WO2017018124A1 - 電子写真感光体の製造方法およびこれを備えた画像形成装置の製造方法ならびに電子写真感光体の製造装置 - Google Patents

電子写真感光体の製造方法およびこれを備えた画像形成装置の製造方法ならびに電子写真感光体の製造装置 Download PDF

Info

Publication number
WO2017018124A1
WO2017018124A1 PCT/JP2016/069563 JP2016069563W WO2017018124A1 WO 2017018124 A1 WO2017018124 A1 WO 2017018124A1 JP 2016069563 W JP2016069563 W JP 2016069563W WO 2017018124 A1 WO2017018124 A1 WO 2017018124A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
cylindrical substrate
photosensitive member
electrophotographic photosensitive
forming
Prior art date
Application number
PCT/JP2016/069563
Other languages
English (en)
French (fr)
Inventor
晴紀 中津川
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US15/747,137 priority Critical patent/US20180217513A1/en
Priority to JP2017531098A priority patent/JPWO2017018124A1/ja
Publication of WO2017018124A1 publication Critical patent/WO2017018124A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08221Silicon-based comprising one or two silicon based layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08235Silicon-based comprising three or four silicon-based layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08278Depositing methods
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08285Carbon-based
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/10Bases for charge-receiving or other layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/10Bases for charge-receiving or other layers
    • G03G5/104Bases for charge-receiving or other layers comprising inorganic material other than metals, e.g. salts, oxides, carbon
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/142Inert intermediate layers
    • G03G5/144Inert intermediate layers comprising inorganic material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers
    • G03G5/14704Cover layers comprising inorganic material

Definitions

  • the present invention relates to a method for manufacturing an electrophotographic photosensitive member, a method for manufacturing an image forming apparatus including the same, and a manufacturing apparatus for an electrophotographic photosensitive member.
  • an electrophotographic photoreceptor has a configuration in which a photosensitive layer (a carrier injection blocking layer, a photoconductive layer, a surface protective layer, or the like) is formed on the surface of a cylindrical substrate or the like as described in Patent Document 1, for example. Have. Further, it is disclosed that the surface roughness of the photosensitive layer is set within a predetermined numerical range by roughening the surface of the substrate using a cutting tool or a rotating ball mill device.
  • a photosensitive layer a carrier injection blocking layer, a photoconductive layer, a surface protective layer, or the like
  • the surface protective layer may be smoothed or worn due to friction with peripheral members.
  • the peripheral member is a cleaning blade for removing the developer remaining on the surface of the electrophotographic photosensitive member, a charging roller for charging the surface of the electrophotographic photosensitive member, or the like.
  • An electrophotographic photoreceptor manufacturing method includes a step of roughening an outer surface of a cylindrical substrate so that a surface roughness is Str ⁇ 0.70, and an outer surface of the cylindrical substrate.
  • An image forming apparatus manufacturing method includes: an electrophotographic photoreceptor manufacturing method according to an embodiment of the present invention; and a step of installing a cleaning device in contact with the surface of the electrophotographic photoreceptor. Prepare.
  • An electrophotographic photoreceptor manufacturing apparatus includes a roughened portion for roughening an outer surface of a cylindrical substrate so that the surface roughness is Str ⁇ 0.70, and an outer surface of the cylindrical substrate.
  • a charge injection blocking layer forming portion for forming a charge injection blocking layer on the surface; a photoconductive layer forming portion for forming a photoconductive layer on the charge injection blocking layer; and a surface for forming a surface layer on the photoconductive layer
  • a layer forming unit for forming a surface for a surface layer on the photoconductive layer.
  • the outer surface of the cylindrical substrate has a surface roughness of Str ⁇ 0.70.
  • a surface layer By roughening the surface, characteristics of a layer formed on the outer surface of the cylindrical substrate, for example, a surface layer can be improved, and excellent durability characteristics and low image defects can be realized.
  • (A) is sectional drawing for demonstrating the manufacturing method of the electrophotographic photoreceptor which concerns on embodiment of this invention.
  • (B) is principal part sectional drawing of (a). It is a longitudinal cross-sectional view of a deposited film forming apparatus. It is sectional drawing for demonstrating the manufacturing method of the image forming apparatus which concerns on embodiment of this invention.
  • the electrophotographic photoreceptor 1 shown in FIG. 1 has a photosensitive layer 11 in which a charge injection blocking layer 11 a and a photoconductive layer 11 b are sequentially formed on the outer peripheral surface of a cylindrical substrate 10. A surface layer 12 is applied.
  • the cylindrical substrate 10 serves as a support for the photosensitive layer 11, and at least the surface of the cylindrical substrate 10 has conductivity.
  • the cylindrical substrate 10 is made of, for example, aluminum (Al), stainless steel (SUS), zinc (Zn), copper (Cu), iron (Fe), titanium (Ti), nickel (Ni), chromium (Cr), tantalum ( The whole is formed of a metal material such as Ta), tin (Sn), gold (Au), and silver (Ag), or an alloy material containing these exemplified metal materials as having conductivity.
  • the cylindrical substrate 10 has a conductive film made of a transparent conductive material such as the exemplified metal material and ITO (Indium Tin Oxide) or SnO 2 (tin dioxide) on the surface of an insulator such as resin, glass or ceramics. It may be attached.
  • an aluminum (Al) -based material may be used, and if the entire cylindrical substrate 10 is formed of an aluminum (Al) -based material. Good. Then, the electrophotographic photosensitive member 1 can be manufactured at a light weight and at a low cost.
  • the charge injection blocking layer 11a and the photoconductive layer 11b are formed of an amorphous silicon (a-Si) material, The adhesion between these layers and the cylindrical substrate 10 is enhanced, and the reliability can be improved.
  • the surface of the cylindrical substrate 10 is roughened.
  • the surface roughness of the cylindrical substrate 10 may be, for example, Str ⁇ 0.70 after roughening. Further, the surface roughness of the cylindrical substrate 10 may be set to, for example, 0.3 ⁇ m ⁇ Sal ⁇ 8.4 ⁇ m after the roughening.
  • wet blasting for example, wet blasting, sputter etching, polishing, turning, etc.
  • wet blasting for example, wet blasting, sputter etching, polishing, turning, etc.
  • wet blasting will be described in detail in the examples described later.
  • Ar sputter etching for example, physical processing is performed by Ar plasma collision accelerated by heating a substrate in a reaction furnace and applying a voltage while flowing Ar (argon) (Ar sputter etching). According to this, a large number of cylindrical substrates 10 can be processed at the same time, and when the photosensitive layer 11 and the surface layer 12 are formed on the surface of the cylindrical substrate 10, the CVD (chemical vapor phase) as described later is performed.
  • the growth (Chemical Vapor Deposition) apparatus it is possible to continuously perform the surface roughening and the formation process of the photosensitive layer 11 and the surface layer 12 while maintaining the vacuum state in the vacuum reaction chamber with one apparatus.
  • the polishing for example, the workpiece can be rotated in a state where the workpiece is pressed against the abrasive-coated sheet, and the surface can be provided with a concavo-convex pattern, thereby enabling processing in a relatively short time.
  • a sintered diamond cutting tool for example, a cutting tool in which diamond fine particles are sintered may be used, and thereby the surface roughness of the cylindrical substrate can be changed.
  • the surface of the cylindrical substrate 10 is mirror-finished before the above-described roughening is performed.
  • the surface roughness of the cylindrical substrate 10 can be set to a range of Sa ⁇ 30 nm and Sz ⁇ 2 ⁇ m, for example, after mirror finishing. More specifically, 6 nm ⁇ Sa ⁇ 20 nm and 0.05 ⁇ m ⁇ Sz ⁇ 1.2 ⁇ m may be set.
  • what is necessary is just to remove the oil component of the cylindrical base
  • Str surface texture aspect ratio
  • Str is one of the parameters representing the three-dimensional surface texture defined by ISO25178, and indicates the surface texture aspect ratio. That is, it is a scale representing the uniformity of the surface property, and is defined by the ratio of the farthest lateral distance at which the autocorrelation of the surface attenuates to the correlation value 0.2 and Sal. Str has a value in the range of 0 to 1, and a larger value indicates stronger isotropic properties, and a lower value indicates stronger anisotropy.
  • Sal shortest autocorrelation distance
  • ⁇ m the shortest autocorrelation distance
  • Sa arithmetic mean roughness
  • Sz maximum height
  • the surface properties of the cylindrical substrate 10 do not necessarily have to satisfy a predetermined range on the entire surface.
  • the surface properties may be out of the range at both ends of the cylindrical substrate 10 in the axial direction. This is the same for all the surface properties described below.
  • the charge injection blocking layer 11a has a role of blocking carrier (electron) injection from the cylindrical substrate 10.
  • the charge injection blocking layer 11a is made of, for example, an amorphous silicon (a-Si) material.
  • This charge injection blocking layer 11a is made of, for example, amorphous silicon (a-Si) containing boron (B) and optionally nitrogen (N) and / or oxygen (O) as a dopant, or phosphorus (P).
  • nitrogen (N), oxygen (O), or both can be used, and the thickness is 2 ⁇ m or more and 10 ⁇ m or less.
  • the photoconductive layer 11b has a role of generating carriers by light irradiation such as laser light.
  • the photoconductive layer 11b is made of, for example, an amorphous silicon (a-Si) material and an amorphous selenium (a-Se) material such as Se-Te or As 2 Se 3 .
  • the photoconductive layer 11b of this example includes amorphous silicon (a-Si) and amorphous silicon (a-Si) obtained by adding carbon (C), nitrogen (N), oxygen (O), etc. to amorphous silicon (a-Si). It is made of a system material and contains boron (B) or phosphorus (P) as a dopant.
  • the thickness of the photoconductive layer 11b may be appropriately set according to the photoconductive material to be used and desired electrophotographic characteristics.
  • the photoconductive layer 11b is formed using an amorphous silicon (a-Si) material.
  • the thickness of the photoconductive layer 11b may be set to, for example, 5 ⁇ m to 100 ⁇ m, more specifically 10 ⁇ m to 80 ⁇ m.
  • the surface layer 12 has a role of protecting the surface of the photosensitive layer 11.
  • an amorphous silicon (a-Si) -based material such as amorphous silicon carbide (a-SiC) or amorphous silicon nitride (a-SiN), amorphous carbon (aC), or a material thereof is used.
  • a-Si amorphous silicon carbide
  • a-SiN amorphous silicon nitride
  • aC amorphous carbon
  • a multilayer structure may be used.
  • the surface layer 12 has a three-layer structure, and the third layer of the surface layer 12 which is the outermost surface is amorphous carbon (a ⁇ having high resistance from the viewpoint of wear resistance against rubbing in the image forming apparatus. C) is adopted.
  • the surface roughness of the surface layer 12 may be set to Str ⁇ 0.67, and more specifically, it may be set to Str ⁇ 0.79. According to this, excellent durability characteristics and reduction of image defects can be exhibited. That is, the frictional resistance with the cleaning blade in the initial stage can be suppressed, and the surface roughness can be kept within a certain range even when the surface is gradually worn during durable use. As a result, the increase in frictional resistance between the surface layer and the cleaning blade can be effectively suppressed, so that the loss of the cleaning blade can be suppressed and image defects such as abnormal stripes can be added to the printed image. It becomes possible to reduce.
  • the surface roughness of the surface layer 12 may be set to Sal ⁇ 10.3 ⁇ m. Furthermore, the surface roughness of the surface layer 12 may be set to Sal ⁇ 0.9 ⁇ m, and more specifically, Sal ⁇ 1.6 ⁇ m. According to this, the above-mentioned excellent durability characteristics and low image defects can be exhibited more effectively. That is, in the surface direction of the surface layer, the presence of irregularities with a narrow pitch defined by the above numerical values makes it possible to reduce initial failure and suppress increase in frictional resistance during durable use.
  • Str and Sal of the surface layer 12 are values indicating the surface properties of the electrophotographic photosensitive member 1 in the initial state, that is, the surface layer 12 of the electrophotographic photosensitive member 1 before being repeatedly used many times in the image forming apparatus. It is. This means that the electrophotographic photosensitive member 1 as a marketed product is a value indicating the surface properties at the time of factory shipment.
  • the surface layer 12 is excellent in transparency so that light such as laser light irradiated on the electrophotographic photosensitive member 1 is not absorbed or reflected, and electrostatic capacitance in image formation is also provided. What has a surface resistance value (generally 10 11 ⁇ ⁇ cm or more) that can hold a latent image may be used.
  • the charge injection blocking layer 11a, the photoconductive layer 11b, and the surface layer 12 in the electrophotographic photoreceptor 1 as described above are formed using, for example, the plasma CVD apparatus 2 shown in FIG.
  • the plasma CVD apparatus 2 accommodates the support 3 in a vacuum reaction chamber 4 and further includes a rotating means 5, a source gas supply means 6 and an exhaust means 7.
  • the support 3 has a role of supporting the cylindrical substrate 10.
  • the support 3 is formed in a hollow shape having a flange portion 30 and is entirely formed of a conductive material similar to that of the cylindrical substrate 10 as a conductor.
  • the support 3 is formed to a length that can support the two cylindrical bases 10, and is detachable from the conductive support 31. Therefore, in the support 3, the two cylindrical substrates 10 can be taken in and out of the vacuum reaction chamber 4 without directly touching the surfaces of the two supported cylindrical substrates 10.
  • the conductive support 31 is made of the same conductive material as that of the cylindrical substrate 10 and is entirely formed as a conductor, and is insulated from the plate 42 described later at the center of the vacuum reaction chamber 4 (cylindrical electrode 40 described later). It is fixed via a material 32.
  • a DC power supply 34 is connected to the conductive support 31 via a conductive plate 33. The operation of the DC power supply 34 is controlled by the control unit 35.
  • the control unit 35 is configured to supply a pulsed DC voltage to the support 3 via the conductive support 31 by controlling the DC power supply 34.
  • a heater 37 is accommodated inside the conductive support 31 via a ceramic pipe 36.
  • the ceramic pipe 36 has a role of ensuring insulation and thermal conductivity.
  • the heater 37 has a role of heating the cylindrical substrate 10.
  • a nichrome wire or a cartridge heater can be used as the heater 37.
  • the temperature of the support 3 is monitored, for example, by a thermocouple (not shown) attached to the support 3 or the conductive support 31, and the heater 37 is turned on / off based on the monitoring result of the thermocouple.
  • the temperature of the cylindrical substrate 10 is maintained within a certain range selected from a target range, for example, 200 ° C. or more and 400 ° C. or less.
  • the vacuum reaction chamber 4 is a space for forming a deposited film on the cylindrical substrate 10 and is defined by a cylindrical electrode 40 and a pair of plates 41 and 42.
  • the cylindrical electrode 40 is formed in a cylindrical shape surrounding the support 3.
  • the cylindrical electrode 40 is formed of the same conductive material as that of the cylindrical substrate 10 and is formed in a hollow shape, and is joined to a pair of plates 41 and 42 via insulating members 43 and 44.
  • the cylindrical electrode 40 is formed in such a size that the distance D1 between the cylindrical substrate 10 supported by the support 3 and the cylindrical electrode 40 is 10 mm or more and 100 mm or less. This is because when the distance D1 between the cylindrical substrate 10 and the cylindrical electrode 40 is smaller than 10 mm, workability cannot be sufficiently ensured when the cylindrical substrate 10 is taken in and out of the vacuum reaction chamber 4, etc. This is because it becomes difficult to obtain a stable discharge between the substrate 10 and the cylindrical electrode 40. Conversely, when the distance D1 between the cylindrical substrate 10 and the cylindrical electrode 40 is larger than 100 mm, the plasma CVD apparatus 2 becomes large, and the productivity per unit installation area is deteriorated.
  • the cylindrical electrode 40 is provided with gas inlets 45a and 45b and a plurality of gas blowing holes 46, and is grounded at one end thereof.
  • the cylindrical electrode 40 is not necessarily grounded, and may be connected to a reference power source different from the DC power source 34.
  • the reference voltage at the reference power supply may be set to ⁇ 1500V or more and 1500V or less.
  • the gas introduction port 45 a has a role of introducing a source gas dedicated to the dopant of the photoconductive layer 11 b to be supplied to the vacuum reaction chamber 4, and the gas introduction port 45 b is a source gas to be supplied to the vacuum reaction chamber 4.
  • the gas introduction ports 45 a and 45 b are both connected to the raw material gas supply means 6.
  • the gas introduction port 45 a is installed at a substantially central height position of the vacuum reaction chamber 4, and the gas introduction port 45 b is a height position corresponding to both end positions of the support 3 installed in the vacuum reaction chamber 4. Respectively.
  • the plurality of gas blowing holes 46 have a role of blowing the source gas introduced into the cylindrical electrode 40 toward the cylindrical substrate 10, and in the vertical direction of the figure (the axial direction of the cylindrical electrode 40). They are arranged at equal intervals and are also arranged at equal intervals in the circumferential direction.
  • the plurality of gas blowing holes 46 are formed in a circular shape having the same shape, and the hole diameter may be, for example, not less than 0.5 mm and not more than 2 mm.
  • the plate 41 has a role of allowing the vacuum reaction chamber 4 to be selected between an open state and a closed state, and the support 3 can be taken in and out of the vacuum reaction chamber 4 by opening and closing the plate 41. It is said that.
  • the plate 41 is formed of the same conductive material as that of the cylindrical base body 10, but a deposition preventing plate 47 is attached to the lower surface side. This prevents a deposited film from being formed on the plate 41.
  • This adhesion preventing plate 47 is also formed of the same conductive material as that of the cylindrical substrate 10. The adhesion preventing plate 47 is detachable from the plate 41. Therefore, the adhesion preventing plate 47 can be cleaned by removing it from the plate 41 and can be used repeatedly.
  • the plate 42 serves as a base for the vacuum reaction chamber 4 and is formed of a conductive material similar to that of the cylindrical substrate 10.
  • the insulating member 44 interposed between the plate 42 and the cylindrical electrode 40 has a role of suppressing occurrence of arc discharge between the cylindrical electrode 40 and the plate 42.
  • Such an insulating member 44 is made of, for example, a glass material (borosilicate glass, soda glass, heat-resistant glass, etc.), an inorganic insulating material (ceramics, quartz, sapphire, etc.) or a synthetic resin insulating material (fluorine resin such as tetrafluoroethylene, Polycarbonate, polyethylene terephthalate, polyester, polyethylene, polypropylene, polystyrene, polyamide, vinylon, epoxy, PEEK (polyetheretherketone) material, etc.).
  • the insulating member 44 is not particularly limited as long as it is insulating, has sufficient heat resistance at the use temperature, and is a material that emits a small amount of gas in a vacuum.
  • the insulating member 44 has a thickness greater than a certain thickness in order to prevent the insulating member 44 from being used due to warpage caused by the internal stress of the film formation body or the stress caused by the bimetal effect caused by the temperature rise during film formation. It is formed as having.
  • the insulating member 44 is formed of a material having a thermal expansion coefficient of 3 ⁇ 10 ⁇ 5 / K or more and 10 ⁇ 10 ⁇ 5 / K or less, such as ethylene tetrafluoride, the thickness of the insulating member 44 is 10 mm or more.
  • the thickness of the insulating member 44 is set in such a range, the interface between the insulating member 44 and an amorphous silicon (a-Si) film having a thickness of 10 ⁇ m or more and 30 ⁇ m or less formed on the cylindrical substrate 10 is formed.
  • the amount of warping caused by the generated stress can be reduced.
  • the amount of warpage is 1 mm as a difference in height in the axial direction between the end portion and the central portion in the horizontal direction with respect to a length of 200 mm in the horizontal direction (radial direction substantially orthogonal to the axial direction of the cylindrical substrate 10). It can be as follows. Thereby, the insulating member 44 can be used repeatedly.
  • the plate 42 and the insulating member 44 are provided with gas discharge ports 42A and 44A and a pressure gauge 49.
  • the gas discharge ports 42 ⁇ / b> A and 44 ⁇ / b> A have a role of discharging the gas inside the vacuum reaction chamber 4, and the pressure gauge 49 connected to the exhaust means 7 plays a role of monitoring the pressure in the vacuum reaction chamber 4.
  • Various known ones can be used.
  • the rotating means 5 has a role of rotating the support 3, and includes a rotation motor 50 and a rotational force transmission mechanism 51.
  • the cylindrical base 10 rotates together with the support 3, so that the decomposition component of the source gas is uniformly distributed with respect to the outer periphery of the cylindrical base 10. Can be deposited.
  • the rotary motor 50 applies a rotational force to the cylindrical substrate 10.
  • the operation of the rotary motor 50 is controlled so as to rotate the cylindrical substrate 10 at 1 rpm or more and 10 rpm or less, for example.
  • Various known motors can be used as the rotary motor 50.
  • the rotational force transmission mechanism 51 has a role of transmitting / inputting rotational force from the rotary motor 50 to the cylindrical base 10 and includes a rotation introduction terminal 52, an insulating shaft member 53, and an insulating flat plate 54.
  • the rotation introducing terminal 52 has a role of transmitting a rotational force while maintaining a vacuum in the vacuum reaction chamber 4.
  • vacuum seal means such as an oil seal or a mechanical seal can be used with a rotary shaft having a double or triple structure.
  • the insulating shaft member 53 and the insulating flat plate 54 have a role of inputting the rotational force from the rotary motor 50 to the support body 3 while maintaining the insulation state between the support body 3 and the plate 41. It is made of a similar insulating material such as the member 44.
  • the outer diameter D2 of the insulating shaft member 53 is set to be smaller than the outer diameter (the inner diameter of the upper dummy base 38C described later) D3 during the film formation. More specifically, when the temperature of the cylindrical substrate 10 at the time of film formation is set to 200 ° C. or more and 400 ° C. or less, the outer diameter D2 of the insulating shaft member 53 is the outer diameter of the support 3 (described later).
  • the inner diameter of the dummy base body 38C may be set to be 0.1 mm or more and 5 mm or less, more specifically about 3 mm.
  • the outer diameter D2 of the insulating shaft member 53 and the outer diameter of the support 3 (the upper dummy substrate 38C described later) are formed during non-film formation (in a room temperature environment (for example, 10 ° C. to 40 ° C.)).
  • the inner diameter) D3 may be set to 0.6 mm or more and 5.5 mm or less.
  • the insulating flat plate 54 has a role of preventing foreign matters such as dust and dust falling from above when the plate 41 is removed, and is larger than the inner diameter D3 of the upper dummy base 38C. It is formed in a disk shape having an outer diameter D4.
  • the diameter D4 of the insulating flat plate 54 is 1.5 to 3 times the diameter D3 of the cylindrical substrate 10. For example, when the cylindrical substrate 10 having a diameter D3 of 30 mm is used, the diameter of the insulating flat plate 54 is used. D4 is about 50 mm.
  • the source gas supply means 6 includes a plurality of source gas tanks 60, 61, 62, 63, a dopant dedicated gas tank 64 for the photoconductive layer 11 b, a plurality of pipes 60 ⁇ / b> A, 61 ⁇ / b> A, 62 ⁇ / b> A, 63 ⁇ / b> A, 64 ⁇ / b> A, A valve 60B, 61B, 62B, 63B, 64B, 60C, 61C, 62C, 63C, 64C and a plurality of mass flow controllers 60D, 61D, 62D, 63D, 64D are provided, and piping 65a, 65b and a gas inlet 45a.
  • Each of the source gas tanks 60 to 64 is filled with, for example, B 2 H 6 , (or PH 3 ), H 2 (or He), CH 4, or SiH 4 .
  • the valves 60B to 64B, 60C to 64C and the mass flow controllers 60D to 64D have a role of adjusting the flow rate, composition, and gas pressure of each source gas component introduced into the vacuum reaction chamber 4 or the dopant exclusive gas component of the photoconductive layer 11b. Is.
  • the type of gas to be filled in each source gas tank 60 to 64, or the number of the plurality of source tanks 60 to 64 depends on the type or composition of the film to be formed on the cylindrical substrate 10. What is necessary is just to select suitably according to.
  • the exhaust means 7 has a role of exhausting the gas in the vacuum reaction chamber 4 to the outside through the gas exhaust ports 42A and 44A, and includes a mechanical booster pump 71 and a rotary pump 72. These pumps 71 and 72 are controlled in operation according to the monitoring result of the pressure gauge 49. That is, the exhaust means 7 can maintain the vacuum reaction chamber 4 in a vacuum based on the monitoring result of the pressure gauge 49, and can set the gas pressure in the vacuum reaction chamber 4 to a target value.
  • the pressure in the vacuum reaction chamber 4 may be, for example, 1 Pa or more and 100 Pa or less.
  • the plasma CVD apparatus 2 as described above continuously performs the surface roughening and the formation process of the photosensitive layer 11 and the surface layer 12 while maintaining the vacuum state in the vacuum reaction chamber 4 with one apparatus.
  • This is an example of an electrophotographic photoreceptor manufacturing apparatus that includes a roughening portion, a charge injection blocking layer forming portion, a photoconductive layer forming portion, and a surface layer forming portion.
  • an amorphous silicon (a-Si) film is formed as the photosensitive layer 11 on the cylindrical substrate 10 whose outer surface has the three-dimensional surface properties as described above.
  • a-Si amorphous silicon
  • aC amorphous carbon
  • the plate 41 of the plasma CVD apparatus 2 was removed and a plurality of cylindrical substrates 10 (two in the drawing) were supported.
  • the support 3 is set inside the vacuum reaction chamber 4 and the plate 41 is attached again.
  • the lower dummy base 38 ⁇ / b> A, the cylindrical base 10, the intermediate dummy base 38 ⁇ / b> B, the cylindrical base 10, and the main part of the support 3 are covered on the flange portion 30.
  • the upper dummy bases 38C are sequentially stacked.
  • a conductive or insulating base whose surface has been subjected to a conductive treatment is selected according to the use of the product.
  • a cylinder made of the same material as the cylindrical base 10 is used. What was formed in the shape is used.
  • the lower dummy base 38A has a role of adjusting the height position of the cylindrical base 10.
  • the intermediate dummy substrate 38 ⁇ / b> B has a role of suppressing the occurrence of film formation defects on the cylindrical substrate 10 caused by arc discharge generated between the ends of the adjacent cylindrical substrates 10.
  • the intermediate dummy base body 38B has a minimum length (1 cm in this example) that can prevent arc discharge, and the surface side corner portion has a curvature of 0.5 mm or more by curved surface processing or end surface processing.
  • the chamfered portion is used so that the length in the axial direction and the length in the depth direction of the part cut in the above are 0.5 mm or more.
  • the upper dummy substrate 38C has a role of preventing the deposition film from being formed on the support 3 and suppressing the occurrence of film formation defects due to the separation of the film formation body once deposited during film formation. is there.
  • the upper dummy base 38 ⁇ / b> C is in a state in which a part protrudes above the support 3.
  • the vacuum reaction chamber 4 is sealed, the cylindrical substrate 10 is rotated through the support 3 by the rotating means 5, the cylindrical substrate 10 is heated, and the vacuum reaction chamber 4 is depressurized by the exhaust means 7.
  • the cylindrical substrate 10 is heated, for example, by supplying electric power to the heater 37 from the outside to cause the heater 37 to generate heat. Due to the heat generated by the heater 37, the cylindrical substrate 10 is heated to a target temperature.
  • the temperature of the cylindrical substrate 10 is selected depending on the type and composition of the film to be formed on the surface. For example, when forming an amorphous silicon (a-Si) film, the temperature is set in the range of 250 ° C. or more and 300 ° C. or less.
  • the heater 37 is kept substantially constant by turning the heater 37 on and off.
  • the vacuum reaction chamber 4 is decompressed by exhausting the gas from the vacuum reaction chamber 4 through the gas discharge ports 42A and 44A by the exhaust means 7.
  • the degree of depressurization of the vacuum reaction chamber 4 is determined by monitoring the pressure in the vacuum reaction chamber 4 with a pressure gauge 49 (see FIG. 2), and with a mechanical booster pump 71 (see FIG. 2) and a rotary pump 72 (see FIG. 2). For example, about 10 ⁇ 3 Pa.
  • the source gas is supplied to the vacuum reaction chamber 4 by the source gas supply means 6 and the cylindrical electrode A pulsed DC voltage is applied between 40 and the support 3.
  • glow discharge occurs between the cylindrical electrode 40 and the support 3 (cylindrical substrate 10), the source gas component is decomposed, and the decomposed component of the source gas is deposited on the surface of the cylindrical substrate 10.
  • the gas pressure in the vacuum reaction chamber 4 is maintained in the target range by controlling the operations of the mechanical booster pump 71 and the rotary pump 72 while monitoring the pressure gauge 49. That is, the inside of the vacuum reaction chamber 4 is maintained at a stable gas pressure by the mass flow controllers 60D to 63D in the source gas supply means 6 and the pumps 71 and 72 in the exhaust means 7.
  • the gas pressure in the vacuum reaction chamber 4 may be, for example, 1 Pa or more and 100 Pa or less.
  • the supply of the source gas to the vacuum reaction chamber 4 is performed by controlling the mass flow controllers 60D to 64D while appropriately controlling the open / closed state of the valves 60B to 64B and 60C to 64C.
  • the composition and flow rate are introduced into the cylindrical electrode 40 through the pipes 60A to 64A, 65a, 65b and the gas inlets 45a, 45b.
  • the source gas introduced into the cylindrical electrode 40 is blown out toward the cylindrical substrate 10 through a plurality of gas blowing holes 46. Then, by appropriately switching the composition of the source gas by the valves 60B to 64B, 60C to 64C and the mass flow controllers 60D to 64D, the charge injection blocking layer 11a, the photoconductive layer 11b, and the surface layer 12 are formed on the surface of the cylindrical substrate 10. Are sequentially stacked.
  • Application of a pulsed DC voltage between the cylindrical electrode 40 and the support 3 is performed by controlling the DC power supply 34 by the control unit 35.
  • the ion species generated in the space are accelerated by the electric field and attracted in the direction according to the positive / negative polarity. Since the electric field is continuously reversed by the above, the recombination is repeated in the space before the ion species reaches the cylindrical substrate 10 or the discharge electrode, and again with the silicon compound such as gas or polysilicon powder. It is exhausted.
  • RF Radio Frequency
  • a pulsating DC voltage is applied so that the cylindrical substrate 10 has a positive or negative polarity to accelerate the cations to collide with the cylindrical substrate 10, and the impact causes fine irregularities on the surface.
  • amorphous silicon (a-Si) is formed while sputtering, amorphous silicon (a-Si) having a highly uniform surface with suppressed large protrusion growth can be obtained.
  • this phenomenon may be referred to as an ion sputtering effect.
  • the potential difference between the support 3 (cylindrical substrate 10) and the cylindrical electrode 40 is set within a range of, for example, 50 V or more and 3000 V or less.
  • the film rate more specifically, it may be in the range of 500 V or more and 3000 V or less.
  • the control unit 35 when the cylindrical electrode 40 is grounded, the control unit 35 has a negative pulse shape within a range of ⁇ 3000V to ⁇ 50V with respect to the support (conductive column 31).
  • a DC potential V1 is supplied, or a positive pulsed DC potential V1 within a range of 50V to 3000V is supplied.
  • the pulsed DC potential V1 supplied to the support (conductive column 31) is equal to the target potential difference ⁇ V and the reference.
  • a difference value ( ⁇ V ⁇ V2) from the potential V2 supplied from the power source is set.
  • the potential V2 supplied from the reference power supply is ⁇ 1500 V or more and 1500 V or less when a negative pulse voltage is applied to the support 3 (cylindrical substrate 10), and the support 3 (cylindrical substrate 10).
  • the voltage may be ⁇ 1500 V or more and 1500 V or less.
  • the control unit 35 also controls the DC power supply 34 so that the frequency (1 / T (sec)) of the DC voltage is 300 kHz or less and the duty ratio (T1 / T) is 20% or more and 90% or less.
  • the duty ratio in this embodiment is one cycle (T) of a pulsed DC voltage (from the moment when a potential difference occurs between the cylindrical substrate 10 and the cylindrical electrode 40 to the moment when the potential difference occurs next. Is defined as the time ratio occupied by the potential difference occurrence time T1. For example, a duty ratio of 20% means that the potential difference occurrence (ON) time in one cycle when applying a pulsed voltage is 20% of the entire cycle.
  • the amorphous silicon (a-Si) photoconductive layer 11b obtained by utilizing the ion sputtering effect has the above-described large protrusion-like growth suppressed on the surface even when its thickness is 10 ⁇ m or more. There is unevenness with high uniformity. Therefore, a total of about 1 ⁇ m of amorphous silicon carbide (a-SiC) and amorphous carbon (aC) as the surface layer 12 may be laminated on the photoconductive layer 11b.
  • the surface shape of the surface layer 12 can be a surface reflecting the surface shape of the photoconductive layer 11b.
  • the surface layer 12 is formed as a film having highly uniform irregularities in which the growth of large protrusions is suppressed by utilizing the ion sputtering effect. can do.
  • the mass flow controllers 60D to 63D and the valves 60B to 63B and 60C to 63C in the source gas supply means 6 are controlled to achieve the target composition.
  • the source gas is supplied to the vacuum reaction chamber 4 as described above.
  • the source gas is a silicon (Si) -containing gas such as SiH 4 (silane gas), B 2 H 6 or PH.
  • Si silicon
  • B 2 H 6 silicon
  • a mixed gas of a dopant-containing gas such as 3 and a diluent gas such as hydrogen (H 2 ) or helium (He) is used.
  • the dopant-containing gas may be a boron (B) -containing gas and optionally a nitrogen (N) -containing gas or an oxygen (O) -containing gas or both, or a phosphorus (P) -containing gas and optionally nitrogen (N ) Containing gas or oxygen (O) containing gas or both may be used.
  • the photoconductive layer 11b is formed as an amorphous silicon (a-Si) -based deposited film
  • a silicon (Si) -containing gas such as SiH 4 (silane gas) and hydrogen (H 2 ) or helium (He) are used. Etc.) is used.
  • a diluting gas is used so that hydrogen (H) or a halogen element (fluorine (F), chlorine (Cl)) is contained in the film at 1 atom% or more and 40 atom% or less for dangling bond termination.
  • a hydrogen gas a halogen compound may be included in the raw material gas.
  • Group 12 and Group 13 elements (hereinafter referred to as “Group”) as dopants.
  • the above-mentioned characteristics include a group 12 element, abbreviated as “group 13 element”) or a group 15 or a group 16 element in the periodic table (hereinafter abbreviated as “group 15 element” or “group 16 element”).
  • group 15 element or “group 16 element”.
  • elements such as carbon (C) and oxygen (O) may be contained.
  • the Group 13 element and the Group 15 element boron (B) and phosphorus (P) are excellent in covalent bondability and can change the semiconductor characteristics sensitively, and excellent photosensitivity can be obtained. Is desirable.
  • the group 13 element or the group 15 element is contained together with elements such as carbon (C) and oxygen (O) in the charge injection blocking layer 11a, the content of the group 13 element is 0.1 ppm or more and 20000 ppm.
  • the content of the Group 15 element is adjusted to be 0.1 ppm or more and 10,000 ppm or less.
  • a group 13 element or a group 15 element is included together with elements such as carbon (C) and oxygen (O) in the photoconductive layer 11b, or alternatively, the charge injection blocking layer 11a and the photoconductive layer 11b.
  • elements such as carbon (C) and oxygen (O) are not included, the group 13 element is adjusted to 0.01 ppm to 200 ppm, and the group 15 element is adjusted to 0.01 ppm to 100 ppm. Is done.
  • the concentration of these elements may be provided with a gradient over the layer thickness direction. In this case, the content of the Group 13 element or the Group 15 element in the photoconductive layer 11b may be such that the average content in the entire photoconductive layer 11b is within the above range.
  • the amorphous silicon (a-Si) -based material may contain microcrystalline silicon ( ⁇ c-Si).
  • ⁇ c-Si microcrystalline silicon
  • Such microcrystalline silicon ( ⁇ c-Si) can be formed by employing the film formation method described above and changing the film formation conditions. For example, in the glow discharge decomposition method, it can be formed by setting the temperature and DC pulse power of the cylindrical substrate 10 high and increasing the flow rate of hydrogen as a dilution gas.
  • the same elements as described above Group 13 element, Group 15 element, carbon (C), oxygen (O), etc.
  • the surface layer 12 is formed as a multilayer structure of an a-SiC layer and an aC layer as described above.
  • a silicon (Si) -containing gas such as SiH 4 (silane gas) and a C-containing gas such as C 2 H 2 (acetylene gas) or CH 4 (methane gas) are used as the source gas.
  • the aC layer which is the third layer of the surface layer 12 has a film thickness of usually 0.01 ⁇ m to 2 ⁇ m, specifically 0.02 ⁇ m to 1 ⁇ m, more specifically 0.03 ⁇ m. It may be set to 0.8 ⁇ m or less.
  • the surface layer 12 may have a film thickness of usually 0.1 ⁇ m to 6 ⁇ m, specifically 0.25 ⁇ m to 3 ⁇ m, more specifically 0.4 ⁇ m to 2.5 ⁇ m.
  • the surface layer 12 is made of amorphous silicon (a-Si). Compared with the case where it forms only with a system material, it can suppress more reliably that the surface of the surface layer 12 oxidizes. Therefore, when the third layer of the surface layer 12 is formed as an amorphous carbon (ac) layer, the surface layer 12 is appropriately suppressed from being oxidized by ozone generated by corona discharge during printing. Therefore, it is possible to suppress the occurrence of image flow in a high temperature and high humidity environment.
  • a-Si amorphous silicon
  • the electrophotographic photosensitive member 1 shown in FIG. 1 can be obtained by extracting the cylindrical substrate 10 from the support 3. After the film formation, in order to remove the film formation residue, each member in the vacuum reaction chamber 4 is disassembled and washed with acid, alkali, blasting, etc., and there is no dust generation that causes a defect in the next film formation. Wet etching is performed as described above. It is also effective to perform gas etching using halogen-based (ClF 3 , CF 4 , NF 3 , SiF 6 or a mixed gas thereof) instead of wet etching.
  • halogen-based ClF 3 , CF 4 , NF 3 , SiF 6 or a mixed gas thereof
  • the image forming apparatus shown in FIG. 3 employs the Carlson method as an image forming method, and includes an electrophotographic photosensitive member 1, a charger 111, an exposure device 112, a developing device 113, a transfer device 114, a fixing device 115, and a cleaning device. 116 and a static eliminator 117.
  • the charger 111 has a role of charging the surface of the electrophotographic photosensitive member 1 to a negative polarity.
  • the charging voltage is set to, for example, 200 V or more and 1000 V or less.
  • the charger 111 employs a contact charger configured by covering a core metal with conductive rubber or PVDF (polyvinylidene fluoride), for example, but instead includes a discharge wire.
  • a non-contact type charger for example, a corona charger may be adopted.
  • the exposure device 112 has a role of forming an electrostatic latent image on the electrophotographic photosensitive member 1. Specifically, the exposure device 112 irradiates the electrophotographic photosensitive member 1 with exposure light (for example, laser light) having a specific wavelength (for example, 650 nm or more and 780 nm or less) in accordance with an image signal, so that the electrophotographic image is in a charged state.
  • Expos light for example, laser light
  • a specific wavelength for example, 650 nm or more and 780 nm or less
  • An electrostatic latent image is formed by attenuating the potential of the exposure light irradiation portion of the photoreceptor 1.
  • an LED Light Emitting Diode
  • a plurality of LED elements wavelength: 680 nm
  • a light source capable of emitting laser light can be used instead of the LED element. That is, an optical system including a polygon mirror may be used in place of the exposure device 112 such as an LED head.
  • an optical system including a lens and a mirror through which reflected light from a document is passed an image forming apparatus having a configuration of a copying machine can be obtained.
  • the developing device 113 has a role of developing a latent electrostatic image of the electrophotographic photosensitive member 1 to form a toner image.
  • the developing device 113 in this example includes a magnetic roller 113A that magnetically holds a developer (toner) T.
  • the developer T constitutes a toner image formed on the surface of the electrophotographic photosensitive member 1 and is frictionally charged in the developing device 113.
  • Examples of the developer T include a two-component developer including a magnetic carrier and an insulating toner, and a one-component developer including a magnetic toner.
  • the magnetic roller 113A has a role of transporting the developer to the surface (development region) of the electrophotographic photosensitive member 1.
  • the magnetic roller 113A conveys the developer T frictionally charged in the developing unit 113 in the form of a magnetic brush adjusted to a certain head length.
  • the transported developer T adheres to the surface of the electrophotographic photosensitive member 1 by electrostatic attraction with the electrostatic latent image in the developing area of the electrophotographic photosensitive member 1 to form a toner image (electrostatic latent image). Visualize).
  • the charge polarity of the toner image is opposite to the charge polarity of the surface of the electrophotographic photoreceptor 1 when image formation is performed by regular development, and the electrophotographic photoreceptor 1 when image formation is performed by reversal development.
  • the charge polarity of the surface is the same.
  • the developing device 113 employs a dry development method in this example, but may employ a wet development method using a liquid developer.
  • the transfer device 114 has a role of transferring the toner image of the electrophotographic photosensitive member 1 to the recording medium P supplied to the transfer region between the electrophotographic photosensitive member 1 and the transfer device 114.
  • the transfer device 114 in this example includes a transfer charger 114A and a separation charger 114B.
  • the back surface (non-recording surface) of the recording medium P is charged with a reverse polarity to the toner image in the transfer charger 114 ⁇ / b> A.
  • the image is transferred.
  • the back surface of the recording medium P is AC-charged in the separation charger 114B, and the recording medium P is quickly separated from the surface of the electrophotographic photosensitive member 1.
  • the transfer device 114 it is also possible to use a transfer roller that is driven by the rotation of the electrophotographic photosensitive member 1 and disposed with a small gap (for example, 0.5 mm or less) from the electrophotographic photosensitive member 1. .
  • the transfer roller is configured to apply a transfer voltage that attracts the toner image on the electrophotographic photosensitive member 1 onto the recording medium P by, for example, a DC power source.
  • a transfer separation device such as the separation charger 114B can be omitted.
  • the fixing device 115 has a role of fixing the toner image transferred to the recording medium P to the recording medium P, and includes a pair of fixing rollers 115A and 115B.
  • the fixing rollers 115A and 115B are, for example, coated on a metal roller with tetrafluoroethylene or the like.
  • the fixing device 115 can fix the toner image on the recording medium P by applying heat and pressure to the recording medium P that passes between the pair of fixing rollers 115A and 115B.
  • the cleaning device 116 has a role of removing toner remaining on the surface of the electrophotographic photosensitive member 1, and includes a cleaning blade 116A.
  • the cleaning blade 116 ⁇ / b> A has a role of scraping residual toner from the surface of the electrophotographic photosensitive member 1.
  • the cleaning blade 116A is made of, for example, a rubber material mainly composed of polyurethane resin.
  • the static eliminator 117 has a role of removing the surface charge of the electrophotographic photosensitive member 1 and can emit light having a specific wavelength (for example, 780 nm or more).
  • the static eliminator 117 removes the surface charge (residual electrostatic latent image) of the electrophotographic photosensitive member 1 by irradiating the entire axial direction of the surface of the electrophotographic photosensitive member 1 with a light source such as an LED. It is configured.
  • the method of manufacturing the image forming apparatus 100 is a method that includes the step of installing the cleaning device 116 in contact with the surface of the electrophotographic photosensitive member 1 in the manufacturing method of the electrophotographic photosensitive member 1 described above. There may be provided a step of installing other charger 111, exposure device 112, developing device 113, transfer device 114, fixing device 115, static eliminator 117, and the like.
  • the cylindrical base 10 was produced using an aluminum alloy tube (outer diameter: 30 mm, length 360 mm). Mirror surface processing and wet blast processing were sequentially performed on the outer peripheral surface of the cylindrical substrate 10 and then washed.
  • the cylindrical substrate 10 is held at both ends, and is rotated at a high speed of 1500 to 8000 rpm, and a diamond bite is pressed to a feed of 0.08 to 0.5 mm. And burnishing. That is, a smooth finished surface was obtained by pressing a diamond tool having a depth in the workpiece rotation direction against the surface of the cylindrical base 10 on the finished surface of the tool.
  • degreasing cleaning was performed on 10 cylindrical substrates.
  • a high-hardness abrasive such as alumina and water are agitated, mixed and accelerated with compressed air, and projected onto the surface of the mirror-finished cylindrical substrate 10 for roughening. I did it. According to this, a processed surface can be formed in a short time by processing the cylindrical base 10 while rotating it. As in this example, according to wet blasting, it is relatively easy to uniformly project an abrasive having a small particle size compared to other processing methods. A machined surface with excellent properties can be obtained.
  • samples of the cylindrical substrate 10 having 15 different surfaces were prepared by adjusting the following parameters as wet blasting conditions.
  • Abrasive material and particle size A (Alundum (brown dissolved alumina)) # 320 to # 4000 Abrasive concentration: 10-18% Projected air pressure: 0.10 to 0.35 MPa Projection distance (distance between workpiece center and blast head): 20-300mm Projection time: 1 to 60 seconds Work speed: 120 to 180 rpm The Sal value was adjusted by using different abrasive materials and particle sizes, and the Str value was adjusted by changing the projection air pressure, the projection distance, and the projection time (1 to 60 seconds).
  • the cylindrical substrate 10 prepared in this manner is set in the plasma CVD apparatus shown in FIG. 2, and the charge injection blocking layer 11a and the photoconductive layer 11b are formed on the surface of the cylindrical substrate 10 under the conditions shown in Table 2. , And the surface layer 12 were formed in order.
  • the flow rates of B 2 H 6 and NO in Table 2 are expressed as a ratio to the flow rate of SiH 4 .
  • a DC pulse power source (pulse frequency: 50 kHz, duty ratio: 70%) was used.
  • the film thickness was measured by analyzing the cross section with SEM (scanning electron microscope) and XMA (X-ray microanalyzer). The specific configuration of each layer is as follows.
  • the charge injection blocking layer 11a is obtained by adding boron (B) as a dopant to an amorphous silicon (a-Si) material obtained by adding nitrogen (N) and oxygen (O) to amorphous silicon (a-Si). is there.
  • the film thickness of the charge injection blocking layer 11a was 5 ⁇ m.
  • the photoconductive layer 11b is made of an amorphous silicon (a-Si) material obtained by adding carbon (C), nitrogen (N), oxygen (O), etc. to amorphous silicon (a-Si), and boron (B) as a dopant. It is contained.
  • a-Si amorphous silicon
  • the film thickness of the photoconductive layer 11b was 14 ⁇ m.
  • the surface layer 12 has a structure in which amorphous silicon carbide (a-SiC) and amorphous carbon (aC) are laminated.
  • a-SiC amorphous silicon carbide
  • aC amorphous carbon
  • the film thickness of the surface layer 12 was 1.2 ⁇ m in total, and the film thickness of the third surface layer was 0.2 ⁇ m.
  • samples 1 to 15 of the electrophotographic photoreceptor 1 were prepared by changing the surface roughness of the surface layer 12.
  • the surface shape was evaluated with a three-dimensional roughness parameter conforming to ISO25178, using a three-dimensional measurement laser microscope OLS4100 manufactured by Olympus Corporation.
  • a 50 ⁇ magnification lens was used, and a 260 ⁇ m ⁇ 261 ⁇ m range was measured in the high-speed measurement mode. Since the measurement object has a cylindrical shape, the correction was performed in the XY direction.
  • the measurement result here is the arithmetic average of the measurement results at five locations within the range of 100 mm in the central portion of the cylindrical substrate 10 in the axial direction of the electrophotographic photosensitive member 1.
  • the Str and Sal of each sample are as shown in Table 3 to be described later.
  • each sample of the produced electrophotographic photosensitive member 1 is incorporated into a color complex machine TASKalfa 3550ci remodeling device manufactured by Kyocera Document Solutions Co., Ltd., and each sample is electrophotographic photosensitive member at the time of continuous printing of 600,000 sheets (600K).
  • the Sa reduction rate (%) of the surface layer 12 of 1 was evaluated, scratches on the cleaning blade 116A as a peripheral member of the electrophotographic photosensitive member 1, and image characteristics were evaluated by observing the surface contamination state of the charging roller. And comprehensive evaluation which is comprehensive evaluation based on those individual characteristics was performed.
  • each individual characteristic described above was performed under the following conditions. That is, in an evaluation environment at a room temperature of 23 ° C. and a relative humidity of 60%, the electrophotographic photosensitive member is obtained when 200,000 continuous printing is performed, 400,000 continuous printing is performed, and 600,000 continuous printing is performed. Evaluation was performed by measuring the surface state of No. 1 with the above-mentioned laser microscope, the presence or absence of scratches on the edge of the cleaning blade 116A, and observing the surface contamination state of the charging roller with a magnifying glass (20 times).
  • the Sa reduction rate (%) indicates a rate at which the Sa value of the surface layer 12 of the electrophotographic photosensitive member 1 is reduced from the initial value before printing, and is described as 70%, for example. Means that the Sa value is 30% of the state before printing.
  • the value marked with * is the Sa reduction rate (%) of the surface layer of the electrophotographic photosensitive member during continuous printing of 200,000 sheets (200K). Is shown.
  • Evaluation A indicates that the cleaning blade was somewhat damaged as a result of continuous printing of 200,000 sheets (200K).
  • Evaluation B indicates that the cleaning blade was clearly damaged at the time of printing a small number of 1000 sheets or less.
  • Table 3 shows the evaluation results.
  • indicates excellent characteristics
  • indicates desirable characteristics
  • indicates required level characteristics
  • x indicates that required level characteristics are not satisfied.
  • the electrophotographic photosensitive member 1 has a Str value after the roughening process, except when an initial failure occurs due to the Sal value after wet blasting (after the roughening process) (Samples 14 and 15). Was found to be excellent when it was 0.70 or more (Samples 2, 3, 5, 6, 8, 9, 11, and 12). Among these, it was found that when the Str value after the roughening step is 0.80 or more (samples 3, 6, 9, and 12), more excellent effects are exhibited.
  • the surface shape of the surface layer 12 of the cylindrical substrate 10 can be provided with unevenness with high uniformity if the value of Str after the roughening step is a predetermined value or more. It is considered that the surface roughness can be maintained within a certain range even when the surface is gradually worn. As a result, an increase in frictional resistance between the surface layer 12 and the cleaning blade 116A can be effectively suppressed. Thereby, it is considered that the defect of the cleaning blade 116A can be suppressed, and the occurrence of image defects such as abnormal streaks in the printed image can be reduced.
  • the outer surface of the cylindrical substrate 10 is roughened to a predetermined surface roughness, whereby a layer (photosensitive layer, The characteristics can be improved without roughening the surface of the surface layer, etc., and excellent durability characteristics and low image defects can be realized.
  • the cause of the initial failure in the samples 14 and 15 is that the surface layer 12 of the electrophotographic photosensitive member 1 is a peripheral member such as the cleaning blade 116A when the value of Sal after the roughening process is large. It is considered that the frictional resistance of the cleaning blade 116A was lost.
  • the Str value after the roughening step was 0.70 or more. That is, it was found that when the value of Sal after the roughening step is 8.4 ⁇ m or less (samples 2, 3, 5, 6, 8, 9, 11, and 12), excellent effects are exhibited. According to these experimental data, when Sal after the roughening process is smaller than a predetermined value, the frictional resistance between the surface layer 12 of the electrophotographic photosensitive member 1 and the cleaning blade 116A can be reduced, It is considered that excellent durability characteristics could be obtained by suppressing the loss of the cleaning blade 116A.
  • the cylindrical base body 10, the charge injection blocking layer 11a, and the photoconductive layer 11b have been described as separate components, but instead, at least the surface of the cylindrical base body 10 is A charge injection blocking characteristic may be provided.
  • the cylindrical substrate 10 itself can have a role of blocking the injection of carriers (electrons) from the cylindrical substrate 10 to the photoconductive layer 11b without providing a separate charge injection blocking layer 11a. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

本発明は、優れた耐久特性および低い画像欠陥を実現することができる電子写真感光体の製造方法および画像形成装置の製造方法ならびに電子写真感光体の製造装置に関する。 円筒状基体の外表面を、表面粗さがStr≧0.70に粗面化する工程と、前記円筒状基体上に電荷注入阻止層を形成する工程と、前記電荷注入阻止層上に光導電層を形成する工程と、前記光導電層上に表面層を形成する工程と、を備えた電子写真感光体の製造方法とする。

Description

電子写真感光体の製造方法およびこれを備えた画像形成装置の製造方法ならびに電子写真感光体の製造装置
 本発明は、電子写真感光体の製造方法およびこれを備えた画像形成装置の製造方法ならびに電子写真感光体の製造装置に関するものである。
 従来、電子写真感光体は、例えば特許文献1に記載されているように円筒状などの基板の表面に、感光層(キャリア注入阻止層、光導電層および表面保護層など)を形成した構成を有する。また、基板の表面を切削バイトや回転ボールミル装置を用いて粗面化することによって、感光層の表面粗度を所定の数値範囲に設定することが開示されている。
特開平10-268539号公報
 しかしながら、上述のような電子写真感光体は、画像形成装置において多数回繰り返して使用すると、周辺部材との摩擦によって表面保護層が平滑化あるいは磨耗するおそれがあった。ここでいう周辺部材とは、電子写真感光体の表面に残存する現像剤を除去するクリーニングブレード、電子写真感光体の表面を帯電する帯電ローラなどである。そしてその結果、例えば、電子写真感光体の表面保護層とクリーニングブレードとの接触面積が増大して摩擦抵抗が増加することによって、クリーニングブレードが欠損し、印画した画像に異常スジなどの画像欠陥が発生するおそれがあった。
 そこで、多数回繰り返して使用しても、優れた耐久特性および低い画像欠陥を実現することができる電子写真感光体の製造方法およびそれを用いた画像形成装置の製造方法が求められていた。
 本発明の実施形態に係る電子写真感光体の製造方法は、円筒状基体の外表面を、表面粗さがStr≧0.70に粗面化する工程と、前記円筒状基体の外表面上に電荷注入阻止層を形成する工程と、前記電荷注入阻止層上に光導電層を形成する工程と、前記光導電層上に表面層を形成する工程と、を備える。
 本発明の実施形態に係る画像形成装置の製造方法は、本発明の実施形態に係る電子写真感光体の製造方法と、前記電子写真感光体の表面に接触するクリーニング器を設置する工程と、を備える。
 本発明の実施形態に係る電子写真感光体の製造装置は、円筒状基体の外表面を、表面粗さがStr≧0.70に粗面化する粗面化部と、前記円筒状基体の外表面上に電荷注入阻止層を形成する電荷注入阻止層形成部と、前記電荷注入阻止層上に光導電層を形成する光導電層形成部と、前記光導電層上に表面層を形成する表面層形成部と、を備える。
 本発明の実施形態に係る電子写真感光体の製造方法および画像形成装置の製造方法ならびに電子写真感光体の製造装置によれば、円筒状基体の外表面を表面粗さがStr≧0.70に粗面化することによって、円筒状基体の外表面の上に形成される層、例えば表面層の特性を向上させることができ、優れた耐久特性および低い画像欠陥を実現することができる。
(a)は本発明の実施形態に係る電子写真感光体の製造方法を説明するための断面図である。(b)は(a)の要部断面図である。 堆積膜形成装置の縦断面図である。 本発明の実施形態に係る画像形成装置の製造方法を説明するための断面図である。
 以下、本発明の実施形態に係る電子写真感光体の製造方法およびこれを備えた画像形成装置の製造方法について、図面を参照しつつ説明する。なお、以下の内容は、本発明の実施形態を例示するものであって、本発明はこれらの実施形態の例に限定されるものではない。
 (電子写真感光体)
 本発明の実施形態に係る電子写真感光体の製造方法について、図1を用いて説明する。
 図1に示した電子写真感光体1は、円筒状基体10の外周面に、電荷注入阻止層11aおよび光導電層11bを順次形成した感光層11を有しており、感光層11上には表面層12が被着されている。
 円筒状基体10は、感光層11の支持体となるものであり、少なくとも円筒状基体10の表面は導電性を有する。
 この円筒状基体10は、例えばアルミニウム(Al)、ステンレス(SUS)、亜鉛(Zn)、銅(Cu)、鉄(Fe)、チタン(Ti)、ニッケル(Ni)、クロム(Cr)、タンタル(Ta)、スズ(Sn)、金(Au)および銀(Ag)などの金属材料あるいはこれら例示した金属材料を含む合金材料によって、全体が導電性を有するものとして形成されている。また、円筒状基体10は、樹脂、ガラスあるいはセラミックスなどの絶縁体の表面に、例示した金属材料ならびにITO(Indium Tin Oxide)あるいはSnO(二酸化すず)などの透明導電性材料による導電性膜を被着したものであってもよい。これらの例示した材料のうち、円筒状基体10を形成するための材料としては、アルミニウム(Al)系材料を用いればよく、また円筒状基体10の全体をアルミニウム(Al)系材料で形成すればよい。そうすれば、電子写真感光体1を軽量かつ低コストで製造可能であり、その上、電荷注入阻止層11aおよび光導電層11bをアモルファスシリコン(a-Si)系材料で形成する場合には、それらの層と円筒状基体10との間の密着性が高くなって信頼性を向上させることができる。
 ここで、本実施形態において、円筒状基体10の表面は、粗面化されている。円筒状基体10の表面粗さは、粗面化後で、例えばStr≧0.70とすればよい。また、円筒状基体10の表面粗さは、粗面化後で、例えば0.3μm≦Sal≦8.4μmとすればよい。
 粗面化を行なう方法としては、例えば、ウェットブラスト、スパッタエッチング、研磨、旋削加工などを用いればよい。ウェットブラストの具体例については後述の実施例において詳しく説明する。スパッタエッチングとしては、例えば、反応炉中の基板を加熱、Ar(アルゴン)を流しながら電圧を印加することで加速したArプラズマ衝突による物理的加工をする(Arスパッタエッチング)。これによれば、多数本の円筒状基体10を同時に処理することができるとともに、円筒状基体10の表面に感光層11および表面層12を形成する場合に、後述のようなCVD(化学気相成長:Chemical Vapor Deposition)装置を用いて一つの装置にて真空反応室内の真空状態を維持したまま連続的に粗面化、感光層11および表面層12の形成処理を行なうことが可能となる。研磨としては、例えば、研磨材コーティングしたシートにワークを押し当てた状態で回転させ、表面に凹凸模様を施すことで、比較的短時間での加工が可能である。旋削加工の例として、焼結ダイヤモンドバイト加工を行なう場合は、例えばダイヤモンド微粒子を焼結したバイトを用いればよく、これによって円筒状基体の面粗さの変更ができる。なお、これらの加工方法は、単独で行っても良いが、組み合わせて行っても良い。例えば、研磨を行なった後でウェットブラストを行なうことができる。なお、上記表面粗さを満たしている抽伸管であれば、粗面化による表面形状を調整することなくそのまま用いることもできる。
 また、必須ではないものの、本実施形態において、円筒状基体10の表面は、上述の粗面化が行なわれる前に、鏡面加工が行なわれている。円筒状基体10の表面粗さは、鏡面加工後で、例えば、Sa<30nm、且つ、Sz<2μmの範囲に設定することができる。さらに具体的には、6nm<Sa<20nm、且つ、0.05μm<Sz<1.2μmの範囲に設定すればよい。なお、鏡面加工を行なった後に、円筒状基体10の油分を除去すればよい。
 なお、本明細書において、Str(表面性状のアスペクト比)とは、ISO25178によって定義される三次元の表面性状を表すパラメータの一つであって、表面性状のアスペクト比を示す。すなわち、表面性状の均一性を表す尺度であり、表面の自己相関が相関値0.2に減衰する最も遠い横方向の距離とSalとの比で定義される。Strは0~1の範囲の値を有し、値が大きければ大きいほど強い等方性を示し、低ければ低いほど強い異方性を示す。また、本明細書において、Sal(最短自己相関距離)とは、ISO25178によって定義される三次元の表面性状を表すパラメータの一つであって、最短の自己相関距離(μm)を示す。表面の自己相関が相関値0.2に減衰する最も近い横方向の距離を表す。すなわち、横方向の支配的な最小凹凸ピッチを示す。また、本明細書において、Sa(算術平均粗さ)とは、ISO25178によって定義される三次元の表面性状を表すパラメータの一つであって、測定対象領域中の表面の平均面からの高さの絶対値の算術平均粗さ(nm)を示す。なお、本明細書において、Sz(最大高さ)とは、ISO25178によって定義される三次元の表面性状を表すパラメータの一つであって、測定対象領域における表面の最大山高さSpと最大谷深さSvの和を示す。
 なお、円筒状基体10の表面性状は、必ずしも全面において、所定の範囲を満たす必要はない。例えば、円筒状基体10の軸方向両端部等においては、表面性状が範囲外の値となってもよい。このことは、以下に記載される表面性状の全てについて同様である。
 電荷注入阻止層11aは、円筒状基体10からのキャリア(電子)の注入を阻止する役割を有するものである。
 この電荷注入阻止層11aは、例えばアモルファスシリコン(a-Si)系材料で形成されている。この電荷注入阻止層11aは、例えばアモルファスシリコン(a-Si)に、ドーパントとしてホウ素(B)と場合により窒素(N)か酸素(O)またはその両方を含有させたもの、あるいはリン(P)と場合により窒素(N)か酸素(O)またはその両方を含有させたものを用いることができ、その厚みは2μm以上10μm以下とされている。
 光導電層11bは、レーザ光などの光照射によってキャリアを発生させる役割を有するものである。
 この光導電層11bは、例えばアモルファスシリコン(a-Si)系材料ならびにSe-TeあるいはAsSeなどのアモルファスセレン(a-Se)系材料で形成されている。本例の光導電層11bは、アモルファスシリコン(a-Si)ならびにアモルファスシリコン(a-Si)に炭素(C)、窒素(N)および酸素(O)などを加えたアモルファスシリコン(a-Si)系材料で形成されており、ドーパントとしてホウ素(B)あるいはリン(P)を含有している。
 また、光導電層11bの厚みは、使用する光導電性材料および所望の電子写真特性に応じて適宜設定すればよく、アモルファスシリコン(a-Si)系材料を用いて光導電層11bを形成する場合には、光導電層11bの厚みは、例えば5μm以上100μm以下、より具体的には10μm以上80μm以下に設定すればよい。
 表面層12は、感光層11の表面を保護する役割を有するものである。
 表面層12は、例えばアモルファス炭化シリコン(a-SiC)あるいはアモルファス窒化シリコン(a-SiN)などのアモルファスシリコン(a-Si)系材料または、アモルファスカーボン(a-C)を用いるか、あるいはそれらの多層構造とすればよい。本例では、表面層12を3層構造とし、最表面となる表面層12の第3層は、画像形成装置内での摺擦に対する耐摩耗性の観点から、耐性の高いアモルファスカーボン(a-C)を採用している。
 本実施形態において、表面層12の表面粗さは、Str≧0.67に設定すればよく、より具体的にはStr≧0.79に設定すればよい。これによれば、優れた耐久特性および画像欠陥の低減を発揮することができる。すなわち、初期におけるクリーニングブレードなどとの摩擦抵抗を抑制することができるとともに、耐久使用時において、表面が徐々に磨耗しても表面粗さを一定範囲内に維持し続けることが可能である。その結果、表面層とクリーニングブレードとの間の摩擦抵抗の増大を効果的に抑制し続けることができることから、クリーニングブレードの欠損を抑制することができ、印画した画像に異常スジなどの画像欠陥を低減することが可能となる。
 また、表面層12の表面粗さは、Sal≦10.3μmに設定すればよい。さらに、表面層12の表面粗さは、Sal≧0.9μmに設定すればよく、より具体的にはSal≧1.6μmに設定すればよい。これによれば、上述のような優れた耐久特性および低い画像欠陥をより効果的に発揮することができる。すなわち、表面層の表面の面方向において、上記数値で規定される狭いピッチで凹凸が存在することによって、初期不良の低減および耐久使用時の摩擦抵抗増大の抑制を実現することができる。
 ここで、表面層12のStrおよびSalは、初期状態の電子写真感光体1、すなわち画像形成装置において多数回繰り返して使用される前の電子写真感光体1の表面層12の表面性状を示す値である。これは、市場製品の電子写真感光体1について、工場出荷時の表面性状を示す値であることを意味する。
 なお、この表面層12は、電子写真感光体1に照射されるレーザ光などの光が吸収されたり、反射されたりすることのないように透過性に優れており、また、画像形成における静電潜像を保持でき得る表面抵抗値(一般的には1011Ω・cm以上)を有するものを用いればよい。
 以上のような、電子写真感光体1における電荷注入阻止層11a、光導電層11bおよび表面層12は、例えば図2に示したプラズマCVD装置2を用いて形成される。
 (プラズマCVD装置)
 プラズマCVD装置2は、支持体3を真空反応室4に収容したものであり、回転手段5、原料ガス供給手段6および排気手段7をさらに備えている。
 支持体3は、円筒状基体10を支持する役割を有するものである。この支持体3は、フランジ部30を有する中空状に形成されているとともに、円筒状基体10と同様な導電性材料で全体が導体として形成されている。本例の場合において、支持体3は、2つの円筒状基体10を支持できる長さに形成されており、導電性支柱31に対して着脱自在とされている。そのため、支持体3では、支持した2つの円筒状基体10の表面に直接触れることなく、真空反応室4に対して2つの円筒状基体10の出し入れを行なうことができる。
 導電性支柱31は、円筒状基体10と同様な導電性材料で全体が導体として形成されており、真空反応室4(後述する円筒状電極40)の中心において、後述するプレート42に対して絶縁材32を介して固定されている。導電性支柱31には、導板33を介して直流電源34が接続されている。この直流電源34は、制御部35によってその動作が制御されている。制御部35は、直流電源34を制御することにより、導電性支柱31を介して、支持体3にパルス状の直流電圧を供給させるように構成されている。
 導電性支柱31の内部には、セラミックパイプ36を介してヒータ37が収容されている。セラミックパイプ36は、絶縁性および熱伝導性を確保する役割を有するものである。ヒータ37は、円筒状基体10を加熱する役割を有するものである。ヒータ37としては、例えばニクロム線あるいはカートリッジヒーターを使用することができる。
 ここで、支持体3の温度は、例えば支持体3あるいは導電性支柱31に取り付けられた熱電対(図示を省略)によってモニタされており、この熱電対におけるモニタ結果に基づいてヒータ37をオン・オフさせることによって、円筒状基体10の温度が目的範囲、例えば200℃以上400℃以下から選択される一定の範囲に維持される。
 真空反応室4は、円筒状基体10に対して堆積膜を形成するための空間であり、円筒状電極40および一対のプレート41,42によって規定されている。
 円筒状電極40は、支持体3の周囲を囲む円筒状に形成される。この円筒状電極40は、円筒状基体10と同様な導電性材料で中空に形成されており、絶縁部材43,44を介して一対のプレート41,42に接合されている。
 円筒状電極40は、支持体3に支持させた円筒状基体10と円筒状電極40との間の距離D1が10mm以上100mm以下となるような大きさに形成されている。これは、円筒状基体10と円筒状電極40との距離D1が10mmよりも小さい場合には、真空反応室4に対する円筒状基体10の出し入れなどにおいて作業性を充分に確保できず、また円筒状基体10と円筒状電極40との間で安定した放電を得ることが困難となるためである。逆に、円筒状基体10と円筒状電極40との距離D1が100mmよりも大きい場合には、プラズマCVD装置2が大きくなってしまい、単位設置面積当たりの生産性が悪くなるためである。
 円筒状電極40は、ガス導入口45a,45bおよび複数のガス吹き出し孔46が設けられているとともに、その一端において接地されている。なお、円筒状電極40は、必ずしも接地する必要はなく、直流電源34とは別の基準電源に接続してもよい。円筒状電極40を直流電源34とは別の基準電源に接続する場合には、基準電源における基準電圧は-1500V以上1500V以下とすればよい。
 ガス導入口45aは、真空反応室4に供給すべき光導電層11bのドーパント専用の原料ガスを導入する役割を有するものであり、ガス導入口45bは、真空反応室4に供給すべき原料ガスを導入する役割を有するものであり、いずれのガス導入口45a,45bも原料ガス供給手段6に接続されている。ガス導入口45aは、真空反応室4の略中央の高さ位置に設置されていて、ガス導入口45bは、真空反応室4内に設置される支持体3の両端位置に相当する高さ位置にそれぞれ設置されている。
 複数のガス吹き出し孔46は、円筒状電極40の内部に導入された原料ガスを円筒状基体10に向けて吹き出す役割を有するものであり、図の上下方向(円筒状電極40の軸線方向)に等間隔になるように配置されているとともに、周方向にも等間隔で配置されている。複数のガス吹き出し孔46は、同一形状の円形に形成されており、その孔径は、例えば0.5mm以上2mm以下とすればよい。
 プレート41は、真空反応室4が開放された状態と閉塞された状態とを選択可能とする役割を有するものであり、プレート41を開閉することによって真空反応室4に対する支持体3の出し入れが可能とされている。プレート41は、円筒状基体10と同様な導電性材料で形成されているが、下面側に防着板47が取着されている。これにより、プレート41に対して堆積膜が形成されるのを防止している。この防着板47もまた、円筒状基体10と同様な導電性材料で形成されている。防着板47はプレート41に対して着脱自在とされている。そのため、防着板47は、プレート41から取り外すことによって洗浄が可能であり、繰り返し使用することができる。
 プレート42は、真空反応室4のベースとなるものであり、円筒状基体10と同様な導電性材料で形成されている。プレート42と円筒状電極40との間に介在する絶縁部材44は、円筒状電極40とプレート42との間にアーク放電が発生するのを抑える役割を有するものである。このような絶縁部材44は、例えばガラス材料(ホウ珪酸ガラス、ソーダガラス、耐熱ガラスなど)、無機絶縁材料(セラミックス、石英、サファイヤなど)あるいは合成樹脂絶縁材料(四フッ化エチレンなどのフッ素樹脂、ポリカーボネート、ポリエチレンテレフタレート、ポリエステル、ポリエチレン、ポリプロピレン、ポリスチレン、ポリアミド、ビニロン、エポキシ、PEEK(ポリエーテルエーテルケトン)材など)で形成することができる。絶縁部材44は、絶縁性を有し、使用温度で充分な耐熱性があり、真空中でガスの放出が小さい材料であれば特に限定はない。ただし、絶縁部材44は、成膜体の内部応力あるいは成膜時の温度上昇に伴って生じるバイメタル効果に起因する応力によって反りが発生して使用できなくなるのを防止するために、一定以上の厚みを有するものとして形成されている。例えば、絶縁部材44を四フッ化エチレンのような熱膨張率が3×10-5/K以上10×10-5/K以下の材料で形成する場合には、絶縁部材44の厚みは10mm以上に設定される。このような範囲に絶縁部材44の厚みを設定した場合には、絶縁部材44と、円筒状基体10に成膜される厚み10μm以上30μm以下のアモルファスシリコン(a-Si)膜と、の界面に発生する応力に起因する反り量を小さくすることができる。例えば、反り量を、水平方向(円筒状基体10の軸方向に略直交する半径方向)の長さ200mmに対して、水平方向における端部と中央部との軸方向における高さの差で1mm以下とすることができる。これにより、絶縁部材44を繰り返し使用することが可能となる。
 プレート42および絶縁部材44には、ガス排出口42A,44Aおよび圧力計49が設けられている。ガス排出口42A,44Aは、真空反応室4の内部の気体を排出する役割を有するものであり、排気手段7に接続されている、圧力計49は、真空反応室4の圧力をモニタリングする役割を有するものであり、公知の種々のものを使用することができる。
 図2に示したように、回転手段5は、支持体3を回転させる役割を有するものであり、回転モータ50および回転力伝達機構51を有している。回転手段5によって支持体3を回転させて成膜を行なった場合には、支持体3とともに円筒状基体10が回転するために、円筒状基体10の外周に対して均等に原料ガスの分解成分を堆積させることが可能となる。
 回転モータ50は、円筒状基体10に回転力を付与するものである。この回転モータ50は、例えば円筒状基体10を1rpm以上10rpm以下で回転させるように動作制御される。回転モータ50としては、公知の種々のものを使用することができる。
 回転力伝達機構51は、回転モータ50からの回転力を円筒状基体10に伝達・入力する役割を有するものであり、回転導入端子52、絶縁軸部材53および絶縁平板54を有している。
 回転導入端子52は、真空反応室4内の真空を保ちながら回転力を伝達する役割を有するものである。このような回転導入端子52としては、回転軸を二重もしくは三重構造としてオイルシールあるいはメカニカルシールなどの真空シール手段を用いることができる。
 絶縁軸部材53および絶縁平板54は、支持体3とプレート41との間の絶縁状態を維持しつつ、回転モータ50からの回転力を支持体3に入力する役割を有するものであり、例えば絶縁部材44などの同様な絶縁材料で形成されている。ここで、絶縁軸部材53の外径D2は、成膜時において、支持体3の外径(後述する上ダミー基体38Cの内径)D3よりも小さくなるように設定されている。より具体的には、成膜時における円筒状基体10の温度が200℃以上400℃以下に設定される場合であれば、絶縁軸部材53の外径D2は、支持体3の外径(後述する上ダミー基体38Cの内径)D3よりも0.1mm以上5mm以下、より具体的には3mm程度大きくなるように設定すればよい。この条件を満たすために、非成膜時(常温環境下(例えば10℃以上40℃以下))においては、絶縁軸部材53の外径D2と支持体3の外径(後述する上ダミー基体38Cの内径)D3との差は、0.6mm以上5.5mm以下に設定すればよい。
 絶縁平板54は、プレート41を取り外しするときに上方から落下するゴミや粉塵などの異物が円筒状基体10へ付着するのを防止する役割を有するものであり、上ダミー基体38Cの内径D3より大きな外径D4を有する円板状に形成されている。絶縁平板54の直径D4は、円筒状基体10の直径D3の1.5倍以上3倍以下とされ、例えば円筒状基体10として直径D3が30mmのものを用いる場合には、絶縁平板54の直径D4は50mm程度とされる。
 このような絶縁平板54を設けた場合には、円筒状基体10に付着した異物に起因する異常放電を抑制することができるため、成膜欠陥の発生を抑制することができる。これにより、電子写真感光体1を形成する際の歩留まりを向上させ、また電子写真感光体1を用いて画像形成する場合における画像不良の発生を抑制することができる。
 図2に示したように、原料ガス供給手段6は、複数の原料ガスタンク60,61,62,63、光導電層11bのドーパント専用ガスタンク64、複数の配管60A,61A,62A,63A,64A、バルブ60B,61B,62B,63B,64B,60C,61C,62C,63C,64Cおよび複数のマスフローコントローラ60D,61D,62D,63D,64Dを備えたものであり、配管65a,65bおよびガス導入口45a、45bを介して円筒状電極40に接続されている。各原料ガスタンク60~64は、例えばB、(またはPH)、H(またはHe)、CHあるいはSiHが充填されたものである。バルブ60B~64B、60C~64Cおよびマスフローコントローラ60D~64Dは、真空反応室4に導入する各原料ガス成分または光導電層11bのドーパント専用ガス成分の流量、組成およびガス圧を調整する役割を有するものである。もちろん、原料ガス供給手段6においては、各原料ガスタンク60~64に充填すべきガスの種類、あるいは複数の原料タンク60~64の数は、円筒状基体10に形成すべき膜の種類あるいは組成に応じて適宜選択すればよい。
 排気手段7は、真空反応室4のガスをガス排出口42A,44Aを介して外部に排出する役割を有するものであり、メカニカルブースタポンプ71およびロータリーポンプ72を備えている。これらのポンプ71,72は、圧力計49でのモニタリング結果に応じて動作制御されるものである。すなわち、排気手段7では、圧力計49でのモニタリング結果に基づいて、真空反応室4を真空に維持できるとともに、真空反応室4のガス圧を目的値に設定することができる。真空反応室4の圧力は、例えば1Pa以上100Pa以下とすればよい。
 このようなプラズマCVD装置2は、上記のとおり、一つの装置にて真空反応室4内の真空状態を維持したまま連続的に粗面化、感光層11および表面層12の形成処理を行なうことが可能であり、粗面化部と、電荷注入阻止層形成部と、光導電層形成部と、表面層形成部と、を備える電子写真感光体の製造装置の一例である。
 (堆積膜の形成方法)
 次に、プラズマCVD装置2を用いた堆積膜の形成方法について、外表面が、上記のような三次元の表面性状を有する円筒状基体10に感光層11としてアモルファスシリコン(a-Si)膜が、表面層12としてアモルファス炭化シリコン(a-SiC)膜とアモルファスカーボン(a-C)膜とが積層された電子写真感光体1(図1を参照)を作製する場合を例にとって説明する。
 まず、円筒状基体10に堆積膜(a-Si膜)を形成するにあたっては、プラズマCVD装置2のプレート41を取り外した上で、複数の円筒状基体10(図面上は2つ)を支持した支持体3を真空反応室4の内部にセットし、再びプレート41を取り付ける。
 支持体3に対する2つの円筒状基体10の支持にあたっては、フランジ部30上に、支持体3の主要部を覆って下ダミー基体38A、円筒状基体10、中間ダミー基体38B、円筒状基体10および上ダミー基体38Cが順次積み上げられる。
 各ダミー基体38A~38Cとしては、製品の用途に応じて、導電性または絶縁性基体の表面に導電処理を施したものが選択されるが、通常は、円筒状基体10と同様な材料で円筒状に形成されたものが使用される。
 ここで、下ダミー基体38Aは、円筒状基体10の高さ位置を調整する役割を有するものである。中間ダミー基体38Bは、隣接する円筒状基体10の端部間で生じるアーク放電に起因する円筒状基体10に成膜不良が発生するのを抑制する役割を有するものである。この中間ダミー基体38Bとしては、その長さがアーク放電を防止できる最低限の長さ(本例では1cm)以上を有し、その表面側角部が曲面加工で曲率0.5mm以上または端面加工でカットされた部分の軸方向の長さおよび深さ方向の長さが0.5mm以上となるように面取りされたものが使用される。上ダミー基体38Cは、支持体3に堆積膜が形成されるのを防止し、成膜中に一旦被着した成膜体の剥離に起因する成膜不良の発生を抑制する役割を有するものである。上ダミー基体38Cは、一部が支持体3の上方に突出した状態とされる。
 次いで、真空反応室4を密閉状態とし、回転手段5によって支持体3を介して円筒状基体10を回転させるとともに、円筒状基体10を加熱し、排気手段7によって真空反応室4を減圧する。
 円筒状基体10の加熱は、例えばヒータ37に対して外部から電力を供給してヒータ37を発熱させることによって行なわれる。このようなヒータ37の発熱によって、円筒状基体10が目的とする温度に昇温される。円筒状基体10の温度は、その表面に形成すべき膜の種類および組成によって選択されるが、例えばアモルファスシリコン(a-Si)膜を形成する場合には250℃以上300℃以下の範囲に設定され、ヒータ37をオン・オフすることによって略一定に維持される。
 一方、真空反応室4の減圧は、排気手段7によってガス排出口42A、44Aを介して真空反応室4からガスを排出させることによって行なわれる。真空反応室4の減圧の程度は、圧力計49(図2を参照)での真空反応室4の圧力をモニタリングしつつ、メカニカルブースタポンプ71(図2を参照)およびロータリーポンプ72(図2参照)の動作を制御することにより、例えば10-3Pa程度とすればよい。
 次いで、円筒状基体10の温度が所望温度となり、真空反応室4の圧力が所望圧力となった場合には、原料ガス供給手段6によって真空反応室4に原料ガスを供給するとともに、円筒状電極40と支持体3との間にパルス状の直流電圧を印加する。これにより、円筒状電極40と支持体3(円筒状基体10)との間にグロー放電が起こり、原料ガス成分が分解され、原料ガスの分解成分が円筒状基体10の表面に堆積する。
 一方、排気手段7においては、圧力計49のモニタリングをしつつ、メカニカルブースタポンプ71およびロータリーポンプ72の動作を制御することにより、真空反応室4におけるガス圧を目的範囲に維持する。すなわち、真空反応室4の内部は、原料ガス供給手段6におけるマスフローコントローラ60D~63Dと排気手段7におけるポンプ71,72とによって安定したガス圧に維持される。真空反応室4におけるガス圧は、例えば1Pa以上100Pa以下とすればよい。
 真空反応室4への原料ガスの供給は、バルブ60B~64B,60C~64Cの開閉状態を適宜制御しつつ、マスフローコントローラ60D~64Dを制御することにより、原料ガスタンク60~64の原料ガスを所望の組成および流量で配管60A~64A,65a,65bおよびガス導入口45a,45bを介して円筒状電極40の内部に導入することによって行なわれる。円筒状電極40の内部に導入された原料ガスは、複数のガス吹き出し孔46を介して円筒状基体10に向けて吹き出される。そして、バルブ60B~64B,60C~64Cおよびマスフローコントローラ60D~64Dによって原料ガスの組成を適宜切り替えることによって、円筒状基体10の表面には、電荷注入阻止層11a、光導電層11bおよび表面層12が順次積層形成される。
 円筒状電極40と支持体3との間へのパルス状の直流電圧の印加は、制御部35によって直流電源34を制御することによって行なわれる。
 13.56MHzのRF(Radio Frequency)帯域以上の高周波電力を使用した場合は、空間で生成されたイオン種が電界によって加速され、正負の極性に応じた方向に引き寄せられることになるが、高周波交流によって電界が連続して反転することから、前記イオン種が円筒状基体10あるいは放電電極に到達するよりも前に、空間中で再結合を繰り返し、再度ガスまたはポリシリコン粉体などのシリコン化合物となって排気される。
 これに対して、円筒状基体10側が正負いずれかの極性になるようなパルス状の直流電圧を印加してカチオンを加速させて円筒状基体10に衝突させ、その衝撃によって表面の微細な凹凸をスパッタリングしながらアモルファスシリコン(a-Si)の成膜を行なった場合には、大きな突起状の成長が抑制された均一性の高い凹凸を有する表面を備えるアモルファスシリコン(a-Si)が得られる。この現象を以下においてイオンスパッタリング効果と言う場合がある。
 このようなプラズマCVD法において効率よくイオンスパッタリング効果を得るには、極性の連続的な反転を避けるような電力を印加することが必要であり、前記パルス状の矩形波の他には、三角波、極性の反転しない直流電圧が有用である。また、全ての電圧が正負いずれかの極性になるように調整された交流電圧などでも同様の効果が得られる。印加電圧の極性は、原料ガスの種類によってイオン種の密度および堆積種の極性などから決まる成膜速度などを考慮して自由に調整できる。
 ここで、パルス状電圧によって効率よくイオンスパッタリング効果を得るには、支持体3(円筒状基体10)と円筒状電極40との間の電位差は、例えば50V以上3000V以下の範囲内とされ、成膜レートを考慮した場合には、より具体的には500V以上3000V以下の範囲内とすればよい。
 より具体的には、制御部35は、円筒状電極40が接地されている場合には、支持体(導電性支柱31)に対して、-3000V以上-50V以下の範囲内の負のパルス状直流電位V1を供給し、あるいは50V以上3000V以下の範囲内の正のパルス状直流電位V1を供給する。
 一方、円筒状電極40が基準電極(図示を省略)に接続されている場合には、支持体(導電性支柱31)に対して供給するパルス状直流電位V1は、目的とする電位差ΔVと基準電源から供給される電位V2との差の値(ΔV-V2)とされる。基準電源から供給する電位V2は、支持体3(円筒状基体10)に対して負のパルス状電圧を印加する場合には、-1500V以上1500V以下とされ、支持体3(円筒状基体10)に対して正のパルス状電圧を印加する場合には、-1500V以上1500V以下とすればよい。
 制御部35はまた、直流電圧の周波数(1/T(sec))が300kHz以下に、Duty比(T1/T)が20%以上90%以下になるように直流電源34を制御する。
 なお、本実施形態におけるDuty比とは、パルス状の直流電圧の1周期(T)(円筒状基体10と円筒状電極40との間に電位差が生じた瞬間から、次に電位差が生じた瞬間までの時間)における電位差発生時間T1が占める時間割合と定義される。例えば、Duty比20%とは、パルス状の電圧を印加する際の、1周期に占める電位差発生(ON)時間が1周期全体の20%であることをいう。
 このイオンスパッタリング効果を利用して得られたアモルファスシリコン(a-Si)の光導電層11bは、その厚みが10μm以上となっても、表面には上述のような大きな突起状の成長が抑制された均一性の高い凹凸が存在する。そのため、光導電層11b上に、表面層12であるアモルファス炭化シリコン(a-SiC)とアモルファスカーボン(a-C)とを計1μm程度積層すればよい。この場合の表面層12の表面形状は、光導電層11bの表面形状を反映した面とすることが可能となる。すなわち、光導電層11b上に表面層12を積層する場合においても、イオンスパッタリング効果を利用することにより、表面層12を大きな突起状の成長が抑制された均一性の高い凹凸を有する膜として形成することができる。
 ここで、電荷注入阻止層11a、光導電層11bおよび表面層12の形成にあたっては、原料ガス供給手段6におけるマスフローコントローラ60D~63Dおよびバルブ60B~63B、60C~63Cを制御し、目的とする組成の原料ガスが真空反応室4に供給されるのは上述の通りである。
 例えば、電荷注入阻止層11aをアモルファスシリコン(a-Si)系の堆積膜として形成する場合には、原料ガスとして、SiH(シランガス)などのシリコン(Si)含有ガス、BやPHなどのドーパント含有ガスおよび水素(H)あるいはヘリウム(He)などの希釈ガスの混合ガスが用いられる。ドーパント含有ガスとしては、ホウ素(B)含有ガスと場合により窒素(N)含有ガスか酸素(O)含有ガスまたはその両方を含有させたもの、あるいはリン(P)含有ガスと場合により窒素(N)含有ガスか酸素(O)含有ガスまたはその両方を含有させたものを用いることもできる。
 光導電層11bをアモルファスシリコン(a-Si)系の堆積膜として形成する場合には、原料ガスとして、SiH4(シランガス)などのシリコン(Si)含有ガスおよび水素(H)あるいはヘリウム(He)などの希釈ガスの混合ガスが用いられる。光導電層11bにおいては、ダングリングボンド終端用に水素(H)あるいはハロゲン元素(フッ素(F)、塩素(Cl))を膜中に1原子%以上40原子%以下含有させるように、希釈ガスとして水素ガスを用い、あるいは原料ガス中にハロゲン化合物を含ませておいてもよい。また、原料ガスには、暗導電率および光導電率などの電気的特性および光学的バンドギャップなどについて所望の特性を得るために、ドーパントとして周期表第12族、第13族元素(以下「第12族元素」、「第13族元素」と略す)あるいは周期表第15族、第16族元素(以下「第15族元素」、「第16族元素」と略す)を含有させ、上記諸特性を調整するために炭素(C)および酸素(O)などの元素を含有させてもよい。
 例えば、第13族元素および第15族元素としては、それぞれホウ素(B)およびリン(P)が共有結合性に優れて半導体特性を敏感に変え得る点、および優れた光感度が得られるという点で望ましい。電荷注入阻止層11aに対して第13族元素あるいは第15族元素を炭素(C)および酸素(O)などの元素とともに含有させる場合には、第13族元素の含有量は0.1ppm以上20000ppm以下、第15族元素の含有量は0.1ppm以上10000ppm以下となるように調整される。また、光導電層11bに対して第13族元素あるいは第15族元素を炭素(C)および酸素(O)などの元素とともに含有させる場合には、あるいは、電荷注入阻止層11aおよび光導電層11bに対して炭素(C)および酸素(O)などの元素を含有させない場合には、第13族元素は0.01ppm以上200ppm以下、第15族元素は0.01ppm以上100ppm以下となるように調整される。なお、原料ガスにおける第13族元素あるいは第15族元素の含有量を経時的に変化させることによって、これらの元素の濃度について層厚方向にわたって勾配を設けるようにしてもよい。この場合には、光導電層11bにおける第13族元素あるいは第15族元素の含有量は、光導電層11bの全体における平均含有量が上記範囲内であればよい。
 また、光導電層11bについては、アモルファスシリコン(a-Si)系材料に微結晶シリコン(μc-Si)を含んでいてもよく、この微結晶シリコン(μc-Si)を含ませた場合には、暗導電率および光導電率を高めることができるので、光導電層11bの設計自由度が増すといった利点がある。このような微結晶シリコン(μc-Si)は、先に説明した成膜方法を採用し、その成膜条件を変えることによって形成することができる。例えば、グロー放電分解法では、円筒状基体10の温度および直流パルス電力を高めに設定し、希釈ガスとしての水素流量を増すことによって形成できる。また、微結晶シリコン(μc-Si)を含む光導電層11bにおいても、先に説明したのと同様な元素(第13族元素、第15族元素、炭素(C)および酸素(O)など)を添加してもよい。
 表面層12は、上述のようにa-SiC層とa-C層との多層構造として形成する。この場合、原料ガスとしては、SiH4(シランガス)などのシリコン(Si)含有ガスおよびC(アセチレンガス)あるいはCH(メタンガス)などのC含有ガスが用いられる。ここで、表面層12の第3層であるa-C層は、その膜厚が、通常0.01μm以上2μm以下、具体的には0.02μm以上1μm以下、より具体的には0.03μm以上0.8μm以下に設定すればよい。また、表面層12は、その膜厚が、通常0.1μm以上6μm以下、具体的には0.25μm以上3μm以下、より具体的には0.4μm以上2.5μm以下に設定すればよい。
 表面層12の第3層をa-C層として形成した場合には、Si-O結合に比べてC-O結合の方が結合エネルギーが小さいため、表面層12をアモルファスシリコン(a-Si)系材料のみで形成する場合に比べて、表面層12の表面が酸化することをより確実に抑制できる。そのため、表面層12の第3層をアモルファスカーボン(a-C)層として形成した場合には、印刷時のコロナ放電により発生するオゾンなどによって表面層12の表面が酸化されることが適切に抑制されるため、高温高湿環境下などでの画像流れの発生を抑制することができる。
 以上のようにして、円筒状基体10に対する膜形成が終了した場合には、支持体3から円筒状基体10を抜き取ることにより、図1に示した電子写真感光体1を得ることができる。そして、成膜後は、成膜残渣を取り除くため、真空反応室4内の各部材を分解し、酸、アルカリあるいはブラストなどの洗浄を行ない、次回の成膜時に欠陥不良となる発塵が無いようにウェットエッチングを行なう。また、ウェットエッチングに代えて、ハロゲン系(ClF、CF、NF、SiFまたはこれらの混合ガス)のガスを用いてガスエッチングを行なうことも有効である。
 (画像形成装置)
 本発明の実施形態に係る画像形成装置の製造方法について、図3を用いて説明する。
 図3に示す画像形成装置は、画像形成方式としてカールソン法を採用したものであり、電子写真感光体1、帯電器111、露光器112、現像器113、転写器114、定着器115、クリーニング器116および除電器117を備えている。
 帯電器111は、電子写真感光体1の表面を負極性に帯電する役割を有するものである。帯電電圧は、例えば200V以上1000V以下に設定される。本実施形態において帯電器111は、例えば芯金を導電性ゴムあるいはPVDF(ポリフッ化ビニリデン)によって被覆して構成される接触型帯電器が採用されているが、これに代えて、放電ワイヤを備える非接触型帯電器(例えばコロナ帯電器)を採用してもよい。
 露光器112は、電子写真感光体1に静電潜像を形成する役割を有するものである。具体的には、露光器112は、画像信号に応じて特定波長(例えば650nm以上780nm以下)の露光光(例えばレーザ光)を電子写真感光体1に照射することによって、帯電状態にある電子写真感光体1の露光光照射部分の電位を減衰させて静電潜像を形成する。露光器112としては、例えば複数のLED素子(波長:680nm)を配列させてなるLED(発光ダイオード:Light Emitting Diode)ヘッドを採用することができる。
 もちろん、露光器112の光源としては、LED素子に代えてレーザ光を出射可能なものを使用することもできる。つまり、LEDヘッドなどの露光器112に代えて、ポリゴンミラーを含んでなる光学系を使用してもよい。あるいは、原稿からの反射光を通すレンズおよびミラーを含んでなる光学系を採用することによって、複写機の構成の画像形成装置とすることもできる。
 現像器113は、電子写真感光体1の静電潜像を現像してトナー像を形成する役割を有するものである。本例における現像器113は、現像剤(トナー)Tを磁気的に保持する磁気ローラ113Aを備えている。
 現像剤Tは、電子写真感光体1の表面上に形成されるトナー像を構成するものであり、現像器113において摩擦帯電する。現像剤Tとしては、例えば、磁性キャリアおよび絶縁性トナーを含んでなる2成分系現像剤と、磁性トナーを含んでなる1成分系現像剤とが挙げられる。
 磁気ローラ113Aは、電子写真感光体1の表面(現像領域)に現像剤を搬送する役割を有するものである。磁気ローラ113Aは、現像器113において摩擦帯電した現像剤Tを一定の穂長に調整された磁気ブラシの形で搬送する。この搬送された現像剤Tは、電子写真感光体1の現像領域において、静電潜像との静電引力によって電子写真感光体1の表面に付着してトナー像を形成する(静電潜像を可視化する)。トナー像の帯電極性は、正規現像によって画像形成が行なわれる場合には電子写真感光体1の表面の帯電極性と逆極性とされ、反転現像によって画像形成が行なわれる場合には電子写真感光体1の表面の帯電極性と同極性とされる。
 なお、現像器113は、本例においては乾式現像方式を採用しているが、液体現像剤を用いた湿式現像方式を採用してもよい。
 転写器114は、電子写真感光体1と転写器114との間の転写領域に供給された記録媒体Pに、電子写真感光体1のトナー像を転写する役割を有するものである。本例における転写器114は、転写用チャージャ114Aおよび分離用チャージャ114Bを備えている。転写器114では、転写用チャージャ114Aにおいて記録媒体Pの背面(非記録面)がトナー像とは逆極性に帯電され、この帯電電荷とトナー像との静電引力によって、記録媒体P上にトナー像が転写される。また、転写器114では、トナー像の転写と同時的に、分離用チャージャ114Bにおいて記録媒体Pの背面が交流帯電され、記録媒体Pが電子写真感光体1の表面から速やかに分離させられる。
 転写器114としては、電子写真感光体1の回転に従動し、且つ、電子写真感光体1とは微小間隙(例えば0.5mm以下)を介して配置された転写ローラを用いることも可能である。この転写ローラは、例えば直流電源により、電子写真感光体1上のトナー像を記録媒体P上に引きつけるような転写電圧を印加するように構成される。転写ローラを用いる場合には、分離用チャージャ114Bのような転写分離装置は省略することもできる。
 定着器115は、記録媒体Pに転写されたトナー像を記録媒体Pに定着させる役割を有するものであり、一対の定着ローラ115A、115Bを備えている。定着ローラ115A、115Bは、例えば金属ローラ上に四フッ化エチレンなどで表面被覆したものである。定着器115では、一対の定着ローラ115A、115Bの間を通過させる記録媒体Pに対して熱および圧力などを作用させることによって、記録媒体Pにトナー像を定着させることができる。
 クリーニング器116は、電子写真感光体1の表面に残存するトナーを除去する役割を有するものであり、クリーニングブレード116Aを備えている。クリーニングブレード116Aは、電子写真感光体1の表面から残留トナーを掻きとる役割を有するものである。クリーニングブレード116Aは、例えばポリウレタン樹脂を主成分としたゴム材料で形成されている。
 除電器117は、電子写真感光体1の表面電荷を除去する役割を有するものであり、特定波長(例えば780nm以上)の光を出射可能とされている。除電器117は、例えばLEDなどの光源によって電子写真感光体1の表面の軸方向全体を光照射することにより、電子写真感光体1の表面電荷(残余の静電潜像)を除去するように構成されている。
 本実施形態の画像形成装置100の製造方法は、上記の電子写真感光体1の製造方法に、電子写真感光体1の表面に接触するクリーニング器116を設置する工程を備える方法であって、さらにその他の帯電器111、露光器112、現像器113、転写器114、定着器115および除電器117などを設置する工程を備えていてもよい。
本実施形態の画像形成装置100では、電子写真感光体1の有する上述の効果を奏することができる。
 (実施例)
 本発明の実施形態に係る電子写真感光体について、次の通り評価を行なった。
 電子写真感光体1の作製について
 <円筒状基体10>
 円筒状基体10は、アルミニウム合金素管(外径:30mm、長さ360mm)を用いて作製した。円筒状基体10の外周面に対して、鏡面加工およびウェットブラスト加工を順に行ない、その後で洗浄した。
 まず、円筒状基体10の表面の鏡面加工として、円筒状基体10を両端保持し、1500~8000rpmにて高速回転させた状態で、ダイヤモンドバイトを押し当てて、送り0.08~0.5mmにてバニッシング加工した。すなわち、バイトの仕上げ面に、ワーク回転方向に奥行きを持たせたダイヤモンドバイトを円筒状基体10の表面に押し当てることで、滑らかな仕上げ面を得た。
 このような鏡面加工の後、円筒状基体に10対して脱脂洗浄を行なった。
 次に、ウェットブラスト加工として、アルミナなど高硬度な研磨材と水とを攪拌し、圧縮空気と混合・加速させて、鏡面加工された円筒状基体10の表面に投射することによって粗面化を行なった。これによれば、円筒状基体10を回転させながら加工処理することによって、短時間で加工面を形成することができる。本実施例のように、ウェットブラスト加工によれば、他の加工方法と比べて、粒径の小さい研磨材を一様に投射することを比較的容易に行なうことが可能であることから、均一性に優れた加工面を得ることができる。
 具体的には、ウェットブラスト加工の条件として、次のパラメータを調整することによって、15種類の異なる表面を有する円筒状基体10のサンプルを用意した。
  研磨材材質・粒径:A(アランダム(褐色溶解アルミナ))#320~#4000
  研磨材濃度:10~18%
  投射エア圧:0.10~0.35MPa
  投射距離(ワーク中心とブラストヘッド間距離):20~300mm
  投射時間:1~60秒間
  ワーク回転数:120~180rpm
 なお、異なる研磨材材質・粒径を用いることによってSalの値を調整するとともに、投射エア圧、投射距離および投射時間(1~60秒間)を変化させることによってStrの値を調整した。
 そして、ウェットブラスト加工を行なった後に、表面に残存している残渣を洗浄して除去することによって、表1に示す表面状態を有する15種類の円筒状基体10を用意した。
Figure JPOXMLDOC01-appb-T000001
 このようにして用意された円筒状基体10を、図2に示すプラズマCVD装置にセットして、表2に示す条件で、円筒状基体10の表面に、電荷注入阻止層11a、光導電層11b、および表面層12を順に形成した。
Figure JPOXMLDOC01-appb-T000002
 表2におけるBおよびNOの流量は、SiHの流量に対する比で表している。なお、プラズマCVD装置の電源としては、直流パルス電源(パルス周波数:50kHz、Duty比:70%)を使用した。また、膜厚の測定は、その断面をSEM(走査型電子顕微鏡)およびXMA(X線マイクロアナライザ)で分析することにより行なった。各層の具体的な構成は次の通りである。
 <電荷注入阻止層>
 電荷注入阻止層11aは、アモルファスシリコン(a-Si)に窒素(N)および酸素(O)を加えたアモルファスシリコン(a-Si)系材料に、ドーパントとしてホウ素(B)を含有させたものである。
 電荷注入阻止層11aの膜厚は5μmとした。
 <光導電層>
 光導電層11bは、アモルファスシリコン(a-Si)に炭素(C)、窒素(N)および酸素(O)などを加えたアモルファスシリコン(a-Si)系材料に、ドーパントとしてホウ素(B)を含有させたものである。
 光導電層11bの膜厚は14μmとした。
 <表面層>
 表面層12は、アモルファス炭化シリコン(a-SiC)とアモルファスカーボン(a-C)とを積層した構成である。
 表面層12の膜厚は計1.2μmとし、表面層第3層の膜厚は0.2μmとした。
 ここで、表面層12の表面粗さを変更させることによって、電子写真感光体1のサンプル1~15を作製した。
 以上のようにして得られた電子写真感光体1のサンプル1~15について、表面層12の表面性状を測定した。
 当該測定は、オリンパス株式会社製3次元測定レーザ顕微鏡OLS4100により、ISO25178に準拠した3次元粗さパラメータにて表面形状の評価を実施した。測定条件として、倍率50倍レンズを使用し、260μm×261μmの範囲を高速測定モードにて測定した。測定対象が円筒形状であるため、補正はXY方向曲率補正を実施した。それに加えて、旋削加工の周期スジ影響を消すために、中心波長λc=0.080mmのフィルタ補正を展開し、各パラメータを算出した。なお、ここでの測定結果は、電子写真感光体1の、円筒状基体10の軸方向中央部において、100mmの範囲内の5箇所の測定結果の算術平均である。
 各サンプルのStrおよびSalについては、後述する表3に示す通りである。
 次いで、作製した電子写真感光体1の各サンプルを、京セラドキュメントソリューションズ株式化製のカラー複合機TASKalfa 3550ci改造装置に組み込み、それぞれのサンプルについて、60万枚(600K)連続印刷時における電子写真感光体1の表面層12のSa減少率(%)、電子写真感光体1の周辺部材であるクリーニングブレード116Aの傷の評価、および、帯電ローラの表面汚染状態の観察による画像特性の評価を行なった。そして、それらの個別特性を踏まえた総合的な評価である総合評価を行なった。
 上述のそれぞれの個別特性の評価は次の条件にて行なった。すなわち、室温23℃および相対湿度60%の評価環境下において、20万枚連続印刷を行なった時点、40万枚連続印刷した時点、および、60万連続枚印刷した各時点において、電子写真感光体1の表面状態の上記レーザ顕微鏡による測定、クリーニングブレード116Aのエッジ部の傷の有無、および、帯電ローラの表面汚染状態の拡大鏡(20倍)による観察、をすることによって評価した。
 ここで、Sa減少率(%)とは、電子写真感光体1の表面層12のSaの値が印刷を行う前の初期値から減少した割合を示すものであって、例えば70%と記載している場合には印刷前の状態に対してSaの値が30%になっていることを意味する。なお、表3中、Sa減少率(%)のデータにおいて、※印を付している値は、20万枚(200K)連続印刷時における電子写真感光体の表面層のSa減少率(%)を示している。
 また、クリーニングブレードの破損モードについては次の通りである。評価Aは、20万枚(200K)連続印刷の結果、クリーニングブレードに多少の破損が見られたことを示す。評価Bとは、1000枚以下の少数印刷の時点で、クリーニングブレードに明らかな破損が見られたことを示す。
 評価結果について、表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3において、◎は優れた特性を有する、○は好ましい特性を有する、△は要求レベルの特性を有する、×は要求レベルの特性を充足しない、ことを示す。
 すなわち、表3の結果から次のことが分かった。
 電子写真感光体1は、ウェットブラスト加工後(粗面化工程後)のSalの値に起因して初期不良が生じた場合(サンプル14および15)を除き、粗面化工程後のStrの値が0.70以上の場合(サンプル2,3,5,6,8,9,11および12)には、優れた効果を奏することが分かった。その中でも、粗面化工程後のStrの値が0.80以上の場合(サンプル3,6,9および12)には、より優れた効果を奏することが分かった。
 これらの実験データによると、粗面化工程後のStrの値が所定以上であれば、円筒状基体10の表面層12の表面形状は均一性の高い凹凸を備えることができ、耐久使用時において、表面が徐々に磨耗しても表面粗さを一定範囲内に維持し続けることが可能になると考えられる。その結果、表面層12とクリーニングブレード116Aとの間の摩擦抵抗の増大を効果的に抑制し続けることができる。これにより、クリーニングブレード116Aの欠損を抑制することができ、印画した画像に異常スジなどの画像欠陥が発生するのを低減できたと考えられる。このように、本実施例によれば、円筒状基体10の外表面を所定の表面粗さに粗面化することで、円筒状基体10の外表面の上に形成される層(感光層、表面層など)の表面を粗面化することなく特性を向上させることができ、優れた耐久特性および低い画像欠陥を実現することができる。なお、サンプル14および15において初期不良が生じた原因としては、粗面化工程後のSalの値が大きい場合には、電子写真感光体1の表面層12は周辺部材であるクリーニングブレード116Aなどとの摩擦抵抗が大きく、クリーニングブレード116Aの欠損が生じたものと考えられる。
 また、粗面化工程後のStrの値が0.70以上の条件下において、さらに次のことが分かった。すなわち、粗面化工程後のSalの値が8.4μm以下の場合(サンプル2,3,5,6,8,9,11および12)には、優れた効果を奏することが分かった。これらの実験データによると、粗面化工程後のSalが所定値よりも小さい場合には、電子写真感光体1の表面層12とクリーニングブレード116Aとの間の摩擦抵抗を低減することができ、クリーニングブレード116Aの欠損が抑制されることによって、優れた耐久特性を得ることができたと考えられる。また、粗面化工程後のSalの値が0.3μm以上の場合(サンプル2,3,5,6,8,9,11および12)には、優れた効果を奏することが分かった。さらに、粗面化工程後のSalの値が0.6μm以上の場合には(サンプル5,6,8,9,11および12)、より優れた効果を奏することが分かった。これらの実験データによると、Salが所定値よりも大きい場合には、電子写真感光体1の表面層12の磨耗が低減され、クリーニングブレード116Aの欠損が抑制されることによって、優れた耐久特性を得ることができたと考えられる。
 なお、本発明は上述の実施形態に示したものだけに限定されるものではなく、本発明の要旨を逸脱しない範囲で改良や変更ができることは言うまでもない。
 例えば、上述の実施形態において、円筒状基体10と、電荷注入阻止層11aと、光導電層11bと、を別々の構成要素として説明したが、これに代えて、円筒状基体10の少なくとも表面が電荷注入阻止特性を備えるようにしてもよい。これによれば、別途電荷注入阻止層11aを設けることなく、円筒状基体10それ自体によって、円筒状基体10から光導電層11bへのキャリア(電子)の注入を阻止する役割を有することができる。
1 電子写真感光体
2 プラズマCVD装置
3 支持体
4 真空反応室
5 回転手段
6 原料ガス供給手段
7 排気手段
10 円筒状基体
11 感光層
 11a 電荷注入阻止層
 11b 光導電層
12 表面層
30 フランジ部
31 導電性支柱
32 絶縁材
33 導板
34 直流電源
35 制御部
36 セラミックパイプ
37 ヒータ
38 ダミー基体
 38A 下ダミー基体
 38B 中間ダミー基体
 38C 上ダミー基体
40 円筒状電極
41,42 プレート
43,44 絶縁部材
 42A,44A ガス排出口
 45a,45b ガス導入口
46 ガス吹き出し孔
49 圧力計
50 回転モータ
51 回転力伝達機構
52 回転導入端子
53 絶縁軸部材
54 絶縁平板
60~63 原料ガスタンク
64 ドーパント専用ガスタンク
 60A~64A,65a,65b 配管
 60B~64B,60C~64C バルブ
 60D~64D マスフローコントローラ
71 メカニカルブースタポンプ
72 ロータリーポンプ
100 画像形成装置
111 帯電器
112 露光器
113 現像器
 113A 磁気ローラ
114 転写器
 114A 転写用チャージャ
 114B 分離用チャージャ
115 定着器
 115A,115B 定着ローラ
116 クリーニング器
117 除電器
P 記録媒体
T 現像剤

Claims (14)

  1.  円筒状基体の外表面を、表面粗さがStr≧0.70に粗面化する工程と、
     前記円筒状基体の外表面上に電荷注入阻止層を形成する工程と、
     前記電荷注入阻止層上に光導電層を形成する工程と、
     前記光導電層上に表面層を形成する工程と、を備えた電子写真感光体の製造方法。
  2.  前記粗面化する工程の前に、前記円筒状基体の外表面を鏡面加工する工程、をさらに備える、請求項1に記載の電子写真感光体の製造方法。
  3.  前記円筒状基体の外表面の表面粗さは、前記鏡面加工する工程を行なった状態で、Sa<30nm、且つ、Sz<2μmである、請求項2に記載の電子写真感光体の製造方法。
  4.  前記円筒状基体の外表面の表面粗さは、前記粗面化する工程を行なった状態で、Str≧0.80である、請求項1~3のいずれか1つに記載の電子写真感光体の製造方法。
  5.  前記円筒状基体の外表面の表面粗さは、前記粗面化する工程を行なった状態で、Sal≦8.4μmである、請求項1~4のいずれか1つに記載の電子写真感光体の製造方法。
  6.  前記円筒状基体の外表面の表面粗さは、前記粗面化する工程を行なった状態で、Sal≧0.3μmである、請求項1~5のいずれか1つに記載の電子写真感光体の製造方法。
  7.  前記円筒状基体の外表面の表面粗さは、前記粗面化する工程を行なった状態で、Sal≧0.6μmである、請求項6に記載の電子写真感光体の製造方法。
  8.  前記電荷注入阻止層、前記光導電層および前記表面層の少なくとも一層は、アモルファスシリコン(a-Si)を有する、請求項1~7のいずれか1つに記載の電子写真感光体の製造方法。
  9.  前記粗面化する工程は、ウェットブラストによって行なう、請求項1~8のいずれか1つに記載の電子写真感光体の製造方法。
  10.  前記電荷注入阻止層を形成する工程、前記光導電層を形成する工程および前記表面層を形成する工程は、一つのCVD装置を用いて真空状態を維持したまま連続的に行なわれる、請求項1~9のいずれか1つに記載の電子写真感光体の製造方法。
  11.  前記粗面化する工程は、CVD法を用いて行なわれる、請求項1~8のいずれか1つに記載の電子写真感光体の製造方法。
  12.  前記粗面化する工程、前記電荷注入阻止層を形成する工程、前記光導電層を形成する工程および前記表面層を形成する工程は、一つのCVD装置を用いて真空状態を維持したまま連続的に行なわれる、請求項11に記載の電子写真感光体の製造方法。
  13.  請求項1~12のいずれか1つに記載の電子写真感光体の製造方法と、
     前記電子写真感光体の表面に接触するクリーニング器を設置する工程と、を備える画像形成装置の製造方法。
  14.  円筒状基体の外表面を、表面粗さがStr≧0.70に粗面化する粗面化部と、
     前記円筒状基体の外表面上に電荷注入阻止層を形成する電荷注入阻止層形成部と、
     前記電荷注入阻止層上に光導電層を形成する光導電層形成部と、
     前記光導電層上に表面層を形成する表面層形成部と、を備える電子写真感光体の製造装置。
PCT/JP2016/069563 2015-07-28 2016-06-30 電子写真感光体の製造方法およびこれを備えた画像形成装置の製造方法ならびに電子写真感光体の製造装置 WO2017018124A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/747,137 US20180217513A1 (en) 2015-07-28 2016-06-30 Method of manufacturing electrophotographic photoreceptor, method of manufacturing image forming apparatus including the same, and electrophotographic photoreceptor manufacturing aparatus
JP2017531098A JPWO2017018124A1 (ja) 2015-07-28 2016-06-30 電子写真感光体の製造方法およびこれを備えた画像形成装置の製造方法ならびに電子写真感光体の製造装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015148850 2015-07-28
JP2015-148850 2015-07-28

Publications (1)

Publication Number Publication Date
WO2017018124A1 true WO2017018124A1 (ja) 2017-02-02

Family

ID=57884472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069563 WO2017018124A1 (ja) 2015-07-28 2016-06-30 電子写真感光体の製造方法およびこれを備えた画像形成装置の製造方法ならびに電子写真感光体の製造装置

Country Status (3)

Country Link
US (1) US20180217513A1 (ja)
JP (1) JPWO2017018124A1 (ja)
WO (1) WO2017018124A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3819708A1 (en) * 2019-11-11 2021-05-12 Ricoh Company, Ltd. Carrier for forming electrophotographic image, developer for forming electrophotographic image, electrophotographic image forming method, electrophotographic image forming apparatus, and process cartridge

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0619172A (ja) * 1992-06-30 1994-01-28 Canon Inc 光受容部材及びその製造方法
JP2001296679A (ja) * 2000-04-17 2001-10-26 Fuji Xerox Co Ltd 電子写真感光体基材の表面粗面化方法及び装置、電子写真感光体及びその製造方法
JP2005165274A (ja) * 2003-11-13 2005-06-23 Canon Inc 電子写真感光体、電子写真感光体の製造方法、プロセスカートリッジおよび電子写真装置
JP2008122999A (ja) * 2008-02-12 2008-05-29 Fuji Electric Device Technology Co Ltd 電子写真感光体および該電子写真感光体に起因する干渉縞有無の判定方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100442146C (zh) * 2003-03-04 2008-12-10 三菱化学株式会社 用于电子照相光感受器的基底、其生产方法及使用其的电子照相光感受器
JP4996684B2 (ja) * 2007-07-31 2012-08-08 京セラ株式会社 電子写真感光体およびその製造方法、並びに画像形成装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0619172A (ja) * 1992-06-30 1994-01-28 Canon Inc 光受容部材及びその製造方法
JP2001296679A (ja) * 2000-04-17 2001-10-26 Fuji Xerox Co Ltd 電子写真感光体基材の表面粗面化方法及び装置、電子写真感光体及びその製造方法
JP2005165274A (ja) * 2003-11-13 2005-06-23 Canon Inc 電子写真感光体、電子写真感光体の製造方法、プロセスカートリッジおよび電子写真装置
JP2008122999A (ja) * 2008-02-12 2008-05-29 Fuji Electric Device Technology Co Ltd 電子写真感光体および該電子写真感光体に起因する干渉縞有無の判定方法

Also Published As

Publication number Publication date
US20180217513A1 (en) 2018-08-02
JPWO2017018124A1 (ja) 2018-05-24

Similar Documents

Publication Publication Date Title
JP4851448B2 (ja) 堆積膜形成方法、堆積膜形成装置、堆積膜およびこれを用いた感光体
US11188003B2 (en) Electrophotographic photoreceptor and image forming apparatus
JP4273139B2 (ja) 電子写真感光体およびその製造方法
JP6971289B2 (ja) 電子写真感光体の製造方法
US10649354B2 (en) Electrophotographic photoreceptor and image forming apparatus
WO2017018124A1 (ja) 電子写真感光体の製造方法およびこれを備えた画像形成装置の製造方法ならびに電子写真感光体の製造装置
JP4996684B2 (ja) 電子写真感光体およびその製造方法、並びに画像形成装置
JP6774330B2 (ja) 電子写真感光体および画像形成装置
JP5993047B2 (ja) 電子写真感光体およびこれを備えた画像形成装置
JP5709672B2 (ja) 電子写真感光体およびこれを備えた画像形成装置
WO2014084177A1 (ja) 電子写真感光体およびこれを備えた画像形成装置
JP2009003478A (ja) 電子写真感光体およびその製造方法
JP2018163338A (ja) 電子写真感光体および画像形成装置
JP2014071253A (ja) 電子写真感光体およびこれを備えた画像形成装置
JP2014232152A (ja) 電子写真感光体およびこれを備えた画像形成装置
WO2013047662A1 (ja) 電子写真感光体およびこれを備えた画像形成装置
JPWO2009028448A1 (ja) 電子写真感光体および該電子写真感光体を備える画像形成装置
JP2015129959A (ja) 電子写真感光体およびこれを備えた画像形成装置
JP2008276262A (ja) 電子写真感光体およびその製造方法
JP2009013438A (ja) 堆積膜形成方法および電子写真感光体
JP2009036932A (ja) 電子写真感光体およびこれを備えた画像形成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16830229

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017531098

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15747137

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16830229

Country of ref document: EP

Kind code of ref document: A1