JP5709672B2 - 電子写真感光体およびこれを備えた画像形成装置 - Google Patents

電子写真感光体およびこれを備えた画像形成装置 Download PDF

Info

Publication number
JP5709672B2
JP5709672B2 JP2011145607A JP2011145607A JP5709672B2 JP 5709672 B2 JP5709672 B2 JP 5709672B2 JP 2011145607 A JP2011145607 A JP 2011145607A JP 2011145607 A JP2011145607 A JP 2011145607A JP 5709672 B2 JP5709672 B2 JP 5709672B2
Authority
JP
Japan
Prior art keywords
photoconductive layer
dopant
photosensitive member
electrophotographic photosensitive
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011145607A
Other languages
English (en)
Other versions
JP2013011808A (ja
Inventor
義伸 石井
義伸 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2011145607A priority Critical patent/JP5709672B2/ja
Publication of JP2013011808A publication Critical patent/JP2013011808A/ja
Application granted granted Critical
Publication of JP5709672B2 publication Critical patent/JP5709672B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電子写真感光体およびこれを備えた画像形成装置に関するものである。
従来、電子写真感光体は、例えば特許文献1に記載されているように円筒状などの基体の表面に、光導電層や表面層などを堆積膜として形成することにより製造されている。堆積膜の形成方法としては、高周波グロー放電により原料ガスを分解させたときの分解生成物を、基体に被着させる方法(プラズマCVD法)が広く採用されている。
しかしながら、このような堆積膜の形成方法では、電子写真感光体の軸方向における光導電層の膜厚にばらつきが生じることがあった。光導電層の膜厚にばらつきが生じると、電子写真感光体の帯電能にばらつきが生じ、結果として画像ムラが発生するという問題があった。
特開平08−137115
本願発明は、上記問題に鑑みなされたものであり、光導電層の膜厚にばらつきが生じたとしても、特性ムラの発生が少ない電子写真感光体を提供することを目的とする。
本発明の一実施形態に係る電子写真感光体は、円筒状基体と、該円筒状基体上に形成された、少なくとも光導電層を含む感光層とを備えた電子写真感光体において、前記光導電層は、ドーパントを含有するアモルファスシリコンを含むとともに、前記円筒状基体の一端から他端に向かって厚くなっている第1領域を有し、前記ドーパントの濃度が、前記第1領域において前記光導電層の厚みが厚くなるにつれて前記光導電層の導電率が高くなるように変化していることを特徴とする。
また、本発明の一実施形態に係る画像形成装置は、上記電子写真感光体と、該電子写真感光体の軸方向における一端部に回転の駆動力を伝達する駆動力伝達部と、前記軸方向に沿って同一極性の帯電能力を有する帯電器とを備えることを特徴とする。
上述の電子写真感光体によれば、円筒状基体と、該円筒状基体上に形成された、少なくとも光導電層を含む感光層とを備えた電子写真感光体において、前記光導電層は、ドーパントを含有するアモルファスシリコンを含むとともに、前記円筒状基体の一端から他端に向かって厚くなっている第1領域を有し、前記ドーパントの濃度が、前記第1領域において前記光導電層の厚みが厚くなるにつれて前記光導電層の導電率が高くなるように変化していることから、光導電層の膜厚にばらつきが生じ、電子写真感光体の軸方向における帯電能のばらつきが生じたとしても、特性ムラの少ない電子写真感光体を実現することができる。
図1(a)は、本発明の一実施形態に係る電子写真感光体の断面図であり。図1(b)は、図1(a)の要部断面図である。 図2は、堆積膜形成装置の縦断面図である。 図3は、図3(a)は、光導電層の膜厚と帯電量の関係を模式的に示した図である。図3(b)は、光導電層の導電率と単位時間当たりの放電量の関係を模式的に示した図である。 図4は、導電率とホウ素含有量の関係を模式的に示した図である。 図5は、本発明の一実施形態に係る画像形成装置の断面図である。 図6は、感光体の位置と光導電層の膜厚およびリンの含有量との関係を模式的に示した図である。 図7(a)〜(f)は、感光体の位置と光導電層の膜厚およびホウ素の含有量との関係を模式的に示した図である。
以下、本発明の電子写真感光体およびこれを備えた画像形成装置について、図面を参照しつつ説明する。
(電子写真感光体の実施形態)
図1に示した電子写真感光体1は、円筒状基体10の外周面に電荷注入素子層11a、光導電層11bおよび保護層11cを順次形成した感光層11が被着されている。
円筒状基体10は、感光体の支持体となるものであり、少なくとも表面に導電性を有するものとして形成される。この円筒状基体10は、たとえばアルミニウム(Al)、ステンレス(SUS)、亜鉛(Zn)、銅(Cu)、鉄(Fe)、チタン(Ti)、ニッケル(Ni)、クロム(Cr)、タンタル(Ta)、スズ(Sn)、金(Au)、銀(Ag)などの金属材料、もしくは例示した金属材料を含む合金材料により、全体が導電性を有するものとして形成されている。円筒状基体10はまた、樹脂、ガラス、セラミックなどの絶縁体の表面に例示した金属材料、あるいはITOおよびSnOなどの透明導電性材料による導電性膜を被着したものであってもよい。例示した材料のうち、円筒状基体10を形成するための材料としては、Al系材料を用いるのが最も好ましく、また円筒状基体10の全体をAl系材料により形成するのが好ましい。そうすれば、電子写真感光体1を軽量かつ低コストで製造可能となり、その上、電荷注入阻止層11aや光導電性層11bをa−Si系材料により形成する場合には、それらの層と円筒状基体10との間の密着性が高くなって信頼性を向上させることができる。
電荷注入阻止層11aは、円筒状基体10からのキャリア(電子)の注入を阻止するためのものであり、たとえばa−Si系材料により形成されている。この電荷注入阻止層11aは、たとえばa−Siに、ドーパントとしてホウ素(B)、窒素(N)、あるいは酸素(O)を含有させたものとして形成されており、その厚みは2μm以上10μm以下とされている。
光導電層11bは、レーザ光などの光照射によってキャリアを発生させるためのものであり、たとえばa−Si系材料、あるいはSe−Te、AsSe3などのa−Se系材
料により形成されている。ただし、電子写真特性(たとえば光導電性特性、高速応答性、繰り返し安定性、耐熱性あるいは耐久性)および表面層11cをa−Si系に材料により形成した場合における表面層11cとの整合性を考慮した場合には、光導電層11bは、a−Si、もしくはa−Siに炭素(C)、窒素(N)、酸素(O)などを加えたa−Si系材料により形成するのが好ましく、本実施形態ではドーパントとしてホウ素(B)を含有させたものとして形成している。
また、光導電層11bの厚みは、使用する光導電性材料および所望の電子写真特性によ
り適宜設定すればよく、a−Si系材料を用いて光導電層11bを形成する場合には、光導電層11bの厚みは、たとえば5μm以上100μm以下、好適には10μm以上80μm以下とされるが、本実施形態の光導電層11bの厚みは電子写真感光体1の軸方向の一端から他端に向かって漸次厚くなっている。なお、光導電層11bの厚みが漸次厚くなっているのは、後に説明するプラズマCVD装置2などの設備特性によるものであり、意図的に厚みを変化させたものではない。
そして、光導電層11bはp型半導体であり、電子写真感光体1の軸方向における光導電層11bに含有されるホウ素(B)の量は、光導電層11bの厚みが厚くなるにつれ増加させる。
ここで、ホウ素(B)の含有量が光導電層11bの厚みが厚くなるにつれ増加させる理由を述べる。
上述したように、後に説明するプラズマCVD装置2で電子写真感光体1を製造すると、例えば感光層11の厚みが図2の上下方向の中央部で厚くなる傾向にある。本実施形態のプラズマCVD装置2では、円筒状基体10を軸方向に2本設置し、2本の電子写真感光体1を同時に製造する。したがって、各々の電子写真感光体1の一端から他端に向かって感光層11の厚みが漸次厚くなる。感光層11の厚みが厚くなると光導電層の厚みも同様に厚くなる。
光導電層の厚みは帯電能に影響を与え、図3(a)に示すように、光導電層の厚みが厚ければ帯電量が増える。つまり、電子写真感光体1の光導電層の厚みがばらつくことは帯電量がばらつくことであり、画像印刷装置などに組み込まれた場合には、画像ムラなどの発生要因の一つとなる。
そこで、光導電層11bの厚みがばらつき、帯電量がばらついたとしても画像ムラの発生しない電子写真感光体1とするためには、光導電層11bが帯電してから一定時間経過後、具体的には、帯電してからトナーなどを吸着させることにより現像するまでの時間の経過後の帯電量の電子写真感光体1の軸方向の線上でのばらつきを比較的小さくなるようにすればよい。
そのためには、光導電層11bの帯電量が多くなる部分、つまり光導電層11bの厚みが厚い部分の単位時間当たりの放電量を多くし、光導電層11bの帯電量が少ない部分、つまり光導電層11bの厚みが薄い部分の単位時間当たりの放電量を少なくすることにより、一定時間後の帯電量のばらつきを比較的小さくすればよい。
図3(b)に示すように、光導電層11bの放電量は、光導電層11bの導電率に比例する。また、光導電層11bの導電率は、添加されるドーパントの材料や添加量によって変化する。
例えば、本実施形態の場合、ドーパントとして第13族元素のホウ素(B)が添加されている。図4に示すように、光導電層11bがn型半導体である場合には、ホウ素(B)の含有量を増やすにつれて導電率は低くなり、光導電層11bがp型半導体である場合には、ホウ素(B)の含有量を増やすにつれて導電率は高くなる。ここで、ドーパントとしてのホウ素(B)はアクセプターとして機能するため、一般的にp型半導体となると考えられるが、ダングリングボンドの影響や、光導電層11bの成膜中に窒素(N)や酸素(O)が不可避的に取り込まれるとすると、これらの元素はそれぞれ周期表第15族元素、第16族元素であるため、ドナーとして機能することによりn型半導体となるものと考える。
よって、光導電層11bがp型半導体である場合には、光導電層11bの膜厚が厚い部分のホウ素(B)の含有量を増やすことにより、光導電層11bの導電率を高くする、つまり単位時間当たりの放電量を増やすことで、一定時間経過後の光導電層11bの帯電量の電子写真感光体1の軸方向の線上でのばらつきを比較的小さくすることができる。
同様に、光導電層11bがn型半導体である場合には、光導電層11bの膜厚が厚い部分のホウ素(B)の含有量を減らすことにより、光導電層11bの導電率を高くする、つまり単位時間当たりの放電量を増やすことで、一定時間経過後の光導電層11bの帯電量の電子写真感光体1の軸方向の線上でのばらつきを比較的小さくすることができる。
表面層11cは、電子写真感光体1の表面を保護するためのものであり、画像形成装置内での摺擦による削れに耐え得るように、たとえばa−SiCやa−SiNなどのa−Si系材料、あるいはa−Cなどにより形成されている。この表面層11cは、電子写真感光体1に照射されるレーザ光などの光が吸収されることのないように、照射される光に対して充分広い光学バンドギャップを有しており、また、画像形成における静電潜像を保持出来得る抵抗値(一般的には1011Ω・cm以上)を有している。
電子写真感光体1における電荷注入阻止層11a、光導電層11bおよび表面層11cは、たとえば図2に示したプラズマCVD装置2を用いることにより形成される。
(プラズマCVD装置)
プラズマCVD装置2は、支持体3を真空反応室4に収容したものであり、回転手段5、原料ガス供給手段6および排気手段7をさらに備えている。
支持体3は、円筒状基体10を支持するためのものである。この支持体3は、フランジ部30を有する中空状に形成されているとともに、円筒状基体10と同様な導電性材料により全体が導体として形成されている。本実施形態の場合、支持体3は、2つの円筒状基体10を支持できる長さ寸法に形成されており、導電性支柱31に対して着脱自在とされている。そのため、支持体3では、支持した2つの円筒状基体10の表面に直接触れることなく、真空反応室4に対して2つの円筒状基体10の出し入れを行なうことができる。
導電性支柱31は、円筒状基体10と同様な導電性材料により全体が導体として形成されており、真空反応室4(後述する円筒状電極40)の中心において、後述するプレート42に対して絶縁材32を介して固定されている。導電性支柱31には、導板33を介して直流電源34が接続されている。この直流電源34は、制御部35によってその動作が制御されている。制御部35は、直流電源34を制御することにより、導電性支柱31を介して、支持体3にパルス状の直流電圧を供給させるように構成されている。
導電性支柱31の内部には、セラミックパイプ36を介してヒータ37が収容されている。セラミックパイプ36は、絶縁性および熱伝導性を確保するためのものである。ヒータ37は、円筒状基体10を加熱するためのものである。ヒータ37としては、たとえばニクロム線やカートリッジヒーターを使用することができる。
ここで、支持体3の温度は、たとえば支持体3あるいは導電性支柱31に取り付けられた熱電対(図示略)によりモニタされており、この熱電対におけるモニタ結果に基づいて、ヒータ37をオン・オフさせることにより、円筒状基体10の温度が目的範囲、たとえば200℃以上400℃以下から選択される一定の範囲に維持される。
真空反応室4は、円筒状基体10に対して堆積膜を形成するための空間であり、円筒状電極40および一対のプレート41、42により規定されている。
円筒状電極40は、支持体3の周囲を囲む円筒状に形成される。この円筒状電極40は、円筒状基体10と同様な導電性材料により中空に形成されており、絶縁部材43、44を介して一対のプレート41、42に接合されている。
円筒状電極40は、支持体3に支持させた円筒状基体10と円筒状電極40との間の距離D1が10mm以上100mm以下となるような大きさに形成されている。これは、円筒状基体10と円筒状電極40との距離D1が10mmよりも小さい場合は真空反応室4に対する円筒状基体10の出し入れなどにおいて作業性を充分に確保できず、また円筒状基体10と円筒状電極40との間で安定した放電が得ることが困難となり、逆に、円筒状基体10と円筒状電極40との距離D1が100mmよりも大きい場合は、プラズマCVD装置2が大きくなってしまい単位設置面積当たりの生産性が悪くなるためである。
円筒状電極40は、ガス導入口45a、45bおよび複数のガス吹き出し孔46が設けられているとともに、その一端において接地されている。なお、円筒状電極40は、必ずしも接地する必要はなく、直流電源34とは別の基準電源に接続してもよい。円筒状電極40を直流電源34とは別の基準電源に接続する場合、基準電源における基準電圧は、支持体3(円筒状基体10)に対して負のパルス状電圧を印加する場合には、−1500V以上1500V以下とされ、支持体3(円筒状基体10)に対して正のパルス状電圧を印加する場合には、−1500V以上1500V以下とされる。
ガス導入口45aは、真空反応室4に供給すべき光導電層11bのドーパント専用の原料ガスをを導入するためのものであり、ガス導入口45bは、真空反応室4に供給すべき原料ガスを導入するためのものであり、いずれのガス導入口45a、45bともに原料ガス供給手段6に接続されている。ガス導入口45aは、真空反応室4の略中央の高さ位置に設置されていて、ガス導入口45bは、真空反応室4内に設置される支持体3の両端位置に相当する高さ位置にそれぞれ設置されている。
複数のガス吹き出し孔46は、円筒状電極40の内部に導入された原料ガスを円筒状基体10に向けて吹き出すためのものであり、図の上下方向に等間隔になるように配置されているとともに、周方向にも等間隔で配置されている。複数のガス吹き出し孔46は、同一形状の円形に形成されており、その孔径は、たとえば0.5mm以上2.0mm以下とされている。
光導電層11bのドーパント専用の原料ガスを導入するガス導入口45aを、上述のように真空反応室4の略中央の高さ位置に設置する理由は、ドーパントの濃度(本実施形態ではホウ素(B))を変化させるためである。
本実施形態の場合、真空反応室4の中央部分の光導電層11bの膜厚が厚くなることが経験的に分かっているため、プラズマCVD装置2の中央部分のホウ素(B)の含有量が多くなるように、すなわち、真空反応室4の中央部でのホウ素(B)の含有量が多くなるように、ガス導入口45aを真空反応室4の略中央の高さ位置に設置する。もちろん、ガス導入口45a、45bおよび複数のガス吹き出し孔46の孔径、形状および配置については、プラズマCVD装置毎の特性に合わせて適宜変更可能である。例えば、本実施形態の場合、光導電層11bの膜厚が真空反応室4の中央部分で厚くなっているが、真空反応室4の上部で光導電層11bの膜厚が厚くなる場合には、ガス導入口45aを真空反応室4の上部に設置すればよい。
プレート41は、真空反応室4が開放された状態と閉塞された状態とを選択可能とするめのものであり、プレート41を開閉することによって真空反応室4に対する支持体3の出し入れが可能とされている。プレート41は、円筒状基体10と同様な導電性材料により形成されているが、下面側に防着板47が取着されている。これにより、プレート41に対して堆積膜が形成されるのが防止されている。この防着板47もまた、円筒状基体10と同様な導電性材料により形成されているが、防着板47はプレート41に対して着脱自在とされている。そのため、防着板47は、プレート41から取り外することにより洗浄が可能であり、繰り返し使用することができる。
プレート42は、真空反応室4のベースとなるものであり、円筒状基体10と同様な導電性材料により形成されている。プレート42と円筒状電極40との間に介在する絶縁部材44は、円筒状電極40とプレート42との間にアーク放電が発生するのを抑える役割を有するものである。このような絶縁部材44は、たとえばガラス材料(ホウ珪酸ガラス、ソーダガラス、耐熱ガラスなど)、無機絶縁材料(セラミックス、石英、サファイヤなど)、あるいは合成樹脂絶縁材料(テフロン(登録商標)などのフッ素樹脂、ポリカーボネート、ポリエチレンテレフタレート、ポリエステル、ポリエチレン、ポリプロピレン、ポリスチレン、ポリアミド、ビニロン、エポキシ、マイラー、PEEK材など)により形成することができるが、絶縁性を有し、使用温度で充分な耐熱性があり、真空中でガスの放出が小さい材料であればば特に限定はない。ただし、絶縁部材44は、成膜体の内部応力および成膜時の温度上昇に伴って生じるバイメタル効果に起因する応力により反りが発生して使用できなくなるのを防止するために、一定以上の厚みを有するものとして形成されている。たとえば、絶縁部材44をテフロン(登録商標)のような熱膨張率3×10−5/K以上10×10/K以下の材料により形成する場合には、絶縁部材44の厚みは10mm以上に設定される。このような範囲に絶縁部材44の厚みを設定した場合には、絶縁部材44と円筒状基体10に成膜される10μm以上30μm以下のa−Si膜との界面に発生する応力に起因するそり量が、水平方向(円筒状基体10の軸方向に略直交する半径方向)の長さ200mmに対して、水平方向における端部と中央部との軸方向における高さの差で1mm以下とすることができ、絶縁部材44を繰り返し使用することが可
能となる。
プレート42および絶縁部材44には、ガス排出口42A、44Aおよび圧力計49が設けられている。排気口42A、44Aは、真空反応室4の内部の気体を排出するためのものであり、排気手段7に接続されている、圧力計49は、真空反応室4の圧力をモニタリングするためのものであり、公知の種々のものを使用することができる。
図2に示したように、回転手段5は、支持体3を回転させるためのものであり、回転モータ50および回転力伝達機構51を有している。回転手段5により支持体3を回転させて成膜を行なった場合には、支持体3とともに円筒状基体10が回転させられるために、円筒状基体10の外周に対して均等に原料ガスの分解成分を堆積させることが可能となる。
回転モータ50は、円筒状基体10に回転力を付与するものである。この回転モータ50は、たとえば円筒状基体10を1rpm以上10rpm以下で回転させるように動作制御される。回転モータ50としては、公知の種々のものを使用することができる。
回転力伝達機構51は、回転モータ50からの回転力を円筒状基体10に伝達・入力するためのものであり、回転導入端子52、絶縁軸部材53および絶縁平板54を有している。
回転導入端子52は、真空反応室4内の真空を保ちながら回転力を伝達するためのものである。このような回転導入端子52としては、回転軸を二重もしくは三重構造としてオイルシールやメカニカルシール等の真空シール手段を用いることができる。
絶縁軸部材53および絶縁平板54は、支持体3とプレート41との間の絶縁状態を維持しつつ、回転モータ50からの回転力を支持体3に入力するためものであり、たとえば絶縁部材44などの同様な絶縁材料により形成されている。ここで、絶縁軸部材53の外径D2は、成膜時において、支持体3の外径(後述する上ダミー基体38Cの内径)D3よりも小さくなるように設定されている。より具体的には、成膜時における円筒状基体10の温度が200℃以上400℃以下に設定される場合、絶縁軸部材53の外径D2は、支持体3の外径(後述する上ダミー基体38Cの内径)D3よりも0.1mm以上5mm以下、好適には3mm程度大きくなるように設定される。この条件を満たすために、非成膜時(常温環境下(たとえば10℃以上40℃以下))においては、絶縁軸部材53の外径D2と支持体3の外径(後述する上ダミー基体38Cの内径)D3との差は、0.6mm以上5.5mm以下に設定される。
絶縁平板54は、プレート41を取り外しするときに上方から落下するゴミや粉塵などの異物が円筒状基体10へ付着するのを防止するためのものであり、上ダミー基体38Cの内径D3より大きな外径D4を有する円板状に形成されている。絶縁平板54の直径D4は、円筒状基体10の直径D3の1.5倍以上3.0倍以下とされ、たとえば円筒状基体10として直径D3が30mmのものを用いる場合には、絶縁平板54の直径D4は50mm程度とされる。
このような絶縁平板54を設けた場合には、円筒状基体10に付着した異物に起因する異常放電を抑制することができるため、成膜欠陥の発生を抑制することができる。これにより、電子写真感光体1を形成する際の歩留まりを向上させ、また電子写真感光体1を用いて画像形成する場合における画像不良の発生を抑制することができる。
図2に示したように、原料ガス供給手段6は、複数の原料ガスタンク60、61、62、63、光導電層11bのドーパント専用ガスタンク64、複数の配管60A、61A、62A、63A、64A、バルブ60B、61B、62B、63B、64B、60C、61C、62C、63C、64Cおよび複数のマスフローコントローラ60D、61D、62D、63D、64Dを備えたものであり、配管65a、65bおよびガス導入口45a、45bを介して円筒状電極40に接続されている。各原料ガスタンク60〜64は、たとえばB、H(またはHe)、CH4あるいはSiH4が充填されたものである。バルブ60B〜64B、60C〜64Cおよびマスフローコントローラ60D〜64Dは、真空反応室4に導入する各原料ガス成分または光導電層11bのドーパント専用ガス成分の流量、組成およびガス圧を調整するためのものである。もちろん、原料ガス供給手段6においては、各原料ガスタンク60〜64に充填すべきガスの種類、あるいは複数の原料タンク60〜64の数は、円筒状基体10に形成すべき膜の種類あるいは組成に応じて適宜選択すればよい。
排気手段7は、真空反応室4のガスをガス排出口42A、44Aを介して外部に排出するためのものであり、メカニカルブースタポンプ71およびロータリーポンプ72を備えている。これらのポンプ71、72は、圧力計49でのモニタリング結果により動作制御されるものである。すなわち、排気手段7では、圧力計49でのモニタリング結果に基づいて、真空反応室4を真空に維持できるとともに、真空反応室4のガス圧を目的値に設定することができる。真空反応室4の圧力は、たとえば1.0Pa以上100Pa以下とされる。
(堆積膜の形成方法)
次に、プラズマCVD装置2を用いた堆積膜の形成方法について、円筒状基体10にa−Si膜が形成された電子写真感光体1(図1参照)を作製する場合を例にとって説明する。
まず、円筒状基体10に堆積膜(a−Si膜)を形成にあたっては、プラズマCVD装置2のプレート41を取り外した上で、複数の円筒状基体10(図面上は2つ)を支持させた支持体3を、真空反応室4の内部にセットし、再びプレート41を取り付ける。
支持体3に対する2つの円筒状基体10の支持に当たっては、支持体3の主要部を外套した状態で、フランジ部30上に、下ダミー基体38A、円筒状基体10、中間ダミー基体38B、円筒状基体10、および上ダミー基体38Cが順次積み上げられる。
各ダミー基体38A〜38Cとしては、製品の用途に応じて、導電性または絶縁性基体の表面に導電処理を施したものが選択されるが、通常は、円筒状基体10と同様な材料により円筒状に形成されたものが使用される。
ここで、下ダミー基体38Aは、円筒状基体10の高さ位置を調整するためのものである。中間ダミー基体38Bは、隣接する円筒状基体10の端部間で生じるアーク放電に起因する円筒状基体10に成膜不良が発生するのを抑制するためのものである。この中間ダミー基体38Bとしては、その長さがアーク放電を防止できる最低限の長さ(本実施形態では1cm)以上を有し、その表面側角部が曲面加工で曲率0.5mm以上または端面加工でカットされた部分の軸方向の長さ及び深さ方向の長さが0.5mm以上となるように面取りがされたものが使用される。上ダミー基体38Cは、支持体3に堆積膜が形成されるのを防止し、成膜中に一旦被着した成膜体の剥離に起因する成膜不良の発生を抑制するためのものである。上ダミー基体38Cは、一部が支持体3の上方に突出した状態とされる。
次いで、真空反応室4の密閉状態とし、回転手段5により支持体3を介して円筒状基体10を回転させるとともに、円筒状基体10を加熱し、排気手段7により真空反応室4を減圧する。
円筒状基体10の加熱は、たとえばヒータ37に対して外部から電力を供給してヒータ37を発熱させることにより行なわれる。このようなヒータ37の発熱により、円筒状基体10が目的とする温度に昇温される。円筒状基体10の温度は、その表面に形成すべき膜の種類および組成によって選択されるが、たとえばa−Si膜を形成する場合には250℃以上300℃以下の範囲に設定され、ヒータ37のオン・オフすることにより略一定に維持される。
一方、真空反応室4の減圧は、排気手段7によってガス排出口42A、44Aを介して真空反応室4からガスを排出させることにより行なわれる。真空反応室4の減圧の程度は、圧力計49(図2参照)での真空反応室4の圧力をモニタリングしつつ、メカニカルブースタポンプ71(図2参照)およびロータリーポンプ72(図2参照)の動作を制御することにより、たとえば10−3Pa程度とされる。
次いで、円筒状基体10の温度が所望温度となり、真空反応室4の圧力が所望圧力となった場合には、原料ガス供給手段6により真空反応室4に原料ガスを供給するとともに、円筒状電極40と支持体3との間にパルス状の直流電圧を印加する。これにより、円筒状電極40と支持体3(円筒状基体10)との間にグロー放電が起こり、原料ガス成分が分解され、原料ガスの分解成分が円筒状基体10の表面に堆積される。
一方、排気手段7においては、圧力計49のモニタリングしつつ、メカニカルブースタポンプ71およびロータリーポンプ72の動作を制御することにより、真空反応室4におけるガス圧を目的範囲に維持する。すなわち、真空反応室4の内部は、原料ガス供給手段6におけるマスフローコントローラ60D〜63Dと排気手段7におけるポンプ71、72によって安定したガス圧に維持される。真空反応室4におけるガス圧は、たとえば1.0Pa以上100Pa以下とされる。
真空反応室4への原料ガスの供給は、バルブ60B〜64B、60C〜64Cの開閉状態を適宜制御しつつ、マスフローコントローラ60D〜64Dを制御することにより、原料ガスタンク60〜64の原料ガスを、所望の組成および流量で、配管60A〜64A、65a、65bおよびガス導入口45a、45bを介して円筒状電極40の内部に導入することにより行なわれる。円筒状電極40の内部に導入された原料ガスは、複数のガス吹き出し孔46を介して円筒状基体10に向けて吹き出される。そして、バルブ60B〜64B、60C〜64Cおよびマスフローコントローラ60D〜64Dによって原料ガスの組成を適宜切り替えることにより、円筒状基体10の表面には、電荷注入阻止層11、光導電層11bおよび表面層11cが順次積層形成される。
円筒状電極40と支持体3との間へのパルス状の直流電圧を印加は、制御部35によって直流電源34を制御することにより行なわれる。
一般に、13.56MHzのRF帯域以上の高周波電力を使用した場合、空間で生成されたイオン種が電界によって加速され、正・負の極性に応じた方向に引き寄せられることになるが、高周波交流により電界が連続して反転することから、前記イオン種が円筒状基体10あるいは放電電極に到達するより前に、空間中で再結合を繰り返し、再度ガスまたはポリシリコン粉体などのシリコン化合物となって排気される。
これに対して、円筒状基体10側が正負いずれかの極性になるようなパルス状の直流電圧を印加してカチオンを加速させて円筒状基体10に衝突させ、その衝撃によって表面の微細な凹凸をスパッタリングしながらa−Siの成膜を行った場合には、極めて凹凸の少ない表面をもったa−Siが得られる。本発明者らはこの現象を“イオンスパッタリング効果”と名付けた。
このようなプラズマCVD法において、効率よくイオンスパッタリング効果を得るには、極性の連続的な反転を避けるような電力を印加することが必要であり、前記パルス状の矩形波の他には、三角波、直流電力、直流電圧が有用である。また、全ての電圧が正負いずれかの極性になるように調整された交流電力等でも同様の効果が得られる。印加電圧の極性は、原料ガスの種類によってイオン種の密度や堆積種の極性などから決まる成膜速度などを考慮して自由に調整できる。
ここで、パルス状電圧により効率よくイオンスパッタリング効果を得るには、支持体3(円筒状基体10)と円筒状電極40との間の電位差は、たとえば50V以上3000V以下の範囲内とされ、成膜レートを考慮した場合、好ましくは500V以上3000V以下の範囲内とされる。
より具体的には、制御部35は、円筒状電極40が接地されている場合には、支持体(導電性支柱31)に対して、−3000V以上−50V以下の範囲内の負のパルス状直流電位V1を供給し、あるいは50V以上3000V以下の範囲内の正のパルス状直流電位V1を供給する。
一方、円筒状電極40が基準電極(図示略)に接続されている場合には、支持体(導電性支柱31)に対して供給するパルス状直流電位V1は、目的とする電位差ΔVから基準電源により供給される電位V2を差分した値(ΔV−V2)とされる。基準電源により供給する電位V2は、支持体3(円筒状基体10)に対して負のパルス状電圧を印加する場合には、−1500V以上1500V以下とされ、支持体3(円筒状基体10)に対して正のパルス状電圧を印加する場合には、−1500V以上1500V以下とされる。
制御部35はまた、直流電圧の周波数(1/T(sec))が300kHz以下に、duty比(T1/T)が20%以上90%以下となるように直流電源34を制御する。
なお、本発明におけるduty比とは、パルス状の直流電圧の1周期(T)(円筒状基体10と円筒状電極40との間に電位差が生じた瞬間から、次に電位差が生じた瞬間までの時間)における電位差発生T1が占める時間割合と定義される。たとえば、duty比20%とは、パルス状の電圧を印加する際の、1周期に占める電位差発生(ON)時間が1周期全体の20%であることを言う。
このイオンスパッタリング効果を利用して得られたa−Siの光導電層11bは、その厚みが10μm以上となっても、表面の微細凹凸が小さく平滑性がほとんど損なわれない。そのため、光導電層11b上に表面層11cであるa−SiCを1μm程度積層した場合の表面層11cの表面形状は、光導電層11bの表面形状を反映した滑らかな面とすることが可能となる。その一方で、表面層11cを積層する場合においても、イオンスパッタリグ効果を利用することにより、表面層11cを微細凹凸が小さい平滑な膜として形成することができる。
ここで、電荷注入阻止層11、光導電層11bおよび表面層11cの形成に当たっては、原料ガス供給手段6におけるマスフローコントローラ60D〜63Dおよびバルブ60B〜63B、60C〜63Cを制御し、目的とする組成の原料ガスが真空反応室4に供給されるのは上述の通りである。
たとえば、電荷注入阻止層11をa−Si系の堆積膜として形成する場合には、原料ガスとして、SiH4(シランガス)などのSi含有ガス、B6などのドーパント含有ガス、および水素(H)やヘリウム(He)などの希釈ガスの混合ガスが用いられる。ドーパント含有ガスとしては、ホウ素(B)含有ガスの他に、窒素(N)あるいは酸素(O)含有ガスを用いることもできる。
光導電層11bをa−Si系の堆積膜として形成する場合には、原料ガスとして、SiH4(シランガス)などのSi含有ガスおよび水素(H)やヘリウム(He)などの希
釈ガスの混合ガスが用いられる。光導電層11bにおいては、ダングリングボンド終端用に水素(H)やハロゲン元素(F、Cl)を膜中に1原子%以上40原子%以下含有させるように、希釈ガスとして水素ガスを用い、あるいは原料ガス中にハロゲン化合物を含ませておいてもよい。また、原料ガスには、暗導電率や光導電率などの電気的特性及び光学的バンドギャップなどについて所望の特性を得るために、ドーパントとして周期表第12族、第13族元素(以下「第12族元素」、「第13族元素」と略す)や周期表第15族、第16族元素(以下「第15族元素」、「第16族元素」と略す)を含有させ、上記諸特性を調整するために炭素(C)、酸素(O)などの元素を含有させてもよい。
例えば、第13族元素および第15族元素としては、それぞれホウ素(B)およびリン(P)が共有結合性に優れて半導体特性を敏感に変え得る点、および優れた光感度が得られるという点で望ましい。電荷注入阻止層11に対して第13族元素および第15族元素を炭素(C)、酸素(O)などの元素とともに含有させる場合には、第13族元素の含有
量は0.1ppm以上20000ppm以下、第15族元素の含有量は0.1ppm以上10000ppm以下となるように調整される。また、光導電層11bに対して第13族元素および第15族元素を炭素(C)、酸素(O)等の元素とともに含有させる場合、あるいは、電荷注入阻止層11および光導電層11bに対して炭素(C)、酸素(O)等の元素を含有させない場合には、第13族元素は0.01ppm以上200ppm以下、第15族元素は0.01ppm以上100ppm以下となるように調整される。なお、原料ガスにおける第13属元素あるいは第15属元素の含有量を経時的に変化させることにより、これらの元素の濃度について層厚方向にわたって勾配を設けるようにしてもよい。この場合には、光導電層11bにおける第13族元素および第15族元素の含有量は、光導電層11bの全体における平均含有量が上記範囲内であればよい。
また、光導電層11bについては、a−Si系材料に微結晶シリコン(μc−Si)を含んでいてもよく、このμc−Siを含ませた場合には、暗導電率・光導電率を高めることができるので、光導電層22の設計自由度が増すといった利点がある。このようなμc−Siは、先に説明した成膜方法を採用し、その成膜条件を変えることにより形成することができる。たとえば、グロー放電分解法では、円筒状基体10の温度および直流パルス電力を高めに設定し、希釈ガスとしての水素流量を増すことによって形成できる。また、μc−Siを含む光導電層11bにおいても、先に説明したのと同様な元素(第13族元素、第15族元素、炭素(C)、酸素(O)など)を添加してもよい。
表面層11cをa−SiC系の堆積膜として形成する場合には、原料ガスとして、SiH(シランガス)などのSi含有ガスおよびCHなどのC含有ガスの混合ガスを供給する。原料ガスにおけるSiとCとの組成比については、連続的あるいは間欠的に変化させてもよい。すなわち、Cの比率が高くなるほど成膜速度が遅くなる傾向があるため、表面層11cにおける光導電層11bに近い部分についてはC比率が低くなるようにしつつ、自由表面側についてはC比率が高くなるように表面層11cを形成するようにしてもよい。たとえば、表面層11cの光導電層11b側(界面側)においては、水素化アモルファスシリコンカーバイト(a−Si1−x:H)におけるx値(炭素比率)が0を超えて0.8未満の比較的Si構成比の高い第1のSiC層を堆積した後、x値(炭素比率)が0.95以上1.0未満程度までC濃度を高くした第2のSiC層を堆積した2層構造であってもよい。
第1のSiC層は、その膜厚が、耐圧、残留電位、膜強度などから決定され、通常0.1μm以上2.0μm以下、好適には0.2μm以上1.0μm以下、最適には0.3μm以上0.8μm以下とされる。第2のSiC層は、その膜厚が、耐圧、残留電位、膜強度、寿命(耐摩耗性)等から決定され、通常0.01μm以上2.0μm以下、好適には0.02μm以上1.0μm以下、最適には0.05μm以上0.8μm以下とされる。
表面層11cは、上述のようにa−C層として形成することもできる。この場合、原料ガスとしては、C(アセチレンガス)あるいはCH4(メタンガス)などのC含有
ガスが用いられる。また、表面層11cは、その膜厚が、通常0.1μm以上2.0μm以下、好適には0.2μm以上1.0μm以下、最適には0.3μm以上0.8μm以下とされる。
表面層11cをa−C層として形成した場合には、Si−O結合に比べてC−O結合のほうが結合エネルギが小さいため、表面層11cをa−Si系材料により形成する場合に比べて、表面層11cの表面が酸化することをより確実に抑制できる。そのため、表面層11cをa−C層として形成した場合には、印刷時のコロナ放電により発生するオゾンなどによって、表面層11cの表面が酸化されることが適切に抑制されるため、高温高湿環境下などでの画像流れの発生を抑制することができる。
円筒状基体10に対する膜形成が終了した場合には、支持体3から円筒状基体10を抜き取ることにより、図1に示した電子写真感光体1を得ることができる。そして、成膜後は、成膜残渣を取り除くため、真空反応室4内の各部材を分解し、酸、アルカリ、ブラスト等の洗浄を行い、次回成膜時に欠陥不良となる発塵が無いようウエットエッチングを行う。ウエットエッチングに代えて、ハロゲン系(ClF3、CF4、O、NF、SiF6またはこれらの混合ガス)のガスを用いてガスエッチングを行うことも有効である。
本発明によれば、光導電層の膜厚にばらつきが生じ、電子写真感光体の軸方向における帯電能のばらつきが生じたとしても、特性ムラの少ない電子写真感光体を実現することができる。
(画像形成装置の実施形態)
図5に示す画像形成装置は、画像形成方式としてカールソン法を採用したものであり、電子写真感光体1、帯電器111、露光器112、現像器113、転写器114、定着器115、クリーニング器116、および除電器117を備えている。
帯電器111は、電子写真感光体1の表面を負極性に帯電する役割を担うものである。帯電電圧は、例えば200V以上1000V以下に設定される。本実施形態において帯電器111は、例えば芯金を導電性ゴムおよびPVDF(ポリフッ化ビニリデン)によって被覆して構成される接触型帯電器が採用されているが、これに代えて、放電ワイヤを備える非接触型帯電器(例えばコロナ帯電器)を採用してもよい。
露光器112は、電子写真感光体1に静電潜像を形成する役割を担うものである。具体的には、露光器112は、画像信号に応じて特定波長(例えば650nm以上780nm以下)の露光光(例えばレーザ光)を電子写真感光体1に照射することにより、帯電状態にある電子写真感光体1の露光光照射部分の電位を減衰させて静電潜像を形成する。露光器112としては、例えば複数のLED素子(波長:680nm)を配列させてなるLEDヘッドを採用することができる。
もちろん、露光器112の光源としては、LED素子に代えてレーザ光を出射可能なものを使用することもできる。つまり、LEDヘッドなどの露光器112に代えて、ポリゴンミラーを含んでなる光学系、あるいは、原稿からの反射光を通すレンズおよびミラーを含んでなる光学系を採用することにより、複写機の構成の画像形成装置とすることもできる。
現像器113は、電子写真感光体1の静電潜像を現像してトナー像を形成する役割を担うものである。本実施形態における現像器113は、現像剤(トナー)Tを磁気的に保持する磁気ローラ113Aを備えている。
現像剤Tは、電子写真感光体1の表面上に形成されるトナー像を構成するものであり、現像器113において摩擦帯電させられる。現像剤Tとしては、例えば、磁性キャリアおよび絶縁性トナーを含んでなる二成分系現像剤と、磁性トナーを含んでなる一成分系現像剤とが挙げられる。
磁気ローラ113Aは、電子写真感光体1の表面(現像領域)に現像剤を搬送する役割を担うものである。磁気ローラ113Aは、現像器113において摩擦帯電した現像剤Tを一定の穂長に調整された磁気ブラシの形で搬送する。この搬送された現像剤Tは、電子写真感光体1の現像領域において、静電潜像との静電引力により感光体表面に付着してトナー像を形成する(静電潜像を可視化する)。トナー像の帯電極性は、正規現像により画
像形成が行われる場合には、電子写真感光体1の表面の帯電極性と逆極性とされ、反転現像により画像形成が行われる場合には、電子写真感光体1の表面の帯電極性と同極性とされる。
なお、本実施形態において現像器113は、乾式現像方式を採用しているが、液体現像剤を用いた湿式現像方式を採用してもよい。
転写器114は、電子写真感光体1と転写器114との間の転写領域に供給された記録媒体Pに、電子写真感光体1のトナー像を転写する役割を担うものである。本実施形態における転写器114は、転写用チャージャ114Aおよび分離用チャージャ114Bを備えている。転写器114では、転写用チャージャ114Aにおいて記録媒体Pの背面(非記録面)がトナー像とは逆極性に帯電され、この帯電電荷とトナー像との静電引力によって、記録媒体P上にトナー像が転写される。また、転写器114では、トナー像の転写と同時的に、分離用チャージャ114Bにおいて記録媒体Pの背面が交流帯電させられ、記録媒体Pが電子写真感光体1の表面から速やかに分離させられる。
転写器114としては、電子写真感光体1の回転に従動し、且つ、電子写真感光体1とは微小間隙(通常、0.5mm以下)を介して配置された転写ローラを用いることも可能である。この転写ローラは、例えば直流電源により、電子写真感光体1上のトナー像を記録媒体P上に引きつけるような転写電圧を印加するように構成される。転写ローラを用いる場合には、分離用チャージャ114Bのような転写分離装置は省略することもできる。
定着器115は、記録媒体Pに転写されたトナー像を記録媒体Pに定着させる役割を担うものであり、一対の定着ローラ115A、115Bを備えている。定着ローラ115A、115Bは、例えば金属ローラ上にテフロン(登録商標)などで表面被覆したものとされている。定着器115では、一対の定着ローラ115A、115Bの間を通過させる記録媒体Pに対して、熱や圧力などを作用させることにより、記録媒体Pにトナー像を定着させることができる。
クリーニング器116は、電子写真感光体1の表面に残存するトナーを除去する役割を担うものであり、クリーニングブレード116Aを備えている。クリーニングブレード116Aは、電子写真感光体1の表面から、残留トナーを掻きとる役割を担うものである。クリーニングブレード116Aは、例えばポリウレタン樹脂を主成分としたゴム材料により形成されている。
除電器117は、電子写真感光体1の表面電荷を除去する役割を担うものであり、特定波長(例えば780nm以上)の光を出射可能とされている。除電器117は、例えばLEDなどの光源によって電子写真感光体1の表面の軸方向全体を光照射することにより、電子写真感光体1の表面電荷(残余の静電潜像)を除去するように構成されている。
本実施形態の画像形成装置100では、電子写真感光体1の有する効果を享受することができる。本実施形態の画像形成装置100を構成する電子写真感光体1は、円筒状基体と、該円筒状基体上に形成された、少なくとも光導電層を含む感光層とを備えた電子写真感光体において、前記光導電層は、ドーパントを含有するアモルファスシリコンを含むとともに、前記円筒状基体の一端から他端に向かって厚くなっている第1領域を有し、前記ドーパントの濃度が、前記第1領域において前記光導電層の厚みが厚くなるにつれて前記光導電層の導電率が高くなるように変化していることから、光導電層の膜厚にばらつきが生じ、電子写真感光体の軸方向における帯電能のばらつきが生じたとしても、特性ムラの少ない電子写真感光体を実現することができる。
以上、本実施形態について説明したが、本発明は実施形態に示したものだけに限定されるものではなく、本発明の要旨を逸脱しない範囲で改良や変更することができることは言うまでもない。
例えば、本実施形態の電子写真感光体1では、光導電層11bのドーパントに周期表第13族元素のホウ素(B)を採用したが、その他の周期表第12族元素や第13族元素であってもよい。
また、光導電層11bのドーパントは、周期表第15族元素のリン(P)や、その他の周期表第15族、第16族元素であってもよい。ドーパントがリン(P)の場合には、図6に示すように、光導電層11bはn型半導体であり、光導電層11bの厚みが厚くなるにつれて、ドーパントの濃度を高くすることにより、光導電層11bが帯電してから一定時間経過後の帯電量の電子写真感光体1の軸方向の線上でのばらつきを比較的小さくすることができる。
なお、図6中の水平軸は電子写真感光体1の位置を表わし、左端が電子写真感光体1の一端、右端が電子写真感光体1の他端に相当する。そして、実線は光導電層11bの膜厚、破線は光導電層のリンの含有量(ドーパント濃度)を示す。光導電層11bの膜厚、光導電層のリンの含有量ともにグラフ下側から上側に向かって値が大きくなる。
また、本実施形態の電子写真感光体1では、図7(a)、(b)のごとく、光導電層11bの厚みは円筒状基体10の一端から他端に向かって漸次厚くなるものである。光導電層11bが第12族または第13族元素をドーパントとしたp型半導体の場合、図7(a)に示すように光導電層11bの厚みが厚くなるにつれてドーパント濃度(ホウ素の含有量)を高くし、光導電層11bが第12族または第13族元素をドーパントとしたn型半導体の場合、図7(b)に示すように光導電層11bの厚みが厚くなるにつれてドーパント濃度(ホウ素の含有量)を低くする。
また、図7(c)、(d)、(e)、(f)に示すように、電子写真感光体1は一端から他端に向かって漸次厚くなる部分(第1領域)と薄くなる部分(第2領域)があってもよい。上述したように、プラズマCVD装置2により形成される光導電層11bの膜厚は、装置内の場所により異なることから、電子写真感光体1(円筒状基体10)の長さや、装置内の配置の仕方により光導電層11bの膜厚は種々に異なる。
前記第1領域は、図7(a)、(b)の場合と同様に、光導電層11bの膜厚に応じてドーパント濃度を変化させる。
一方、前記第2領域においては、第12族または第13族元素をドーパントとしたp型半導体の場合には、図7(d)、(e)に示すように光導電層の厚みが薄くなるにつれてドーパント濃度を低くすればよく、n型半導体の場合には、図7(c)、(f)に示すよう光導電層の厚みが薄くなるにつれてドーパント濃度を高くすればよい。
また、図7(c)に示すように、光導電層11bが円筒状基体10の一端から他端に向かって、漸次薄くなっている領域と漸次厚くなっている領域が連続して形成されている場合には、第12族または第13族元素をドーパントとしたn型半導体とp型半導体が連続して形成されるようにドーパント濃度を漸次高くなるようにすればよい。このとき、光導電層11bの厚みが漸次薄くなっている領域から漸次厚くなっている領域の境界部分と、n型半導体とp型半導体の境界が略一致するようにすることが好ましい。
同様に、図7(d)に示すように、光導電層11bが円筒状基体10の一端から他端に
向かって、漸次薄くなっている領域と漸次厚くなっている領域が連続して形成されている場合には、第12族または第13族元素をドーパントとしたp型半導体とn型半導体が連続して形成されるようにドーパント濃度を漸次低くなるようにすればよい。このとき、光導電層11bの厚みが漸次薄くなっている領域から漸次厚くなっている領域の境界部分と、p型半導体とn型半導体の境界が略一致するようにすることが好ましい。
なお、図7中の水平軸は電子写真感光体1の位置を表わし、左端が電子写真感光体1の一端、右端が電子写真感光体1の他端に相当する。そして、実線は光導電層11bの膜厚、破線は光導電層のホウ素の含有量(ドーパント濃度)を示す。光導電層11bの膜厚、光導電層のホウ素の含有量ともにグラフ下側から上側に向かって値が大きくなる。
1 電子写真感光体
2 プラズマCVD装置
3 支持体
4 真空反応室
5 回転手段
6 原料ガス供給手段
7 排気手段
10 円筒状基体
11 感光層
11a 電荷注入阻止層
11b 光導電層
11c 表面層
30 フランジ部
31 導電性支柱
32 絶縁材
33 導板
34 直流電源
36 セラミックパイプ
37 ヒータ
38A 下ダミー基体
38B 中間ダミー基体
38C 上ダミー基体
40 円筒状電極
42 プレート
42A ガス排出口
43、44 絶縁部材
44A ガス排出口
45a、45b ガス導入口
46 ガス吹き出し口
47 防着板
49 圧力計
50 回転モータ
51 回転力伝達機構
52 回転導入端子
53 絶縁軸部材
54 絶縁平板
60、61、62、63 原料ガスタンク
60A、61A、62A、63A、64A 配管
60B、61B、62B、63B、64B、60C、61C、62C、63C、64C バルブ
60D、61D、62D、63D、64D マスフローコントローラ
65a、65b 配管
71 メカニカルブースタポンプ
72 ロータリーポンプ
100 画像形成装置
111 帯電器
112 露光器
113 現像器
114 転写器
115 定着器
116 クリーニング器
117 除電器

Claims (11)

  1. 円筒状基体と、該円筒状基体上に形成された、少なくとも光導電層を含む感光層とを備えた電子写真感光体において、
    前記光導電層は、ドーパントを含有するアモルファスシリコンを含むとともに、前記円筒状基体の一端から他端に向かって厚くなっている第1領域を有し、
    前記ドーパントの濃度が、前記第1領域において前記光導電層の厚みが厚くなるにつれて前記光導電層の導電率が高くなるように変化していることを特徴とする電子写真感光体。
  2. 前記ドーパントが周期表第12族または第13族の元素を含み、
    前記光導電層の前記第1領域がp型半導体であり、
    前記光導電層の厚みが厚くなるにつれて前記ドーパントの濃度が高くなっていることを特徴とする請求項1に記載の電子写真感光体。
  3. 前記ドーパントが周期表第12族または第13族の元素を含み、
    前記光導電層の前記第1領域がn型半導体であり、
    前記第1領域において前記光導電層の厚みが厚くなるにつれて前記ドーパントの濃度が低くなっていることを特徴とする請求項1に記載の電子写真感光体。
  4. 前記ドーパントが周期表第15族または第16族の元素を含み、
    前記光導電層の前記第1領域がn型半導体であり、
    前記第1領域において前記光導電層の厚みが厚くなるにつれて前記ドーパントの濃度が高くなっていることを特徴とする請求項1に記載の電子写真感光体。
  5. 前記光導電層の厚みが前記円筒状基体の一端から他端に向かって薄くなっている第2領域をさらに有し、
    前記ドーパントの濃度が、前記第2領域において前記光導電層の厚みが薄くなるにつれて前記光導電層の導電率が低くなるように変化していることを特徴とする請求項1または2に記載の電子写真感光体。
  6. 前記光導電層の厚みが前記円筒状基体の一端から他端に向かって薄くなっている第2領域をさらに有し、
    前記ドーパントの濃度が、前記第2領域において前記光導電層の厚みが薄くなるにつれて前記光導電層の導電率が低くなるように変化していることを特徴とする請求項1または3に記載の電子写真感光体。
  7. 前記ドーパントが周期表第12族または第13族の元素を含み、
    前記光導電層の前記第2領域がn型半導体であり、
    前記第2領域において前記光導電層の厚みが薄くなるにつれて前記ドーパントの濃度が高くなっていることを特徴とする請求項5に記載の電子写真感光体。
  8. 前記ドーパントが周期表第12族または第13族の元素を含み、
    前記光導電層の前記第2領域がp型半導体であり、
    前記第2領域において前記光導電層の厚みが薄くなるにつれて前記ドーパントの濃度が低くなっていることを特徴とする請求項6に記載の電子写真感光体。
  9. 前記ドーパントの濃度が前記円筒状基体の一端から他端に向かって漸次高くなっていることを特徴とする請求項7に記載の電子写真感光体。
  10. 前記ドーパントの濃度が前記円筒状基体の一端から他端に向かって漸次低くなっているこ
    とを特徴とする請求項8に記載の電子写真感光体。
  11. 請求項1乃至10のいずれか1項に記載の電子写真感光体と、該電子写真感光体の軸方向における一端部に回転の駆動力を伝達する駆動力伝達部と、前記軸方向に沿って同一極性の帯電能力を有する帯電器とを備えることを特徴とする画像形成装置。
JP2011145607A 2011-06-30 2011-06-30 電子写真感光体およびこれを備えた画像形成装置 Active JP5709672B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011145607A JP5709672B2 (ja) 2011-06-30 2011-06-30 電子写真感光体およびこれを備えた画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011145607A JP5709672B2 (ja) 2011-06-30 2011-06-30 電子写真感光体およびこれを備えた画像形成装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2015036219A Division JP2015129959A (ja) 2015-02-26 2015-02-26 電子写真感光体およびこれを備えた画像形成装置
JP2015036131A Division JP5993047B2 (ja) 2015-02-26 2015-02-26 電子写真感光体およびこれを備えた画像形成装置

Publications (2)

Publication Number Publication Date
JP2013011808A JP2013011808A (ja) 2013-01-17
JP5709672B2 true JP5709672B2 (ja) 2015-04-30

Family

ID=47685718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011145607A Active JP5709672B2 (ja) 2011-06-30 2011-06-30 電子写真感光体およびこれを備えた画像形成装置

Country Status (1)

Country Link
JP (1) JP5709672B2 (ja)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2657491B2 (ja) * 1986-09-29 1997-09-24 京セラ株式会社 電子写真感光体
JP2001342569A (ja) * 2000-06-05 2001-12-14 Canon Inc 堆積膜形成装置および堆積膜形成方法
JP2004190132A (ja) * 2002-11-29 2004-07-08 Kyocera Corp ホットワイヤcvd装置
US7623810B2 (en) * 2005-10-28 2009-11-24 Kyocera Corporation Electrophotographic photosensitive member and image forming apparatus provided with the same
JP4242893B2 (ja) * 2006-01-27 2009-03-25 京セラ株式会社 電子写真感光体およびこれを備えた画像形成装置
JP5777419B2 (ja) * 2010-06-28 2015-09-09 キヤノン株式会社 電子写真感光体および電子写真装置

Also Published As

Publication number Publication date
JP2013011808A (ja) 2013-01-17

Similar Documents

Publication Publication Date Title
JP4851448B2 (ja) 堆積膜形成方法、堆積膜形成装置、堆積膜およびこれを用いた感光体
JP4273139B2 (ja) 電子写真感光体およびその製造方法
JP6971289B2 (ja) 電子写真感光体の製造方法
JP5036582B2 (ja) 堆積膜形成方法および装置
JP5993047B2 (ja) 電子写真感光体およびこれを備えた画像形成装置
JP5489426B2 (ja) 電子写真感光体および該電子写真感光体を備える画像形成装置
JP5709672B2 (ja) 電子写真感光体およびこれを備えた画像形成装置
JP4996684B2 (ja) 電子写真感光体およびその製造方法、並びに画像形成装置
JP2015129959A (ja) 電子写真感光体およびこれを備えた画像形成装置
WO2013047662A1 (ja) 電子写真感光体およびこれを備えた画像形成装置
JP4242917B2 (ja) 電子写真感光体の製造方法
JP5517420B2 (ja) 電子写真感光体および該電子写真感光体を備える画像形成装置
WO2017018124A1 (ja) 電子写真感光体の製造方法およびこれを備えた画像形成装置の製造方法ならびに電子写真感光体の製造装置
JP2009003478A (ja) 電子写真感光体およびその製造方法
JP5144145B2 (ja) 堆積膜形成方法
JP2014071253A (ja) 電子写真感光体およびこれを備えた画像形成装置
JP2014232152A (ja) 電子写真感光体およびこれを備えた画像形成装置
WO2014084177A1 (ja) 電子写真感光体およびこれを備えた画像形成装置
JP4851500B2 (ja) 電子写真感光体およびその製造方法
JP5645528B2 (ja) 電子写真用感光体および画像形成装置
JP2019144476A (ja) 電子写真感光体およびこれを備える画像形成装置
JPWO2009028448A1 (ja) 電子写真感光体および該電子写真感光体を備える画像形成装置
JP2009036932A (ja) 電子写真感光体およびこれを備えた画像形成装置
JP5645554B2 (ja) 電子写真用感光体および画像形成装置
JP5586133B2 (ja) 電子写真感光体および該電子写真感光体を備える画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150303

R150 Certificate of patent or registration of utility model

Ref document number: 5709672

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150