JP2005121464A - 構造物監視サーバ及び構造物監視システム及び構造物監視方法及び構造物監視プログラム及び構造物監視プログラムを記録したコンピュータ読み取り可能な記録媒体 - Google Patents

構造物監視サーバ及び構造物監視システム及び構造物監視方法及び構造物監視プログラム及び構造物監視プログラムを記録したコンピュータ読み取り可能な記録媒体 Download PDF

Info

Publication number
JP2005121464A
JP2005121464A JP2003356238A JP2003356238A JP2005121464A JP 2005121464 A JP2005121464 A JP 2005121464A JP 2003356238 A JP2003356238 A JP 2003356238A JP 2003356238 A JP2003356238 A JP 2003356238A JP 2005121464 A JP2005121464 A JP 2005121464A
Authority
JP
Japan
Prior art keywords
positioning
data
building
accumulated
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003356238A
Other languages
English (en)
Inventor
Shintaro Nakamura
慎太郎 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Space Software Co Ltd
Original Assignee
Mitsubishi Space Software Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Space Software Co Ltd filed Critical Mitsubishi Space Software Co Ltd
Priority to JP2003356238A priority Critical patent/JP2005121464A/ja
Publication of JP2005121464A publication Critical patent/JP2005121464A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

【課題】 ビル等の構造物の形状の変化に関する測位情報をリアルタイムに総合的に取得して、構造物を総合的に監視する手段を提供する。
【解決手段】 構造物監視サーバ100は、ビルA等の構造物の所定の位置に固定的に設置された位置測位装置21a等から位置測位データを取得して、ビルA等に歪み、亀裂、傾斜等が生じているかどうかを判定する。構造物監視サーバ100は、位置測位装置21a等から位置測位データを逐次入力するデータ受信部110と、データ受信部110が逐次入力した位置測位データを蓄積入力データとして蓄積する位置データベース120と、位置データベース120の蓄積した蓄積入力データに基づいてビルA等に歪みや亀裂等が生じているかどうかを判定する構造物状態判定部130とを備えた。
【選択図】 図1

Description

この発明は、構造物に設置された位置測位装置が測位した位置測位データを用いて構造物の形状の変化を監視する構造物監視サーバ及び構造物監視システム及び構造物監視方法に関する。
従来では、地震等の自然災害による建物の歪みや亀裂は、目視又は音波探傷により検知する方法がとられている。このため、建物を個々に検査しなければならず、総合的に監視するシステムが望まれている。また、都市部において地震等の災害が発生した場合は、建物の傾斜や崩壊の情報をリアルタイムで集中管理するシステムが望まれる。従来では、複数の災害用の端末器を散在させておき、地震等の災害が生じた時には、これらの端末器からの情報で特定地域の災害状況を画面上に表示するようにして実際に必要とする災害状況を把握できるようにしたシステムの開示がある(例えば、特許文献1)。しかし、建物等の構造物に位置測位装置を設置して、構造物の亀裂、傾斜、崩壊等の有無を判定することにより、災害状況を把握する技術の開示はされていない。
特開2000−057457号公報
この発明は、ビルなどの構造物の形状の変化に関する測位情報をリアルタイムに総合的に取得して、構造物を総合的に監視する手段を提供する。また、構造物の形状の変化を総合的に監視することにより、自然災害等の被害を広範囲にわたって状況把握することを目的とする。
この発明に係る構造物監視サーバは、
構造物の所定の位置に設置され、前記位置を測位し前記位置の測位結果を位置測位データとして出力する位置測位装置から、前記位置測位データを逐次入力する入力部と、
前記入力部が逐次入力した位置測位データを蓄積入力データとして蓄積する蓄積部と、
前記蓄積部の蓄積した蓄積入力データに基づいて前記構造物の形状に変化が生じているかどうかを判定する判定部と
を備えたことを特徴とする。
前記判定部は、
蓄積入力データを用いて位置測位データの時間変化を示す時間変化情報を求め、求めた時間変化情報により前記構造物の形状に変化が生じているかどうかを判定することを特徴とする。
前記判定部は、
構造物の形状の変化として、少なくとも前記構造物の歪み、亀裂、傾斜、崩壊のいずれかが生じているかどうかを判定することを特徴とする。
前記判定部は、
前記構造物の形状に変化が生じているかどうかを判定するための判定条件を記憶する判定条件記憶部を備えたことを特徴とする。
前記構造物監視サーバは、さらに、
災害が発生した場合に、前記判定部の判定に基づいて災害が発生した地域から避難地域まで避難する避難経路を作成する避難経路作成部を備えたことを特徴とする。
本発明に係る構造物監視システムは、
構造物の所定の位置に設置され、前記位置を測位し前記位置の測位結果を位置測位データとして出力する位置測位装置と、
前記位置測位装置が出力した位置測位データを逐次入力する入力部と、
前記入力部が逐次入力した位置測位データを蓄積入力データとして蓄積する蓄積部と、
前記蓄積部の蓄積した蓄積入力データに基づいて前記構造物の形状に変化が生じているかどうかを判定する判定部とを有する構造物監視サーバと
を備えたことを特徴とする。
前記位置測位装置は、
一つの構造物に少なくとも2つ設置されたことを特徴とする。
前記位置測位装置は、
複数の構造物に設置されたことを特徴とする。
本発明に係る構造物監視方法は、
構造物の所定の位置に設置され、前記位置を測位し前記位置の測位結果を位置測位データとして出力する位置測位装置から、前記位置測位データを逐次入力する工程と、
逐次入力した位置測位データを蓄積入力データとして蓄積する工程と、
蓄積した蓄積入力データに基づいて前記構造物の形状に変化が生じているかどうかを判定する工程と
を備えたことを特徴とする。
本発明に係る構造物監視プログラムは、
構造物の所定の位置に設置され、前記位置を測位し前記位置の測位結果を位置測位データとして出力する位置測位装置から、前記位置測位データを逐次入力する処理と、
逐次入力した位置測位データを蓄積入力データとして蓄積する処理と、
蓄積した蓄積入力データに基づいて前記構造物の形状に変化が生じているかどうかを判定する処理と
をコンピュータに実行させることを特徴とする。
本発明に係るコンピュータ読み取り可能な記録媒体は、
構造物の所定の位置に設置され、前記位置を測位し前記位置の測位結果を位置測位データとして出力する位置測位装置から、前記位置測位データを逐次入力する処理と、
逐次入力した位置測位データを蓄積入力データとして蓄積する処理と、
蓄積した蓄積入力データに基づいて前記構造物の形状に変化が生じているかどうかを判定する処理と
をコンピュータに実行させるための構造物監視プログラムを記録したことを特徴とする。
この発明により、構造物の形状の変化をリアルタイムで総合的に監視することができる。また、構造物の形状の変化を総合的に監視することにより、災害が発生した場合に被害を広範囲にわたって把握することができる。
実施の形態1.
図1〜図6を用いて実施の形態1を説明する。実施の形態1は、構造物監視サーバ100が、例えばビル(構造物の一例)に設置された位置測位装置の測位した自己(前記位置測位装置)の位置のデータ(位置測位データ)を受信して、受信した位置測位データに基づき、構造物の形状の変化を判定する構造物監視システムに関する実施形態である。なお、「構造物の形状の変化」及び「判定」の内容については、後述する。
図1は、実施の形態1に係る構造物監視システムを示す図である。ビルAには、位置測位装置21a,22a,23aが設置されている。後述する図2に示すように、位置測位装置21a〜23aは、ビルA等の屋外に固定的に設置され、かつ、GPS衛星等の送信する測位情報を受信できるように設置されている。位置測位装置21a〜23aは、自己が設置された位置を測位する。同様に、ビルBには位置測位装置24b,25b,26bが設置され、ビルCには位置測位装置27c,28c,29cが設置されている。ビルBに設置された位置測位装置24b〜26b、及びビルCに設置された位置測位装置27c〜29c等も、ビルAに設置された位置測位装置21a〜23aと同様に、自己が設置された位置を測位する。
これらの位置測位装置21a等は、前述のように、ビルA等に対して所定の位置に固定されて設置されている。したがって、位置測位装置21a等の測位による位置(位置測位データ)の変化は、ビルA等自体の変化、変位とみることができる。
前記の位置測位装置21a〜29c等は、測位した自己の位置を位置測位データとして、ネットワーク600を介して、構造物監視サーバ100に送信する。この構造物監視サーバ100は、構造物の状態を監視する監視センター(図示していない)に設置されている。構造物監視サーバ100は、位置測位データに基づき構造物の形状の変化を判定して、判定結果をユーザ端末400(例えば、自治体や企業等に設置されている)に送信する。なお、図1ではネットワーク600を介して位置測位データを入力し、また、判定結果をユーザ端末400に送信しているが、ネットワーク600の他、無線あるいは有線を介して入力し、送信しても構わない。
次に、構造物監視サーバ100について説明する。構造物監視サーバ100は、前述のように位置測位装置21a等から位置測位データを受信(入力)し、位置測位データに基づき構造物の形状の変化を判定して、判定結果をユーザ端末400に送信する。構造物監視サーバ100は、構成要素として、位置測位データを受信するデータ受信部110(入力部の一例)、受信した位置測位データを蓄積する位置データベース120(蓄積部の一例)、構造物の形状の変化を判定する構造物状態判定部130(判定部の一例)、判定結果をネットワーク600を介してユーザ端末400に送信するデータ送信部140とを備える。構造物状態判定部130は、構造物の形状の変化を判定する場合の判定条件を記憶する判定条件記憶部131、位置データベース120に蓄積した位置測位データを読み込んで判定の処理をする位置測位データ処理部132を備える。
次に、図2を用いて、ビルA等に設置された位置測位装置21a等による位置の測位について説明する。図2は、位置測位装置21a〜29cが、ビルA〜Cに設置された様子を示す図である。位置測位装置21a〜29cは、それぞれが受信アンテナ11a〜19cを有し、測位情報を送信する人工衛星から測位情報を受信する。ここで人工衛星として、例えばGPS(Global Positioning System)衛星、あるいは後述する「準天頂衛星40」がある。位置測位装置21a〜29cは、GPS衛星、準天頂衛星40から測位情報を受信して、自己の位置を測位する。本実施の形態においては、位置測位装置21a〜29cは、3機のGPS衛星31、32、33と1機の準天頂衛星40との合計4機の人工衛星から、それぞれの人工衛星が送信する測位情報を受信して、位置を測位する。なお、人工衛星からの測位情報を受信して測位する場合の他、人工衛星に限らず、地上局が送信する電波を使用して測位する場合でも構わない。また、電波を利用することなく自己の位置を測位しても構わない。ビルA等に固定的に設置された自己の位置が測位できればよい。
次に、準天頂衛星40について説明する。「準天頂衛星40」とは、通常の人工衛星に比べて高い仰角の衛星をいう。例えば、仰角は60度以上を確保することができる。この準天頂衛星40の特徴は、高い仰角であること、及び後述のように3機のうち1機は必ず日本上空に位置することである。実施の形態1の構造物監視システムでは、測位に必要な測位情報を4機の人工衛星から取得し、うち1機が準天頂衛星40である。準天頂衛星40は、赤道面から約45度の傾斜角になるように地球の上空を、地球の自転に合わせて1日に1周回する。準天頂衛星40は3機が配置され、配置される3機の準天頂衛星40は、その軌道面を異にし、8時間ずつ交代するように日本上空に位置する。したがって、日本の上空には前記3機の準天頂衛星40のうちいずれか1機が存在する。測位に必要な人工衛星4機のうちに、高仰角の準天頂衛星40が1機あることにより、4機の衛星から測位情報を受信できる確率が大きくなる。加えて、前記のように準天頂衛星40は、少なくとも1機は必ず日本上空に存在するため、準天頂衛星40も含めた4機の人工衛星から測位情報を受信できる確率は格段に高くなる。このように準天頂衛星40は、高仰角であることと、3機の準天頂衛星40のうち1機は日本上空に存在することにより、測位の確実性を高くする。
次に、図3を用いて動作を説明する。すなわち、位置測位装置21a等による測位から、構造物監視サーバ100によるビルA等の形状変化の判定までの動作を説明する。図3は、この位置の測位からビルA等の形状変化の判定までの過程を示すフローチャートである。
S101において、ビルA等(構造物の一例)の所定の位置に固定的に設置された位置測位装置21a等が、GPS衛星31、32、33、及び準天頂衛星40からの測位情報を受信して、各自の位置をリアルタイムで測位し、測位結果をリアルタイムで位置測位データとしてネットワーク600を介して構造物監視サーバ100に向けて逐次送信する。
S102において、構造物監視サーバ100のデータ受信部110は、位置測位装置21a〜29cの送信した位置測位データを逐次受信する。
S103において、位置データベース120は、データ受信部110が逐次受信した位置測位データを蓄積入力データとして蓄積する。位置データベース120は、蓄積入力データとして蓄積する位置測位データのうち、所定の位置測位データを「初期位置」と定める。また、「初期位置」以降に受信し蓄積した位置測位データを「最新位置」とし、「初期位置」と「最新位置」とを用いて、ビルA等の形状の変化を判定する。すなわち、「最新位置」とは、「初期位置」以降にデータ受信部110が受信し位置データベース120に蓄積入力データとして蓄積された位置測位データであり、かつ、「初期位置」とともに判定に使用される位置測位データをいう。そして、位置データベース120は、所定の時間ごとに「最新位置」を更新する。すなわち、蓄積入力データの中から、時系列的に後の時刻に入力したデータを、所定の時間ごとに「最新位置」として更新する。そして、後述のように、位置測位データ処理部132は、「初期位置」と前記更新したそれぞれの「最新位置」とを用いて、「最新位置」ごとに、ビルA等の形状の変化を判定する。
S104において、構造物状態判定部130は、前記位置データベース120の蓄積した蓄積入力データに基づいて前記ビルA等の形状に変化が生じているかどうかを判定する。すなわち、構造物状態判定部130は、ビルA、ビルB、ビルC等についての形状の変化として、歪み、亀裂、傾斜、崩壊等が生じているかどうかを判定する。具体的な判定の方法については後述する。なお、図2では例示として3つのビルであるビルA〜ビルCに位置測位装置21a〜29cを設置している場合を説明しているが、他のビルをはじめ、様々な構造物に位置測位装置が設置されていることを想定している。例えば、高層ビル等の建築物、団地のような複数の集団住宅の個々、橋、塔、原子力発電所、石油コンビナート、ガスタンクなど、災害が発生して構造物が被害を受けた場合に、国民に大きな影響を与えると考えられる構造物には少なくとも設置されることを想定している。さらに、前記高層ビル、集団住宅の個々、橋などの他にも、「構造物」としては、ダム、岸壁などに代表される港湾構造物、防波堤、道路の高架、鉄道の高架、及びモノレールの高架などが含まれる。
S105において、データ送信部140は、構造物状態判定部130が判定した、ビルA〜ビルCの形状の変化についての判定をネットワーク600を経由して自治体や企業等に設置されたユーザ端末400に送信する。自治体や企業等は、この判定結果により、リアルタイムでビルA等の形状の変化を知ることができる。すなわち、地震等の災害が発生した場合に、ビルA等の受けた被害、例えば、ビルAの歪みの状況や、亀裂が発生しているか、あるいはビルAが傾いてしまっているか、あるいは崩壊しているか等をリアルタイムで知ることができる。自治体、企業等は、この判定結果を用いて、避難計画の立案、復旧対策検討、あるいは二次被害防止検討などを実施することができる。また、経時的にビルA等の形状変化をモニターすることができる。
次に、具体的な判定の方法について説明する。ビルAを例に、歪み、あるいは亀裂が発生しているかどうかを判定する場合につて説明する。図4は、ビルAを上空からみた場合を示す図である。ビルAに設置された位置測位装置21a,22a,23aの測定した前述の「初期位置」(時刻t0の位置とする)を21a(0),22a(0),23a(0)とする。次に、時刻tにおける前述の「最新位置」を21a(t),22a(t),23a(t)とする。すなわち、位置測位装置21aについては21a(0)から21a(t)へ変位した状態を示している。他の測位箇所も同様である。構造物状態判定部130は、構造物の形状に変化が生じているかどうかを判定するための判定条件を記憶する判定条件記憶部131を備えている。構造物状態判定部130の位置測位データ処理部132は、判定条件記憶部131の記憶する判定条件(後述の(式1)、(式2))にしたがって判定を行なう。位置測位データ処理部132は、位置データベース120から蓄積入力データとして蓄積されている前記21a(0)等の位置測位データを読み込む。位置測位データ処理部132は、以下の4つの距離L12(0)、L23(0)、L12(t)、L23(t)を求める。すなわち、
L12(0)は、21a(0)と22a(0)との間の距離である。
L23(0)は、22a(0)と23a(0)との間の距離である。
L12(t)は、21a(t)と22a(t)との間の距離である。
L23(t)は、22a(t)と23a(t)との間の距離である。
位置測位データ処理部132は、時刻t0における2点間の距離と、時刻tにおける2点間の距離との差を示す、以下のD12(時間変化情報の一例)と、D23(時間変化情報の一例)とを算出する。すなわち、
D12=|L12(t)―L12(0)| (式1)
D23=|L23(t)―L23(0)| (式2)
ここで、D12(式1)、及びD23(式2)は、判定の対象となる値(以下、判定対象値という)である。位置測位データ処理部132は、D12とL12(0)、またD23とL23(0)とを用いて、それぞれの場合の歪みを求める。また、位置測位データ処理部132は、位置データベース120が更新した「最新位置」のそれぞれについて、上記の処理を繰り返して,D12,D23を求めていく。そして、両者D12、D23のうちいずれかが所定の基準値d1よりも大きい場合、亀裂が生じている可能性があると判断する。なお、この例では、位置測位装置21a,22a,23aの3つの箇所に設置された位置測位装置の測位結果を用いている。しかし、少なくとも2つの位置測位装置があれば、上記のD12(式1)による歪み、亀裂等の定が可能である。したがって、一つのビルには位置測位装置は数多く設置されているほうが望ましいが、2つの位置測位装置が設置されている場合でも構わない。
次に、図5を用いて、ビルAの傾斜、崩壊の判定について説明する。図5は、ビルAを上空から見た場合を示す図である。ビルAに設置された位置測位装置21a,22a,23aの測定したそれぞれの「初期位置」(時刻t0とする)を、上記の例と同じように、21a(0),22a(0),23a(0)とする。次に時刻tにおけるそれぞれの「最新位置」も同様に、21a(t),22a(t),23a(t)とする。位置測位データ処理部132は、位置データベース120からこれらを読み込む。そして、位置測位データ処理部132は、以下、判定条件記憶部131の記憶する傾斜、崩壊についての判定条件にしたがって判定を行なう。この場合の判定条件は、後述のように変位ベクトル1〜変位ベクトル3の大きさが所定の基準値よりも大きいかどうかにより、一つのビルAについての傾斜、崩壊の可能性を判定する。すなわち、位置測位装置21aを例にとると、位置測位データ処理部132は、時刻t0での「初期位置」の21a(0)と、時刻tでの「最新位置」の21a(t)とを用いて、変位ベクトル1(時間変化情報の一例)を求める。ビルAに設置された他の位置測位装置22a,位置測位装置23aについても、同様に変位ベクトル2、変位ベクトル3を求める。位置測位データ処理部132は、位置データベース120が更新した「最新位置」について、上記の処理を繰り返して変位ベクトル1〜変位ベクトル3の大きさを求めていく。これら変位ベクトル1、2、3等の大きさを判定対象値とする。そして、位置測位データ処理部132は、判定対象値である変位ベクトル1〜変位ベクトル3の大きさのうち、いずれか2つが所定の基準値d2よりも大きい場合は、ビルAに傾斜が生じている可能性があると判定する。また、基準値d2よりも大きい所定の基準値d3を前記の判定対象値が超える場合は、ビルAに崩壊の可能性があると判定する。
次に、図6を用いて、3つのビルである、ビルA、ビルB、ビルCについてのそれぞれの位置測位データにより、これらのビルの傾斜、崩壊を判定する場合を説明する。図6は、ビルA、ビルB、ビルCを上空から見た場合を示す図である。図6において、ビルAに設置された位置測位装置21a、ビルBに設置された位置測位装置24b、ビルCに設置された位置測位装置27cのそれぞれが測位した位置測位データを用いて判定する。ビルAの位置測位装置21a,ビルBの位置測位装置24b,ビルCの位置測位装置27cが測定した「初期位置」(時刻t0における)を、それぞれ21a(0),24b(0),27c(0)とする。また、時刻tにおけるそれぞれの「最新位置」を21a(t),24b(t),27c(t)とする。位置測位データ処理部132は、ビルAを基準に、ビルB、ビルCとの位置変化を判定する。位置測位データ処理部132は、上記の例と同様にこれらのデータを位置データベース120から読み込み、判定条件記憶部131の記憶する判定条件にしたがって判定する。位置測位データ処理部132は、以下の4つの距離、LAB(0)、LAC(0)、LAB(t)、LAC(t)を求める。すなわち、
AB(0)は、21a(0)と24b(0)との間の距離である。
AC(0)は、21a(0)と27c(0)との間の距離である。
AB(t)は、21a(t)と24b(t)との間の距離である。
AC(t)は、21a(t)と27c(t)との間の距離である。
位置測位データ処理部132は、判定条件記憶部131の記憶する判定条件にしたがっ
判定する。位置測位データ処理部132は、まず、LAB(0)等を用いて、ビルAとビルBについて時刻tでの距離と時刻t0での距離との差を示すDAB(時間変化情報の一例)と、ビルAとビルCについて時刻tでの距離と時刻t0での距離との差を示すDAC(時間変化情報の一例)とを求める。すなわち、
AB=|LAB(t)―LAB(0)|
と、
AC=|LAC(t)―LAC(0)|
とを求める。
次に、これらの和を示す下記の(式3)を作成し、Dを判定対象値として求める。すなわち、
D=DAB+DAC=|LAB(t)―LAB(0)|+|LAC(t)―LAC(0)| (式3)
位置測位データ処理部132は、位置データベース120が更新した「最新位置」についても、上記の処理を繰り返して、更新した「最新位置」のそれぞれについてDを求める。そして、この判定対象値であるDが所定の基準値d4より大きい場合は、傾斜の可能性があると判定する。さらに、判定対象値が基準値d4よりもさらに大きい基準値d5を超える場合は、崩壊の可能性があると判断する。
以上実施の形態1においては、構造物状態判定部130がビルA等の形状の変化を判定するので、ビルA等の形状の変化をリアルタイムで総合的に取得できる。
以上実施の形態1においては、構造物状態判定部130は、各ビルに設置された位置測位装置21a等の位置測位データから時間変化情報を求めてビルの形状の変化を判定するので、各ビルの時間経過に伴う形状の変化をモニターすることができる。また、モニターにより、変化の予測をすることができる。
以上実施の形態1においては、ビルの形状の変化として、歪み、亀裂、傾斜、崩壊等を判定するので、これらの具体的な形状の変化について個々のビルを検査することなく、総合的に監視することができる。
以上実施の形態1においては、判定条件記憶部131を備えたので、歪み、亀裂等の他、様々な形状の変化を容易に判定することができる。また、容易に判定条件を修正できるので、判定精度を向上することができる。
以上実施の形態1においては、一つのビル(構造物の一例)に少なくとも2つの位置測位装置を設置するので、ビルに生じる歪みや亀裂をリアルタイムで簡単に検知することが出きる。
以上実施の形態1においては、複数のビルに位置測位装置を設置するので、広範囲にわたって、亀裂、傾斜、崩壊等のビルの形状変化を把握することができる。
以上実施の形態1においては、位置測位装置21a等により位置を測位する場合、準天頂衛星から測位情報を受信するので、測位できる可能性を高めることができる。
実施の形態2.
次に、図7、図8、図9を用いて実施の形態2を説明する。実施の形態2は、構造物監視サーバ200が避難経路作成部150を備え、災害が発生した場合に構造物監視サーバ200がビルA等の傾斜、崩壊の被害状況を判定して、その判定に基づいて避難経路を作成し、作成した避難経路を自治体や企業に配置されたユーザ端末400に送信する実施形態である。
図7は、実施の形態2に係る構造物監視サーバ200の構成を示す図である。構造物監視サーバ200は、実施の形態1に係る構造物監視サーバ100に、さらに構成要素として、構造物状態判定部130の判定結果に基づいて避難経路を作成する避難経路作成部150と、避難経路の作成に使用する地図情報を記憶した地図情報データベース151とを備えた構成である。
次に、図8を参照して動作について説明する。図8は、位置測位装置21a等による測位から構造物監視サーバ200がビルA等の形状の変化を判定し、避難経路を作成するまでの過程を示すフローチャートである。
S201〜S204は、S101〜S104と同様である。すなわち、S201ではS101と同様に、位置測位装置21a等が測位して位置測位データを出力する。S202ではS102と同様に、構造物監視サーバ200のデータ受信部110が位置測位データを逐次受信する。S203ではS103と同様に、位置データベース120が位置測位データを蓄積入力データとして蓄積する。S204では、構造物状態判定部130が判定を行なう。
S205において、監視センター(図示していない)の備える構造物監視サーバ200は、監視センターの外部から、災害の発生、発生した災害の種類、発生地域、発生時刻等を含む災害発生情報を受信する。災害発生情報により、位置測位データ処理部132は、判定対象値を参照して、避難経路を作成する必要があるどうかを決定する。判定対象値が所定の基準値Sよりも大きい場合(例えばビルの傾斜や崩壊が発生している可能性があると判定した場合が該当)は、避難経路の作成を決定し、避難経路を作成する(S206)。一方、位置測位データ処理部132は、判定対象値が所定の基準値S以下の場合は、避難経路の作成の必要はなしと決定する。そして避難経路を作成することなく判定結果のみをデータ送信部140からユーザ端末400に向けて送信する(S207)。なお、前記では災害発生情報を外部から受信しているが、位置測位データ処理部132は、判定対象値を、予め記憶する災害発生を示す所定の基準値と比較して災害が発生したかどうかを判断するようにしても構わない。
S206において、避難経路作成部150は、避難経路を作成する。災害が発生した場合に、位置測位データ処理部132による判定に基づき避難経路の作成が必要との決定により、避難経路作成部150は、災害が発生した地域から避難地域まで避難する避難経路を作成しユーザ端末400に送信する。図9は、避難経路作成部150の作成する避難経路の一例を示す図である。例えば、図9に示す地図として表示した避難経路をユーザ端末400に送信する。避難経路作成部150は、位置測位データ処理部132の判定に基づき、地図情報データベース151に記憶する地図情報と、外部からの災害発生情報とを用いて、避難経路を作成する。ハッチング部分は、いずれもビルを表わす。この例では、位置測位データ処理部132がビルDを崩壊したと判定した状態を想定しており、避難経路520は、「崩壊したビルD」(災害が発生した地域の一例)から公園510(避難地域の一例)までの避難経路を作成した様子を示している。また、避難経路作成部150は、「×印」によりビルDが崩壊しビルD前の道路が危険で進入するべきでないことを示している。また、ビルE、ビルFについては、ビル前の道路の「△」印により、判定によりビルE、ビルFは傾斜し、及びそれぞれの前の道路がビルE、Fの傾斜のため危険であり進入するべきでないことを示している。
S207において、データ送信部140は、図9に示す地図形式の避難経路を企業体や自治体等に設置されたユーザ端末400に送信する。
以上実施の形態2においては、構造物監視サーバ200は避難経路作成部150を備えたので、すばやく自治体等に情報提供をすることができる。また、迅速に避難の誘導をすることができる。
以上実施の形態2においては、構造物状態判定部130がビルの形状変化を判定するので、災害が発生した場合には、早期復旧対策の検討に使用することができる。また、二次災害発生防止に役立てることができる。
実施の形態3.
図10を用いて実施の形態3を説明する。実施の形態3は、前記の実施の形態1に係る構造物監視サーバ100及び実施の形態2に係る構造物監視サーバ200の各構成要素の動作を、方法、プログラム及びプログラムを記録した記録媒体とした実施形態である。
前記の実施の形態1、実施の形態2においては、構造物監視サーバ100、構造物監視サーバ200の各構成要素の各動作は、互いに関連しており、各構成要素の動作は、前記に示した動作の関連を考慮しながら、一連の動作として置き換えることができる。そして、このように置き換えることにより、方法の発明の実施形態とすることができる。
また、上記各構成要素の動作を、各構成要素の処理と置き換えることにより、プログラムの実施形態とすることができる。
また、プログラムを、コンピュータ読み取り可能な記録媒体に記録させることで、プログラムを記録したコンピュータ読み取り可能な記録媒体の実施の形態とすることができる。
プログラムの実施の形態及びプログラムを記録したコンピュータ読み取り可能な記録媒体の実施の形態は、すべてコンピュータで動作可能なプログラムにより構成することができる。
図10は、実施の形態1に係る構造物監視サーバ100の動作、または実施の形態2に係る構造物監視サーバ200の動作をプログラムにより実行する場合を示す、実施の形態3に係る構造物監視サーバ300を示す。図10において、プログラムを実行するCPU(Central Processing Unit)80は、バス98を介して、磁気記憶装置90、外部装置接続部94、データ送信部140、表示部70、キーボード102(入力装置の一例)、ROM(Read Only Memory)95及びデータ受信部110等と接続されている。磁気記憶装置90には、オペレーティングシステム(OS)91、プログラム群92、位置測位データ等を含むデータ群93が記憶されている。プログラム群92は、CPU80、OS91により実行される。また、外部装置接続部94には、例としてDVD(Digital Versatile Disc)ドライブが接続可能である。構造物監視プログラムを記録したDVD97(プログラムを記録したコンピュータ読み取り可能な記録媒体の一例)をDVDドライブ96にセットして、この構造物監視プログラムをプログラム群92の一つとして記憶させることができる。
プログラムの実施の形態及びプログラムを記録したコンピュータ読み取り可能な記録媒体の実施の形態における各処理は、プログラムで実行されるが、このプログラムは、磁気記憶装置90に記録されていて、磁気記憶装置90からCPU80に読み込まれ、CPU80によって各動作が実行される。また、各実施の形態のソフトウェアやプログラムは、ROM95に記憶されたファームウェアで実行されても構わない。あるいは、ソフトウェアとファームウェアとハードウェアの組み合わせで前述したプログラムを実現しても構わない。
実施の形態1に係る構造物監視システムを示す図である。 位置測位装置21a〜29cが、ビルA〜Cに設置された様子を示す図である。 位置の測位からビルA等の形状変化の判定までの過程を示すフローチャートである。 ビルAを上空から見た場合を示す図である。 ビルAを上空から見た場合を示す図である。 ビルA、ビルB、ビルCを上空から見た場合を示す図である。 実施の形態2に係る構造物監視サーバ200の構成を示す図である。 測位から形状の変化を判定し、避難経路を作成するまでの過程を示すフローチャートである。 避難経路作成部150の作成する避難経路の一例を示す図である。 実施の形態3に係る構造物監視サーバ300を示す。
符号の説明
1,2,3 変位ベクトル、11a,12a,13a,14b,15b,16b,17c,18c,19c 受信アンテナ、21a,22a,23a,24b,25b,26b,27c,28c,29c 位置測位装置、31,32,33 GPS衛星、40 準天頂衛星、70 表示部、80 CPU、90 磁気記憶装置、91 OS、92 プログラム群、93 データ群、94 外部装置接続部、95 ROM、96 DVDドライブ、97 DVD、98 バス、100 構造物監視サーバ、102 キーボード、110 データ受信部、120 位置データベース、130 構造物状態判定部、131 判定条件記憶部、132 位置測位データ処理部、140 データ送信部、150 避難経路作成部、151 地図情報データベース、200,300 構造物監視サーバ、400 ユーザ端末、510 公園、520 避難経路、600 ネットワーク。

Claims (11)

  1. 構造物の所定の位置に設置され、前記位置を測位し前記位置の測位結果を位置測位データとして出力する位置測位装置から、前記位置測位データを逐次入力する入力部と、
    前記入力部が逐次入力した位置測位データを蓄積入力データとして蓄積する蓄積部と、
    前記蓄積部の蓄積した蓄積入力データに基づいて前記構造物の形状に変化が生じているかどうかを判定する判定部と
    を備えたことを特徴とする構造物監視サーバ。
  2. 前記判定部は、
    蓄積入力データを用いて位置測位データの時間変化を示す時間変化情報を求め、求めた時間変化情報により前記構造物の形状に変化が生じているかどうかを判定することを特徴とする請求項1記載の構造物監視サーバ。
  3. 前記判定部は、
    構造物の形状の変化として、少なくとも前記構造物の歪み、亀裂、傾斜、崩壊のいずれかが生じているかどうかを判定することを特徴とする請求項1または2記載の構造物監視サーバ。
  4. 前記判定部は、
    前記構造物の形状に変化が生じているかどうかを判定するための判定条件を記憶する判定条件記憶部を備えたことを特徴とする請求項1または2または3記載の構造物監視サーバ。
  5. 前記構造物監視サーバは、さらに、
    災害が発生した場合に、前記判定部の判定に基づいて災害が発生した地域から避難地域まで避難する避難経路を作成する避難経路作成部を備えたことを特徴とする請求項1または2または3または4記載の構造物監視サーバ。
  6. 構造物の所定の位置に設置され、前記位置を測位し前記位置の測位結果を位置測位データとして出力する位置測位装置と、
    前記位置測位装置が出力した位置測位データを逐次入力する入力部と、
    前記入力部が逐次入力した位置測位データを蓄積入力データとして蓄積する蓄積部と、
    前記蓄積部の蓄積した蓄積入力データに基づいて前記構造物の形状に変化が生じているかどうかを判定する判定部とを有する構造物監視サーバと
    を備えたことを特徴とする構造物監視システム。
  7. 前記位置測位装置は、
    一つの構造物に少なくとも2つ設置されたことを特徴とする請求項6記載の構造物監視システム。
  8. 前記位置測位装置は、
    複数の構造物に設置されたことを特徴とする請求項6記載の構造物監視システム。
  9. 構造物の所定の位置に設置され、前記位置を測位し前記位置の測位結果を位置測位データとして出力する位置測位装置から、前記位置測位データを逐次入力する工程と、
    逐次入力した位置測位データを蓄積入力データとして蓄積する工程と、
    蓄積した蓄積入力データに基づいて前記構造物の形状に変化が生じているかどうかを判定する工程と
    を備えたことを特徴とする構造物監視方法。
  10. 構造物の所定の位置に設置され、前記位置を測位し前記位置の測位結果を位置測位データとして出力する位置測位装置から、前記位置測位データを逐次入力する処理と、
    逐次入力した位置測位データを蓄積入力データとして蓄積する処理と、
    蓄積した蓄積入力データに基づいて前記構造物の形状に変化が生じているかどうかを判定する処理と
    をコンピュータに実行させることを特徴とする構造物監視プログラム。
  11. 構造物の所定の位置に設置され、前記位置を測位し前記位置の測位結果を位置測位データとして出力する位置測位装置から、前記位置測位データを逐次入力する処理と、
    逐次入力した位置測位データを蓄積入力データとして蓄積する処理と、
    蓄積した蓄積入力データに基づいて前記構造物の形状に変化が生じているかどうかを判定する処理と
    をコンピュータに実行させるための構造物監視プログラムを記録したコンピュータ読み取り可能な記録媒体。
JP2003356238A 2003-10-16 2003-10-16 構造物監視サーバ及び構造物監視システム及び構造物監視方法及び構造物監視プログラム及び構造物監視プログラムを記録したコンピュータ読み取り可能な記録媒体 Pending JP2005121464A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003356238A JP2005121464A (ja) 2003-10-16 2003-10-16 構造物監視サーバ及び構造物監視システム及び構造物監視方法及び構造物監視プログラム及び構造物監視プログラムを記録したコンピュータ読み取り可能な記録媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003356238A JP2005121464A (ja) 2003-10-16 2003-10-16 構造物監視サーバ及び構造物監視システム及び構造物監視方法及び構造物監視プログラム及び構造物監視プログラムを記録したコンピュータ読み取り可能な記録媒体

Publications (1)

Publication Number Publication Date
JP2005121464A true JP2005121464A (ja) 2005-05-12

Family

ID=34613548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003356238A Pending JP2005121464A (ja) 2003-10-16 2003-10-16 構造物監視サーバ及び構造物監視システム及び構造物監視方法及び構造物監視プログラム及び構造物監視プログラムを記録したコンピュータ読み取り可能な記録媒体

Country Status (1)

Country Link
JP (1) JP2005121464A (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007256036A (ja) * 2006-03-23 2007-10-04 Maeda Corp 建造物健全性判定システム
JP2008175676A (ja) * 2007-01-18 2008-07-31 Maeda Corp 仮設構造体の健全性判定システム
JP2008175675A (ja) * 2007-01-18 2008-07-31 Maeda Corp 長大構造物の健全性判定システム
JP2009517679A (ja) * 2006-01-10 2009-04-30 ライカ ジオシステムズ アクチェンゲゼルシャフト 高層構造の測量方法とシステム
JP2012154912A (ja) * 2011-06-27 2012-08-16 Ohbayashi Corp 計測システム、計算装置及び構造物
JP2014134436A (ja) * 2013-01-09 2014-07-24 Ntt Facilities Inc 建物安全性検証システム及び建物安全検証方法
JP2014206908A (ja) * 2013-04-15 2014-10-30 大和ハウス工業株式会社 液状化対策工法の液状化による期待被害額の評価方法
JP2015127707A (ja) * 2015-01-22 2015-07-09 株式会社Nttファシリティーズ 建物安全性検証システム、建物安全性検証方法及びプログラム
WO2015125532A1 (ja) * 2014-02-21 2015-08-27 古野電気株式会社 構造物の変位検出装置、構造物の変位の共有システム、構造物の変位検出方法、および構造物の変位検出プログラム
JP2016500807A (ja) * 2013-08-16 2016-01-14 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 柱の物理的な変形を検出するためのシステム及び方法
JP2016017846A (ja) * 2014-07-08 2016-02-01 株式会社Nttファシリティーズ 構造物安全性検証システム、構造物安全性検証方法及びプログラム
JP5915916B1 (ja) * 2015-02-20 2016-05-11 国際航業株式会社 観測システム
FR3038068A1 (fr) * 2015-06-29 2016-12-30 Altran Tech - Altran Procede de detection d'un seisme et systeme mettant en œuvre ce procede
WO2020004538A1 (ja) * 2018-06-29 2020-01-02 パナソニックIpマネジメント株式会社 構造物監視サーバおよび構造物監視システム

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009517679A (ja) * 2006-01-10 2009-04-30 ライカ ジオシステムズ アクチェンゲゼルシャフト 高層構造の測量方法とシステム
JP2007256036A (ja) * 2006-03-23 2007-10-04 Maeda Corp 建造物健全性判定システム
JP2008175676A (ja) * 2007-01-18 2008-07-31 Maeda Corp 仮設構造体の健全性判定システム
JP2008175675A (ja) * 2007-01-18 2008-07-31 Maeda Corp 長大構造物の健全性判定システム
JP2012154912A (ja) * 2011-06-27 2012-08-16 Ohbayashi Corp 計測システム、計算装置及び構造物
US10429269B2 (en) 2013-01-09 2019-10-01 Ntt Facilities, Inc. Building safety verification system and building safety verification method
JP2014134436A (ja) * 2013-01-09 2014-07-24 Ntt Facilities Inc 建物安全性検証システム及び建物安全検証方法
JP2014206908A (ja) * 2013-04-15 2014-10-30 大和ハウス工業株式会社 液状化対策工法の液状化による期待被害額の評価方法
JP2016500807A (ja) * 2013-08-16 2016-01-14 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 柱の物理的な変形を検出するためのシステム及び方法
US9983313B2 (en) 2013-08-16 2018-05-29 Philips Lighting Holding B.V. System and method for detecting physical deformation of a pole
WO2015125532A1 (ja) * 2014-02-21 2015-08-27 古野電気株式会社 構造物の変位検出装置、構造物の変位の共有システム、構造物の変位検出方法、および構造物の変位検出プログラム
JPWO2015125532A1 (ja) * 2014-02-21 2017-03-30 古野電気株式会社 構造物の変位検出装置、構造物の変位の共有システム、構造物の変位検出方法、および構造物の変位検出プログラム
US10209159B2 (en) 2014-02-21 2019-02-19 Furuno Electric Co., Ltd. Displacement detecting device for structural object, sharing system of displacement of structural object, and method and program of detecting displacement of structural object
CN105940320A (zh) * 2014-02-21 2016-09-14 古野电气株式会社 结构物的位移检测装置、结构物的位移的共有系统、结构物的位移检测方法、以及结构物的位移检测程序
JP2016017846A (ja) * 2014-07-08 2016-02-01 株式会社Nttファシリティーズ 構造物安全性検証システム、構造物安全性検証方法及びプログラム
JP2015127707A (ja) * 2015-01-22 2015-07-09 株式会社Nttファシリティーズ 建物安全性検証システム、建物安全性検証方法及びプログラム
JP2016153726A (ja) * 2015-02-20 2016-08-25 国際航業株式会社 観測システム
JP5915916B1 (ja) * 2015-02-20 2016-05-11 国際航業株式会社 観測システム
FR3038069A1 (fr) * 2015-06-29 2016-12-30 Altran Tech - Altran Procede de detection d’un seisme et systeme mettant en oeuvre ce procede
FR3038068A1 (fr) * 2015-06-29 2016-12-30 Altran Tech - Altran Procede de detection d'un seisme et systeme mettant en œuvre ce procede
WO2020004538A1 (ja) * 2018-06-29 2020-01-02 パナソニックIpマネジメント株式会社 構造物監視サーバおよび構造物監視システム

Similar Documents

Publication Publication Date Title
JP2005121464A (ja) 構造物監視サーバ及び構造物監視システム及び構造物監視方法及び構造物監視プログラム及び構造物監視プログラムを記録したコンピュータ読み取り可能な記録媒体
Yi et al. Experimental assessment of high-rate GPS receivers for deformation monitoring of bridge
JP7244794B2 (ja) Sar画像解析システム
JP2020513571A (ja) 建造物の構造的健全性の監視用の装置、システムおよび方法、ならびにセンサモジュール
JP5340543B2 (ja) 仮設構造体の健全性判定システム
KR101919897B1 (ko) 계측기 통합트리거링을 이용한 수리구조물 통합 모니터링 시스템 및 그 방법
JPH11256627A (ja) 地中埋設物及び構造物内の配管路全体を総合危機予知警報センサとして使用する方法及び総合危機予知防災監視システム
US12124777B2 (en) Equipment state detection device, equipment state detection method, and program
CN110579787A (zh) 基于北斗多天线姿态测量的电力铁塔高精度倾斜监测方法
KR102232918B1 (ko) 실시간 인공지능 기반 건물 상태진단 시스템의 침하감지기
JP7351849B2 (ja) 構造物の損傷原因推定システム、損傷原因推定方法、及び損傷原因推定サーバ
KR101763337B1 (ko) 진동 가속도와 변위 계측 기반 재난 경보 시스템 및 방법
JP2015162095A (ja) 地すべり保全管理システムおよび地すべり保全管理方法
KR102097039B1 (ko) 공간정보 기반의 지능형 구조물 안전 모니터링 플랫폼
CN111858813A (zh) 一种基于卫星技术的非火点区域排除方法
JP2021165704A (ja) 鉄塔監視装置、鉄塔監視方法、及びプログラム、並びに鉄塔監視システム
Roberts et al. Structural dynamic and deflection monitoring using integrated GPS and triaxial accelerometers
CN114061539A (zh) 一种基于北斗定位的电力杆塔倾斜沉降监测系统及方法
CN118011269A (zh) 一种基于北斗的智能接地线系统及方法
JP5556018B2 (ja) 基準墨の位置精度の監視システム、基準墨の位置精度の監視方法
JP6081867B2 (ja) 構造物劣化診断システム
JP7505597B2 (ja) 情報処理装置、情報処理方法、及びプログラム
KR100760215B1 (ko) 지엔에스에스를 이용한 시설물 시공 관리 시스템
WO2021084697A1 (ja) 災害対応支援装置および災害対応支援方法
JP2012085139A (ja) 離隔距離の計算装置としてコンピュータを機能させるためのプログラム