示すように、スクロール圧縮機200は、エアコンなどの空調装置や冷凍装置などの冷凍空調用に使用される冷媒圧縮機である。このスクロール圧縮機200は、筐体を成す密閉容器203を有しており、密閉容器203には、冷媒を密閉容器203内に吸入するための吸入管204と、圧縮された冷媒を吐出するための吐出管214とが設けられている。密閉容器203内の上側には、固定スクロール230と、この固定スクロール230と噛み合って旋回運動する旋回スクロール231とを備えるスクロール式の圧縮機構部201が配置されている。固定スクロール230および旋回スクロール231は、それぞれ渦巻き状の歯型形状部を有している。また、密閉容器203内の下側には、ロータ202aとステータ202bとを有するモータ202が配置されている。ここで、圧縮機構部201およびモータ202は、密閉容器203内に密閉して収納されている。
旋回スクロール231の背面(下面)に設けられた旋回軸受231aに、フレーム209に設けられた主軸受210により支持されるシャフト205の偏心部205aが挿入される。そして、旋回スクロール231とフレーム209との間に配置したオルダムリング232がシャフト205の回転に際して旋回スクロール231の自転運動を拘束し、旋回スクロール231に旋回運動を行わせるようになっている。
吸入管204は、冷媒ガスを取り入れるためのものであり、密閉容器203内に連通している。密閉容器203の内部空間と、固定スクロール230と旋回スクロール231とにより形成される圧縮室とは、吸込通路218によって連通している。吐出管214は、圧縮した冷媒ガスを外部へ吐出するためのものであり、固定スクロール230の上部に設けられた吐出室213に連通している。
モータ202の下方には、軸受支持板233が配置されている。軸受支持板233に設けられた副軸受234は、フレーム209に設けられた主軸受210と共に、シャフト205を回転自在に支持している。
モータ202の上方には、カバー217が備えられている。このカバー217は、ロータ202aの外径よりも大きく、ステータ202bの巻線226が装着されるスロット部(図示せず)の径と同程度の直径を持つ例えば円筒形状を呈している。カバー217は、吸入管204の出口に対向して設けられており、密閉容器203内に吸入された圧縮対象となる吸入冷媒が円筒形状のカバー217の側面に衝突して気液分離したもののうちの液冷媒が巻線226上に落下する位置に配置されている。このカバー217は、フレーム209に例えばねじ締結等により固定されている。
吸込通路218は、フレーム209の内部に形成されており、一端がカバー217よりも上方の密閉容器203内の上部に連通し、他端が固定スクロール230の吸込ポート220に接続されて連通している。このように、圧縮機構部201が上部にあり、モータ202が下部にある構成の冷媒圧縮機の場合、吸入管204を圧縮機構部201とモータ202との間に設けることができ、吸入管204と吸込ポート220との間の距離が近くなる。これにより、吸込通路218の距離が短くなり、吸込通路218を通る冷媒は熱の影響を受けにくくなるため、吸込通路218を密閉容器203の内部に形成することが可能となる。ただし、密閉容器203内のスペースの都合上、吸込通路を形成しにくい場合には、前記した第1実施形態や第2実施形態のように密閉容器203の外側を通るように吸込通路を設けてもよい。
ここでは、モータ202として、ロータ202aの外周面にスキュー溝(溝)202cが形成されたスキューモータを使用している。ロータ202aの外周面には、上から下に向かって当該ロータ202aの回転方向と反対方向に捻じれ、ロータ202aの上端から下端まで連続的につながっているスキュー溝202cが形成されている。ここで、ロータ202aは、上方から見て時計回りに回転する。
また、ロータ202aの下方には、ディスク221が設けられている。このディスク221は、シャフト205に固定されており、ステータ202bのスロット部に巻回された巻線226のうちのロータ202aの下方に位置する下側巻線226bの一部と同じ高さに配置されている。更に、シャフト205の偏心重量をキャンセルするためのバランスウェイト223が、ディスク221の下側に一体に取り付けられている。
次に、前記のように構成された第4実施形態の作用について説明する。
第4実施形態に係るスクロール圧縮機200においては、気液混合の状態で冷凍サイクルから戻される冷媒は、吸入管204から密閉容器203内に導かれる。密閉容器203内に導かれた冷媒は、吸入管204の出口から流出した直後に、円筒形状のカバー217に衝突する。カバー217に衝突した冷媒のうち、密度の大きい液冷媒は、カバー217に衝突した後にカバー217から下方に流れ、ステータ202bのスロット部に巻回された巻線226のうちのロータ202aの上方に位置する上側巻線部226a上に落下する。
このため、ステータ202bの巻線226は、カバー217から落下した液冷媒により冷却される。この液冷媒は、その後、ロータ202aのスキュー溝202cの粘性ポンプ効果によって、ロータ202aの外周面およびステータ202bの内周面を冷却しながらロータ202aの下部に導かれる。ロータ202aの下部に導かれた液冷媒は、ディスク221上に落下し、回転するディスク221上で受ける遠心力により、ステータ202bの下側巻線226bにはね掛けられる。これにより、ステータ202b下側巻線226bを液冷媒で冷却することができ、モータ202において最も発熱量の大きいステータ202bの巻線226を上下両方から効果的に冷却することができる。
一方、カバー217に衝突した冷媒のうち、密度の小さいガス冷媒は、カバー217に衝突後、ステータ202bの上部に位置する上部空間を滞留し、カバー217の上方に配置された吸込通路218の入口に吸い込まれる。吸込通路218の入口に吸い込まれたガス冷媒は、吸込通路218を通って固定スクロール230内に設けられた吸込ポート220に流れる。このため、圧縮対象となるガス冷媒は、モータ202からの熱的影響を殆ど受けずに、すなわち当該ガス冷媒の温度の上昇を極力抑えて、圧縮機構部201に供給される。
モータ202が駆動されてロータ202aおよびシャフト205が回転させられると、これに伴って圧縮機構部201における旋回スクロール231が旋回運動を開始する。この動作により、旋回スクロール231および固定スクロール230の渦巻き状の歯型形状部が噛み合い、圧縮室を形成する。
このとき、吸込ポート220から流入した冷媒ガスが圧縮室で圧縮される。シャフト205の回転に伴い、冷媒ガスは、旋回スクロール231および固定スクロール230の中央方向に移動するに従い容積を減少させながら圧縮される。これにより高圧化された冷媒ガスが、所定の吐出圧力となったところで吐出弁226が開成して、固定スクロール230に形成された吐出ポート224から吐出室213に流入する。固定スクロール230の上部の吐出室213に吐出された冷媒は、最終的に吐出管214を通ってスクロール圧縮機200の外部へ吐出される。
前記したように、この第4実施形態では、密閉容器203内が低温低圧の吸入ガス空間となり、圧縮機構部201がモータ202よりも下方に配置されるスクロール圧縮機200において、気液混合状態で冷媒圧縮機に戻される吸入冷媒は、密閉容器203内において気液分離され、液冷媒の圧縮機構部201への吸込みによる信頼性低下が防止される。分離されたガス冷媒は、モータ202からの過熱を極力抑えた状態で圧縮機構部201に導かれ、分離された液冷媒は、モータ202におけるステータ202bの巻線226を上下両方から冷却するのに用いられる。
したがって、第4実施形態によれば、密閉容器203内に吸入された圧縮対象となる冷媒の過熱を防止できると共に、確実な吸入冷媒の気液分離を行うことができ、冷凍サイクルに特別な変更を施すことなく、液冷媒により、モータ202において発熱量の最も大きい巻線226の上下両方からの冷却が可能となる。
すなわち、密閉容器203内に吸入された圧縮対象となる冷媒の密度低下を防止することにより冷凍能力の低下を防止できると共に、モータ202の温度を低下させることによりモータ202の効率を向上させることができ、低コストで、信頼性が高く、高効率な冷媒圧縮機としてのスクロール圧縮機200を提供することができる。
また、ロータ202aの外周面にスキュー溝202cが形成されたスキューモータを使用することによる振動、騒音低減も達成できる。ただし、振動、騒音が元々問題ない場合や、ロータ製造上の都合で連続的なスキュー溝を形成するスキューモータを採用できない場合には、ロータの外周面にステップ状の溝を有する疑似スキューモータを使用する、あるいは通常のモータにおいてロータの外周面に斜め溝を形成してもよい。このように構成した場合でも、同様のモータ冷却効果を得ることができるので、高効率な冷媒圧縮機を提供することができる。
更には、モータの温度があまり高くならない場合には、外周面に斜め溝の無い通常のモータを使用し、ステータの上側巻線部のみを液冷媒で冷却する構造を採用することも可能である。この場合には、潤滑油および液冷媒の滴下のため、ステータ202bの外周と密閉容器203の内壁面との間に冷媒通路を設けることが望ましい。
なお、前記した第4実施形態では、スクロール圧縮機200を例に挙げて説明したが、圧縮機構部がモータよりも上方に配置されるロータリ圧縮機でも同様の構成が可能であり、本発明の適用が可能である。
以上、本発明について実施形態に基づいて説明したが、本発明は前記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、前記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
例えば、前記実施形態では、本発明がスクロール圧縮機、ロータリ圧縮機に適用される場合の例について説明したが、本発明はこれらに限定されるものではない。本発明は、密閉容器内に冷媒が吸入された後に当該密閉容器内の冷媒を吸い込んで圧縮する圧縮機構部を有する低圧チャンバ方式の冷媒圧縮機であれば、他の形式の冷媒圧縮機にも適用可能である。
また、前記実施形態では、略半球殻形状のカバー117a,119aや、円筒形状のカバー217を例に挙げて説明したが、本発明はこれらに限定されるものではない。本発明は、吸入管から吸入した冷媒を衝突させて気液分離した液冷媒をモータの巻線上に落下させ得るものであれば、略円錐形状等の他の形状のカバーを使用することが可能である。
また、本発明は、本発明に係る冷媒圧縮機を冷凍または空調用の冷媒圧縮機として備える冷凍サイクル機器として構成され得る。この冷凍サイクル機器は、本発明に係る冷媒圧縮機と、冷媒圧縮機で圧縮されて高温高圧になった冷媒ガスから熱を放熱する凝縮器と、凝縮器からの高圧冷媒を減圧する減圧装置と、減圧装置からの液冷媒を蒸発させる蒸発器とを備えている。このような冷凍サイクル機器は、冷凍装置、空調装置、ヒートポンプ式給湯機などに使用され得る。
100,100a ロータリ圧縮機(冷媒圧縮機)
101 圧縮機構部
102 モータ
102a ロータ
102b ステータ
102c スキュー溝(溝)
103 密閉容器
104 吸入管
105 シャフト
117a カバー
118 吸込通路
119a カバー
119b 支持板(支持体)
121 ディスク(板体)
126 巻線
126b 下部巻線部
200 スクロール圧縮機(冷媒圧縮機)
201 圧縮機構部
202 モータ
202a ロータ
202b ステータ
202c スキュー溝(溝)
203 密閉容器
204 吸入管
205 シャフト
217 カバー
218 吸込通路
221 ディスク(板体)
226 巻線
226b 下部巻線部

Claims (5)

  1. 密閉容器と、
    前記密閉容器に収納され、前記密閉容器内に冷媒が吸入された後に当該密閉容器内の冷媒を吸い込んで圧縮する圧縮機構部と、
    前記密閉容器に収納され、前記圧縮機構部を駆動するモータと、
    冷媒を前記密閉容器内に吸入するための吸入管と、
    前記吸入管の出口に対向して設けられ、前記吸入管から吸入した冷媒を衝突させて気液分離した液冷媒を前記モータの巻線上に落下させるカバーと、
    前記吸入管から吸入した冷媒が前記カバーに衝突させられて気液分離したガス冷媒を、前記圧縮機構部に設けられた圧縮室の入口に導く吸込通路と、
    を備える冷媒圧縮機であって、
    前記モータは、前記密閉容器内に固定されるステータと、回転するロータとを有し、
    前記ロータの外周には、上から下に向かって当該ロータの回転方向と反対方向に捻じれた溝が形成されており、
    前記冷媒圧縮機は、前記ロータを固定支持するシャフトと、前記ステータに巻回された前記巻線のうちの前記ロータの下方に位置する下側巻線部の一部と同じ高さに配置され、前記シャフトに固定される板体と、を備えることを特徴とする冷媒圧縮機。
  2. 前記カバーは、当該カバーを固定支持するための支持体と共に、一枚の板材から一体成形されていることを特徴とする請求項1に記載の冷媒圧縮機。
  3. 前記圧縮機構部は、ロータリ式の圧縮機構部であることを特徴とする請求項1または請求項2に記載の冷媒圧縮機。
  4. 前記圧縮機構部は、スクロール式の圧縮機構部であることを特徴とする請求項1または請求項2に記載の冷媒圧縮機。
  5. 請求項1または請求項2に記載の冷媒圧縮機を冷凍または空調用の冷媒圧縮機として備えることを特徴とする冷凍サイクル機器。
JP2014516549A 2012-05-22 2012-05-22 冷媒圧縮機および冷凍サイクル機器 Active JP5897117B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/063013 WO2013175566A1 (ja) 2012-05-22 2012-05-22 冷媒圧縮機および冷凍サイクル機器

Publications (2)

Publication Number Publication Date
JPWO2013175566A1 JPWO2013175566A1 (ja) 2016-01-12
JP5897117B2 true JP5897117B2 (ja) 2016-03-30

Family

ID=49623298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014516549A Active JP5897117B2 (ja) 2012-05-22 2012-05-22 冷媒圧縮機および冷凍サイクル機器

Country Status (6)

Country Link
US (1) US10047746B2 (ja)
EP (1) EP2853743B1 (ja)
JP (1) JP5897117B2 (ja)
CN (1) CN104321530B (ja)
IN (1) IN2014DN09866A (ja)
WO (1) WO2013175566A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104500405A (zh) * 2014-12-09 2015-04-08 广东美芝制冷设备有限公司 低背压旋转式压缩机
JP2018035800A (ja) * 2016-09-02 2018-03-08 日立ジョンソンコントロールズ空調株式会社 密閉型電動圧縮機、及び、冷凍機器
KR102303545B1 (ko) * 2017-05-12 2021-09-17 엘지전자 주식회사 스크롤 압축기
DE102018201829A1 (de) * 2018-02-06 2019-08-08 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Elektromotorischer Kältemittelverdichter
KR20200099704A (ko) * 2019-02-15 2020-08-25 엘지전자 주식회사 압축기
CN110076513B (zh) * 2019-04-22 2021-10-08 广东美的智能机器人有限公司 焊接设备、具有其的生产线及焊接方法
CN112833014A (zh) * 2021-03-22 2021-05-25 广东美芝精密制造有限公司 主轴承、压缩机、制冷设备和生产工艺
CN114542471B (zh) * 2022-03-07 2023-06-30 珠海凌达压缩机有限公司 挡油帽结构、压缩机及空调器
CN114576170B (zh) * 2022-03-10 2023-09-05 珠海凌达压缩机有限公司 一种用于压缩机的下法兰结构及具有其的压缩机
KR102630536B1 (ko) 2022-05-16 2024-01-30 엘지전자 주식회사 로터리 압축기

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1597666A (en) * 1926-01-20 1926-08-31 Allis Louis Co Rotor
JPS4310445Y1 (ja) * 1967-02-15 1968-05-07
JPS50137607U (ja) * 1974-04-27 1975-11-13
JPS52151410U (ja) * 1976-05-13 1977-11-16
JPS5517601A (en) * 1978-07-07 1980-02-07 Hitachi Ltd Enclosed motor driven compressor
JPH0310445Y2 (ja) * 1986-08-11 1991-03-14
JPS6350695A (ja) 1986-08-20 1988-03-03 Toshiba Corp ロ−タリコンプレツサ
JPH09236092A (ja) 1996-02-27 1997-09-09 Mitsubishi Heavy Ind Ltd 冷凍装置用密閉型圧縮機
JP3301979B2 (ja) * 1998-12-02 2002-07-15 三洋電機株式会社 集中巻方式のブラシレスdcモータ
JP2001339929A (ja) * 2000-05-30 2001-12-07 Matsushita Refrig Co Ltd 電動圧縮機
US6637216B1 (en) * 2003-01-22 2003-10-28 Bristol Compressors, Inc. Compressor with internal accumulator for use in split compressor
JP4200084B2 (ja) * 2003-12-01 2008-12-24 株式会社ジャムコ エアチラー装置
JP5157274B2 (ja) * 2006-09-07 2013-03-06 株式会社デンソー 圧縮機
WO2011104879A1 (ja) * 2010-02-26 2011-09-01 株式会社 日立製作所 スクロール圧縮機
JP5557685B2 (ja) * 2010-10-14 2014-07-23 株式会社日立製作所 回転電機

Also Published As

Publication number Publication date
WO2013175566A1 (ja) 2013-11-28
US20150159649A1 (en) 2015-06-11
CN104321530A (zh) 2015-01-28
EP2853743A1 (en) 2015-04-01
US10047746B2 (en) 2018-08-14
EP2853743A4 (en) 2016-03-02
EP2853743B1 (en) 2018-07-04
JPWO2013175566A1 (ja) 2016-01-12
CN104321530B (zh) 2016-09-21
IN2014DN09866A (ja) 2015-08-07

Similar Documents

Publication Publication Date Title
JP5897117B2 (ja) 冷媒圧縮機および冷凍サイクル機器
JP5933042B2 (ja) 密閉形圧縮機及びこの密閉形圧縮機を備えた蒸気圧縮式冷凍サイクル装置
JP6300829B2 (ja) 回転式圧縮機
JP2008190444A (ja) 流体機械
JPWO2015140949A1 (ja) 密閉形圧縮機及びこの密閉形圧縮機を備えた蒸気圧縮式冷凍サイクル装置
WO2004081384A1 (ja) 密閉型圧縮機
US20110033326A1 (en) Scroll compressor with radially configured motor winding
JP4550843B2 (ja) 圧縮機
JP6655327B2 (ja) 密閉形スクロール圧縮機及び冷凍空調装置
JP3992071B1 (ja) 圧縮機
JP2019143511A (ja) スクロール式圧縮機
JP2006336463A (ja) 圧縮機
JP2010151070A (ja) スクロール型流体機械
JP2010144681A (ja) 密閉型圧縮機
JP5493958B2 (ja) 圧縮機
JP2008088930A (ja) 密閉型圧縮機
JP2013238191A (ja) 圧縮機
JP5136498B2 (ja) 密閉型圧縮機
JP5304679B2 (ja) 圧縮機
JP2012241629A (ja) 密閉型電動圧縮機
JP2023000256A (ja) 油回収装置を有する圧縮機
JP6091575B2 (ja) 密閉型圧縮機、及びこの密閉型圧縮機を備えた冷凍サイクル装置
JP5272600B2 (ja) 密閉型圧縮機
JP5520762B2 (ja) スクロール圧縮機,電動圧縮機
JP2013117188A (ja) 密閉型圧縮機及び冷凍サイクル装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160301

R150 Certificate of patent or registration of utility model

Ref document number: 5897117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250