JP5799183B2 - 建物安全性検証システム、建物安全性検証方法及びプログラム - Google Patents

建物安全性検証システム、建物安全性検証方法及びプログラム Download PDF

Info

Publication number
JP5799183B2
JP5799183B2 JP2015010366A JP2015010366A JP5799183B2 JP 5799183 B2 JP5799183 B2 JP 5799183B2 JP 2015010366 A JP2015010366 A JP 2015010366A JP 2015010366 A JP2015010366 A JP 2015010366A JP 5799183 B2 JP5799183 B2 JP 5799183B2
Authority
JP
Japan
Prior art keywords
building
layer
natural period
sensor
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015010366A
Other languages
English (en)
Other versions
JP2015127707A (ja
Inventor
献一 吉田
献一 吉田
茂人 永島
茂人 永島
敏也 元樋
敏也 元樋
耕造 豊田
耕造 豊田
義文 杉村
義文 杉村
航 後藤
航 後藤
真樹 望月
真樹 望月
宏安 西井
宏安 西井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Facilities Inc
Original Assignee
NTT Facilities Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=53837742&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP5799183(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by NTT Facilities Inc filed Critical NTT Facilities Inc
Priority to JP2015010366A priority Critical patent/JP5799183B2/ja
Publication of JP2015127707A publication Critical patent/JP2015127707A/ja
Application granted granted Critical
Publication of JP5799183B2 publication Critical patent/JP5799183B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Description

本発明は、地震に対する建物の受ける影響を推定する建物安全性検証システム、建物安全性検証方法及びプログラムに関する。
近年、建物(建築物)の地震に対する耐震性能についての関心が高まってきている。このため、地震時の建物の健全性は、加速度計やひずみゲージおよび変位計等の構造物の変形に関わる情報を計測する計測手段を設けることにより、監視されていることがある。
そして、これらの計測手段で計測されたデータは、現場から離れたデータ監視室等に送られ、データ解析コンピュータ等によって収集される。データ解析コンピュータはこの建物の層間変形を算出し、設定値と比較することにより、建物の損傷の有無を判定し、地震発生後の健全性評価や安全性の確認等に使用している(例えば、特許文献1参照)。
また、地震や強風等の外力若しくは構造材料の経年劣化によって発生する建物の損傷を常時微動計測に基づいて判定する方法も使用されている(例えば、特許文献2参照)。ここで、特許文献2においては、健全時の固有振動数と評価時の固有振動数とを振動特性の次数毎に比較して固有振動数の数値が低下している振動特性の次数が明らかになるので、固有振動数と固有モードとの間の関係に基づいて建物の何れの部分において損傷が発生しているのかを判定している。
特開2008−281435号公報 特開2010−276518号公報
しかしながら、上述した特許文献1においては、竣工後の建物が設計通りの強度に建設されたか否かが実際には判らない。すなわち、設計時に設定した設計基準値、例えば建設時に打たれたコンクリートの梁の強度が層間変形1/100で梁に損傷が生じるとの設計基準値であっても、実際に建設された建物が層間変形2/100で損傷が生じる強度となっている場合がある。この場合、地震において1/100の変形が発生したとしても、コンクリートの梁が損傷しているか否かは厳密には不明であり、損傷していない可能性もある。
また、特許文献2においては、建物の健全時の固有振動数と評価時の固有振動数とを振動特性の次数毎に比較し、固有振動数の数値が低下している振動特性により損傷の発生を判定している。しかしながら、固有振動数は、建物を支える構造躯体の損傷だけでなく、構造躯体ではない雑壁や天井などの非構造部材の損傷によっても変化する。このため、構造躯体あるいは非構造部材(雑壁や天井など)のいずれがどの程度損傷したかの判定を行うことが困難であり、建物の継続使用を判定することが困難である。
本発明は、このような事情に鑑みてなされたもので、地震発生後の建物の損傷程度を推定する建物安全性検証システム、建物安全性検証方法及びプログラムを提供することを目的とする。
(1)本発明の一態様の建物安全性検証システムは、複数の層からなる建物の複数の層に設けられたセンサであって、当該層の振動を層ごとに検知するセンサがあり、前記センサのうち最下層のセンサは、前記建物の基礎部又は最下層部分に設けられ、前記基礎部又は最下層部分の振動を検知し、前記センサが地震時に検知した当該層の振動のデータと前記基礎部又は前記最下層部分の振動のデータとから前記建物の変形を求める計測部と、前記計測部が求めた前記建物の変形に基づいて、当該地震発生後の前記建物の健全性を評価する評価部とを備えたことを特徴とする。
(2)また、上記の建物安全性検証システムは、前記計測部が、前記センサが地震時に検知した当該層の振動のデータから、前記センサを設けた層間の層間変位を算出し、前記算出した層間変位から前記建物の変形を求めることを特徴とする。
(3)また、上記の建物安全性検証システムは、前記計測部が、前記最下層のセンサが検知した当該基礎部又は最下層部分の振動のデータと前記最下層のセンサ以外の何れかの前記センサが検知した当該層の振動のデータとから、前記最下層のセンサ以外の何れかの前記センサを設けた層の層間変位を算出することを特徴とする。
(4)また、上記の建物安全性検証システムは、前記評価部が、地震による前記建物の傾斜の変化を考慮して、当該地震発生後の前記建物の健全性を評価することを特徴とする。
(5)また、上記の建物安全性検証システムは、前記センサを備え、前記計測部は、前記センサからのデータを取得できるように構成されていることを特徴とする。
(6)また、上記の建物安全性検証システムにおける前記評価部は、前記計測部が求めた前記層間変位と、測定して求めた前記建物の固有周期と、測定して求めた前記建物の傾斜角とのうちの何れかを組み合わせた判定により、前記建物の健全性を評価することを特徴とする。
(7)また、上記の建物安全性検証システムは、前記建物の最上層あるいは当該最上層近傍の層の微振動を計測する微振動センサから、当該建物の固有周期を求める固有周期計測部を備えることを特徴とする。
(8)また、上記の建物安全性検証システムは、前記固有周期計測部が、前記建物の最上層あるいは当該最上層近傍の層の微振動を計測する微振動センサから、地震発生後の当該建物の固有周期を求めることを特徴とする。
(9)また、上記の建物安全性検証システムにおける前記固有周期計測部は、前記建物の最上層あるいは当該最上層近傍の層の微振動を計測する微振動センサから、当該建物の常時微動の固有周期を求め、一つの前記センサは、前記微振動センサが微振動を計測する層と同じ層に設けられていることを特徴とする。
(10)また、上記の建物安全性検証システムは、前記層間変位計測部が、前記建物の第1層の層間変位を、前記第1層の変位量と前記建物の基礎部の変位量に基づいて算出することを特徴とする。
(11)また、上記の建物安全性検証システムにおける前記建物の第1層は、前記建物の最上層あるいは当該最上層近傍の層、基礎部に近い層のうちいずれかの層であることを特徴とする。
(12)また、上記の建物安全性検証システムは、前記建物安全性評価部が、前記層間変位が予め設定された層間変位閾値を超えるか否かを判定した第1の判定結果と、また前記固有周期が予め設定した固有周期閾値を超えるか否かを判定した第2の判定結果との組み合わせにより、前記建物の健全性を評価することを特徴とする。
(13)また、上記の建物安全性検証システムは、前記建物の最上層あるいは最上層近傍に配置され、当該建物の傾斜角を計測する傾斜角計測部をさらに有し、前記建物安全性評価部が、前記層間変位、前記固有周期及び前記傾斜角により、前記建物の健全性を評価することを特徴とする。
(14)また、上記の建物安全性検証システムは、前記建物安全性評価部が、前記層間変位が予め設定された層間変位閾値を超えるか否かを判定した第1の判定結果と、また前記固有周期が予め設定した固有周期閾値を超えるか否かを判定した第2の判定結果と、前記傾斜角が予め設定した傾斜角閾値を超えるか否かを判定した第3の判定結果との組み合わせにより、前記建物の健全性を評価することを特徴とする。
(15)また、上記の建物安全性検証システムにおける前記センサは、地震による振動の加速度を検出することを特徴とする。
(16)また、本発明の一態様の建物安全性検証方法は、複数の層からなる建物の複数の層に設けられたセンサであって、当該層の振動を層ごとに検知するセンサがあり、前記センサのうち最下層のセンサは、前記建物の基礎部又は最下層部分に設けられ、前記基礎部又は最下層部分の振動を検知し、前記センサが地震時に検知した当該層の振動のデータと前記基礎部又は前記最下層部分の振動のデータとから前記建物の変形を計測部が求め、前記計測部が求めた前記建物の変形に基づいて、当該地震発生後の前記建物の健全性を評価する手順を含むことを特徴とする。
(17)また、本発明の一態様のプログラムは、複数の層からなる建物の複数の層に、当該層の振動を層ごとに検知するセンサが設けられ、前記センサのうち最下層のセンサは、前記建物の基礎部又は最下層部分に設けられ、当該建物の健全性を評価する建物安全性検証システムのコンピュータに、前記センサが地震時に検知した当該層の振動のデータと前記基礎部又は前記最下層部分の振動のデータとから前記建物の変形を計測部が求めるステップと、前記求めた前記建物の変形に基づいて、当該地震発生後の前記建物の健全性を評価するステップとを実行させるためのプログラムである。
(18)また、本発明に関連する建物安全性検証システムには、以下のものがある。
例えば、建物安全性検証システムは、複数の層からなる建物の前記層の加速度を計測する加速度センサの計測データから、前記各層の層間変位を求める層間変位計測部と、前記建物の最上層あるいは当該最上層近傍の層の微振動を計測する微振動センサから、当該建物の常時微動の固有周期を求める固有周期計測部と、前記層間変位計測部が求めた前記層間変位と、前記固有周期計測部が求めた前記固有周期とにより、前記建物の健全性を評価する建物安全性評価部とを備えたことを特徴とする。
本発明に関連する建物安全性検証システムは、前記建物安全性評価部が、前記層間変位が予め設定された層間変位閾値を超えるか否かを判定した第1の判定結果と、また前記固有周期が予め設定した固有周期閾値を超えるか否かを判定した第2の判定結果との組み合わせにより、前記建物の健全性を評価することを特徴とする。
本発明に関連する建物安全性検証システムは、前記建物の最上層あるいは最上層近傍に配置され、当該建物の傾斜角を計測する傾斜角計測部をさらに有し、前記建物安全性評価部が、前記層間変位、前記固有周期及び前記傾斜角により、前記建物の健全性を評価することを特徴とする。
本発明に関連する建物安全性検証システムは、前記建物安全性評価部が、前記層間変位が予め設定された層間変位閾値を超えるか否かを判定した第1の判定結果と、また前記固有周期が予め設定した固有周期閾値を超えるか否かを判定した第2の判定結果と、前記傾斜角が予め設定した傾斜角閾値を超えるか否かを判定した第3の判定結果との組み合わせにより、前記建物の健全性を評価することを特徴とする。
(19)また、本発明に関連する建物安全性検証方法には、以下のものがある。
建物安全性検証方法は、層間変位計測部が、複数の層からなる建物の前記層の加速度を計測する加速度センサの計測データから、前記各層の層間変位を求める層間変位計測過程と、固有周期計測部が、前記建物の最上層あるいは当該最上層近傍の層の微振動を計測する微振動センサから、当該建物の常時微動の固有周期を求める固有周期計測過程と、建物安全性評価部が、前記層間変位計測部が求めた前記層間変位と、前記固有周期計測部が求めた前記固有周期とにより、前記建物の健全性を評価する建物安全性評価過程とを含むことを特徴とする。
以上説明したように、本発明によれば、地震発生後の建物の損傷程度を推定する建物安全性検証システム、建物安全性検証方法及びプログラムを提供することができる。
本発明の第1の実施形態による建物安全性検証システムの構成例と、評価対象の建物に設けた加速度センサ及び微振動センサとが接続された構成を表す概念図である。 建物の固有周期の変化を示す図である。 図1のデータベース14に記憶されている判定テーブルの構成を示す図である。 データベース14に記憶されている判定結果テーブルの構成例を示す図である。 本実施形態による建物安全性検証システム1の建物の安全性を検証する処理の流れを示すフローチャートである。 本発明の第2の実施形態による建物安全性検証システムの構成例と、評価対象の建物に設けた加速度センサ、微振動センサ及び傾斜センサとが接続された構成を表す概念図である。 図1のデータベース14に記憶されている判定テーブルにおけるパラメータパターンの組み合わせの構成例を示す図である。 本実施形態による建物安全性検証システム2の建物の安全性を検証する処理の流れを示すフローチャートである。
本発明の建物安全性検証システムは、複数の層からなる建物(建築物)の全層の各々、あるいはいくつかの層に加速度センサを設けて、加速度センサの計測した計測データから加速度センサを設けた層の層間変位を求める層間変位計測部を設置し、この相間変位計測部により建物の各層の層間変位を計測し、また建物の最上層あるいは当該最上層近傍の層に固有周期計測部を設け、この固有周期計測部により当該建物の常時微動から建物の固有周期を計測する。また、本発明の建物安全性検証システムは、建物安全性評価部が、層間変位計測部が計測した層間変位と、固有周期計測部が計測した固有周期とにより、建物の健全性を評価する。これにより、本発明の建物耐震性評価システムは、地震が発生した際、地震の際における建物の相間変位と地震前後における固有周期の差分により、複合的な建物の継続使用の可否などに対応する判定を行うことができる。
<第1の実施形態>
以下、図を用いて本発明の第1の実施形態の建物安全性検証システムの説明を行う。図1は、本発明の第1の実施形態による建物安全性検証システムの構成例と、評価対象の建物に設けた加速度センサ及び微振動センサとが接続された構成を表す概念図である。
図1において、建物安全性検証システム1は、インターネットなどからなる情報通信網を介して、建物100に設けられている加速度センサSからS(0は基礎、1からnまでは建物の階数)の各々から地震の振動データとして加速度データが供給される。加速度センサSは、建物の基礎部分における加速度を計測するために設けられており、耐震評価の対象の建物の最下層部分(例えば、地下が無い場合、1階100の下の地盤上に設けられた基礎)に印加される地動加速度を計測し、加速度データとして情報通信網を介して建物安全性検証システム1に対して出力する。
また、加速度センサSからSの各々は、それぞれ1階からn階における自身に印加される加速度値を計測して加速度データとして、情報通信網を介して建物安全性検証システム1に対して送信している。ここで、加速度センサは、図1に示すように、建物のそれぞれの階に配置されている。図1の建物100が6階立ての建物である場合、1階100に加速度センサSが配置され、2階100に加速度センサSが配置され3階100に加速度センサSが配置され、4階100に加速度センサSが配置され、5階100に加速度センサSが配置され、6階100に加速度センサSが配置され、屋上100に加速度センサSが配置されている。また、建物100の基礎部100には加速度センサSが配置されている。また、建物100の屋上100には、微振動センサSBが配置されている。また、この微振動センサSBは、屋上100でなくとも、屋上100近傍の最上階に配置しても良い。
建物安全性検証システム1は、層間変位計測部11、固有周期計測部12、建物安全性評価部13及びデータベース14を備えている。
層間変位計測部11は、例えば、加速度センサSから加速度センサSの各々から供給される加速度データを2回積分して、基礎100、1階100からn階100までの加速度方向の変位を求め、隣接する階同士の変位の差分を算出し、建物100のそれぞれの階の層間変位δを求める。このとき、層間変位計測部11は、各加速度センサから供給される地震における加速度データから、各階毎に最大加速度を抽出して、この最大加速度を2回積分して距離を求め、この距離を各階毎の変位とする。また、層間変位計測部11は、得られた各階の層間変位δの各々を、それぞれの階の高さで除算し、各階の層間変形角Δ(ラジアン)を算出する。なお、加速度データから変位を求める方法は、本実施形態に記載されているもの以外の他の方法を用いても良い。
固有周期計測部12は、微振動センサSBから供給される微少振動データの周波数解析を行う。そして、固有周期計測部12は、パワースペクトルにおけるピーク(最も高いパワースペクトル値)となる周波数を固有周波数(固有振動数)として選択し、この固有周波数の周期を固有周期として出力する。
図2は、建物の固有周期の変化を示す図である。図2において、縦軸は固有周期を示しており、横軸は時間を示している。固有周期は、建物の剛性に対応するものであり、剛性が低い場合に長くなり、剛性が高い場合に短くなる。すなわち、図2に示すように、地震による強い地震により応力が与えられることにより、建物の構造躯体の部材(建物の主要な構造体や骨組みなど)あるいは非構造躯体の部材(雑壁、天井など)に損傷が発生し、建物の剛性が低下し、固有振動数が低くなる。本実施形態においては、層間変形角Δ及び固定周期Tは絶対値にて示される。
また、上述した微振動センサSBの他に、建物の最下層に他の微振動センサを設け、固有周期計測部12がこの他の微振動センサの微少振動データに基づいて、微振動センサSBの出力する微少振動データに重畳しているノイズ成分を除去し、より正確な固有周波数を求める構成としても良い。
建物安全性評価部13は、層間変位計測部11の求めた層間変形角Δと、固有周期計測部12の求めた建物の固有周期とにより、構造躯体の損傷度合いを判定している。すなわち、建物安全性評価部13は、層間変形角Δと予め設定されている設計層間変形角(層間変位閾値)とを比較し、層間変形角Δが設計層間変形角を超えているか否かの判定を行う。このとき、建物安全性評価部13は、固有周期Tと固有周期の初期値(例えば、建物を建設した直後の固有周期あるいは地震発生直前の固定周期)とを比較し、固有周期Tが固有周期の初期値以下であるか否かの判定を行う。
また、固有周期の初期値に対して経時変化のマージンを加えて、固有周期の初期値の代わりに固有周期閾値を生成し、この固有周期閾値と固有周期Tとを比較するようにしても良い。ここで、固有周期の初期値<固有周期閾値である。この固有周期の初期値または固有周期閾値と、設計層間変位角とは、予め建物安全性評価部13内の記憶部に記憶されており、建物安全性評価部13が判定を行う際、自身内部の上記記憶部から読み出して用いる。
図3は、図1のデータベース14に記憶されている判定テーブルの構成を示す図である。この判定テーブルは、層間変形角Δ及び設計層間変形角の比較結果と、固有周期T及び固有周期の初期値の比較結果との組み合わせによる建物の健全性の判定結果が示されている。設計層間変形角は、この値を超える層間変位が発生した場合、構造躯体の部材が変形などの損傷を受ける大きさ(破断などを含め、構造躯体の部材が変形した状態から元に戻らない状態となる塑性変形の限界を示す大きさ)に設定されている。以下、固有周期Tと層間変形角Δとの判定のパターンを示すパラメータパターンに対応する建物の安全性(健全性)の判定を示す。
・パラメータパターンA
層間変形角Δが設計層間変形角を超えており、かつ固有周期閾値に比較して固有周期が長くなり剛性が低下していると判断される場合には、建物の損傷の程度は以下に示すように推定される。建物の状況は、構造躯体の損傷は想定以上であり、建物の損傷の大きさが想定以上であると推定される。これにより、判定結果は、「建物の損傷の早急な調査が必要である」とされている。
・パラメータパターンB
層間変形角Δが設計層間変形角を超えており、一方、固有周期閾値に比較して固有周期Tに変化がなく剛性が維持されていると判断される場合には、建物の損傷の程度は以下に示すように推定される。固有周期Tの変化がないため、建物の構造躯体が設計における設計層間変形角より高い層間変形角として実際に建造されたとして、設計層間変形角を超えても損傷は想定以下と推定することができる。これにより、判定結果は、「継続使用可能であるが、注意して利用する必要がある」とされている。
・パラメータパターンC
層間変形角Δが設計層間変形角以下であり、一方、固有周期閾値に比較して固有周期Tが長くなり剛性が低下していると判断される場合には、建物の損傷の程度は以下に示すように推定される。固有周期Tが長くなっているが、層間変形角Δが設計層間変形以下であるため、構造躯体ではなく建物の非構造躯体が損傷を受けており、構造躯体の損傷は想定以下と推定することができる。これにより、判定結果は、「継続使用可能であるが、注意して利用する必要がある」とされている。
・パラメータパターンD
層間変形角Δが設計層間変形角以下であり、かつ固有周期閾値に比較して固有周期Tに変化がなく剛性が維持されていると判断される場合には、建物の損傷の程度は以下に示すように推定される。層間変形角Δが設計層間変形以下であり、かつ固有周期Tに変化がなく剛性が維持されているため、建物の構造躯体及び建物の非構造躯体のいずれも損傷を受けおらず、構造躯体の損傷は想定以下と推定することができる。これにより、判定結果は、「継続使用可能」とされている。
本実施形態において、建物安全性評価部13は、上述した判定を、建物100の階毎に、建物100の固有周期Tと各階の層間変形角Δとを用いて、階毎に図3に示す判定テーブルによる判定を行う。そして、建物安全性評価部13は、建物100の階毎に判定結果を、データベース14の判定結果テーブルに書き込んで記憶させる。この判定結果テーブルは、建物毎に、各建物を識別する建物識別情報が付加されて、データベースに書き込まれる。
図4は、データベース14に記憶されている判定結果テーブルの構成例を示す図である。この図4において、建物100の階毎に、その階の階数と、判定結果と、対応とについて記載されている。対応については、本実施形態においては、例えば、地震後の避難の緊急度が設定されている。この対応の項目については、使用者が適時設定する。
図4のように、1階100が「継続使用可能」と判定され、2階100が「継続使用可能だが、注意して利用する必要がある」と判定され、2階100が「早急な調査が必要」と判定され、4階100が「継続使用可能だが、注意して利用する必要がある」と判定されている。
この場合、3階100が危険な状態にあるため、例えば余震がくる前に、3階100より上の階の人間を非難させる必要があり、対応としては「緊急避難」となる。避難する人間が集中すると危険なため、「早急な調査が必要」と判定された階より、下層の階、この場合、2階100及び1階100の人間は避難指示を受けるまで待機する「指示まで待機」と対応する。建物安全性評価部13は、この判定結果に対する対応を予め設定されたルール(各階の損傷程度のパターンの組み合わせと、この組み合わせに対する対応とを関連づけたルール)により決定し、データベース14の図4に示す判定結果テーブルの対応の欄に書き込んで記憶させる。
次に、本実施形態による建物安全性検証システム1の建物の安全性を検証する処理を、図5を参照して説明する。図5は、本実施形態による建物安全性検証システム1の建物の安全性を検証する処理の流れを示すフローチャートである。建物安全性検証システム1は、地震が発生した後、各階毎に図5のフローチャートの動作を行い、建物100の階毎の安全性の判定を行う。建物100がn階建てであれば、1階100からn階100まで順番にフローチャートによる判定処理を行う。層間変位計測部11は、加速度センサSから供給される加速度センサSが計測した加速度が所定の地震判定閾値以上の場合、地震発生として以下のフローチャートの処理を実行する。
ステップS1:
層間変位計測部11は、供給されるセンサSが計測した加速度データから加速度を抽出する。そして、層間変位計測部11は、この抽出した加速度を2回積分し、基礎部分の変位を算出する。
ステップS2:
層間変位計測部11は、建物100のk階100(1≦k≦n)に配置されたセンサSから供給される、それぞれの加速度センサSkに計測した加速度から、加速度センサSの加速度を抽出する。そして、層間変位計測部11は、この抽出した加速度を2回積分し、各階の変位を算出し、それぞれ隣接する階の変位の差分を算出し、各階の層間変位δを算出する。ここで、建物100の1階100の層間変位δは、1階100の変位から基礎100の変位を減算して求められる。
ステップS3:
層間変位計測部11は、算出したk階100の層間変位δの各々を、k階100の高さでそれぞれ除算し、k階100の層間変形角Δを算出する。
ステップS4:
固有周期計測部12は、屋上100に配置された微振動センサSBから、地震発生後に供給される微振動データに対し、信号処理を行う。すなわち、固有周期計測部12は、微振動データのフーリエ解析を行い、最も高いパワースペクトルを有する周波数を抽出し、この周波数を固有周波数とする。そして、固有周期計測部12は、抽出した固有周波数の周期を求め、この周期を固有周期Tとする。
ステップS5:
建物安全性評価部13は、建物100における1階100からn階100までの全ての階における損傷程度の判定が行われたか否かの判定を行う。
このとき、建物安全性評価部13は、建物100における全ての階に対する判定が終了した場合、処理を終了し、建物100における全ての階に対する判定が終了していない場合、処理をステップS4へ進める。
ステップS6:
建物安全性評価部13は、建物100の判定の終了していない階の層間変形角Δを層間変位計測部11から読み込み、この読み込んだ判定対象のk階100の層間変形角Δと設計層間変形角との比較を行い、層間変形角Δが設計層間変形角を超えているかを判定する(第1の判定結果を求める)。このとき、建物安全性評価部13は、層間変形角Δが設計層間変形角を超えている場合、処理をステップS7へ進め、一方層間変形角Δが設計層間変形角を超えていない場合、処理をステップS6へ進める。
ステップS7:
建物安全性評価部13は、固有周期計測部12から供給される固有周期Tと固有周期閾値とを比較し、固有周期Tが固有周期閾値以下であるか否かの判定を行う(第2の判定結果を求める)。このとき、建物安全性評価部13は、固有周期Tが固有周期閾値を超える場合、処理をステップS9へ進め、一方、固有周期Tが固有周期閾値以下である場合、処理をステップS10へ進める。ここで、説明においては、建物100の固有周期の初期値ではなく、この固有周期の初期値に対してマージンを持たせた固有周期閾値を用いている。
ステップS8:
建物安全性評価部13は、固有周期計測部12から供給される固有周期Tと固有周期閾値とを比較し、固有周期Tが固有周期閾値以下であるか否かの判定を行う(第2の判定結果を求める)。このとき、建物安全性評価部13は、固有周期Tが固有周期閾値を超える場合、処理をステップS11へ進め、一方、固有周期Tが固有周期閾値以下である場合、処理をステップS12へ進める。
ステップS9:
建物安全性評価部13は、データベース14の判定テーブルを参照し、層間変形角Δが設計層間変形角を超え、かつ固有周期Tが固有周期閾値を超えている場合、パラメータパターンが状態Aであることを検出する。
次に、建物安全性評価部13は、パラメータパターンが状態Aの判定である「早急な調査が必要である(A)」を、データベース14の判定結果テーブルにおける対応する評価対象のk階100の判定結果の欄に書き込んで記憶させ、処理をステップS5へ進める。
ステップS10:
建物安全性評価部13は、データベース14の判定テーブルを参照し、層間変形角Δが設計層間変形角を超え、一方、固有周期Tが固有周期閾値以下である場合、パラメータパターンが状態Bであることを検出する。
次に、建物安全性評価部13は、パラメータパターンが状態Bの判定である「継続使用可能だが、注意して利用する必要がある(B)」を、データベース14の判定結果テーブルにおける対応するk階100の判定結果の欄に書き込んで記憶させ、処理をステップS5へ進める。
ステップS11:
建物安全性評価部13は、データベース14の判定テーブルを参照し、層間変形角Δが設計層間変形角以下であり、一方、固有周期Tが固有周期閾値以下でない場合、パラメータパターンが状態Cであることを検出する。
次に、建物安全性評価部13は、パラメータパターンが状態Cの判定である「継続使用可能だが、注意して利用する必要がある(C)」を、データベース14の判定結果テーブルにおける対応するk階100の判定結果の欄に書き込んで記憶させ、処理をステップS5へ進める。
ステップS12:
建物安全性評価部13は、データベース14の判定テーブルを参照し、層間変形角Δが設計層間変形角以下であり、かつ固有周期Tが固有周期閾値以下である場合、パラメータパターンが状態Dであることを検出する。
次に、建物安全性評価部13は、パラメータパターンが状態Dの判定である「継続使用可能(D)」を、データベース14の判定結果テーブルにおける対応するk階100の判定結果の欄に書き込んで記憶させ、処理をステップS5へ進める。
上述した処理を行うことにより、本実施形態の建物安全性検証システム1は、建物100の固有周期Tと建物100におけるk階100kの層間変形角Δとの組み合わせにより、建物100の各々の階の損傷程度を判定する。これにより、本実施形態の建物安全性検証システム1は、建物100が設計基準値である設計層間変形角と異なる数値で建設されていても、建物100の固有周期と組み合わせて判定することにより、建設された実際の建物の設計層間変形角に対応して、各階の個別の損傷程度を従来に比較して高い精度にて推定して判定することができる。また、本実施形態の建物安全性検証システム1は、施工誤差、経年劣化、什器など建物内部設置物の重量変動、構造躯体や非構造部材の剛性などの条件が変化しても対応し、建物100における各階の個別の損傷程度を従来に比較して高い精度にて推定し、建物の安全性を判定することができる。
また、本実施形態の建物安全性検証システム1によれば、データベース14における判定結果テーブルに対して、各階(加速度センサを設けた階)の判定結果を書き込むことにより、その判定結果によってすでに述べたように、建物100における各階の地震後の避難の優先度などを判定することができ、避難誘導を効率的に行うことができる。
また、本実施形態においては、建物100の全層に加速度センサを設けたが、例えば1階おきなど、複数階(複数層)のいくつかの層に加速度センサを設け、加速度センサを設けた階の損傷を判定するようにしても良い。
<第2の実施形態>
以下、図を用いて本発明の第2の実施形態の建物安全性検証システムの説明を行う。図6は、本発明の第2の実施形態による建物安全性検証システムの構成例と、評価対象の建物に設けた加速度センサ、微振動センサ及び傾斜センサとが接続された構成を表す概念図である。
図6において、建物安全性検証システム2は、インターネットなどからなる情報通信網Iを介して、第1の実施形態と同様に、建物100に設けられている加速度センサSからS(0は基礎、1からnまでは建物の階数)の各々から地震の振動データとして加速度データが供給される。加速度センサS、加速度センサSからSについては配置箇所が第1の実施形態と同様である。また、第2の実施形態においては、建物100の屋上100には、微振動センサSBに加え、傾斜センサSJが配置されている。この傾斜センサSJは、微振動センサSBと同様に、屋上100でなくとも、屋上100近傍の最上階の上部(例えば、n階建てであればn階の天井など)に配置しても良い。
建物安全性検証システム2は、層間変位計測部11、固有周期計測部12、建物安全性評価部23、データベース24及び傾斜角計測部25を備えている。層間変位計測部11及び固有周期計測部12の各々は、第1の実施形態における層間変位計測部11及び固有周期計測部12のそれぞれと同様の構成である。
傾斜角計測部25は、建物100の屋上100Rに配置された傾斜センサSJから供給される傾斜データによって、地平に対して垂直方向の軸に対する建物100の傾斜角θを算出する。本実施形態においては、層間変形角Δ、固定周期T及び傾斜角θは絶対値にて示される。
建物安全性評価部23は、層間変位計測部11の求めた層間変形角Δと、固有周期計測部12の求めた建物の固有周期Tと、傾斜角計測部25が求めた傾斜角θとにより、構造躯体の損傷度合いを判定している。すなわち、建物安全性評価部23は、層間変形角Δと予め設定されている設計層間変形角とを比較し、層間変形角Δが設計層間変形角を超えているか否かの場合分けを行う。また、建物安全性評価部23は、固有周期Tと固有周期の初期値とを比較し、固有周期Tが固有周期の初期値以下であるか否かの判定を行う。また、建物安全性評価部23は、傾斜角θと傾斜角の初期値(例えば、建物の建設直後に計測された傾斜角)とを比較し、傾斜角θが初期値以下であるか否かの判定を行う。
また、固有周期の初期値に対して経時変化のマージンを加えて、固有周期の初期値の代わりに、この固有周期の初期値に対してマージンを加えて固有周期閾値を生成し、この固有周期閾値と固有周期Tとを比較するようにしても良い。ここで、固有周期の初期値<固有周期閾値である。
図7は、図1のデータベース14に記憶されている判定テーブルにおけるパラメータパターンの組み合わせの構成例を示す図である。この判定テーブルは、層間変形角Δ及び設計層間変形角の比較結果と、固有周期T及び固有周期の初期値の比較結果と、傾斜角θ及び傾斜角の初期値(傾斜角閾値)の比較結果の組み合わせによる建物の健全性の判定結果が示されている。設計層間変形角は、この値を超える層間変位が発生した場合、構造躯体の部材が変形などの損傷を受ける大きさに設定されている。以下、固有周期Tと層間変形角Δと傾斜角θとの判定のパターンを示すパラメータパターンに対応する建物の健全性の判定を示す。この図7において、3次元の判定空間がパターンP1からパターンP8の8個の領域に分割されている。
・パターンP1 層間変形角Δが設計層間変形角以下であり、固有周期Tが固有周期閾値以下であり、傾斜角θが傾斜角の初期値以下であるパターン
・パターンP2 層間変形角Δが設計層間変形角を超えており、固有周期Tが固有周期閾値以下であり、傾斜角θが傾斜角の初期値以下であるパターン
・パターンP3 層間変形角Δが設計層間変形角以下であり、固有周期Tが固有周期閾値を超えており、傾斜角θが傾斜角の初期値以下であるパターン
・パターンP4 層間変形角Δが設計層間変形角を超えており、固有周期Tが固有周期閾値を超えており、傾斜角θが傾斜角の初期値以下であるパターン
・パターンP5 層間変形角Δが設計層間変形角以下であり、固有周期Tが固有周期閾値以下であり、傾斜角θが傾斜角の初期値を超えているパターン
・パターンP6 層間変形角Δが設計層間変形角を超えており、固有周期Tが固有周期閾値以下であり、傾斜角θが傾斜角の初期値を超えているパターン
・パターンP7 層間変形角Δが設計層間変形角以下であり、固有周期Tが固有周期閾値を超えており、傾斜角θが傾斜角の初期値を超えているパターン
・パターンP8 層間変形角Δが設計層間変形角を超えており、固有周期Tが固有周期閾値を超えており、傾斜角θが傾斜角の初期値を超えているパターン
本実施形態においては、上述したパターンP1からパターンP8を以下に示すように、5個の判定グループ(状態)に分類されている。データベース24には、この判定グループに対応した判定結果が判定テーブルとして予め書き込まれて記憶されている。
・判定グループD:パターンP1、パターンP2
判定結果:継続使用可能。
判定理由:パターンP1については、層間変形角Δが設計層間変形角以下であり、固有周期Tが固有周期閾値以下であり、傾斜角θが傾斜角の初期値以下であるため、建物100に対する損傷がないと判定される。また、パターンP2については、層間変形角Δが設計層間変形角を超えているが、固有周期Tが固有周期閾値以下であり、傾斜角θが傾斜角の初期値以下であるため、建物100に対する損傷がないと判定される。ここで、層間変形角Δが設計層間変形角を超えているのに、固有周期Tが固有周期閾値以下であり、傾斜角θが傾斜角の初期値以下であることから、建物100の実際の耐震性能が設計時より高く建設されているためと推定される。
・判定グループE:パターンP5、パターンP6
判定結果:応急復旧時には使用可能と判断できるが、通常時に使用できるかどうかは調査が必要。
判定理由:固有周期Tが固有周期閾値以下であり、建物100の傾斜角θが傾斜角の閾値を超えている場合、建物100の立っている地盤が損傷していると推定される。
・判定グループF:パターンP7
判定結果:非構造部材が損傷している可能性があり、応急復旧時に使用するとしても調査が必要。
判定理由:固有周期Tが固有周期閾値を超えており、建物100の傾斜角θが傾斜角の閾値を超えており、層間変形角Δが設計層間変形角以下である場合、建物100の非構造部材及び建物100の立っている地盤が損傷していると推定される。
・判定グループG:パターンP3、パターンP4
判定結果:非構造部材が損傷している可能性があり、応急復旧時に使用するとしても調査が必要であるが、通常時の使用に関しては非構造部材を補修すれば継続使用可能。
判定理由:建物100の傾斜角θが傾斜角の閾値以下であるが、固有周期Tが固有周期閾値を超えているため、建物100の構造躯体に損傷が無く、非構造躯体に損傷の可能性があると推定される。
・判定グループH:パターンP8
判定結果:継続使用不可。
判定理由:建物100の傾斜角θが傾斜角の閾値を超え、かつ固有周期Tが固有周期閾値を超え、かつ層間変形角Δが設計層間変形角を超えているため、建物100の構造躯体、非構造躯体及び地盤に損傷の可能性があると推定される。
次に、本実施形態による建物安全性検証システム2の建物の安全性を検証する処理を、図8を参照して説明する。図8は、本実施形態による建物安全性検証システム2の建物の安全性を検証する処理の流れを示すフローチャートである。建物安全性検証システム2は、地震が発生した後、各階毎に図8のフローチャートの動作を行い、建物100の階毎の安全性の判定を行う。建物100がn階建てであれば、1階100からn階100まで順番にフローチャートによる判定処理を行う。層間変位計測部11は、供給されるセンサSから地動加速度が所定の地震判定閾値以上の場合、地震発生として以下のフローチャートの処理を実行する。
ステップS21:
層間変位計測部11は、供給されるセンサSが計測した加速度データから加速度を抽出する。そして、層間変位計測部11は、この抽出した加速度を2回積分し、基礎部分の変位を算出する。
ステップS22:
層間変位計測部11は、建物100のk階100(1≦k≦n)に配置されたセンサSから供給される、それぞれの加速度センサSkに計測した加速度から、加速度センサSの加速度を抽出する。そして、層間変位計測部11は、この抽出した加速度を2回積分し、各階の変位を算出し、それぞれ隣接する階の変位の差分を算出し、各階の層間変位δを算出する。ここで、建物100の1階100の層間変位δは、1階100の変位から基礎100の変位を減算して求められる。
なお、全体曲げ変形やロッキングが支配的な建物などに対しては、層間変位を算出する際に、傾斜角θの計測データを用いることでせん断変形成分をより精緻に算出する。
ステップS23:
層間変位計測部11は、算出したk階100の層間変位δの各々を、k階100の高さでそれぞれ除算し、k階100の層間変形角Δを算出する。なお、加速度データから変位を求める方法は、本実施形態に記載されているもの以外の他の方法を用いても良い。
ステップS24:
固有周期計測部12は、屋上100に配置された微振動センサSBから、地震発生後に供給される微振動データに対し、信号処理を行う。すなわち、固有周期計測部12は、微振動データのフーリエ解析を行い、最も高いパワースペクトルを有する周波数を抽出し、この周波数を固有周波数とする。そして、固有周期計測部12は、抽出した固有周波数の周期を求め、この周期を固有周期Tとする。
ステップS25:
傾斜角計測部25は、建物100の屋上100に配置されている傾斜角センサSJから供給される傾斜角データにより、建物100の傾斜角θを求める。
ステップS26:
建物安全性評価部23は、建物100における1階100からn階100までの全ての階における損傷程度の判定が行われたか否かの判定を行う。
このとき、建物安全性評価部23は、建物100における全ての階に対する判定が終了した場合、処理を終了し、建物100における全ての階に対する判定が終了していない場合、処理をステップS27へ進める。
ステップS27:
建物安全性評価部23は、傾斜角計測部25から供給される傾斜角θと建物100の傾斜角の初期値との比較を行い、傾斜角θが傾斜角の初期値を超えているか否かを判定する(第3の判定結果を求める)。このとき、建物安全性評価部23は、傾斜角θが傾斜角の初期値を超えていない場合、処理をステップS28へ進め、一方、傾斜角θが傾斜角の初期値を超えている場合、処理をステップS29へ進める。
ステップS28:
建物安全性評価部23は、固有周期計測部12から供給される固有周期Tと固有周期閾値とを比較し、固有周期Tが固有周期閾値以下であるか否かの判定を行う(第2の判定結果を求める)。このとき、建物安全性評価部23は、固有周期Tが固有周期閾値を超える場合、処理をステップS32へ進め、一方、固有周期Tが固有周期閾値以下である場合、処理をステップS31へ進める。ここで、説明においては、建物100の固有周期の初期値ではなく、この固有周期の初期値に対してマージンを持たせた固有周期閾値を用いている。
ステップS29:
建物安全性評価部23は、固有周期計測部12から供給される固有周期Tと固有周期閾値とを比較し、固有周期Tが固有周期閾値以下であるか否かの判定を行う。このとき、建物安全性評価部23は、固有周期Tが固有周期閾値を超える場合、処理をステップS30へ進め、一方、固有周期Tが固有周期閾値以下である場合、処理をステップS33へ進める。
ステップS30:
建物安全性評価部23は、建物100の判定の終了していない階の層間変形角Δを層間変位計測部11から読み込み、この読み込んだ判定対象のk階100の層間変形角Δと設計層間変形角との比較を行い、層間変形角Δが設計層間変形角を超えているかを判定する(第1の判定結果を求める)。このとき、建物安全性評価部23は、層間変形角Δが設計層間変形角を超えている場合、処理をステップS35へ進め、一方層間変形角Δが設計層間変形角を超えていない場合、処理をステップS34へ進める。
ステップS31:
建物安全性評価部23は、データベース24の判定テーブルを参照し、傾斜角θが傾斜角の初期値以下であり、固有周期Tが固有周期閾値以下である場合、パラメータパターンが状態Dであることを検出する。
次に、建物安全性評価部23は、パラメータパターンが状態Dの判定である「継続使用可能(D)」を、データベース24の判定結果テーブルにおける対応するk階100の判定結果の欄に書き込んで記憶させ、処理をステップS26へ進める。
ステップS32:
建物安全性評価部23は、データベース24の判定テーブルを参照し、傾斜角θが傾斜角の初期値以下であり、固有周期Tが固有周期閾値を超えている場合、パラメータパターンが状態Gであることを検出する。
次に、建物安全性評価部23は、パラメータパターンが状態Gの判定である「非構造部材が損傷している可能性があり、応急復旧時に使用するとしても調査が必要であるが、通常時の使用に関しては非構造部材を補修すれば継続使用可能(G)」を、データベース24の判定結果テーブルにおける対応するk階100の判定結果の欄に書き込んで記憶させ、処理をステップS26へ進める。
ステップS33:
建物安全性評価部23は、データベース24の判定テーブルを参照し、傾斜角θが傾斜角の初期値を超えており、固有周期Tが固有周期閾値以下である場合、パラメータパターンが状態Eであることを検出する。
次に、建物安全性評価部23は、パラメータパターンが状態Eの判定である「応急復旧時には使用可能と判断できるが、通常時に使用できるかどうかは調査が必要(E)」を、データベース24の判定結果テーブルにおける対応するk階100の判定結果の欄に書き込んで記憶させ、処理をステップS26へ進める。
ステップS34:
建物安全性評価部23は、データベース24の判定テーブルを参照し、傾斜角θが傾斜角の初期値を超えており、固有周期Tが固有周期閾値を超えており、層間変形角Δが設計層間変形角以下である場合、パラメータパターンが状態Fであることを検出する。
次に、建物安全性評価部23は、パラメータパターンが状態Fの判定である「非構造部材が損傷している可能性があり、応急復旧時に使用するとしても調査が必要(F)」を、データベース24の判定結果テーブルにおける対応するk階100の判定結果の欄に書き込んで記憶させ、処理をステップS26へ進める。
ステップS35:
建物安全性評価部23は、データベース24の判定テーブルを参照し、傾斜角θが傾斜角の初期値を超えており、固有周期Tが固有周期閾値を超えており、層間変形角Δが設計層間変形角を超えている場合、パラメータパターンが状態Hであることを検出する。
次に、建物安全性評価部23は、パラメータパターンが状態Hの判定である「継続使用不可(H)」を、データベース24の判定結果テーブルにおける対応するk階100の判定結果の欄に書き込んで記憶させ、処理をステップS26へ進める。
上述した処理を行うことにより、本実施形態の建物安全性検証システム2は、建物100の固有周期Tと建物100におけるk階100kの層間変形角Δと建物100の傾斜角θの組み合わせにより、建物100の各々の階の損傷程度を判定する。これにより、本実施形態の建物安全性検証システム2は、建物100が設計層間変形角と異なる数値で建設されていても、建物100の固有周期T及び傾斜角θと組み合わせることにより、建設された実際の建物の設計層間変形角に対応して、各階の個別の損傷程度及び地盤の損傷程度を従来に比較して高い精度にて推定して判定することができる。また、本実施形態の建物安全継承システム2は、施工誤差、経年劣化、什器など建物内部設置物の重量変動、構造躯体や非構造部材の剛性などの条件が変化しても対応し、建物100における各階の個別の損傷程度及び地盤の損傷程度を従来に比較して高い精度にて推定し、建物の安全性を判定することができる。すなわち、本実施形態によれば、各階の層間変形角及び固定周期による判定に対して傾斜角の判定を加えることにより、建物100における構造躯体の損傷、非構造躯体の損傷及び地盤の損傷(建物の傾斜角θにより推定)の切り分けが可能である。このため、本実施形態の建物安全継承システム2は、第1の実施形態に比較してより詳細な建物100の状態の判定を行うことができる。また、本実施形態の建物安全性検証システム2によれば、データベース24における判定結果テーブルに対して、各階の判定結果を書き込むことにより、その判定結果によってすでに述べたように、建物100における各階の地震後の避難の優先度などを判定することができる。
なお、図1、図6における建物安全性検証システム1または建物安全性検証システム2を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより建物の耐震性の評価(地震による損壊の推定など)の処理動作を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータシステム」は、ホームページ提供環境(あるいは表示環境)を備えたWWWシステムも含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(RAM)のように、一定時間プログラムを保持しているものも含むものとする。
また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。また、上記プログラムは、前述した機能の一部を実現するためのものであっても良い。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であっても良い。
1,2…建物安全性検証システム
11…層間変位計測部
12…固有周期計測部
13,23…建物安全性評価部
14,24…データベース
25…傾斜角計測部
,S,S,S,S,S,S…加速度センサ
100…建物
100…1階
100…2階
100…3階
100…4階
100…5階
100…6階
100…基礎
100…屋上
SB…微振動センサ
SJ…傾斜角センサ

Claims (18)

  1. 複数の層からなる建物の複数の層に設けられ、当該層の振動を層ごとに検知するセンサと、
    前記センサが地震時に検知した当該層の振動のデータから、前記センサを設けた層間の層間変位を算出し、前記算出した層間変位から前記建物の変形を求める計測部と、
    前記建物の最上層あるいは当該最上層近傍の層の微振動を計測する微振動センサから、当該建物の固有周期を求める固有周期計測部と、
    前記計測部が求めた前記建物の変形と前記固有周期計測部が求めた前記固有周期とに基づいて、前記建物の健全性を評価する評価部と
    を備え、
    前記センサのうち最下層のセンサは、前記建物の基礎部又は最下層部分に設けられ、前記基礎部又は最下層部分の振動を検知し、
    前記評価部は、
    前記層間変位と前記層間変位から求めた層間変形角の何れかにより示される前記建物の変形と、測定して求めた前記建物の固有周期とを組み合わせて判定し、前記建物の変形が、前記建物の構造部材が損傷を受け得る大きさに応じて定めた閾値より大きいと判定された場合に、測定して求めた前記建物の固有周期の値に基づいて、前記建物を継続使用することが可能か否かを判定する
    とを特徴とする建物安全性検証システム。
  2. 前記評価部が、
    前記建物の変形が予め設定された前記閾値を超えるか否かを判定した第1の判定結果と、また前記固有周期が予め設定した固有周期閾値を超えるか否かを判定した第2の判定結果との組み合わせにより、前記建物の健全性を評価する
    ことを特徴とする請求項に記載の建物安全性検証システム。
  3. 複数の層からなる建物の複数の層に設けられ、当該層の振動を層ごとに検知するセンサと、
    前記センサが地震時に検知した当該層の振動のデータから、前記センサを設けた層間の層間変位を算出し、前記算出した層間変位から前記建物の変形を求める計測部と、
    前記建物の最上層あるいは当該最上層近傍の層の微振動を計測する微振動センサから、当該建物の固有周期を求める固有周期計測部と、
    前記建物の最上層あるいは最上層近傍に配置され、当該建物の傾斜角を計測する傾斜角計測部と、
    前記計測部が求めた前記建物の変形と前記固有周期計測部が求めた前記固有周期と前記建物の傾斜角とに基づいて、前記建物の健全性を評価する評価部と
    を備え、
    前記センサのうち最下層のセンサは、前記建物の基礎部又は最下層部分に設けられ、前記基礎部又は最下層部分の振動を検知し、
    前記評価部は、
    前記固有周期の判定結果と前記傾斜角の判定結果とを論理的に組み合わせて判定し、当該判定の結果に応じて前記建物の立っている地盤の損傷による影響の有無を判定する
    とを特徴とする建物安全性検証システム。
  4. 複数の層からなる建物の複数の層に設けられ、当該層の振動を層ごとに検知するセンサと、
    前記センサが地震時に検知した当該層の振動のデータから、前記センサを設けた層間の層間変位を算出し、前記算出した層間変位から前記建物の変形を求める計測部と、
    前記建物の最上層あるいは当該最上層近傍の層の微振動を計測する微振動センサから、当該建物の固有周期を求める固有周期計測部と、
    前記建物の最上層あるいは最上層近傍に配置され、当該建物の傾斜角を計測する傾斜角計測部と、
    前記計測部が求めた前記建物の変形と前記固有周期計測部が求めた前記固有周期と前記建物の傾斜角とに基づいて、前記建物の健全性を評価する評価部と
    を備え、
    前記センサのうち最下層のセンサは、前記建物の基礎部又は最下層部分に設けられ、前記基礎部又は最下層部分の振動を検知し、
    前記評価部は、
    前記層間変位の判定結果と前記固有周期の判定結果と前記傾斜角の判定結果とを論理的に組み合わせて判定し、当該判定の結果に応じて前記建物の健全性と前記建物の立っている地盤の損傷による影響の有無とを判定する
    とを特徴とする建物安全性検証システム。
  5. 前記評価部は、
    地震による前記建物の傾斜の変化を前記評価の条件に含めて、当該地震発生後の前記建物の健全性を評価する
    ことを特徴とする請求項3又は請求項に記載の建物安全性検証システム。
  6. 前記計測部は、
    前記最下層のセンサが検知した当該基礎部又は最下層部分の振動のデータと前記最下層のセンサ以外の何れかの前記センサが検知した当該層の振動のデータとから、前記最下層のセンサ以外の何れかの前記センサを設けた層の層間変位を算出する
    ことを特徴とする請求項1から請求項5の何れか1項に記載の建物安全性検証システム。
  7. 前記固有周期計測部は、
    前記建物の最上層あるいは当該最上層近傍の層の微振動を計測する微振動センサから、地震発生後の当該建物の固有周期を求める
    ことを特徴とする請求項1から請求項6の何れか1項に記載の建物安全性検証システム。
  8. 前記固有周期計測部は、
    前記建物の最上層あるいは当該最上層近傍の層の微振動を計測する微振動センサから、当該建物の常時微動の固有周期を求め、
    前記層の振動を層ごとに検知する前記センサから前記最下層のセンサを除いたセンサ
    のうちの一つのセンサは、
    前記微振動センサが微振動を計測する層と同じ層に設けられている
    ことを特徴とする請求項7に記載の建物安全性検証システム。
  9. 前記計測部は、
    前記建物の特定の層の層間変位を、前記特定の層の変位量と前記建物の基礎部の変位量に基づいて算出する
    ことを特徴とする請求項から請求項の何れか1項に記載の建物安全性検証システム。
  10. 前記評価部が、
    前記層間変位が予め設定された層間変位閾値を超えるか否かを判定した第1の判定結果と、また前記固有周期が予め設定した固有周期閾値を超えるか否かを判定した第2の判定結果と、前記傾斜角が予め設定した傾斜角閾値を超えるか否かを判定した第3の判定結果との組み合わせにより、前記建物の健全性を評価する
    ことを特徴とする請求項3から請求項5の何れか1項に記載の建物安全性検証システム。
  11. 前記評価部が、
    前記計測部が求めた前記層間変位と、前記固有周期計測部が求めた前記固有周期とを条件に含めた判定を前記層ごとにそれぞれ実施して、前記各層ごとの判定結果から定まる特定の層より上の層の対応についての判定を予め定められたルールに従って実施する
    ことを特徴とする請求項1から請求項10の何れか1項に記載の建物安全性検証システム。
  12. 前記センサは、前記地震による振動の加速度を検出する
    ことを特徴とする請求項1から請求項11の何れか1項に記載の建物安全性検証システム。
  13. 複数の層からなる建物の複数の層に設けられ、当該層の振動を層ごとに検知するセンサと、
    前記センサが地震時に検知した当該層の振動のデータから、前記センサを設けた層間の層間変位を算出し、前記算出した層間変位から前記建物の変形を求める計測部と、
    前記建物の最上層あるいは当該最上層近傍の層の微振動を計測する微振動センサから、当該建物の固有周期を求める固有周期計測部と、
    を備える建物安全性検証システムの建物安全性検証方法であって、
    前記センサのうち最下層のセンサは、前記建物の基礎部又は最下層部分に設けられ、前記基礎部又は最下層部分の振動を検知する過程と、
    前記計測部が求めた前記建物の変形と前記固有周期計測部が求めた前記固有周期とに基づいて、前記建物の健全性を評価する過程と、
    前記層間変位と前記層間変位から求めた層間変形角の何れかにより示される前記建物の変形と、測定して求めた前記建物の固有周期とを組み合わせて判定し、前記建物の変形が、前記建物の構造部材が損傷を受け得る大きさに応じて定めた閾値より大きいと判定された場合に、測定して求めた前記建物の固有周期の値に基づいて、前記建物を継続使用することが可能か否かを判定する過程と
    を含むことを特徴とする建物安全性検証方法。
  14. 複数の層からなる建物の複数の層に設けられ、当該層の振動を層ごとに検知するセンサと、
    前記センサが地震時に検知した当該層の振動のデータから、前記センサを設けた層間の層間変位を算出し、前記算出した層間変位から前記建物の変形を求める計測部と、
    前記建物の最上層あるいは当該最上層近傍の層の微振動を計測する微振動センサから、当該建物の固有周期を求める固有周期計測部と、
    前記建物の最上層あるいは最上層近傍に配置され、当該建物の傾斜角を計測する傾斜角計測部と、
    を備える建物安全性検証システムの建物安全性検証方法であって、
    前記センサのうち最下層のセンサは、前記建物の基礎部又は最下層部分に設けられ、前記基礎部又は最下層部分の振動を検知する過程と、
    前記計測部が求めた前記建物の変形と前記固有周期計測部が求めた前記固有周期と前記建物の傾斜角とに基づいて、前記建物の健全性を評価する過程と、
    前記固有周期の判定結果と前記傾斜角の判定結果とを論理的に組み合わせて判定し、当該判定の結果に応じて前記建物の立っている地盤の損傷による影響の有無を判定する過程と
    を含むことを特徴とする建物安全性検証方法。
  15. 複数の層からなる建物の複数の層に設けられ、当該層の振動を層ごとに検知するセンサと、
    前記センサが地震時に検知した当該層の振動のデータから、前記センサを設けた層間の層間変位を算出し、前記算出した層間変位から前記建物の変形を求める計測部と、
    前記建物の最上層あるいは当該最上層近傍の層の微振動を計測する微振動センサから、当該建物の固有周期を求める固有周期計測部と、
    前記建物の最上層あるいは最上層近傍に配置され、当該建物の傾斜角を計測する傾斜角計測部と、
    を備える建物安全性検証システムの建物安全性検証方法であって、
    前記センサのうち最下層のセンサが前記建物の基礎部又は最下層部分に設けられており、最下層のセンサが前記基礎部又は最下層部分の振動を検知する過程と、
    前記計測部が求めた前記建物の変形と前記固有周期計測部が求めた前記固有周期と前記建物の傾斜角とに基づいて、前記建物の健全性を評価する過程と、
    前記層間変位の判定結果と前記固有周期の判定結果と前記傾斜角の判定結果とを論理的に組み合わせて判定し、当該判定の結果に応じて前記建物の健全性と前記建物の立っている地盤の損傷による影響の有無とを判定する過程と
    を含むことを特徴とする建物安全性検証方法。
  16. 複数の層からなる建物の複数の層に設けられ、当該層の振動を層ごとに検知するセンサと、前記センサが地震時に検知した当該層の振動のデータから、前記センサを設けた層間の層間変位を算出し、前記算出した層間変位から前記建物の変形を求める計測部と、前記建物の最上層あるいは当該最上層近傍の層の微振動を計測する微振動センサから、当該建物の固有周期を求める固有周期計測部と、を備える建物安全性検証システムのコンピュータに、
    前記センサのうち最下層のセンサが前記建物の基礎部又は最下層部分に設けられており、前記最下層のセンサに前記基礎部又は最下層部分の振動を検知させて、前記計測部が求めた前記建物の変形と前記固有周期計測部が求めた前記固有周期とに基づいて、前記建物の健全性を評価するステップと、
    前記層間変位と前記層間変位から求めた層間変形角の何れかにより示される前記建物の変形と、測定して求めた前記建物の固有周期とを組み合わせて判定し、前記建物の変形が、前記建物の構造部材が損傷を受け得る大きさに応じて定めた閾値より大きいと判定された場合に、測定して求めた前記建物の固有周期の値に基づいて、前記建物を継続使用することが可能か否かを判定するステップと
    を実行させるためのプログラム。
  17. 複数の層からなる建物の複数の層に設けられ、当該層の振動を層ごとに検知するセンサと、前記センサが地震時に検知した当該層の振動のデータから、前記センサを設けた層間の層間変位を算出し、前記算出した層間変位から前記建物の変形を求める計測部と、前記建物の最上層あるいは当該最上層近傍の層の微振動を計測する微振動センサから、当該建物の固有周期を求める固有周期計測部と、前記建物の最上層あるいは最上層近傍に配置され、当該建物の傾斜角を計測する傾斜角計測部と、を備える建物安全性検証システムのコンピュータに、
    前記センサのうち最下層のセンサが前記建物の基礎部又は最下層部分に設けられており、前記最下層のセンサに前記基礎部又は最下層部分の振動を検知させて、前記計測部が求めた前記建物の変形と前記固有周期計測部が求めた前記固有周期と前記建物の傾斜角とに基づいて、前記建物の健全性を評価するステップと、
    前記固有周期の判定結果と前記傾斜角の判定結果とを論理的に組み合わせて判定し、当該判定の結果に応じて前記建物の立っている地盤の損傷による影響の有無を判定するステップと
    を実行させるためのプログラム。
  18. 複数の層からなる建物の複数の層に設けられ、当該層の振動を層ごとに検知するセンサと、前記センサが地震時に検知した当該層の振動のデータから、前記センサを設けた層間の層間変位を算出し、前記算出した層間変位から前記建物の変形を求める計測部と、前記建物の最上層あるいは当該最上層近傍の層の微振動を計測する微振動センサから、当該建物の固有周期を求める固有周期計測部と、前記建物の最上層あるいは最上層近傍に配置され、当該建物の傾斜角を計測する傾斜角計測部と、を備える建物安全性検証システムのコンピュータに、
    前記センサのうち最下層のセンサが前記建物の基礎部又は最下層部分に設けられており、前記最下層のセンサに前記基礎部又は最下層部分の振動を検知させて、前記計測部が求めた前記建物の変形と前記固有周期計測部が求めた前記固有周期と前記建物の傾斜角とに基づいて、前記建物の健全性を評価するステップと、
    前記層間変位の判定結果と前記固有周期の判定結果と前記傾斜角の判定結果とを論理的に組み合わせて判定し、当該判定の結果に応じて前記建物の健全性と前記建物の立っている地盤の損傷による影響の有無とを判定するステップと
    を実行させるためのプログラム。
JP2015010366A 2015-01-22 2015-01-22 建物安全性検証システム、建物安全性検証方法及びプログラム Active JP5799183B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015010366A JP5799183B2 (ja) 2015-01-22 2015-01-22 建物安全性検証システム、建物安全性検証方法及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015010366A JP5799183B2 (ja) 2015-01-22 2015-01-22 建物安全性検証システム、建物安全性検証方法及びプログラム

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013002078A Division JP5809174B2 (ja) 2013-01-09 2013-01-09 建物安全性検証システム、建物安全性検証方法及びプログラム

Publications (2)

Publication Number Publication Date
JP2015127707A JP2015127707A (ja) 2015-07-09
JP5799183B2 true JP5799183B2 (ja) 2015-10-21

Family

ID=53837742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015010366A Active JP5799183B2 (ja) 2015-01-22 2015-01-22 建物安全性検証システム、建物安全性検証方法及びプログラム

Country Status (1)

Country Link
JP (1) JP5799183B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107607280A (zh) * 2017-09-09 2018-01-19 芜湖市方圆工程质量检验有限责任公司 一种工程建筑抗震性能的检测方法
CN109708688A (zh) * 2017-09-12 2019-05-03 建设综合勘察研究设计院有限公司 一种历史文化建筑安全监测与预警系统及方法
JP7418798B2 (ja) * 2020-01-15 2024-01-22 株式会社サイエンス構造 建物危険度判定サーバ、建物危険度判定方法、及びそのプログラム、並びに情報通信端末、情報処理方法、及びそのプログラム、並びに建物の危険度判定システム
JP7527733B2 (ja) 2021-01-15 2024-08-05 西松建設株式会社 変位計測装置および変位計測方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3876247B2 (ja) * 2000-12-28 2007-01-31 構造品質保証研究所株式会社 微動観測による構造物の診断方法及び診断システム
JP2004251678A (ja) * 2003-02-19 2004-09-09 Taisei Corp 変位角測定装置
JP2005121464A (ja) * 2003-10-16 2005-05-12 Mitsubishi Space Software Kk 構造物監視サーバ及び構造物監視システム及び構造物監視方法及び構造物監視プログラム及び構造物監視プログラムを記録したコンピュータ読み取り可能な記録媒体
JP4291798B2 (ja) * 2005-05-27 2009-07-08 株式会社都市調査設計 傾き測定器
JP4859557B2 (ja) * 2006-06-30 2012-01-25 財団法人電力中央研究所 コンクリート建物の健全性判定方法
JP4822337B2 (ja) * 2006-08-03 2011-11-24 株式会社山武 建築構造物の診断方法
JP4914162B2 (ja) * 2006-09-29 2012-04-11 株式会社竹中工務店 地震被害判定装置、地震被害判定方法及び地震被害判定プログラム
JP2009120337A (ja) * 2007-11-15 2009-06-04 Toshiba Elevator Co Ltd エレベータ仮復旧運転システム
JP5082940B2 (ja) * 2008-03-07 2012-11-28 富士通株式会社 災害観測システムおよび災害解析プログラム
JP5327632B2 (ja) * 2009-10-01 2013-10-30 清水建設株式会社 基礎構造の地震被害予測方法、地震被害予測システムおよび地震被害予測チャート
JP2012018045A (ja) * 2010-07-07 2012-01-26 Yamatake Corp センサ異常診断装置及びセンサシステム
JP5521196B2 (ja) * 2010-07-07 2014-06-11 国立大学法人 筑波大学 建物損傷度判定装置および建物損傷度判定方法
JP5728301B2 (ja) * 2011-06-14 2015-06-03 株式会社竹中工務店 基礎構造
JP5809174B2 (ja) * 2013-01-09 2015-11-10 株式会社Nttファシリティーズ 建物安全性検証システム、建物安全性検証方法及びプログラム

Also Published As

Publication number Publication date
JP2015127707A (ja) 2015-07-09

Similar Documents

Publication Publication Date Title
JP5809174B2 (ja) 建物安全性検証システム、建物安全性検証方法及びプログラム
US10648881B2 (en) Seismic response assessment of man-made structures
JP5569900B2 (ja) 耐震性能評価方法、耐震性能評価装置及び耐震性能評価システム
JP6475930B2 (ja) 総合監視装置、総合監視プログラム
JP5838561B2 (ja) 地震被害判定システム、地震被害判定システムを備えた構造物、及び地震被害判定プログラム
JP5799183B2 (ja) 建物安全性検証システム、建物安全性検証方法及びプログラム
JP5911733B2 (ja) 免震建築物の安全評価システム
JP2011095237A5 (ja)
JP5281475B2 (ja) 常時微動計測に基づく建物の健全性診断法、診断装置及び診断プログラム
JP6768369B2 (ja) 建物健全度評価システムおよび建物健全度評価方法
Erazo et al. High‐resolution seismic monitoring of instrumented buildings using a model‐based state observer
JP6499832B2 (ja) 構造物安全性検証システム、構造物安全性検証方法及びプログラム
JP7343380B2 (ja) 建物の健全性モニタリングシステム
JP6389663B2 (ja) 構造物検証システム、構造物検証装置、構造物検証プログラム
JP6609403B2 (ja) 構造物検証システム、構造物検証装置、構造物検証プログラム
JP6363539B2 (ja) 建物の損傷部位の推定方法
JP6642232B2 (ja) 地震被害推定システム、地震被害推定システムを備えた構造物、及び地震被害推定プログラム
JP2016017848A (ja) 構造物検証システム、構造物検証装置、構造物検証プログラム
JP6991703B2 (ja) 損傷度判定装置及び損傷度判定システム
JP6746348B2 (ja) 建築物の層剛性を同定する方法及びその装置
JP2019138661A (ja) 建物の残存耐用年数の評価方法、及び評価システム
JP7359747B2 (ja) 建物の健全性モニタリングシステム、及び地震計の設置層を決定する方法
JP6843645B2 (ja) 判定装置及び判定方法
Zhang et al. Statistical moment-based damage detection of building structures

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150824

R150 Certificate of patent or registration of utility model

Ref document number: 5799183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250