JP5624425B2 - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
JP5624425B2
JP5624425B2 JP2010231911A JP2010231911A JP5624425B2 JP 5624425 B2 JP5624425 B2 JP 5624425B2 JP 2010231911 A JP2010231911 A JP 2010231911A JP 2010231911 A JP2010231911 A JP 2010231911A JP 5624425 B2 JP5624425 B2 JP 5624425B2
Authority
JP
Japan
Prior art keywords
silicon
film
amorphous silicon
layer
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010231911A
Other languages
English (en)
Other versions
JP2012084813A (ja
Inventor
陽子 岩鍜治
陽子 岩鍜治
潤 広田
潤 広田
矢吹 宗
宗 矢吹
石田浩一
浩一 石田
和香奈 甲斐
和香奈 甲斐
水島 一郎
一郎 水島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010231911A priority Critical patent/JP5624425B2/ja
Priority to US13/052,143 priority patent/US8558354B2/en
Publication of JP2012084813A publication Critical patent/JP2012084813A/ja
Application granted granted Critical
Publication of JP5624425B2 publication Critical patent/JP5624425B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02425Conductive materials, e.g. metallic silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02516Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/102Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including bipolar components
    • H01L27/1021Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including bipolar components including diodes only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/685Hi-Lo semiconductor devices, e.g. memory devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/20Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • H10B63/84Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays arranged in a direction perpendicular to the substrate, e.g. 3D cell arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • H10N70/063Shaping switching materials by etching of pre-deposited switching material layers, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Semiconductor Memories (AREA)

Description

本発明の実施形態は、半導体装置及びその製造方法に関する。
近年、特定の金属酸化物系の材料に電圧を印加すると、電圧印加前の抵抗率と印加した電圧の大きさによって、この材料が低抵抗状態と高抵抗状態の2つの状態をもつ現象が発見され、その現象を利用した新たな記憶装置が注目を集めている。この記憶装置をReRAM(Resistance Random Access Memory)という。ReRAMの実デバイス構造に関しては、高集積化の観点から、WL(ワードライン)とBL(ビットライン)の交点にメモリセルを配置する3次元クロスポイント構造が提案されている。
3次元クロスポイント構造においては、あるメモリセルにデータを書き込むために電圧を印加すると、選択していない他のメモリセルにも逆方向の電圧が印加されてしまうため、各メモリセルには抵抗変化膜と共に選択素子膜を設ける必要がある。選択素子膜としては、例えば、pin形のダイオードが形成されたシリコン膜が用いられる。
このような構造のReRAMにおいて、信頼性を確保しつつメモリセルを微細化して集積度を向上させるためには、選択素子膜の特性を良好且つ均一なものとする必要がある。このためには、シリコン膜をポリシリコンによって形成し、シリコン膜中の不純物濃度プロファイルを急峻とし、上面を平坦にする必要がある。
特開2009−021602号公報
本発明の実施形態の目的は、ポリシリコンによって形成され、不純物濃度プロファイルが急峻であり、上面が平坦であるシリコン膜を備えた半導体装置及びその製造方法を提供することである。
実施形態に係る半導体装置の製造方法は、シリコン膜を形成する工程を備える。前記シリコン膜を形成する工程は、アモルファスシリコンを堆積させる第1工程と、アモルファスシリコンを堆積させると共にシリコン結晶粒を生成し、前記シリコン結晶粒の成長速度よりも前記アモルファスシリコンの堆積速度を高くする第2工程と、を有する。
第1の実施形態に係る半導体装置を例示する斜視図である。 第1の実施形態に係る半導体装置を例示する断面図である。 シリコン結晶の(311)面を示す分子モデル図である。 第1の実施形態に係る半導体装置の製造方法を例示する工程断面図である。 (a)〜(d)は、本実施形態に係る半導体装置の製造方法を例示する工程断面図であり、特に、シリコン膜の成膜方法を示す。 横軸に温度をとり、縦軸に圧力をとって、シリコン膜の各層の堆積条件を模式的に示すグラフ図である。 第1の実施形態に係る半導体装置の製造方法を例示する工程断面図である。 第1の実施形態に係る半導体装置の製造方法を例示する工程断面図である。 第1の実施形態に係る半導体装置の製造方法を例示する工程断面図である。 第1の実施形態に係る半導体装置の製造方法を例示する工程断面図である。 第1の実施形態に係る半導体装置の製造方法を例示する工程断面図である。
以下、図面を参照しつつ、本発明の実施形態について説明する。
先ず、第1の実施形態について説明する。
図1は、本実施形態に係る半導体装置を例示する斜視図であり、
図2は、本実施形態に係る半導体装置を例示する断面図であり、
図3は、シリコン結晶の(311)面を示す分子モデル図である。
本実施形態に係る半導体装置はReRAMである。
図1に示すように、本実施形態に係る半導体装置1においては、シリコン基板11が設けられており、シリコン基板11の上層部分及び上面上には、半導体装置1の駆動回路(図示せず)が形成されている。シリコン基板11上には、駆動回路を埋め込むように、例えばシリコン酸化物からなる層間絶縁膜12が設けられており、層間絶縁膜12上にはメモリセル部13が設けられている。
メモリセル部13においては、シリコン基板11の上面に平行な一方向(以下、「ワード線方向」という)に延びる複数本のワード線WLからなるワード線配線層14と、シリコン基板11の上面に平行な方向であって、ワード線方向に対して交差、例えば直交する方向(以下、「ビット線方向」という)に延びる複数本のビット線BLからなるビット線配線層15とが、絶縁層を介して交互に積層されている。ワード線WL及びビット線BLは、例えば、タングステン(W)により形成されている。また、ワード線WL同士、ビット線BL同士、ワード線WLとビット線BLとは、相互に接していない。
そして、各ワード線WLと各ビット線BLとの最近接点には、シリコン基板11の上面に対して垂直な方向(以下、「上下方向」という)に延びるピラー16が設けられている。ピラー16は、ワード線WLとビット線BLとの間に形成されており、1本のピラー16により、1つのメモリセルが構成されている。すなわち、半導体装置1は、ワード線WLとビット線BLとの最近接点毎にメモリセルが配置されたクロスポイント型の装置である。ワード線WL、ビット線BL及びピラー16の相互間は、例えばシリコン酸化物からなる層間絶縁膜17(図2参照)によって埋め込まれている。
以下、図2を参照して、ピラー16の構成を説明する。
ピラー16には、下方にワード線WLが配置され、上方にビット線BLが配置されたピラーと、下方にビット線BLが配置され、上方にワード線WLが配置されたピラーの2種類がある。図2においては、下方にワード線WLが配置され、上方にビット線BLが配置されたピラーが示されている。このピラー16においては、下方(ワード線側)から上方(ビット線側)に向かって、下部電極膜21、シリコン膜22、シリサイド層23、バリアメタル層24、抵抗変化膜25、上部電極膜26及びストッパ膜27がこの順に積層されている。下部電極膜21はワード線WLに接し、ストッパ膜27はビット線BLに接している。
以下、ピラー16を構成する各膜及び各層について説明する。
抵抗変化膜25は、例えば金属酸化物により形成されており、2水準以上の抵抗値をとることができ、且つ、所定の電気信号を入力することにより、抵抗値を切り替えることができる。これにより、抵抗変化膜25は、記憶膜として機能する。
シリコン膜22は、不純物、例えば、ボロン(B)及びリン(P)が局所的に導入され、不純物濃度が膜厚方向に沿って変化したポリシリコンによって形成されている。シリコン膜22は、下層側から順に、導電形がn形のn形層22n、真性半導体からなるi形層22i、及び導電形がp形のp形層22pが積層されたpin形ダイオードである。これにより、シリコン膜22は、ビット線BLにワード線WLよりも高い電位が供給された場合にのみ電流を流し、逆方向の電流は流さない選択素子膜として機能する。また、シリコン膜22においては、結晶粒の長軸方向がランダムであり、一部の結晶粒は下部電極膜21及びシリサイド層23に接している。更に、シリコン膜22の結晶配向は(311)配向である。より詳細には、シリコン膜22を形成するシリコン結晶粒のうち、10%以上の結晶粒が、(311)面を上方に向けている。すなわち、図3に示すように、これらのシリコン結晶粒においては、シリコン原子41からなるダイヤモンド構造42において、(311)面43がシリコン膜22の上面に対して平行である。
下部電極膜21は、ワード線WLを形成するタングステンとシリコン膜22を形成するシリコンとの反応を抑制するバリア膜であり、例えば窒化チタン(TiN)によって形成されている。バリアメタル層24は、シリコン膜22を形成するシリコンと抵抗変化膜25を形成する金属酸化物の拡散を防止すると共に、シリコン膜22と抵抗変化膜25との間の接触抵抗を低減するための層であり、例えば窒化チタン(TiN)により形成されている。シリサイド層23はシリコン膜22とバリアメタル層24との間の密着性を改善する層であり、チタンシリサイド(TiSi)によって形成されている。
なお、下方にビット線BLが配置され、上方にワード線WLが配置されたピラー16においては、シリコン膜22におけるn形層22n、i形層22i及びp形層22pの積層順序が逆になっているが、それ以外の積層構造は、上述の下方にワード線WLが配置されたピラー16と同様である。半導体装置1においては、メモリセル部13の各段に形成されたピラー16のそれぞれに属する複数のシリコン膜22が、同一平面上に配置されている。
次に、本実施形態に係る半導体装置の製造方法について説明する。
図4は、本実施形態に係る半導体装置の製造方法を例示する工程断面図であり、
図5(a)〜(d)は、本実施形態に係る半導体装置の製造方法を例示する工程断面図であり、特に、シリコン膜の成膜方法を示し、
図6は、横軸に温度をとり、縦軸に圧力をとって、シリコン膜の各層の堆積条件を模式的に示すグラフ図であり、
図7〜図11は、本実施形態に係る半導体装置の製造方法を例示する工程断面図である。
先ず、図1に示すように、シリコン基板11の上面に、メモリセル部13を駆動するための駆動回路(図示せず)を形成する。次に、シリコン基板11上に層間絶縁膜12を形成する。次に、層間絶縁膜12内に、駆動回路まで到達するコンタクト(図示せず)を形成する。
次に、図4に示すように、例えばダマシン法によって層間絶縁膜12の上層部分内にタングステンを埋め込み、複数本のワード線WLをワード線方向に延びるように相互に平行に形成する。これらのワード線WLにより、ワード線配線層14が形成される。次に、ワード線配線層14上に、窒化チタン(TiN)を例えば5〜10nm程度の厚さに堆積させて、下部電極膜21を形成する。
次に、図5(a)〜(d)に示すように、下部電極膜21上に、例えばLP−CVD(low pressure chemical vapor deposition:低圧化学気相成長)法により、アモルファスシリコンを堆積させて、シリコン膜22を形成する。このとき、アモルファスシリコンを堆積させながら各不純物を導入して、n形層22n、i形層22i及びp形層22pを同一のチャンバー内で連続的に形成する。以下、シリコン膜22の成膜方法を詳細に説明する。
先ず、図5(a)に示すように、不純物を導入せずに、アモルファスシリコンを堆積させる。このとき、結晶粒は生成しないようにする。このため、図6に条件C1として示すように、炉内の温度は、結晶粒が生成する下限の温度Tcよりも低い温度とする。また、炉内の圧力は、気相反応が生じる下限の圧力Pgよりも低い圧力とする。一例では、原料ガスとしてジシラン(Si)を使用し、温度を400℃程度とし、圧力を100〜150Paとして成膜とし、厚さを1〜2nmとする。これにより、上面が平坦なノンドープドアモルファスシリコン層31が形成される。ノンドープドアモルファスシリコン層31は、下部電極膜21の結晶性が、この後形成されるリンドープドアモルファスシリコン層32の結晶性に影響を及ぼすことを防止するために形成する。
次に、図5(b)に示すように、シリコンに対してドナーとなる不純物、例えばリン(P)を導入しながら、アモルファスシリコンを堆積させる。このとき、結晶粒は生成しないようにする。このため、堆積条件は図6に示す条件C1とする。すなわち、温度は、結晶粒が生成する下限の温度Tcよりも低い温度とし、圧力は、気相反応が生じる下限の圧力Pgよりも低い圧力とする。但し、堆積条件はリンの影響を考慮して最適化する。一例では、原料ガスとしてシラン(SiH)及びホスフィン(PH)を使用し、温度を500〜550℃とし、圧力を130〜180Paとして成膜する。これにより、上面が平坦なリンドープドアモルファスシリコン層32が形成される。このとき、リンドープドアモルファスシリコン層32のリン濃度は例えば1×1020〜1×1021cm−3とし、厚さは例えば2〜15nmとする。
次に、図5(c)に示すように、不純物を導入せずにシリコンを堆積させる。このとき、アモルファスシリコンを堆積させると共に、アモルファスシリコン中にシリコン結晶粒を生成する。また、シリコン結晶粒の成長速度よりもアモルファスシリコンの堆積速度を高くする。このときの堆積条件は、図6に示す条件C2とする。すなわち、結晶粒を生成させるために、温度を結晶粒が生成する下限の温度Tcよりも高い温度とする。また、温度が高いほど結晶粒の成長速度が高くなり、圧力が高いほどシリコンの堆積速度が高くなるため、圧力は、結晶粒の成長速度とアモルファスシリコンの堆積速度が等しくなるような温度と圧力との関係を示す相関線TPよりも高い圧力とする。更に、圧力は、気相反応が生じる下限の圧力Pgよりも低い圧力とする。この結果、図6に示すように、条件C2は、結晶粒が生成する下限の温度Tcを表す線、気相反応が生じる下限の圧力Pgを表す線、及び結晶粒の成長速度とアモルファスシリコンの堆積速度が等しくなる条件を示す相関線TPによって囲まれた三角形の領域として表される。なお、図6は条件C2の境界条件を模式的に示す図であり、実際には各線は直線とは限らず、また、温度Tcは圧力に依存する場合もあり、圧力Pgは温度に依存する場合もある。
一例では、原料ガスとしてシラン(SiH)を使用し、温度を550〜650℃まで上昇させ、圧力を35〜50Paとして成膜する。これにより、アモルファスシリコン層中にシリコン結晶粒が形成されるものの、シリコン結晶粒は後から堆積されるアモルファスシリコンによって埋め込まれて、シリコン結晶粒に起因する凹凸が平坦化される。この結果、微小なシリコン結晶粒34が埋め込まれ、上面が平坦なノンドープドアモルファスシリコン層33が形成される。ノンドープドアモルファスシリコン層33の厚さは例えば50〜120nmとする。
次に、図5(d)に示すように、シリコンに対してアクセプタとなる不純物、例えばボロン(B)を導入しながら、アモルファスシリコンを堆積させる。このとき、結晶粒は生成しないようにする。このため、堆積条件は、図5(a)及び(b)に示す工程と同様に、図6に示す条件C1とする。但し、堆積条件はボロンの影響を考慮して最適化する。具体的には、ボロンはシランの分解を促進するため、ボロンを導入しながらシリコンを堆積させると、リンを導入しながらシリコンを堆積させる場合よりも、堆積速度が速くなる。このため、図5(b)に示す工程よりも温度を低くする。一例では、原料ガスとしてシラン(SiH)及び三塩化ホウ素(BCl)を使用し、温度を400〜500℃まで低下させ、圧力を100〜150Paとして成膜する。これにより、上面が平坦なボロンドープドアモルファスシリコン層35が形成される。ボロンドープドアモルファスシリコン層35のボロン濃度は例えば1×1020〜2×1021cm−3とし、厚さは例えば2〜15nmとする。
このようにして、ノンドープドアモルファスシリコン層31、リンドープドアモルファスシリコン層32、シリコン結晶粒34を含有したノンドープドアモルファスシリコン層33及びボロンドープドアモルファスシリコン層35がこの順に積層されて、シリコン膜22が形成される。
次に、図7に示すように、熱処理を施し、シリコン膜22を形成するアモルファスシリコンを固相成長によって結晶化させると共に、シリコン膜22に含まれる不純物、すなわち、リン及びボロンを活性化させる。一例では、700〜900℃の温度に、30〜80秒間保持する。これにより、シリコン膜22の下層部分は、リンを含有し、導電形がn形のn形層22nとなり、中層部分は、不純物を実質的に含有せず、導電形がi形のi形層22iとなり、上層部分は、ボロンを含有し、導電形がp形のp形層22pとなる。このとき、シリコン膜22は、ノンドープドアモルファスシリコン層33中のシリコン結晶粒34を核として結晶化し、多結晶構造となる。また、結晶化されたシリコン膜22は(311)配向となる。
次に、図8に示すように、シリコン膜22上に薄いメタル層46を成膜する。メタル層46の材料は、酸化反応時のギブスの自由エネルギーの低下量の絶対値又は生成熱がシリコンよりも大きい金属とすることが好ましい。これにより、シリコン膜22の上面に形成された自然酸化膜を還元することができる。例えば、メタル層46の材料は、チタン(Ti)、タンタル(Ta)、ニオブ(Nb)、ハフニウム(Hf)、ジルコニウム(Zr)又はクロム(Cr)とすることが望ましい。又は、融点が高いタングステン(W)とこれらの金属との合金でもよい。メタル層46の厚さは、例えば、0.5〜2.0nm程度とすることが好ましい。次に、メタル層46上にバリアメタル層24を形成する。バリアメタル層24は例えば窒化チタン(TiN)により形成し、厚さは例えば10nm程度とする。
次に、図9に示すように、熱処理を施し、シリコン膜22に含有されるシリコンとメタル層46(図8参照)に含まれる金属とを反応させる。この熱処理の温度は、例えば、500〜700℃とする。これにより、メタル層46(図8参照)が消失し、シリコン膜22とバリアメタル層24との間に、シリサイド層23が形成される。
次に、図10に示すように、金属酸化物を堆積させて、抵抗変化膜25を形成する。次に、上部電極膜26を形成する。次に、タングステンを堆積させて、ストッパ膜27を形成する。
次に、図11に示すように、TEOS(tetra ethyl ortho silicate)を原料としたCVD(chemical vapor deposition:化学気相成長)法によりシリコン酸化膜を形成し、次いでシリコン窒化膜を形成することにより、ハードマスク(図示せず)を形成する。次に、このハードマスクをリソグラフィ法によってパターニングする。次に、パターニングされたハードマスクをマスクとしてRIE(reactive ion etching:反応性イオンエッチング)を施す。これにより、ストッパ膜27、上部電極膜26、抵抗変化膜25、バリアメタル層24、シリサイド層23、シリコン膜22及び下部電極膜21を選択的に除去して、ピラー16を形成する。ピラー16のアスペクト比は、例えば4以上とする。
次に、図2に示すように、例えば、ピラー16を埋め込むように、絶縁膜を形成する。例えばTEOSを原料とするCVD法により、シリコン酸化膜を堆積させる。次に、ストッパ膜27をストッパとしてCMP(chemical mechanical polishing:化学的機械研磨)を施し、シリコン酸化膜の上面を平坦化する。これにより、ピラー16間にシリコン酸化物からなる層間絶縁膜17が形成される。このとき、層間絶縁膜17の上面において上部電極膜27の上面が露出する。
次に、層間絶縁膜17上に更に層間絶縁膜(図示せず)を形成し、ダマシン法により複数本のビット線BLを形成する。これらの複数本のビット線BLにより、ビット線配線層15が形成される。各ビット線BLは、ビット線方向に配列された複数本のピラー16の上面に接続される。これにより、各ピラー16は、ワード線WLとビット線BLとの間に形成され、且つ、ワード線WL及びビット線BLに接続される。
次に、ビット線BL上にピラー16を形成する。このピラー16を形成する際には、上述のワード線WL上に形成したピラー16に対して、シリコン膜22におけるn形層22n、i形層22i及びp形層22pの積層順序を逆にする。
すなわち、下部電極膜21を形成した後、条件C1(図6参照)により、不純物を導入せずに、アモルファスシリコンを堆積させる。このとき、結晶粒は生成しないようにする。例えば、原料ガスとしてジシラン(Si)を使用し、温度を400℃程度とし、圧力を100〜150Paとして、1〜2nmの厚さに堆積させる。これにより、ノンドープドアモルファスシリコン層が形成される。
次に、条件C1により、例えばボロン(B)を導入しながら、アモルファスシリコンを堆積させる。このとき、結晶粒は生成しないようにする。例えば、原料ガスとしてシラン(SH)及び三塩化ホウ素(BCl)を使用し、温度を400〜500℃とし、圧力を100〜150Paとして、2〜15nmの厚さに堆積させる。これにより、ボロンドープドアモルファスシリコン層が形成される。
次に、条件C2により、不純物を導入せずにシリコンを堆積させる。このとき、アモルファスシリコンを堆積させると共にシリコン結晶粒を生成し、且つ、シリコン結晶粒の成長速度よりもアモルファスシリコンの堆積速度を高くする。例えば、原料ガスとしてシラン(SiH)を使用し、温度を550〜650℃とし、圧力を35〜50Paとして、50〜120の厚さに堆積させる。これにより、微小なシリコン結晶粒が埋め込まれ、上面が平坦なノンドープドアモルファスシリコン層が形成される。
次に、条件C1により、例えばリン(P)を導入しながら、アモルファスシリコンを堆積させる。このとき、結晶粒は生成しないようにする。例えば、原料ガスとしてシラン(SiH)及びホスフィン(PH)を使用し、温度を500〜550℃とし、圧力を130〜180Paとして、2〜15nmの厚さに堆積させる。これにより、リンドープドアモルファスシリコン層が形成される。このようにして、主としてアモルファスシリコンからなり、膜厚中央部にシリコン結晶粒が埋め込まれたシリコン膜22が形成される。
その後、熱処理を施し、シリコン膜22を形成するアモルファスシリコンを結晶化させると共に、不純物を活性化させる。次に、メタル層46及びバリアメタル層24を堆積させて、熱処理を施すことにより、シリサイド層23を形成する。次に、抵抗変化膜25、上部電極膜26及びストッパ膜27をこの順に形成する。次に、RIEによりこれらの層を選択的に除去して、ピラー16を形成する。次に、ピラー16間に層間絶縁膜17を埋め込む。このようにして、ビット線配線層15上に、複数本のピラー16が形成される。
以後、同様な方法により、ワード線配線層14、複数本のピラー16、ビット線配線層15及び複数本のピラー16を繰り返し形成する。これにより、クロスポイント構造の半導体装置1が製造される。
次に、本実施形態の効果について説明する。
本実施形態においては、シリコン膜22を成膜する際に、アモルファスシリコンを堆積させ、その後結晶化させている。アモルファスシリコンを堆積させることにより、シリコン膜22の上面を平坦にすることができる。これにより、各シリコン膜22に形成されたpin形ダイオードの特性を良好にできると共に、ピラー16間でシリコン膜22の膜厚をほぼ等しくすることができ、選択素子膜の特性を均一にすることができる。また、シリコン膜22を固相成長によって結晶化させることにより、上面の平滑性を保ったまま、シリコン膜22を多結晶構造とすることができる。これにより、シリコン膜22中のキャリアの移動度が高くなり、特性が優れたpin形ダイオードを得ることができる。
また、本実施形態においては、シリコン膜22の結晶配向を(311)配向としている。これにより、シリコン膜22の結晶粒径が大きくなりやすく、また、シリコン膜22の上面が平坦になりやすい。結晶粒径が大きくなることにより、結晶粒界の密度が減少し、結晶粒界を介した不純物の拡散が生じにくくなる。シリコン膜22の上面が平坦となることにより、pin形ダイオードの特性のばらつきが小さくなる。
そして、本実施形態においては、図5(c)に示すノンドープドアモルファスシリコン層33を形成する工程において、アモルファスシリコンを堆積させると共にシリコン結晶粒を生成し、且つ、シリコン結晶粒の成長速度よりもアモルファスシリコンの堆積速度を高くしている。これにより、シリコン結晶粒34がノンドープドアモルファスシリコン層33内に埋め込まれる。この結果、図7に示す工程において熱処理を行ったときに、シリコン結晶粒34が核となり、シリコン膜22が容易に結晶化する。このため、結晶化のための熱処理を低温短時間の熱処理とすることができ、この熱処理に伴う不純物の拡散を抑制することができる。これにより、シリコン膜22内における不純物濃度プロファイルを急峻に保つことができ、i形層22iの実効的な厚さを厚く維持することができる。この結果、シリコン膜22に形成されるpin形ダイオードにおいて、順方向電流を増大させると共に、逆方向電流を抑制することができる。すなわち、pin形ダイオードの整流特性を良好に保つことができる。
これに対して、シリコン膜22中にシリコン結晶粒34を形成しないと、シリコン膜22を結晶化させるために高温長時間の熱処理が必要となる。特に、半導体装置1を高集積化するためにシリコン膜22を薄くすると、単位面積当たりの結晶核の形成密度が低くなるため、シリコン膜22全体を確実に結晶化させるために、より高温長時間の熱処理が必要となる。これにより、リンドープドアモルファスシリコン層32に導入されたリン、及びボロンドープドアモルファスシリコン層35に導入されたボロンのうち、ノンドープドアモルファスシリコン層33内に拡散する量が多くなり、i形層22iの実効的な厚さが薄くなってしまう。この結果、シリコン膜22に形成されるpin形ダイオードにおいて、逆方向耐圧が低下すると共に、逆方向電流が増大し、整流特性が劣化してしまう。
なお、シリコン膜22の成膜温度を高くして、下部電極膜21上に最初からポリシリコンを成長させることも考えられる。しかしながら、この場合は、堆積したシリコンが部分的に凝集してしまい、シリコン膜22の上面の凹凸が大きくなってしまう。これにより、pin形ダイオードの特性が不均一になり、デバイスインテグレーションが困難になる。このため、ピラー16の微細化が困難になる。また、シリコン膜22の上面を平坦化するために、アモルファスシリコンによってシリコン膜22を形成し、その後結晶化させないことも考えられるが、この場合は、シリコン膜22の半導体としての特性が低くなり、pin形ダイオードの性能が不十分となる。更に、アモルファスシリコンを堆積させた後、例えばチタン等の金属を堆積させてシリサイドを形成し、このシリサイドを結晶核としてシリコン膜22を結晶化させることも考えられる。しかしながら、この場合は、結晶化温度は低減できるものの、アモルファスシリコン中の方がポリシリコン中よりも金属原子の拡散速度が高いため、未反応の金属がシリコン膜22中に拡散してしまい、pin形ダイオードの逆方向特性を劣化させてしまう。
また、本実施形態においては、シリコン膜22はシリコン結晶粒34を核として結晶化するため、結晶化後のシリコン膜22においては、結晶粒の長軸方向はランダムである。このため、結晶粒界を経路とした不純物の拡散が、膜厚方向に進みにくい。この結果、膜厚方向に沿った不純物濃度プロファイルを急峻に保つことができ、pin形ダイオードの特性を良好にすることができる。これに対して、下部電極膜21上に最初からポリシリコンを成長させてシリコン膜22を形成した場合には、シリコン膜22の結晶粒は膜厚方向(上下方向)に延びる柱状となり、結晶粒界も膜厚方向に延びるため、不純物が結晶粒界を介して膜厚方向に拡散しやすくなる。このため、膜厚方向に沿った不純物濃度プロファイルがブロードになり、pin形ダイオードの特性が低下する。
更に、本実施形態によれば、シリコン結晶粒34を、i形層22iを堆積させる際にアモルファスシリコン内に埋め込んでいる。i形層22iは不純物を導入せずに形成するため、結晶化が進行しにくい。このため、シリコン結晶粒34を生成させ、且つ成長を抑えるような制御が容易である。また、シリコン膜22の膜厚方向中央部にシリコン結晶粒34が埋め込まれることになり、シリコン膜22全体の結晶化がより一層容易になる。
更にまた、本実施形態においては、メタル層46を形成する際には、シリコン膜22は既に結晶化されているため、メタル層46を形成する金属がシリコン膜22中に拡散することを抑制できる。
更にまた、本実施形態においては、選択素子をpin形シリコンダイオードによって形成しているため、コストが低い。
次に、第2の実施形態について説明する。
前述の第1の実施形態においては、シリコン膜22の堆積と結晶化を別の工程で実施したが、本実施形態においては、シリコン膜22の成膜工程において、シリコン膜22の結晶化を完了させる。
以下、具体的に説明する。図5(a)及び(b)に示す工程においては、前述の第1の実施形態と同じ条件によってノンドープドアモルファスシリコン層31及びリンドープドアモルファスシリコン層32を形成する。
次に、図5(c)に示す工程において、条件C2(図6参照)の範囲内であるが、前述の第1の実施形態よりは少し高い温度で、シリコンを堆積させる。例えば、炉内の温度を600℃以上として、シリコンを堆積させる。これにより、ノンドープドアモルファスシリコン層33及びシリコン結晶粒34が同時に形成されるが、シリコン結晶粒34の成長速度は、ノンドープドアモルファスシリコン層33の堆積速度に近くなる。この結果、ノンドープドアモルファスシリコン層33の堆積と同時に、シリコン結晶粒34を核としたノンドープドアモルファスシリコン層33の結晶化が進行する。また、先に形成されたリンドープドアモルファスシリコン層32及びノンドープドアモルファスシリコン層31においても、シリコン結晶粒34を核とした結晶化が進行する。
その後、図5(d)に示す工程において、ボロンドープドアモルファスシリコン層35を堆積させると、ボロンドープドアモルファスシリコン層35も堆積と共に結晶化される。これにより、シリコン膜22の成膜工程において、アモルファスシリコンが堆積されると共に、このアモルファスシリコンがほぼ全て結晶化される。
本実施形態によれば、図7に示す結晶化工程を省略することができる。本実施形態における上記以外の構成、製造方法及び効果は、前述の第1の実施形態と同様である。
次に、第3の実施形態について説明する。
本実施形態は、前述の第1の実施形態と比較して、シリコン膜22の上層部分を構成する不純物拡散層を、イオン注入によって形成する点が異なっている。
すなわち、ワード線WL上に形成されるシリコン膜22を形成する際には、図5(a)〜(c)に示すように、ノンドープドアモルファスシリコン層31及びリンドープドアモルファスシリコン層32を堆積させ、シリコン結晶粒34を含むノンドープドアモルファスシリコン層33を堆積させた後、ボロンドープドアモルファスシリコン層35(図5(d)参照)を堆積させることなく、ノンドープドアモルファスシリコン層33の上層部分に対して、ボロン(B)又はインジウム(In)等のシリコンに対してアクセプタとなる不純物をイオン注入する。その後、図7に示すように、シリコンの結晶化及び不純物の活性化のための熱処理を施す。これにより、ノンドープドアモルファスシリコン層33におけるアクセプタが注入された部分がp形層22pとなり、シリコン膜22が形成される。
また、ビット線BL上に形成されるシリコン膜22を形成する際には、ノンドープドアモルファスシリコン層及びボロンドープドアモルファスシリコン層を堆積させ、シリコン結晶粒を含むノンドープドアモルファスシリコン層を堆積させた後、リンドープドアモルファスシリコン層を堆積させることなく、ノンドープドアモルファスシリコン層の上層部分に対して、リン(P)又はヒ素(As)等のシリコンに対してドナーとなる不純物をイオン注入する。その後、シリコンの結晶化及び不純物の活性化のための熱処理を施す。これにより、ノンドープドアモルファスシリコン層33におけるドナーが注入された部分がn形層22nとなり、シリコン膜22が形成される。
本実施形態によれば、図5(d)に示すアモルファスシリコンの堆積工程を省略することができる。本実施形態における上記以外の構成、製造方法及び効果は、前述の第1の実施形態と同様である。
次に、第4の実施形態について説明する。
本実施形態は、前述の第1の実施形態と比較して、シリコンの結晶化及び不純物の活性化のための熱処理を、ピラー16の形成毎には行わず、クロスポイント型構造を作製した後に、一括して行う点が異なっている。これにより、熱処理の回数を低減することができると共に、メモリセル部13(図1参照)の下部に配置されたシリコン膜22と、上部に配置されたシリコン膜22との間で、熱履歴を揃えることができる。すなわち、先に形成されたシリコン膜22ほど熱処理を数多く受け、不純物がより多く拡散してしまうことを抑制できる。
なお、本実施形態においては、シリコン膜22中にシリコン結晶粒34を形成している。このため、図11に示す工程において、シリコン膜22等をRIEによって分断してピラー16に加工した後でも、各シリコン膜22中に結晶核を確実に含有させることができる。これにより、その後の熱処理において、各シリコン膜22を確実に結晶化させることができる。
これに対して、仮に、シリコン膜22中にシリコン結晶核34を形成しないと、加工後のピラー16内に結晶核が存在する確率が低くなるため、全てのピラー16においてシリコン膜22を確実に結晶化させることが困難になる。特に、半導体装置の高集積化を図るために、ピラー16を細くすると、この傾向が顕著になる。本実施形態における上記以外の構成、製造方法及び効果は、前述の第1の実施形態と同様である。
次に、第5の実施形態について説明する。
本実施形態に係る半導体装置は、各ピラー16中に、選択素子として、pin形ダイオードの替わりに、MIS(metal-insulator-semiconductor:金属−絶縁物−半導体)形ダイオードが形成されている点が異なっている。
以下、MIS形ダイオードの形成方法について説明する。例えば、420〜550℃の温度でボロンドープドアモルファスシリコン層を堆積させ、その後、炉内温度を550〜650℃まで上昇させて、シリコン結晶粒を含有したノンドープドアモルファスシリコン層を形成する。次に、シリコン酸化膜(SiO)等の絶縁膜を成膜し、次に、窒化チタン(TiN)膜等の電極膜を堆積させる。その後、熱処理を施し、アモルファスシリコン層を結晶化させると共に、ボロンを活性化させる。
このように、pin形ダイオード以外のダイオードを用いて選択素子を実現する場合においても、その一部又は全部がポリシリコンによって形成されるダイオードであれば、アモルファスシリコン層中にシリコン結晶粒を埋め込んでおくことにより、その後の結晶化が容易になる。本実施形態における上記以外の構成、製造方法及び効果は、前述の第1の実施形態と同様である。
前述の第1〜第4の実施形態においては、シリコン膜22の膜厚方向中央部に位置するノンドープドアモルファスシリコン層33中に、シリコン結晶粒34を形成した。前述の如く、これにより、堆積条件の制御が容易になる等のメリットがある。しかしながら、本発明はこれには限定されず、シリコン膜22いずれの部分にシリコン結晶粒34を形成してもよい。例えば、リンドープドアモルファスシリコン層32内若しくはボロンドープドアモルファスシリコン層35内にシリコン結晶粒34を形成してもよく、又は、ノンドープドアモルファスシリコン層33の膜厚方向における一部分のみに、シリコン結晶粒34を形成してもよい。
前述の各実施形態においては、選択素子としてpin形ダイオード又はMIS形ダイオードを形成する例を示したが、本発明はこれに限定されず、その一部又は全部が多結晶の半導体材料によって形成される素子であればよく、例えば、トランジスタであってもよい。また、半導体材料はシリコンには限定されない。
また、前述の各実施形態においては、半導体装置がReRAMである例を示したが、本発明はこれに限定されず、同一面上に配置され、不純物を含有する多結晶の半導体材料からなる複数の半導体膜を備えた半導体装置であればよい。
以上説明した実施形態によれば、ポリシリコンによって形成され、不純物濃度プロファイルが急峻であり、上面が平坦であるシリコン膜を備えた半導体装置及びその製造方法を実現することができる。
以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明及びその等価物の範囲に含まれる。また、前述の各実施形態は、相互に組み合わせて実施することができる。
1:半導体装置、11:シリコン基板、12:層間絶縁膜、13:メモリセル部、14:ワード線配線層、15:ビット線配線層、16:ピラー、17:層間絶縁膜、21:下部電極膜、22:シリコン膜、22i:i形層、22:n形層、22p:p形層、23:シリサイド層、24:バリアメタル層、25:抵抗変化膜、26:上部電極膜、27:ストッパ膜、31:ノンドープドアモルファスシリコン層、32:リンドープドアモルファスシリコン層、33:ノンドープドアモルファスシリコン層、34:シリコン結晶粒、35:ボロンドープドアモルファスシリコン層、41:シリコン原子、42:ダイヤモンド構造、43:(311)面、46:メタル層、BL:ビット線、C1、C2:条件、TP:相関線、WL:ワード線

Claims (15)

  1. 同一平面上に配置され、不純物を含有するポリシリコンからなる複数のシリコン膜と、
    前記シリコン膜の上面に対して平行な第1の方向に延びる複数本の第1配線からなる第1配線層と、
    前記シリコン膜の上面に対して平行であり、前記第1の方向に対して交差する第2の方向に延びる複数本の第2配線からなる第2配線層と、
    を備え、
    各前記シリコン膜の結晶配向は(311)配向であり、
    前記第1配線層及び前記第2配線層は交互に積層されており、
    各前記シリコン膜は、各前記第1配線と各前記第2配線との間に配置されていることを特徴とする半導体装置。
  2. 各前記シリコン膜においては、不純物濃度が膜厚方向に沿って変化していることを特徴とする請求項1記載の半導体装置。
  3. 前記シリコン膜は、ダイオード又はダイオードの一部であることを特徴とする請求項1または2に記載の半導体装置。
  4. 前記シリコン膜に積層された記憶膜をさらに備えたことを特徴とする請求項1〜のいずれか1つに記載の半導体装置。
  5. 前記記憶膜は抵抗変化膜であることを特徴とする請求項記載の半導体装置。
  6. 半導体基板上にシリコン膜を形成する工程を備え、
    前記シリコン膜を形成する工程は、
    アモルファスシリコンを堆積させる第1工程と、
    アモルファスシリコンを堆積させると共にシリコン結晶粒を生成し、前記シリコン結晶粒の成長速度よりも前記アモルファスシリコンの堆積速度を高くする第2工程と、
    を有することを特徴とする半導体装置の製造方法。
  7. 前記シリコン膜を形成する工程において、その濃度が前記シリコン膜の膜厚方向に沿って変化するように不純物を導入することを特徴とする請求項記載の半導体装置の製造方法。
  8. 前記アモルファスシリコンを結晶化させる工程をさらに備えたことを特徴とする請求項またはに記載の半導体装置の製造方法。
  9. 前記シリコン膜を形成する工程において、前記アモルファスシリコンを結晶化させることを特徴とする請求項またはに記載の半導体装置の製造方法。
  10. 前記シリコン膜を形成する工程は、
    アモルファスシリコンを堆積させる第3工程をさらに有し、
    前記第1工程、前記第2工程及び前記第3工程をこの順に実施することを特徴とする請求項のいずれか1つに記載の半導体装置の製造方法。
  11. 前記第1工程においては、ドナー又はアクセプタとなる不純物を前記アモルファスシリコン中に導入し、
    前記第3工程においては、アクセプタ又はドナーとなる不純物を前記アモルファスシリコン中に導入する
    ことを特徴とする請求項10記載の半導体装置の製造方法。
  12. 半導体基板上に、不純物が導入された第1のアモルファスシリコン層を堆積させる第1工程と、
    前記第1のアモルファスシリコン層上に、シリコン結晶粒を含有する第2のアモルファスシリコン層を堆積させる第2工程と、
    前記第2のアモルファスシリコン層上に、不純物が導入された第3のアモルファスシリコン層を堆積させる第3工程と、
    熱処理を施すことにより、前記シリコン結晶粒を核として前記第2のアモルファスシリコン層を結晶化させる第4工程と、
    を備え、
    前記第2工程において、前記シリコン結晶粒の成長速度よりも前記第2のアモルファスシリコン層の堆積速度を高くすることを特徴とする半導体装置の製造方法。
  13. 前記第2工程における堆積温度を、前記第1工程における堆積温度よりも高くすることを特徴とする請求項12のいずれか1つに記載の半導体装置の製造方法。
  14. 前記半導体基板の上面に対して平行な第1の方向に延びる複数本の第1配線からなる第1配線層を形成する工程と、
    前記半導体基板の上面に対して平行であり、前記第1の方向に対して交差する第2の方向に延びる複数本の第2配線からなる第2配線層を形成する工程と、
    前記シリコン膜を選択的に除去することにより、ピラーを形成する工程と、
    をさらに備え、
    前記第1配線層を形成する工程及び前記第2配線層を形成する工程を交互に実施し、
    前記ピラーを各前記第1配線と各前記第2配線との間に形成することを特徴とする請求項13のいずれか1つに記載の半導体装置の製造方法。
  15. 前記シリコン膜に積層するように、記憶膜を形成する工程をさらに備え、
    前記ピラーを形成する工程において、前記記憶膜も選択的に除去し、前記記憶膜を前記ピラーの一部とすることを特徴とする請求項14記載の半導体装置の製造方法。
JP2010231911A 2010-10-14 2010-10-14 半導体装置及びその製造方法 Expired - Fee Related JP5624425B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010231911A JP5624425B2 (ja) 2010-10-14 2010-10-14 半導体装置及びその製造方法
US13/052,143 US8558354B2 (en) 2010-10-14 2011-03-21 Semiconductor device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010231911A JP5624425B2 (ja) 2010-10-14 2010-10-14 半導体装置及びその製造方法

Publications (2)

Publication Number Publication Date
JP2012084813A JP2012084813A (ja) 2012-04-26
JP5624425B2 true JP5624425B2 (ja) 2014-11-12

Family

ID=45933349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010231911A Expired - Fee Related JP5624425B2 (ja) 2010-10-14 2010-10-14 半導体装置及びその製造方法

Country Status (2)

Country Link
US (1) US8558354B2 (ja)
JP (1) JP5624425B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102051529B1 (ko) * 2013-03-25 2020-01-08 에스케이하이닉스 주식회사 반도체 장치 및 그 제조방법, 그리고 반도체 장치를 포함하는 마이크로프로세서, 프로세서, 시스템, 데이터 저장 시스템 및 메모리 시스템
KR20200052994A (ko) * 2017-10-09 2020-05-15 어플라이드 머티어리얼스, 인코포레이티드 금속 증착을 위한 핵형성 층으로서의 등각 도핑된 비정질 실리콘
US10658297B2 (en) * 2018-06-30 2020-05-19 Intel Corporation Metal-nitride-free via in stacked memory
JP2021027290A (ja) * 2019-08-08 2021-02-22 キオクシア株式会社 半導体記憶装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513337A (ja) * 1991-06-29 1993-01-22 Toshiba Corp 半導体薄膜製造方法
JPH07176745A (ja) * 1993-12-17 1995-07-14 Semiconductor Energy Lab Co Ltd 半導体素子
US5888853A (en) * 1997-08-01 1999-03-30 Advanced Micro Devices, Inc. Integrated circuit including a graded grain structure for enhanced transistor formation and fabrication method thereof
JP3461277B2 (ja) * 1998-01-23 2003-10-27 株式会社東芝 半導体装置及びその製造方法
TW434866B (en) * 1999-08-13 2001-05-16 Taiwan Semiconductor Mfg Manufacturing method for contact plug
JP2003031806A (ja) * 2001-05-09 2003-01-31 Hitachi Ltd Mosトランジスタ及びその製造方法
US20020196651A1 (en) * 2001-06-22 2002-12-26 Rolf Weis Memory cell layout with double gate vertical array transistor
DE10143235A1 (de) * 2001-09-04 2003-03-27 Infineon Technologies Ag Halbleiterspeicherelement, Halbleiterspeicherelement-Anordnung, Verfahren zum Herstellen eines Halbleiterspeicherelementes und Verfahren zum Betreiben eines Halbleiterspeicherelementes
DE102008032067A1 (de) 2007-07-12 2009-01-15 Samsung Electronics Co., Ltd., Suwon Verfahren zum Bilden von Phasenänderungsspeichern mit unteren Elektroden
JP2010087259A (ja) * 2008-09-30 2010-04-15 Toshiba Corp 不揮発性記憶装置の製造方法
JP2010157583A (ja) * 2008-12-26 2010-07-15 Toshiba Corp 縦型ダイオード及びその製造方法並びに半導体記憶装置
JP5044586B2 (ja) 2009-02-24 2012-10-10 株式会社東芝 半導体記憶装置
JP5641779B2 (ja) * 2010-05-18 2014-12-17 株式会社日立製作所 不揮発性記憶装置およびその製造方法

Also Published As

Publication number Publication date
JP2012084813A (ja) 2012-04-26
US8558354B2 (en) 2013-10-15
US20120091414A1 (en) 2012-04-19

Similar Documents

Publication Publication Date Title
KR101153036B1 (ko) 기억 장치 및 그 제조 방법
CN102089880B (zh) 非易失性存储器器件的制造方法
US8481989B2 (en) Semiconductor resistive random access memory device suitable for bipolar action
TWI478168B (zh) 反熔絲記憶體及電子系統
US8222091B2 (en) Damascene method of making a nonvolatile memory device
US9252358B2 (en) Semiconductor memory device and method of manufacturing the same
KR100684889B1 (ko) 고집적 반도체 장치 및 그 제조 방법
US20100102291A1 (en) Carbon-based memory elements exhibiting reduced delamination and methods of forming the same
JP2012195357A (ja) 不揮発性記憶装置
JP2012533885A (ja) 犠牲材を使用してダマシンダイオードを作る方法
US8309958B2 (en) Semiconductor memory device and method of manufacturing same
JP2010267784A (ja) 半導体記憶装置及びその製造方法
JP5624425B2 (ja) 半導体装置及びその製造方法
JP2015060891A (ja) 記憶装置
US9312483B2 (en) Electrode structure for a non-volatile memory device and method
US9343674B2 (en) Cross-point memory utilizing Ru/Si diode
US10923593B1 (en) Transistor and methods of forming transistors
US10741754B2 (en) Resistive memory with amorphous silicon filaments
JP2010114220A (ja) 半導体装置およびその製造方法
US11417730B2 (en) Vertical transistors with channel region having vertically elongated crystal grains that individually are directly against both of the top and bottom source/drain regions
JP2011222929A (ja) 不揮発性記憶装置及びその製造方法
JP2012059995A (ja) 半導体装置及びその製造方法
JP2011060956A (ja) 半導体装置の製造方法
JP2013153104A (ja) 半導体記憶装置及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140926

LAPS Cancellation because of no payment of annual fees