JP5703554B2 - 水処理システム - Google Patents

水処理システム Download PDF

Info

Publication number
JP5703554B2
JP5703554B2 JP2009237556A JP2009237556A JP5703554B2 JP 5703554 B2 JP5703554 B2 JP 5703554B2 JP 2009237556 A JP2009237556 A JP 2009237556A JP 2009237556 A JP2009237556 A JP 2009237556A JP 5703554 B2 JP5703554 B2 JP 5703554B2
Authority
JP
Japan
Prior art keywords
water
line
makeup
circulating
raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009237556A
Other languages
English (en)
Other versions
JP2011083684A (ja
Inventor
健輔 岩本
健輔 岩本
野上 康雄
康雄 野上
勝 中井
勝 中井
陽介 菊池
陽介 菊池
米加田 勇
勇 米加田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2009237556A priority Critical patent/JP5703554B2/ja
Publication of JP2011083684A publication Critical patent/JP2011083684A/ja
Application granted granted Critical
Publication of JP5703554B2 publication Critical patent/JP5703554B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

本発明は、冷却塔へ循環水又は散布水を循環させる水処理システムに関する。
商業ビル、工業プラント等においては、空調機や冷凍機に代表される熱交換機などの被冷却装置(冷却負荷装置)を冷却するために、冷却水が用いられる。冷却水は、その節約を図る観点から、冷却塔で冷却しながら循環して用いられる(循環する冷却水を以下「循環水」ともいう)。冷却塔は、大別して、開放式冷却塔及び密閉式冷却塔の2種類に分類することができる。
開放式冷却塔は、一般的に、塔本体と、塔本体の上部に設けられる排気口、ファン及び散水部と、塔本体の下部に設けられる貯留部と、塔本体の側部に設けられる通気孔と、を備える。散水部は、被冷却装置を冷却する循環水を冷却するために、循環水を散布する部位である。貯留部は、散布された循環水を貯留する部位である。
循環水は、循環水供給ライン及び循環水回収ラインを介して、開放式冷却塔と被冷却装置との間を循環する。詳述すると、循環水は、冷却塔から循環水供給ラインを介して被冷却装置へ供給される。供給された循環水は、被冷却装置の冷却に用いられ、この冷却の際の熱交換により加温される。加温された循環水は、循環水回収ラインを介して冷却塔へ回収される。被冷却装置から回収された循環水は、散水部に導入され、散水部から散布される。散布された循環水は、貯留部に落下し、貯留される。
また、開放式冷却塔においては、ファンが駆動することにより、外気は、通気孔を介して冷却塔の内部に流入し、排気口から排出される。ここで、散布された循環水は、貯留部に落下する過程において、ファンにより発生する気流、すなわち、通気孔から排出口へ流通する外気(エア)に触れることにより冷却された後、貯留部に貯留される。
冷却され貯留部に貯留された循環水は、循環水供給ラインを介して被冷却装置へ再度供給され、被冷却装置を冷却する。このようにして、被冷却装置を冷却する循環水は、開放式冷却塔と被冷却装置との間を循環することになる。
一方、密閉式冷却塔は、開放式冷却塔に比して、冷却塔に、被冷却装置を冷却する循環液が密閉状態で流通する冷却塔内部ラインと、冷却塔内部ラインに位置する循環液を冷却するために散布水を冷却塔内部ラインの外側へ散布する散水部と、散布された散布水を貯留する貯留部とが設けられている点、及び、冷却塔に、散水部から散布され貯留部に貯留された散布水を循環させる散布水ラインが接続されている点が、主として異なる。
詳述すると、密閉式冷却塔は、一般的に、塔本体と、塔本体の上部に設けられる排気口、ファン及び散水部と、塔本体の内部に設けられる冷却塔内部ラインと、塔本体の下部に設けられる貯留部と、塔本体の側部に設けられる通気孔と、を備える。冷却塔内部ラインは、被冷却装置を冷却する循環液が密閉状態で流通するラインである。散水部は、冷却塔内部ラインに位置する循環液を冷却するために、散布水を冷却塔内部ラインの外側へ散布する部位である。貯留部は、散布された散布水を貯留する部位である。
循環液は、循環液供給ライン、循環液回収ライン及び冷却塔内部ラインを介して、密閉式冷却塔と被冷却装置との間を循環する。詳述すると、循環液は、冷却塔の冷却塔内部ラインから循環液供給ラインを介して被冷却装置へ供給される。供給された循環液は、被冷却装置の冷却に用いられ、この冷却の際の熱交換により加温される。加温された循環液は、循環液回収ラインを介して冷却塔の冷却塔内部ラインへ回収される。このようにして、被冷却装置を冷却する循環液は、密閉式冷却塔と被冷却装置との間を循環することになる。
一方、密閉式冷却塔においては、散布水は、散布水ラインから散水部に導入される。導入された散布水は、散水部から冷却塔内部ラインの外側へ散布される。散布された散布水は、貯留部に落下し、貯留される。
また、ファンが駆動することにより、外気は、通気孔を介して冷却塔の内部に流入し、排気口から排出される。ここで、散布された散布水は、貯留部に落下する過程において、ファンにより発生する気流、すなわち、通気孔から排出口へ流通する外気(エア)に触れることにより冷却された後、貯留部に貯留される。
冷却され貯留部に貯留された散布水は、散布水ラインを介して散水部へ再度導入され、散水部から散布され、冷却塔内部ラインに位置する循環液を冷却する。このようにして、循環液を冷却する散布水は、散布水ラインを循環することになる。
また、冷却塔(開放式冷却塔、密閉式冷却塔)を含む水処理システムでは、循環する循環水又は散布水を散布するため、循環水又は散布水の水分が蒸発し、循環水又は散布水が濃縮する。これにより、循環水中又は散布水中には、溶存塩類や栄養源が高濃度に含まれるようになる。その結果、循環水又は散布水の水質が悪化して、スライムや藻類が発生し、通水性の悪化や冷却能力の低下を招く虞がある。また、スライム等に起因してレジオネラ属菌が繁殖し、繁殖したレジオネラ属菌が蒸発水に同伴されて、大気中に飛散される虞がある。
また、循環水又は散布水は、一般的に、塩化物イオン等の腐食性イオンや、炭酸カルシウム、シリカ等のスケール発生因子を含む。循環水又は散布水の水分が蒸発すると、循環水中又は散布水中における腐食性イオン及びスケール発生因子の濃度が高まる。これに伴って、塔本体や各種の配管系(ライン)において腐食が促進され、また、スケールの発生が促進される。また、スケールが堆積して被冷却装置や各種の配管系等に付着すると、通水性の悪化や冷却能力の低下を招く虞がある。
そこで、冷却塔においては、循環水又は散布水が過度に濃縮する(濃度が高まる)ことを抑制するために、補給水ライン及び排水ラインが接続されている。補給水ラインを介して、冷却塔の貯留部には、原水(硬水)、軟化水などからなる補給水が補給される。また、排水ラインを介して、貯留部に貯留された循環水又は散布水が系外へ排水される。このようにして、循環水又は散布水における濃度を低下させ、循環水又は散布水の濃縮を解消する。
ところで、スライム、藻類、スケール等の発生防止に対しては、循環水又は散布水に軟化水を使用することや電気伝導率を管理(濃縮倍率を管理)することが効果的である。
しかし、軟化水は、一般的に、軟水化装置(軟水器)によって、カルシウムイオン等の硬度成分がほぼ完全に除去されている。従って、軟化水には実質的に硬度成分が含まれていないため、硬度成分を含んだ硬水に比べて、配管系等の腐食を招きやすいという問題点がある。
すなわち、スケールの発生を抑制して、循環水又は散布水の良好な水質を確保するためには、循環水又は散布水として軟化水を極力使用することが好ましい。一方、硬水は、配管系等の腐食抑制の観点から、必要量のみ補給すれば十分である。
本出願人は、特許文献1において、「冷却塔に給水される補給水の水質を調整する冷却塔補給水の水質調整装置であって、硬度成分を含有した硬水を軟水化して軟水を生成する軟水器と、該軟水器と前記冷却塔とを接続する第1の補給路と、前記軟水器をバイパスして前記第1の補給路に接続される硬水が通過する第2の補給路と、前記第2の補給路から前記第1の補給路への前記硬水の流入を制御する制御手段と、前記冷却塔と被冷却装置とを循環する循環水の水質管理を行う水質管理手段とを備え、前記制御手段は、前記水質管理手段によって管理される前記循環水の水質状態に応じて前記硬水の前記第1の補給路への流入を許可する流入許可手段を有していることを特徴とする冷却塔補給水の水質調整装置」を開示した。
特許文献1に開示の水質調整装置においては、前記水質管理手段は、前記第1の補給路を通過する前記軟水及び前記硬水の積算流量をそれぞれ計測する流量計測手段を備え、前記流入許可手段は、前記流量計測手段により前記軟水の積算流量が所定値を計測したときは、前記第1の補給路への前記硬水の所定積算流量の流入を許可する。
この特許文献1に開示の水質調整装置によれば、流入許可手段が流量計測手段により軟水の積算流量が所定値を計測したときには、前記第1の補給路への硬水の所定積算流量の流入を許可する。これにより、スライムやスケールの発生を抑制し、かつ配管系等の腐食をも抑制しようとしている。
特開2009−41844号公報
しかし、特許文献1に開示の水質調整装置においては、計測される軟化水(軟水)又は原水(硬水)の積算流量に基づいて循環水の硬度を推測し、原水の流入(補給)を制御している。そのため、原水の硬度が変動すると、循環水における硬度を適切な高さに維持することが困難である。従って、スライム、スケール等の発生の抑制及び配管系等の腐食の抑制を一層確実に行うことが望まれている。
従って、本発明は、スライム、スケール等の発生の抑制及び配管系等の腐食の抑制を一層確実に行うことができる水処理システムを提供することを目的とする。
本発明は、被冷却装置を冷却する循環水を冷却するために循環水を散布する散水部と、冷却された循環水を貯留する貯留部とを有する冷却塔と、前記貯留部に貯留された循環水を前記冷却塔から前記被冷却装置へ供給する循環水供給ラインと、循環水を前記被冷却装置から前記冷却塔の前記散水部へ回収する循環水回収ラインとを有し、前記循環水供給ライン及び前記循環水回収ラインを介して前記冷却塔と前記被冷却装置との間で循環水を循環させる循環水ラインと、循環水の電気伝導率を測定する電気伝導率測定装置と、原水補給水が流通する原水補給水ラインと、軟化水補給水が流通する軟化水補給水ラインと、前記原水補給水ラインと前記軟化水補給水ラインとが合流する合流部と、前記合流部と前記貯留部、前記散水部及び前記循環水ラインのうちのいずれかとを接続し且つ原水補給水及び/又は軟化水補給水からなる補給水を該貯留部、該散水部及び該循環水ラインのうちのいずれかへ補給する補給水合流ラインと、前記原水補給水ライン、前記合流部及び前記補給水合流ラインを介して、原水補給水を前記貯留部、前記散水部及び前記循環水ラインのうちのいずれかへ向けて流通させる原水補給水流通手段と、前記軟化水補給水ライン、前記合流部及び前記補給水合流ラインを介して、軟化水補給水を前記貯留部、前記散水部及び前記循環水ラインのうちのいずれかへ向けて流通させる軟化水補給水流通手段と、前記電気伝導率測定装置で測定された電気伝導率が予め設定された閾値以上の場合には、前記原水補給水流通手段による原水補給水の流通及び/又は前記軟化水補給水流通手段による軟化水補給水の流通を継続させ、前記電気伝導率測定装置で測定された電気伝導率が予め設定された閾値未満の場合には、前記原水補給水流通手段による原水補給水の流通及び/又は前記軟化水補給水流通手段による軟化水補給水の流通を停止させる濃縮度判定部と、前記原水補給水ラインを流通する原水補給水の硬度又は前記補給水合流ラインを流通する補給水の硬度を測定する硬度測定装置と、前記硬度測定装置により測定された原水補給水の硬度又は補給水の硬度に基づいて、前記原水補給水流通手段による原水補給水の流量及び/又は前記軟化水補給水流通手段による軟化水補給水の流量を制御する流量制御手段と、を備え、前記硬度測定装置は、前記原水補給水ラインを流通する原水補給水の硬度としてカルシウム硬度を測定し、前記流量制御手段は、前記硬度測定装置により測定された原水補給水の硬度に基づいて、前記軟化水補給水流通手段による軟化水補給水の流量を制御する水処理システムに関する。
本発明は、被冷却装置を冷却する循環水を冷却するために循環水を散布する散水部と、冷却された循環水を貯留する貯留部とを有する冷却塔と、前記貯留部に貯留された循環水を前記冷却塔から前記被冷却装置へ供給する循環水供給ラインと、循環水を前記被冷却装置から前記冷却塔の前記散水部へ回収する循環水回収ラインとを有し、前記循環水供給ライン及び前記循環水回収ラインを介して前記冷却塔と前記被冷却装置との間で循環水を循環させる循環水ラインと、循環水の電気伝導率を測定する電気伝導率測定装置と、原水補給水が流通する原水補給水ラインと、軟化水補給水が流通する軟化水補給水ラインと、前記原水補給水ラインと前記軟化水補給水ラインとが合流する合流部と、前記合流部と前記貯留部、前記散水部及び前記循環水ラインのうちのいずれかとを接続し且つ原水補給水及び/又は軟化水補給水からなる補給水を該貯留部、該散水部及び該循環水ラインのうちのいずれかへ補給する補給水合流ラインと、前記原水補給水ライン、前記合流部及び前記補給水合流ラインを介して、原水補給水を前記貯留部、前記散水部及び前記循環水ラインのうちのいずれかへ向けて流通させる原水補給水流通手段と、前記軟化水補給水ライン、前記合流部及び前記補給水合流ラインを介して、軟化水補給水を前記貯留部、前記散水部及び前記循環水ラインのうちのいずれかへ向けて流通させる軟化水補給水流通手段と、前記電気伝導率測定装置で測定された電気伝導率が予め設定された閾値以上の場合には、前記原水補給水流通手段による原水補給水の流通及び/又は前記軟化水補給水流通手段による軟化水補給水の流通を継続させ、前記電気伝導率測定装置で測定された電気伝導率が予め設定された閾値未満の場合には、前記原水補給水流通手段による原水補給水の流通及び/又は前記軟化水補給水流通手段による軟化水補給水の流通を停止させる濃縮度判定部と、前記原水補給水ラインを流通する原水補給水の硬度又は前記補給水合流ラインを流通する補給水の硬度を測定する硬度測定装置と、前記硬度測定装置により測定された原水補給水の硬度又は補給水の硬度に基づいて、前記原水補給水流通手段による原水補給水の流量及び/又は前記軟化水補給水流通手段による軟化水補給水の流量を制御する流量制御手段と、を備え、前記硬度測定装置は、前記補給水合流ラインを流通する補給水の硬度としてカルシウム硬度を測定し、前記流量制御手段は、前記硬度測定装置により測定された補給水の硬度に基づいて、前記軟化水補給水流通手段による軟化水補給水の流量を制御する水処理システムに関する。
本発明は、被冷却装置を冷却する循環液が密閉状態で流通する冷却塔内部ラインと、該冷却塔内部ラインに位置する循環液を冷却するために散布水を該冷却塔内部ラインの外側へ散布する散水部と、散布された散布水を貯留する貯留部とを有する冷却塔と、前記冷却塔内部ラインに位置する循環液を前記冷却塔から前記被冷却装置へ供給する循環液供給ラインと、循環液を前記被冷却装置から前記冷却塔の前記冷却塔内部ラインへ回収する循環液回収ラインとを有し、前記循環液供給ライン、前記循環液回収ライン及び冷却塔内部ラインを介して前記冷却塔と前記被冷却装置との間で循環液を循環させる循環液ラインと、前記貯留部に接続されると共に前記散水部に接続され、該散水部から散布され前記貯留部に貯留された散布水を循環させる散布水ラインと、散布水の電気伝導率を測定する電気伝導率測定装置と、原水補給水が流通する原水補給水ラインと、軟化水補給水が流通する軟化水補給水ラインと、前記原水補給水ラインと前記軟化水補給水ラインとが合流する合流部と、前記合流部と前記貯留部、前記散水部及び前記散布水ラインのうちのいずれかとを接続し且つ原水補給水及び/又は軟化水補給水からなる補給水を該貯留部、該散水部及び該散布水ラインのうちのいずれかへ補給する補給水合流ラインと、前記原水補給水ライン、前記合流部及び前記補給水合流ラインを介して、原水補給水を前記貯留部、前記散水部及び前記散布水ラインのうちのいずれかへ向けて流通させる原水補給水流通手段と、前記軟化水補給水ライン、前記合流部及び前記補給水合流ラインを介して、軟化水補給水を前記貯留部、前記散水部及び前記散布水ラインのうちのいずれかへ向けて流通させる軟化水補給水流通手段と、前記電気伝導率測定装置で測定された電気伝導率が予め設定された閾値以上の場合には、前記原水補給水流通手段による原水補給水の流通及び/又は前記軟化水補給水流通手段による軟化水補給水の流通を継続させ、前記電気伝導率測定装置で測定された電気伝導率が予め設定された閾値未満の場合には、前記原水補給水流通手段による原水補給水の流通及び/又は前記軟化水補給水流通手段による軟化水補給水の流通を停止させる濃縮度判定部と、前記原水補給水ラインを流通する原水補給水の硬度又は前記補給水合流ラインを流通する補給水の硬度を測定する硬度測定装置と、前記硬度測定装置により測定された原水補給水の硬度又は補給水の硬度に基づいて、前記原水補給水流通手段による原水補給水の流量及び/又は前記軟化水補給水流通手段による軟化水補給水の流量を制御する流量制御手段と、を備え、前記硬度測定装置は、前記原水補給水ラインを流通する原水補給水の硬度としてカルシウム硬度を測定し、前記流量制御手段は、前記硬度測定装置により測定された原水補給水の硬度に基づいて、前記軟化水補給水流通手段による軟化水補給水の流量を制御する水処理システムに関する。
本発明は、被冷却装置を冷却する循環液が密閉状態で流通する冷却塔内部ラインと、該冷却塔内部ラインに位置する循環液を冷却するために散布水を該冷却塔内部ラインの外側へ散布する散水部と、散布された散布水を貯留する貯留部とを有する冷却塔と、前記冷却塔内部ラインに位置する循環液を前記冷却塔から前記被冷却装置へ供給する循環液供給ラインと、循環液を前記被冷却装置から前記冷却塔の前記冷却塔内部ラインへ回収する循環液回収ラインとを有し、前記循環液供給ライン、前記循環液回収ライン及び冷却塔内部ラインを介して前記冷却塔と前記被冷却装置との間で循環液を循環させる循環液ラインと、前記貯留部に接続されると共に前記散水部に接続され、該散水部から散布され前記貯留部に貯留された散布水を循環させる散布水ラインと、散布水の電気伝導率を測定する電気伝導率測定装置と、原水補給水が流通する原水補給水ラインと、軟化水補給水が流通する軟化水補給水ラインと、前記原水補給水ラインと前記軟化水補給水ラインとが合流する合流部と、前記合流部と前記貯留部、前記散水部及び前記散布水ラインのうちのいずれかとを接続し且つ原水補給水及び/又は軟化水補給水からなる補給水を該貯留部、該散水部及び該散布水ラインのうちのいずれかへ補給する補給水合流ラインと、前記原水補給水ライン、前記合流部及び前記補給水合流ラインを介して、原水補給水を前記貯留部、前記散水部及び前記散布水ラインのうちのいずれかへ向けて流通させる原水補給水流通手段と、前記軟化水補給水ライン、前記合流部及び前記補給水合流ラインを介して、軟化水補給水を前記貯留部、前記散水部及び前記散布水ラインのうちのいずれかへ向けて流通させる軟化水補給水流通手段と、前記電気伝導率測定装置で測定された電気伝導率が予め設定された閾値以上の場合には、前記原水補給水流通手段による原水補給水の流通及び/又は前記軟化水補給水流通手段による軟化水補給水の流通を継続させ、前記電気伝導率測定装置で測定された電気伝導率が予め設定された閾値未満の場合には、前記原水補給水流通手段による原水補給水の流通及び/又は前記軟化水補給水流通手段による軟化水補給水の流通を停止させる濃縮度判定部と、前記原水補給水ラインを流通する原水補給水の硬度又は前記補給水合流ラインを流通する補給水の硬度を測定する硬度測定装置と、前記硬度測定装置により測定された原水補給水の硬度又は補給水の硬度に基づいて、前記原水補給水流通手段による原水補給水の流量及び/又は前記軟化水補給水流通手段による軟化水補給水の流量を制御する流量制御手段と、を備え、前記硬度測定装置は、前記補給水合流ラインを流通する補給水の硬度としてカルシウム硬度を測定し、前記流量制御手段は、前記硬度測定装置により測定された補給水の硬度に基づいて、前記軟化水補給水流通手段による軟化水補給水の流量を制御する水処理システムに関する。
本発明によれば、スライム、スケール等の発生の抑制及び配管系等の腐食の抑制を一層確実に行うことができる水処理システムを提供することができる。
本発明の第1実施形態の水処理システム100を示す概略構成図である。 第1実施形態の水処理システム100の制御に係る機能ブロック図である。 第1実施形態の水処理システム100の動作を示すフローチャートである。 本発明の第2実施形態の水処理システム100Aを示す概略構成図である。 第2実施形態の水処理システム100Aの制御に係る機能ブロック図である。 第2実施形態の水処理システム100Aの動作を示すフローチャートである。 本発明の第3実施形態の水処理システム200を示す概略構成図である。 第3実施形態の水処理システム200の制御に係る機能ブロック図である。 本発明の第4実施形態の水処理システム200Aを示す概略構成図である。 第4実施形態の水処理システム200Aの制御に係る機能ブロック図である。 第1実施形態における合流補給水W123の補給位置に関する第1変形例を示す図である。 第1実施形態における合流補給水W123の補給位置に関する第2変形例を示す図である。
<第1実施形態>
図1を参照して、本発明の第1実施形態の水処理システム100の概略について説明する。図1は、本発明の第1実施形態の水処理システム100を示す概略構成図である。
図1に示すように、第1実施形態の水処理システム100は、冷却塔110を有しており、商業ビル、工業プラント等において、空調機や冷凍機に代表される熱交換機などの被冷却装置131を冷却するために、冷却水を循環させるシステムである。冷却水は、その節約を図る観点から、冷却塔110で冷却しながら循環して用いられる(循環する冷却水を以下「循環水W110」ともいう)。第1実施形態における冷却塔110は、いわゆる開放式冷却塔からなる。
第1実施形態の水処理システム100は、循環水W110の貯留部116を有する冷却塔110と、被冷却装置131と、冷却塔110と被冷却装置131との間で循環水W110を循環させる循環水ラインL110と、冷却塔110の貯留部116に補給水W120を補給する補給水ラインL120と、冷却塔110の貯留部116から循環水W110を水処理システム100の系外へ強制的に排出する排水ラインL130と、冷却塔110の貯留部116から溢れる循環水W110を排出するオーバーフローラインL140と、循環水W110の電気伝導率を測定する電気伝導率測定装置133と、補給水ラインL120(後述の原水補給水ラインL122)を流通する補給水W120(後述の原水補給水W121)の硬度を測定する硬度測定装置146と、水処理システム100の各部の制御を行うシステム制御装置101と、を主体として構成されている。
循環水ラインL110は、貯留部116に貯留された循環水W110を冷却塔110から被冷却装置131へ供給する循環水供給ラインL111と、循環水W110を被冷却装置131から冷却塔110の散水部112へ回収する循環水回収ラインL112と、を有する。
「ライン」とは、流路、経路、管路などの流体の流通が可能なラインの総称である。
第1実施形態における冷却塔110について説明する。冷却塔110は、被冷却装置131を冷却するための循環水W110を、被冷却装置131へ供給する前に、冷却するものである。冷却塔110は、塔本体111と、散水部112と、貯留部116と、ルーバ118と、ファン120と、上部開口部121と、ファン駆動部122と、を備える。
塔本体111は、冷却塔110の外郭を形成するものである。塔本体111の上部には、複数の散水部112、ファン120、上部開口部121及びファン駆動部122が設けられる。塔本体111の下部には、貯留部116が設けられる。塔本体111の側部には、ルーバ118が設けられる。
散水部112は、被冷却装置131を冷却する循環水W110を冷却するために、循環水W110を散布する部位である。散水部112は、循環水回収ラインL112を介して被冷却装置131から回収された循環水W110を、塔本体111の内部に散布(散水)する。
散水部112は、上部水槽113と、散水口114とを備える。上部水槽113には、循環水ラインL110の循環水回収ラインL112が接続されている。上部水槽113は、循環水回収ラインL112を介して被冷却装置131から回収された循環水W110を貯留する。散水口114は、上部水槽113に貯留された循環水W110を散布するために上部水槽113の下側に形成されたノズルからなる。
塔本体111の内部における散水部112の下方には、充填材(図示せず)が設けられる。充填材は、散水部112から散布された循環水W110を滴状にして、循環水W110と外気E1(後述)との接触面積及び接触時間を長くして、循環水W110を効率的に冷却するために設けられる。
貯留部116は、散水部112から散布された循環水W110を貯留する。貯留部116は、塔本体111の下部に設けられる。後述するように、貯留部116に貯留された循環水W110は、塔本体111の内部を落下する過程において冷却される。貯留部116の底部には、循環水ラインL110の循環水供給ラインL111及び排水ラインL130が接続されている。貯留部116に貯留された循環水W110は、循環水供給ラインL111を介して被冷却装置131へ供給される。また、貯留部116に貯留された循環水W110は、排水ラインL130を介して水処理システム100の系外へ排出される。
ルーバ118は、塔本体111の内部へ外気(エア)E1を導入するための通気孔であり、塔本体111の外部と内部とを連通する。ルーバ118を介して、塔本体111の外部のエア(外気)E1は、塔本体111の内部へ流入することができる。
上部開口部121は、塔本体111の上部に形成された開口部であり、塔本体111の内部に位置するエアE1を塔本体111の外部に排出するために設けられる。排出されたエアを「排気E2」ともいう。
ファン120は、上部開口部121に配置されている。ファン120の回転軸120aは、上下方向に延びるように配置されている。ファン120は、ルーバ118から塔本体111の内部へ外気(エア)E1を流入させると共に、塔本体111の内部に位置するエアE1を、上部開口部121を介して塔本体111の外部に排出させるように、気流を発生させる。
ファン駆動部122は、モータ等からなり、ファン120を回転駆動する。ファン駆動部122は、ファン120の上方に配置されており、ファン120の回転軸120aに連結されている。ファン駆動部122は、ファン120の回転駆動の開始又は停止、回転速度の調整(変速)などを行う。
冷却塔110には、循環水ラインL110及び排水ラインL130の他に、補給水ラインL120(原水補給水ラインL122、軟化水補給水ラインL123、補給水合流ラインL124)及びオーバーフローラインL140が接続されている。これらの各ラインを介して、冷却塔110に対して、循環水W110が導入又は排出されると共に、補給水W120(後述の合流補給水W123)が補給される。
循環水ラインL110は、冷却塔110と被冷却装置131との間で循環水W110を循環させるラインである。循環水ラインL110は、貯留部116に貯留された循環水W110を冷却塔110から被冷却装置131へ供給する循環水供給ラインL111と、循環水W110を被冷却装置131から冷却塔110の散水部112へ回収する循環水回収ラインL112と、を有する。循環水ラインL110は、循環水供給ラインL111及び循環水回収ラインL112を介して、冷却塔110と被冷却装置131との間で循環水W110を循環させる。
循環水供給ラインL111は、冷却塔110の貯留部116と被冷却装置131とを接続する。循環水供給ラインL111は、貯留部116に貯留された循環水W110を被冷却装置131に供給することができる。
循環水供給ラインL111の途中には、循環水ポンプ132が接続されている。循環水ポンプ132は、循環水ラインL110(循環水供給ラインL111、循環水回収ラインL112)の上流側から下流側へ向けて、循環水W110を送り出すことができる。
循環水回収ラインL112は、被冷却装置131と冷却塔110の散水部112とを接続する。循環水回収ラインL112は、被冷却装置131において熱交換により加温された循環水W110を、冷却塔110の散水部112へ回収することができる。循環水回収ラインL112の下流側は、回収分岐部J111において複数のラインに分岐している。循環水回収ラインL112において、回収分岐部J111よりも上流側のラインを「上流側循環水回収ラインL112a」ともいい、回収分岐部J111よりも下流側の複数のラインを「下流側循環水回収ラインL112b」ともいう。複数の下流側循環水回収ラインL112bの下流側の端部は、それぞれ複数の散水部112に接続されている。
被冷却装置131は、循環水W110による冷却が必要な熱交換機等の各種装置であり、例えば、各種の化学プラントのターボ冷凍機や吸収冷凍機、建築物の空調用冷却機、食品工場の冷水製造機や真空冷却機などである。被冷却装置131は、所要の循環水流路(図示せず)を有している。この循環水流路は、循環水導入部131aと循環水排出部131bとを有している。
そして、循環水導入部131aには、循環水供給ラインL111の下流側の端部が接続されている。循環水排出部131bには、循環水回収ラインL112の上流側の端部が接続されている。このように、循環水流路は、循環水供給ラインL111及び循環水回収ラインL112と共に、冷却塔110の塔本体111と被冷却装置131との間で循環水W110を循環させるための循環経路を形成している。
電気伝導率測定装置133は、循環水W110の電気伝導率を測定する装置である。電気伝導率測定装置133は、循環水ラインL110に接続されている。詳細には、循環水供給ラインL111における循環水ポンプ132と被冷却装置131との間には、測定接続部J112が設けられている。電気伝導率測定装置133は、測定ラインL113を介して、測定接続部J112において循環水供給ラインL111に接続されている。
ところで、循環水W110の濃縮度が高まると、腐食性イオン及びスケール発生因子の濃度が高くなる。これにより、循環水W110の電気伝導率が高くなる。そこで、水処理システム100においては、電気伝導率測定装置133により測定される電気伝導率が所定の閾値よりも高くなった場合には、循環水W110の濃縮度を低下させるため(電気伝導率を低下させるため)に、補給水W120を冷却塔110の貯留部116へ補給し、貯留部116に貯留される循環水W110を希釈する。このように、循環水W110の電気伝導率に基づいて、循環水W110の濃縮度を管理する。
硬度測定装置146は、原水補給水W121(補給水W120)の硬度を測定する装置である。硬度測定装置146は、全硬度を測定できるものでもよく、カルシウム硬度のみを測定できるものでもよい。硬度測定装置146は、原水補給水ラインL122に接続されている。詳細には、硬度測定装置146は、測定ラインL125を介して、測定接続部J123において原水補給水ラインL122に接続されている。
硬度測定装置146としては、例えば、色素を含む試薬を添加したときの発色により、硬度を検出する比色式センサが用いられる。比色式センサは、所定量の試料水を収容した透明容器へ試薬を添加し、色素の反応による試料水の色相変化を、特定波長の光を照射したときの吸光度から測定する。そして、比色式センサは、測定された吸光度に基づいて、試料水中の硬度を判定する。
なお、硬度測定装置146は、比色式センサに制限されず、電極式センサ、滴定式センサなどでもよい。
補給水ラインL120は、補給水W120を冷却塔110の貯留部116へ補給するラインである。補給水ラインL120は、源流側補給水ラインL121と、補給水分岐部J121と、原水補給水ラインL122と、軟化水補給水ラインL123と、合流部としての補給水合流部J122と、補給水合流ラインL124と、を備える。
補給水分岐部J121は、源流側補給水ラインL121から原水補給水ラインL122と軟化水補給水ラインL123とが分岐する部位である。補給水合流部J122は、原水補給水ラインL122と軟化水補給水ラインL123とが合流する部位である。
源流側補給水ラインL121の上流側は、水道水や工業用水等の原水からなる補給水W120の供給源(図示せず)に接続されている。源流側補給水ラインL121の下流側は、補給水分岐部J121に接続されている。源流側補給水ラインL121には、補給水W120の供給源から供給される補給水W120が流通する。
源流側補給水ラインL121には、上流側から順に、補給水ポンプ141及び補給水バルブ142が接続されている。補給水ポンプ141は、補給水ラインL120(源流側補給水ラインL121、原水補給水ラインL122、軟化水補給水ラインL123、補給水合流ラインL124)の上流側から下流側へ向けて、補給水W120を送り出すことができる。補給水バルブ142は、補給水分岐部J121と補給水ポンプ141との間において、源流側補給水ラインL121を開閉することができる。
原水補給水ラインL122は、補給水合流部J122及び補給水合流ラインL124を介して、原水補給水W121を冷却塔110の貯留部116へ補給するラインである。原水補給水ラインL122の上流側の端部は、補給水分岐部J121を介して、源流側補給水ラインL121に接続されている。原水補給水ラインL122の下流側の端部は、補給水合流部J122を介して、補給水合流ラインL124に接続されている。
原水補給水ラインL122には、源流側補給水ラインL121及び補給水分岐部J121を介して、補給水W120が導入され、流通する。原水補給水ラインL122を流通する補給水W120は、補給水合流部J122を介して、補給水合流ラインL124を流通し、後述する合流補給水W123として、冷却塔110の貯留部116へ導入される。なお、原水補給水ラインL122を流通する補給水W120は、源流側補給水ラインL121を流通する補給水W120と同じであるが、説明の便宜上、源流側補給水ラインL121を流通する補給水W120を「原水補給水W121」ともいう。
原水補給水ラインL122には、上流側から順に、補助原水補給水バルブ151及び原水補給水バルブ152が接続されている。
補助原水補給水バルブ151は、通常、開放しているが、原水補給水バルブ152のメンテナンス時などに閉鎖して用いられる。
原水補給水バルブ152は、弁開度を調節可能な制御弁から構成されている。原水補給水バルブ152は、原水補給水ラインL122における補給水分岐部J121(補助原水補給水バルブ151)と補給水合流部J122との間において、原水補給水ラインL122を開閉することができる。本実施形態においては、補給水ポンプ141、原水補給水バルブ152等から「原水補給水ラインL122、補給水合流部J122及び補給水合流ラインL124を介して、原水補給水W121を貯留部116へ向けて流通させる原水補給水流通手段」が構成されている。
軟化水補給水ラインL123は、補給水合流部J122及び補給水合流ラインL124を介して、軟化水補給水W122を冷却塔110の貯留部116へ補給するラインである。軟化水補給水ラインL123には、上流側から順に、軟水化装置143及び軟化水補給水バルブ144が接続されている。
軟化水補給水ラインL123の上流側の端部は、補給水分岐部J121を介して、源流側補給水ラインL121に接続されている。軟化水補給水ラインL123の下流側の端部は、補給水合流部J122を介して補給水合流ラインL124に接続されている。
軟水化装置143は、原水(硬水)からなる補給水W120を軟水化し、軟化水補給水W122を生成する(得る)装置である。軟水化装置143は、補給水W120に含まれる硬度成分、具体的には、カルシウムイオン及びマグネシウムイオンを低減し(除去し)、原水からなる補給水W120から軟化水補給水W122を生成する装置である。
軟化水とは、原水(硬水)に軟水化処理を行うことにより得られる(生成される)、硬度が低減された水をいう。軟化水には、原水(硬水)に純水化処理を行うことにより得られる(生成される)純水も含まれる。つまり、軟化水には純水が含まれ、また、軟水化処理には純水化処理が含まれる。
軟化水は、硬度が10mg/L以下に低減されているものが好ましく、硬度が1mg/L以下に低減されているものが更に好ましい。
軟水化装置143は、軟水化処理を行うことができれば特に制限されない。軟水化装置143としては、イオン交換樹脂を利用して陽イオン交換を行い軟水化処理を行う陽イオン交換装置、イオン交換樹脂を利用して陽イオン交換及び陰イオン交換を行い軟水化処理を行うイオン交換装置、逆浸透膜(RO膜)を利用して濾過を行い軟水化処理を行う逆浸透膜装置、電気透析を利用して軟水化処理を行う電気透析装置(電気式脱イオン装置)などが挙げられる。
軟化水補給水バルブ144は、弁開度を調節可能な制御弁から構成されている。軟化水補給水バルブ144は、軟化水補給水ラインL123の下流側の端部と軟水化装置143との間において、軟化水補給水ラインL123を開閉することができる。本実施形態においては、補給水ポンプ141、軟化水補給水バルブ144等から「軟化水補給水ラインL123、補給水合流部J122及び補給水合流ラインL124を介して、軟化水補給水W122を貯留部116へ向けて流通させる軟化水補給水流通手段」が構成されている。
補給水合流ラインL124は、補給水合流部J122と冷却塔110の貯留部116とを接続し、且つ、原水補給水W121及び/又は軟化水補給水W122からなる補給水W123を貯留部116へ補給するラインである。補給水合流ラインL124の下流側の端部は、冷却塔110の塔本体111に接続されている。補給水合流ラインL124の下流側の端部には、貯留部116に貯留される循環水W110の水位を管理するボールタップ式の給水栓145が設けられている。
給水栓145は、貯留部116に貯留される循環水W110の水位が低下すると、ボールタップが作動し、補給水合流ラインL124を流通する補給水W123が貯留部116に補給されるように構成されている。なお、補給水合流ラインL124を流通する補給水W123は、原水補給水W121のみからなる場合、軟化水補給水W122のみからなる場合、又は原水補給水W121と軟化水補給水W122とが混合(合流)したものからなる場合があるが、説明の便宜上、補給水合流ラインL124を流通する補給水W123を「合流補給水W123」ともいう。
排水ラインL130は、貯留部116の底部に接続されており、下方に向けて延びている。排水ラインL130は、貯留部116に貯留された循環水W110を、排水W130として水処理システム100の系外へ排出する。排水ラインL130の途中には、排水バルブ161が接続されている。排水ラインL130における排水バルブ161の下流側には、オーバーフローラインL140(後述)が、排水合流部J131を介して接続されている。排水バルブ161は、制御弁から構成されている。排水バルブ161は、貯留部116と排水合流部J131との間において、排水ラインL130を開閉することができる。
オーバーフローラインL140は、貯留部116から溢れる循環水W110を、排水W130として水処理システム100の系外へ排出するラインである。オーバーフローラインL140の上流側の端部162は、冷却塔110の貯留部116から上方に離間した位置に位置する。オーバーフローラインL140は、排水合流部J131において排水ラインL130と接続(合流)する。
貯留部116から溢れる循環水W110は、オーバーフローラインL140の上流側の端部162からオーバーフローラインL140へ流入する。オーバーフローラインL140へ流入した循環水W110は、排水合流部J131を介して排水ラインL130へ流入し、水処理システム100の系外へ排出される。
本実施形態においては、排水バルブ161から、「排水ラインL130を介して貯留部116に貯留された循環水W110を系外へ向けて流通させる排水流通手段」が構成されている。
次に、図2を参照して、第1実施形態の水処理システム100の制御に係る機能について説明する。図2は、第1実施形態の水処理システム100の制御に係る機能ブロック図である。
システム制御装置101は、第1実施形態の水処理システム100における各部を制御する。図2に示すように、システム制御装置101は、例えば、補給水ポンプ141、軟化水補給水バルブ144、原水補給水バルブ152、排水バルブ161、ファン駆動部122に電気的に接続される。
また、システム制御装置101は、水処理システム100における各測定装置に電気的に接続され、各測定装置から測定情報を受信する。例えば、システム制御装置101は、電気伝導率測定装置133に電気的に接続され、電気伝導率測定装置133により測定された電気伝導率情報を受信する。また、システム制御装置101は、硬度測定装置146に電気的に接続され、硬度測定装置146により測定された硬度情報を受信する。
システム制御装置101は、制御部102と、メモリ103と、を備える。制御部102は、濃縮度判定部181と、硬度判定部182と、流量制御手段としての補給水制御部183と、タイムカウンタ部184と、を有する。
濃縮度判定部181は、電気伝導率測定装置133により測定される循環水W110の電気伝導率が所定の閾値以上であるか否かを判定する。所定の閾値は、例えば、スライムの発生の抑制を確保できる上限の電気伝導率が設定される。
硬度判定部182は、硬度測定装置146により測定される原水補給水W121の硬度が所定の閾値よりも高いか又は所定の閾値以下であるかを判定する。所定の閾値は、例えば、配管系等の腐食抑制効果を確保できる下限の硬度が設定される。
補給水制御部183は、濃縮度判定部181により循環水W110の電気伝導率が所定の閾値以上であると判定された場合に、補給水ポンプ141、軟化水補給水バルブ144、原水補給水バルブ152、排水バルブ161、ファン駆動部122等の制御を行う。補給水制御部183による制御により、補給水W120(合流補給水W123)は、冷却塔110の貯留部116に補給される。
また、補給水制御部183は、硬度測定装置146により測定された原水補給水W121の硬度及び後述の弁開度情報テーブル185aの弁開度情報に基づいて、原水補給水流通手段(補給水ポンプ141、原水補給水バルブ152)による原水補給水W121の流量、及び/又は、軟化水補給水流通手段(補給水ポンプ141、軟化水補給水バルブ144)による軟化水補給水W122の流量を制御する。
タイムカウンタ部184は、原水補給水バルブ152の開閉時間に基づいて、原水補給水W121が原水補給水バルブ152を流通する時間(以下、「原水補給水流通時間」という)を計測すると共に、軟化水補給水バルブ144の開閉時間に基づいて、軟化水補給水W122が軟化水補給水バルブ144を流通する時間(以下、「軟化水補給水流通時間」という)を計測する。
メモリ103は、水処理システム100の制御に必要な制御プログラムや各種データ等を記憶する。具体的には、メモリ103は、水処理システム100の制御に必要な各種機能を動作させる制御プログラム、電気伝導率測定装置133によって測定された電気伝導率や硬度測定装置146によって測定された硬度、タイムカウンタ部184によって計測された原水補給水流通時間や軟化水補給水流通時間等の各種データ、各種閾値、各種計算値、各種テーブル等を記憶する。
また、メモリ103は、弁開度情報記憶部185を有する。弁開度情報記憶部185は、補給水W120(原水補給水W121)の硬度情報及び合流補給水W123の硬度情報と関連付けられた軟化水補給水バルブ144の弁開度情報及び原水補給水バルブ152の弁開度情報を記憶する。
弁開度情報記憶部185は、弁開度情報テーブル185aを有する。弁開度情報テーブル185aは、補給水W120(原水補給水W121)の硬度情報と、補給水合流ラインL124における合流補給水W123の硬度情報と、軟化水補給水バルブ144の弁開度情報及び原水補給水バルブ152の弁開度情報とが関連付けられた対応関係を示すテーブルである。例えば、弁開度情報テーブル185aには、硬度測定装置146によって測定された硬度情報に基づいて、補給水合流ラインL124における合流補給水W123の硬度を、所定の閾値を下限とする所定の範囲の硬度(以下、「目標範囲内の硬度」という)にするための原水補給水バルブ152の弁開度情報及び/又は軟化水補給水バルブ144の弁開度情報が記憶されている。
補給水制御部183は、硬度測定装置146により測定される原水補給水W121の硬度が所定の閾値以下である場合に、軟化水補給水W122の流量を減少させ又は流通を停止するように前記軟化水補給水流通手段を制御すると共に、原水補給水W121の流量を増加させるように前記原水補給水流通手段を制御する。
また、補給水制御部183は、硬度測定装置146により測定される原水補給水W121の硬度が所定の閾値よりも高い場合に、合流補給水W123の硬度を前記目標範囲内の硬度にするため、原水補給水W121の流量を減少させ又は流通を停止するように前記原水補給水流通手段を制御すると共に、軟化水補給水W122の流量を増加させるように前記軟化水補給水流通手段を制御する。
前述したように、スケールの発生を抑制して、循環水(又は散布水)の良好な水質を確保するためには、循環水(又は散布水)として軟化水を極力使用することが好ましい。一方、硬水は、配管系等の腐食抑制の観点から、必要量のみ補給すれば十分である。
そこで、補給水合流ラインL124から冷却塔110の貯留部116に補給される合流補給水W123には、腐食抑制効果を得るために必要な硬度が予め所定の閾値として設定されている。そして、合流補給水W123の硬度が前記目標範囲内の硬度となるように、源流側補給水ラインL121から導入される補給水W120の硬度に基づいて、原水補給水W121の流量と軟化水補給水W122の流量との比率(以下、「流量比率」という)が設定されている。つまり、この流量比率は、原水補給水W121と軟化水補給水W122との混合割合である。
しかしながら、源流側補給水ラインL121から供給される補給水W120(原水補給水W121)の硬度が変化する場合がある。源流側補給水ラインL121から供給される補給水W120の硬度が変化した場合、前記流量比率が当初の設定値のままであると、合流補給水W123の硬度を前記目標範囲内の硬度に維持できなくなる虞がある。そのため、原水補給水W121の硬度の変化に応じて、前記流量比率を変更し、合流補給水W123の硬度を前記目標範囲内の硬度にする必要がある。
前記流量比率の変更は、補給水制御部183が、前記原水補給水流通手段及び/又は前記軟化水補給水流通手段を制御することにより行われる。詳細には、補給水制御部183が原水補給水バルブ152の弁開度及び/又は軟化水補給水バルブ144の弁開度を調節することによって、前記流量比率の変更は行われる。
例えば、原水補給水W121の硬度が所定の閾値よりも高い場合には、合流補給水W123は、腐食抑制効果を得るために必要な硬度を有していると認められるため、補給水制御部183は、前記原水補給水流通手段を制御することにより原水補給水W121の流量を減少させ又は補給を停止し、前記軟化水補給水流通手段を制御することにより軟化水補給水W122の流量を増加させる。これにより、合流補給水W123の硬度を低くすることができ、合流補給水W123の硬度を前記目標範囲内の硬度にすることができる。
一方、原水補給水W121の硬度が所定の閾値以下の場合には、合流補給水W123は、腐食抑制効果を得るために必要な硬度を有していないと認められるため、補給水制御部183は、前記軟化水補給水流通手段を制御することにより軟化水補給水W122の流量を減少させ又は補給を停止し、前記原水補給水流通手段を制御することにより原水補給水W121の流量を増加させる。これにより、合流補給水W123の硬度を高くすることができ、合流補給水W123の硬度を前記目標範囲内の硬度にすることができる。
このようにして、補給水制御部183は、測定した原水補給水W121の硬度に基づいて前記流量比率を変更し、合流補給水W123の硬度を前記目標範囲内の硬度に維持することができる。
次に、図1及び図2を参照して、第1実施形態の水処理システム100の動作について説明する。
循環水ポンプ132が作動することにより、冷却塔110の貯留部116に貯留される循環水W110は、循環水ラインL110(循環水供給ラインL111、循環水回収ラインL112)の上流側から下流側へ向けて送り出される。
詳細には、循環水W110は、循環水供給ラインL111を介して、被冷却装置131に供給される。循環水W110は、被冷却装置131の循環水導入部131aから前記循環水流路を通過して被冷却装置131を冷却し、循環水排出部131bから循環水回収ラインL112へ排出される。
循環水回収ラインL112へ排出された循環水W110は、散水部112の上部水槽113へ導入される。上部水槽113へ導入された循環水W110は、散水口114から塔本体111の内部へ散布される。散布された循環水W110は、図1に点線で示すように、塔本体111の内部を落下して、貯留部116に受け止められる。このようにして、貯留部116に貯留される循環水W110は、循環水ラインL110、散水部112等を介して循環する。
また、冷却塔110において、システム制御装置101によりファン駆動部122を作動させ、ファン120を回転させる。これにより、ルーバ118を通じて塔本体111の内部へ外気(エア)E1が流入する。エアE1は、塔本体111の内部を通過し、排気E2として上部開口部121から塔本体111の外部へ排出される。
塔本体111の内部を落下する循環水W110は、塔本体111の内部へ流入する外気E1に触れて冷却される。このように冷却されて貯留部116へ戻る(落下する)循環水W110は、循環水供給ラインL111を介して再び被冷却装置131へ供給され、循環水回収ラインL112を介して冷却塔110の散水部112へ戻る。従って、貯留部116に貯留された循環水W110は、循環水供給ラインL111、被冷却装置131の循環水流路及び循環水回収ラインL112を循環して、被冷却装置131を冷却する冷却水として機能する。
また、循環水W110の濃縮が進んでいる場合には、循環水W110の濃縮を解消し、スライム、藻類などの発生を抑制するために、冷却塔110の貯留部116へ補給水W120(合流補給水W123)の補給を行う。
具体的には、第1実施形態の水処理システム100においては、電気伝導率測定装置133により測定された電気伝導率に基づいて、濃縮度判定部181により循環水W110が濃縮していると判定された場合には、補給水制御部183は、補給水ポンプ141、軟化水補給水バルブ144、原水補給水バルブ152などを制御して、補給水ラインL120を介して、冷却塔110の貯留部116へ合流補給水W123(軟化水補給水W122及び/又は原水補給水W121)の補給を開始する。また、補給水制御部183は、合流補給水W123の補給とほぼ同時に、排水バルブ161を制御して、貯留部116に貯留される循環水W110を、排水ラインL130を介して水処理システム100の系外へ排出する。
原水補給水W121は、軟水化処理がされておらず、スケール発生因子である硬度成分を含んでいるため、循環水W110として極力用いない方が好ましい。そこで、通常の補給時には、軟化水補給水W122を主体とする合流補給水W123を貯留部116へ補給する。一方、硬度成分を含む原水補給水W121には、腐食抑制効果があるため、腐食抑制効果を確保できる程度に、原水補給水W121を主体とする合流補給水W123を貯留部116へ補給する必要がある。
詳述すると、補給水W120(合流補給水W123)の補給が開始され、硬度測定装置146により計測される原水補給水W121の硬度が所定の閾値よりも高い場合には、硬度成分の補給は不要であるため、スケールの発生抑制効果を重視して、軟化水補給水W122の補給を主体として行う。ここでは、補助原水補給水バルブ151が常時開放しているものとして説明する。
具体的には、補給水バルブ142を開放し且つ原水補給水バルブ152を閉鎖又は所定量開放した状態で、補給水制御部183は、補給水ポンプ141を作動させると共に、軟化水補給水バルブ144を所定量開放する。これにより、源流側補給水ラインL121、補給水分岐部J121及び軟化水補給水ラインL123を介して、原水からなる補給水W120を軟水化装置143へ供給する。その結果、補給水W120は、軟水化装置143において硬度成分が除去されて、軟化水からなる軟化水補給水W122となる。この軟化水補給水W122は、軟水化装置143から、軟化水補給水ラインL123、軟化水補給水バルブ144、補給水合流部J122及び補給水合流ラインL124を介して、合流補給水W123として冷却塔110の貯留部116へ補給され、貯留される。
補給水制御部183は、貯留部116への軟化水補給水W122の補給とほぼ同時に、排水バルブ161を開放し、貯留部116に貯留される循環水W110を、排水ラインL130を介して水処理システム100の系外へ排出する。
その後、電気伝導率測定装置133により測定された電気伝導率に基づいて、濃縮度判定部181により循環水W110が濃縮していないと判定された場合には、補給水制御部183は、補給水ポンプ141、軟化水補給水バルブ144、原水補給水バルブ152などを制御して、補給水ラインL120を介して、冷却塔110の貯留部116へ補給水W120(軟化水補給水W122及び原水補給水W121)の補給を停止する。また、補給水W120の補給の停止とほぼ同時に、補給水制御部183は、排水バルブ161を閉鎖し、貯留部116からの循環水W110(原水補給水W121、軟化水補給水W122を含む)の水処理システム100の系外への排出を停止する。これらの結果、貯留部116における循環水W110の濃縮度が低下する。
ところで、軟化水補給水W122を主体とする合流補給水W123の補給を繰り返すと、循環水W110の蒸発による濃縮を考慮したとしても、循環水W110の硬度は、低下し、やがて必要硬度以下となる。この場合、腐食抑制効果が十分に得られないので、循環水W110に所定の硬度成分の合流補給水W123を補給し、循環水W110の硬度を高める必要がある。
詳述すると、補給水制御部183は、軟化水補給水バルブ144を閉鎖又は軟化水補給水バルブ144の弁開度を減少すると共に、原水補給水バルブ152の弁開度を増加する。これにより、貯留部116には、軟化水補給水W122を主体とする合流補給水W123の補給に代わり、原水補給水W121を主体とする合流補給水W123の補給が行われることになる。
具体的には、補給水バルブ142を開放し且つ軟化水補給水バルブ144を閉鎖又は軟化水補給水バルブ144の弁開度を減少した状態で、補給水制御部183は、補給水ポンプ141を作動させると共に、原水補給水バルブ152を開放する。これにより、源流側補給水ラインL121、補給水分岐部J121、原水補給水ラインL122、補給水合流部J122及び補給水合流ラインL124を介して、原水からなる補給水W120は、原水補給水W121(合流補給水W123)として冷却塔110の貯留部116へ補給され、貯留される。
補給水制御部183は、貯留部116への原水補給水W121の補給とほぼ同時に、排水バルブ161を開放し、貯留部116に貯留される循環水W110を、排水ラインL130を介して水処理システム100の系外へ排出する。
その後、電気伝導率測定装置133により測定された電気伝導率に基づいて、濃縮度判定部181により循環水W110が濃縮していないと判定された場合には、補給水制御部183は、補給水ポンプ141、軟化水補給水バルブ144、原水補給水バルブ152などを制御して、補給水ラインL120を介して、冷却塔110の貯留部116へ補給水W120(軟化水補給水W122及び原水補給水W121)の補給を停止する。また、補給水W120の補給の停止とほぼ同時に、補給水制御部183は、排水バルブ161を閉鎖し、貯留部116からの循環水W110(原水補給水W121、軟化水補給水W122を含む)の水処理システム100の系外への排出を停止する。これらの結果、貯留部116における循環水W110の硬度が高まり、延いては、循環水ラインL110を流通する循環水W110の硬度が高まる。
貯留部116に貯留された軟化水補給水W122及び原水補給水W121は、貯留部116に貯留されていた循環水W110と合わさり、被冷却装置131を冷却するための循環水W110として、被冷却装置131へ供給される。
このように、原水補給水W121の硬度に基づいて、補給水W120(軟化水補給水W122、原水補給水W121)の補給(前記流量比率の変更)の制御を行うことにより、合流補給水W123の硬度を前記目標範囲内の硬度に維持した状態で貯留部116に補給することができる。そのため、腐食抑制効果を得るのに必要な循環水W110の硬度を確保しつつ、スケールの発生の抑制も図ることができる。
次に、第1実施形態の水処理システム100の動作の第1実施例について、図3を参照しながら説明する。第1実施例では、原水補給水W121のカルシウム硬度に基づいて、原水補給水W121の流量及び/又は軟化水補給水W122の流量の制御を行う。図3は、第1実施形態の水処理システム100の動作を示すフローチャートである。
第1実施例では、電気伝導率測定装置133により測定された電気伝導率に基づいて、濃縮度判定部181により循環水W110が濃縮していると判定された場合に、補給水制御部183が、補給水ポンプ141、軟化水補給水バルブ144、原水補給水バルブ152などを制御して、補給水ラインL120を介して、冷却塔110の貯留部116へ合流補給水W123(軟化水補給水W122及び/又は原水補給水W121)の補給を開始した後のフローについて説明する。
図3に示すように、ステップST101において、硬度測定装置146は、原水補給水W121のカルシウム硬度を測定する。硬度測定装置146により測定されたカルシウム硬度の情報は、システム制御装置101の制御部102の硬度判定部182に入力される。
ステップST102において、硬度判定部182は、入力されたカルシウム硬度の情報に基づいて、原水補給水W121のカルシウム硬度が所定の閾値よりも高いか又は所定の閾値以下であるかについて判定する。原水補給水W121のカルシウム硬度が所定の閾値よりも高い(YES)場合には、ステップST103へ進む。原水補給水W121のカルシウム硬度が所定の閾値以下の(NO)場合には、ステップST106へ進む。
原水補給水W121のカルシウム硬度が所定の閾値よりも高い(YES)場合には、合流補給水W123のカルシウム硬度は、腐食抑制効果を得るために十分な高さを有している。そのため、合流補給水W123のカルシウム硬度を高める必要はなく、スケールの発生の抑制を重視して、軟化水補給水W122の補給を主体として行う。詳細には、ステップST103において、補給水制御部183は、弁開度情報記憶部185の弁開度情報テーブル185a(図2参照)を参照し、合流補給水W123のカルシウム硬度が前記目標範囲内の硬度となるように、原水補給水W121の流量を減少させ、軟化水補給水W122の流量を増加させる。
つまり、補給水制御部183は、合流補給水W123のカルシウム硬度が前記目標範囲内の硬度となるように、原水補給水バルブ152の弁開度を減少させると共に、軟化水補給水バルブ144の弁開度を増加させ、ステップST104へ進む。なお、原水補給水W121の積算流量は、原水補給水バルブ152の弁開度と、前記原水補給水流通時間とから算出することができる。軟化水補給水W122の積算流量は、軟化水補給水バルブ144の弁開度と、前記軟化水補給水流通時間とから算出することができる。
これにより、合流補給水W123(主として軟化水補給水W122)は、カルシウム硬度が前記目標範囲内の硬度に調整された状態で冷却塔110の貯留部116へ供給される。軟化水補給水W122は、硬度成分をほとんど含んでいないため、貯留部116に貯留される循環水W110のカルシウム硬度は低くなる。
ステップST104において、電気伝導率測定装置133は、循環水W110の電気伝導率を測定する。電気伝導率測定装置133により測定された電気伝導率の情報は、システム制御装置101の制御部102の濃縮度判定部181に入力される。
ステップST105において、濃縮度判定部181は、入力された循環水W110の電気伝導率の情報に基づいて、循環水W110の電気伝導率が所定の閾値未満であるかについて判定する。循環水W110の電気伝導率が所定の閾値未満の(YES)場合には、循環水W110が濃縮していない(濃縮が解消された)と判定することができるので、補給水W120(合流補給水W123)の補給を停止する。一方、循環水W110の電気伝導率が所定の閾値未満でない(NO)場合には、循環水W110が濃縮している(濃縮が解消されていない)と判定することができるので、ステップST101へ戻り、補給水W120(合流補給水W123)の補給を継続する。
ステップST102において、原水補給水W121のカルシウム硬度が所定の閾値以下(NO)の場合には、合流補給水W123のカルシウム硬度は、腐食抑制効果を得るための十分な高さを有していない。そのため、ステップST106において、合流補給水W123のカルシウム硬度を高め、腐食の抑制を図る必要があり、(硬度成分を多く含む)原水補給水W121の補給を行う。
詳細には、ステップST106において、補給水制御部183は、弁開度情報記憶部185の弁開度情報テーブル185a(図2参照)を参照し、合流補給水W123のカルシウム硬度が前記目標範囲内の硬度となるように、軟化水補給水W122の流量を減少させると共に、原水補給水W121の流量を増加させ、前述のステップST104へ進む。
つまり、補給水制御部183は、合流補給水W123のカルシウム硬度が前記目標範囲内の硬度となるように、軟化水補給水バルブ144の弁開度を減少させると共に、原水補給水バルブ152の弁開度を増加させる。
これにより、合流補給水W123は、カルシウム硬度が前記目標範囲内の硬度に調整された状態で冷却塔110の貯留部116へ供給される。
第1実施形態の水処理システム100によれば、例えば、次のような効果が奏される。
第1実施形態の水処理システム100は、補給水W120(原水補給水W121)の硬度を測定する硬度測定装置146と、硬度測定装置146により測定された原水補給水W121の硬度に基づいて、前記原水補給水流通手段(補給水ポンプ141、原水補給水バルブ152等)による原水補給水W121の流量及び/又は前記軟化水補給水流通手段(補給水ポンプ141、軟化水補給水バルブ144等)による軟化水補給水W122の流量を制御する補給水制御部183と、を備える。
そのため、例えば前述の第1実施例のように、カルシウム硬度が前記目標範囲内の硬度に調整された合流補給水W123を貯留部116へ補給することができる。従って、循環水W110について、スライム、スケール等の発生の抑制及び配管系等の腐食の抑制を一層確実に行うことができる。
次に、本発明の他の実施形態について説明する。他の実施形態については、主として、第1実施形態とは異なる点を中心に説明し、第1実施形態と同様の構成については、同じ符号を付し、詳細な説明を省略する。他の実施形態において特に説明しない点は、第1実施形態についての説明が適宜適用又は援用される。
<第2実施形態>
図4及び図5を参照して、本発明の第2実施形態の水処理システム100Aの概略について説明する。図4は、本発明の第2実施形態の水処理システム100Aを示す概略構成図である。図5は、第2実施形態の水処理システム100Aの制御に係る機能ブロック図である。
図4に示すように、第2実施形態の水処理システム100Aは、第1実施形態の水処理システム100に比して、硬度測定装置146aにより測定される合流補給水W123の硬度に基づいて、前記原水補給水流通手段(補給水ポンプ141、原水補給水バルブ152等)による原水補給水W121の流量及び/又は前記軟化水補給水流通手段(補給水ポンプ141、軟化水補給水バルブ144等)による軟化水補給水W122の流量を制御するように構成されている点が異なる。詳細には、硬度測定装置146aは、測定ラインL126を介して、測定接続部J124において補給水合流ラインL124に接続されている。
つまり、第2実施形態の水処理システム100Aは、合流補給水W123の硬度に基づいて、原水補給水バルブ152のバルブ開度及び/又は軟化水補給水バルブ144のバルブ開度を調節し、前記流量比率を変更することで、合流補給水W123の硬度を前記目標範囲内の硬度に維持するように構成されている。
第2実施形態における水処理システム100Aに関するその他の構成は、第1実施形態における水処理システム100に関する構成(制御に係る構成を含む)と同様である。そのため、第1実施形態における水処理システム100に関する構成についての説明を援用して、第2実施形態における水処理システム100Aに関する構成についての説明を省略する。
次に、第2実施形態の水処理システム100Aの動作の第2実施例について、図6を参照しながら説明する。第2実施例では、合流補給水W123のカルシウム硬度に基づいて、原水補給水W121の流量及び/又は軟化水補給水W122の流量の制御を行う。図6は、第2実施形態の水処理システム100Aの動作を示すフローチャートである。
第2実施例では、電気伝導率測定装置133により測定された電気伝導率に基づいて、濃縮度判定部181により循環水W110が濃縮していると判定された場合に、補給水制御部183が、補給水ポンプ141、軟化水補給水バルブ144、原水補給水バルブ152などを制御して、補給水ラインL120を介して、冷却塔110の貯留部116へ合流補給水W123(軟化水補給水W122及び/又は原水補給水W121)の補給を開始した後のフローについて説明する。
図6に示すように、ステップST201において、硬度測定装置146aは、合流補給水W123のカルシウム硬度を測定する。硬度測定装置146aにより測定されたカルシウム硬度の情報は、システム制御装置101(図5参照)の制御部102の硬度判定部182に入力される。
ステップST202において、硬度判定部182は、入力されたカルシウム硬度の情報に基づいて、合流補給水W123のカルシウム硬度が所定の閾値よりも高いか又は所定の閾値以下であるかについて判定する。合流補給水W123のカルシウム硬度が所定の閾値よりも高い(YES)場合には、ステップST203へ進む。合流補給水W123のカルシウム硬度が所定の閾値以下の(NO)場合には、ステップST206へ進む。
合流補給水W123のカルシウム硬度が所定の閾値よりも高い(YES)場合には、合流補給水W123のカルシウム硬度は、腐食抑制効果を得るために十分な高さを有している。そのため、合流補給水W123のカルシウム硬度を高める必要はなく、スケールの発生の抑制を重視して、軟化水補給水W122の補給を主体として行う。詳細には、ステップST203において、補給水制御部183は、弁開度情報記憶部185の弁開度情報テーブル185a(図5参照)を参照し、合流補給水W123のカルシウム硬度が前記目標範囲内の硬度となるように、原水補給水W121の流量を減少させると共に、軟化水補給水W122の流量を増加させる。
つまり、補給水制御部183は、合流補給水W123のカルシウム硬度が前記目標範囲内の硬度となるように、原水補給水バルブ152の弁開度を減少させると共に、軟化水補給水バルブ144の弁開度を増加させ、ステップST204へ進む。
これにより、合流補給水W123(主として軟化水補給水W122)は、カルシウム硬度が前記目標範囲内の硬度に調整された状態で冷却塔110の貯留部116へ供給される。軟化水補給水W122は、硬度成分をほとんど含んでいないため、貯留部116に貯留される循環水W110のカルシウム硬度は低くなる。
ステップST204において、電気伝導率測定装置133は、循環水W110の電気伝導率を測定する。電気伝導率測定装置133により測定された電気伝導率の情報は、システム制御装置101の制御部102の濃縮度判定部181に入力される。
ステップST205において、濃縮度判定部181は、入力された循環水W110の電気伝導率の情報に基づいて、循環水W110の電気伝導率が所定の閾値未満であるかについて判定する。循環水W110の電気伝導率が所定の閾値未満の(YES)場合には、循環水W110が濃縮していない(濃縮が解消された)と判定することができるので、補給水W120(合流補給水W123)の補給を停止する。一方、循環水W110の電気伝導率が所定の閾値未満でない(NO)場合には、循環水W110が濃縮している(濃縮が解消されていない)と判定することができるので、ステップST201へ戻り、補給水W120(合流補給水W123)の補給を継続する。
ステップST202において、合流補給水W123のカルシウム硬度が所定の閾値以下(NO)の場合には、合流補給水W123のカルシウム硬度は、腐食抑制効果を得るための十分な高さを有していない。そのため、合流補給水W123のカルシウム硬度を高め、腐食の抑制を図る必要があり、(硬度成分を多く含む)原水補給水W121の補給を行う。詳細には、ステップST206において、補給水制御部183は、弁開度情報記憶部185の弁開度情報テーブル185a(図5参照)を参照し、合流補給水W123のカルシウム硬度が前記目標範囲内の硬度となるように、軟化水補給水W122の流量を減少させると共に、原水補給水W121の流量を増加させ、前述のステップST204へ進む。
つまり、補給水制御部183は、合流補給水W123のカルシウム硬度が前記目標範囲内の硬度となるように、軟化水補給水バルブ144の弁開度を減少させると共に、原水補給水バルブ152の弁開度を増加させる。
これにより、合流補給水W123は、カルシウム硬度が前記目標範囲内の硬度に調整された状態で冷却塔110の貯留部116へ供給される。
第2実施形態の水処理システム100Aによれば、例えば、次のような効果が奏される。第2実施形態の水処理システム100Aは、補給水W120(合流補給水W123)の硬度を測定する硬度測定装置146aと、硬度測定装置146aにより測定された合流補給水W123の硬度に基づいて、前記原水補給水流通手段(補給水ポンプ141、原水補給水バルブ152等)による原水補給水W121の流量及び/又は前記軟化水補給水流通手段(補給水ポンプ141、軟化水補給水バルブ144等)による軟化水補給水W122の流量を制御する補給水制御部183と、を備える。
そのため、例えば前述の第2実施例のように、カルシウム硬度が前記目標範囲内の硬度に調整された合流補給水W123を貯留部116へ補給することができる。従って、循環水W110について、スライム、スケール等の発生の抑制及び配管系等の腐食の抑制を一層確実に行うことができる。
<第3実施形態>
図7を参照して、本発明の第3実施形態の水処理システム200の概略について説明する。図7は、本発明の第3実施形態の水処理システム200を示す概略構成図である。本実施形態においては、第1実施形態と同様の構成については、同じ符号(ただし、3桁の数字のうち百の位を「1」から「2」に代えている)を付し、詳細な説明を省略又は簡略化する。
第3実施形態の水処理システム200は、第1実施形態の水処理システム100に比して、冷却塔210が密閉式冷却塔からなる点が主として異なる。密閉式冷却塔は、開放式冷却塔に比して、冷却塔210に、被冷却装置231を冷却する循環液W210が密閉状態で流通する冷却塔内部ラインL250と、冷却塔内部ラインL250に位置する循環液W210を冷却するために散布水W240を冷却塔内部ラインL250の外側へ散布する散水部212と、散布された散布水W240を貯留する貯留部216とが設けられている点、及び、冷却塔210に、散水部212から散布され貯留部216に貯留された散布水W240を循環させる散布水ラインL260が接続されている点が、主として異なる。
図7に示すように、第3実施形態の水処理システム200は、冷却塔210を有しており、被冷却装置231を冷却するために、冷却液を循環させるシステムである。冷却液は、その節約を図る観点から、冷却塔210で冷却しながら循環して用いられる(循環する冷却液を以下「循環液W210」ともいう)。第3実施形態における冷却塔210は、いわゆる密閉式冷却塔からなる。
第3実施形態の水処理システム200は、散布水W240の貯留部216を有する冷却塔210と、被冷却装置231と、冷却塔210と被冷却装置231との間で循環液W210を循環させる循環液ラインL210と、散布水W240を循環させる散布水ラインL260と、冷却塔210の貯留部216に補給水W220を補給する補給水ラインL220と、冷却塔210の貯留部216から散布水W240を水処理システム200の系外へ強制的に排出する排水ラインL230と、冷却塔210の貯留部216から溢れる散布水W240を排出するオーバーフローラインL240と、散布水W240の電気伝導率を測定する電気伝導率測定装置233と、原水補給水W221の硬度を測定する硬度測定装置246と、水処理システム200の各部の制御を行うシステム制御装置201と、を主体として構成されている。
冷却塔210は、循環液W210が密閉状態で流通する冷却塔内部ラインL250と、冷却塔内部ラインL250に位置する循環液W210を冷却するために散布水W240を冷却塔内部ラインL250の外側へ散布する散水部212と、散布された散布水W240を貯留する貯留部216とを有する。
循環液ラインL210は、冷却塔内部ラインL250に位置する循環液W210を冷却塔210から被冷却装置231へ供給する循環液供給ラインL211と、循環液W210を被冷却装置231から冷却塔210の冷却塔内部ラインL250へ回収する循環液回収ラインL212と、を有する。循環液ラインL210は、循環液供給ラインL211、循環液回収ラインL212及び冷却塔内部ラインL250を介して、冷却塔210と被冷却装置231との間で循環液W210を循環させる。
散布水ラインL260は、貯留部216に接続されると共に散水部212に接続されている。散布水ラインL260は、散水部212から散布され貯留部216に貯留された散布水W240を、冷却塔210の外部において循環させる。
「ライン」とは、流路、経路、管路などの物体の流通が可能なラインの総称である。
第3実施形態における冷却塔210について説明する。冷却塔210は、被冷却装置231を冷却するための循環液W210を、被冷却装置231へ供給する前に、冷却するものである。循環液W210は、一般的には、水(水溶液)であるが、水以外の液体でもよい。
冷却塔210は、塔本体211と、冷却塔内部ラインL250と、散水部212と、貯留部216と、ルーバ218と、ファン220と、上部開口部221と、ファン駆動部222と、を備える。
塔本体211は、冷却塔210の外郭を形成するものである。塔本体211の上部には、複数の散水部212、ファン220、上部開口部221及びファン駆動部222が設けられる。塔本体211の内部には、冷却塔内部ラインL250が設けられる。塔本体211の下部には、貯留部216が設けられる。塔本体211の側部には、ルーバ218が設けられる。
散水部212は、被冷却装置231を冷却する循環液W210を冷却するために、散布水W240を、循環液W210が位置する(流通する)冷却塔内部ラインL250の外側に散布する部位である。散水部212は、散布水ラインL260を介して循環する散布水W240を、塔本体211の内部において冷却塔内部ラインL250の外側へ散布(散水)する。
散水部212は、上部水槽213と、散水口214とを備える。上部水槽213には、散布水ラインL260が接続されている。上部水槽213は、散布水ラインL260を介して循環する散布水W240を貯留する。散水口214は、上部水槽213に貯留された散布水W240を散布するために上部水槽213の下側に形成されたノズルからなる。
冷却塔内部ラインL250は、塔本体211の内部において、循環液W210が密閉状態で流通するラインである。冷却塔内部ラインL250は、塔本体211の内部において散布水W240との接触面積を確保するために蛇行している。詳細には、冷却塔内部ラインL250は、塔内部分岐部J251において、第1内部ラインL250aと第2内部ラインL250bとに分岐する。第1内部ラインL250aと第2内部ラインL250bとは、塔内部合流部J252において合流する。第1内部ラインL250a及び第2内部ラインL250bは蛇行している。第1内部ラインL250a及び第2内部ラインL250bは、それぞれ散水部212の下方に配置している。
冷却塔内部ラインL250の下流側の端部は、循環液供給ラインL211に接続されている。冷却塔内部ラインL250の上流側の端部は、循環液回収ラインL212に接続されている。
塔本体211の内部における散水部212の下方には、充填材(図示せず)が設けられる。充填材は、散水部212から散布された散布水W240を滴状にして、散布水W240と外気E1(後述)との接触面積及び接触時間を長くして、冷却塔内部ラインL250及びその内部の循環液W210を効率的に冷却するために設けられる。
貯留部216は、散水部212から散布された散布水W240を貯留する。貯留部216は、塔本体211の下部に設けられる。後述するように、貯留部216に貯留された散布水W240は、塔本体211の内部を落下する過程において冷却される。貯留部216の底部には、散布水ラインL260及び排水ラインL230が接続されている。貯留部216に貯留された散布水W240は、散布水ラインL260を介して塔本体211の外部において循環する。貯留部216に貯留された散布水W240は、排水ラインL230を介して水処理システム200の系外へ排出される。
ルーバ218は、塔本体211の内部へ外気(エア)E1を導入するための通気孔であり、塔本体211の外部と内部とを連通する。ルーバ218を介して、塔本体211の外部のエア(外気)E1は、塔本体211の内部へ流入することができる。
上部開口部221は、塔本体211の上部に形成された開口部であり、塔本体211の内部に位置するエアE1を塔本体211の外部に排出するために設けられる。排出されたエアを「排気E2」ともいう。
ファン220は、上部開口部221に配置されている。ファン220の回転軸220aは、上下方向に延びるように配置されている。ファン220は、ルーバ218から塔本体211の内部へ外気(エア)E1を流入させると共に、塔本体211の内部に位置するエアE1を、上部開口部221を介して塔本体211の外部に排出させるように、気流を発生させる。
ファン駆動部222は、モータ等からなり、ファン220を回転駆動する。ファン駆動部222は、ファン220の上方に配置されており、ファン220の回転軸220aに連結されている。ファン駆動部222は、ファン220の回転駆動の開始又は停止、回転速度の調整(変速)などを行う。
冷却塔210には、循環液ラインL210、散布水ラインL260及び排水ラインL230の他に、補給水ラインL220(原水補給水ラインL222、軟化水補給水ラインL223、補給水合流ラインL224)及びオーバーフローラインL240が接続されている。これらの各ラインを介して、冷却塔210に対して、散布水W240が導入又は排出されると共に、補給水W220(後述の合流補給水W223)が補給される。
被冷却装置231は、所要の循環液流路(図示せず)を有している。この循環液流路は、循環液導入部231aと循環液排出部231bとを有している。そして、循環液導入部231aには、循環液供給ラインL211の下流側の端部が接続されている。循環液排出部231bには、循環液回収ラインL212の上流側の端部が接続されている。このように、循環液流路は、循環液供給ラインL211、循環液回収ラインL212及び冷却塔内部ラインL250と共に、冷却塔210の塔本体211と被冷却装置231との間で循環液W210を循環させるための循環経路を形成している。
循環液供給ラインL211は、冷却塔210の冷却塔内部ラインL250と被冷却装置231とを接続する。循環液供給ラインL211は、冷却塔内部ラインL250に位置する循環液W210を被冷却装置231に供給することができる。
循環液供給ラインL211の途中には、循環液ポンプ232が接続されている。循環液ポンプ232は、循環液ラインL210(循環液供給ラインL211、循環液回収ラインL212)の上流側から下流側へ向けて、循環液W210を送り出すことができる。
循環液回収ラインL212は、被冷却装置231と冷却塔210の冷却塔内部ラインL250とを接続する。循環液回収ラインL212は、被冷却装置231において熱交換により加温された循環液W210を、冷却塔210の冷却塔内部ラインL250へ回収することができる。
散布水ラインL260は、貯留部216に貯留された散布水W240を冷却塔210から散布水ポンプ239へ供給する散布水供給ラインL261と、散布水W240を散布水ポンプ239から冷却塔210の散水部212へ回収する散布水回収ラインL262と、を有する。散布水ラインL260は、散布水供給ラインL261及び散布水回収ラインL262を介して、冷却塔210の外部において散布水W240を循環させる。
散布水回収ラインL262の下流側は、散布水分岐部J241において複数のラインに分岐している。散布水ラインL260において、散布水分岐部J241よりも上流側のラインを「上流側散布水回収ラインL262a」ともいい、散布水分岐部J241よりも下流側の複数のラインを「下流側散布水回収ラインL262b」ともいう。複数の下流側散布水回収ラインL262bの下流側の端部は、それぞれ複数の散水部212に接続されている。
散布水ポンプ239は、散布水ラインL260の途中(散布水供給ラインL261と散布水回収ラインL262との間)に接続されている。散布水ポンプ239は、散布水ラインL260(散布水供給ラインL261、散布水回収ラインL262)の上流側から下流側へ向けて、散布水W240を送り出すことができる。
電気伝導率測定装置233は、散布水W240の電気伝導率を測定する装置である。電気伝導率測定装置233は、散布水ラインL260に接続されている。詳細には、散布水供給ラインL261には、測定接続部J242が設けられている。電気伝導率測定装置233は、測定ラインL263を介して、測定接続部J242において散布水供給ラインL261に接続されている。
散布水W240の濃縮度が高まると、腐食性イオン及びスケール発生因子の濃度が高くなる。これにより、散布水W240の電気伝導率が高くなる。そこで、水処理システム200においては、電気伝導率測定装置233により測定される電気伝導率が所定の閾値よりも高くなった場合には、散布水W240の濃縮度を低下させるため(電気伝導率を低下させるため)に、補給水W220を冷却塔210の貯留部216へ補給し、貯留部216に貯留される散布水W240を希釈する。このようにして、散布水W240の電気伝導率に基づいて、散布水W240の濃縮度を管理する。
硬度測定装置246は、原水補給水W221(補給水W220)の硬度を測定する装置である。硬度測定装置246は、原水補給水ラインL222に接続されている。詳細には、硬度測定装置246は、測定ラインL225を介して、測定接続部J223において原水補給水ラインL222に接続されている。
補給水ラインL220は、補給水W220を冷却塔210の貯留部216へ補給するラインである。補給水ラインL220は、源流側補給水ラインL221と、補給水分岐部J221と、原水補給水ラインL222と、軟化水補給水ラインL223と、合流部としての補給水合流部J222と、補給水合流ラインL224と、を備える。
補給水分岐部J221は、源流側補給水ラインL221から原水補給水ラインL222と軟化水補給水ラインL223とが分岐する部位である。補給水合流部J222は、原水補給水ラインL222と軟化水補給水ラインL223とが合流する部位である。
源流側補給水ラインL221の上流側は、水道水や工業用水等の原水からなる補給水W220の供給源(図示せず)に接続されている。源流側補給水ラインL221の下流側は、補給水分岐部J221に接続されている。源流側補給水ラインL221には、補給水W220の供給源から供給される補給水W220が流通する。
源流側補給水ラインL221には、上流側から順に、補給水ポンプ241及び補給水バルブ242が接続されている。補給水ポンプ241は、補給水ラインL220(源流側補給水ラインL221、原水補給水ラインL222、軟化水補給水ラインL223、補給水合流ラインL224)の上流側から下流側へ向けて、補給水W220を送り出すことができる。補給水バルブ242は、補給水分岐部J221と補給水ポンプ241との間において、源流側補給水ラインL221を開閉することができる。
原水補給水ラインL222は、補給水合流部J222及び補給水合流ラインL224を介して、原水補給水W221を冷却塔210の貯留部216へ補給するラインである。原水補給水ラインL222の上流側の端部は、補給水分岐部J221を介して、源流側補給水ラインL221に接続されている。原水補給水ラインL222の下流側の端部は、補給水合流部J222を介して、補給水合流ラインL224に接続されている。
原水補給水ラインL222には、源流側補給水ラインL221及び補給水分岐部J221を介して、補給水W220が導入され、流通する。原水補給水ラインL222を流通する補給水W220は、補給水合流部J222を介して、補給水合流ラインL224を流通し、後述する合流補給水W223として冷却塔210の貯留部216へ導入される。なお、原水補給水ラインL222を流通する補給水W220は、源流側補給水ラインL221を流通する補給水W220と同じであるが、説明の便宜上、源流側補給水ラインL221を流通する補給水W220を「原水補給水W221」ともいう。
原水補給水ラインL222には、上流側から順に、補助原水補給水バルブ251及び原水補給水バルブ252が接続されている。補助原水補給水バルブ251は、通常、開放しているが、原水補給水バルブ252のメンテナンス時などに閉鎖して用いられる。
原水補給水バルブ252は、弁開度を調節可能な制御弁から構成されている。原水補給水バルブ252は、原水補給水ラインL222における補給水分岐部J221(補助原水補給水バルブ251)と補給水合流部J222との間において、原水補給水ラインL222を開閉することができる。本実施形態においては、補給水ポンプ241、原水補給水バルブ252等から「原水補給水ラインL222、補給水合流部J222及び補給水合流ラインL224を介して、原水補給水W221を貯留部216へ向けて流通させる原水補給水流通手段」が構成されている。
軟化水補給水ラインL223は、補給水合流部J222及び補給水合流ラインL224を介して、軟化水補給水W222を冷却塔210の貯留部216へ補給するラインである。軟化水補給水ラインL223には、上流側から順に、軟水化装置243及び軟化水補給水バルブ244が接続されている。
軟化水補給水ラインL223の上流側の端部は、補給水分岐部J221を介して、源流側補給水ラインL221に接続されている。軟化水補給水ラインL223の下流側の端部は、補給水合流部J222を介して補給水合流ラインL224に接続されている。
軟水化装置243は、原水(硬水)からなる補給水W220を軟水化し、軟化水補給水W222を生成する(得る)装置である。軟水化装置243は、補給水W220に含まれる硬度成分、具体的には、カルシウムイオン及びマグネシウムイオンを低減し(除去し)、原水からなる補給水W220から軟化水補給水W222を生成する装置である。
軟化水補給水バルブ244は、弁開度を調節可能な制御弁から構成されている。軟化水補給水バルブ244は、軟化水補給水ラインL223の下流側の端部と軟水化装置243との間において、軟化水補給水ラインL223を開閉することができる。本実施形態においては、補給水ポンプ241、軟化水補給水バルブ244等から「軟化水補給水ラインL223、補給水合流部J222及び補給水合流ラインL224を介して、軟化水補給水W222を貯留部216へ向けて流通させる軟化水補給水流通手段」が構成されている。
補給水合流ラインL224は、補給水合流部J222と冷却塔210の貯留部216とを接続し、且つ、原水補給水W221及び/又は軟化水補給水W222からなる補給水W223を貯留部216へ補給するラインである。補給水合流ラインL224の下流側の端部は、冷却塔210の塔本体211に接続されている。補給水合流ラインL224の下流側の端部には、貯留部216に貯留される散布水W240の水位を管理するボールタップ式の給水栓245が設けられている。
給水栓245は、貯留部216に貯留される散布水W240の水位が低下すると、ボールタップが作動し、補給水合流ラインL224を流通する補給水W223が貯留部216に補給されるように構成されている。なお、補給水合流ラインL224を流通する補給水W223は、原水補給水W221のみからなる場合、軟化水補給水W222のみからなる場合、又は原水補給水W221と軟化水補給水W222とが混合(合流)したものからなる場合があるが、説明の便宜上、補給水合流ラインL224を流通する補給水W223を「合流補給水W223」ともいう。
第3実施形態における排水ラインL230に関する構成は、第1実施形態における排水ラインL130に関する構成(図1参照)と同様である。そのため、第1実施形態における排水ラインL130に関する構成についての説明を援用して、第3実施形態における排水ラインL230に関する構成についての説明を省略する。
次に、図8を参照して、第3実施形態の水処理システム200の制御に係る機能について説明する。図8は、第3実施形態の水処理システム200の制御に係る機能ブロック図である。
システム制御装置201は、第3実施形態の水処理システム200における各部を制御する。図8に示すように、システム制御装置201は、例えば、補給水ポンプ241、軟化水補給水バルブ244、原水補給水バルブ252、排水バルブ261、ファン駆動部222に電気的に接続される。
また、システム制御装置201は、水処理システム200における各測定装置に電気的に接続され、各測定装置から測定情報を受信する。例えば、システム制御装置201は、電気伝導率測定装置233に電気的に接続され、電気伝導率測定装置233により測定された電気伝導率情報を受信する。また、システム制御装置201は、硬度測定装置246に電気的に接続され、硬度測定装置246により測定された硬度情報を受信する。
システム制御装置201は、制御部202と、メモリ203と、を備える。制御部202は、濃縮度判定部281と、硬度判定部282と、流量制御手段としての補給水制御部283と、タイムカウンタ部284と、を有する。
第3実施形態におけるシステム制御装置201の構成及び動作は、第1実施形態におけるシステム制御装置101の構成及び動作と同様である。ただし、第1実施形態では、循環水W110の電気伝導率及び原水補給水W121の硬度に基づいて補給水W120(合流補給水W123)の補給(流通)の制御を行うのに対して、第3実施形態では、散布水W240の電気伝導率及び原水補給水W221の硬度に基づいて補給水W220(合流補給水W223)の補給(流通)の制御を行う点が、両実施形態で異なる。この点を勘案した上で、第1実施形態におけるシステム制御装置101の構成及び動作についての説明を援用し、第3実施形態におけるシステム制御装置201の構成及び動作についての説明を省略する。
次に、図7及び図8を参照して、第3実施形態の水処理システム200の動作について説明する。
詳細には、循環液ポンプ232が作動することにより、冷却塔210の冷却塔内部ラインL250に位置する循環液W210は、循環液ラインL210(循環液供給ラインL211、循環液回収ラインL212)の上流側から下流側へ向けて送り出される。
また、循環液W210は、循環液供給ラインL211を介して、被冷却装置231に供給される。循環液W210は、被冷却装置231の循環液導入部231aから前記循環液流路を通過して被冷却装置231を冷却し、循環液排出部231bから循環液回収ラインL212へ排出される。循環液回収ラインL212へ排出された循環液W210は、冷却塔210の冷却塔内部ラインL250へ導入される。このようにして、循環液W210は、循環液ラインL210、冷却塔内部ラインL250等を介して循環する。
また、散布水ポンプ239が作動することにより、冷却塔210の貯留部216に貯留される散布水W240は、散布水ラインL260(散布水供給ラインL261、散布水回収ラインL262)の上流側から下流側へ向けて送り出される。
散布水ラインL260へ送り出された散布水W240は、散水部212の上部水槽213へ導入される。上部水槽213へ導入された散布水W240は、散水口214から塔本体211の内部において冷却塔内部ラインL250の外側へ散布される。散布された散布水W240は、図7に点線で示すように、塔本体211の内部を落下して、貯留部216に受け止められる。このようにして、貯留部216に貯留される散布水W240は、散布水ラインL260、散水部212等を介して循環する。
また、冷却塔210において、システム制御装置201によりファン駆動部222を作動させ、ファン220を回転させる。これにより、ルーバ218を通じて塔本体211の内部へ外気(エア)E1が流入する。エアE1は、塔本体211の内部を通過し、排気E2として上部開口部221から塔本体211の外部へ排出される。
塔本体211の内部を落下する散布水W240は、塔本体211の内部へ流入する外気E1に触れて冷却される。このように冷却されて貯留部216へ戻る(落下する)散布水W240は、散布水ラインL260を介して再び冷却塔210の散水部212へ戻る。従って、貯留部216に貯留された散布水W240は、散布水ラインL260を循環して、冷却塔内部ラインL250及びその内部の循環液W210を冷却する冷却水として機能する。
第3実施形態における補給水W220(合流補給水W223)の補給(流通)の制御に係る構成及び動作は、第1実施形態における補給水W120(合流補給水W123)の補給(流通)の制御に係る構成(図2参照)及び動作(制御フロー、図3参照)と同様である。ただし、第1実施形態では、循環水W110の電気伝導率及び原水補給水W121の硬度に基づいて補給水W120(合流補給水W123)の補給(流通)の制御を行うのに対して、第3実施形態では、散布水W240の電気伝導率及び原水補給水W221の硬度に基づいて補給水W220(合流補給水W223)の補給(流通)の制御を行う点が、両実施形態で異なる。この点を勘案した上で、第1実施形態における補給水W120の補給(流通)の制御に係る構成及び動作(図3に示すフローチャートに基づく第1実施例)についての説明を援用し、第3実施形態における補給水W220の補給(流通)の制御に係る構成及び動作(フローチャートに基づく実施例)についての説明を省略する。
第3実施形態の水処理システム200によれば、例えば、次のような効果が奏される。第3実施形態の水処理システム200は、補給水W220(原水補給水W221)の硬度を測定する硬度測定装置246と、硬度測定装置246により測定された原水補給水W221の硬度に基づいて、前記原水補給水流通手段(補給水ポンプ241、原水補給水バルブ252等)による原水補給水W221の流量及び/又は前記軟化水補給水流通手段(補給水ポンプ241、軟化水補給水バルブ244等)による軟化水補給水W222の流量を制御する補給水制御部283と、を備える。
そのため、硬度(例えば、カルシウム硬度)が前記目標範囲内の硬度に調整された合流補給水W223(主として軟化水補給水W222)を貯留部216へ補給することができる。従って、散布水W240について、スライム、スケール等の発生の抑制及び配管系等の腐食の抑制を一層確実に行うことができる。
<第4実施形態>
図9及び図10を参照して、本発明の第4実施形態の水処理システム200Aの概略について説明する。図9は、本発明の第4実施形態の水処理システム200Aを示す概略構成図である。図10は、第4実施形態の水処理システム200Aの制御に係る機能ブロック図である。
図9に示すように、第4実施形態の水処理システム200Aは、第3実施形態の水処理システム200に比して、硬度測定装置246aにより測定される合流補給水W223の硬度に基づいて、前記原水補給水流通手段(補給水ポンプ241、原水補給水バルブ252等)による原水補給水W221の流量及び/又は前記軟化水補給水流通手段(補給水ポンプ241、軟化水補給水バルブ244等)による軟化水補給水W222の流量を制御するように構成されている点が異なる。詳細には、硬度測定装置246aは、測定ラインL226を介して、測定接続部J224において補給水合流ラインL224に接続されている。
つまり、第4実施形態の水処理システム200Aは、合流補給水W223の硬度に基づいて、原水補給水バルブ252及び/又は軟化水補給水バルブ244のバルブ開度を調節し、前記流量比率を変更することで、合流補給水W223の硬度を前記目標範囲内の硬度に維持するように構成されている。
図9及び図10に示すように、第4実施形態における水処理システム200Aに関するその他の構成は、第3実施形態における水処理システム200に関する構成(図7及び図8参照)と同様である。そのため、第3実施形態における水処理システム200に関する構成についての説明を援用して、第4実施形態における水処理システム200Aに関する構成についての説明を省略する。
また、第4実施形態における水処理システム200Aに関する動作は、第2実施形態における水処理システム100Aに関する動作(図6に示すフローチャートに基づく第2実施例)と同様である。そのため、第2実施形態における水処理システム100Aに関する動作についての説明を援用して、第4実施形態における水処理システム200Aに関する動作(フローチャートに基づく実施例)についての説明を省略する。
第4実施形態の水処理システム200Aによれば、例えば、次のような効果が奏される。第4実施形態の水処理システム200Aは、補給水W220(合流補給水W223)の硬度を測定する硬度測定装置246aと、硬度測定装置246aにより測定された合流補給水W223の硬度に基づいて、前記原水補給水流通手段(補給水ポンプ241、原水補給水バルブ252等)による原水補給水W221の流量及び/又は前記軟化水補給水流通手段(補給水ポンプ241、軟化水補給水バルブ244等)による軟化水補給水W222の流量を制御する補給水制御部283と、を備える。
そのため、硬度(例えば、カルシウム硬度)が前記目標範囲内の硬度に調整された合流補給水W223(主として軟化水補給水W222)を貯留部216へ補給することができる。従って、散布水W240について、スライム、スケール等の発生の抑制及び配管系等の腐食の抑制を一層確実に行うことができる。
以上、本発明の好適な実施形態について説明したが、本発明は前述した実施形態に限定されることなく、種々の形態で実施することができる。
例えば、開放式冷却塔を含む第1実施形態においては、硬度測定装置146は、原水補給水ラインL122に接続され、原水補給水ラインL122を流通する原水補給水W121の硬度を測定しているが、これに制限されない。例えば、硬度測定装置146は、源流側補給水ラインL121に接続され、源流側補給水ラインL121を流通する補給水W120の硬度を測定してもよい。
また、密閉式冷却塔を含む第3実施形態においては、硬度測定装置246は、原水補給水ラインL222に接続され、原水補給水ラインL222を流通する原水補給水W221の硬度を測定しているが、これに制限されない。例えば、硬度測定装置246は、源流側補給水ラインL221に接続され、源流側補給水ラインL221を流通する補給水W220の硬度を測定してもよい。
また、第1実施形態、第2実施形態、第3実施形態及び第4実施形態においては、原水補給水W121,W221の積算流量を、原水補給水バルブ152,252の弁開度と前記原水補給水流通時間とから算出すると共に、軟化水補給水W122,W222の積算流量を、軟化水補給水バルブ144,244の弁開度と前記軟化水補給水流通時間とから算出しているが、これに制限されない。例えば、補給水ラインL120,L220の適宜の箇所に流量測定装置を設け、この流量測定装置によって原水補給水W121,W221及び軟化水補給水W122,W222の流量を測定するように構成してもよい。
また、第1実施形態、第2実施形態、第3実施形態及び第4実施形態においては、原水補給水W121,W221の流量を減少させると共に、軟化水補給水W122,W222の流量を増加させているが、これに制限されない。例えば、原水補給水W121,W221の流通を停止すると共に、軟化水補給水W122,W222の流量を増加させてもよい。
また、第1実施形態、第2実施形態、第3実施形態及び第4実施形態においては、原水補給水W121,W221の流量を増加させると共に、軟化水補給水W122,W222の流量を減少させているが、これに制限されない。例えば、原水補給水W121,W221の流量を増加させると共に、軟化水補給水W122,W222の流通を停止してもよい。
また、開放式冷却塔を含む第1実施形態においては、補給水合流ラインL124は、貯留部116と接続され、合流補給水W123を貯留部116へ補給しているが、これに制限されない。例えば、補給水合流ラインL124は、散水部112又は循環水ラインL110と接続され、合流補給水W123を散水部112又は循環水ラインL110へ補給してもよい。
図11及び図12を参照して、第1実施形態における合流補給水W123の補給位置に関する変形例について具体的に説明する。図11は、第1実施形態における合流補給水W123の補給位置に関する第1変形例を示す図である。図12は、第1実施形態における合流補給水W123の補給位置に関する第2変形例を示す図である。図11及び図12においては、システム制御装置101及びシステム制御装置101に関連する制御線を省略している。
図11に示す第1変形例のように、補給水合流ラインL124は、散水部112と接続され、合流補給水W123を散水部112へ補給してもよい。また、図12に示す第2変形例のように、補給水合流ラインL124は、循環水ラインL110と接続され、合流補給水W123を循環水ラインL110へ補給してもよい。
また、開放式冷却塔を含む第2実施形態においては、補給水合流ラインL124は、貯留部116と接続され、合流補給水W123を貯留部116へ補給しているが、これに制限されない。図示を省略するが、前記第1変形例の場合と同様に、補給水合流ラインL124は、散水部112と接続され、合流補給水W123を散水部112へ補給してもよい。また、図示を省略するが、前記第2変形例の場合と同様に、補給水合流ラインL124は、循環水ラインL110と接続され、合流補給水W123を循環水ラインL110へ補給してもよい。
また、密閉式冷却塔を含む第3実施形態及び第4実施形態においては、補給水合流ラインL224は、貯留部216と接続され、合流補給水W223を貯留部216へ補給しているが、これに制限されない。例えば、図示を省略するが、補給水合流ラインL224は、散水部212又は散布水ラインL260と接続され、合流補給水W223を散水部212又は散布水ラインL260へ補給してもよい。
前記第1実施例では、冷却塔110の貯留部116への補給水W120の補給の際に、排水ラインL130を介して、貯留部116に貯留された循環水W110を冷却塔110の外部へ強制的に排出しているが、これに制限されない。例えば、排水ラインL130を介した循環水W110の強制的な排出を行わずに、オーバーフローラインL140を介した循環水W110の排出のみを行ってもよい。
また、前記第1実施例では、カルシウム硬度に基づいて原水補給水W121の流量及び/又は軟化水補給水W122の流量を制御しているが、これに制限されない。例えば、全硬度に基づいて原水補給水W121の流量及び/又は軟化水補給水W122の流量を制御してもよい。
第1実施例の変形に関する説明は、第2実施例、第3実施形態の実施例及び第4実施形態の実施例にも適宜適用又は援用される。
100,100A,200,200A 水処理システム
110,210 冷却塔
112,212 散水部
116,216 貯留部
131,231 被冷却装置
141,241 補給水ポンプ(原水補給水流通手段、軟化水補給水流通手段)
144,244 軟化水補給水バルブ(軟化水補給水流通手段)
146,146a,246,246a 硬度測定装置
152,252 原水補給水バルブ(原水補給水流通手段)
183,283 補給水制御部(流量制御手段)
J122,J222 補給水合流部(合流部)
L110 循環水ライン
L111 循環水供給ライン
L112 循環水回収ライン
L122,L222 原水補給水ライン
L123,L223 軟化水補給水ライン
L124,L224 補給水合流ライン
L210 循環液ライン
L211 循環液供給ライン
L212 循環液回収ライン
L250 冷却塔内部ライン
L260 散布水ライン
W110 循環水
W121,W221 原水補給水
W122,W222 軟化水補給水
W123,W223 合流補給水(補給水)
W210 循環液
W240 散布水

Claims (4)

  1. 被冷却装置を冷却する循環水を冷却するために循環水を散布する散水部と、冷却された循環水を貯留する貯留部とを有する冷却塔と、
    前記貯留部に貯留された循環水を前記冷却塔から前記被冷却装置へ供給する循環水供給ラインと、循環水を前記被冷却装置から前記冷却塔の前記散水部へ回収する循環水回収ラインとを有し、前記循環水供給ライン及び前記循環水回収ラインを介して前記冷却塔と前記被冷却装置との間で循環水を循環させる循環水ラインと、
    循環水の電気伝導率を測定する電気伝導率測定装置と、
    原水補給水が流通する原水補給水ラインと、
    軟化水補給水が流通する軟化水補給水ラインと、
    前記原水補給水ラインと前記軟化水補給水ラインとが合流する合流部と、
    前記合流部と前記貯留部、前記散水部及び前記循環水ラインのうちのいずれかとを接続し且つ原水補給水及び/又は軟化水補給水からなる補給水を該貯留部、該散水部及び該循環水ラインのうちのいずれかへ補給する補給水合流ラインと、
    前記原水補給水ライン、前記合流部及び前記補給水合流ラインを介して、原水補給水を前記貯留部、前記散水部及び前記循環水ラインのうちのいずれかへ向けて流通させる原水補給水流通手段と、
    前記軟化水補給水ライン、前記合流部及び前記補給水合流ラインを介して、軟化水補給水を前記貯留部、前記散水部及び前記循環水ラインのうちのいずれかへ向けて流通させる軟化水補給水流通手段と、
    前記電気伝導率測定装置で測定された電気伝導率が予め設定された閾値以上の場合には、前記原水補給水流通手段による原水補給水の流通及び/又は前記軟化水補給水流通手段による軟化水補給水の流通を継続させ、前記電気伝導率測定装置で測定された電気伝導率が予め設定された閾値未満の場合には、前記原水補給水流通手段による原水補給水の流通及び/又は前記軟化水補給水流通手段による軟化水補給水の流通を停止させる濃縮度判定部と、
    前記原水補給水ラインを流通する原水補給水の硬度又は前記補給水合流ラインを流通する補給水の硬度を測定する硬度測定装置と、
    前記硬度測定装置により測定された原水補給水の硬度又は補給水の硬度に基づいて、前記原水補給水流通手段による原水補給水の流量及び/又は前記軟化水補給水流通手段による軟化水補給水の流量を制御する流量制御手段と、
    を備え
    前記硬度測定装置は、前記原水補給水ラインを流通する原水補給水の硬度としてカルシウム硬度を測定し、
    前記流量制御手段は、前記硬度測定装置により測定された原水補給水の硬度に基づいて、前記軟化水補給水流通手段による軟化水補給水の流量を制御する水処理システム。
  2. 被冷却装置を冷却する循環水を冷却するために循環水を散布する散水部と、冷却された循環水を貯留する貯留部とを有する冷却塔と、
    前記貯留部に貯留された循環水を前記冷却塔から前記被冷却装置へ供給する循環水供給ラインと、循環水を前記被冷却装置から前記冷却塔の前記散水部へ回収する循環水回収ラインとを有し、前記循環水供給ライン及び前記循環水回収ラインを介して前記冷却塔と前記被冷却装置との間で循環水を循環させる循環水ラインと、
    循環水の電気伝導率を測定する電気伝導率測定装置と、
    原水補給水が流通する原水補給水ラインと、
    軟化水補給水が流通する軟化水補給水ラインと、
    前記原水補給水ラインと前記軟化水補給水ラインとが合流する合流部と、
    前記合流部と前記貯留部、前記散水部及び前記循環水ラインのうちのいずれかとを接続し且つ原水補給水及び/又は軟化水補給水からなる補給水を該貯留部、該散水部及び該循環水ラインのうちのいずれかへ補給する補給水合流ラインと、
    前記原水補給水ライン、前記合流部及び前記補給水合流ラインを介して、原水補給水を前記貯留部、前記散水部及び前記循環水ラインのうちのいずれかへ向けて流通させる原水補給水流通手段と、
    前記軟化水補給水ライン、前記合流部及び前記補給水合流ラインを介して、軟化水補給水を前記貯留部、前記散水部及び前記循環水ラインのうちのいずれかへ向けて流通させる軟化水補給水流通手段と、
    前記電気伝導率測定装置で測定された電気伝導率が予め設定された閾値以上の場合には、前記原水補給水流通手段による原水補給水の流通及び/又は前記軟化水補給水流通手段による軟化水補給水の流通を継続させ、前記電気伝導率測定装置で測定された電気伝導率が予め設定された閾値未満の場合には、前記原水補給水流通手段による原水補給水の流通及び/又は前記軟化水補給水流通手段による軟化水補給水の流通を停止させる濃縮度判定部と、
    前記原水補給水ラインを流通する原水補給水の硬度又は前記補給水合流ラインを流通する補給水の硬度を測定する硬度測定装置と、
    前記硬度測定装置により測定された原水補給水の硬度又は補給水の硬度に基づいて、前記原水補給水流通手段による原水補給水の流量及び/又は前記軟化水補給水流通手段による軟化水補給水の流量を制御する流量制御手段と、
    を備え、
    前記硬度測定装置は、前記補給水合流ラインを流通する補給水の硬度としてカルシウム硬度を測定し、
    前記流量制御手段は、前記硬度測定装置により測定された補給水の硬度に基づいて、前記軟化水補給水流通手段による軟化水補給水の流量を制御する水処理システム。
  3. 被冷却装置を冷却する循環液が密閉状態で流通する冷却塔内部ラインと、該冷却塔内部ラインに位置する循環液を冷却するために散布水を該冷却塔内部ラインの外側へ散布する散水部と、散布された散布水を貯留する貯留部とを有する冷却塔と、
    前記冷却塔内部ラインに位置する循環液を前記冷却塔から前記被冷却装置へ供給する循環液供給ラインと、循環液を前記被冷却装置から前記冷却塔の前記冷却塔内部ラインへ回収する循環液回収ラインとを有し、前記循環液供給ライン、前記循環液回収ライン及び冷却塔内部ラインを介して前記冷却塔と前記被冷却装置との間で循環液を循環させる循環液ラインと、
    前記貯留部に接続されると共に前記散水部に接続され、該散水部から散布され前記貯留部に貯留された散布水を循環させる散布水ラインと、
    散布水の電気伝導率を測定する電気伝導率測定装置と、
    原水補給水が流通する原水補給水ラインと、
    軟化水補給水が流通する軟化水補給水ラインと、
    前記原水補給水ラインと前記軟化水補給水ラインとが合流する合流部と、
    前記合流部と前記貯留部、前記散水部及び前記散布水ラインのうちのいずれかとを接続し且つ原水補給水及び/又は軟化水補給水からなる補給水を該貯留部、該散水部及び該散布水ラインのうちのいずれかへ補給する補給水合流ラインと、
    前記原水補給水ライン、前記合流部及び前記補給水合流ラインを介して、原水補給水を前記貯留部、前記散水部及び前記散布水ラインのうちのいずれかへ向けて流通させる原水補給水流通手段と、
    前記軟化水補給水ライン、前記合流部及び前記補給水合流ラインを介して、軟化水補給水を前記貯留部、前記散水部及び前記散布水ラインのうちのいずれかへ向けて流通させる軟化水補給水流通手段と、
    前記電気伝導率測定装置で測定された電気伝導率が予め設定された閾値以上の場合には、前記原水補給水流通手段による原水補給水の流通及び/又は前記軟化水補給水流通手段による軟化水補給水の流通を継続させ、前記電気伝導率測定装置で測定された電気伝導率が予め設定された閾値未満の場合には、前記原水補給水流通手段による原水補給水の流通及び/又は前記軟化水補給水流通手段による軟化水補給水の流通を停止させる濃縮度判定部と、
    前記原水補給水ラインを流通する原水補給水の硬度又は前記補給水合流ラインを流通する補給水の硬度を測定する硬度測定装置と、
    前記硬度測定装置により測定された原水補給水の硬度又は補給水の硬度に基づいて、前記原水補給水流通手段による原水補給水の流量及び/又は前記軟化水補給水流通手段による軟化水補給水の流量を制御する流量制御手段と、
    を備え
    前記硬度測定装置は、前記原水補給水ラインを流通する原水補給水の硬度としてカルシウム硬度を測定し、
    前記流量制御手段は、前記硬度測定装置により測定された原水補給水の硬度に基づいて、前記軟化水補給水流通手段による軟化水補給水の流量を制御する水処理システム。
  4. 被冷却装置を冷却する循環液が密閉状態で流通する冷却塔内部ラインと、該冷却塔内部ラインに位置する循環液を冷却するために散布水を該冷却塔内部ラインの外側へ散布する散水部と、散布された散布水を貯留する貯留部とを有する冷却塔と、
    前記冷却塔内部ラインに位置する循環液を前記冷却塔から前記被冷却装置へ供給する循環液供給ラインと、循環液を前記被冷却装置から前記冷却塔の前記冷却塔内部ラインへ回収する循環液回収ラインとを有し、前記循環液供給ライン、前記循環液回収ライン及び冷却塔内部ラインを介して前記冷却塔と前記被冷却装置との間で循環液を循環させる循環液ラインと、
    前記貯留部に接続されると共に前記散水部に接続され、該散水部から散布され前記貯留部に貯留された散布水を循環させる散布水ラインと、
    散布水の電気伝導率を測定する電気伝導率測定装置と、
    原水補給水が流通する原水補給水ラインと、
    軟化水補給水が流通する軟化水補給水ラインと、
    前記原水補給水ラインと前記軟化水補給水ラインとが合流する合流部と、
    前記合流部と前記貯留部、前記散水部及び前記散布水ラインのうちのいずれかとを接続し且つ原水補給水及び/又は軟化水補給水からなる補給水を該貯留部、該散水部及び該散布水ラインのうちのいずれかへ補給する補給水合流ラインと、
    前記原水補給水ライン、前記合流部及び前記補給水合流ラインを介して、原水補給水を前記貯留部、前記散水部及び前記散布水ラインのうちのいずれかへ向けて流通させる原水補給水流通手段と、
    前記軟化水補給水ライン、前記合流部及び前記補給水合流ラインを介して、軟化水補給水を前記貯留部、前記散水部及び前記散布水ラインのうちのいずれかへ向けて流通させる軟化水補給水流通手段と、
    前記電気伝導率測定装置で測定された電気伝導率が予め設定された閾値以上の場合には、前記原水補給水流通手段による原水補給水の流通及び/又は前記軟化水補給水流通手段による軟化水補給水の流通を継続させ、前記電気伝導率測定装置で測定された電気伝導率が予め設定された閾値未満の場合には、前記原水補給水流通手段による原水補給水の流通及び/又は前記軟化水補給水流通手段による軟化水補給水の流通を停止させる濃縮度判定部と、
    前記原水補給水ラインを流通する原水補給水の硬度又は前記補給水合流ラインを流通する補給水の硬度を測定する硬度測定装置と、
    前記硬度測定装置により測定された原水補給水の硬度又は補給水の硬度に基づいて、前記原水補給水流通手段による原水補給水の流量及び/又は前記軟化水補給水流通手段による軟化水補給水の流量を制御する流量制御手段と、
    を備え、
    前記硬度測定装置は、前記補給水合流ラインを流通する補給水の硬度としてカルシウム硬度を測定し、
    前記流量制御手段は、前記硬度測定装置により測定された補給水の硬度に基づいて、前記軟化水補給水流通手段による軟化水補給水の流量を制御する水処理システム。
JP2009237556A 2009-10-14 2009-10-14 水処理システム Active JP5703554B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009237556A JP5703554B2 (ja) 2009-10-14 2009-10-14 水処理システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009237556A JP5703554B2 (ja) 2009-10-14 2009-10-14 水処理システム

Publications (2)

Publication Number Publication Date
JP2011083684A JP2011083684A (ja) 2011-04-28
JP5703554B2 true JP5703554B2 (ja) 2015-04-22

Family

ID=44077051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009237556A Active JP5703554B2 (ja) 2009-10-14 2009-10-14 水処理システム

Country Status (1)

Country Link
JP (1) JP5703554B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012220565A (ja) 2011-04-05 2012-11-12 Canon Inc 画像表示装置及びその制御方法
JP5853444B2 (ja) * 2011-07-04 2016-02-09 三浦工業株式会社 水処理システム
CN103011449B (zh) * 2012-11-30 2016-03-02 无锡展华科技有限公司 水循环冷却装置的补水系统及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3663634B2 (ja) * 1993-11-29 2005-06-22 栗田工業株式会社 循環冷却水系の運転方法
JP3261375B2 (ja) * 2000-02-18 2002-02-25 アクアス株式会社 循環冷却水の濃縮度管理方法およびその装置
JP4117607B2 (ja) * 2002-10-01 2008-07-16 栗田工業株式会社 冷却水の処理方法
JP2007090267A (ja) * 2005-09-29 2007-04-12 Kurita Water Ind Ltd スケール成分除去装置及び方法
JP2009063292A (ja) * 2008-12-25 2009-03-26 Miura Co Ltd 冷却塔における循環水の冷却方法および冷却塔における循環水冷却用散布水の冷却方法

Also Published As

Publication number Publication date
JP2011083684A (ja) 2011-04-28

Similar Documents

Publication Publication Date Title
JP5703552B2 (ja) 水処理システム
JP5703554B2 (ja) 水処理システム
US20100051519A1 (en) Water treatment device and water treatment method for a passenger aircraft
JP5359745B2 (ja) 水処理システム
JP5454122B2 (ja) 水処理システム
JP5853444B2 (ja) 水処理システム
JP5487907B2 (ja) 水処理システム
JP5707708B2 (ja) 水処理システム
JP2013015259A (ja) 水処理システム
JP6343570B2 (ja) 空冷式熱源機の散水システムおよび散水方法
JP5471422B2 (ja) 水処理システム
JP5811621B2 (ja) 水処理システム
JPH10309432A (ja) 空気中可溶性ガス除去装置
US20120067829A1 (en) Water treatment feeder device and a water treatment feeder system
JPH11248394A (ja) 冷却塔を有する冷却水循環システムにおける冷却水管理装置
JP3622221B2 (ja) 循環冷却水の処理方法および装置
JP5895626B2 (ja) 水処理システム
JP2007205591A (ja) 冷却塔の運転方法
JP2006322669A (ja) 冷却塔
JP4545329B2 (ja) 不純物除去装置
JP7019340B2 (ja) 薬注装置および冷却塔設備
JP2012098011A (ja) 冷却塔
JP2017058035A (ja) 熱交換器散水システム、熱交換器散水方法
JP3485799B2 (ja) 熱交換装置
CN211205032U (zh) 一种开放式中央空调冷却塔水质监测系统

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120725

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120810

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150209

R150 Certificate of patent or registration of utility model

Ref document number: 5703554

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250