JP5849530B2 - 画像形成装置、及びプロセスカートリッジ - Google Patents
画像形成装置、及びプロセスカートリッジ Download PDFInfo
- Publication number
- JP5849530B2 JP5849530B2 JP2011181018A JP2011181018A JP5849530B2 JP 5849530 B2 JP5849530 B2 JP 5849530B2 JP 2011181018 A JP2011181018 A JP 2011181018A JP 2011181018 A JP2011181018 A JP 2011181018A JP 5849530 B2 JP5849530 B2 JP 5849530B2
- Authority
- JP
- Japan
- Prior art keywords
- group
- layer
- general formula
- less
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Photoreceptors In Electrophotography (AREA)
- Exposure Or Original Feeding In Electrophotography (AREA)
Description
即ち、電子写真感光体表面を帯電手段で所定の極性及び電位に帯電させ、帯電後の電子写真感光体表面を、像露光により選択的に除電することにより静電潜像を形成させた後、現像手段で該静電潜像にトナーを付着させることにより、潜像をトナー像として現像し、トナー像を転写手段で被転写媒体に転写させることにより、画像形成物として排出させるといったものである。
これら画像形成装置において用いられる電子写真感光体としては、従来からのセレン、セレンーテルル合金、セレンーヒ素合金、硫化カドミウム等無機光導電材料を用いた電子写真感光体(無機感光体)が知られており、近年では、安価で製造性及び廃棄性の点で優れた利点を有する有機光導電材料を用いた有機感光体(有機感光体)が主流を占めるようになってきている。
更に、転写方式としては、直接紙に転写する方式が主流であったが、転写される紙の自由度が広がることから、近年では中間転写体を用いて転写する方式が盛んに用いられている。
保護層を形成する材料系としては、以下のものが提案されている。
即ち、例えば、特許文献1には、導電粉をフェノール樹脂に分散したものが、特許文献2には、有機−無機ハイブリッド材料によるものが、特許文献3には、アルコール可溶性電荷輸送材料とフェノール樹脂によるものが、それぞれ開示されている。
また、特許文献4には、アルキルエーテル化ベンゾグアナミン・ホルムアルデヒド樹脂と、電子受容性カルボン酸、或いは、電子受容性ポリカルボン酸無水物の硬化膜が、特許文献5には、ベンゾグアナミン樹脂に、ヨウ素、有機スルホン酸化合物、或いは、塩化第二鉄などをドーピングした硬化膜が、特許文献6には、特定の添加剤と、フェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂、シロキサン樹脂、或いはウレタン樹脂との硬化膜が、保護層として開示されている。
これら連鎖重合性官能基を有する正孔輸送性化合物は、硬化条件、硬化雰囲気等の影響を強く受けることから、例えば、特許文献14には、真空中、或いは不活性ガス中で放射線照射後に加熱されることによって形成された膜が、特許文献15には、不活性ガス中で加熱硬化された膜が開示されている。
更に、例えば、特許文献8、16には、電荷輸送材料自身をアクリル変性し、架橋可能とすると共に、電荷輸送性を有さない反応性モノマーを添加し、膜強度を向上させることも開示されている。
例えば、特許文献17には、電荷輸送材料自身を3官能以上の多官能に変性し、これを重合した化合物を含有する保護層が開示されている。また、特許文献18,19には、連鎖重合性官能基を有する電荷輸送物質の重合物を保護層に使用する技術が開示されており、また、摩擦特性を向上させるために、潤滑剤としてフッ素原子含有化合物を保護層中に含有する技術が開示されている。加えて、特許文献20には、連鎖重合性官能基を有する電荷輸送物質の濃度を最表面から内部に向かって傾斜を持たせることで、機械特性と電気特性を両立できることが開示されている。
また、特許文献21には露光波長を500nm以下とし、スポット面積を2000μm2以下とすることが、特許文献22には、連鎖重合性官能基を有する輸送剤を電子線で硬化した表面層を有する感光体を380−500nmの波長で露光することが、特許文献23には、1−10μmの表面保護層を有する感光体を380−450nmの波長で、スポット径40μm以下で露光することが、特許文献24には感光体を380−450nmの波長で、トナー粒子が重量平均粒径6μm以下で現像することが、特許文献25〜27にはアゾ顔料を電荷発生剤として用い、380−500nmの波長で露光することが開示されている。
請求項1に係る発明は、
導電性基体と該導電性基体上に感光層とを有する電子写真感光体であって、最表面層として、下記一般式(II)で表される反応性化合物から選択される少なくとも1種の反応性化合物の重合体を含む層を有し、且つ、前記感光層の総膜厚が10μm以上25μm以下である電子写真感光体と、
前記電子写真感光体の表面を帯電させる帯電装置と、
帯電された前記電子写真感光体の表面を露光して該表面に静電潜像を形成する露光装置であって、非干渉性の露光光源を有する露光装置と、
前記静電潜像を現像剤で現像してトナー像を形成する現像装置と、
前記トナー像を被転写媒体に転写する転写装置と、
を備える画像形成装置。
前記一般式(II)で表される反応性化合物が、下記一般式(III)で表され、且つ下記一般式(III)中のDが下記一般式(V)で表される基を示す反応性化合物である請求項1に記載の画像形成装置。
前記一般式(V)で表される基は、下記一般式(VIII)、又は下記一般式(IX)で表される基を示す請求項2に記載の画像形成装置。
前記非干渉性の露光光源によって露光される前記電子写真感光体表面の露光スポットの面積が1000μm2以下であり、且つ前記非干渉性の露光光源の発光の中心波長が450nm以上780nm以下である請求項1〜3のいずれか1項に記載の画像形成装置。
前記感光層に、電荷発生材料としてn型の有機顔料を含有する請求項1〜4のいずれか1項に記載の画像形成装置。
前記n型の有機顔料が、縮合多環芳香族化合物、ペリレン化合物、及びアゾ化合物から選ばれる少なくとも1種の有機顔料である請求項5に記載の画像形成装置。
導電性基体と該導電性基体上に感光層とを有する電子写真感光体であって、最表面層として、下記一般式(II)で表される反応性化合物から選択される少なくとも1種の反応性化合物の重合体を含む層を有し、且つ、前記感光層の総膜厚が10μm以上25μm以下である電子写真感光体と、
帯電された前記電子写真感光体の表面を露光して該表面に静電潜像を形成する露光装置であって、非干渉性の露光光源を有する露光装置と、
を備え、
画像形成装置に着脱し得るプロセスカートリッジ。
請求項5に係る発明によれば、電荷発生材料としてn型の有機顔料を含有しない場合に比べ、感光層の総膜厚が薄膜であっても、カブリ、黒点などと呼ばれる画像欠陥が抑制された画像が繰り返し形成される画像形成装置を提供できる。
請求項6に係る発明によれば、n型の有機顔料が、縮合多環芳香族化合物、ペリレン化合物、及びアゾ化合物から選ばれる少なくとも1種の有機顔料でない場合に比べ、高解像度の画像が繰り返し形成される画像形成装置を提供できる。
そして、電子写真感光体として、導電性基体と該導電性基体上に感光層とを有する電子写真感光体であって、最表面層として、一般式(I)及び(II)で表される反応性化合物から選択される少なくとも1種の反応性化合物の重合体を含む層を有し、且つ、感光層の総膜厚が10μm以上25μm以下である電子写真感光体(以下、特定の電子写真感光体と称することがある)を適用する。
また、露光装置として、非干渉性の露光光源を有する露光装置を適用する。
この理由は定かではないが、以下に示す理由によるものと推測される。
このため、最表面層が優れた電気特性と機械的強度を兼ねを備えた上で、最表面層の厚膜化(例えば10μm以上)も実現されると考えられる。
さらに、画像を形成する際には電子写真感光体を放電によって帯電させ使用するが、その際に電気的な負荷(ストレス)や、オゾン等の放電ガスによる負荷(ストレス)等により、電子写真感光体の最表面層の材料劣化が起こり結果として放電生成物と呼ばれる硝酸アンモニウムなどのイオン性物質を吸着しやすくなる。そのために、特に高湿下(例えば28℃、85%RH環境下)で水分を吸着し、電子写真感光体の表面抵抗が低下し、形成される画像においては静電潜像にじみが生じ、結果として画像流れを生じやすい。これを抑制するためには、感光体に接触する清掃部材を設けその清掃部材との摩擦によって表面層を適度に磨耗させて、放電生成物を除去し静電潜像にじみを抑制する方法が有効である。なお、この磨耗量は、画像形成における帯電の方式、清掃の方式、用いるトナーの形状などの影響が大きく、画像形成のシステムによって大きく左右されるため、感光体の表面層の強度をそれに合わせて調整し得ることが重要となる。
これに対し、特定の電子写真感光体の最表面層において、特定の反応基含有電荷輸送材料等の重合成分(架橋成分)の割合や、特定の反応基含有電荷輸送材料等の反応性のモノマーの構造を選択することで、システムに合わせた最適な機械的強度の最表面層を形成し得る。
また、特定の反応基含有電荷輸送材料と共に併称する不飽和結合を有する化合物を、スチリル基以外の官能基を持つ多官能の電荷輸送性材料とすることで、電荷輸送成分の濃度を低下させることなく、最表面層に機械的強度を付与することも実現される。この場合には、最表面層に対して、異なる官能基によりさらに機械的強度などの物性を制御することが実現される。
なお、便宜上、最表面層として保護層を有する場合、電荷輸送層及び電荷発生層からなる機能分離型感光層、又は単層型感光層と、これら感光層上に形成される保護層と、を分けて説明するが、感光層の総膜厚とは、電荷輸送層及び電荷発生層からなる感光層、又は単層型感光層と共に最表面層としての保護層を含む厚みである。
電子写真感光体は、前述の通り、特定の反応性基含有電荷輸送材料の重合体を含有する層を最表面層として有するものであるが、当該最表面層は電子写真感光体自体の最上面を形成していればよく、保護層として機能する層、又は、電荷輸送層として機能する層として設けられる。
なお、最表面層が保護層として機能する層である場合、この保護層の下層には、電荷輸送層及び電荷発生層からなる感光層、又は単層型感光層を有することとなる。
一方、最表面層が電荷輸送層として機能する層の場合、導電性基体上に、電荷発生層、及び最表面層として特定の反応性基含有電荷輸送材料を含有する組成物、又は、その硬化物を含有する層で構成される形態が挙げられる。
なお、特定の反応性基含有電荷輸送材料と共に、不飽和結合を有する化合物、反応性を有さない電荷輸送材料(非反応性の電荷輸送材料)を併用してもよい。
図2に示す電子写真感光体7Bにおいては、導電性基体4上に下引層1が設けられ、その上に、電荷輸送層3、電荷発生層2、及び保護層5が順次形成された構造を有するものである。電子写真感光体7Bにおいては、電荷輸送層3及び電荷発生層2により感光層が構成される。
なお、図1、図2及び図3に示す電子写真感光体において、下引層1は設けてもよいし、設けなくてもよい。
まず、電子写真感光体7Aにおける最表面層である保護層5について説明する。
保護層5は、電子写真感光体7Aにおける最表面層であり、特定の反応性基含有電荷輸送材料の重合体を含有して形成される。
つまり、保護層5は、特定の反応性基含有電荷輸送材料を含む組成物を硬化させて形成されている。
特定の反応性基含有電荷輸送材料は、下記一般式(I)及び(II)で表される反応性化合物から選択される少なくとも1種の反応性化合物である。
Lは、アルキレン基、−C(=O)−、−N(R)−、−S−、及び−O−からなる群より選択される2種以上を組み合わせてなる2価の連結基を示す。
Rは、水素原子、アルキル基、アリール基、又はアラルキル基を示す。
mは、1以上6以下の整数を示す。
L’は、アルキレン基、−C(=O)−、−N(R)−、−S−、及び−O−からなる群より選択される2種以上を組み合わせてなる(n+1)価の連結基を示す。
Rは、水素原子、アルキル基、アリール基、又はアラルキル基を示す。
m’は、1以上6以下の整数を示す。
nは、2以上3以下の整数 を示す。
アルキレン基中に−C(=O)−O−が介在した2価の連結基、
アルキレン基中に−C(=O)−N(R)−が介在した2価の連結基、
アルキレン基中に−C(=O)−S−が介在した2価の連結基、
アルキレン基中に−O−が介在した2価の連結基、
アルキレン基中に−N(R)−が介在した2価の連結基、
アルキレン基中に−S−が介在した2価の連結基、
が挙げられる。
なお、Lが表す連結基は、アルキレ基中に、−C(=O)−O−、−C(=O)−N(R)−、−C(=O)−S−、−O−、又は−S−の基が2つ介在してもよい。
*−(CH2)p−C(=O)−O−(CH2)q−、
*−(CH2)p−C(=O)−N(R)−(CH2)q−、
*−(CH2)p−C(=O)−S−(CH2)q−、
*−(CH2)p−O−(CH2)q−、
*−(CH2)p−N(R)−(CH2)q−、
*−(CH2)p−S−(CH2)q−、
*−(CH2)p−O−(CH2)r−O−(CH2)q−
等が挙げられる。
ここで、Lが表す連結基中、pは、0、又は1以上6以下(望ましくは1以上5以下)の整数を示す。qは、1以上6以下(望ましくは1以上5以下)の整数を示す。rは、1以上6以下(望ましくは1以上5以下)の整数を示す。
なお、Lが表す連結基中、「*」は、Fと連結する部位を示している。
分枝状に連結したアルキレン基中に−C(=O)−O−が介在した(n+1)価の連結基、
分枝状に連結したアルキレン基中にアルキレン基中に−C(=O)−N(R)−が介在した(n+1)価の連結基、
分枝状に連結したアルキレン基中に−C(=O)−S−が介在した(n+1)価の連結基、
分枝状に連結したアルキレン基中に−O−が介在した(n+1)価の連結基、
分枝状に連結したアルキレン基中に−N(R)−が介在した(n+1)価の連結基、
分枝状に連結したアルキレン基中に−S−が介在した(n+1)価の連結基、
が挙げられる。
なお、L’が表す連結は、分枝状に連結したアルキレ基中に、−C(=O)−O−、−C(=O)−N(R)−、−C(=O)−S−、−O−、又は−S−の基が2つ介在してもよい。
*−(CH2)p−CH[C(=O)−O−(CH2)q−]2、
*−(CH2)p−CH[C(=O)−N(R)−(CH2)q−]2、
*−(CH2)p−CH[C(=O)−S−(CH2)q−]2、
*−(CH2)p−CH[(CH2)r−O−(CH2)q−]2、
*−(CH2)p−CH[(CH2)r−N(R)−(CH2)q−]2、
*−(CH2)p−CH[(CH2)r−S−(CH2)q−]2、
*−(CH2)p−O−C[(CH2)r−O−(CH2)q−]3
*−(CH2)p−C(=O)−O−C[(CH2)r−O−(CH2)q−]3
等が挙げられる。
ここで、L’が表す連結基中、pは、0、又は1以上6以下(望ましくは1以上5以下)の整数を示す。qは、1以上6以下(望ましくは1以上5以下)の整数を示す。rは、1以上6以下(望ましくは1以上5以下)の整数を示す。sは、1以上6以下(望ましくは1以上5以下)の整数を示す。
なお、Lが表す連結基中、「*」は、Fと連結する部位を示している。
「−N(R)−」のRが表すアリール基としては、炭素数6以上15以下(望ましくは6以上12以下)のアリール基が挙げられ、具体的には、例えば、フェニル基、トルイル基、キシリジル基、ナフチル基等が挙げられる。
アラルキル基としては、炭素数7以上15以下(望ましくは7以上14以下)のアラルキル基が挙げられ、具体的には、例えば、ベンジル基、フェネチル基、ビフェニルメチレン基等が挙げられる。
m’は、1以上6以下の整数を示すことが望ましい。
nは、2以上3以下の整数を示すことが望ましい。
具体的には、一般式(I)で表される反応性化合物として特に望ましくは、下記一般式(III)で表され、且つ下記一般式(III)中のDが下記一般式(IV)で表される基を示す反応性化合物である。
また、一般式(II)で表される反応性化合物として特に望ましくは、下記一般式(III)で表され、且つ下記一般式(III)中のDが下記一般式(V)で表される基を示す反応性化合物である。
Ar5は、置換若しくは未置換のアリール基、又は置換若しくは未置換のアリーレン基を示す。
c1〜c5は、それぞれ独立に、0以上2以下の整数を示す。但し、全てのc1〜c5は、同時に0を示すことはない。
kは、0又は1の整数を示す。
Rは、水素原子、アルキル基、アリール基、又はアラルキル基を示す。
Rは、水素原子、アルキル基、アリール基、又はアラルキル基を示す。
nは、2以上3以下の整数を示す。
一般式(III)において、Ar1、Ar2、Ar3及びAr4は、それぞれ独立に、置換若しくは未置換のアリール基を示し、Ar1、Ar2、Ar3及びAr4は、それぞれ、同一でもあってもよいし、異なっていてもよい。
ここで、置換アリール基における置換基としては、−D以外のものとして、炭素数1以上4以下のアルキル基、炭素数1以上4以下のアルコキシ基、炭素数6以上10以下のアリール基等が挙げられ、且つこれらのアルキル基、アルコキシ基、アリール基は置換、未置換の何れであってもよい。
一般式(III)において、Dは、一般式(IV)で表される基、又は一般式(V)で表される基を示す。
ここで、一般式(IV)の「L」、「R」は、一般式(I)の「L」、「R」と同義である。
一方、一般式(V)の「L’」、「R」、「n」は、一般式(II)の「L’」、「R」、「n」と同義である。
p、及びp’は、0又は1の整数を示す。
q、及びq’は、0、又は1の整数を示す。
1)一般式(II)で表される反応性化合物。
2)一般式(I)で表される反応性化合物であって、Lが−L1−CH2−を示し、L1が−(CH2)n−O−基を含む2価の連結基を示し、nが3以上6以下を示す反応性化合物。
本反応性化合物として具体的には、一般式(III)で表され、且つ一般式(III)中のDが下記一般式(IV)で表される基を示す反応性化合物であって、Lが−L1−CH2−を示し、L1が−(CH2)n−O−基を含む2価の連結基を示し、nが1以上6以下を示し、kが1を示し、Ar5が−Ar51−Xa−Ar52−を示す反応性化合物である。
Ar51及びAr52は、置換若しくは未置換のアリーレン基を示し、Ar5と同様である。
Xaは、アルキレン基、又はアルキレン基、−O−、−S−、及びエステルから選ばれる基を組み合わせてなる2価の基であって、芳香環や共役二重結合などの共役結合を含まない連結基である。
具体的には、Xaは、炭素数1〜4のアルキレン基であるか、炭素数1〜4のアルキレン基と−O−、−S−、−O−C(=O)−、及び−C(=O)−O−から選ばれる基とを組み合わせてなる2価の基が挙げられる。
なお、Xaがアルキレン基である場合、このアルキレン基は、炭素数1以上4以下のアルキル基、炭素数1以上4以下のアルコキシ基等の置換基を有していてもよく、この置換基の2つが互いに結合して、前記Wの具体例として記載の(26)で表される2価の基のような構造となってもよい。
具体的には、一般式(I)及び(II)の電荷輸送性骨格F(一般式(III)中のDを除く骨格)の具体例、一般式(IV)で表される基の具体例、一般式(V)で表される基の具体例と共に、一般式(I)及び(II)で示される反応性化合物の具体例を示すが、これらに限定されるわけではない。
なお、一般式(I)及び(II)の電荷輸送性骨格F(一般式(III)中のDを除く骨格)の具体例の「*」部分は、一般式(IV)で表される基の具体例、一般式(V)で表される基の具体例の「*」部分が連結していることを意味する。
例えば、例示化合物(I)−1としては、電荷輸送性骨格Fの具体例:(1)−1、一般式(IV)又は(V)で表される基の具体例:(IV)−1と示した場合、以下の構造を示す。
即ち、特定の反応性基含有電荷輸送材料は、前駆体であるカルボン酸、あるいは、アルコールと、対応するクロロメチルスチレンなどでのエーテル化などにより合成できる。
この際、溶剤としては、種々のものが挙げられるが、メタノール、エタノール、エチレングリコールなどのアルコール系を用いるか、これに水を混合して用いることがよい。
さらに、アリールアミン化合物の溶解性が低い場合には、塩化メチレン、クロロホルム、トルエン、ジメチルスルホキシド、エーテル、テトラヒドロフランなどを加えてもよい。
溶剤の量は、特に制限はないが、例えば、エステル基を含有するアリールアミン化合物1質量部に対して1質量部以上100質量部以下、望ましくは2質量部以上50質量部以下で用いることがよい。
反応温度は、例えば、室温(例えば25℃)以上溶剤の沸点以下の範囲で設定され、反応速度の問題上、50度以上が望ましい。
触媒の量については、特に制限はないが、例えば、エステル基を含有するアリールアミン化合物1質量部に対して0.001質量部以上1質量部以下、望ましくは0.01質量部以上0.5質量部以下で用いることがよい。
加水分解反応後、塩基性触媒で加水分解を行った場合には、生成した塩を酸(例えば塩酸等)で中和し、遊離させる。さらに、十分に水洗した後、乾燥して使用するか、必要によっては、メタノール、エタノール、トルエン、酢酸エチル、アセトンなど、適当な溶剤により、再結晶精製を行った後、乾燥して使用してもよい。
溶剤としては、N−メチルピロリドン、ジメチルスルホキシド、N,N−ジメチルホルムアミド等の非プロトン性極性溶剤、アセトン、メチルエチルケトンなどのケトン系溶剤、ジエチルエーテル、テトラヒドロフランなどのエーテル系溶剤、トルエン、クロロベンゼン、1ークロロナフタレンなどの芳香族系溶剤などが有効であり、アリールアミン化合物カルボン酸の1質量部に対して、1質量部以上100質量部以下、望ましくは2質量部以上50質量部以下の範囲で用いられることがよい。
反応温度は特に制限はない。反応終了後、反応液を水にあけ、トルエン、ヘキサン、酢酸エチルなどの溶剤で抽出、水洗し、さらに、必要により活性炭、シリカゲル、多孔質アルミナ、活性白土などの吸着剤を用いて精製を行ってもよい。
アリールアミン化合物アルコールのアルコールに対し、ハロゲン化メチルスチレンを1当量以上、望ましくは、1.2当量以上、より望ましくは1.5当量以上加えることがよく、塩基はハロゲン化メチルスチレンに対し0.8当量以上2.0当量以下、望ましくは、1.0等量以上1.5当量以下で用いることがよい。
溶剤としては、N−メチルピロリドン、ジメチルスルホキシド、N,N−ジメチルホルムアミド等の非プロトン性極性溶剤、アセトン、メチルエチルケトンなどのケトン系溶剤、ジエチルエーテル、テトラヒドロフランなどのエーテル系溶剤、トルエン、クロロベンゼン、1ークロロナフタレンなどの芳香族系溶剤などが有効であり、アリールアミン化合物アルコールの1質量部に対して、1質量部以上100質量部以下、望ましくは2質量部以上50質量部以下の範囲で用いることがよい。
反応温度は特に制限はない。反応終了後、反応液を水にあけ、トルエン、ヘキサン、酢酸エチルなどの溶剤で抽出、水洗し、さらに、必要により活性炭、シリカゲル、多孔質アルミナ、活性白土などの吸着剤を用いて精製を行ってもよい。
保護層(最表面層)5を構成する膜は、不飽和結合を有する化合物を併用してもよい。
不飽和結合を有する化合物としては、モノマー、オリゴマー、ポリマーのいずれであってもよく、また、電荷輸送性骨格を有していてもよい。
1官能のモノマーは、例えば、イソブチルアクリレート、t−ブチルアクリレート、イソオクチルアクリレート、ラウリルアクリレート、ステアリルアクリレート、イソボルニルアクリレート、シクロヘキシルアクリレート、2−メトキシエチルアクリレート、メトキシトリエチレングリコールアクリレート、2−エトキシエチルアクリレート、テトラヒドロフルフリルアクリレート、ベンジルアクリレート、エチルカルビトールアクリレート、フェノキシエチルアクリレート、2−ヒドロキシアクリレート、2−ヒドロキシプロピルアクリレート、4−ヒドロキシブチルアクリレート、メトキシポリエチレングリコールアクリレート、メトキシポリエチレングリコールメタクリレート、フェノキシポリエチレングリコールアクリレート、フェノキシポリエチレングリコールメタクリレート、ヒドロキシエチルo−フェニルフェノールアクリレート、o−フェニルフェノールグリシジルエーテルアクリレート、スチレン、などが挙げられる。
3官能のモノマーは、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、脂肪族トリ(メタ)アクリレート、トリビニルシクロヘキサン等が挙げられる。
4官能のモノマーは、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、脂肪族テトラ(メタ)アクリレート等が挙げられる。
5官能以上のモノマーは、例えば、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の他、ポリエステル骨格、ウレタン骨格、フォスファゼン骨格を有する(メタ)アクリレート等が挙げられる。
・連鎖重合性官能基(スチリル基を除く連鎖重合性官能基)及び電荷輸送性骨格を同一分子内に持つ化合物
連鎖重合性官能基及び電荷輸送性骨格を同一分子内に持つ化合物における連鎖重合性官能基としては、ラジカル重合しうる官能基であれば特に限定されるものではなく、例えば、少なくとも炭素二重結合を含有する基を有する官能基である。具体的には、ビニル基、ビニルエーテル基、ビニルチオエーテル基、スチリル基、アクリロイル基、メタクリロイル基、及びそれらの誘導体から選択される少なくも一つを含有する基等が挙げられる。なかでも、その反応性に優れることから、連鎖重合性官能基としては、ビニル基、スチリル基、アクリロイル基、メタクリロイル基、及びそれらの誘導体から選択される少なくも一つを含有する基であることが望ましい。
また、連鎖重合性官能基及び電荷輸送性骨格を同一分子内に持つ化合物における電荷輸送性骨格としては電子写真感光体における公知の構造であれば特に限定されるものではなく、例えば、トリアリールアミン系化合物、ベンジジン系化合物、ヒドラゾン系化合物などの含窒素の正孔輸送性化合物に由来する骨格であって、窒素原子と共役している構造が挙げられる。これらの中でも、トリアリールアミン骨格が望ましい。
ここで、一般式(B)及び(C)によりそれぞれ表される部分構造を含むポリマーの末端基としては、ラジカル重合反応による停止反応で生じた構造である。
Xが表す2価の有機基として具体的には、例えば、−C(=O)−O−(CH2)n−(但し、nは0又は1以上10以下の整数を表す)等が挙げられる。
Yが表す2価の有機基として具体的には、−(CH)n−(但し、nは1以上10以下の整数を表す)、−(CH2)n−O−C(=O)−(但し、nは0又は1以上10以下の整数を表し、「(CH2)n」の水素原子の一部は水酸基が置換していてもよい)、−(CH2)n−Ar−(但し、Arは芳香環数1以上3以下のアリーレン基を表し、nは0又は1以上10以下の整数を表す)、−Ar−O−(CH2)n−O−C(=O)−(但し、Arは芳香環数1以上3以下のアリーレン基を表し、nは0又は1以上10以下の整数を表す)等が挙げられる。
m、nはそれぞれ5以上の整数を表し、10<m+n<2000、かつ0.2<m/(m+n)<0.95であり、強度、可とう性、電気特性の観点から、15<m+n<2000、かつ0.3<m/(m+n)<0.95が望ましく、20<m+n<2000、かつ0.4<m/(m+n)<0.95がさらに望ましい。
なお、一般式(D)中、Xが表す2価の有機基、及びCTが表す電荷輸送性骨格を持つ有機基としては、一般式(B)及び(C)中のX、CTと同義である。
1官能のモノマーとしては、例えば、イソブチルアクリレート、t−ブチルアクリレート、イソオクチルアクリレート、ラウリルアクリレート、ステアリルアクリレート、イソボルニルアクリレート、シクロヘキシルアクリレート、2−メトキシエチルアクリレート、メトキシトリエチレングリコールアクリレート、2−エトキシエチルアクリレート、テトラヒドロフルフリルアクリレート、ベンジルアクリレート、エチルカルビトールアクリレート、フェノキシエチルアクリレート、2−ヒドロキシアクリレート、2−ヒドロキシプロピルアクリレート、4−ヒドロキシブチルアクリレート、メトキシポリエチレングリコールアクリレート、メトキシポリエチレングリコールメタクリレート、フェノキシポリエチレングリコールアクリレート、フェノキシポリエチレングリコールメタクリレート、ヒドロキシエチルo−フェニルフェノールアクリレート、o−フェニルフェノールグリシジルエーテルアクリレート、などのアクリレート、あるいは、メタクリレート、スチレン、α−メチルスチレン、4−メチルスチレンなどのスチレン誘導体などが挙げられる。
これらを共重合する際に使用される量(l)は、溶解性及び可とう性を付与する観点から、上記一般式(D)中のmに対してl/m<0.3が望ましく、l/m<0.2がより望ましい。
保護層(最表面層)5を構成する膜は、非反応性の電荷輸送材料を併用してもよい。非反応性の電荷輸送材料は電荷輸送を担っていない反応性基を有さないため、非反応性の電荷輸送材料を保護層(最表面層)5に用いた場合には実質的に電荷輸送成分の濃度が高まり、電気特性を更に改善するのに有効である。また、非反応性の電荷輸送材料を添加して架橋密度を減じ、強度を調整してもよい。
中でも、モビリティー、相溶性など点から、トリフェニルアミン骨格を有するものが望ましい。
保護層(最表面層)5を構成する膜は、更に成膜性、可とう性、潤滑性、接着性を調整するなどの目的から、他のカップリング剤、特にフッ素含有のカップリング剤と混合して用いてもよい。このような化合物として、各種シランカップリング剤、及び市販のシリコーン系ハードコート剤が用いられる。また、ラジカル重合性基を有するシリコン化合物、フッ素含有化合物を用いてもよい。
市販のハードコート剤としては、KP−85、X−40−9740、X−8239(以上、信越化学工業社製)、AY42−440、AY42−441、AY49−208(以上、東レダウコーニング社製)等が挙げられる。
ラジカル重合性基を有するシリコン化合物、フッ素含有化合物としては、特開2007−11005号公報に記載の化合物などが挙げられる。
劣化防止剤の添加量としては20質量%以下が望ましく、10質量%以下がより望ましい。
ヒンダードアミン系酸化防止剤としては、サノールLS2626、サノールLS765、サノールLS770、サノールLS744、チヌビン144、チヌビン622LD、マークLA57、マークLA67、マークLA62、マークLA68、マークLA63が挙げられ、チオエーテル系として、スミライザーTPS、スミライザーTP−Dが挙げられ、ホスファイト系として、マーク2112、マークPEP−8、マークPEP−24G、マークPEP−36、マーク329K、マークHP−10等が挙げられる。
この粒子の一例として、ケイ素含有粒子が挙げられる。ケイ素含有粒子とは、構成元素にケイ素を含む粒子であり、具体的には、コロイダルシリカ及びシリコーン粒子等が挙げられる。ケイ素含有粒子として用いられるコロイダルシリカは、望ましくは平均粒径1nm以上100nm以下、より望ましくは10nm以上30nm以下のシリカを、酸性若しくはアルカリ性の水分散液、あるいはアルコール、ケトン、エステル等の有機溶媒中に分散させたものから選ばれる。該粒子としては一般に市販されているものを使用してもよい。
これらのシリコーン粒子は球状で、その平均粒径は望ましくは1nm以上500nm以下、より望ましくは10nm以上100nm以下である。
表面層中のシリコーン粒子の含有量は、保護層5の全固形分全量を基準として、望ましくは0.1質量%以上30質量%以下、より望ましくは0.5質量%以上10質量%以下である。
シリコーンオイルとしては、ジメチルポリシロキサン、ジフェニルポリシロキサン、フェニルメチルシロキサン等のシリコーンオイル;アミノ変性ポリシロキサン、エポキシ変性ポリシロキサン、カルボキシル変性ポリシロキサン、カルビノール変性ポリシロキサン、メタクリル変性ポリシロキサン、メルカプト変性ポリシロキサン、フェノール変性ポリシロキサン等の反応性シリコーンオイル;ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルシクロヘキサシロキサン等の環状ジメチルシクロシロキサン類;1,3,5−トリメチル−1.3.5−トリフェニルシクロトリシロキサン、1,3,5,7−テトラメチル−1,3,5,7−テトラフェニルシクロテトラシロキサン、1,3,5,7,9−ペンタメチル−1,3,5,7,9−ペンタフェニルシクロペンタシロキサン等の環状メチルフェニルシクロシロキサン類;ヘキサフェニルシクロトリシロキサン等の環状フェニルシクロシロキサン類;3−(3,3,3−トリフルオロプロピル)メチルシクロトリシロキサン等のフッ素含有シクロシロキサン類;メチルヒドロシロキサン混合物、ペンタメチルシクロペンタシロキサン、フェニルヒドロシクロシロキサン等のヒドロシリル基含有シクロシロキサン類;ペンタビニルペンタメチルシクロペンタシロキサン等のビニル基含有シクロシロキサン類等が挙げられる。
これらは単独で、又は2種以上を組み合わせて用いる。2種以上を組み合わせて用いる場合は、単に混合しても、固溶体や融着での混合でもよい。導電性粒子の平均粒径は0.3μm以下、特に0.1μm以下が望ましい。
保護層5を形成するために用いる組成物は、各成分を溶媒中に溶解又は分散してなる保護層形成用塗布液として調製されることが望ましい。
この保護層形成用塗布液は、無溶媒であってもよいし、必要に応じて、トルエン、キシレンなどの芳香族、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン系、酢酸エチル、酢酸ブチルなどのエステル系、テトラヒドロフラン、ジオキサンなどのエーテル系、エチレングリコールモノメチルエーテルなどのセロソルブ系、イソプロピルアルコール、ブタノールなどのアルコール系等の溶媒などの単独又は混合溶媒を用いて調製される。
保護層形成用塗布液は、被塗布面(図1に示す態様では電荷輸送層3)の上に、ブレード塗布法、ワイヤーバー塗布法、スプレー塗布法、浸漬塗布法、ビード塗布法、エアーナイフ塗布法、カーテン塗布法、インクジェット塗布法等の通常の方法により塗布される。
その後、得られた塗膜に対して、光、電子線又は熱を付与してラジカル重合を生起させて、該塗膜を重合、硬化させる。
電子線を用いる場合、加速電圧は300KV以下が望ましく、最適には150KV以下である。また、線量は望ましくは1Mrad以上100Mrad以下の範囲、より望ましくは3Mrad以上50Mrad以下の範囲である。加速電圧が300KV以下であることにより感光体特性に対する電子線照射のダメージが抑制される。また、線量が1Mrad以上であることにより架橋が十分に行なわれ、100Mrad以下であることにより感光体の劣化が抑制される。
光源としては、高圧水銀灯、低圧水銀灯、メタルハライドランプなどが用いられ、バンドパスフィルター等のフィルターを用いて好適な波長を選択してもよい。照射時間、光強度は自由に選択されるが、例えば照度(365nm)は300mW/cm2以上、1000mW/cm2以下が望ましく、例えば600mW/cm2のUV光を照射する場合、5秒以上360秒以下照射すればよい。
より具体的には、ベンジルケタール系として、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オンが挙げられる。
アミノアルキルフェノン系としては、p−ジメチルアミノアセトフェノン、p−ジメチルアミノプロピオフェノン、2−メチル−1−(4−メチルチオフェニル)−2−モルフォリノプロパン−1−オン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノン−1,2−(ジメチルアミノ)−2−[(4−メチルフェニル)メチル]−1−[4−(4−モリホニル)フェニル]−1−ブタノンなどが挙げられる。
ホスフィノキサイド系としては、2,4,6−トリメチルベンゾイル−ジフェニル−ホスフィンオキサイド、ビス(2,4,6−トリメチルベンゾイル)−フェニルホスフィンキサイドなどが挙げられる。
チタノセン系としては、ビス(η5−2,4−シクロペンタジエン−1−イル)−ビス(2,6−ジフルオロ−3−(1H−ピロール−1−イル)−フェニル)チタニウムなどが挙げられる。
オキシム系としては、1,2−オクタンジオン,1−[4−(フェニルチオ)−,2−(O−ベンゾイルオキシム)]、エタノン,1−[9−エチル−6−(2−メチルベンゾイル)−9H−カルバゾール−3−イル]−,1−(O−アセチルオキシム)などが挙げられる。
より具体的には、ベンゾフェノン系として、2−ベンゾイル安息香酸、2−クロロベンゾフェノン、4,4’−ジクロロベンゾフェノン、4−ベンゾイル−4’−メチルジフェニルスルフィド、p,p’−ビスジエチルアミノベンゾフェノンなどが挙げられる。
チオキサントン系としては、2,4−ジエチルチオキサンテン−9−オン、2−クロロチオキサントン、2−イソプロピルチオキサントンなどが挙げられる。
ベンジル系としては、ベンジル、(±)−カンファーキノン、p−アニシルなどが挙げられる。
熱重合開始剤としては、V−30、V−40、V−59、V601、V65、V−70、VF−096、VE−073、Vam−110、Vam−111(和光純薬製)、OTazo−15、OTazo−30、AIBN、AMBN、ADVN、ACVA(大塚化学)等のアゾ系開始剤;パーテトラA、パーヘキサHC、パーヘキサC、パーヘキサV、パーヘキサ22、パーヘキサMC、パーブチルH、パークミルH、パークミルP、パーメンタH、パーオクタH、パーブチルC、パーブチルD、パーヘキシルD、パーロイルIB、パーロイル355、パーロイルL、パーロイルSA、ナイパーBW、ナイパーBMT−K40/M、パーロイルIPP、パーロイルNPP、パーロイルTCP、パーロイルOPP、パーロイルSBP、パークミルND、パーオクタND、パーヘキシルND、パーブチルND、パーブチルNHP、パーヘキシルPV、パーブチルPV、パーヘキサ250、パーオクタO、パーヘキシルO、パーブチルO、パーブチルL、パーブチル355、パーヘキシルI、パーブチルI、パーブチルE、パーヘキサ25Z、パーブチルA、パーヘキシルZ、パーブチルZT、パーブチルZ(日油化学社製)、カヤケタールAM−C55、トリゴノックス36−C75、ラウロックス、パーカドックスL−W75、パーカドックスCH−50L、トリゴノックスTMBH、カヤクメンH、カヤブチルH−70、ペルカドックスBC−FF、カヤヘキサAD、パーカドックス14、カヤブチルC、カヤブチルD、カヤヘキサYD−E85、パーカドックス12−XL25、パーカドックス12−EB20、トリゴノックス22−N70、トリゴノックス22−70E、トリゴノックスD−T50、トリゴノックス423−C70、カヤエステルCND−C70、カヤエステルCND−W50、トリゴノックス23−C70、トリゴノックス23−W50N、トリゴノックス257−C70、カヤエステルP−70、カヤエステルTMPO−70、トリゴノックス121、カヤエステルO、カヤエステルHTP−65W、カヤエステルAN、トリゴノックス42、トリゴノックスF−C50、カヤブチルB、カヤカルボンEH−C70、カヤカルボンEH−W60、カヤカルボンI−20、カヤカルボンBIC−75、トリゴノックス117、カヤレン6−70(化薬アクゾ社製)、ルルペロックス610、ルペロックス188、ルペロックス844、ルペロックス259、ルペロックス10、ルペロックス701、ルペロックス11、ルペロックス26、ルペロックス80、ルペロックス7、ルペロックス270、ルペロックスP、ルペロックス546、ルペロックス554、ルペロックス575、ルペロックスTANPO、ルペロックス555、ルペロックス570、ルペロックスTAP、ルペロックスTBIC、ルペロックスTBEC、ルペロックスJW、ルペロックスTAIC、ルペロックスTAEC、ルペロックスDC、ルペロックス101、ルペロックスF、ルペロックスDI、ルペロックス130、ルペロックス220、ルペロックス230、ルペロックス233、ルペロックス531などが挙げられる。
特に、特定の反応性基含有電荷輸送材料と熱による硬化とを組み合わせることで、塗膜の構造緩和の促進が図られ、表面性状に優れた高い保護層5(最表面層)が得られ易くなる。
導電性基体4としては、例えば、アルミニウム、銅、亜鉛、ステンレス、クロム、ニッケル、モリブデン、バナジウム、インジウム、金、白金等の金属又は合金を用いて構成される金属板、金属ドラム、及び金属ベルトが挙げられる。また、導電性基体4としては、導電性ポリマー、酸化インジウム等の導電性化合物やアルミニウム、パラジウム、金等の金属又は合金を塗布、蒸着又はラミネートした紙、プラスチックフィルム、ベルト等も挙げられる。
ここで、「導電性」とは体積抵抗率が1013Ωcm未満であることをいう。
陽極酸化膜の膜厚については、0.3μm以上15μm以下が望ましい。
先ず、酸性処理液を調製する。酸性処理液におけるリン酸、クロム酸及びフッ酸の配合割合は、リン酸が10質量%以上11質量%以下の範囲、クロム酸が3質量%以上5質量%以下の範囲、フッ酸が0.5質量%以上2質量%以下の範囲であって、これらの酸全体の濃度は13.5質量%以上18質量%以下の範囲が望ましい。処理温度は42℃以上48℃以下が望ましいが、処理温度を高く保つことにより、一層速く、かつ厚い被膜が形成される。被膜の膜厚は、0.3μm以上15μm以下が望ましい。
下引層1は、例えば、結着樹脂に無機粒子を含有して構成される。
無機粒子としては、粉体抵抗(体積抵抗率)102Ω・cm以上1011Ω・cm以下のものが望ましく用いられる。
無機粒子のBET法による比表面積は、10m2/g以上が望ましい。
無機粒子の体積平均粒径は50nm以上2000nm以下(望ましくは60nm以上1000nm以下)の範囲であることが望ましい。
アクセプター性化合物としては、上記特性が得られるものであれば限定されず、クロラニル、ブロモアニル等のキノン系化合物、テトラシアノキノジメタン系化合物、2,4,7−トリニトロフルオレノン、2,4,5,7−テトラニトロ−9−フルオレノン等のフルオレノン化合物、2−(4−ビフェニル)−5−(4−t−ブチルフェニル)−1,3,4−オキサジアゾールや2,5−ビス(4−ナフチル)−1,3,4−オキサジアゾール、2,5−ビス(4−ジエチルアミノフェニル)1,3,4オキサジアゾール等のオキサジアゾール系化合物、キサントン系化合物、チオフェン化合物、3,3’,5,5’テトラ−t−ブチルジフェノキノン等のジフェノキノン化合物等の電子輸送性物質などが望ましく、特にアントラキノン構造を有する化合物が望ましい。更にヒドロキシアントラキノン系化合物、アミノアントラキノン系化合物、アミノヒドロキシアントラキノン系化合物等、アントラキノン構造を有するアクセプター性化合物が望ましく用いられ、具体的にはアントラキノン、アリザリン、キニザリン、アントラルフィン、プルプリン等が挙げられる。
無機粒子表面にアクセプター化合物を付与させる方法としては、乾式法、又は、湿式法が挙げられる。
また、下引層1に含有される結着樹脂として、電荷輸送性基を有する電荷輸送性樹脂やポリアニリン等の導電性樹脂等を用いてもよい。なかでも上層の塗布溶剤に不溶な樹脂が好適であり、特にフェノール樹脂、フェノール−ホルムアルデヒド樹脂、メラミン樹脂、ウレタン樹脂、エポキシ樹脂等が好適である。これらを2種以上組み合わせて使用する場合には、その混合割合は、必要に応じて設定される。
添加物としては、多環縮合系、アゾ系等の電子輸送性顔料、ジルコニウムキレート化合物、チタニウムキレート化合物、アルミニウムキレート化合物、チタニウムアルコキシド化合物、有機チタニウム化合物、シランカップリング剤等の公知の材料が用いられる。シランカップリング剤は前述のように無機粒子の表面処理に用いられるが、添加剤として更に下引層形成用塗布液に添加してもよい。
また、ジルコニウムキレート化合物の例としては、ジルコニウムブトキシド、ジルコニウムアセト酢酸エチル、ジルコニウムトリエタノールアミン、アセチルアセトネートジルコニウムブトキシド、アセト酢酸エチルジルコニウムブトキシド、ジルコニウムアセテート、ジルコニウムオキサレート、ジルコニウムラクテート、ジルコニウムホスホネート、オクタン酸ジルコニウム、ナフテン酸ジルコニウム、ラウリン酸ジルコニウム、ステアリン酸ジルコニウム、イソステアリン酸ジルコニウム、メタクリレートジルコニウムブトキシド、ステアレートジルコニウムブトキシド、イソステアレートジルコニウムブトキシド等が挙げられる。
溶媒として、具体的には、例えば、メタノール、エタノール、n−プロパノール、Iso−プロパノール、n−ブタノール、ベンジルアルコール、メチルセルソルブ、エチルセルソルブ、アセトン、メチルエチルケトン、シクロヘキサノン、酢酸メチル、酢酸エチル、酢酸n−ブチル、ジオキサン、テトラヒドロフラン、メチレンクロライド、クロロホルム、クロルベンゼン、トルエン等の通常の有機溶剤が用いられる。
更に、下引層1を設けるときに用いる塗布方法としては、ブレード塗布法、ワイヤーバー塗布法、スプレー塗布法、浸漬塗布法、ビード塗布法、エアーナイフ塗布法、カーテン塗布法等の通常の方法が用いられる。
更に、下引層1は、所望の特性が得られるのであれば、いかなる厚さに設定されてもよいが、厚さ15μm以上が望ましく、更に望ましくは15μm以上50μm以下とされていることが望ましい。
表面粗さ調整のために下引層中に樹脂などの粒子を添加してもよい。樹脂粒子としてはシリコーン樹脂粒子、架橋型ポリメタクリル酸メチル樹脂粒子等が用いられる。
また、表面粗さ調整のために下引層表面を研磨してもよい。研磨方法としては、バフ研磨、サンドブラスト処理、湿式ホーニング、研削処理等が用いられる。LED,有機ELイメージアレイなどの非干渉性光源を用いる場合には平滑な表面を用いてもよい。
電荷発生層2は、電荷発生材料及び結着樹脂を含有する層である。また、結着樹脂を含有しない蒸着膜として形成してもよい。特に、LED,有機ELイメージアレイなどの非干渉性光源を用いる場合には望ましい。
これは、三方晶系セレンや、フタロシアニン顔料などのp-型半導体で暗電流を生じやすい電荷発生材料を用いた時に顕著となる。
450nm以上780nm以下に発光の中心波長があるLED,有機ELイメージアレイなどの非干渉性光源を用い、平滑な基材、下引層を形成し、さらにn-型の電荷発生材料を用いることで、感光層を20μm以下の薄膜にしても画像欠陥を生じず、長期に渡って高解像度の画像が得られる。
n-型の電荷発生材料としては、具体的に以下の例があげられるがこれに限られるものではない。なお、n-型の判定は、通常使用されるタイムオブフライト法を用い、流れる光電流の極性によって判定され、正孔よりも電子をキャリアとして流しやすいものをn-型とする。
更にこの分散の際、電荷発生材料の平均粒径を0.5μm以下、望ましくは0.3μm以下、更に望ましくは0.15μm以下にすることが有効である。
電荷輸送層3は、電荷輸送材料と結着樹脂を含有して、又は高分子電荷輸送材を含有して形成される。
これらの結着樹脂は1種を単独で又は2種以上で用いる。電荷輸送材料と結着樹脂との配合比は質量比で10:1から1:5までが望ましい。
なお、電荷輸送層3に用いる結着樹脂の粘度平均分子量の上限値としては100000以下が望ましい。
ここで、本実施形態における結着樹脂の粘度平均分子量は、毛細管粘度計によって測定した値である。
なお、最表面層が電荷輸送層である場合には、その下層中に含まれる結着樹脂の粘度平均分子量が上記の範囲であることが望ましい。
電荷輸送層形成用塗布液に用いる溶剤としては、ベンゼン、トルエン、キシレン、クロルベンゼン等の芳香族炭化水素類、アセトン、2−ブタノン等のケトン類、塩化メチレン、クロロホルム、塩化エチレン等のハロンゲン化脂肪族炭化水素類、テトラヒドロフラン、エチルエーテル等の環状若しくは直鎖状のエーテル類等の通常の有機溶剤を単独又は2種以上混合して用いられる。また、上記各構成材料の溶解方法としては、公知の方法が使用される。
帯電装置8としては、例えば、導電性又は半導電性の帯電ローラ、帯電ブラシ、帯電フィルム、帯電ゴムブレード、帯電チューブ等を用いた接触型帯電器が使用される。また、非接触方式のローラ帯電器、コロナ放電を利用したスコロトロン帯電器やコロトロン帯電器等のそれ自体公知の帯電器等も使用される。
露光装置9としては、一般的には感光体7表面に、半導体レーザ光、LED光、液晶シャッタ光等の光を、定められた像様に露光する光学系機器等が挙げられる。光源の波長は感光体の分光感度領域にあるものが使用される。半導体レーザーの波長としては、780nm付近に発振波長を有する近赤外が主流である。また、この波長に限定されず、600nm台の発振波長を有するレーザーや青色レーザーとして400nm以上450nm以下に発振波長を有するレーザーも利用することもできる。また、カラー画像形成のためにはマルチビームを出力し得るタイプの面発光型のレーザー光源も使用されている。しかし、半導体レーザーのような、干渉性の光源を用いる場合には、干渉縞対策を基材に施す(基材表面を粗面化するのが一般的)必要があり、特に高解像度のために感光層を薄膜化して用いる場合には電界強度が高い状態で使用することとなり、粗面化による画像欠陥を発生しやすい。したがって、粗面化の必要のない非干渉性の露光光源を有する露光装置を用い、感光層を薄膜化することによって画像欠陥が発生せず、感光層中のキャリアの拡散による画像ぼけが抑制され、高解像度の画像が得られる。
非干渉性の露光光源は、インコヒーレント光を照射する光源であり、例えば、非干渉性の露光光源としては、LED,有機ELイメージアレイなどが採用される。
非干渉性の露光光源によって露光される電子写真感光体表面の露光スポットの面積は1000μm2以下であり、且つ非干渉性の露光光源の発光の中心波長は450nm以上780nm以下であることがよい。
図7は露光ヘッドの一例を示す図であり、図8は露光ヘッドにより感光体に露光を施している状態を示す図である。各露光ヘッドは、図7及び図8に示すように、例えば、有機EL素子アレイ(発光素子アレイ60B)と、結像部(レンズ70)と、を備えている。
発光素子アレイ60Bは、例えば、有機EL素子(発光素子60A)で構成される発光部と有機EL素子が実装される実装基板(図7の発光素子アレイ基板61に相当)とを備える。
有機EL素子アレイ(発光素子アレイ60B)と結像部(レンズ70)とは、発光部(発光素子60A)と結像部の光入射面70Aとの光学距離が結像部の作動距離となるように、離間した状態で保持部材により保持されている。
そして、結像部では、発光部からの発光を光の入射面70Aから入射すると共に光の出射面70Bから出射して予め定められた位置に結像させる、つまり、発光素子60Aからの発光を感光体30に結像することによって、感光体30が露光されて潜像が形成される(図8)。
ここで、有機EL素子アレイ(発光素子アレイ60B)について説明する。
有機EL素子アレイは、例えば発光部から照射される光を実装基板(発光素子アレイ基板61)側から取り出す、所謂、ボトムエミッション方式となっている。無論、トップエミッション方式であってもよい。
発光部は、例えば、単一の発光素子60Aの群で構成されている。発光素子60Aは、実装基板(発光素子アレイ基板61)の長手方向に沿って線状(直列)又は千鳥状に配置して、発光部を構成している。発光素子60Aの群で構成された発光部は、感光体30の画像形成領域以上の長さとしている。
結像部は、例えば、ロッドレンズが複数配列されたレンズアレイで構成されている。レンズアレイとして具体的には、例えば、セルフォックレンズアレイ(SLA:セルフォックは、日本板硝子(株)の登録商標)と呼ばれる屈折率分散型レンズアレイを適用することが最もよいが、シリンドリカルレンズを組み合わせても良い。さらに、個々の光源用有機EL素子上にマイクロレンズを接合しても良い。
現像装置11としては、例えば、磁性若しくは非磁性の一成分系現像剤又は二成分系現像剤等を接触又は非接触させて現像する一般的な現像装置を用いて行ってもよい。その現像装置としては、上述の機能を有している限り特に制限はなく、目的に応じて選択される。例えば、上記一成分系現像剤又は二成分系現像剤をブラシ、ローラ等を用いて感光体7に付着させる機能を有する公知の現像器等が挙げられる。中でも現像剤を表面に保持した現像ローラを用いるものが望ましい。
現像剤は、トナー単独の一成分現像剤であってもよいし、トナーとキャリアとを含む二成分現像剤であってもよい。
トナーは、トナー粒子単独で構成されていてもよいし、トナー粒子と外添剤とを含んで構成されていてもよい。
また、代表的な結着樹脂としては、ポリウレタン、エポキシ樹脂、シリコーン樹脂、ポリアミド、変性ロジン、パラフィンワックス等も挙げられる。
トナー(トナー粒子)は、その平均形状係数((ML2/A)×(π/4)×100、ここでMLは粒子の最大長を表し、Aは粒子の投影面積を表す)が100以上150以下であることが望ましく、105以上145以下であることがより望ましく、110以上140以下であることがさらに望ましい。
トナー(トナー粒子)は、その体積平均粒子径が3μm以上12μm以下であることが望ましく、3.5μm以上9μm以下であることがさらに望ましい。
トナーは、例えば、トナー粒子を得た後、必要に応じて外添剤と混合することにより得られる。
トナー粒子の製造方法としては、特に製造方法により限定されるものではないが、例えば、結着樹脂、必要に応じて着色剤、離型剤その他内添剤等を加えて混練、粉砕、分級する混練粉砕法;混練粉砕法にて得られた粒子を機械的衝撃力又は熱エネルギーにて形状を変化させる方法;結着樹脂の重合性単量体を乳化重合させ、形成された分散液と、必要に応じて着色剤、離型剤その他内添剤等の分散液と、を混合し、凝集、加熱融着する乳化重合凝集法;結着樹脂を得るための重合性単量体と、必要に応じて着色剤、離型剤その他内添剤等の溶液を水系溶媒に懸濁させて重合する懸濁重合法;結着樹脂と、必要に応じて着色剤、離型剤その他内添剤等の溶液と、を水系溶媒に懸濁させて造粒する溶解懸濁法等が挙げられる。
また、トナー粒子は、上記方法で得られたトナー粒子をコアにして、さらに凝集粒子を付着、加熱融合してコアシェル構造のトナー粒子としてもよい。
なお、トナー粒子の製造方法としては、形状制御、粒度分布制御の観点から水系溶媒にて製造する懸濁重合法、乳化重合凝集法、溶解懸濁法が望ましく、乳化重合凝集法が特に望ましい。
キャリアとしては、例えば、鉄粉、ガラスビーズ、フェライト粉、ニッケル粉又はそれ等の表面に樹脂コーティングを施したものが挙げられる。
なお、トナーとキャリアとの混合比(質量比)は、例えば、トナー:キャリア=1:100から30:100程度の範囲が挙げられる。
クリーニング装置13は、クリーニングブレード131を備えるクリーニングブレード方式の装置が用いられる。
なお、クリーニングブレード方式以外にも、ファーブラシクリーニング方式、現像同時クリーニング方式を採用してもよい。
転写装置40としては、例えば、ベルト、ローラ、フィルム、ゴムブレード等を用いた接触型転写帯電器、コロナ放電を利用したスコロトロン転写帯電器やコロトロン転写帯電器等のそれ自体公知の転写帯電器が挙げられる。
中間転写体50としては、半導電性を付与したポリイミド、ポリアミドイミド、ポリカーボネート、ポリアリレート、ポリエステル、ゴム等のベルト状のもの(中間転写ベルト)が使用される。また、中間転写体の形態としては、ベルト状以外にドラム状のものを用いてもよい。
図5に示す画像形成装置120は、プロセスカートリッジ300を4つ搭載したタンデム方式の多色画像形成装置である。画像形成装置120では、中間転写体50上に4つのプロセスカートリッジ300がそれぞれ並列に配置されており、1色に付き1つの電子写真感光体が使用される構成となっている。なお、画像形成装置120は、タンデム方式であること以外は、画像形成装置100と同様の構成を有している。
まず、感光体における各層の作製方法について説明する。
[下引層1]
酸化亜鉛(平均粒子径70nm:テイカ社製:比表面積値15m2/g)100部をテトラヒドロフラン500部と攪拌混合し、シランカップリング剤(KBM503:信越化学工業社製)1.3部を添加し、2時間攪拌した。その後トルエンを減圧蒸留にて留去し、120℃で3時間)焼き付けを行い、シランカップリング剤表面処理酸化亜鉛を得た。
表面処理を施した酸化亜鉛110部を500部のテトラヒドロフランと攪拌混合し、アリザリン1.0部を50部のテトラヒドロフランに溶解させた溶液を添加し、50℃にて5時間攪拌した。その後、減圧ろ過にてアリザリンを付与させた酸化亜鉛を濾別し、さらに60℃で減圧乾燥を行い、アリザリン付与酸化亜鉛を得た。
このアリザリン付与酸化亜鉛60部と硬化剤(ブロック化イソシアネート、スミジュール3175、住友バイエルンウレタン社製)13.5部とブチラール樹脂(エスレックBM−1、積水化学社製)15部とをメチルエチルケトン85部に溶解した溶液38部と、メチルエチルケトン25部と、を混合し1mmφのガラスビーズを用いてサンドミルにて2時間の分散を行い分散液を得た。
得られた分散液に触媒としてジオクチルスズジラウレート0.005部、シリコーン樹脂粒子(トスパール145、GE東芝シリコーン社製)45部を添加し、下引層用塗布液を得た。この塗布液を浸漬塗布法にて、直径30mm、長さ340mm、肉厚1mmのアルミニウム基材上に塗布し、170℃、40分の乾燥硬化を行い厚さ18μmの下引層を得た。形成された下引層の外側表面の表面粗さRaは0.3μmであった。
シリコーン樹脂粒子(トスパール145、GE東芝シリコーン社製)45部を添加しなかった以外は、下引層1に記載の方法により下引層2を形成した。形成された下引層の外側表面の表面粗さRaは0.1μmであった。
直径30mm、長さ340mm、肉厚1mmのアルミニウム基材上に、有機ジルコニウム化合物(商品名:オルガチックス ZC540、松本製薬(株)製)10部、シランカップリング剤(商品名:A1110、日本ユニカー(株)製)2部、イソプロピルアルコール30部、及びn−ブタノール30部からなる塗布液を用いて浸漬塗布法にて塗布し、150℃、5分加熱乾燥し、膜厚0.1μmの下引層を形成した。形成された下引層の外側表面の表面粗さRaは0.05μmであった。
[電荷発生層1]
電荷発生物質としてのCukα特性X線を用いたX線回折スペクトルのブラッグ角度(2θ±0.2°)が少なくとも7.3゜,16.0゜,24.9゜,28.0゜の位置に回折ピークを有するヒドロキシガリウムフタロシアニン15部、結着樹脂としての塩化ビニル・酢酸ビニル共重合体樹脂(VMCH、日本ユニカー社製)10部、及びn−酢酸ブチル200部からなる混合物を、直径1mmφのガラスビーズを用いてサンドミルにて4時間分散した。得られた分散液にn−酢酸ブチル175部、メチルエチルケトン180部を添加し、攪拌して電荷発生層用塗布液を得た。この電荷発生層用塗布液を、下引層上に浸漬塗布し、100℃で5分間乾燥して、膜厚が0.2μmの電荷発生層を形成した。
昇華精製したジブロムアントアントロン顔料(CG−25:クラリアント社製、n型有機顔料)45gを、容量0.25Lのメノウ製容器に20mmφのメノウボール12個と共に入れ、遊星ボールミル(FrItsch P−5)により粉砕した。粉砕条件は、ディスク回転数(公転)235rpm、ポット回転数(自転)50rpmとし、8時間粉砕した。このジブロムアントアントロン顔料10部、塩化ビニル・酢酸ビニル共重合体樹脂(VMCH、日本ユニカー社製)5部、及びシクロヘキサノン100部を混合し、直径1mmφのガラスビーズを用いてサンドミルにて4時間分散した。得られた分散液にシクロヘキサノン300部を添加し、攪拌して電荷発生層用塗布液を得た。この電荷発生層用塗布液を下引層上に浸漬塗布し、100℃で5分間乾燥して、膜厚0.5μmの電荷発生層を形成した。
昇華精製したジブロムアントアントロン顔料(CG−25:クラリアント社製、n型有機顔料)を、0.1μmの膜厚となるよう、バリアン モデル(VarIan Model)3117真空コーターにより蒸着させて下引層上に膜厚0.1μmの電荷発生層を形成した。
なお、上記CG−25はタンタルボート中で350℃に加熱して、上記の真空コーターを10−3Pasに減圧した。また、基層はボートから16cmのところに置き、光励起層は6Å/秒の速さで付着させた。
ビスベンズイミダゾールペリレン顔料(CG−19:富士ゼロックス社製、n型有機顔料)を昇華精製した。昇華精製後のビスベンズイミダゾールペリレン顔料10gを、遊星ボールミル(メノーポット内径10mmφ、メノーボール20mmφを44個、25mmφを3個使用)を用いて27時間粉砕した。得られた微粉化ビスベンズイミダゾールペリレン顔料は、粉末X線回折図で6.2°、12.3°、27.0°に強いピークを示し、粒径は0.04μm×0.08μm−0.05μm×0.1μmであった。このビスベンズイミダゾールペリレン顔料10部、塩化ビニル・酢酸ビニル共重合体樹脂(VMCH、日本ユニカー社製)5部、及びシクロヘキサノン100部を混合し、直径1mmφのガラスビーズを用いてサンドミルにて4時間分散した。得られた分散液にシクロヘキサノン300部を添加し、攪拌して電荷発生層用塗布液を得た。この電荷発生層用塗布液を下引層上に浸漬塗布し、100℃で5分間乾燥して、膜厚0.5μmの電荷発生層を形成した。
昇華精製したビスベンズイミダゾールペリレン顔料(CG−19:富士ゼロックス社製、n型有機顔料)を、0.1μmの膜厚となるよう、バリアン モデル(VarIan Model)3117真空コーターにより蒸着させて下引層上に膜厚0.1μmの電荷発生層を形成した。
なお、上記CG−19はタンタルボート中で350℃に加熱して、上記の真空コーターを10−3Pasに減圧した。また、基層はボートから16cmのところに置き、光励起層は4Å/秒の速さで付着させた。
ビスアゾ顔料(CG−4:富士ゼロックス社製、n型有機顔料)10部、塩化ビニル・酢酸ビニル共重合体樹脂(VMCH、日本ユニカー社製)5部、及びシクロヘキサノン100部を混合し、直径1mmφのガラスビーズを用いてサンドミルにて4時間分散した。得られた分散液にシクロヘキサノン300部を添加し、攪拌して電荷発生層用塗布液を得た。この電荷発生層用塗布液を下引層上に浸漬塗布し、100℃で5分間乾燥して、膜厚0.5μmの電荷発生層を形成した。
ビスアゾ顔料(CG−8:富士ゼロックス社製、n型有機顔料)10部、塩化ビニル・酢酸ビニル共重合体樹脂(VMCH、日本ユニカー社製)5部、及びシクロヘキサノン100部を混合し、直径1mmφのガラスビーズを用いてサンドミルにて4時間分散した。得られた分散液にシクロヘキサノン300部を添加し、攪拌して電荷発生層用塗布液を得た。この電荷発生層用塗布液を下引層上に浸漬塗布し、100℃で5分間乾燥して、膜厚0.5μmの電荷発生層を形成した。
ビスアゾ顔料(CG−11:富士ゼロックス社製、n型有機顔料)10部、塩化ビニル・酢酸ビニル共重合体樹脂(VMCH、日本ユニカー社製)5部、及びシクロヘキサノン100部を混合し、直径1mmφのガラスビーズを用いてサンドミルにて4時間分散した。得られた分散液にシクロヘキサノン300部を添加し、攪拌して電荷発生層用塗布液を得た。この電荷発生層用塗布液を下引層上に浸漬塗布し、100℃で5分間乾燥して、膜厚0.5μmの電荷発生層を形成した。
[電荷輸送層1]
N,N’−ジフェニル−N,N’−ビス(3−メチルフェニル)−[1,1’]ビフェニル−4,4’−ジアミン(TPD)40部、N,N−ビス(3,4−ジメチルフェニル)ビフェニル−4−アミン10部、及びビスフェノールZポリカーボネート樹脂(PC(Z):粘度平均分子量:6万)55部をクロルベンゼン800部に加えて溶解し、電荷輸送層用塗布液を得た。この塗布液を電荷発生層上に塗布し、130℃、45分の乾燥を行って膜厚が15μmの電荷輸送層を形成した。
N,N’−ジフェニル−N,N’−ビス(3−メチルフェニル)−[1,1’]ビフェニル−4,4’−ジアミン(TPD)の量を25部とし、且つ下記化合物CTM−1の電荷輸送材料20部を用いた以外は、電荷輸送層1に記載の方法により電荷輸送層2を形成した。
[硬化方法:熱硬化]
例示化合物(I)−7(特定の反応基含有電荷輸送材料)10部、トリメチロールプロパントリアクリレート(A−TMPT、新中村化学社製、不飽和結合を有する化合物)12部、OTazo−15(大塚化学社製、分子量354.4、重合開始剤)0.2部をシクロペンタノール30部に溶解し、突き上げコートにて電荷輸送層上に塗布した。室温(20℃)で30分風乾した後、酸素濃度200ppmの窒素下で室温(20℃)から10℃/分の速度で150℃まで昇温し、150℃で1時間加熱処理して硬化させ、膜厚5μmの最表面層を形成した。
なお、熱硬化の場合には材料の種類、比率を表1〜表6に示す数値に変えた上で、この条件で硬化を行なった。
例示化合物(I)−7(特定の反応基含有電荷輸送材料)10部、トリメチロールプロパントリアクリレート(A−TMPT、新中村化学社製、不飽和結合を有する化合物)12部、1−ヒドロキシシクロヘキシルフェニルケトン(イルガキュア184、チバ・スペシャルティ・ケミカルズ製、重合開始剤)0.5部をシクロペンタノール30部に溶解し、突き上げコートにて電荷輸送層上に塗布した。室温(20℃)で30分風乾した後、メタルハライドランプ:160W/cm、照射距離:120mm、照射強度:500mW/cm2、照射時間:60秒の条件で酸素濃度200ppmの窒素下で光照射を行ない、塗布膜を硬化させた。更に130℃で20分乾燥を加え、膜厚5μmの最表面層を形成した。
なお、光硬化の場合には材料の種類、比率を表1〜表6に示す数値に変えた上で、この条件で硬化を行なった。
例示化合物(I)−7(特定の反応基含有電荷輸送材料)10部、トリメチロールプロパントリアクリレート(A−TMPT、新中村化学社製、不飽和結合を有する化合物)12部をシクロペンタノール30部に溶解し、突き上げコートにて電荷輸送層上に塗布した。室温(20℃)で30分風乾した後、酸素濃度20ppmの窒素下で感光体を300rpmの速度で回転させながら、照射距離が30mm、電子線加速電圧が90kV、電子線ビーム電流が2mA、電子線照射時間が1.0秒の条件で電子線を照射した。照射後すぐに、酸素濃度20ppmの窒素下で150℃に加熱し、10分保持して硬化反応を完結させ、膜厚5μmの最表面層を形成した。
なお、電子線硬化の場合には材料の種類、比率を表1〜表6に示す数値に変えた上で、この条件で硬化を行なった。
適用する下引層、電荷発生層、及び電荷輸送層を表1〜表2に記載のものとし、また最表面層(保護層)の形成に用いる材料(特定の反応基含有電荷輸送材料、不飽和結合を有する化合物、添加剤、重合開始剤)の種類及び比率、並びに最表面層(保護層)の硬化方法を表1〜表2に記載のものとして、感光体1〜40を作製した。
適用する下引層、及び電荷発生層を表3に記載のものとし、また最表面層(電荷輸送層)の形成に用いる材料(特定の反応基含有電荷輸送材料、不飽和結合を有する化合物、非反応性の電荷輸送材料、添加剤、重合開始剤)の種類及び比率、並びに最表面層(電荷輸送層)の硬化方法を表3に記載のものとして、感光体41〜62を作製した。
なお、最表面層(電荷輸送層)の膜厚は18μmであった。
感光体10の特定の反応基含有電荷輸送材料を表4の通り変更した以外は感光体10と同様に感光体63を作製した。
感光体10の電荷輸送層の膜厚を7μm、10μm、19μmとした以外は感光体10と同様に感光体64〜66を作製した。
適用する下引層、電荷発生層、及び電荷輸送層を表5に記載のものとし、また最表面層(保護層)の形成に用いる材料(反応基を含有する電荷輸送材料、不飽和結合を有する化合物、添加剤、重合開始剤)の種類及び比率、並びに最表面層(保護層)の硬化方法を表5に記載のものとして、比較感光体1〜11を作製した。
適用する下引層、及び電荷発生層を表6に記載のものとし、また最表面層(電荷輸送層)の形成に用いる材料(反応基を含有する電荷輸送材料、不飽和結合を有する化合物、非反応性の電荷輸送材料、添加剤、重合開始剤)の種類及び比率、並びに最表面層(電荷輸送層)の硬化方法を表6に記載のものとして、比較感光体12〜20を作製した。
なお、最表面層(電荷輸送層)の膜厚は18μmであった。
感光体2の電荷輸送層の膜厚を4μm、23μm、25μmとした以外は感光体2と同様に比較感光体21〜23を作製した。
・A−TMPT:トリメチロールプロパントリアクリレート、新中村化学社製
・OTazo−15:大塚化学社製、分子量354.4
・イルガキュア184:1−ヒドロキシシクロヘキシルフェニルケトン、チバ・スペシャルティ・ケミカルズ製
・PTFE:ルブロンL2、ダイキン社製
・化合物(A)及び(B):下記構造式参照
[評価装置1]
富士ゼロックス社製、ApeosPort−III C4400(オリジナルの露光装置発光波長:780nmの赤外レーザー(干渉性の露光光源)、露光スポット:65μm×55μm、面積3600μm2(ピーク値の1/e2になる幅で定義))改造機を準備した。
そして、現像剤として体積平均粒子径3.8μmのトナーを用いた。
評価装置1において、露光装置を発光波長:780nmのLEDイメージバー(非干渉性の露光光源)、面積:30μm×50μm、1500μm2(ピーク値の1/e2になる幅で定義)を用い、イメージャーの解像度に合わせて駆動回路を作製した。現像剤として体積平均粒子径3.8μmのトナーを用いた。
評価装置1において、露光装置を発光波長:中心波長580nmの有機ELイメージバー(非干渉性の露光光源)、露光スポット:20μm×20μm、面積400μm2を用い、イメージャーの解像度に合わせて駆動回路を作製した。現像剤として体積平均粒子径3.8μmのトナーを用いた。
有機ELイメージバーは、以下のようにして作製した。図7に示されるように、基板としてのガラス基板に、ITO(IndIum-TIn-OxIde)を20μm幅、20μmピッチでパターニングをした陽極を形成する。次に、正孔注入層として、PEDOT/PSS(ポリエチレンジオキシチオフェン/ポリスチレンスルフォネート)をスピンコート法により10nmに塗布する。さらに、発光層して、モノクロロベンゼンにMEH−PPVを1質量%溶解し、その塗布液をスピンコート法により塗布して80nmの膜を作製した。最後に露光光源用の陽極と直交するように開口部が20μm幅のマスクを用い、陰極Ca、反射層としてのAlを順次蒸着した。これによって、基板主走査方向Xに沿って配置された複数の露光源用有機EL素子を形成した。作製した発光素子アレイのガラス基板(実施基板)側に、有機電界発光素子(発光部)とSLAの光入射面との光学距離が結像部の作動距離となるように、当該ガラス基板(実施基板)と離間して、SLA保持部材によりSLAを実装した。
これにより感光体への書き込みスポットの大きさが20μm、露光中心波長580nmの露光ヘッドを作製した。
感光体1、評価装置1を用いて以下のプリントテストを行った。
感光体を評価装置1に装着し、低温低湿(8℃、20%RH)及び高温高湿(28℃、85%RH)において、以下の評価を行なった。
具体的には、低温低湿(8℃、20%RH)環境下で10000枚の画像形成テストを行い、10000枚目の画質評価(下記ゴースト、カブリ、感光体表面付着、画像流れ)を実施した。次いで、低温低湿(8℃、20%RH)環境下で24時間放置した後の最初の1枚目の画質について画質評価を行った。
なお、プリントテストには、富士ゼロックス社製P紙(A4サイズ、短手方向送り)を用い、10000枚のプリントテストには、A4用紙の短手方向をシアン、マゼンタ、イエロー、黒に4分割した画像チャートを用いた。
ゴーストは、図6(A)に示したGと画像濃度50%の黒領域を有するパターンのチャートをプリントし、50%の黒部分にGの文字の現れ具合を目視にて評価した。
A:図6(A)のように良好又は軽微である。
B:図6(B)のようにやや目立つ。
C:図6(C)のようにはっきり確認される。
カブリ評価は上述のゴースト評価と同じサンプルを用いて白地部のトナーの付着した度合いを目視にて観察し判断した。
A:カブリの発生なし。
B:うっすらとカブリあり。
C:画質上問題となるカブリあり。
感光体表面付着評価は上述のゴースト評価と同じサンプルを用いて目視にて判断した。
A:画像にスジの発生なし。
B:部分的に画像にスジの発生があり、感光体表面をイソプロパノールをしみ込ませた布で軽く拭くことで回復する。
C:画質上問題となるスジ発生があり、感光体表面をイソプロパノールをしみ込ませた布で軽く拭いても回復しない。
画像流れは上述のゴースト評価と同じサンプルを用いて目視にて判断した。
A:画像流れの発生なし。
B:連続的にプリントテストしている時は問題ないが、1日(24時間)放置後に発生。
C:連続的にプリントテストしている時にも発生。
最表面層の接着性は、画像形成テスト後の感光体に2mm角で5×5個の切れ目をカッターナイフで付け、3M社製メンディングテープを貼り付け、剥離した時の残存数で評価した。
A:21個以上残存。
B:11個以上20個以下残存。
C:10個以下残存。
初期の感光体膜厚と、前述した低温低湿(8℃、20%RH)環境下及び高温高湿(30℃、85%RH)環境下での画像形成テストを終了した後の膜厚を渦電流測定装置(フィッシャースコープMMS)にて測定し、磨耗量を評価した。
プリントテスト前に低温低湿(8℃、20%RH)環境下で1ドットの露光スポットを10箇所行い、現像し、感光体上1ドットごとのトナー像の面積観察を顕微鏡にて行い、平均してトナー像の面積を概算した。なお、図9に示すように、トナー像として形成されたトナー粒子の集合体の外周を線で結び、その外周で囲まれる領域の面積をトナー像の面積とした。
感光体、評価装置の組み合わせを表7〜表8に記載のものとし、実施例1と同様に評価を行った。結果を表7〜表12に示す。
特に評価装置3を用いたものは、ドットサイズが小さく、非常に繊細な画質が得られた。また、干渉縞対策を施す必要がないため、感光層が薄くてもかぶりを生じにくく、安定した画像が長期に渡って得られた。
比較感光体、評価装置の組み合わせを表13に記載のものとし、実施例1と同様に評価を行った。結果を表13〜表15に示す。
感光体7、感光体9を用い、評価装置1と組み合わせて実施例1と同様に評価を行った。結果を表16に示す。なお、表16に示される評価項目以外に干渉縞の発生が見られた。
Claims (7)
- 導電性基体と該導電性基体上に感光層とを有する電子写真感光体であって、最表面層として、下記一般式(II)で表される反応性化合物から選択される少なくとも1種の反応性化合物の重合体を含む層を有し、且つ、前記感光層の総膜厚が10μm以上25μm以下である電子写真感光体と、
前記電子写真感光体の表面を帯電させる帯電装置と、
帯電された前記電子写真感光体の表面を露光して該表面に静電潜像を形成する露光装置であって、非干渉性の露光光源を有する露光装置と、
前記静電潜像を現像剤で現像してトナー像を形成する現像装置と、
前記トナー像を被転写媒体に転写する転写装置と、
を備える画像形成装置。
(一般式(II)中、Fは、電荷輸送性骨格を示す。L’は、アルキレン基、−C(=O)−、−N(R)−、−S−、及び−O−からなる群より選択される2種以上を組み合わせてなる(n+1)価の連結基を示す。Rは、水素原子、アルキル基、アリール基、又はアラルキル基を示す。m’は、1以上6以下の整数を示す。nは、2以上3以下の整数を示す。) - 前記一般式(II)で表される反応性化合物が、下記一般式(III)で表され、且つ下記一般式(III)中のDが下記一般式(V)で表される基を示す反応性化合物である請求項1に記載の画像形成装置。
(一般式(III)中、Ar1〜Ar4は、それぞれ独立に、置換若しくは未置換のアリール基を示す。Ar5は、置換若しくは未置換のアリール基、又は置換若しくは未置換のアリーレン基を示す。c1〜c5は、それぞれ独立に、0以上2以下の整数を示す。但し、全てのc1〜c5は、同時に0を示すことはない。kは、0又は1の整数を示す。)
(一般式(V)中、L’は、アルキレン基、−C(=O)−、−N(R)−、−S−、及び−O−からなる群より選択される2種以上を組み合わせてなる(n+1)価の連結基を示す。Rは、水素原子、アルキル基、アリール基、又はアラルキル基を示す。nは、2以上3以下の整数を示す。 - 前記一般式(V)で表される基は、下記一般式(VIII)、又は下記一般式(IX)で表される基を示す請求項2に記載の画像形成装置。
(一般式(VIII)及び(IX)中、Y、及びY’は、2価の有機基を示す。q、及びq’は、0、又は1の整数を示す。) - 前記非干渉性の露光光源によって露光される前記電子写真感光体表面の露光スポットの面積が1000μm2以下であり、且つ前記非干渉性の露光光源の発光の中心波長が450nm以上780nm以下である請求項1〜3のいずれか1項に記載の画像形成装置。
- 前記感光層に、電荷発生材料としてn型の有機顔料を含有する請求項1〜4のいずれか1項に記載の画像形成装置。
- 前記n型の有機顔料が、縮合多環芳香族化合物、ペリレン化合物、及びアゾ化合物から選ばれる少なくとも1種の有機顔料である請求項5に記載の画像形成装置。
- 導電性基体と該導電性基体上に感光層とを有する電子写真感光体であって、最表面層として、下記一般式(II)で表される反応性化合物から選択される少なくとも1種の反応性化合物の重合体を含む層を有し、且つ、前記感光層の総膜厚が10μm以上25μm以下である電子写真感光体と、
帯電された前記電子写真感光体の表面を露光して該表面に静電潜像を形成する露光装置であって、非干渉性の露光光源を有する露光装置と、
を備え、
画像形成装置に着脱し得るプロセスカートリッジ。
(一般式(II)中、Fは、電荷輸送性骨格を示す。L’は、アルキレン基、−C(=O)−、−N(R)−、−S−、及び−O−からなる群より選択される2種以上を組み合わせてなる(n+1)価の連結基を示す。Rは、水素原子、アルキル基、アリール基、又はアラルキル基を示す。m’は、1以上6以下の整数を示す。nは、2以上3以下の整数を示す。)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011181018A JP5849530B2 (ja) | 2011-08-22 | 2011-08-22 | 画像形成装置、及びプロセスカートリッジ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011181018A JP5849530B2 (ja) | 2011-08-22 | 2011-08-22 | 画像形成装置、及びプロセスカートリッジ |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013044823A JP2013044823A (ja) | 2013-03-04 |
JP5849530B2 true JP5849530B2 (ja) | 2016-01-27 |
Family
ID=48008802
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011181018A Expired - Fee Related JP5849530B2 (ja) | 2011-08-22 | 2011-08-22 | 画像形成装置、及びプロセスカートリッジ |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5849530B2 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6024555B2 (ja) * | 2013-03-26 | 2016-11-16 | 富士ゼロックス株式会社 | 電子写真感光体、プロセスカートリッジ、及び画像形成装置 |
JP6024554B2 (ja) * | 2013-03-26 | 2016-11-16 | 富士ゼロックス株式会社 | 電子写真感光体、プロセスカートリッジ、及び画像形成装置 |
JP6285186B2 (ja) * | 2014-01-09 | 2018-02-28 | 三星電子株式会社Samsung Electronics Co.,Ltd. | 有機感光体、電子写真装置、及びプロセスカートリッジ |
JP6241293B2 (ja) * | 2014-01-29 | 2017-12-06 | 富士ゼロックス株式会社 | 電子写真感光体、プロセスカートリッジ、及び画像形成装置 |
JP6241322B2 (ja) * | 2014-03-05 | 2017-12-06 | 富士ゼロックス株式会社 | 電子写真感光体、プロセスカートリッジ、及び画像形成装置 |
JP2020140047A (ja) | 2019-02-27 | 2020-09-03 | キヤノン株式会社 | 電子写真感光体、プロセスカートリッジおよび電子写真装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3880457B2 (ja) * | 2002-06-10 | 2007-02-14 | キヤノン株式会社 | 電子写真感光体、プロセスカートリッジ、電子写真装置及び電子写真感光体の製造方法 |
JP2004240305A (ja) * | 2003-02-07 | 2004-08-26 | Canon Inc | 電子写真感光体、プロセスカートリッジ、電子写真装置及び電子写真感光体の製造方法 |
JP2004287361A (ja) * | 2003-03-20 | 2004-10-14 | Ricoh Co Ltd | 電子写真感光体、並びにそれを使用する画像形成装置およびプロセスカートリッジ |
JP2005165027A (ja) * | 2003-12-03 | 2005-06-23 | Ricoh Co Ltd | 画像形成装置 |
JP2007079008A (ja) * | 2005-09-13 | 2007-03-29 | Canon Inc | 電子写真感光体、プロセスカートリッジおよび電子写真装置 |
JP2011133731A (ja) * | 2009-12-25 | 2011-07-07 | Konica Minolta Business Technologies Inc | 画像形成方法及び画像形成装置 |
-
2011
- 2011-08-22 JP JP2011181018A patent/JP5849530B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2013044823A (ja) | 2013-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5672027B2 (ja) | 電子写真感光体、画像形成装置およびプロセスカートリッジ | |
JP5958011B2 (ja) | 電荷輸送性膜形成用組成物、電子写真感光体、プロセスカートリッジおよび画像形成装置 | |
JP5772384B2 (ja) | 画像形成装置、及びプロセスカートリッジ | |
KR101270553B1 (ko) | 전자 사진 감광체, 전자 사진 감광체의 제조 방법, 프로세스 카트리지, 및 화상 형성 장치 | |
JP6003669B2 (ja) | 電子写真感光体、プロセスカートリッジ、及び画像形成装置 | |
JP6010960B2 (ja) | 化合物、並びに、それを用いた電荷輸送性膜、光電変換装置、電子写真感光体、電子写真感光体の製造方法、プロセスカートリッジ、及び画像形成装置 | |
JP5560755B2 (ja) | 電子写真感光体、プロセスカートリッジ、及び画像形成装置 | |
JP6007691B2 (ja) | 電子写真感光体、プロセスカートリッジ、及び画像形成装置 | |
JP5929785B2 (ja) | 電子写真感光体、プロセスカートリッジ、及び画像形成装置 | |
JP2012008505A (ja) | 電子写真感光体及びその製造方法、プロセスカートリッジ、並びに画像形成装置 | |
JP5849530B2 (ja) | 画像形成装置、及びプロセスカートリッジ | |
JP2012008503A (ja) | 電子写真感光体、プロセスカートリッジ、及び画像形成装置 | |
JP5601064B2 (ja) | 光電変換装置、電子写真感光体、プロセスカートリッジ、及び画像形成装置 | |
JP2010217438A (ja) | 電子写真感光体、プロセスカートリッジ、及び画像形成装置 | |
JP5849527B2 (ja) | 画像形成装置、及びプロセスカートリッジ | |
JP5585023B2 (ja) | 電子写真感光体、電子写真感光体の製造方法、プロセスカートリッジ、及び画像形成装置 | |
JP5849528B2 (ja) | 画像形成装置、及びプロセスカートリッジ | |
JP5888271B2 (ja) | 電子写真感光体、プロセスカートリッジ、及び画像形成装置 | |
JP6014981B2 (ja) | 電荷輸送性ポリエステル樹脂、電荷輸送性ポリエステル樹脂溶解液、光電変換デバイス、および電子写真感光体 | |
JP2011203495A (ja) | 電子写真感光体、電子写真感光体の製造方法、プロセスカートリッジ、および画像形成装置 | |
JP5849529B2 (ja) | 画像形成装置、及びプロセスカートリッジ | |
JP4883081B2 (ja) | 電子写真感光体及びその製造方法、プロセスカートリッジ、並びに画像形成装置 | |
JP2013057904A (ja) | 電子写真感光体、画像形成装置、及びプロセスカートリッジ | |
JP6241322B2 (ja) | 電子写真感光体、プロセスカートリッジ、及び画像形成装置 | |
JP5640772B2 (ja) | チオール基含有電荷輸送材料、チオール基含有電荷輸送材料溶解液、光電変換デバイス、および電子写真感光体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140711 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150318 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150331 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150601 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20150630 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150930 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20151007 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151104 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151117 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5849530 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |