JP5604482B2 - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP5604482B2
JP5604482B2 JP2012183375A JP2012183375A JP5604482B2 JP 5604482 B2 JP5604482 B2 JP 5604482B2 JP 2012183375 A JP2012183375 A JP 2012183375A JP 2012183375 A JP2012183375 A JP 2012183375A JP 5604482 B2 JP5604482 B2 JP 5604482B2
Authority
JP
Japan
Prior art keywords
phosphor
light
light emitting
emitting device
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012183375A
Other languages
Japanese (ja)
Other versions
JP2013021339A (en
Inventor
祥三 大塩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39697774&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP5604482(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2012183375A priority Critical patent/JP5604482B2/en
Publication of JP2013021339A publication Critical patent/JP2013021339A/en
Application granted granted Critical
Publication of JP5604482B2 publication Critical patent/JP5604482B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]

Abstract

PROBLEM TO BE SOLVED: To provide a light-emitting device which emits a high luminous flux of high color rendering properties, especially, a light-emitting device which emits warm white light.SOLUTION: The light-emitting device includes a luminous element and a phosphor layer. The luminous element is a blue luminous element that emits light which has the luminescence peak in a wavelength region of 440 nm or more and less than 500 nm. The phosphor layer includes: a green phosphor which contains Euor Ceas the emission major ions; and a red phosphor of a nitride or an oxynitride containing Euas the emission major ions. The green phosphor and the red phosphor emit light by being excited by the light emitted by the blue luminous element. The light-emitting device outputs light which includes light components emitted from the green phosphor, the red phosphor and the blue luminous element. The green phosphor has the excitation peak at the shorter wavelength side than the excitation wavelength which is the peak of the light emitted by the blue luminous element. The red phosphor is a nitride-aluminosilicate-based red phosphor.

Description

本発明は、窒化物蛍光体と発光素子とを組み合わせてなる発光装置、特に、例えば暖色系の白色光を放つ発光装置に関する。   The present invention relates to a light emitting device formed by combining a nitride phosphor and a light emitting element, and more particularly to a light emitting device that emits, for example, warm white light.

従来、赤色系光を放つ窒化物蛍光体として、630nm付近の波長領域に発光ピークを有するCaSiN2:Eu2+蛍光体が知られている。この蛍光体は、370nm付近の波長領域に励起スペクトルのピークを有し、360nm以上420nm未満の波長領域の近紫外光〜紫色系光による励起で高出力の赤色系光を放つため、上記近紫外光〜紫色系光を放つ発光素子と組み合わせた発光装置への応用が有望視されている(例えば、非特許文献1参照。)。赤色系光を放つ窒化物蛍光体は、上記CaSiN2:Eu2+蛍光体以外にも、例えば、Sr2Si58:Eu2+蛍光体(例えば、特許文献1参照。)が見出されている。 Conventionally, a CaSiN 2 : Eu 2+ phosphor having an emission peak in a wavelength region near 630 nm is known as a nitride phosphor emitting red light. This phosphor has an excitation spectrum peak in a wavelength region near 370 nm and emits high-power red light by excitation with near ultraviolet light to violet light in a wavelength region of 360 nm to less than 420 nm. Application to a light-emitting device combined with a light-emitting element that emits light to violet light is promising (see Non-Patent Document 1, for example). In addition to the CaSiN 2 : Eu 2+ phosphor, for example, a Sr 2 Si 5 N 8 : Eu 2+ phosphor (see, for example, Patent Document 1) is found as a nitride phosphor that emits red light. Has been.

また、波長500nm以上600nm未満の緑〜黄〜橙色領域に発光ピークを有する蛍光体として、発光中心イオンにEu2+を含む、窒化物蛍光体、酸窒化物蛍光体及びアルカリ土類金属オルト珪酸塩蛍光体等が知られている。これらの蛍光体は、400nm付近の波長領域に励起ピークを有し、上述の近紫外光〜紫色系光による励起によって高出力の緑〜黄〜橙色系光を放つ。このため、上記近紫外光〜紫色系光を放つ発光素子と組み合わせた発光装置への応用が有望視されている。さらに、上記波長領域に発光ピークを有する蛍光体として、発光中心イオンにEu2+を含むチオガレート蛍光体や、Ce3+を含むガーネット構造を有する蛍光体等も知られている(例えば、特許文献2〜7参照。)。 In addition, as a phosphor having a light emission peak in a green to yellow to orange region having a wavelength of 500 nm or more and less than 600 nm, a nitride phosphor, an oxynitride phosphor, and an alkaline earth metal orthosilicic acid containing Eu 2+ in the emission center ion Salt phosphors and the like are known. These phosphors have an excitation peak in a wavelength region near 400 nm, and emit high-power green to yellow to orange light by excitation with the above-described near ultraviolet light to violet light. For this reason, the application to the light-emitting device combined with the light emitting element which emits the said near-ultraviolet light-purple light is seen as promising. Furthermore, as phosphors having an emission peak in the above wavelength region, thiogallate phosphors containing Eu 2+ in the emission center ion, and phosphors having a garnet structure containing Ce 3+ are also known (for example, Patent Documents). 2-7).

一方、従来から、波長360nm以上420nm未満の近紫外〜紫色領域に発光ピークを有する発光素子(以下、紫色発光素子という。)、又は、波長420nm以上500nm未満の青色領域に発光ピークを有する発光素子(以下、青色発光素子という。)と、上記発光素子が放つ光によって励起する蛍光体とを組み合わせてなる発光装置が知られている(例えば、特許文献6、7参照。)。   On the other hand, conventionally, a light emitting element having an emission peak in the near ultraviolet to violet region having a wavelength of 360 nm or more and less than 420 nm (hereinafter referred to as a violet light emitting element), or a light emitting element having an emission peak in a blue region having a wavelength of 420 nm or more and less than 500 nm. There is known a light-emitting device that combines a blue light-emitting element (hereinafter referred to as a blue light-emitting element) and a phosphor that is excited by light emitted from the light-emitting element (see, for example, Patent Documents 6 and 7).

上記紫色発光素子を用い、かつ、高い光束と高い演色性とを両立させる発光装置には、暖色系の白色光を放つ発光装置として、La22S:Eu3+蛍光体やY22S:Eu3+蛍光体等の赤色系光を放つ酸硫化物蛍光体を多用した発光装置がある。また、白色光を放つ発光装置として、上記酸硫化物蛍光体と緑〜黄〜橙色系光を放つ蛍光体とを組み合わせて用いた発光装置や、さらに青色系光を放つ蛍光体を組み合わせた発光装置もある。上記緑〜黄〜橙色系光を放つ蛍光体としては、Eu2+で付活されたアルカリ土類金属オルト珪酸塩蛍光体や硫化亜鉛蛍光体等が用いられ、上記青色系光を放つ蛍光体としては、Eu2+で付活されたアルミン酸塩蛍光体やEu2+で付活されたハロ燐酸塩蛍光体等が用いられている(例えば、特許文献7〜9参照。)。 For a light emitting device that uses the violet light emitting element and achieves both high luminous flux and high color rendering, La 2 O 2 S: Eu 3+ phosphor and Y 2 O are used as light emitting devices that emit warm white light. There is a light-emitting device that frequently uses oxysulfide phosphors that emit red light, such as 2 S: Eu 3+ phosphors. In addition, as a light emitting device that emits white light, a light emitting device that uses a combination of the oxysulfide phosphor and a phosphor that emits green to yellow to orange light, or a light emitting device that combines a phosphor that emits blue light. There is also a device. As the phosphor that emits green to yellow to orange light, alkaline earth metal orthosilicate phosphor or zinc sulfide phosphor activated by Eu 2+ is used, and the phosphor that emits blue light is used. as is activated with halophosphate phosphor activated with aluminate phosphor and Eu 2+ in Eu 2+ or the like is used (for example, see Patent Document 7-9.).

上記青色発光素子を用いた発光装置には、暖色系の白色光を放ち、かつ、高い光束と高い演色性とを両立させる発光装置として、赤色系光を放つSr2Si58:Eu2+蛍光体やCaS:Eu2+蛍光体を用いた発光装置がある。また、上記赤色蛍光体と他の蛍光体とを組み合わせて用いた発光装置もある。上記他の蛍光体としては、例えば、SrGa24:Eu2+緑色蛍光体、SrAl24:Eu2+緑色蛍光体及びY3Al512:Ce3+黄色蛍光体が知られている(例えば、特許文献10、11参照。)。 In the light emitting device using the blue light emitting element, Sr 2 Si 5 N 8 : Eu 2 that emits red light as a light emitting device that emits warm white light and achieves both high luminous flux and high color rendering. + phosphor and CaS: light-emitting device is using Eu 2+ phosphor. There is also a light-emitting device using a combination of the red phosphor and another phosphor. Examples of the other phosphors include SrGa 2 S 4 : Eu 2+ green phosphor, SrAl 2 O 4 : Eu 2+ green phosphor and Y 3 Al 5 O 12 : Ce 3+ yellow phosphor. (For example, refer to Patent Documents 10 and 11).

なお、本発明に関する蛍光体の内部量子効率及び外部量子効率の測定技術については、すでに高精度な測定が可能な技術が確立しており、蛍光ランプ用の一部の蛍光体については、特定の励起波長の光照射下(254nm紫外線励起下)での絶対値が知られている(例えば、非特許文献2参照。)。   As for the measurement technique of the internal quantum efficiency and the external quantum efficiency of the phosphor according to the present invention, a technique capable of measuring with high accuracy has already been established. The absolute value under irradiation with light of an excitation wavelength (under 254 nm ultraviolet light excitation) is known (for example, see Non-Patent Document 2).

特表2003−515665号公報Special table 2003-515665 gazette 特開2003−124527号公報JP 2003-124527 A 特開2002−363554号公報JP 2002-363554 A 特開2003−203504号公報JP 2003-203504 A 特開2003−206481号公報JP 2003-206481 A 特開平10−242513号公報Japanese Patent Laid-Open No. 10-242513 国際公開第02/054502号パンフレットInternational Publication No. 02/054502 Pamphlet 国際公開第03/032407号パンフレットInternational Publication No. 03/032407 Pamphlet 特開2003−110150号公報JP 2003-110150 A 特表2003−515655号公報Special table 2003-515655 gazette 特開2004−10786号公報JP 2004-10786 A

上田恭太ほか、「電気化学会第71回大会学術講演予稿集」、電気化学学会、2004年、p.75Yuta Ueda et al., “Proceedings of the 71st Annual Conference of the Electrochemical Society of Japan”, Electrochemical Society, 2004, p. 75 大久保和明ほか、「照明学会誌」、平成11年、第83巻、第2号、p.87Kazuaki Okubo et al., “Journal of the Illuminating Society”, 1999, Vol. 83, No. 2, p. 87

しかし、上述した発光素子と蛍光体とを備えた発光装置には、高い光束と高い演色性とを両立させるものが少ないのが現状である。一方、発光装置に求められる要求は年々多様化しており、特に暖色系の白色光を放つ発光装置の開発が期待されている。   However, there are currently few light emitting devices including the above-described light emitting elements and phosphors that achieve both high luminous flux and high color rendering. On the other hand, demands for light emitting devices are diversifying year by year, and in particular, development of light emitting devices that emit warm white light is expected.

本発明は、このような課題を解決するためになされたものであり、高い光束と高い演色性とを両立する発光装置、特に、暖色系の白色光を放つ発光装置を提供するものである。   The present invention has been made to solve such problems, and provides a light-emitting device that achieves both high luminous flux and high color rendering properties, particularly a light-emitting device that emits warm-colored white light.

本発明は、発光素子と蛍光体層とを備え、前記発光素子は、440nm以上500nm未満の波長領域に発光ピークを有する光を放つ青色発光素子であり、前記蛍光体層は、500nm以上560nm未満の波長領域に発光ピークを有し、Eu2+又はCe3+を発光中心イオンとして含む緑色蛍光体と、600nm以上660nm未満の波長領域に発光ピークを有し、Eu2+を発光中心イオンとして含む窒化物又は酸窒化物の赤色蛍光体とを含み、前記緑色蛍光体と前記赤色蛍光体とは、前記青色発光素子が放つ光によって励起されて発光し、前記緑色蛍光体、前記赤色蛍光体及び前記青色発光素子が放つ発光成分を出力光として含む発光装置であって、前記蛍光体層は、Eu2+又はCe3+で付活された蛍光体以外の蛍光体を実質的に含まず、前記緑色蛍光体は、前記青色発光素子が放つ光のピークである励起波長よりも短波長側に励起ピークを有し、前記赤色蛍光体は、ニトリドアルミノシリケート系の赤色蛍光体であることを特徴とする。 The present invention includes a light emitting element and a phosphor layer, the light emitting element is a blue light emitting element that emits light having an emission peak in a wavelength region of 440 nm or more and less than 500 nm, and the phosphor layer is 500 nm or more and less than 560 nm. A green phosphor containing Eu 2+ or Ce 3+ as an emission center ion, and an emission peak in a wavelength region of 600 nm or more and less than 660 nm, and Eu 2+ as an emission center ion. A nitride phosphor or an oxynitride red phosphor, wherein the green phosphor and the red phosphor emit light when excited by light emitted by the blue light emitting element, and the green phosphor and the red phosphor And a light emitting device including a light emitting component emitted from the blue light emitting element as output light, wherein the phosphor layer is substantially free of a phosphor other than a phosphor activated by Eu 2+ or Ce 3+. , The green phosphor has an excitation peak on a shorter wavelength side than the excitation wavelength that is the peak of light emitted from the blue light-emitting element, and the red phosphor is a nitridoaluminosilicate-based red phosphor. Features.

本発明によれば、高い光束と高い演色性とを両立する発光装置、特に、暖色系の白色光を放つ発光装置を提供できる。   According to the present invention, it is possible to provide a light-emitting device that achieves both a high luminous flux and a high color rendering property, in particular, a light-emitting device that emits warm-colored white light.

本発明の実施形態における半導体発光素子の断面図である。It is sectional drawing of the semiconductor light-emitting device in embodiment of this invention. 本発明の実施形態における半導体発光素子の断面図である。It is sectional drawing of the semiconductor light-emitting device in embodiment of this invention. 本発明の実施形態における半導体発光素子の断面図である。It is sectional drawing of the semiconductor light-emitting device in embodiment of this invention. 本発明の実施形態における照明・表示装置の構成を示す概略図である。It is the schematic which shows the structure of the illumination and the display apparatus in embodiment of this invention. 本発明の実施形態における照明・表示装置の構成を示す概略図である。It is the schematic which shows the structure of the illumination and the display apparatus in embodiment of this invention. 本発明の実施形態における照明モジュールの斜視図である。It is a perspective view of the illumination module in the embodiment of the present invention. 本発明の実施形態における照明モジュールの斜視図である。It is a perspective view of the illumination module in the embodiment of the present invention. 本発明の実施形態における照明装置の斜視図である。It is a perspective view of the illuminating device in embodiment of this invention. 本発明の実施形態における照明装置の側面図Aと底面図Bである。It is the side view A and bottom view B of the illuminating device in embodiment of this invention. 本発明の実施形態における画像表示装置の斜視図である。1 is a perspective view of an image display device in an embodiment of the present invention. 本発明の実施形態における数字表示装置の斜視図である。It is a perspective view of the number display device in the embodiment of the present invention. SrSiN2:Eu2+赤色蛍光体の発光特性を示す図である。SrSiN 2: is a graph showing the emission characteristics of Eu 2+ red phosphor. SrAlSiN3:Eu2+赤色蛍光体の発光特性を示す図である。SrAlSiN 3: is a graph showing the emission characteristics of Eu 2+ red phosphor. Sr2Si58:Eu2+赤色蛍光体の発光特性を示す図である。Sr 2 Si 5 N 8: is a graph showing the emission characteristics of Eu 2+ red phosphor. (Ba,Sr)2SiO4:Eu2+緑色蛍光体の発光特性を示す図である。 (Ba, Sr) 2 SiO 4 : is a graph showing the emission characteristics of Eu 2+ green phosphor. (Sr,Ba)2SiO4:Eu2+黄色蛍光体の発光特性を示す図である。 (Sr, Ba) 2 SiO 4 : is a graph showing the emission characteristics of Eu 2+ yellow phosphor. (Sr,Ca)2SiO4:Eu2+黄色蛍光体の発光特性を示す図である。 (Sr, Ca) 2 SiO 4 : is a graph showing the emission characteristics of Eu 2+ yellow phosphor. 0.75(Ca0.9Eu0.1)O・2.25AlN・3.25Si34:Eu2+黄色蛍光体の発光特性を示す図である。 0.75 (Ca 0.9 Eu 0.1) O · 2.25AlN · 3.25Si 3 N 4: is a graph showing the emission characteristics of Eu 2+ yellow phosphor. (Y,Gd)3Al512:Ce3+黄色蛍光体の発光特性を示す図である。 (Y, Gd) 3 Al 5 O 12: is a graph showing the emission characteristics of Ce 3+ yellow phosphor. BaMgAl1017:Eu2+青色蛍光体の発光特性を示す図である。BaMgAl 10 O 17: is a graph showing the emission characteristics of Eu 2+ blue phosphor. Sr4Al1425:Eu2+青緑色蛍光体の発光特性を示す図である。Sr 4 Al 14 O 25: is a graph showing the emission characteristics of Eu 2+ blue-green phosphor. (Sr,Ba)10(PO46Cl2:Eu2+青色蛍光体の発光特性を示す図である。 (Sr, Ba) 10 (PO 4) 6 Cl 2: is a graph showing the emission characteristics of Eu 2+ blue phosphor. La22S:Eu3+赤色蛍光体の発光特性を示す図である。La 2 O 2 S: is a diagram showing the emission characteristics of Eu 3+ red phosphor. 本発明の実施例1における発光装置の斜視図である。It is a perspective view of the light-emitting device in Example 1 of this invention. 本発明の実施例1における発光装置の一部断面図である。It is a partial cross section figure of the light-emitting device in Example 1 of this invention. 本発明の実施例1における発光装置の発光スペクトルである。It is an emission spectrum of the light-emitting device in Example 1 of this invention. 本発明の比較例1における発光装置の発光スペクトルである。It is an emission spectrum of the light-emitting device in the comparative example 1 of this invention. 本発明の実施例1及び比較例1における、相関色温度と相対光束との関係をシミュレーションした結果を示す図である。It is a figure which shows the result of having simulated the relationship between correlation color temperature and a relative light beam in Example 1 and Comparative Example 1 of this invention. 本発明の実施例1及び比較例1における、相関色温度とRaとの関係をシミュレーションした結果を示す図である。It is a figure which shows the result of having simulated the relationship between correlation color temperature and Ra in Example 1 and Comparative Example 1 of this invention. 本発明の実施例2における、相関色温度とRaとの関係をシミュレーションした結果を示す図である。It is a figure which shows the result of having simulated the relationship between correlation color temperature and Ra in Example 2 of this invention. 本発明の実施例2における、相関色温度とR9との関係をシミュレーションした結果を示す図である。It is a figure which shows the result of having simulated the relationship between correlation color temperature and R9 in Example 2 of this invention. 本発明の実施例2における、相関色温度と相対光束との関係をシミュレーションした結果を示す図である。It is a figure which shows the result of having simulated the relationship between correlated color temperature and a relative light beam in Example 2 of this invention. 本発明の実施例2における発光装置の発光スペクトルである。It is an emission spectrum of the light-emitting device in Example 2 of this invention. 本発明の実施例3における発光装置の発光スペクトルである。It is an emission spectrum of the light-emitting device in Example 3 of this invention. 本発明の比較例2における発光装置の発光スペクトルである。It is an emission spectrum of the light-emitting device in the comparative example 2 of this invention. 本発明の実施例3及び比較例2における、相関色温度と相対光束との関係をシミュレーションした結果を示す図である。It is a figure which shows the result of having simulated the relationship between correlation color temperature and a relative light beam in Example 3 and Comparative Example 2 of this invention. 本発明の実施例3及び比較例2における、理想的な蛍光体を用いた発光装置の相関色温度と相対光束との関係をシミュレーションした結果を示す図である。It is a figure which shows the result of having simulated the relationship between the correlation color temperature of the light-emitting device using the ideal fluorescent substance in Example 3 and Comparative Example 2 of this invention, and a relative light beam. 本発明の実施例3及び比較例2における、相関色温度とRaとの関係をシミュレーションした結果を示す図である。It is a figure which shows the result of having simulated the relationship between correlation color temperature and Ra in Example 3 and Comparative Example 2 of this invention. 本発明の実施例3及び比較例2における、相関色温度とR9との関係をシミュレーションした結果を示す図である。It is a figure which shows the result of having simulated the relationship between correlation color temperature and R9 in Example 3 and Comparative Example 2 of this invention. 本発明の実施例3における、相関色温度4500K(duv=0)の暖色系白色光を放つ発光装置の発光スペクトルをシミュレーションした結果を示す図である。It is a figure which shows the result of having simulated the emission spectrum of the light-emitting device which emits the warm color type | system | group white light of correlation color temperature 4500K (duv = 0) in Example 3 of this invention. 本発明の実施例3における、相関色温度5500K(duv=0)の暖色系白色光を放つ発光装置の発光スペクトルをシミュレーションした結果を示す図である。It is a figure which shows the result of having simulated the emission spectrum of the light-emitting device which emits the warm color type | system | group white light of correlation color temperature 5500K (duv = 0) in Example 3 of this invention.

Eu2+で付活された蛍光体の特性を詳細に調べたところ、以下(1)〜(3)に示す蛍光体は、波長360nm以上420nm未満の近紫外〜紫色領域に発光ピークを有する紫色発光素子の励起下における内部量子効率だけでなく、波長420nm以上500nm未満、特に、波長440nm以上500nm未満の青色領域に発光ピークを有する青色発光素子の励起下における内部量子効率も高く、良好なものは、その内部量子効率が90%〜100%であることが見出された。
(1) Eu2+で付活され、500nm以上560nm未満の波長領域に発光ピークを有するアルカリ土類金属オルト珪酸塩系、チオガレート系、アルミン酸塩系及び窒化物系(ニトリドシリケート系やサイアロン系等)の緑色蛍光体、例えば、(Ba,Sr)2SiO4:Eu2+、SrGa24:Eu2+、SrAl24:Eu2+、BaSiN2:Eu2+、Sr1.5Al3Si916:Eu2+等の蛍光体。
(2) Eu2+で付活され、560nm以上600nm未満の波長領域に発光ピークを有するアルカリ土類金属オルト珪酸塩系、チオガレート系及び窒化物系(ニトリドシリケート系やサイアロン系等)の黄色蛍光体、例えば、(Sr,Ba)2SiO4:Eu2+、CaGa24:Eu2+、0.75(Ca0.9Eu0.1)O・2.25AlN・3.25Si34:Eu2+、Ca1.5Al3Si916:Eu2+、(Sr,Ca)2SiO4:Eu2+、CaSiAl232:Eu2+、CaSi6AlON9:Eu2+等の蛍光体。
(3) Eu2+で付活され、600nm以上660nm未満の波長領域に発光ピークを有する窒化物系(ニトリドシリケート系、ニトリドアルミノシリケート系等)の赤色蛍光体、例えば、Sr2Si58:Eu2+、SrSiN2:Eu2+、SrAlSiN3:Eu2+、CaAlSiN3:Eu2+、Sr2Si4AlON7:Eu2+等の蛍光体。
When the characteristics of the phosphor activated by Eu 2+ were examined in detail, the phosphors shown in (1) to (3) below are purple having a light emission peak in the near ultraviolet to purple region having a wavelength of 360 nm or more and less than 420 nm. Not only the internal quantum efficiency under the excitation of the light emitting element but also the internal quantum efficiency under the excitation of a blue light emitting element having a light emission peak in the blue region with a wavelength of 420 nm or more and less than 500 nm, in particular, a wavelength of 440 nm or more and less than 500 nm is high and good. Was found to have an internal quantum efficiency of 90% to 100%.
(1) Alkaline earth metal orthosilicate type, thiogallate type, aluminate type and nitride type (nitridosilicate type and sialon) which are activated by Eu 2+ and have an emission peak in a wavelength region of 500 nm or more and less than 560 nm Green phosphors such as (Ba, Sr) 2 SiO 4 : Eu 2+ , SrGa 2 S 4 : Eu 2+ , SrAl 2 O 4 : Eu 2+ , BaSiN 2 : Eu 2+ , Sr 1.5 A phosphor such as Al 3 Si 9 N 16 : Eu 2+ .
(2) Alkaline earth metal orthosilicate type, thiogallate type and nitride type (nitridosilicate type, sialon type, etc.) yellow that is activated by Eu 2+ and has an emission peak in the wavelength region of 560 nm to less than 600 nm Phosphor, for example, (Sr, Ba) 2 SiO 4 : Eu 2+ , CaGa 2 S 4 : Eu 2+ , 0.75 (Ca 0.9 Eu 0.1 ) O · 2.25AlN · 3.25Si 3 N 4 : Eu 2+ , Ca 1.5 Al 3 Si 9 N 16 : Eu 2+ , (Sr, Ca) 2 SiO 4 : Eu 2+ , CaSiAl 2 O 3 N 2 : Eu 2+ , CaSi 6 AlON 9 : Eu 2+, etc. Phosphor.
(3) Nitride-based (nitridosilicate, nitridoaluminosilicate, etc.) red phosphors activated by Eu 2+ and having an emission peak in the wavelength region of 600 nm to less than 660 nm, for example, Sr 2 Si 5 Phosphors such as N 8 : Eu 2+ , SrSiN 2 : Eu 2+ , SrAlSiN 3 : Eu 2+ , CaAlSiN 3 : Eu 2+ , Sr 2 Si 4 AlON 7 : Eu 2+ .

これらの蛍光体の励起スペクトルは、上記青色発光素子の放つ光の波長よりも短波長領域に、多くは波長360nm以上420nm未満の近紫外〜紫色領域に励起ピークを有するため、上記青色発光素子の励起下における外部量子効率は必ずしも高くない。しかし内部量子効率は、励起スペクトルから予想される以上に高い70%以上、特に良好な場合は90%〜100%であることがわかった。   The excitation spectrum of these phosphors has an excitation peak in the shorter wavelength region than the wavelength of light emitted by the blue light emitting device, most of which is in the near ultraviolet to purple region having a wavelength of 360 nm or more and less than 420 nm. The external quantum efficiency under excitation is not necessarily high. However, it has been found that the internal quantum efficiency is 70% or higher, which is higher than expected from the excitation spectrum, and 90% to 100% in particularly favorable cases.

一例として、図12に、SrSiN2:Eu2+赤色蛍光体の内部量子効率16、外部量子効率17及び励起スペクトル18を示し、また、参考のため、蛍光体の発光スペクトル19も示した。また、図13〜図18には、SrAlSiN3:Eu2+赤色蛍光体(図13)、Sr2Si58:Eu2+赤色蛍光体(図14)、(Ba,Sr)2SiO4:Eu2+緑色蛍光体(図15)、(Sr,Ba)2SiO4:Eu2+黄色蛍光体(図16)、(Sr,Ca)2SiO4:Eu2+黄色蛍光体(図17)、0.75(Ca0.9Eu0.1)O・2.25AlN・3.25Si34:Eu2+黄色蛍光体(図18)について、図12と同様に示した。例えば、図16に示した、Eu2+で付活されたアルカリ土類金属オルト珪酸塩蛍光体である(Sr,Ba)2SiO4:Eu2+黄色蛍光体の外部量子効率は、波長440nmの青色発光素子の励起下において約75%、波長460nmにおいて約67%、波長470nmにおいて約60%である。しかし内部量子効率は、波長440nm以上500nm未満の青色領域において、いずれも励起スペクトルから予想される以上に高い85%以上であり、特に良好な場合は約94%であることがわかった。 As an example, FIG. 12 shows an internal quantum efficiency 16, an external quantum efficiency 17 and an excitation spectrum 18 of a SrSiN 2 : Eu 2+ red phosphor, and an emission spectrum 19 of the phosphor is also shown for reference. 13 to 18 show SrAlSiN 3 : Eu 2+ red phosphor (FIG. 13), Sr 2 Si 5 N 8 : Eu 2+ red phosphor (FIG. 14), (Ba, Sr) 2 SiO 4. : Eu 2+ green phosphor (FIG. 15), (Sr, Ba) 2 SiO 4 : Eu 2+ yellow phosphor (FIG. 16), (Sr, Ca) 2 SiO 4 : Eu 2+ yellow phosphor (FIG. 17) ), 0.75 (Ca 0.9 Eu 0.1 ) O · 2.25AlN · 3.25Si 3 N 4 : Eu 2+ yellow phosphor (FIG. 18) is shown in the same manner as FIG. For example, the external quantum efficiency of the (Sr, Ba) 2 SiO 4 : Eu 2+ yellow phosphor, which is an alkaline earth metal orthosilicate phosphor activated with Eu 2+ shown in FIG. 16, has a wavelength of 440 nm. And about 67% at a wavelength of 460 nm and about 60% at a wavelength of 470 nm. However, it was found that the internal quantum efficiency is 85% or higher, which is higher than expected from the excitation spectrum, in a blue region having a wavelength of 440 nm or more and less than 500 nm, and is about 94% when particularly good.

また、上述の蛍光体以外にも、Eu2+又はCe3+で付活された蛍光体は同様の特性をもつことがわかった。一例として、図19〜図22に、(Y,Gd)3Al512:Ce3+黄色蛍光体(図19)、BaMgAl1017:Eu2+青色蛍光体(図20)、Sr4Al1425:Eu2+青緑色蛍光体(図21)、(Sr,Ba)10(PO46Cl2:Eu2+青色蛍光体(図22)について、図12と同様に示した。 In addition to the phosphors described above, it has been found that phosphors activated with Eu 2+ or Ce 3+ have similar characteristics. As an example, FIGS. 19 to 22 show (Y, Gd) 3 Al 5 O 12 : Ce 3+ yellow phosphor (FIG. 19), BaMgAl 10 O 17 : Eu 2+ blue phosphor (FIG. 20), Sr 4. Al 14 O 25 : Eu 2+ blue-green phosphor (FIG. 21), (Sr, Ba) 10 (PO 4 ) 6 Cl 2 : Eu 2+ blue phosphor (FIG. 22) are shown in the same manner as FIG. .

図12〜図22より、各蛍光体の外部量子効率の励起波長依存性は、励起スペクトルの形状と類似し、励起スペクトルのピークよりも長波長の光の励起下において、例えば、上記青色発光素子の励起下において外部量子効率は必ずしも高い数値でないが、内部量子効率は上記青色発光素子の励起下においても高い数値を示すことがわかる。また、図12〜図18及び図20〜22より、各蛍光体は、上記紫色発光素子の励起下における内部量子効率が高く、良好なものは90%〜100%であることもわかる。   From FIG. 12 to FIG. 22, the excitation wavelength dependence of the external quantum efficiency of each phosphor is similar to the shape of the excitation spectrum. For example, under the excitation of light having a wavelength longer than the peak of the excitation spectrum, for example, the blue light emitting element It is understood that the external quantum efficiency is not necessarily a high value under the excitation of the blue light, but the internal quantum efficiency shows a high value even under the excitation of the blue light emitting element. Also, from FIGS. 12 to 18 and FIGS. 20 to 22, it can be seen that each phosphor has high internal quantum efficiency under excitation of the violet light-emitting element, and good ones are 90% to 100%.

さらに調べたところ、上記(1)〜(3)以外の蛍光体にも、以下(4)及び(5)に示す蛍光体は、上記紫色発光素子の励起下における内部量子効率が高いことがわかった。
(4) Eu2+又はCe3+で付活され、490nm以上550nm以下の波長領域に発光ピークを有する窒化物系(ニトリドシリケート系、サイアロン系等)の青緑色又は緑色蛍光体、例えば、Sr2Si58:Ce3+、SrSiAl232:Eu2+、Ca1.5Al3Si916:Ce3+等の蛍光体。
(5)Eu2+で付活され、420nm以上500nm未満の波長領域に発光ピークを有するアルカリ土類金属オルト珪酸塩系、ハロ燐酸塩系の青緑又は青色蛍光体、例えば、Ba3MgSi28:Eu2+、(Sr,Ca)10(PO46Cl2:Eu2+等の蛍光体。
Further investigation revealed that phosphors other than the above (1) to (3) have high internal quantum efficiencies under the excitation of the violet light emitting device, as shown in (4) and (5) below. It was.
(4) Nitride-based (nitridosilicate-based, sialon-based, etc.) blue-green or green phosphors activated by Eu 2+ or Ce 3+ and having an emission peak in the wavelength range of 490 nm to 550 nm, for example, Phosphors such as Sr 2 Si 5 N 8 : Ce 3+ , SrSiAl 2 O 3 N 2 : Eu 2+ , Ca 1.5 Al 3 Si 9 N 16 : Ce 3+ .
(5) Alkaline earth metal orthosilicate-based, halophosphate-based blue-green or blue phosphor activated by Eu 2+ and having an emission peak in a wavelength region of 420 nm or more and less than 500 nm, for example, Ba 3 MgSi 2 Phosphors such as O 8 : Eu 2+ , (Sr, Ca) 10 (PO 4 ) 6 Cl 2 : Eu 2+ .

これらの蛍光体の励起スペクトルは、波長360nm以上420nm未満の近紫外〜紫色領域に励起ピークを有するため、上記紫色発光素子の励起下における外部量子効率は高くない。   Since the excitation spectrum of these phosphors has an excitation peak in the near ultraviolet to violet region having a wavelength of 360 nm or more and less than 420 nm, the external quantum efficiency under excitation of the violet light emitting device is not high.

一例として、図23に、従来上記紫色発光素子と組み合わせて多用されているLa22S:Eu3+赤色蛍光体の内部量子効率16、外部量子効率17、及び励起スペクトル18を示し、また、参考のため、蛍光体の発光スペクトル19も示した。図23からわかるように、上記La22S:Eu3+赤色蛍光体の内部量子効率と外部量子効率は、励起スペクトルのピークが380nm以上420nm未満の紫色領域、しかも、約360〜380nm程度以上の励起波長では、励起波長の増加とともに急激に低下する。例えば、励起波長が、380nm以上420nm未満の紫色領域において、励起波長を次第に長くした場合、内部量子効率は、約80%(380nm)、約62%(400nm)、約25%(420nm)と、低い水準で大きく変化する。 As an example, FIG. 23 shows an internal quantum efficiency 16, an external quantum efficiency 17, and an excitation spectrum 18 of a La 2 O 2 S: Eu 3+ red phosphor that has been conventionally used in combination with the violet light emitting element. For reference, an emission spectrum 19 of the phosphor is also shown. As can be seen from FIG. 23, the La 2 O 2 S: Eu 3+ red phosphor has an internal quantum efficiency and an external quantum efficiency of a purple region having an excitation spectrum peak of 380 nm to less than 420 nm, and about 360 to 380 nm. At the above excitation wavelength, it decreases rapidly as the excitation wavelength increases. For example, in the violet region where the excitation wavelength is 380 nm or more and less than 420 nm, when the excitation wavelength is gradually increased, the internal quantum efficiency is about 80% (380 nm), about 62% (400 nm), about 25% (420 nm), Large changes at low levels.

また、データは省略するが、Y22S:Eu3+赤色蛍光体の内部量子効率、外部量子効率及び励起スペクトルは、上述したLa22S:Eu3+の内部量子効率、外部量子効率及び励起スペクトルの特性が、短波長側に10〜50nmシフトしたものである。 Although not shown, the internal quantum efficiency, external quantum efficiency, and excitation spectrum of Y 2 O 2 S: Eu 3+ red phosphor are the same as the internal quantum efficiency of La 2 O 2 S: Eu 3+ described above. The characteristics of quantum efficiency and excitation spectrum are shifted to the short wavelength side by 10 to 50 nm.

すなわち、従来上記紫色発光素子と組み合わせて多用されているLa22S:Eu3+赤色蛍光体及びY22S:Eu3+赤色蛍光体は、波長360nm以上420nm未満の近紫外〜紫色領域、特に波長380nm以上420nm未満の紫色領域に発光ピークを有する発光素子の放つ光を高い変換効率で赤色光に波長変換することが、材料物性上困難な蛍光体であることがわかる。 That is, La 2 O 2 S: Eu 3+ red phosphor and Y 2 O 2 S: Eu 3+ red phosphor, which are conventionally used in combination with the violet light-emitting element, have a wavelength of from 360 nm to less than 420 nm. It can be seen that it is difficult to convert the wavelength of light emitted from a light emitting element having a light emission peak in the violet region, particularly in a violet region having a wavelength of 380 nm to less than 420 nm, into red light with high conversion efficiency in terms of material properties.

なお、上記La22S:Eu3+赤色蛍光体及びY22S:Eu3+赤色蛍光体が、上述した内部量子効率の励起波長依存性を示すのは、Eu3+が電荷移動状態(CTS:charge transfer state)を励起状態としており、CTSを経てEu3+の4fエネルギー準位に励起エネルギーが緩和してから発光した場合には、高効率発光し、CTSを経ずにEu3+の直接励起によって発光した場合には、高効率発光しないことに起因する。上記CTSとは、周りの陰イオン(O又はS)からEu3+の方へ電子が1個移った状態のことである。従って、上述したメカニズムに起因して、上記酸硫化物系の赤色蛍光体と発光素子、特に紫色発光素子とを用いて、高光束の発光装置を得ることは難しい。 Incidentally, the La 2 O 2 S: Eu 3+ red phosphor and Y 2 O 2 S: Eu 3+ red phosphor, exhibit an excitation wavelength dependence of the internal quantum efficiency described above, Eu 3+ charge When the state of movement (CTS: charge transfer state) is in the excited state, and light is emitted after the excitation energy has been relaxed to the 4f energy level of Eu 3+ via CTS, light is emitted with high efficiency, without passing through CTS. When light is emitted by direct excitation of Eu 3+ , this is because the light is not emitted with high efficiency. The CTS is a state in which one electron has moved from the surrounding negative ions (O or S) toward Eu 3+ . Therefore, due to the mechanism described above, it is difficult to obtain a light-emitting device with a high luminous flux using the oxysulfide-based red phosphor and a light-emitting element, particularly a violet light-emitting element.

さらに、紫色発光素子を用いて複数種類の蛍光体を励起させる白色発光装置を構成した場合、色バランスとの兼ね合いから、その出力光の強度は、内部量子効率が最も低い蛍光体の内部量子効率と相関関係がある。すなわち、発光装置を構成する蛍光体の中に、内部量子効率の低い蛍光体が1つでもあれば、出力光の強度も低くなり、高光束の白色系光を得ることはできない。   Furthermore, when a white light-emitting device that excites a plurality of types of phosphors using a purple light-emitting element is used, the intensity of the output light has the lowest internal quantum efficiency due to the balance of color balance. There is a correlation. That is, if there is at least one phosphor having a low internal quantum efficiency among the phosphors constituting the light emitting device, the intensity of the output light becomes low and white light with a high luminous flux cannot be obtained.

ここで、内部量子効率とは、蛍光体に吸収された励起光の量子数に対して、蛍光体から放射される光の量子数の割合を示し、外部量子効率とは、蛍光体を照射する励起光の量子数に対して、蛍光体から放射される光の量子数の割合を示す。つまり、高い量子効率は、励起光が効率よく光変換されていることを表す。量子効率の測定方法は、既に確立されており、上述した非特許文献2に詳しい。   Here, the internal quantum efficiency indicates the ratio of the quantum number of light emitted from the phosphor to the quantum number of the excitation light absorbed by the phosphor, and the external quantum efficiency irradiates the phosphor. The ratio of the quantum number of light emitted from the phosphor to the quantum number of excitation light is shown. That is, high quantum efficiency indicates that the excitation light is efficiently converted into light. A method for measuring quantum efficiency has already been established, and is detailed in Non-Patent Document 2 described above.

内部量子効率が高い蛍光体に吸収された発光素子の放つ光は、効率よく光変換されて放出される。一方、蛍光体に吸収されなかった発光素子の放つ光は、そのまま放出される。そのため、上述した波長領域に発光ピークを有する発光素子と、その発光素子の放つ光の励起下において内部量子効率が高い蛍光体とを備えた発光装置は、光エネルギーを効率よく使用できることになる。従って、上記(1)〜(5)の蛍光体と上記発光素子とを、少なくとも組み合わせることによって、高光束かつ高演色の発光装置とすることができる。   The light emitted from the light emitting element absorbed by the phosphor having high internal quantum efficiency is efficiently converted and emitted. On the other hand, the light emitted from the light emitting element that is not absorbed by the phosphor is emitted as it is. Therefore, a light emitting device including a light emitting element having an emission peak in the above-described wavelength region and a phosphor having high internal quantum efficiency under excitation of light emitted from the light emitting element can efficiently use light energy. Therefore, by combining at least the phosphors (1) to (5) and the light emitting element, a light emitting device with a high luminous flux and a high color rendering can be obtained.

一方、上述した波長領域に発光ピークを有する発光素子と、その発光素子の放つ光の励起下において内部量子効率が低い蛍光体とを備えた発光装置は、発光素子が放つ光エネルギーを効率よく変換できないために、光束が低い発光装置になる。   On the other hand, a light emitting device including a light emitting element having a light emission peak in the above-described wavelength region and a phosphor having low internal quantum efficiency under excitation of light emitted from the light emitting element efficiently converts light energy emitted by the light emitting element. Since this is not possible, the light emitting device has a low luminous flux.

なお、360nm以上420nm未満の近紫外〜紫色領域に発光ピークを有する発光素子と、その発光素子の放つ光の励起下において外部量子効率が低い蛍光体とを備えた発光装置は、視感度が低く光束向上にほとんど関与しない近紫外〜紫色領域の光を放つため、蛍光体層の厚みを増やす、蛍光体層中の蛍光体濃度を高める等して、上記発光素子の放つ光を蛍光体に多く吸収させなければ、光束が低い発光装置になる。   Note that a light emitting device including a light emitting element having a light emission peak in the near ultraviolet to violet region of 360 nm or more and less than 420 nm and a phosphor having low external quantum efficiency under excitation of light emitted from the light emitting element has low visibility. In order to emit light in the near-ultraviolet to violet region, which is hardly involved in improving the luminous flux, increase the phosphor layer thickness, increase the phosphor concentration in the phosphor layer, etc. If it is not absorbed, the light emitting device has a low luminous flux.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

(実施形態1)
本発明の発光装置の一例は、窒化物蛍光体を含む蛍光体層と発光素子とを備え、上記発光素子は、360nm以上500nm未満の波長領域に発光ピークを有し、上記窒化物蛍光体は、上記発光素子が放つ光によって励起されて発光し、上記窒化物蛍光体が放つ発光成分を出力光として少なくとも含む発光装置である。また、上記窒化物蛍光体は、Eu2+で付活され、かつ、組成式(M1-xEux)AlSiN3で表される蛍光体であり、上記Mは、Mg、Ca、Sr、Ba及びZnから選ばれる少なくとも1つの元素であり、上記xは、式0.005≦x≦0.3を満たす数値である。
(Embodiment 1)
An example of the light-emitting device of the present invention includes a phosphor layer containing a nitride phosphor and a light-emitting element, and the light-emitting element has a light emission peak in a wavelength region of 360 nm or more and less than 500 nm, and the nitride phosphor is A light emitting device that emits light when excited by light emitted from the light emitting element and includes at least a light emitting component emitted by the nitride phosphor as output light. The nitride phosphor is a phosphor activated by Eu 2+ and represented by a composition formula (M 1-x Eu x ) AlSiN 3, where M is Mg, Ca, Sr, It is at least one element selected from Ba and Zn, and the above x is a numerical value satisfying the formula 0.005 ≦ x ≦ 0.3.

上記発光素子は、電気エネルギーを光に換える光電変換素子であり、360nm以上420nm未満又は420nm以上500nm未満、より好ましくは380nm以上420nm未満又は440nm以上500nm未満のいずれかの波長領域に発光ピークを有する光を放つものであれば特に限定されず、例えば、発光ダイオード(LED)、レーザーダイオード(LD)、面発光LD、無機エレクトロルミネッセンス(EL)素子、有機EL素子等を用いることができる。   The light-emitting element is a photoelectric conversion element that converts electric energy into light, and has a light emission peak in any wavelength region of 360 nm to less than 420 nm, or 420 nm to less than 500 nm, more preferably 380 nm to less than 420 nm, or 440 nm to less than 500 nm. For example, a light emitting diode (LED), a laser diode (LD), a surface emitting LD, an inorganic electroluminescence (EL) element, an organic EL element, or the like can be used.

なお、発光素子として、GaN系化合物を発光層としたLEDやLDを用いる場合には、高い出力が得られる理由で、好ましくは380nm以上420nm未満、より好ましくは395nm以上415nm以下の波長領域に発光ピークを有する光を放つ紫色発光素子、又は、好ましくは440nm以上500nm未満、より好ましくは450nm以上480nm以下の波長領域に発光ピークを有する光を放つ青色発光素子にするとよい。   When an LED or LD using a GaN-based compound as a light emitting layer is used as the light emitting element, it emits light in a wavelength region of preferably 380 nm to less than 420 nm, more preferably 395 nm to 415 nm, for high output. A violet light-emitting element that emits light having a peak, or a blue light-emitting element that emits light having an emission peak in a wavelength region of preferably 440 nm to less than 500 nm, more preferably 450 nm to 480 nm is preferable.

上記出力光は、上記発光素子が放つ発光成分を含むことが好ましい。特に、上記発光素子が、青色系領域に発光ピークを有する発光素子である場合、上記窒化物蛍光体が放つ発光成分と、上記発光素子が放つ発光成分とを出力光に含めば、より高い演色性を有する白色光が得られ、より好ましい。   The output light preferably includes a light emitting component emitted by the light emitting element. In particular, when the light-emitting element is a light-emitting element having a light emission peak in a blue region, higher color rendering can be achieved by including in the output light the light-emitting component emitted by the nitride phosphor and the light-emitting component emitted by the light-emitting element. White light having the property is obtained, which is more preferable.

上記窒化物蛍光体は、600nm以上660nm未満の波長領域に発光ピークを有する暖色系光、好ましくは610nm以上650nm以下の波長領域に発光ピークを有する赤色系光を放つ上記組成式(M1-xEux)AlSiN3で表される窒化物蛍光体であり、上述した360nm以上500nm未満の波長領域の励起光下における内部量子効率が高い窒化物蛍光体、例えば、図13に示したSrAlSiN3:Eu2+赤色蛍光体やCaAlSiN3:Eu2+赤色蛍光体等に該当する。 The nitride phosphor, warm light in the wavelength region of less than 600 nm 660 nm, preferably above composition formula that emits red light having an emission peak in 650nm or less wavelength region above 610nm (M 1-x A nitride phosphor represented by Eu x ) AlSiN 3 and having a high internal quantum efficiency under the excitation light in the wavelength region of 360 nm or more and less than 500 nm, for example, SrAlSiN 3 shown in FIG. It corresponds to Eu 2+ red phosphor and CaAlSiN 3 : Eu 2+ red phosphor.

内部量子効率が高い窒化物蛍光体を含む蛍光体層と、上記発光素子とを少なくとも備えた発光装置は、光エネルギーを効率よく出力することができる。上記のように構成された発光装置は、暖色系発光成分の強度が強く、特殊演色評価数R9の数値が大きな装置になる。これはLa22S:Eu3+蛍光体を用いた従来の発光装置やSr2Si58:Eu2+蛍光体とYAG(イットリウム・アルミニウム・ガーネット):Ce系蛍光体とを組み合わせて用いた従来の発光装置に匹敵する、高い光束と高い演色性とをもつ。 A light emitting device including at least a phosphor layer containing a nitride phosphor having high internal quantum efficiency and the light emitting element can efficiently output light energy. The light emitting device configured as described above is a device in which the intensity of the warm color light emitting component is high and the numerical value of the special color rendering index R9 is large. This is a combination of a conventional light emitting device using La 2 O 2 S: Eu 3+ phosphor and a combination of Sr 2 Si 5 N 8 : Eu 2+ phosphor and YAG (yttrium, aluminum, garnet): Ce phosphor. It has a high luminous flux and a high color rendering property comparable to the conventional light emitting device used in the above.

本実施形態の発光装置は、上記窒化物蛍光体を含む蛍光体層と、上記発光素子とを少なくとも備えていれば、特に限定されるものではなく、例えば、半導体発光素子、白色発光ダイオード(以下、白色LEDという。)、白色LEDを用いた表示装置及び白色LEDを用いた照明装置等が該当する。より具体的には、白色LEDを用いた表示装置としては、例えば、LED情報表示端末、LED交通信号灯、自動車用のLEDランプ等がある。白色LEDを用いた照明装置としては、例えば、LED屋内外照明灯、車内LED灯、LED非常灯、LED装飾灯等がある。   The light-emitting device of this embodiment is not particularly limited as long as it includes at least the phosphor layer containing the nitride phosphor and the light-emitting element. A white LED), a display device using a white LED, a lighting device using a white LED, and the like. More specifically, examples of the display device using the white LED include an LED information display terminal, an LED traffic signal lamp, and an automobile LED lamp. Illumination devices using white LEDs include, for example, LED indoor / outdoor illumination lights, vehicle interior LED lights, LED emergency lights, and LED decoration lights.

この中でも、上記白色LEDが特に好ましい。一般に従来のLEDは、その発光原理から、特定の波長の光を放つ単色光源の発光素子である。つまり、従来のLEDからは白色系光を放つ発光素子は得られない。これに対して、本実施形態の白色LEDは、例えば、従来のLEDと蛍光体とを組み合わせる方法によって白色蛍光を得ることができる。   Among these, the white LED is particularly preferable. Generally, a conventional LED is a light emitting element of a monochromatic light source that emits light of a specific wavelength because of its light emission principle. That is, a light emitting element that emits white light cannot be obtained from a conventional LED. On the other hand, the white LED of the present embodiment can obtain white fluorescence by a method of combining a conventional LED and a phosphor, for example.

本実施形態において、上記窒化物蛍光体は、上記元素Mの主成分をSr又はCaとすると、良好な色調と強い発光強度を得られ、より好ましい。なお、主成分をSr又はCaとするとは、元素Mの50原子%以上がSr又はCaのいずれか1つの元素であることをいう。また、元素Mの80原子%以上がSr又はCaのいずれか1つの元素であることが好ましく、元素Mの全原子がSr又はCaのいずれか1つの元素であることがより好ましい。   In the present embodiment, the nitride phosphor is more preferable when the main component of the element M is Sr or Ca, because a good color tone and strong emission intensity can be obtained. Note that the main component being Sr or Ca means that 50 atomic% or more of the element M is any one element of Sr or Ca. Moreover, it is preferable that 80 atomic% or more of the element M is any one element of Sr or Ca, and it is more preferable that all the atoms of the element M are any one element of Sr or Ca.

また、上記発光素子は、注入型エレクトロルミネッセンス素子を用いると、強い出力光を放ち、好ましい。注入型エレクトロルミネッセンス素子とは、電界によって電子と正孔を注入し、電子−正孔対を再結合させることによって、電気エネルギーが光エネルギーに変換されて蛍光物質が発光する光電変換素子のことであり、例えば、LED、LD、面発光LD等をいう。特に、上記発光素子に、GaN系の半導体を活性層に含むLEDやLDを用いると、強く安定した出力光を得られ、より好ましい。   The light-emitting element is preferably an injection type electroluminescence element because it emits strong output light. An injection-type electroluminescence device is a photoelectric conversion device that emits a fluorescent material by injecting electrons and holes by an electric field and recombining electron-hole pairs to convert electrical energy into light energy. Yes, for example, LED, LD, surface emitting LD, etc. In particular, it is more preferable to use an LED or LD including a GaN-based semiconductor in the active layer for the light-emitting element because strong and stable output light can be obtained.

(実施形態2)
本発明の発光装置の他の一例としては、上述した実施形態1の蛍光体層に、Eu2+又はCe3+で付活され、かつ、500nm以上560nm未満の波長領域に発光ピークを有する緑色蛍光体を、さらに含む構成にしてもよい。上記緑色蛍光体は、実施形態1で説明した発光素子が放つ光によって励起されて、500nm以上560nm未満の波長領域に、好ましくは510nm以上550nm以下の波長領域、より好ましくは525nm以上550nm以下の波長領域に発光ピークを有する光を放つ蛍光体であれば、特に限定されない。
(Embodiment 2)
As another example of the light emitting device of the present invention, the phosphor layer of Embodiment 1 described above is activated with Eu 2+ or Ce 3+ and has a light emission peak in a wavelength region of 500 nm or more and less than 560 nm. You may make it the structure further containing fluorescent substance. The green phosphor is excited by light emitted from the light-emitting element described in Embodiment 1, and has a wavelength region of 500 nm to less than 560 nm, preferably a wavelength region of 510 nm to 550 nm, more preferably a wavelength of 525 nm to 550 nm. The phosphor is not particularly limited as long as the phosphor emits light having an emission peak in the region.

例えば、青色発光素子を用いる場合、励起スペクトルの最長波長側の励起ピークが420nm以上500nm未満の波長領域にない緑色蛍光体、すなわち、励起スペクトルの最長波長側の励起ピークが420nm未満の波長領域にある緑色蛍光体であっても構わない。   For example, when a blue light emitting device is used, a green phosphor whose excitation peak on the longest wavelength side of the excitation spectrum is not in the wavelength region of 420 nm or more and less than 500 nm, that is, in the wavelength region where the excitation peak on the longest wavelength side of the excitation spectrum is less than 420 nm. A certain green phosphor may be used.

上記緑色蛍光体は、上述した360nm以上500nm未満の波長領域の励起光下における内部量子効率が高い蛍光体、例えば、図15に示した(Ba,Sr)2SiO4:Eu2+緑色蛍光体等に該当する。この蛍光体を少なくとも含む蛍光体層と、上記発光素子とを少なくとも備えた発光装置は、光エネルギーを効率よく出力するので好ましい。この発光装置は、出力光に含まれる緑色系の発光強度が強くなり、演色性が向上する。また、緑色系光は視感度が高く、光束はより高くなる。特に、蛍光体層に含まれる蛍光体の組み合わせによっては、平均演色評価数(Ra)が90以上の、高い演色性をもつ出力光を得ることが可能である。 The green phosphor is a phosphor having high internal quantum efficiency under the excitation light in the wavelength region of 360 nm or more and less than 500 nm, for example, (Ba, Sr) 2 SiO 4 : Eu 2+ green phosphor shown in FIG. Etc. A light emitting device including at least a phosphor layer containing at least the phosphor and the light emitting element is preferable because it efficiently outputs light energy. In this light emitting device, the green light emission intensity included in the output light is increased, and the color rendering is improved. In addition, green light has high visibility and luminous flux is higher. In particular, depending on the combination of phosphors contained in the phosphor layer, it is possible to obtain output light having high color rendering properties with an average color rendering index (Ra) of 90 or more.

上記緑色蛍光体を、Eu2+で付活された窒化物蛍光体又は酸窒化物蛍光体、例えばBaSiN2:Eu2+、Sr1.5Al3Si916:Eu2+、Ca1.5Al3Si916:Eu2+、CaSiAl232:Eu2+、SrSiAl232:Eu2+、CaSi222:Eu2+、SrSi222:Eu2+、BaSi222:Eu2+等、Eu2+で付活されたアルカリ土類金属オルト珪酸塩蛍光体、例えば(Ba,Sr)2SiO4:Eu2+、(Ba,Ca)2SiO4:Eu2+等、Eu2+で付活されたチオガレート蛍光体、例えばSrGa24:Eu2+等、Eu2+で付活されたアルミン酸塩蛍光体、例えばSrAl24:Eu2+等、Eu2+とMn2+で共付活されたアルミン酸塩蛍光体、例えばBaMgAl1017:Eu2+,Mn2+等、Ce3+で付活された窒化物蛍光体又は酸窒化物蛍光体、例えば、Sr2Si58:Ce3+、Ca1.5Al3Si916:Ce3+、Ca2Si58:Ce3+等、及び、Ce3+で付活されたガーネット構造を有する蛍光体、例えばY3(Al,Ga)512:Ce3+、Y3Al512:Ce3+、BaY2SiAl412:Ce3+、Ca3Sc2Si312:Ce3+等にすると、上記発光素子の励起下における内部量子効率が高くなり、さらに好ましい。 The green phosphor is a nitride phosphor or oxynitride phosphor activated with Eu 2+ , such as BaSiN 2 : Eu 2+ , Sr 1.5 Al 3 Si 9 N 16 : Eu 2+ , Ca 1.5 Al 3. Si 9 N 16: Eu 2+, CaSiAl 2 O 3 N 2: Eu 2+, SrSiAl 2 O 3 N 2: Eu 2+, CaSi 2 O 2 N 2: Eu 2+, SrSi 2 O 2 N 2: Eu 2+ , BaSi 2 O 2 N 2 : Eu 2+ and the like, alkaline earth metal orthosilicate phosphors activated with Eu 2+ , such as (Ba, Sr) 2 SiO 4 : Eu 2+ , (Ba, Ca) 2 SiO 4 : Eu 2+ and the like, thiogallate phosphors activated by Eu 2+ , such as SrGa 2 S 4 : Eu 2+ , and aluminate phosphors activated by Eu 2+ , such as SrAl 2 O 4 : Eu 2+ and the like, aluminate phosphors co-activated with Eu 2+ and Mn 2+ , such as BaMgAl 10 O 17 : E A nitride phosphor or oxynitride phosphor activated by Ce 3+ such as u 2+ , Mn 2+ , for example, Sr 2 Si 5 N 8 : Ce 3+ , Ca 1.5 Al 3 Si 9 N 16 : Ce 3+ , Ca 2 Si 5 N 8 : Ce 3+ and the like, and phosphors having a garnet structure activated by Ce 3+ , such as Y 3 (Al, Ga) 5 O 12 : Ce 3+ , Y 3 Al 5 O 12 : Ce 3+ , BaY 2 SiAl 4 O 12 : Ce 3+ , Ca 3 Sc 2 Si 3 O 12 : Ce 3+, etc., the internal quantum efficiency under excitation of the light emitting device is increased. More preferred.

従って、本実施形態の発光装置は、実施形態1の窒化物蛍光体と上記緑色蛍光体とを少なくとも含む蛍光体層と、実施形態1の発光素子とを備え、上記窒化物蛍光体が放つ赤色系の発光成分と上記緑色蛍光体が放つ緑色系の発光成分とを出力光に含む発光装置である。   Therefore, the light emitting device of the present embodiment includes a phosphor layer including at least the nitride phosphor of the first embodiment and the green phosphor, and the light emitting element of the first embodiment, and the red light emitted by the nitride phosphor. The light emitting device includes, in output light, a light emitting component of the system and a green light emitting component emitted from the green phosphor.

(実施形態3)
本発明の発光装置のさらに他の一例としては、上述した実施形態1又は実施形態2の蛍光体層に、Eu2+又はCe3+で付活され、かつ、560nm以上600nm未満の波長領域に発光ピークを有する黄色蛍光体を、さらに含む構成にしてもよい。上記黄色蛍光体は、実施形態1で説明した発光素子が放つ光によって励起されて、560nm以上600nm未満の波長領域に、好ましくは565nm以上580nm以下の波長領域に発光ピークを有する光を放つ蛍光体であれば、特に限定されない。
(Embodiment 3)
As yet another example of the light emitting device of the present invention, the phosphor layer of the first embodiment or the second embodiment is activated with Eu 2+ or Ce 3+ and is in a wavelength region of 560 nm or more and less than 600 nm. You may make it the structure which further contains the yellow fluorescent substance which has a luminescence peak. The yellow phosphor is a phosphor that is excited by light emitted from the light-emitting element described in Embodiment 1 and emits light having an emission peak in a wavelength region of 560 nm to less than 600 nm, preferably in a wavelength region of 565 nm to 580 nm. If it is, it will not be specifically limited.

例えば、青色発光素子を用いる場合、励起スペクトルの最長波長側の励起ピークが420nm以上500nm未満の波長領域にない黄色蛍光体、すなわち、励起スペクトルの最長波長側の励起ピークが420nm未満の波長領域にある黄色蛍光体であっても構わない。   For example, when a blue light emitting element is used, the yellow phosphor whose excitation peak on the longest wavelength side of the excitation spectrum is not in the wavelength region of 420 nm or more and less than 500 nm, that is, the excitation peak on the longest wavelength side of the excitation spectrum is in the wavelength region of less than 420 nm. A certain yellow phosphor may be used.

上記黄色蛍光体は、上述した360nm以上500nm未満の波長領域の励起光下における内部量子効率が高い蛍光体、例えば、図16に示した(Sr,Ba)2SiO4:Eu2+黄色蛍光体、図17に示した(Sr,Ca)2SiO4:Eu2+黄色蛍光体、図18に示した0.75(Ca0.9Eu0.1)O・2.25AlN・3.25Si34:Eu2+黄色蛍光体等、及び420nm以上500nm未満の波長領域の励起光下における内部量子効率が高い蛍光体、例えば、図19に示した(Y,Gd)3Al512:Ce3+黄色蛍光体等に該当する。この蛍光体を少なくとも含む蛍光体層と、上記発光素子とを少なくとも備えた発光装置は、光エネルギーを効率よく出力するので好ましい。この発光装置は、出力光に含まれる黄色系の発光強度が強くなり、演色性が向上し、特に温色系又は暖色系の発光を放つ発光装置を提供できる。また、黄色系光は比較的視感度が高く、光束は高くなる。特に、蛍光体層の材料設計によっては、Raが90以上の、高い演色性をもつ出力光を得ることが可能である。 The yellow phosphor is a phosphor having high internal quantum efficiency under the excitation light in the wavelength region of 360 nm or more and less than 500 nm, for example, (Sr, Ba) 2 SiO 4 : Eu 2+ yellow phosphor shown in FIG. (Sr, Ca) 2 SiO 4 : Eu 2+ yellow phosphor shown in FIG. 17, 0.75 (Ca 0.9 Eu 0.1 ) O · 2.25AlN · 3.25Si 3 N 4 : Eu shown in FIG. 2+ yellow phosphor and the like, and a phosphor having high internal quantum efficiency under excitation light in a wavelength region of 420 nm or more and less than 500 nm, for example, (Y, Gd) 3 Al 5 O 12 : Ce 3+ yellow shown in FIG. Corresponds to phosphor etc. A light emitting device including at least a phosphor layer containing at least the phosphor and the light emitting element is preferable because it efficiently outputs light energy. This light-emitting device can provide a light-emitting device that emits warm-colored or warm-colored light. In addition, yellow light has relatively high visibility and luminous flux is high. In particular, depending on the material design of the phosphor layer, it is possible to obtain output light having a high color rendering property with Ra of 90 or more.

上記黄色蛍光体を、Eu2+で付活された窒化物蛍光体又は酸窒化物蛍光体、例えば0.75(Ca0.9Eu0.1)O・2.25AlN・3.25Si34:Eu2+、Ca1.5Al3Si916:Eu2+、CaSiAl232:Eu2+、CaSi6AlON9:Eu2+等、Eu2+で付活されたアルカリ土類金属オルト珪酸塩蛍光体、例えば(Sr,Ba)2SiO4:Eu2+、(Sr,Ca)2SiO4:Eu2+等、Eu2+で付活されたチオガレート蛍光体、例えばCaGa24:Eu2+等、及び、Ce3+で付活されたガーネット構造を有する蛍光体、例えば(Y,Gd)3Al512:Ce3+等にすると、上記発光素子の励起下における内部量子効率が高くなり、さらに好ましい。 The yellow phosphor is a nitride phosphor or oxynitride phosphor activated with Eu 2+ , for example, 0.75 (Ca 0.9 Eu 0.1 ) O · 2.25AlN · 3.25Si 3 N 4 : Eu 2 +, Ca 1.5 Al 3 Si 9 N 16: Eu 2+, CaSiAl 2 O 3 N 2: Eu 2+, CaSi 6 AlON 9: Eu 2+ or the like, activated alkaline earth metal orthosilicate with Eu 2+ Salt phosphors such as (Sr, Ba) 2 SiO 4 : Eu 2+ , (Sr, Ca) 2 SiO 4 : Eu 2+ and the like, thiogallate phosphors activated with Eu 2+ , such as CaGa 2 S 4 : When a phosphor having a garnet structure activated by Eu 2+ or the like and Ce 3+ , for example, (Y, Gd) 3 Al 5 O 12 : Ce 3+ or the like, the internal quantum under excitation of the light emitting element is used. Efficiency is increased, which is more preferable.

従って、本実施形態の発光装置は、実施形態1の窒化物蛍光体と上記黄色蛍光体とを少なくとも含む蛍光体層と、実施形態1の発光素子とを備え、上記窒化物蛍光体が放つ赤色系の発光成分と上記黄色蛍光体が放つ黄色系の発光成分とを出力光に含む発光装置である。   Therefore, the light emitting device of the present embodiment includes a phosphor layer including at least the nitride phosphor of the first embodiment and the yellow phosphor, and the light emitting element of the first embodiment, and the red color emitted from the nitride phosphor. The light emitting device includes, in output light, a light emitting component of the system and a yellow light emitting component emitted from the yellow phosphor.

(実施形態4)
本発明の発光装置のさらに他の一例としては、上述した実施形態1〜3のいずれかに記載された蛍光体層に、Eu2+で付活された、420nm以上500nm未満の波長領域に発光ピークを有する青色蛍光体を、さらに含む構成にしてもよい。上記青色蛍光体は、実施形態1で説明した発光素子が放つ光によって励起されて、420nm以上500nm未満の波長領域に、演色性と出力の点で、好ましくは440nm以上480nm以下の波長領域に発光ピークを有する蛍光体であれば、特に限定されない。このとき、発光素子は、実施形態1で説明した発光素子であれば特に限定されないが、紫色発光素子を用いれば、蛍光体材料の選択の幅が広がるために、発光装置が放つ光の光色設計がしやすいだけでなく、発光素子の投入電力等の駆動条件によって発光素子が放つ光の波長位置が変動しても出力光に与える影響が少ないので好ましい。
(Embodiment 4)
As still another example of the light emitting device of the present invention, light is emitted in a wavelength region of 420 nm or more and less than 500 nm activated by Eu 2+ on the phosphor layer described in any of Embodiments 1 to 3 described above. You may make it the structure which further contains the blue fluorescent substance which has a peak. The blue phosphor is excited by light emitted from the light-emitting element described in Embodiment 1, and emits light in a wavelength region of 420 nm or more and less than 500 nm, preferably in a wavelength region of 440 nm or more and 480 nm or less, in terms of color rendering properties and output. If it is the fluorescent substance which has a peak, it will not specifically limit. At this time, the light-emitting element is not particularly limited as long as it is the light-emitting element described in the first embodiment. However, if a violet light-emitting element is used, the range of selection of the phosphor material is widened, so Not only is the design easy, but even if the wavelength position of the light emitted by the light emitting element varies depending on the driving conditions such as the input power of the light emitting element, the influence on the output light is small.

上記青色蛍光体は、上述した360nm以上500nm未満、好ましくは360nm以上420nm未満の波長領域の励起光下における内部量子効率が高い蛍光体、例えば、図20に示したBaMgAl1017:Eu2+青色蛍光体、図21に示したSr4Al1425:Eu2+青色蛍光体、図22に示した(Sr,Ba)10(PO46Cl2:Eu2+青色蛍光体等に該当する。この蛍光体を含む蛍光体層と、上記発光素子とを少なくとも備えた発光装置は、光エネルギーを効率よく出力するので好ましい。この発光装置は、出力光に含まれる青色系の発光強度が強くなり、演色性が向上し、光束は高くなる。特に、蛍光体層の材料設計によっては、Raが90以上の、高い演色性をもつ出力光を得ることが可能であり、R1〜R15の全ての特殊演色評価数が80以上、好ましい場合では85以上、より好ましい場合では90以上の太陽光に近い白色の出力光を得ることが可能である。例えば、BaMgAl1017:Eu2+、(Sr,Ba)10(PO46Cl2:Eu2+、Ba3MgSi28:Eu2+、SrMgAl1017:Eu2+、(Sr,Ca)10(PO46Cl2:Eu2+、Ba5SiO4Cl6:Eu2+、BaAl81.5:Eu2+、Sr10(PO46Cl2:Eu2+、青色蛍光体等を用いることによって、上記高い演色性と特殊演色評価数とをもつ出力光を得ることができる。 The blue phosphor is a phosphor having high internal quantum efficiency under the excitation light in the wavelength region of 360 nm or more and less than 500 nm, preferably 360 nm or more and less than 420 nm, for example, BaMgAl 10 O 17 : Eu 2+ shown in FIG. Blue phosphor, Sr 4 Al 14 O 25 : Eu 2+ blue phosphor shown in FIG. 21, (Sr, Ba) 10 (PO 4 ) 6 Cl 2 : Eu 2+ blue phosphor shown in FIG. Applicable. A light emitting device including at least the phosphor layer containing the phosphor and the light emitting element is preferable because it efficiently outputs light energy. In this light emitting device, the blue light emission intensity contained in the output light is increased, the color rendering is improved, and the luminous flux is increased. In particular, depending on the material design of the phosphor layer, it is possible to obtain output light having a high color rendering property with Ra of 90 or more, and all the special color rendering indexes of R1 to R15 are 80 or more, preferably 85. As described above, in a more preferable case, it is possible to obtain 90 or more white output light close to sunlight. For example, BaMgAl 10 O 17 : Eu 2+ , (Sr, Ba) 10 (PO 4 ) 6 Cl 2 : Eu 2+ , Ba 3 MgSi 2 O 8 : Eu 2+ , SrMgAl 10 O 17 : Eu 2+ , ( Sr, Ca) 10 (PO 4 ) 6 Cl 2 : Eu 2+ , Ba 5 SiO 4 Cl 6 : Eu 2+ , BaAl 8 O 1.5 : Eu 2+ , Sr 10 (PO 4 ) 6 Cl 2 : Eu 2+ By using a blue phosphor or the like, output light having the above high color rendering properties and special color rendering index can be obtained.

また、上記青色蛍光体を、Eu2+で付活された窒化物蛍光体又は酸窒化物蛍光体、例えばSrSiAl232:Eu2+等、Eu2+で付活されたアルカリ土類金属オルト珪酸塩蛍光体、例えばBa3MgSi28:Eu2+、Sr3MgSi28:Eu2+等、Eu2+で付活されたアルミン酸塩蛍光体、例えばBaMgAl1017:Eu2+、BaAl813:Eu2+、Sr4Al1425:Eu2+等、及びEu2+で付活されたハロ燐酸塩蛍光体、例えばSr10(PO46Cl2:Eu2+、(Sr,Ca)10(PO46Cl2:Eu2+、(Ba,Ca,Mg)10(PO46Cl2:Eu2+等にすると、上記発光素子の励起下における内部量子効率が高くなり、さらに好ましい。 Further, the blue phosphor may be a nitride phosphor or oxynitride phosphor activated with Eu 2+ , such as SrSiAl 2 O 3 N 2 : Eu 2+ , alkaline earth activated with Eu 2+. Metal silicate phosphors such as Ba 3 MgSi 2 O 8 : Eu 2+ , Sr 3 MgSi 2 O 8 : Eu 2+ and the like, aluminate phosphors activated with Eu 2+ , such as BaMgAl 10 O 17 : Eu 2+ , BaAl 8 O 13 : Eu 2+ , Sr 4 Al 14 O 25 : Eu 2+ and the like, and halophosphate phosphors activated with Eu 2+ , such as Sr 10 (PO 4 ) 6 Cl 2 : Eu 2+ , (Sr, Ca) 10 (PO 4 ) 6 Cl 2 : Eu 2+ , (Ba, Ca, Mg) 10 (PO 4 ) 6 Cl 2 : Eu 2+ The internal quantum efficiency under the excitation of the device is increased, which is more preferable.

実施形態1〜4において、上記蛍光体層に含まれる蛍光体は、高い光束を得るために、Eu2+又はCe3+で付活された蛍光体以外の蛍光体を実質的に含まない構成にするのが好ましく、窒化物蛍光体又は酸窒化物蛍光体以外の無機蛍光体を実質的に含まない構成にするのが好ましい。上記蛍光体を、Eu2+又はCe3+で付活された蛍光体以外の蛍光体を実質的に含まない構成にするとは、蛍光体層に含まれる蛍光体の90重量%以上、好ましくは95重量%以上、より好ましくは98重量%以上の蛍光体が、Eu2+又はCe3+で付活された蛍光体であることを意味する。また、窒化物蛍光体又は酸窒化物蛍光体以外の無機蛍光体を実質的に含まない構成にするとは、蛍光体層に含まれる蛍光体の90重量%以上、好ましくは95重量%以上、より好ましくは98重量%以上の蛍光体が、窒化物蛍光体又は酸窒化物蛍光体であることを意味する。上記窒化物蛍光体及び酸窒化物蛍光体は、100℃〜150℃の動作温度下及び周囲温度下においても、比較的高い内部量子効率を保持し、かつ、発光スペクトルの波長のピークが、例えば前述のアルカリ土類金属オルト珪酸塩蛍光体又はガーネット構造を有する蛍光体のように短波長側へシフトしない。そのため、上述の構成をした発光装置は、投入電力を増やして励起光強度を強めても、あるいは高温雰囲気下で使用しても、発光色変動が少なく、安定した出力光が得られ好ましい。 In Embodiments 1 to 4, the phosphor contained in the phosphor layer is substantially free from phosphors other than the phosphor activated by Eu 2+ or Ce 3+ in order to obtain a high luminous flux. It is preferable to use a structure that does not substantially contain an inorganic phosphor other than the nitride phosphor or the oxynitride phosphor. When the phosphor is configured so as not to substantially contain a phosphor other than the phosphor activated by Eu 2+ or Ce 3+ , 90% by weight or more of the phosphor contained in the phosphor layer, preferably It means that the phosphor of 95 wt% or more, more preferably 98 wt% or more is a phosphor activated with Eu 2+ or Ce 3+ . In addition, the constitution containing substantially no inorganic phosphor other than nitride phosphor or oxynitride phosphor is 90% by weight or more, preferably 95% by weight or more of the phosphor contained in the phosphor layer. Preferably 98% by weight or more of the phosphor means a nitride phosphor or an oxynitride phosphor. The nitride phosphor and the oxynitride phosphor retain a relatively high internal quantum efficiency even under an operating temperature of 100 ° C. to 150 ° C. and an ambient temperature, and the wavelength peak of the emission spectrum is, for example, It does not shift to the short wavelength side like the aforementioned alkaline earth metal orthosilicate phosphor or phosphor having a garnet structure. For this reason, the light-emitting device having the above-described configuration is preferable because even if the input power is increased to increase the excitation light intensity or the light-emitting device is used in a high temperature atmosphere, the emission color variation is small and stable output light can be obtained.

なお、高い光束を放つ発光装置を得るためには、蛍光体層に実質的に含まれる蛍光体の中で、発光素子が放つ光励起下において最も内部量子効率が低い蛍光体は、内部量子効率(絶対値)が、80%以上、好ましくは85%以上、より好ましくは90%以上の蛍光体とする。   In order to obtain a light emitting device that emits a high luminous flux, among the phosphors substantially contained in the phosphor layer, the phosphor having the lowest internal quantum efficiency under the light excitation emitted by the light emitting element is the internal quantum efficiency ( A phosphor having an absolute value of 80% or more, preferably 85% or more, and more preferably 90% or more.

(実施形態5)
本発明の発光装置のさらに他の一例は、蛍光体を含む蛍光体層と発光素子とを備え、上記発光素子は、360nm以上500nm未満の波長領域に発光ピークを有し、上記蛍光体は、上記発光素子が放つ光によって励起されて発光し、上記蛍光体が放つ発光成分を出力光として少なくとも含む発光装置である。また、上記蛍光体は、Eu2+で付活され、かつ、600nm以上660nm未満の波長領域に発光ピークを有する窒化物蛍光体又は酸窒化物蛍光体と、Eu2+で付活され、かつ、500nm以上600nm未満の波長領域に発光ピークを有するアルカリ土類金属オルト珪酸塩蛍光体とを含み、上記発光素子が放つ光励起下において、これらの蛍光体の内部量子効率が80%以上である。
(Embodiment 5)
Still another example of the light-emitting device of the present invention includes a phosphor layer containing a phosphor and a light-emitting element, and the light-emitting element has a light emission peak in a wavelength region of 360 nm or more and less than 500 nm. A light-emitting device that emits light when excited by light emitted from the light-emitting element and includes at least a light-emitting component emitted from the phosphor as output light. Furthermore, the phosphor is activated with Eu 2+, and a nitride phosphor or an oxynitride phosphor having an emission peak in the wavelength region of less than 600 nm 660 nm, it is activated by Eu 2+, and And an alkaline earth metal orthosilicate phosphor having an emission peak in the wavelength region of 500 nm or more and less than 600 nm, and the internal quantum efficiency of these phosphors is 80% or more under light excitation emitted by the light emitting element.

上記発光素子は、実施形態1で説明した発光素子と同様のものを使用することができる。   As the light-emitting element, the same light-emitting element as described in Embodiment Mode 1 can be used.

上記出力光は、上記発光素子が放つ発光成分を含むことが好ましい。特に、上記発光素子が、青色系の波長領域に発光ピークを有する発光素子である場合、上記蛍光体が放つ発光成分と、上記発光素子が放つ発光成分とを出力光に含めば、より高い演色性を有する白色光が得られ、より好ましい。   The output light preferably includes a light emitting component emitted by the light emitting element. In particular, when the light-emitting element is a light-emitting element having a light emission peak in a blue wavelength region, higher color rendering can be achieved by including in the output light the light-emitting component emitted by the phosphor and the light-emitting component emitted by the light-emitting element. White light having the property is obtained, which is more preferable.

上記Eu2+で付活された窒化物蛍光体又は酸窒化物蛍光体は、600nm以上660nm未満の波長領域に発光ピークを有する暖色系光、好ましくは610nm以上650nm以下の波長領域に発光ピークを有する赤色系光を放つ蛍光体であり、上述した360nm以上500nm未満の波長領域の励起光下における内部量子効率が高い蛍光体に該当する。より詳細には、組成式(M1-xEux)AlSiN3で表されるニトリドアルミノシリケート蛍光体、例えば、図13に示したSrAlSiN3:Eu2+赤色蛍光体やCaAlSiN3:Eu2+赤色蛍光体等、組成式(M1-xEux)SiN2で表されるニトリドシリケート蛍光体、例えば、図12に示したSrSiN2:Eu2+赤色蛍光体やCaSiN2:Eu2+赤色蛍光体等、組成式(M1-xEux2Si58で表されるニトリドシリケート蛍光体、例えば、図14に示したSr2Si58:Eu2+赤色蛍光体、Ca2Si58:Eu2+赤色蛍光体又はBa2Si58:Eu2+赤色蛍光体等、及び、組成式(M1-xEux2Si4AlON7で表されるオクソニトリドアルミノシリケート蛍光体、例えば、Sr2Si4AlON7:Eu2+赤色蛍光体等を用いればよい。但し、上記組成式のMは、Mg、Ca、Sr、Ba及びZnから選ばれる少なくとも1つの元素であり、xは、式0.005≦x≦0.3を満たす数値である。 The nitride phosphor or oxynitride phosphor activated by Eu 2+ has a warm color light having an emission peak in a wavelength region of 600 nm or more and less than 660 nm, preferably an emission peak in a wavelength region of 610 nm or more and 650 nm or less. This phosphor emits red light having a high internal quantum efficiency under the excitation light in the wavelength region of 360 nm or more and less than 500 nm. More specifically, a nitride aluminosilicate phosphor represented by a composition formula (M 1-x Eu x ) AlSiN 3 , for example, SrAlSiN 3 : Eu 2+ red phosphor or CaAlSiN 3 : Eu 2 shown in FIG. + Nitride silicate phosphors represented by the composition formula (M 1-x Eu x ) SiN 2 such as red phosphors, for example, SrSiN 2 : Eu 2+ red phosphors and CaSiN 2 : Eu 2 shown in FIG. + Nitride silicate phosphor represented by the composition formula (M 1-x Eu x ) 2 Si 5 N 8 , such as Sr 2 Si 5 N 8 : Eu 2+ red fluorescence shown in FIG. Body, Ca 2 Si 5 N 8 : Eu 2+ red phosphor or Ba 2 Si 5 N 8 : Eu 2+ red phosphor, etc., and a composition formula (M 1-x Eu x ) 2 Si 4 AlON 7 Oxonitridoaluminosilicate phosphors such as Sr 2 Si 4 AlON 7 : Eu 2+ red phosphor or the like may be used. However, M in the composition formula is at least one element selected from Mg, Ca, Sr, Ba and Zn, and x is a numerical value satisfying the formula 0.005 ≦ x ≦ 0.3.

また、上記アルカリ土類金属オルト珪酸塩蛍光体は、Eu2+で付活され、かつ、500nm以上600nm未満、好ましくは525nm以上600nm未満の波長領域に発光ピークを有する蛍光体であり、より詳細には、525nm以上560nm未満の波長領域に、さらに好ましくは530nm以上550nm以下の波長領域に発光ピークを有する緑色蛍光体、例えば、図15に示した(Ba,Sr)2SiO4:Eu2+緑色蛍光体等、又は、560nm以上600nm未満の波長領域に発光ピークを有する黄色蛍光体、例えば、図16に示した(Sr,Ba)2SiO4:Eu2+黄色蛍光体、図17に示した(Sr,Ca)2SiO4:Eu2+黄色蛍光体等であり、上述した360nm以上500nm未満の波長領域の励起光下における内部量子効率が高い蛍光体に該当する。 The alkaline earth metal orthosilicate phosphor is a phosphor activated with Eu 2+ and having an emission peak in a wavelength region of 500 nm or more and less than 600 nm, preferably 525 nm or more and less than 600 nm. Is a green phosphor having an emission peak in a wavelength region of 525 nm or more and less than 560 nm, more preferably in a wavelength region of 530 nm or more and 550 nm or less, such as (Ba, Sr) 2 SiO 4 : Eu 2+ shown in FIG. A green phosphor or the like, or a yellow phosphor having an emission peak in a wavelength region of 560 nm or more and less than 600 nm, for example, (Sr, Ba) 2 SiO 4 : Eu 2+ yellow phosphor shown in FIG. 16, shown in FIG. and (Sr, Ca) 2 SiO 4 : Eu 2+ is yellow phosphor and the like, under excitation light in the wavelength region of less than 360nm or more 500nm described above Part quantum efficiency corresponds to a higher phosphor.

上記蛍光体は、上記発光素子が放つ光励起下において、これらの蛍光体の内部量子効率が80%以上、好ましくは85%以上、より好ましくは90%以上である。上述のように内部量子効率が高い蛍光体を含む蛍光体層と、上記発光素子とを少なくとも備えた発光装置は、光エネルギーを効率よく出力することができる。また、上記のような窒化物蛍光体又は酸窒化物蛍光体を用いて構成された発光装置は、暖色系発光成分の強度が強く、特殊演色評価数R9の数値が大きな装置になる。   The phosphors have an internal quantum efficiency of 80% or more, preferably 85% or more, more preferably 90% or more under light excitation emitted from the light-emitting element. As described above, the light emitting device including at least the phosphor layer including the phosphor having high internal quantum efficiency and the light emitting element can efficiently output light energy. In addition, a light-emitting device configured using the nitride phosphor or the oxynitride phosphor as described above has a high warm-colored light-emitting component intensity and a large special color rendering index R9.

また、上記構成の発光装置は、信頼性に課題のある硫化物系蛍光体を用いることなく、また、高価な窒化物蛍光体又は酸窒化物蛍光体の使用を赤色蛍光体にのみ用いることによって、高光束かつ高演色の白色光源を提供でき、白色光源等の発光装置の低コスト化を図ることができる。   Further, the light emitting device having the above configuration does not use a sulfide-based phosphor having a problem in reliability, and uses an expensive nitride phosphor or oxynitride phosphor only for a red phosphor. Therefore, a white light source having a high luminous flux and a high color rendering can be provided, and the cost of a light emitting device such as a white light source can be reduced.

本実施形態の発光装置は、上記Eu2+で付活されて赤色光を放つ上記窒化物蛍光体又は酸窒化物蛍光体と、Eu2+で付活された上記アルカリ土類金属オルト珪酸塩蛍光体とを含む蛍光体層と、上記発光素子とを少なくとも備えていれば、特に限定されるものではなく、例えば、上述した白色LED等が該当する。 The light emitting device of the present embodiment includes the nitride phosphor or oxynitride phosphor activated by Eu 2+ and emitting red light, and the alkaline earth metal orthosilicate activated by Eu 2+. There is no particular limitation as long as it includes at least a phosphor layer including a phosphor and the light-emitting element, and for example, the above-described white LED is applicable.

本実施形態において、前述の組成式で表される窒化物蛍光体又は酸窒化物蛍光体は、前述の元素Mの主成分をSr又はCaとすると、良好な色調と強い発光強度を得られ、より好ましい。なお、主成分をSr又はCaとするとは、元素Mの50原子%以上がSr又はCaのいずれか1つの元素であることをいう。また、元素Mの80原子%以上がSr又はCaのいずれか1つの元素であることが好ましく、元素Mの全原子がSr又はCaのいずれか1つの元素であることがより好ましい。   In this embodiment, the nitride phosphor or oxynitride phosphor represented by the above composition formula can obtain a good color tone and strong emission intensity when the main component of the element M is Sr or Ca. More preferred. Note that the main component being Sr or Ca means that 50 atomic% or more of the element M is any one element of Sr or Ca. Moreover, it is preferable that 80 atomic% or more of the element M is any one element of Sr or Ca, and it is more preferable that all the atoms of the element M are any one element of Sr or Ca.

また、上記発光素子は、注入型エレクトロルミネッセンス素子を用いると、強い出力光を放ち、好ましい。注入型エレクトロルミネッセンス素子とは、電界によって電子と正孔を注入し、電子−正孔対を再結合させることによって、電気エネルギーが光エネルギーに変換されて蛍光物質が発光する光電変換素子のことであり、例えば、LED、LD、面発光LD等をいう。特に、上記発光素子に、GaN系の半導体を活性層に含むLEDやLDを用いると、強く安定した出力光を得られ、より好ましい。   The light-emitting element is preferably an injection type electroluminescence element because it emits strong output light. An injection-type electroluminescence device is a photoelectric conversion device that emits a fluorescent material by injecting electrons and holes by an electric field and recombining electron-hole pairs to convert electrical energy into light energy. Yes, for example, LED, LD, surface emitting LD, etc. In particular, it is more preferable to use an LED or LD including a GaN-based semiconductor in the active layer for the light-emitting element because strong and stable output light can be obtained.

上記アルカリ土類金属オルト珪酸塩蛍光体として、Eu2+で付活された、500nm以上560nm未満の波長領域、好ましくは525nm以上560nm未満の波長領域、より好ましくは530nm以上550nm以下の波長領域に発光ピークを有する緑色蛍光体、例えば、(Ba,Sr)2SiO4:Eu2+、(Ba,Ca)2SiO4:Eu2+等を使用することが好ましい。この緑色蛍光体を用いた発光装置は、出力光に含まれる緑色系の発光強度が強くなり、演色性が向上する。また、緑色系光は視感度が高く、光束はより高くなる。特に、蛍光体層に含まれる蛍光体の組み合わせによっては、Raが90以上の、高い演色性をもつ出力光を得ることが可能である。 The alkaline earth metal orthosilicate phosphor is activated by Eu 2+ and has a wavelength region of 500 nm to less than 560 nm, preferably a wavelength region of 525 nm to less than 560 nm, more preferably a wavelength region of 530 nm to 550 nm. It is preferable to use a green phosphor having an emission peak, such as (Ba, Sr) 2 SiO 4 : Eu 2+ , (Ba, Ca) 2 SiO 4 : Eu 2+ . In the light emitting device using the green phosphor, the green emission intensity included in the output light is increased, and the color rendering is improved. In addition, green light has high visibility and luminous flux is higher. In particular, depending on the combination of phosphors contained in the phosphor layer, it is possible to obtain output light having a high color rendering property with an Ra of 90 or more.

さらに、上記アルカリ土類金属オルト珪酸塩蛍光体として、Eu2+で付活された、560nm以上600nm未満の波長領域に、好ましくは565nm以上580nm以下の波長領域に発光ピークを有する黄色蛍光体、例えば、(Sr,Ba)2SiO4:Eu2+を使用することが好ましい。この黄色蛍光体を用いた発光装置は、出力光に含まれる黄色系の発光強度が強くなり、演色性が向上し、特に温色系又は暖色系の発光を放つ発光装置を提供できる。また、黄色系光は比較的視感度が高く、光束は高くなる。特に、蛍光体層の材料設計によっては、Raが90以上の、高い演色性をもつ出力光を得ることが可能である。また、上記黄色蛍光体に近い蛍光を放つ(Sr,Ca)2SiO4:Eu2+黄色蛍光体等を使用することも好ましい。 Further, as the alkaline earth metal orthosilicate phosphor, a yellow phosphor activated with Eu 2+ having a light emission peak in a wavelength region of 560 nm to less than 600 nm, preferably in a wavelength region of 565 nm to 580 nm, For example, it is preferable to use (Sr, Ba) 2 SiO 4 : Eu 2+ . A light-emitting device using this yellow phosphor can provide a light-emitting device that emits warm-colored or warm-colored light, in particular, with enhanced yellow light emission intensity contained in output light and improved color rendering. In addition, yellow light has relatively high visibility and luminous flux is high. In particular, depending on the material design of the phosphor layer, it is possible to obtain output light having a high color rendering property with Ra of 90 or more. It is also preferable to use (Sr, Ca) 2 SiO 4 : Eu 2+ yellow phosphor that emits fluorescence close to that of the yellow phosphor.

本実施形態においては、上記蛍光体層に含まれる前述の赤色蛍光体以外の蛍光体として、窒化物蛍光体又は酸窒化物蛍光体を実質的に含まないことが好ましい。これにより、発光装置に用いる窒化物蛍光体又は酸窒化物蛍光体の使用量を最少限にでき、発光装置の製造コストの低減を図ることができる。また、上記蛍光体層に含まれる前述の赤色蛍光体以外の蛍光体として、硫化物系蛍光体を実質的に含まないことが好ましい。これにより、発光装置の信頼性を高めることができ、例えば、劣化等の経時変化の少ない発光装置を提供できる。   In the present embodiment, it is preferable that a nitride phosphor or an oxynitride phosphor is not substantially contained as a phosphor other than the above-described red phosphor contained in the phosphor layer. Thereby, the usage-amount of the nitride fluorescent substance or oxynitride fluorescent substance used for a light-emitting device can be minimized, and the reduction of the manufacturing cost of a light-emitting device can be aimed at. Further, it is preferable that a sulfide-based phosphor is not substantially contained as a phosphor other than the above-described red phosphor contained in the phosphor layer. Thereby, the reliability of the light-emitting device can be increased, and for example, a light-emitting device with little change over time such as deterioration can be provided.

なお、実施形態5においても、上記蛍光体層に含まれる蛍光体は、高い光束を得るために、Eu2+又はCe3+で付活された蛍光体以外の蛍光体を実質的に含まない構成にするのが好ましい。また、蛍光体層に実質的に含まれる蛍光体の中で、発光素子が放つ光の励起下において、最も内部量子効率が低い蛍光体の内部量子効率は、80%以上とすることが好ましい。 In Embodiment 5 as well, the phosphor contained in the phosphor layer substantially does not contain any phosphor other than the phosphor activated by Eu 2+ or Ce 3+ in order to obtain a high luminous flux. A configuration is preferred. In addition, among the phosphors substantially contained in the phosphor layer, the internal quantum efficiency of the phosphor having the lowest internal quantum efficiency under excitation of light emitted from the light emitting element is preferably 80% or more.

以下、本発明の発光装置の実施形態を、図面を用いて説明する。   Hereinafter, an embodiment of a light emitting device of the present invention will be described with reference to the drawings.

図1、図2、図3は、本発明の発光装置の一例を示す半導体発光素子の断面図である。   1, 2, and 3 are cross-sectional views of a semiconductor light emitting element showing an example of a light emitting device of the present invention.

図1は、サブマウント素子4の上に、少なくとも1つの発光素子1を導通搭載し、蛍光体2を含む蛍光体層3を兼ねる母材によって封止した構造の半導体発光素子を示す。図2は、リードフレーム5のマウント・リードに設けたカップ6に、少なくとも1つの発光素子1を導通搭載し、さらにカップ6内に蛍光体2を含む蛍光体層3を設け、全体を、例えば樹脂等の封止材7を用いて封止した構造の半導体発光素子を示す。図3は、筐体8内に、少なくとも1つの発光素子1を導通搭載し、さらに蛍光体2を含む蛍光体層3を設けた構造の、チップタイプの半導体発光素子を示す。   FIG. 1 shows a semiconductor light emitting device having a structure in which at least one light emitting device 1 is conductively mounted on a submount device 4 and sealed with a base material that also serves as a phosphor layer 3 including a phosphor 2. In FIG. 2, at least one light emitting element 1 is conductively mounted on a cup 6 provided on a mount lead of a lead frame 5, and a phosphor layer 3 including a phosphor 2 is provided in the cup 6. 1 shows a semiconductor light emitting device having a structure sealed with a sealing material 7 such as resin. FIG. 3 shows a chip-type semiconductor light-emitting device having a structure in which at least one light-emitting device 1 is conductively mounted in a housing 8 and a phosphor layer 3 including a phosphor 2 is further provided.

図1〜図3において、発光素子1は電気エネルギーを光に換える光電変換素子であり、360nm以上500nm未満、好ましくは380nm以上420nm未満又は440nm以上500nm未満、より好ましくは395nm以上415nm以下又は450nm以上480nm以下の波長領域に発光ピークを有する光を放つ発光素子であれば特に限定されず、例えば、LED、LD、面発光LD、無機EL素子、有機EL素子等を用いればよい。特に、半導体発光素子の高出力化のためには、LED又は面発光LDが好ましい。   1 to 3, a light-emitting element 1 is a photoelectric conversion element that converts electrical energy into light, and is 360 nm to less than 500 nm, preferably 380 nm to less than 420 nm, or 440 nm to less than 500 nm, more preferably 395 nm to 415 nm or less, or 450 nm or more. There is no particular limitation as long as it is a light emitting element that emits light having an emission peak in a wavelength region of 480 nm or less. For example, an LED, an LD, a surface emitting LD, an inorganic EL element, an organic EL element, or the like may be used. In particular, an LED or a surface emitting LD is preferable for increasing the output of the semiconductor light emitting device.

図1〜図3において、蛍光体層3は、蛍光体2として、組成式(M1-xEux)AlSiN3で表される窒化物蛍光体であり、Mは、Mg、Ca、Sr、Ba及びZnから選ばれる少なくとも1つの元素であり、xは式0.005≦x≦0.3を満たす数値である蛍光体を少なくとも分散させて構成する。 1 to 3, the phosphor layer 3 is a nitride phosphor represented by a composition formula (M 1-x Eu x ) AlSiN 3 as the phosphor 2, where M is Mg, Ca, Sr, It is at least one element selected from Ba and Zn, and x is constituted by dispersing at least a phosphor having a numerical value satisfying the expression 0.005 ≦ x ≦ 0.3.

蛍光体層3の母材に用いる材料は特に限定されず、一般に透明な、例えばエポキシ樹脂、シリコン樹脂等の樹脂や低融点ガラス等を用いればよい。発光強度の動作時間に伴う低下が少ない発光装置を提供する目的で好ましい上記母材は、シリコン樹脂又は低融点ガラス等の透光性無機材料であり、より好ましくは上記透光性無機材料である。例えば、蛍光体層3の母材に上記透明樹脂を用いた場合、窒化物蛍光体の含有量は5〜80重量%が好ましく、10〜60重量%がより好ましい。蛍光体層3に含まれる窒化物蛍光体は、上記発光素子1が駆動によって放つ光の一部又は全部を吸収して、赤色系光に変換するため、少なくとも窒化物蛍光体が放つ発光成分を半導体発光素子の出力光として含む。   The material used for the base material of the phosphor layer 3 is not particularly limited, and generally transparent resin such as epoxy resin or silicon resin, low melting point glass, or the like may be used. For the purpose of providing a light-emitting device in which the emission intensity does not decrease with operating time, the base material is preferably a light-transmitting inorganic material such as silicon resin or low-melting glass, and more preferably the light-transmitting inorganic material. . For example, when the transparent resin is used for the base material of the phosphor layer 3, the content of the nitride phosphor is preferably 5 to 80% by weight, and more preferably 10 to 60% by weight. The nitride phosphor contained in the phosphor layer 3 absorbs part or all of the light emitted by the light emitting element 1 by driving and converts it into red light, so that at least a light emitting component emitted by the nitride phosphor is emitted. It is included as output light of the semiconductor light emitting device.

また、蛍光体2として、少なくとも組成式(M1-xEux)AlSiN3で表される窒化物蛍光体を含む場合、蛍光体層3は、上記窒化物蛍光体以外の蛍光体をさらに含んでもよいし、含まなくてもよい。例えば、上述した、Eu2+又はCe3+で付活され、360nm以上500nm未満の波長領域の励起光下における内部量子効率が高いアルカリ土類金属オルト珪酸塩蛍光体、窒化物蛍光体及び酸窒化物蛍光体、アルミン酸塩蛍光体、ハロ燐酸塩蛍光体、チオガレート蛍光体等を、以下(1)〜(6)に示す組み合わせで用い、発光素子1を360nm以上420nm未満の波長領域に発光ピークを有する紫色発光素子とすると、発光素子1が放つ光によって蛍光体が高効率励起され、複数の蛍光体が放つ光の混色等によって、例えば、白色系光を放つ半導体発光素子になる。
(1) 420nm以上500nm未満、好ましくは440nm以上500nm未満の波長領域に発光ピークを有する光を放つ青色蛍光体と、500nm以上560nm未満、好ましくは510nm以上550nm以下の波長領域に発光ピークを有する光を放つ緑色蛍光体と、560nm以上600nm未満、好ましくは565nm以上580nm以下の波長領域に発光ピークを有する光を放つ黄色蛍光体と、上記窒化物蛍光体とを含む蛍光体層。
(2) 420nm以上500nm未満、好ましくは440nm以上500nm未満の波長領域に発光ピークを有する光を放つ青色蛍光体と、500nm以上560nm未満、好ましくは510nm以上550nm以下の波長領域に発光ピークを有する光を放つ緑色蛍光体と、上記窒化物蛍光体とを含む蛍光体層。
(3) 420nm以上500nm未満、好ましくは440nm以上500nm未満の波長領域に発光ピークを有する光を放つ青色蛍光体と、560nm以上600nm未満、好ましくは565nm以上580nm以下の波長領域に発光ピークを有する光を放つ黄色蛍光体と、上記窒化物蛍光体とを含む蛍光体層。
(4) 500nm以上560nm未満の波長領域に、好ましくは525nm以上560nm未満の波長領域に発光ピークを有する光を放つ緑色蛍光体と、560nm以上600nm未満の波長領域に、好ましくは565nm以上580nm以下の波長領域に発光ピークを有する光を放つ黄色蛍光体と、上記窒化物蛍光体とを含む蛍光体層。
上記黄色蛍光体と、上記窒化物蛍光体とを含む蛍光体層。
(5) 上記黄色蛍光体と、上記窒化物蛍光体とを含む蛍光体層。
(6) 上記緑色蛍光体と、上記窒化物蛍光体とを含む蛍光体層。
Further, when the phosphor 2 includes at least a nitride phosphor represented by the composition formula (M 1-x Eu x ) AlSiN 3 , the phosphor layer 3 further includes a phosphor other than the nitride phosphor. However, it does not have to be included. For example, the alkaline earth metal orthosilicate phosphor, nitride phosphor and acid activated by Eu 2+ or Ce 3+ and having high internal quantum efficiency under excitation light in a wavelength region of 360 nm or more and less than 500 nm are used. A nitride phosphor, aluminate phosphor, halophosphate phosphor, thiogallate phosphor or the like is used in the combinations shown in (1) to (6) below, and the light-emitting element 1 emits light in a wavelength region of 360 nm to less than 420 nm. When the violet light emitting element having a peak is used, the phosphor is excited with high efficiency by the light emitted from the light emitting element 1, and becomes, for example, a semiconductor light emitting element that emits white light due to the color mixture of the light emitted from the plurality of phosphors.
(1) A blue phosphor that emits light having an emission peak in a wavelength region of 420 nm to less than 500 nm, preferably 440 nm to less than 500 nm, and light having an emission peak in a wavelength region of 500 nm to less than 560 nm, preferably 510 nm to 550 nm A phosphor layer comprising a green phosphor that emits light, a yellow phosphor that emits light having an emission peak in a wavelength region of 560 nm to less than 600 nm, preferably 565 nm to 580 nm, and the nitride phosphor.
(2) A blue phosphor that emits light having an emission peak in a wavelength region of 420 nm or more and less than 500 nm, preferably 440 nm or more and less than 500 nm, and light having an emission peak in a wavelength region of 500 nm or more and less than 560 nm, preferably 510 nm or more and 550 nm or less. A phosphor layer comprising a green phosphor that emits light and the nitride phosphor.
(3) A blue phosphor that emits light having an emission peak in a wavelength region of 420 nm or more and less than 500 nm, preferably 440 nm or more and less than 500 nm, and light having an emission peak in a wavelength region of 560 nm or more and less than 600 nm, preferably 565 nm or more and 580 nm or less. A phosphor layer comprising a yellow phosphor that emits light and the nitride phosphor.
(4) A green phosphor that emits light having an emission peak in a wavelength region of 500 nm or more and less than 560 nm, preferably in a wavelength region of 525 nm or more and less than 560 nm, and a wavelength region of 560 nm or more and less than 600 nm, preferably 565 nm or more and 580 nm or less. A phosphor layer comprising a yellow phosphor that emits light having an emission peak in a wavelength region, and the nitride phosphor.
A phosphor layer comprising the yellow phosphor and the nitride phosphor.
(5) A phosphor layer containing the yellow phosphor and the nitride phosphor.
(6) A phosphor layer containing the green phosphor and the nitride phosphor.

また、上記蛍光体を、以下(7)〜(9)に示す組み合わせで用い、発光素子1を420nm以上500nm未満の波長領域に発光ピークを有する青色発光素子とすると、発光素子1が放つ光と蛍光体が放つ光との混色等によって、白色系光を放つ半導体発光素子になる。
(7) 500nm以上560nm未満の波長領域に、好ましくは525nm以上560nm未満の波長領域に発光ピークを有する光を放つ緑色蛍光体と、560nm以上600nm未満の波長領域に、好ましくは565nm以上580nm以下の波長領域に発光ピークを有する光を放つ黄色蛍光体と、上記窒化物蛍光体とを含む蛍光体層。
(8) 上記黄色蛍光体と、上記窒化物蛍光体とを含む蛍光体層。
(9) 上記緑色蛍光体と、上記窒化物蛍光体とを含む蛍光体層。
When the phosphor is used in the combinations shown in (7) to (9) below and the light-emitting element 1 is a blue light-emitting element having an emission peak in a wavelength region of 420 nm or more and less than 500 nm, the light emitted from the light-emitting element 1 A semiconductor light emitting device that emits white light is obtained by color mixing with light emitted from the phosphor.
(7) A green phosphor that emits light having an emission peak in a wavelength region of 500 nm or more and less than 560 nm, preferably in a wavelength region of 525 nm or more and less than 560 nm, and a wavelength region of 560 nm or more and less than 600 nm, preferably 565 nm or more and 580 nm or less. A phosphor layer comprising a yellow phosphor that emits light having an emission peak in a wavelength region, and the nitride phosphor.
(8) A phosphor layer containing the yellow phosphor and the nitride phosphor.
(9) A phosphor layer containing the green phosphor and the nitride phosphor.

なお、発光素子を青色発光素子とする場合、上記緑色蛍光体、上記黄色蛍光体としては、Eu2+で付活されたアルカリ土類金属オルト珪酸塩蛍光体、Eu2+で付活された窒化物蛍光体又は酸窒化物蛍光体の他にも、Ce3+で付活されたガーネット構造を有する蛍光体(特に、YAG:Ce系蛍光体)、Eu2+で付活されたチオガレート蛍光体等から広く選択可能である。さらに具体的に説明すると、例えば、SrGa24:Eu2+緑色蛍光体、Y3(Al,Ga)512:Ce3+緑色蛍光体、Y3Al512:Ce3+緑色蛍光体、BaY2SiAl412:Ce3+緑色蛍光体、Ca3Sc2Si312:Ce3+緑色蛍光体、(Y,Gd)3Al512:Ce3+黄色蛍光体、Y3Al512:Ce3+,Pr3+黄色蛍光体、CaGa24:Eu2+黄色蛍光体等が使用できる。 When the light emitting element is a blue light emitting element, the green phosphor and the yellow phosphor were activated with Eu 2+ alkaline earth metal orthosilicate phosphor activated with Eu 2+ . In addition to nitride phosphors or oxynitride phosphors, phosphors having a garnet structure activated by Ce 3+ (particularly YAG: Ce-based phosphors), thiogallate fluorescence activated by Eu 2+ It can be selected widely from the body. More specifically, for example, SrGa 2 S 4 : Eu 2+ green phosphor, Y 3 (Al, Ga) 5 O 12 : Ce 3+ green phosphor, Y 3 Al 5 O 12 : Ce 3+ green Phosphor, BaY 2 SiAl 4 O 12 : Ce 3+ green phosphor, Ca 3 Sc 2 Si 3 O 12 : Ce 3+ green phosphor, (Y, Gd) 3 Al 5 O 12 : Ce 3 + yellow phosphor Y 3 Al 5 O 12 : Ce 3+ , Pr 3+ yellow phosphor, CaGa 2 S 4 : Eu 2+ yellow phosphor and the like can be used.

あるいは、図1〜図3において蛍光体層3は、蛍光体2として、少なくともEu2+で付活されて赤色光を放つ窒化物蛍光体又は酸窒化物蛍光体と、Eu2+で付活され、かつ、500nm以上560nm未満又は560nm以上600nm未満のいずれかの波長領域に発光ピークを有するアルカリ土類金属オルト珪酸塩蛍光体とを分散させて構成する。 Alternatively, the phosphor layer 3 in FIGS. 1-3, the phosphor 2, and the nitride phosphor or oxynitride phosphor emits red light is activated with at least Eu 2+, activated by Eu 2+ And an alkaline earth metal orthosilicate phosphor having an emission peak in any wavelength region of 500 nm or more and less than 560 nm or 560 nm or more and less than 600 nm.

蛍光体層3は、上述した蛍光体層3の母材を用いればよい。また、蛍光体層3に含まれる蛍光体2は、上記発光素子1が放つ光の一部又は全部を吸収して光に変換するため、半導体発光素子の出力光は、窒化物蛍光体又は酸窒化物蛍光体が放つ発光成分と、アルカリ土類金属オルト珪酸塩蛍光体が放つ発光成分とを少なくとも含む。   The phosphor layer 3 may use the base material of the phosphor layer 3 described above. In addition, since the phosphor 2 included in the phosphor layer 3 absorbs a part or all of the light emitted from the light emitting element 1 and converts it into light, the output light of the semiconductor light emitting element is a nitride phosphor or an acid. It includes at least a light emitting component emitted from the nitride phosphor and a light emitting component emitted from the alkaline earth metal orthosilicate phosphor.

また、蛍光体2として、Eu2+で付活されて赤色光を放つ窒化物蛍光体又は酸窒化物蛍光体と、Eu2+で付活され、かつ、500nm以上560nm未満又は560nm以上600nm未満のいずれかの波長領域に発光ピークを有するアルカリ土類金属オルト珪酸塩蛍光体とを含む場合も、蛍光体層3は、上記窒化物蛍光体又は酸窒化物蛍光体、及びアルカリ土類金属オルト珪酸塩蛍光体以外の蛍光体をさらに含んでもよいし、含まなくてもよい。 Further, the phosphor 2, and the nitride phosphor or oxynitride phosphor is activated with Eu 2+ emitting red light, it is activated by Eu 2+, and less than 500 nm 560nm or 560nm or 600nm than When the phosphor layer 3 includes the alkaline earth metal orthosilicate phosphor having an emission peak in any one of the wavelength regions of the above, the phosphor layer 3 is not limited to the nitride phosphor or the oxynitride phosphor, and the alkaline earth metal ortho. A phosphor other than the silicate phosphor may or may not be included.

但し、窒化物蛍光体又は酸窒化物蛍光体や硫化物系蛍光体の使用量を削減する目的では、上記以外の窒化物蛍光体又は酸窒化物蛍光体や硫化物系蛍光体を含まないことが好ましい。   However, for the purpose of reducing the amount of nitride phosphors, oxynitride phosphors and sulfide phosphors used, other nitride phosphors, oxynitride phosphors and sulfide phosphors are not included. Is preferred.

例えば、上述したEu2+又はCe3+で付活され、360nm以上500nm未満の波長領域の励起下において内部量子効率が高い、アルミン酸塩蛍光体、ハロ燐酸塩蛍光体等と、上記(1)〜(6)に示した蛍光体とを組み合わせて用いれば、発光素子1が放つ光によって蛍光体が高効率励起され、複数の蛍光体が放つ光の混色によって、白色系光を放つ半導体発光素子になる。また、上記(7)〜(9)に示した蛍光体とを組み合わせて用いれば、発光素子1が放つ光と蛍光体が放つ光との混色によって、白色系光を放つ半導体発光素子になる。 For example, aluminate phosphors, halophosphate phosphors, etc. that are activated by Eu 2+ or Ce 3+ and have high internal quantum efficiency under excitation in a wavelength region of 360 nm or more and less than 500 nm, and the above (1 ) To (6) are used in combination with the phosphors described above, the phosphors are excited with high efficiency by the light emitted from the light emitting element 1, and the semiconductor light emission that emits white light by the color mixture of the light emitted from the plurality of phosphors. Become an element. Further, when the phosphors shown in the above (7) to (9) are used in combination, a semiconductor light emitting device that emits white light is obtained by color mixture of light emitted from the light emitting device 1 and light emitted from the phosphor.

本実施形態の半導体発光素子において、上記青色発光素子の励起下における外部量子効率は必ずしも高くないが内部量子効率は高い蛍光体を用いるので、例えば、青色発光素子が放つ光と蛍光体が放つ光の混色によって、所望の白色系光を得ようとした場合、比較的多くの蛍光体を必要とする。従って、所望の白色系光を得ようとすると、必然的に蛍光体層の厚みを増す必要がある。一方、蛍光体層の厚さが増加すると、白色系光の色むらが少ない発光装置になるメリットもある。   In the semiconductor light emitting device of the present embodiment, a phosphor having a high internal quantum efficiency but not necessarily an external quantum efficiency under excitation of the blue light emitting device is used. For example, light emitted from the blue light emitting device and light emitted from the phosphor When a desired white-colored light is to be obtained by mixing the colors, a relatively large number of phosphors are required. Therefore, in order to obtain desired white light, it is necessary to increase the thickness of the phosphor layer. On the other hand, when the thickness of the phosphor layer is increased, there is an advantage that a light emitting device with less color unevenness of white light is obtained.

蛍光体層3を複層又は多層構造として、その一部の層に上記窒化物蛍光体又は酸窒化物蛍光体を含む蛍光体層とすれば、本実施形態の半導体発光素子である発光装置の発光の色斑や出力斑を抑制できるので好ましい。   If the phosphor layer 3 has a multilayer or multilayer structure, and the phosphor layer includes the nitride phosphor or the oxynitride phosphor in a part of the layer, the light emitting device of the semiconductor light emitting device of the present embodiment This is preferable because emission color spots and output spots can be suppressed.

なお、Eu2+を発光中心イオンとして含む窒化物蛍光体又は酸窒化物蛍光体は、青、緑、黄の可視光を吸収して赤色光に変換するため、上記窒化物蛍光体又は酸窒化物蛍光体を含む蛍光体層3を、青色蛍光体、緑色蛍光体、黄色蛍光体のいずれかの蛍光体と上記窒化物蛍光体又は酸窒化物蛍光体とを混合して形成すると、上記青、緑、黄色蛍光体の発光も吸収して、上記窒化物蛍光体又は酸窒化物蛍光体が赤色光を放つことになる。このため、発光装置の発光色の制御が、蛍光体層の製造工程上の理由で難しくなる。この課題を防ぐため、蛍光体層3を複層又は多層構造とし、上記発光素子1の主光出力面に最も近い層を、赤色光を放つ窒化物蛍光体又は酸窒化物蛍光体として、上記青、緑、黄色蛍光体の発光によって励起され難くすることが好ましい。また、Eu2+又はCe3+で付活された上記黄色蛍光体は青色系光や緑色系光で励起され、Eu2+又はCe3+で付活された上記緑色蛍光体は青色系光で励起されるため、発光色の異なる複種類の蛍光体を混合して蛍光体層3を形成した場合には、前述の課題と同様の課題が生じることになる。この課題を解決するために、本実施形態における半導体発光装置は、蛍光体層3を複層又は多層構造とし、発光素子1の主光出力面から遠い層に、波長の短い光を放つ蛍光体を含む層を構成することが好ましい。 The nitride phosphor or oxynitride phosphor containing Eu 2+ as the emission center ion absorbs blue, green, and yellow visible light and converts it into red light. When the phosphor layer 3 containing a material phosphor is formed by mixing any one of a blue phosphor, a green phosphor, and a yellow phosphor with the nitride phosphor or the oxynitride phosphor, The light emission of the green and yellow phosphors is also absorbed, and the nitride phosphor or oxynitride phosphor emits red light. For this reason, control of the luminescent color of a light-emitting device becomes difficult for the reason on the manufacturing process of a fluorescent substance layer. In order to prevent this problem, the phosphor layer 3 has a multilayer or multilayer structure, and the layer closest to the main light output surface of the light emitting element 1 is a nitride phosphor or oxynitride phosphor that emits red light. It is preferable to prevent excitation by the emission of blue, green and yellow phosphors. The yellow phosphor activated by Eu 2+ or Ce 3+ is excited by blue light or green light, and the green phosphor activated by Eu 2+ or Ce 3+ is blue light. Therefore, when the phosphor layer 3 is formed by mixing a plurality of kinds of phosphors having different emission colors, the same problem as described above occurs. In order to solve this problem, the semiconductor light emitting device according to the present embodiment has a phosphor layer 3 having a multilayer or multilayer structure and emits light having a short wavelength to a layer far from the main light output surface of the light emitting element 1. It is preferable to constitute a layer containing

本実施形態の半導体発光素子は、上記発光素子と、この発光素子の励起下における内部量子効率が高く、励起光を効率よく赤色系光に変換する窒化物蛍光体又は酸窒化物蛍光体を少なくとも含む蛍光体層とを備え、少なくとも上記窒化物蛍光体又は酸窒化物蛍光体が放つ赤色系の発光成分を出力光に含む発光装置であり、高い光束と高い演色性とを両立する発光装置、特に暖色系の白色光を放つ発光装置になる。また、上記発光素子が青色発光素子の場合、上記出力光は、上記発光素子が放つ発光成分をさらに含む発光装置となる。   The semiconductor light-emitting device of this embodiment has at least the light-emitting device and a nitride phosphor or oxynitride phosphor that has high internal quantum efficiency under excitation of the light-emitting device and efficiently converts excitation light into red light. A light emitting device that includes at least a red light emitting component emitted by the nitride phosphor or oxynitride phosphor in the output light, and has both a high luminous flux and high color rendering properties, In particular, the light emitting device emits warm white light. When the light emitting element is a blue light emitting element, the output light is a light emitting device further including a light emitting component emitted by the light emitting element.

図4及び図5は、本発明の発光装置の一例を示す、照明・表示装置の構成の概略図である。図4は、上述の蛍光体2を含む蛍光体層3と発光素子1とを組み合わせた半導体発光素子9を少なくとも1つ用いて構成した照明・表示装置と、その出力光10とを示す。図5は、少なくとも1つの発光素子1と上述の蛍光体2を含む蛍光体層3を組み合わせてなる照明・表示装置と、その出力光10とを示す。発光素子1及び蛍光体層3については、先に説明した半導体発光素子の場合と同様のものを使用できる。また、このような構成の照明・表示装置の作用や効果等についても、先に説明した半導体発光素子の場合と同様である。   4 and 5 are schematic views of the configuration of the illumination / display device showing an example of the light-emitting device of the present invention. FIG. 4 shows an illumination / display device configured by using at least one semiconductor light emitting element 9 in which the phosphor layer 3 including the phosphor 2 described above and the light emitting element 1 are combined, and an output light 10 thereof. FIG. 5 shows an illumination / display device in which at least one light-emitting element 1 and a phosphor layer 3 including the above-described phosphor 2 are combined, and an output light 10 thereof. About the light emitting element 1 and the fluorescent substance layer 3, the thing similar to the case of the semiconductor light emitting element demonstrated previously can be used. The operation and effect of the illumination / display device having such a configuration is the same as that of the semiconductor light emitting element described above.

図6〜図11は、上記図4及び図5で概略を示した、本発明の発光装置の実施形態である照明・表示装置を組み込んだ具体例を示す図である。図6は、一体型の発光部11を有する照明モジュール12の斜視図を示す。図7は、複数の発光部11を有する照明モジュール12の斜視図を示す。図8は、発光部11を有し、スイッチ13によってON−OFF制御や光量制御可能な卓上スタンド型の照明装置の斜視図である。図9は、ねじ込み式口金14と、反射板15と、複数の発光部11を有する照明モジュール12を用いて構成した光源としての照明装置の側面図Aと底面図Bである。図10は、発光部11を備えた平板型の画像表示装置の斜視図である。図11は、発光部11を備えたセグメント式の数字表示装置の斜視図である。   FIGS. 6-11 is a figure which shows the specific example incorporating the illumination and the display apparatus which are the embodiment of the light-emitting device of this invention which was outlined in FIG.4 and FIG.5. FIG. 6 is a perspective view of the illumination module 12 having the integrated light emitting unit 11. FIG. 7 shows a perspective view of an illumination module 12 having a plurality of light emitting units 11. FIG. 8 is a perspective view of a table lamp type lighting device having a light emitting unit 11 and capable of ON-OFF control and light amount control by a switch 13. FIGS. 9A and 9B are a side view A and a bottom view B of a lighting device as a light source configured by using a screw-type base 14, a reflecting plate 15, and a lighting module 12 having a plurality of light emitting portions 11. FIG. 10 is a perspective view of a flat image display device including the light emitting unit 11. FIG. 11 is a perspective view of a segment-type number display device including the light emitting unit 11.

本実施形態の照明・表示装置は、上記発光素子の励起下における内部量子効率が高い蛍光体を用い、特に赤色系の発光成分の強度が強く、演色性の良好な半導体発光素子を用いて構成しているので、従来の照明・表示装置に対して同等以上に優れた、高い光束と、特に赤色系の発光成分の強度が強く高い演色性とを両立する照明・表示装置になる。   The illumination / display device according to the present embodiment uses a phosphor having high internal quantum efficiency under excitation of the light-emitting element, and particularly uses a semiconductor light-emitting element having a strong red color component and good color rendering. Therefore, it becomes an illumination / display device that achieves both a high luminous flux and a particularly high color rendering property with a high intensity of the red light-emitting component, which are superior or superior to those of conventional illumination / display devices.

以下、実施例を用いて本発明をより詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

(実施例1)
本実施例では、発光装置として、図24に示すカード型の照明モジュール光源を作製し、発光特性を評価した。図25は、図24の一部断面図である。
Example 1
In this example, a card-type illumination module light source shown in FIG. 24 was manufactured as a light emitting device, and the light emission characteristics were evaluated. 25 is a partial cross-sectional view of FIG.

まず、半導体発光素子21の製造方法を説明する。n型Siウエハー上に、元々、マトリックス状に形成した、Siダイオード素子(サブマウント素子)22の、各々対をなすn電極23とp電極24の上に、マイクロバンブ25を介して、GaInNを発光層として470nm付近に発光ピークを有する発光を放つ青色LEDチップ26を導通搭載した。   First, a method for manufacturing the semiconductor light emitting element 21 will be described. On a n-type Si wafer, GaInN is formed on a pair of n-electrode 23 and p-electrode 24 of a Si diode element (submount element) 22 originally formed in a matrix via a microbump 25. A blue LED chip 26 emitting light having a light emission peak near 470 nm was conductively mounted as a light emitting layer.

なお、元々マトリックス状に形成した、各々のSiダイオード素子22の上に、青色LEDチップ26を導通搭載したため、結果として、青色LEDチップ26も、マトリックス状に実装されていることになる。   Since the blue LED chip 26 is conductively mounted on each Si diode element 22 originally formed in a matrix, the blue LED chip 26 is also mounted in a matrix as a result.

続いて、n電極23とp電極24とを、各々青色LEDチップ26のn電極及びp電極に接続した後、印刷技術を用いて、上記青色LEDチップ26の周辺部に蛍光体2を含む蛍光体層3を形成した。さらに、上記蛍光体層3の上面を研削して平坦化した後、ダイヤモンドカッターを用いて個々に切断分離して半導体発光素子21を形成した。   Subsequently, after the n-electrode 23 and the p-electrode 24 are connected to the n-electrode and the p-electrode of the blue LED chip 26, respectively, the phosphor containing the phosphor 2 around the blue LED chip 26 using a printing technique. Body layer 3 was formed. Further, the upper surface of the phosphor layer 3 was ground and flattened, and then individually cut and separated using a diamond cutter to form the semiconductor light emitting device 21.

次に、アルミニウム金属基板27(大きさ3cm×3cm、厚さ1mm)上に、第1の絶縁体厚膜28(厚さ75μm)、銅電極29(厚さ約10μm、幅0.5mm)、第2の絶縁体厚膜30(厚さ30μm)、電極パッド31a及び31b(厚さ約10μm、合計64対)を順次積層して放熱性多層基板32を形成した。上記第1の絶縁体厚膜28と上記第2の絶縁体厚膜30は、熱圧着によって形成したアルミナ分散エポキシ樹脂からなる。また、上記銅電極29はエッチング技術によってパターニング形成したものであり、上記電極パッド31a及び31bは、エッチング技術によって形成した給電用のマイナス及びプラスの電極である。なお、第2の絶縁体厚膜30の一部にはコンタクトホールを設け、上記電極パッド31a及び31bは、上記銅電極29を通して給電できるように形成した。   Next, on an aluminum metal substrate 27 (size 3 cm × 3 cm, thickness 1 mm), a first insulator thick film 28 (thickness 75 μm), a copper electrode 29 (thickness about 10 μm, width 0.5 mm), The second insulating thick film 30 (thickness 30 μm) and the electrode pads 31a and 31b (thickness of about 10 μm, total 64 pairs) were sequentially laminated to form the heat radiating multilayer substrate 32. The first insulator thick film 28 and the second insulator thick film 30 are made of an alumina-dispersed epoxy resin formed by thermocompression bonding. The copper electrode 29 is formed by patterning using an etching technique, and the electrode pads 31a and 31b are negative and positive electrodes for power feeding formed by an etching technique. A contact hole was provided in a part of the second insulator thick film 30, and the electrode pads 31 a and 31 b were formed so that power could be supplied through the copper electrode 29.

次に、半導体発光素子21を放熱性多層基板32上の所定の位置に載置した。このとき、Siダイオード素子22の裏面電極(n電極)33は、Agペーストを用いて電極パッド31aに固着接続し、p電極24上のボンディングパッド部35は、Auワイヤー34を用いて電極パッド31bに接続して、半導体発光素子21に給電できるように形成した。   Next, the semiconductor light emitting device 21 was placed at a predetermined position on the heat dissipating multilayer substrate 32. At this time, the back electrode (n electrode) 33 of the Si diode element 22 is fixedly connected to the electrode pad 31 a using Ag paste, and the bonding pad portion 35 on the p electrode 24 is connected to the electrode pad 31 b using Au wire 34. The semiconductor light emitting device 21 is formed so that it can be fed.

次に、逆円錐筒状の研削穴を有するアルミニウム金属反射板36を、放熱性多層基板32上に、接着剤を用いて接着した。このとき、放熱性多層基板32上の半導体発光素子21は、アルミニウム金属反射板36の研削穴部に収まるように形成した。さらに、半導体発光素子21と研削穴部の全体を包み覆うように、エポキシ樹脂を用いたドーム状のレンズ37を形成し、実施例1の発光装置を得た。   Next, an aluminum metal reflector 36 having an inverted conical cylindrical grinding hole was bonded onto the heat dissipating multilayer substrate 32 using an adhesive. At this time, the semiconductor light emitting element 21 on the heat dissipation multilayer substrate 32 was formed so as to fit in the grinding hole of the aluminum metal reflector 36. Furthermore, a dome-shaped lens 37 using an epoxy resin was formed so as to wrap and cover the entire semiconductor light emitting element 21 and the grinding hole, and the light emitting device of Example 1 was obtained.

図24は、実施例1の発光装置の斜視図である。実施例1では、半導体発光素子21を64個用いてカード型の照明モジュール光源を作製し、発光特性を評価した。   FIG. 24 is a perspective view of the light emitting device according to the first embodiment. In Example 1, a card-type illumination module light source was manufactured using 64 semiconductor light emitting elements 21, and the light emission characteristics were evaluated.

実施例1は、銅電極29に、半導体発光素子21を32個直列接続した2つの半導体発光素子群に各々40mA程度、合わせて80mA程度の電流を流すことによって、半導体発光素子21を駆動させ、出力光を得た。この出力光は、上記青色LEDチップ26が放つ光と、この光によって励起されて発光した、蛍光体層3に含まれる蛍光体が放つ光の混色光である。さらに、この出力光は、LEDチップ及び蛍光体の種類と量を適宜選択することにより、任意の白色光を得られた。   In Example 1, the semiconductor light emitting element 21 is driven by flowing a current of about 40 mA to each of two semiconductor light emitting element groups in which 32 semiconductor light emitting elements 21 are connected in series to the copper electrode 29, and about 80 mA in total. Output light was obtained. This output light is a mixed color light of the light emitted from the blue LED chip 26 and the light emitted from the phosphor contained in the phosphor layer 3 that is excited and emitted by this light. Furthermore, as the output light, arbitrary white light was obtained by appropriately selecting the kind and amount of the LED chip and the phosphor.

以下、蛍光体層3について詳説する。   Hereinafter, the phosphor layer 3 will be described in detail.

蛍光体層3は、蛍光体を添加したエポキシ樹脂を乾固して形成した。実施例1では、蛍光体として、波長625nm付近に発光ピークを有するSrAlSiN3:Eu2+赤色蛍光体(中心粒径:2.2μm、最大内部量子効率:60%)と、波長555nm付近に発光ピークを有する(Ba,Sr)2SiO4:Eu2+緑色蛍光体(中心粒径:12.7μm、最大内部量子効率:91%)の2種類を用い、エポキシ樹脂には、ビスフェノールA型液状エポキシ樹脂を主成分とするエポキシ樹脂(主材)と、脂環式酸無水物を主成分とするエポキシ樹脂(硬化材)の二液混合型のエポキシ樹脂を用いた。SrAlSiN3:Eu2+赤色蛍光体と(Ba,Sr)2SiO4:Eu2+緑色蛍光体とは重量割合、約1:10で混合し、この混合蛍光体とエポキシ樹脂とは重量割合、約1:3(蛍光体濃度=25重量%)で混合した。 The phosphor layer 3 was formed by drying an epoxy resin added with a phosphor. In Example 1, as a phosphor, SrAlSiN 3 : Eu 2+ red phosphor (center particle size: 2.2 μm, maximum internal quantum efficiency: 60%) having an emission peak near a wavelength of 625 nm and light emission near a wavelength of 555 nm Two types of (Ba, Sr) 2 SiO 4 : Eu 2+ green phosphor having a peak (center particle size: 12.7 μm, maximum internal quantum efficiency: 91%) are used, and bisphenol A type liquid is used as an epoxy resin. A two-component mixed epoxy resin of an epoxy resin (main material) mainly composed of an epoxy resin and an epoxy resin (cured material) mainly composed of an alicyclic acid anhydride was used. SrAlSiN 3 : Eu 2+ red phosphor and (Ba, Sr) 2 SiO 4 : Eu 2+ green phosphor are mixed in a weight ratio of about 1:10, and the mixed phosphor and epoxy resin are in a weight ratio. The mixture was mixed at about 1: 3 (phosphor concentration = 25% by weight).

(比較例1)
蛍光体に波長625nm付近に発光ピークを有するSr2Si58:Eu2+赤色蛍光体(中心粒径:1.8μm、最大内部量子効率:62%)と、波長560nm付近に発光ピークを有するY3Al512:Ce3+黄色蛍光体(中心粒径:17.6μm、最大内部量子効率:98%)の2種類を用いて、カード型の照明モジュール光源を実施例1と同様に作製した。蛍光体層3としては、Sr2Si58:Eu2+赤色蛍光体とY3Al512:Ce3+黄色蛍光体とを重量割合、約1:6で混合し、この混合蛍光体とエポキシ樹脂とを重量割合、約1:14(蛍光体濃度=6.7重量%)で混合したものを用いた。そして実施例1と同様に、半導体発光素子に電流を流すことにより出力光を得て、その発光特性を評価した。
(Comparative Example 1)
Sr 2 Si 5 N 8 : Eu 2+ red phosphor (center particle size: 1.8 μm, maximum internal quantum efficiency: 62%) having an emission peak at a wavelength of about 625 nm on the phosphor, and an emission peak at a wavelength of about 560 nm The card-type illumination module light source is the same as in Example 1 using two types of Y 3 Al 5 O 12 : Ce 3+ yellow phosphor (center particle size: 17.6 μm, maximum internal quantum efficiency: 98%). It was prepared. As the phosphor layer 3, Sr 2 Si 5 N 8 : Eu 2+ red phosphor and Y 3 Al 5 O 12 : Ce 3+ yellow phosphor are mixed at a weight ratio of about 1: 6, and this mixed fluorescence The mixture of the body and the epoxy resin at a weight ratio of about 1:14 (phosphor concentration = 6.7% by weight) was used. Then, in the same manner as in Example 1, output light was obtained by passing a current through the semiconductor light emitting element, and the light emission characteristics were evaluated.

蛍光体層3の厚さは、等しい光色(相関色温度約3800K、duv、色度)の白色光を得るため、実施例1が厚さ約500μm、比較例1が厚さ約100μmに形成した。なお、実施例1のSrAlSiN3:Eu2+赤色蛍光体と比較例1のSr2Si58:Eu2+赤色蛍光体の発光特性は元々類似している。そこで、さらに比較精度を高める目的で、実施例1の蛍光体は、比較例1と出来る限り発光性能の似た緑色蛍光体を選択した。実施例1の(Ba,Sr)2SiO4:Eu2+緑色蛍光体と、図15に示した(Ba,Sr)2SiO4:Eu2+緑色蛍光体とは、SrとBaの原子比は異なるが、内部量子効率及び外部量子効率の励起波長依存性は類似している。 In order to obtain white light having the same light color (correlated color temperature of about 3800 K, duv, chromaticity), the phosphor layer 3 has a thickness of about 500 μm in Example 1 and about 100 μm in Comparative Example 1. did. The light emission characteristics of the SrAlSiN 3 : Eu 2+ red phosphor of Example 1 and the Sr 2 Si 5 N 8 : Eu 2+ red phosphor of Comparative Example 1 are originally similar. Therefore, for the purpose of further improving the comparison accuracy, the phosphor of Example 1 was selected as a green phosphor having a light emission performance as similar as that of Comparative Example 1. Example 1 (Ba, Sr) 2 SiO 4 : Eu 2+ green phosphor, as shown in FIG. 15 (Ba, Sr) 2 SiO 4: Eu 2+ as the green phosphor, the atomic ratio of Sr and Ba Are different, but the dependence of the internal quantum efficiency and the external quantum efficiency on the excitation wavelength is similar.

以下、実施例1と比較例1にかかる発光装置の発光特性を説明する。   Hereinafter, the light emission characteristics of the light emitting devices according to Example 1 and Comparative Example 1 will be described.

図26、図27に実施例1及び比較例1の発光スペクトルをそれぞれ示した。図26、図27からわかるように、実施例1及び比較例1の発光装置は、よく似た発光スペクトルをもち、いずれも470nm付近と600nm付近に発光ピークを有する白色光、すなわち、青色系光と黄色系光の混色によって白色光を放つ。   26 and 27 show the emission spectra of Example 1 and Comparative Example 1, respectively. As can be seen from FIGS. 26 and 27, the light emitting devices of Example 1 and Comparative Example 1 have similar emission spectra, and both have white light having emission peaks near 470 nm and 600 nm, that is, blue light. White light is emitted by mixing yellow and yellow light.

表1に、実施例1と比較例1の発光装置の発光特性を示す。   Table 1 shows the light emission characteristics of the light emitting devices of Example 1 and Comparative Example 1.

Figure 0005604482
Figure 0005604482

表1のduvは白色光の黒体放射軌跡からのずれを示す指数である。Raは平均演色評価数、R9は赤色の特殊演色評価数であり、基準光で見た色を100として、試験光が試験色をどれだけ忠実に再現しているかを表す。   The duv in Table 1 is an index indicating the deviation from the black body radiation locus of white light. Ra is an average color rendering index, and R9 is a red special color rendering index, which represents how faithfully the test light reproduces the test color when the color viewed with the reference light is 100.

ほぼ等しい光色(相関色温度、duv及び色度)の条件下で、実施例1は、470nmの光照射下での発光強度が低い(Ba,Sr)2SiO4:Eu2+緑色蛍光体を用いたにも関わらず、比較例1とほぼ等しいRa、R9及び光束を示した。すなわち、実施例1は、高演色性と高光束を両立する従来の発光装置である比較例1と、同等の発光性能を有することがわかった。この理由として、青色LEDの放つ光照射下における、実施例1で用いた蛍光体の内部量子効率が高く、蛍光体に吸収された青色LEDの放つ光が効率良く波長変換されて発光するとともに、吸収されなかった青色LEDの放つ光が効率良く出力されたことが考えられる。 Under conditions of approximately equal light colors (correlated color temperature, duv and chromaticity), Example 1 has a low emission intensity under light irradiation of 470 nm (Ba, Sr) 2 SiO 4 : Eu 2+ green phosphor In spite of the above, Ra, R9 and luminous flux almost equal to those of Comparative Example 1 were shown. That is, it was found that Example 1 has the same luminous performance as Comparative Example 1, which is a conventional light emitting device that achieves both high color rendering properties and high luminous flux. The reason for this is that the internal quantum efficiency of the phosphor used in Example 1 under the light irradiation emitted by the blue LED is high, the light emitted by the blue LED absorbed by the phosphor is efficiently wavelength-converted and emitted, It is considered that the light emitted from the blue LED that was not absorbed was output efficiently.

なお、発光装置の相関色温度は、上記蛍光体濃度や蛍光体層の厚みを変えることによって任意に調整可能であり、所定の分光分布と所定の内部量子効率を有する少なくとも1つの蛍光体と、透過率が100%の例えば樹脂等の母材とを用いて蛍光体層を構成し、さらに、所定の分光分布を有する一定出力の発光素子を用いて発光装置を構成し、出力光の相関色温度を変えた場合の演色評価数、光束等の発光特性は、シミュレーションによって評価できる。但し、演色評価数だけであれば、内部量子効率の数値は無くてもよく、蛍光体と発光素子の分光分布だけでシミュレーション評価可能である。そこで、上記発光装置の高演色性と高光束を両立する光色を調べるため、実施例1及び比較例1の発光装置が放つ白色光の、duvを0として相関色温度を変えた場合のRaと相対光束の挙動とを、シミュレーションによって評価した。   The correlated color temperature of the light emitting device can be arbitrarily adjusted by changing the phosphor concentration and the thickness of the phosphor layer, and has at least one phosphor having a predetermined spectral distribution and a predetermined internal quantum efficiency; A phosphor layer is configured using a base material such as a resin having a transmittance of 100%, for example, and a light emitting device is configured using a light emitting element having a predetermined spectral distribution and a constant output, and a correlated color of output light Luminescent characteristics such as the color rendering index and the luminous flux when the temperature is changed can be evaluated by simulation. However, if only the color rendering evaluation number is used, the numerical value of the internal quantum efficiency may not be present, and simulation evaluation can be performed only by the spectral distribution of the phosphor and the light emitting element. Therefore, in order to investigate the light color that achieves both high color rendering properties and high luminous flux of the light emitting device, Ra of the white light emitted by the light emitting devices of Example 1 and Comparative Example 1 when the correlated color temperature is changed by setting duv to 0 is used. And the behavior of the relative luminous flux were evaluated by simulation.

図28に、実施例1及び比較例1の発光装置が放つ白色光の、相関色温度を変えた場合の相対光束を、シミュレーションによって評価した結果を示した。図28から、実施例1及び比較例1は同様の振る舞いを示し、白色光の相関色温度が3000K以上6000K以下、好ましくは3500K以上5000K以下の発光装置を作製した場合、実施例1は、比較例1において相関色温度を3797Kにした場合の光束の95〜100%に当たる比較的高い光束を示すことがわかる。なお、上記比較例1の相関色温度を3797Kにした場合の光束は、図28中に実線で示した。   FIG. 28 shows the result of evaluating the relative luminous flux of white light emitted from the light emitting devices of Example 1 and Comparative Example 1 when the correlated color temperature is changed by simulation. From FIG. 28, Example 1 and Comparative Example 1 show the same behavior, and when a light emitting device having a correlated color temperature of white light of 3000 K to 6000 K, preferably 3500 K to 5000 K, is manufactured, Example 1 is compared. It can be seen that Example 1 shows a relatively high luminous flux corresponding to 95 to 100% of the luminous flux when the correlated color temperature is 3797K. The luminous flux when the correlated color temperature of Comparative Example 1 is 3797K is indicated by a solid line in FIG.

また、図29に、実施例1及び比較例1の発光装置が放つ白色光の、相関色温度を変えた場合の相対光束を、シミュレーションによって評価した結果を示した。実施例1及び比較例1は、白色光の相関色温度が2000K以上5000K以下、好ましくは2500K以上4000K以下の発光装置を作製した場合に、Raが80以上の比較的高い数値を示すことがわかる。   FIG. 29 shows the result of evaluating the relative luminous flux of white light emitted from the light emitting devices of Example 1 and Comparative Example 1 when the correlated color temperature is changed by simulation. Example 1 and Comparative Example 1 show that when a light emitting device having a correlated color temperature of white light of 2000K to 5000K, preferably 2500K to 4000K is manufactured, Ra has a relatively high numerical value of 80 or more. .

図28及び図29より、実施例1及び比較例1は、白色光の相関色温度が3000K以上5000K以下、好ましくは3000K以上4500K以下、より好ましくは3500K以上4000K以下の発光装置を作製した場合に、高い光束と高いRaを両立する発光装置を得られることがわかる。   28 and 29, Example 1 and Comparative Example 1 are for the case where a light emitting device having a correlated color temperature of white light of 3000K to 5000K, preferably 3000K to 4500K, more preferably 3500K to 4000K. It can be seen that a light emitting device having both a high luminous flux and a high Ra can be obtained.

(実施例2)
実施例1の(Ba,Sr)2SiO4:Eu2+緑色蛍光体を、波長555nm付近に発光ピークを有する蛍光体から、波長535nm付近に発光ピークを有する蛍光体に変更し、duvを0として相関色温度を変化させた発光装置を構成し実施例2とした。
(Example 2)
The (Ba, Sr) 2 SiO 4 : Eu 2+ green phosphor of Example 1 was changed from a phosphor having an emission peak near a wavelength of 555 nm to a phosphor having an emission peak near a wavelength of 535 nm. As a second example, a light emitting device in which the correlated color temperature was changed was configured.

図30に、実施例2の放つ白色光のRaをシミュレーションによって評価した結果を示した。図30から、相関色温度の低い発光装置ほど高いRaを示し、相関色温度が2000K以上5000K以下の白色光を放つ発光装置を作製した場合に、Raが80以上を示し、さらに、相対色温度3000K以下の場合には、Raが90以上を示すことがわかる。   In FIG. 30, the result of having evaluated Ra of the white light which Example 2 emits by simulation was shown. From FIG. 30, when a light emitting device having a lower correlated color temperature shows higher Ra, and a light emitting device emitting white light with a correlated color temperature of 2000 K or more and 5000 K or less is produced, Ra shows 80 or more, and the relative color temperature In the case of 3000K or less, it can be seen that Ra indicates 90 or more.

図31に、実施例2の放つ白色光のR9をシミュレーションによって評価した結果を示した。図31から、相関色温度が2000K以上8000K以下の白色光を放つ発光装置を作製した場合に、R9が40以上の高い数値を示し、2500K以上6500K以下にした場合には約60以上、3000K以上5000K以下にした場合には約80以上の高いR9を示すことがわかる。   In FIG. 31, the result of having evaluated R9 of the white light which Example 2 emits by simulation was shown. From FIG. 31, when a light emitting device that emits white light having a correlated color temperature of 2000 K or more and 8000 K or less is produced, R9 shows a high value of 40 or more, and when it is 2500 K or more and 6500 K or less, about 60 or more and 3000 K or more. It can be seen that a high R9 of about 80 or more is exhibited when the temperature is 5000K or less.

図32に、実施例2の発光装置が放つ白色光の、相関色温度を変えた場合の相対光束を、シミュレーションによって評価した結果を示した。図32から、実施例2を白色光の相関色温度が2500K以上8000K以下、好ましくは3000K以上5000K以下、より好ましくは3500K以上4500K以下の発光装置を作製した場合に、実施例2は、比較例1において相関色温度を3797Kにした場合の光束の82〜85%に当たる比較的高い光束を示すことがわかる。なお、上記比較例1の相関色温度を3797Kにした場合の光束は、図32中に実線で示した。   FIG. 32 shows the result of evaluating the relative luminous flux of white light emitted from the light emitting device of Example 2 when the correlated color temperature is changed by simulation. From FIG. 32, when a light emitting device having a correlated color temperature of white light of 2500 K to 8000 K, preferably 3000 K to 5000 K, more preferably 3500 K to 4500 K is manufactured in Example 2, Example 2 is a comparative example. 1 shows a relatively high luminous flux corresponding to 82 to 85% of the luminous flux when the correlated color temperature is 3797K. The luminous flux when the correlated color temperature of Comparative Example 1 is 3797K is shown by a solid line in FIG.

図30〜図32より、実施例2の発光装置は、相関色温度が3000K以上5000K以下の白色光を放つ発光装置は、Ra及びR9が80以上であり、かつ、高い光束を両立する、演色性の高い出力光を放つ。さらに、相関色温度が3500K以上4500K以下の場合には、Ra及びR9が82以上であり、かつ、高い光束を両立する、より好ましい演色性の出力光を放ち、特に、相対色温度約4000Kの場合には、Ra及びR9が85以上であり、かつ、より高い光束を両立する、よりいっそう好ましい演色性の出力光を放つ。   30 to 32, the light-emitting device of Example 2 emits white light having a correlated color temperature of 3000 K or more and 5000 K or less. Ra and R9 are 80 or more and color rendering is compatible with high luminous flux. High output light is emitted. Further, when the correlated color temperature is 3500K or more and 4500K or less, Ra and R9 are 82 or more, and a more preferable color rendering output light compatible with a high luminous flux is emitted, and in particular, the relative color temperature is about 4000K. In some cases, Ra and R9 are 85 or more, and an output light having a more preferable color rendering property that achieves a higher luminous flux is emitted.

図33には、特に好ましい相関色温度4000K(duv=0)の暖色系白色光を放つ実施例2の発光装置の、発光スペクトルのシミュレーションデータを示した。この発光スペクトルの場合、色度(x,y)は(0.3805,0.3768)であり、Raが86、R9が95である。この発光スペクトルの形状は、青色LEDによる460〜480nmの波長領域の発光ピークと、希土類イオンの5d−4f電子遷移に基づく発光を放つ実施例2の緑色蛍光体による520〜550nmの波長領域の発光ピークと、希土類イオンの5d−4f電子遷移に基づく発光を放つ実施例2の赤色蛍光体による610〜640nmの波長領域の発光ピークとの強度の比率、460〜480nm:520〜550nm:610〜640nmが、24〜28:12〜15:16〜20である。本発明の好ましい形態の一つは、発光ピークが上記比率の発光スペクトルの形状を有する暖色系白色光を放つことを特徴とする発光装置である。なお、上述の希土類イオンの5d−4f電子遷移に基づく発光を放つ蛍光体とは、主にEu2+又はCe3+の希土類イオンを発光中心イオンとして含む蛍光体を示す。このような蛍光体は、発光ピークの波長が同じ場合、蛍光体母体の種類に関わらず、似通った発光スペクトルの形状になる。 FIG. 33 shows emission spectrum simulation data of the light emitting device of Example 2 that emits warm white light having a particularly preferable correlated color temperature of 4000 K (duv = 0). In the case of this emission spectrum, the chromaticity (x, y) is (0.3805, 0.3768), Ra is 86, and R9 is 95. The shape of this emission spectrum is the emission peak in the wavelength region of 460 to 480 nm by the blue LED and the emission in the wavelength region of 520 to 550 nm by the green phosphor of Example 2 that emits light based on the 5d-4f electronic transition of the rare earth ions. Intensity ratio between the peak and the emission peak in the wavelength region of 610 to 640 nm by the red phosphor of Example 2 emitting light based on the 5d-4f electronic transition of rare earth ions, 460 to 480 nm: 520 to 550 nm: 610 to 640 nm Is 24-28: 12-15: 16-20. One of the preferred embodiments of the present invention is a light emitting device that emits warm white light whose emission peak has the shape of the emission spectrum of the above ratio. Note that the phosphor emitting light based on the 5d-4f electronic transition of the rare earth ion described above refers to a phosphor mainly containing Eu 2+ or Ce 3+ rare earth ions as emission center ions. Such phosphors have similar emission spectrum shapes regardless of the type of phosphor matrix when the wavelengths of the emission peaks are the same.

また、実施例1の緑色蛍光体を、520〜550nmの波長範囲に発光ピークを有する(Ba,Sr)2SiO4:Eu2+緑色蛍光体に変更し、560〜580nmの波長範囲に発光ピークを有する(Sr,Ba)2SiO4:Eu2+黄色蛍光体をさらに加えた場合、シミュレーションによって演色性の高い発光装置を得られることがわかった。例えば、相対色温度3800K、duv=0、色度(0.3897,0.3823)の出力光において、Raが88、R9が72、相対光束が93%であった。 Further, the green phosphor of Example 1 was changed to a (Ba, Sr) 2 SiO 4 : Eu 2+ green phosphor having an emission peak in the wavelength range of 520 to 550 nm, and the emission peak in the wavelength range of 560 to 580 nm. It was found that when a (Sr, Ba) 2 SiO 4 : Eu 2+ yellow phosphor having the above is further added, a light emitting device having high color rendering properties can be obtained by simulation. For example, in output light having a relative color temperature of 3800 K, duv = 0, and chromaticity (0.3897, 0.3823), Ra was 88, R9 was 72, and relative luminous flux was 93%.

実施例1の緑色蛍光体を、さらに短い、例えば520nmの波長領域に発光ピークを有する(Ba,Sr)2SiO4:Eu2+緑色蛍光体に変更した場合、duv=0となる光色条件の下で、相関色温度と、Ra、R9及び相対光束との関係を、シミュレーションによって評価した。その結果、緑色蛍光体の発光ピークの波長が短い発光装置ほど、Ra、R9及び相対光束の数値は低くなり、照明装置としての性能が低下することがわかった。例えば、波長520nmに発光ピークを有する緑色蛍光体を用いた場合、相関色温度3800K、duv=0、色度(0.3897,0.3823)では、Raが80、R9が71、相対光束が85%であった。以上より、発光ピークの波長が525nm以上の緑色蛍光体を用いることが好ましい。 When the green phosphor of Example 1 is changed to a shorter (for example, (Ba, Sr) 2 SiO 4 : Eu 2+ green phosphor) having an emission peak in the wavelength region of 520 nm, the light color condition for duv = 0 The relationship between correlated color temperature, Ra, R9, and relative luminous flux was evaluated by simulation. As a result, it was found that as the light emitting device having a shorter emission peak wavelength of the green phosphor, the numerical values of Ra, R9 and relative luminous flux are lower, and the performance as the lighting device is lowered. For example, when a green phosphor having a light emission peak at a wavelength of 520 nm is used, at correlated color temperature 3800K, duv = 0, and chromaticity (0.3897, 0.3823), Ra is 80, R9 is 71, and relative luminous flux is It was 85%. From the above, it is preferable to use a green phosphor having an emission peak wavelength of 525 nm or more.

なお、実施例1及び実施例2は、SrAlSiN3:Eu2+赤色蛍光体を用いたが、組成式(M1-xEux)AlSiN3で表される赤色蛍光体であり、Mは、Mg、Ca、Sr、Ba、及びZnから選ばれる少なくとも1つの元素であり、xは、式0.005≦x≦0.3を満たす数値であれば、特に限定されるものではない。例えば、CaAlSiN3:Eu2+赤色蛍光体にも、同様の作用効果が認められる。 In addition, although Example 1 and Example 2 used SrAlSiN 3 : Eu 2+ red phosphor, it is a red phosphor represented by a composition formula (M 1-x Eu x ) AlSiN 3 , where M is It is at least one element selected from Mg, Ca, Sr, Ba and Zn, and x is not particularly limited as long as x is a numerical value satisfying the formula 0.005 ≦ x ≦ 0.3. For example, CaAlSiN 3 : Eu 2+ red phosphor has the same effect.

また、SrAlSiN3:Eu2+赤色蛍光体の代わりに、例えば、類似の発光特性を示す、公知の窒化物蛍光体又は酸窒化物蛍光体、例えば、組成式(M1-xEux)SiN2あるいは組成式(M1-xEux2Si58等で表されるニトリドシリケート蛍光体や、組成式(M1-xEux2Si4AlON7で表されるオクソニトリドアルミノシリケート蛍光体等を用いた場合でも、同様の作用効果が認められる。但し、上記組成式のMは、Mg、Ca、Sr、Ba及びZnから選ばれる少なくとも1つの元素であり、xは、式0.005≦x≦0.3を満たす数値である。 Further, instead of SrAlSiN 3 : Eu 2+ red phosphor, for example, a known nitride phosphor or oxynitride phosphor exhibiting similar emission characteristics, for example, a composition formula (M 1-x Eu x ) SiN 2 or a nitridosilicate phosphor represented by a composition formula (M 1-x Eu x ) 2 Si 5 N 8 or an oxontri represented by a composition formula (M 1-x Eu x ) 2 Si 4 AlON 7 Even when a doluminosilicate phosphor or the like is used, the same effect is recognized. However, M in the composition formula is at least one element selected from Mg, Ca, Sr, Ba and Zn, and x is a numerical value satisfying the formula 0.005 ≦ x ≦ 0.3.

また、緑色蛍光体及び黄色蛍光体は上述の実施例で使用したものに限定されず、525nm以上600nm未満の波長領域に発光ピークを有する光を放つ蛍光体であれば、例えば、420nm未満の波長領域に励起スペクトルの最長波長側の励起ピークを有する蛍光体を使用することもできる。なお、白色LEDに用いられる蛍光体として公知なYAG:Ce系蛍光体、例えば、(Y3(Al,Ga)512:Ce3+緑色蛍光体、Y3Al512:Ce3+緑色蛍光体、(Y,Gd)3Al512:Ce3+黄色蛍光体、Y3Al512:Ce3+,Pr3+黄色蛍光体等を、上記緑色蛍光体又は黄色蛍光体としても、同様の作用効果が認められる。 Further, the green phosphor and the yellow phosphor are not limited to those used in the above-described embodiments, and any phosphor that emits light having an emission peak in a wavelength region of 525 nm or more and less than 600 nm, for example, a wavelength of less than 420 nm. A phosphor having an excitation peak on the longest wavelength side of the excitation spectrum in the region can also be used. It should be noted that YAG: Ce-based phosphors known as phosphors used in white LEDs, such as (Y 3 (Al, Ga) 5 O 12 : Ce 3+ green phosphor, Y 3 Al 5 O 12 : Ce 3+ Green phosphor, (Y, Gd) 3 Al 5 O 12 : Ce 3+ yellow phosphor, Y 3 Al 5 O 12 : Ce 3+ , Pr 3+ yellow phosphor, etc. However, the same effect is recognized.

(実施例3)
本実施例では、実施例1又は2で説明した青色LEDチップ26の代わりに、GaInNを発光層として405nm付近に発光ピークを有する発光を放つ紫色LEDチップを導通搭載して、図24及び図25に示すカード型の照明モジュール光源を作製し、発光特性を評価した。本実施例の出力光は、少なくとも、上記紫色LEDチップが放つ光によって励起されて発光した、蛍光体層3に含まれる蛍光体が放つ光を主体にしてなる混色光である。さらに、この出力光は、蛍光体の種類と量を適宜選択することにより、任意の白色光を得られた。
(Example 3)
In this example, instead of the blue LED chip 26 described in Example 1 or 2, a purple LED chip that emits light having a light emission peak in the vicinity of 405 nm with GaInN as a light emitting layer is conductively mounted, and FIGS. The card type illumination module light source shown in FIG. The output light of this embodiment is at least a mixed color light mainly composed of the light emitted from the phosphor contained in the phosphor layer 3 that is excited and emitted by the light emitted from the purple LED chip. Furthermore, as the output light, arbitrary white light was obtained by appropriately selecting the type and amount of the phosphor.

以下、本実施例の蛍光体層3について詳説する。   Hereinafter, the phosphor layer 3 of this example will be described in detail.

蛍光体層3は、蛍光体を添加したエポキシ樹脂を乾固して形成した。本実施例では、蛍光体として、波長625nm付近に発光ピークを有するSrAlSiN3:Eu2+赤色蛍光体(中心粒径:2.2μm、最大内部量子効率:60%、405nm励起下での内部量子効率:約60%)と、波長535nm付近に発光ピークを有する(Ba,Sr)2SiO4:Eu2+緑色蛍光体(中心粒径:15.2μm、最大内部量子効率:97%、405nm励起下での内部量子効率:約97%)と、波長450nm付近に発光ピークを有するBaMgAl1017:Eu2+青色蛍光体(中心粒径:8.5μm、最大内部量子効率:約100%、405nm励起下での内部量子効率:約100%)の3種類を用い、エポキシ樹脂には、ビスフェノールA型液状エポキシ樹脂を主成分とするエポキシ樹脂(主材)と、脂環式酸無水物を主成分とするエポキシ樹脂(硬化材)の二液混合型のエポキシ樹脂を用いた。なお、上記SrAlSiN3:Eu2+赤色蛍光体は、製造条件が未だ最適化されていないために、内部量子効率は低いが、今後製造条件の最適化によって、1.5倍以上の内部量子効率の改善が可能である。SrAlSiN3:Eu2+赤色蛍光体と(Ba,Sr)2SiO4:Eu2+緑色蛍光体とBaMgAl1017:Eu2+青色蛍光体は、重量割合、約6:11:30で混合し、この混合蛍光体とエポキシ樹脂とは重量割合、約1:3(蛍光体濃度=25重量%)で混合した。 The phosphor layer 3 was formed by drying an epoxy resin added with a phosphor. In this example, as a phosphor, a SrAlSiN 3 : Eu 2+ red phosphor having an emission peak in the vicinity of a wavelength of 625 nm (central particle size: 2.2 μm, maximum internal quantum efficiency: 60%, internal quantum under excitation at 405 nm) (Ba: Sr) 2 SiO 4 : Eu 2+ green phosphor (central particle size: 15.2 μm, maximum internal quantum efficiency: 97%, excitation at 405 nm) Lower internal quantum efficiency: about 97%) and a BaMgAl 10 O 17 : Eu 2+ blue phosphor having a light emission peak in the vicinity of a wavelength of 450 nm (central particle size: 8.5 μm, maximum internal quantum efficiency: about 100%, Three types of internal quantum efficiencies under excitation at 405 nm: about 100%) are used. Epoxy resins include epoxy resin (main material) mainly composed of bisphenol A type liquid epoxy resin, and alicyclic acid. Anhydride using two liquids mixture type epoxy resin of epoxy resin (curing material) mainly composed of. The SrAlSiN 3 : Eu 2+ red phosphor has low internal quantum efficiency because the production conditions have not been optimized yet, but the internal quantum efficiency of 1.5 times or more will be improved by optimization of the production conditions in the future. Can be improved. SrAlSiN 3 : Eu 2+ red phosphor and (Ba, Sr) 2 SiO 4 : Eu 2+ green phosphor and BaMgAl 10 O 17 : Eu 2+ blue phosphor are mixed in a weight ratio of about 6:11:30. The mixed phosphor and the epoxy resin were mixed at a weight ratio of about 1: 3 (phosphor concentration = 25% by weight).

(比較例2)
蛍光体に波長626nm付近に発光ピークを有するLa22S:Eu3+赤色蛍光体(中心粒径:9.3μm、最大内部量子効率:84%、405nm励起下での内部量子効率:約50%)と、波長535nm付近に発光ピークを有する(Ba,Sr)2SiO4:Eu2+緑色蛍光体(中心粒径:15.2μm、最大内部量子効率:97%、405nm励起下での内部量子効率:約97%)と、波長450nm付近に発光ピークを有するBaMgAl1017:Eu2+青色蛍光体(中心粒径:8.5μm、最大内部量子効率:約100%、405nm励起下での内部量子効率:約100%)の3種類を用いて、カード型の照明モジュール光源を実施例3と同様に作製した。蛍光体層3としては、La22S:Eu3+赤色蛍光体と(Ba,Sr)2SiO4:Eu2+緑色蛍光体とBaMgAl1017:Eu2+青色蛍光とを重量割合、約155:20:33で混合し、この混合蛍光体とエポキシ樹脂とを重量割合、約1:3(蛍光体濃度=25重量%)で混合したものを用いた。そして実施例3と同様に、半導体発光素子に電流を流すことにより出力光を得て、その発光特性を評価した。
(Comparative Example 2)
La 2 O 2 S: Eu 3+ red phosphor having an emission peak in the vicinity of a wavelength of 626 nm in the phosphor (central particle size: 9.3 μm, maximum internal quantum efficiency: 84%, internal quantum efficiency under 405 nm excitation: about (Ba, Sr) 2 SiO 4 : Eu 2+ green phosphor (center particle size: 15.2 μm, maximum internal quantum efficiency: 97%, under excitation at 405 nm) BaMgAl 10 O 17 : Eu 2+ blue phosphor having an emission peak in the vicinity of a wavelength of 450 nm (internal quantum efficiency: about 97%) (central particle size: 8.5 μm, maximum internal quantum efficiency: about 100%, under excitation at 405 nm) A card-type illumination module light source was manufactured in the same manner as in Example 3 using the three types (internal quantum efficiency of about 100%). As the phosphor layer 3, La 2 O 2 S: Eu 3+ red phosphor, (Ba, Sr) 2 SiO 4 : Eu 2+ green phosphor and BaMgAl 10 O 17 : Eu 2+ blue fluorescence are in a weight ratio. About 155: 20: 33, and the mixture phosphor and epoxy resin were mixed at a weight ratio of about 1: 3 (phosphor concentration = 25 wt%). As in Example 3, output light was obtained by passing a current through the semiconductor light emitting device, and the light emission characteristics were evaluated.

蛍光体層3の厚さは、等しい光色(相関色温度約3800K、duv、色度)の白色光を得るため、実施例3と比較例2、共に、厚さ約500μmに形成した。   In order to obtain white light of the same light color (correlated color temperature of about 3800 K, duv, chromaticity), the phosphor layer 3 was formed to have a thickness of about 500 μm in both Example 3 and Comparative Example 2.

以下、実施例3と比較例2にかかる発光装置の発光特性を説明する。   Hereinafter, the light emission characteristics of the light emitting devices according to Example 3 and Comparative Example 2 will be described.

図34、図35に実施例3及び比較例2の発光スペクトルをそれぞれ示した。図34、図35からわかるように、実施例3及び比較例2の発光装置は、いずれも405nm付近、450nm付近、535nm付近、625nm付近に発光ピークを有する白色系の光、すなわち、紫色光と青色光と緑色光と赤色光の混色によって白色光を放つ。なお、405nm付近の発光ピークは、上記紫色発光素子の光の漏れであり、450nm付近、535nm付近、及び625nm付近の発光ピークは蛍光体によって、上記紫色光が波長変換された光である。   34 and 35 show the emission spectra of Example 3 and Comparative Example 2, respectively. As can be seen from FIGS. 34 and 35, the light emitting devices of Example 3 and Comparative Example 2 are all white light having emission peaks near 405 nm, 450 nm, 535 nm, and 625 nm, that is, violet light and White light is emitted by the mixture of blue light, green light and red light. Note that the emission peak near 405 nm is light leakage of the violet light emitting element, and the emission peaks near 450 nm, 535 nm, and 625 nm are light obtained by wavelength conversion of the violet light by the phosphor.

表2に、実施例3と比較例2の発光装置の発光特性を示す。   Table 2 shows the light emission characteristics of the light emitting devices of Example 3 and Comparative Example 2.

Figure 0005604482
Figure 0005604482

表2のduvは白色光の黒体放射軌跡からのずれを示す指数である。Raは平均演色評価数、R1〜R15は特殊演色評価数であり、基準光で見た色を100として、試験光が試験色をどれだけ忠実に再現しているかを示す。特にR9は、赤色の特殊演色評価数である。   The duv in Table 2 is an index indicating the deviation from the black body radiation locus of white light. Ra is an average color rendering index, and R1 to R15 are special color rendering indices, which indicate how faithfully the test light reproduces the test color when the color viewed with the reference light is 100. In particular, R9 is a red special color rendering index.

蛍光体の製造条件が最適化されておらず、最大内部量子効率が60%と性能の低い赤色蛍光体を用いているにも関わらず、実施例3は、ほぼ等しい光色(相関色温度、duv及び色度)の条件下で、比較例2よりも相対光束が17%高い白色系光を放った。比較例2で用いた赤色蛍光体の最大内部量子効率は83%であり、発光装置の出力効率はさらに約20%改善される可能性はあるが、実施例3で用いた赤色蛍光体の場合では、最大内部量子効率は60%であり、発光装置の白色出力はさらに約65%以上改善できる余地がある。すなわち、理論的にも、最終的には、実施例3の、発光装置の材料構成の方が高い光束の白色系光を放つことになる。   Although the production conditions of the phosphor are not optimized and a red phosphor having a low maximum performance such as a maximum internal quantum efficiency of 60% is used, Example 3 has almost the same light color (correlated color temperature, white light having a relative luminous flux 17% higher than that of Comparative Example 2 was emitted under the conditions of duv and chromaticity). The maximum internal quantum efficiency of the red phosphor used in Comparative Example 2 is 83%, and the output efficiency of the light-emitting device may be further improved by about 20%, but in the case of the red phosphor used in Example 3 Then, the maximum internal quantum efficiency is 60%, and the white output of the light-emitting device can be further improved by about 65% or more. That is, theoretically and finally, the material configuration of the light emitting device of Example 3 emits white light with a higher luminous flux.

また、実施例3の発光装置は、少なくとも上記した蛍光体を組み合わせて、相関色温度3800Kの白色光を放つように構成した場合には、比較例2よりも大きなRaを示した。また、R9だけでなくR1〜R15の全ての特殊演色評価数において、比較例2よりも大きな数値が得られた。このことは、実施例3が、演色性の極めて良好な白色光を放つことを示すものである。   In addition, when the light emitting device of Example 3 was configured to emit white light having a correlated color temperature of 3800 K by combining at least the above-described phosphors, the Ra was larger than that of Comparative Example 2. Further, not only R9 but also all the special color rendering indexes of R1 to R15 were larger than those of Comparative Example 2. This indicates that Example 3 emits white light with extremely good color rendering properties.

なお、実施例3の発光装置は、R1〜R15の特殊演色評価数の数値が、いずれも80以上の演色性の高い白色光を放つ発光装置であり、太陽光に近い光を放つことを示している。このような発光装置は、特に医療用に適するものであり、例えば内視鏡用等に応用可能なLED光源を提供するとともに、太陽光に近い光の下で診断可能な、優れた内視鏡システムを提供することもできるようになる。   In addition, the light-emitting device of Example 3 is a light-emitting device that emits white light with high color rendering properties of R1 to R15, each having a special color rendering index of 80 or more, and indicates that it emits light close to sunlight. ing. Such a light emitting device is particularly suitable for medical use, and provides an LED light source that can be applied to, for example, an endoscope, and is an excellent endoscope that can be diagnosed under light close to sunlight. A system can also be provided.

以下、上記発光装置の高演色性と高光束を両立する光色を調べるため、実施例3及び比較例2の発光装置が放つ白色光の、duvを0として相関色温度を変えた場合のRaと相対光束の挙動とを、シミュレーションによって評価した結果を説明する。   Hereinafter, in order to investigate the light color that achieves both high color rendering properties and high luminous flux of the light emitting device, Ra of the white light emitted from the light emitting devices of Example 3 and Comparative Example 2 when the correlated color temperature is changed with duv being 0 And the results of evaluating the behavior of the relative luminous flux by simulation will be described.

図36に、実施例3及び比較例2の発光装置が放つ白色光の、相関色温度を変えた場合の相対光束を、シミュレーションによって評価した結果を示した。図36から、実施例3の発光装置は、2000K以上12000K以下の広い相関色温度範囲に渡って、比較例2よりも、10〜20%程度高い光束の白色光を放つことがわかる。また、実施例3の発光装置は、出力光の相関色温度が2500K以上12000K以下、好ましくは3500K以上7000K以下の発光装置を作製した場合に、比較例2において相関色温度を3792Kにした場合の光束の110〜115%レベル以上に相当する比較的高い光束を示すことがわかる。なお、上記比較例2の相関色温度を3792Kにした場合の光束は、図36中に実線で示した。   FIG. 36 shows the result of evaluating the relative luminous flux of white light emitted from the light emitting devices of Example 3 and Comparative Example 2 when the correlated color temperature is changed by simulation. From FIG. 36, it can be seen that the light-emitting device of Example 3 emits white light with a luminous flux that is about 10 to 20% higher than that of Comparative Example 2 over a wide correlated color temperature range of 2000K to 12000K. In the light emitting device of Example 3, when the correlated color temperature of the output light is 2500 K or more and 12000 K or less, preferably 3500 K or more and 7000 K or less, when the correlated color temperature is 3792 K in Comparative Example 2, It can be seen that a relatively high luminous flux corresponding to 110 to 115% level or more of the luminous flux is exhibited. Note that the luminous flux when the correlated color temperature of Comparative Example 2 is 3792K is indicated by a solid line in FIG.

以下、実施例3及び比較例2で用いた各蛍光体について、製造条件が十分最適化され、最大内部量子効率が100%の蛍光体が得られたと仮定し、この理想的な蛍光体を用いた場合の光束をシミュレーション評価した結果を示す。本シミュレーションでは、図13、図15、図20及び図23から、各蛍光体の405nm励起下における内部量子効率を下記表3に示すように見積もり評価した。   Hereinafter, for each phosphor used in Example 3 and Comparative Example 2, it is assumed that the production conditions are sufficiently optimized and a phosphor having a maximum internal quantum efficiency of 100% is obtained, and this ideal phosphor is used. The results of a simulation evaluation of the luminous flux in the case of In this simulation, the internal quantum efficiency of each phosphor under excitation at 405 nm was estimated and evaluated as shown in Table 3 below from FIGS.

Figure 0005604482
Figure 0005604482

図37に、理想的な蛍光体を用いた場合に、実施例3及び比較例2の発光装置が放つ白色光の、相関色温度を変えた場合の相対光束を、シミュレーションによって評価した結果を示した。図37から、実施例3の発光装置において、理想的な蛍光体を用いた場合には、2000K以上12000K以下の広い相関色温度範囲に渡って、比較例2よりも、45〜65%程度高い光束の白色光を放つことがわかる。また、白色光の相関色温度が2500K以上12000K以下、好ましくは3500K以上6000K以下の発光装置を作製した場合に、比較例2において相関色温度を3792Kにした場合の光束の150〜160%以上に相当する比較的高い光束を示すことがわかる。なお、上記比較例2の相関色温度を3792Kにした場合の光束は、図37中に実線で示した。   FIG. 37 shows the result of evaluating, by simulation, the relative luminous flux of white light emitted from the light emitting devices of Example 3 and Comparative Example 2 when the correlated color temperature is changed when an ideal phosphor is used. It was. From FIG. 37, in the light emitting device of Example 3, when an ideal phosphor is used, it is about 45 to 65% higher than Comparative Example 2 over a wide correlated color temperature range of 2000K to 12000K. It can be seen that a white light beam is emitted. Further, when a light emitting device having a correlated color temperature of white light of 2500 K or more and 12000 K or less, preferably 3500 K or more and 6000 K or less is manufactured, it is 150 to 160% or more of the luminous flux when the correlated color temperature is 3792 K in Comparative Example 2. It can be seen that the corresponding relatively high luminous flux is exhibited. Note that the luminous flux when the correlated color temperature of Comparative Example 2 is 3792K is indicated by a solid line in FIG.

すなわち、今後のSrAlSiN3:Eu2+赤色蛍光体の高性能化によって、同一の相関色温度の評価の下で、比較例2よりも45〜65%程度高い光束を放つ発光装置が得られることが予測できる。 That is, by improving the performance of future SrAlSiN 3 : Eu 2+ red phosphors, a light emitting device that emits a light flux that is about 45 to 65% higher than Comparative Example 2 under the same correlated color temperature evaluation can be obtained. Can be predicted.

また、図38に、実施例3及び比較例2の発光装置が放つ白色光の、相関色温度を変えた場合の平均演色評価数(Ra)を、シミュレーションによって評価した結果を示した。実施例3の発光装置は、白色光の相関色温度が2000K以上12000K以下の広い相関色温度範囲に渡って、90以上の高いRaを示し、好ましくは3000K以上12000K以下の発光装置を作製した場合に、95以上の非常に高いRaを示すことがわかる。   FIG. 38 shows the result of evaluating the average color rendering index (Ra) of white light emitted from the light emitting devices of Example 3 and Comparative Example 2 when the correlated color temperature is changed by simulation. The light emitting device of Example 3 shows a high Ra of 90 or more over a wide correlated color temperature range where the correlated color temperature of white light is 2000 K or more and 12000 K or less, preferably 3000 K or more and 12000 K or less. It can be seen that a very high Ra of 95 or more is shown.

図39には、実施例3及び比較例2の発光装置が放つ白色光の、相関色温度を変えた場合の赤色の特殊演色評価数(R9)を、シミュレーションによって評価した結果を示した。相関色温度2500K以上12000K以下の実施例3の発光装置は、比較例2よりも大きなR9の数値を示した。また、白色光の相関色温度が2000K以上12000K以下の広い相関色温度範囲に渡って、30以上の高いR9を示し、3000K以上12000K以下では70以上、3500K以上12000Kでは80以上、5000K以上12000K以下では90以上の高いR9を示し、赤色演色評価数の高い白色光を放つ好ましい発光装置になることがわかる。なお、R9の最大値(96〜98)は、6000K以上8000K以下の相関色温度範囲で得ることができた。   FIG. 39 shows the results of evaluation by simulation of the red special color rendering index (R9) of the white light emitted from the light emitting devices of Example 3 and Comparative Example 2 when the correlated color temperature is changed. The light emitting device of Example 3 having a correlated color temperature of 2500 K or more and 12000 K or less showed a larger value of R9 than that of Comparative Example 2. In addition, it exhibits a high R9 of 30 or more over a wide correlated color temperature range where the correlated color temperature of white light is 2000K or more and 12000K or less, and 70 or more when 3000K or more and 12000K or less, 80 or more when 3500K or more and 12000K, and 5000K or more and 12000K or less. Shows a high R9 of 90 or more, and is a preferable light emitting device that emits white light having a high red color rendering index. The maximum value of R9 (96 to 98) could be obtained in the correlated color temperature range of 6000K to 8000K.

図36〜図38より、実施例3の発光装置は、2000K以上12000K以下の広い相関色温度範囲に渡って、比較例2よりも、高い光束と高いRaの白色光を放つことがわかる。また、白色光の相関色温度が2500K以上12000K以下、好ましくは3500K以上7000K以下、より好ましくは4000K以上5500K以下の発光装置を作製した場合に、高い光束と高いRaを両立する発光装置を得られることがわかる。   36 to 38, it can be seen that the light-emitting device of Example 3 emits higher luminous flux and higher Ra white light than Comparative Example 2 over a wide correlated color temperature range of 2000K to 12000K. Further, when a light emitting device having a correlated color temperature of white light of 2500 K or more and 12000 K or less, preferably 3500 K or more and 7000 K or less, more preferably 4000 K or more and 5500 K or less, a light emitting device that achieves both high luminous flux and high Ra can be obtained. I understand that.

また、図36〜図39より、実施例3の発光装置は、2500K以上12000K以下の広い相関色温度範囲に渡って、比較例2よりも、高い光束と高いR9の白色光を放つことがわかる。また、白色光の相関色温度が3000K以上12000K以下、好ましくは3500K以上12000K以下、より好ましくは5000K以上12000K以下、特に好ましくは6000K以上8000K以下の発光装置を作製した場合に、高い光束と高いR9を両立する発光装置を得られることがわかる。   36 to 39, it can be seen that the light emitting device of Example 3 emits a higher luminous flux and a higher R9 white light than Comparative Example 2 over a wide correlated color temperature range of 2500 K to 12000 K. . Further, when a light-emitting device having a correlated color temperature of white light of 3000 K to 12000 K, preferably 3500 K to 12000 K, more preferably 5000 K to 12000 K, particularly preferably 6000 K to 8000 K, a high luminous flux and a high R9. It can be seen that a light emitting device compatible with both can be obtained.

図40には、光束とRaの特に好ましい相関色温度4500K(duv=0)の暖色系白色光を放つ実施例3の発光装置の、発光スペクトルのシミュレーションデータを示した。この発光スペクトルの場合、色度(x,y)は(0.3608,0.3635)であり、Raが96、R1が98、R2及びR6〜R8が97、R3、R10及びR11が91、R4及びR14が94、R5、R13及びR15が99、R9及びR12が88である。これより、R1〜R15の全ての特殊演色評価数が85以上の演色性の良好な白色光を放つ発光装置を提供できることがわかる。この発光スペクトルの形状は、紫色LEDによる400〜410nmの波長領域の発光ピークと、希土類イオンの5d−4f電子遷移に基づく発光を放つ実施例3のRGB蛍光体による440〜460nm、520〜540nm及び610〜640nmの波長領域の発光ピークとの強度の比率、400〜410nm:440〜460nm:520〜540nm:610〜640nmが、8〜10:12〜14:15〜17:16〜18である。本発明の好ましい形態の一つは、発光ピークが上記比率の発光スペクトルの形状を有する暖色系白色光を放つことを特徴とする発光装置である。なお、上述の希土類イオンの5d−4f電子遷移に基づく発光を放つ蛍光体とは、主にEu2+又はCe3+の希土類イオンを発光中心イオンとして含む蛍光体を示す。このような蛍光体は、発光ピークの波長が同じ場合、蛍光体母体の種類に関わらず、似通った発光スペクトルの形状になる。 FIG. 40 shows simulation data of the emission spectrum of the light-emitting device of Example 3 that emits warm white light having a particularly preferable correlated color temperature of 4500 K (duv = 0) between the luminous flux and Ra. In this emission spectrum, the chromaticity (x, y) is (0.3608, 0.3635), Ra is 96, R1 is 98, R2 and R6 to R8 are 97, R3, R10 and R11 are 91, R4 and R14 are 94, R5, R13 and R15 are 99, and R9 and R12 are 88. From this, it can be seen that it is possible to provide a light emitting device that emits white light having a good color rendering property with R1 to R15 having a special color rendering index of 85 or more. The shape of this emission spectrum is 440 to 460 nm, 520 to 540 nm by the RGB phosphor of Example 3 that emits light based on the emission peak in the wavelength region of 400 to 410 nm by the purple LED and the 5d-4f electronic transition of the rare earth ions. The ratio of the intensity with the emission peak in the wavelength region of 610 to 640 nm, 400 to 410 nm: 440 to 460 nm: 520 to 540 nm: 610 to 640 nm is 8 to 10:12 to 14:15 to 17:16 to 18. One of the preferred embodiments of the present invention is a light emitting device that emits warm white light whose emission peak has the shape of the emission spectrum of the above ratio. Note that the phosphor emitting light based on the 5d-4f electronic transition of the rare earth ion described above refers to a phosphor mainly containing Eu 2+ or Ce 3+ rare earth ions as emission center ions. Such phosphors have similar emission spectrum shapes regardless of the type of phosphor matrix when the wavelengths of the emission peaks are the same.

図41には、光束とRaの特に好ましい相関色温度5500K(duv=0)の白色光を放つ実施例3の発光装置の、発光スペクトルのシミュレーションデータを示した。この発光スペクトルの場合、色度(x,y)は(0.3324,0.3410)であり、Raが96、R1及びR13が98、R2及びR8及びR15が97、R3及びR12が90、R4が92、R5が99、R6が96、R7が95、R9及びR14が94、R10及びR11が91である。すなわち、本発明によれば、R1〜R15の全ての特殊演色評価数が90以上の、例えば医療用途に適する、太陽光に近い白色光を放つ発光装置も提供可能である。なお、この発光スペクトルの形状は、紫色LEDによる400〜410nmの波長領域の発光ピークと、希土類イオンの5d−4f電子遷移に基づく発光を放つ実施例3のRGB蛍光体による440〜460nm、520〜540nm及び610〜640nmの波長領域における発光ピークとの強度の比率、400〜410nm:440〜460nm:520〜540nm:610〜640nmが、4〜6:9〜11:8〜10:7〜9である。本発明の好ましい形態の一つは、発光ピークが上記比率の発光スペクトルの形状を有する白色光を放つことを特徴とする発光装置である。   FIG. 41 shows simulation data of the emission spectrum of the light-emitting device of Example 3 that emits white light with a particularly preferable correlated color temperature of 5500 K (duv = 0) between the luminous flux and Ra. In this emission spectrum, the chromaticity (x, y) is (0.3324, 0.3410), Ra is 96, R1 and R13 are 98, R2 and R8 and R15 are 97, R3 and R12 are 90, R4 is 92, R5 is 99, R6 is 96, R7 is 95, R9 and R14 are 94, and R10 and R11 are 91. That is, according to the present invention, it is possible to provide a light emitting device that emits white light close to sunlight, for example, suitable for medical use, in which all the special color rendering evaluation numbers of R1 to R15 are 90 or more. The shape of the emission spectrum is 440 to 460 nm and 520 to 440 nm of the RGB phosphor of Example 3 that emits light based on the emission peak in the wavelength region of 400 to 410 nm by the purple LED and the 5d-4f electronic transition of rare earth ions. Intensity ratio with emission peak in wavelength range of 540 nm and 610-640 nm, 400-410 nm: 440-460 nm: 520-540 nm: 610-640 nm is 4-6: 9-11: 8-10: 7-9 is there. One of the preferred embodiments of the present invention is a light emitting device which emits white light whose emission peak has the shape of the emission spectrum of the above ratio.

実施例3では、紫色LEDと、赤緑青(RGB)の3種類の蛍光体を組み合わせてなり、赤色蛍光体をSrAlSiN3:Eu2+とした場合を説明したが、上記紫色LEDと、SrAlSiN3:Eu2+又はCaAlSiN3:Eu2+等の上記(M1-xEux)AlSiN3の組成式で表される蛍光体とを少なくとも組み合わせて構成し、蛍光体の構成を、赤黄緑青(RYGB)の4種類、あるいは、赤黄青(RYB)の3種類等とした場合でも同様の作用と効果が認められる。 In Example 3, the case where the purple LED and three types of phosphors of red, green and blue (RGB) are combined and the red phosphor is SrAlSiN 3 : Eu 2+ has been described. However, the purple LED and the SrAlSiN 3 are described above. : Eu 2+ or CaAlSiN 3 : Eu 2+ and the like, and the phosphor represented by the composition formula of (M 1-x Eu x ) AlSiN 3 at least in combination. Similar effects and effects are observed even when four types of (RYGB) or three types of red, yellow, and blue (RYB) are used.

また、実施例3では、SrAlSiN3:Eu2+赤色蛍光体を用いた場合を説明したが、組成式(M1-xEux)AlSiN3で表される蛍光体であり、Mは、Mg、Ca、Sr、Ba及びZnから選ばれる少なくとも1つの元素であり、xは式0.005≦x≦0.3を満たす数値であれば、特に限定されるものではない。また、緑色蛍光体は上述の実施例で使用した緑色蛍光体に限定されず、500nm以上560nm未満の波長領域に発光ピークを有する光を放つ緑色蛍光体であれば特に限定されない。上記緑色蛍光体に代えて、560nm以上600nm未満の波長領域に発光ピークを有する光を放つ黄色蛍光体を用いても良い。なお、発光出力の好ましい、上記緑又は黄色蛍光体は、Eu2+又はCe3+で付活された蛍光体である。 In Example 3, the case where the SrAlSiN 3 : Eu 2+ red phosphor was used was described. However, the phosphor is represented by the composition formula (M 1-x Eu x ) AlSiN 3 , and M is Mg. , Ca, Sr, Ba and Zn, and x is not particularly limited as long as x is a numerical value satisfying the formula 0.005 ≦ x ≦ 0.3. Further, the green phosphor is not limited to the green phosphor used in the above-described embodiment, and is not particularly limited as long as it is a green phosphor that emits light having an emission peak in a wavelength region of 500 nm or more and less than 560 nm. Instead of the green phosphor, a yellow phosphor that emits light having an emission peak in a wavelength region of 560 nm or more and less than 600 nm may be used. In addition, the said green or yellow fluorescent substance with preferable light emission output is the fluorescent substance activated by Eu <2+> or Ce < 3+ >.

なお、SrAlSiN3:Eu2+赤色蛍光体の特性は、従来の赤色蛍光体、例えば、SrSiN2:Eu2+、Sr2Si58:Eu2+、Sr2Si4AlON7:Eu2+等の窒化物蛍光体又は酸窒化物蛍光体と似通っているので、実施例2又は実施例3において、SrAlSiN3:Eu2+赤色蛍光体に代えて、上記従来の窒化物蛍光体又は酸窒化物蛍光体を用いた場合でも、同様の作用効果が認められる。 The characteristics of SrAlSiN 3 : Eu 2+ red phosphors are the same as those of conventional red phosphors such as SrSiN 2 : Eu 2+ , Sr 2 Si 5 N 8 : Eu 2+ , Sr 2 Si 4 AlON 7 : Eu 2. In Example 2 or Example 3, instead of the SrAlSiN 3 : Eu 2+ red phosphor, the conventional nitride phosphor or acid described above is used. Even when the nitride phosphor is used, the same effect is recognized.

以下、参考のために、上述した蛍光体のうち、SrAlSiN3:Eu2+、Sr2Si58:Eu2+、SrSiN2:Eu2+、(Ba,Sr)2SiO4:Eu2+(発光ピーク:555nm)、(Ba,Sr)2SiO4:Eu2+(発光ピーク:535nm)、(Ba,Sr)2SiO4:Eu2+(発光ピーク:520nm)、(Sr,Ba)2SiO4:Eu2+(発光ピーク:570nm)の製造方法を説明する。なお、Y3Al512:Ce3+黄色蛍光体、La22S:Eu3+赤色蛍光体及びBaMgAl1017:Eu2+青色蛍光体は、市販のものを用いた。 Hereinafter, for reference, among the phosphors described above, SrAlSiN 3 : Eu 2+ , Sr 2 Si 5 N 8 : Eu 2+ , SrSiN 2 : Eu 2+ , (Ba, Sr) 2 SiO 4 : Eu 2 + (Emission peak: 555 nm), (Ba, Sr) 2 SiO 4 : Eu 2+ (Emission peak: 535 nm), (Ba, Sr) 2 SiO 4 : Eu 2+ (Emission peak: 520 nm), (Sr, Ba ) A method for producing 2 SiO 4 : Eu 2+ (emission peak: 570 nm) will be described. Commercially available Y 3 Al 5 O 12 : Ce 3+ yellow phosphor, La 2 O 2 S: Eu 3+ red phosphor and BaMgAl 10 O 17 : Eu 2+ blue phosphor were used.

表4、表5に、各蛍光体の製造に用いた原料化合物の重量を示した。   Tables 4 and 5 show the weights of the raw material compounds used in the production of each phosphor.

Figure 0005604482
Figure 0005604482

Figure 0005604482
Figure 0005604482

表4に示した3種類の赤色蛍光体の製造方法を説明する。まず、グローブボックスと乳鉢等を用いて、表4に示した所定の化合物を乾燥窒素雰囲気中で混合し、混合粉末を得た。このとき、反応促進剤(フラックス)は用いなかった。次に、混合粉末をアルミナルツボに仕込み、温度800〜1400℃の窒素雰囲気中で2〜4時間仮焼成した後、温度1600〜1800℃の窒素97%、水素3%雰囲気中で2時間本焼成して、赤色蛍光体を合成した。本焼成後の蛍光体粉末の体色は橙色であった。本焼成の後、解砕、分級、洗浄、乾燥の所定の後処理を施し、赤色蛍光体を得た。   A method for producing the three types of red phosphors shown in Table 4 will be described. First, using a glove box and a mortar, the predetermined compounds shown in Table 4 were mixed in a dry nitrogen atmosphere to obtain a mixed powder. At this time, no reaction accelerator (flux) was used. Next, the mixed powder is charged into an alumina crucible and pre-baked in a nitrogen atmosphere at a temperature of 800 to 1400 ° C. for 2 to 4 hours, followed by a main baking for 2 hours in an atmosphere of 97% nitrogen at 1600 to 1800 ° C. and 3% hydrogen. Thus, a red phosphor was synthesized. The body color of the phosphor powder after the main firing was orange. After the main firing, predetermined post-treatments such as crushing, classification, washing and drying were performed to obtain a red phosphor.

次に、表5に示した4種類の緑色蛍光体及び黄色蛍光体の製造方法を説明する。まず、乳鉢を用いて、表5に示した所定の化合物を大気中で混合し、混合粉末を得た。次に、混合粉末をアルミナルツボに仕込み、温度950〜1000℃の大気中で2〜4時間仮焼成して、仮焼成粉末を得た。この仮焼成粉末に、塩化カルシウム(CaCl2)粉末3.620gをフラックスとして添加し混合した後、温度1200〜1300℃の窒素97%、水素3%雰囲気中で4時間本焼成して、緑色蛍光体及び黄色蛍光体合成した。なお、本焼成後の蛍光体粉末の体色は緑〜黄色であった。本焼成後、解砕、分級、洗浄、乾燥の所定の後処理を施し、緑色蛍光体及び黄色蛍光体を得た。 Next, a method for manufacturing the four types of green phosphor and yellow phosphor shown in Table 5 will be described. First, the predetermined compound shown in Table 5 was mixed in air | atmosphere using the mortar, and mixed powder was obtained. Next, the mixed powder was charged into an alumina crucible and pre-baked in the atmosphere at a temperature of 950 to 1000 ° C. for 2 to 4 hours to obtain a pre-fired powder. To this calcined powder, 3.620 g of calcium chloride (CaCl 2 ) powder was added and mixed as a flux, followed by main firing for 4 hours in an atmosphere of 97% nitrogen and 3% hydrogen at a temperature of 1200 to 1300 ° C. And yellow phosphor were synthesized. The body color of the phosphor powder after the main firing was green to yellow. After the main firing, predetermined post-treatments such as crushing, classification, washing and drying were performed to obtain a green phosphor and a yellow phosphor.

以上説明したように、本発明によれば、高い演色性と高光束を両立する、白色発光を放つ発光装置を提供することができる。特に、暖色系の白色発光を放つ、赤色系発光成分の強度の強いLED光源等の発光装置を提供でき、その工業的価値は大きい。   As described above, according to the present invention, it is possible to provide a light-emitting device that emits white light and has both high color rendering properties and high luminous flux. In particular, it is possible to provide a light emitting device such as an LED light source that emits warm white light emission and has a strong red light emitting component, and its industrial value is great.

1 発光素子
2 蛍光体
3 蛍光体層
4 サブマウント素子
5 リードフレーム
6 カップ
7 封止材
8 筐体
9 半導体発光素子
10 出力光
11 発光部
12 照明モジュール
13 スイッチ
14 ねじ込み式口金
15 反射板
16 蛍光体の内部量子効率
17 蛍光体の外部量子効率
18 蛍光体の励起スペクトル
19 蛍光体の発光スペクトル
21 半導体発光素子
22 Siダイオード素子
23 n電極
24 p電極
25 マイクロバンブ
26 青色LEDチップ
27 アルミニウム金属基板
28 第1の絶縁体厚膜
29 銅電極
30 第2の絶縁体厚膜
31a、31b 電極パッド
32 放熱性多層基板
33 裏面電極
34 Auワイヤー
35 ボンディングパッド部
36 アルミニウム金属反射板
37 レンズ
DESCRIPTION OF SYMBOLS 1 Light emitting element 2 Phosphor 3 Phosphor layer 4 Submount element 5 Lead frame 6 Cup 7 Sealing material 8 Case 9 Semiconductor light emitting element 10 Output light 11 Light emission part 12 Illumination module 13 Switch 14 Screw-type base 15 Reflector 16 Fluorescence Internal quantum efficiency of body 17 External quantum efficiency of phosphor 18 Excitation spectrum of phosphor 19 Emission spectrum of phosphor 21 Semiconductor light emitting element 22 Si diode element 23 n electrode 24 p electrode 25 microbump 26 blue LED chip 27 aluminum metal substrate 28 1st insulator thick film 29 Copper electrode 30 2nd insulator thick film 31a, 31b Electrode pad 32 Heat radiation multilayer substrate 33 Back electrode 34 Au wire 35 Bonding pad part 36 Aluminum metal reflecting plate 37 Lens

Claims (10)

発光素子と蛍光体層とを備え、
前記発光素子は、440nm以上500nm未満の波長領域に発光ピークを有する光を放つ青色発光素子であり、
前記蛍光体層は、500nm以上560nm未満の波長領域に発光ピークを有し、Eu2+又はCe3+を発光中心イオンとして含む緑色蛍光体と、600nm以上660nm未満の波長領域に発光ピークを有し、Eu2+を発光中心イオンとして含む窒化物又は酸窒化物の赤色蛍光体とを含み、
前記緑色蛍光体と前記赤色蛍光体とは、前記青色発光素子が放つ光によって励起されて発光し、
前記緑色蛍光体、前記赤色蛍光体及び前記青色発光素子が放つ発光成分を出力光として含む発光装置であって、
前記蛍光体層は、Eu2+又はCe3+で付活された蛍光体以外の蛍光体を実質的に含まず、
前記緑色蛍光体は、前記青色発光素子が放つ光のピークである励起波長よりも短波長側に励起ピークを有し、
前記緑色蛍光体は、その励起スペクトルの最長波長側の励起ピークが、前記青色発光素子の発光ピークの波長領域になく、
前記緑色蛍光体は、Eu 2+ で付活された窒化物蛍光体又は酸窒化物蛍光体、Eu 2+ で付活されたアルミン酸塩蛍光体、Ce 3+ で付活された窒化物蛍光体又は酸窒化物蛍光体、及びCe 3+ で付活されたガーネット構造を有する蛍光体からなる群から選ばれる少なくとも1つの緑色蛍光体であり、
前記赤色蛍光体は、ニトリドアルミノシリケート系の赤色蛍光体であることを特徴とする発光装置。
A light emitting device and a phosphor layer;
The light-emitting element is a blue light-emitting element that emits light having an emission peak in a wavelength region of 440 nm or more and less than 500 nm,
The phosphor layer has an emission peak in a wavelength region of 500 nm or more and less than 560 nm, a green phosphor containing Eu 2+ or Ce 3+ as an emission center ion, and an emission peak in a wavelength region of 600 nm or more and less than 660 nm. A red phosphor of nitride or oxynitride containing Eu 2+ as a luminescent center ion,
The green phosphor and the red phosphor are excited by the light emitted by the blue light emitting element to emit light,
A light-emitting device including, as output light, a light-emitting component emitted by the green phosphor, the red phosphor, and the blue light-emitting element,
The phosphor layer is substantially free of phosphors other than phosphors activated with Eu 2+ or Ce 3+ ,
The green phosphor has an excitation peak on a shorter wavelength side than an excitation wavelength that is a peak of light emitted by the blue light emitting element,
In the green phosphor, the excitation peak on the longest wavelength side of the excitation spectrum is not in the wavelength region of the emission peak of the blue light emitting element,
The green phosphor, the nitride is activated by Eu 2+ phosphor or oxynitride phosphor, activated with aluminate phosphor with Eu 2+, nitride phosphor which is activated with Ce 3+ Body or oxynitride phosphor, and at least one green phosphor selected from the group consisting of phosphors having a garnet structure activated by Ce 3+ ,
The light emitting device according to claim 1, wherein the red phosphor is a nitride aluminosilicate red phosphor.
前記赤色蛍光体は、組成式(M1-xEux)AlSiN3で表される蛍光体であり、前記MはMg、Ca、Sr、Ba及びZnから選ばれる少なくとも1つの元素であり、前記xは、式0.005≦x≦0.3を満たす数値である請求項1に記載の発光装置。 The red phosphor is a phosphor represented by a composition formula (M 1-x Eu x ) AlSiN 3 , and M is at least one element selected from Mg, Ca, Sr, Ba and Zn, The light emitting device according to claim 1, wherein x is a numerical value satisfying the expression 0.005 ≦ x ≦ 0.3. 前記赤色蛍光体は、組成式(M1-xEux2Si4AlON7で表される蛍光体であり、前記Mは、Mg、Ca、Sr、Ba及びZnから選ばれる少なくとも1つの元素であり、前記xは、式0.005≦x≦0.3を満たす数値である請求項1に記載の発光装置。 The red phosphor is a phosphor represented by a composition formula (M 1-x Eu x ) 2 Si 4 AlON 7 , and M is at least one element selected from Mg, Ca, Sr, Ba and Zn The light emitting device according to claim 1, wherein x is a numerical value satisfying a formula 0.005 ≦ x ≦ 0.3. 前記緑色蛍光体は、前記青色発光素子が放つ光のピークである励起波長下における内部量子効率が80%以上である請求項1〜3のいずれかに記載の発光装置。   The light emitting device according to claim 1, wherein the green phosphor has an internal quantum efficiency of 80% or more under an excitation wavelength that is a peak of light emitted from the blue light emitting element. 前記蛍光体層は、560nm以上600nm未満の波長領域に発光ピークを有する黄色蛍光体をさらに含む請求項1〜4のいずれかに記載の発光装置。   The light emitting device according to any one of claims 1 to 4, wherein the phosphor layer further includes a yellow phosphor having an emission peak in a wavelength region of 560 nm or more and less than 600 nm. 前記蛍光体層は、前記赤色蛍光体以外の蛍光体として、窒化物蛍光体又は酸窒化物蛍光体を実質的に含まない請求項1〜5のいずれかに記載の発光装置。   The light emitting device according to claim 1, wherein the phosphor layer substantially does not contain a nitride phosphor or an oxynitride phosphor as a phosphor other than the red phosphor. 前記緑色蛍光体は、Sr1.5Al3Si916:Eu2+、Ca1.5Al3Si916:Eu2+、CaSiAl232:Eu2+、SrSiAl232:Eu2+、CaSi222:Eu2+、SrSi222:Eu2+、BaSi222:Eu2+ 、SrAl24:Eu2+、Sr2Si58:Ce3+、Ca1.5Al3Si916:Ce3+、Ca2Si58:Ce3+、Y3(Al,Ga)512:Ce3+、BaY2SiAl412:Ce3+、及びCa3Sc2Si312:Ce3+からなる群から選ばれるいずれかである請求項1〜6のいずれかに記載の発光装置。 The green phosphors are Sr 1.5 Al 3 Si 9 N 16 : Eu 2+ , Ca 1.5 Al 3 Si 9 N 16 : Eu 2+ , CaSiAl 2 O 3 N 2 : Eu 2+ , SrSiAl 2 O 3 N 2 : Eu 2+ , CaSi 2 O 2 N 2 : Eu 2+ , SrSi 2 O 2 N 2 : Eu 2+ , BaSi 2 O 2 N 2 : Eu 2+ , SrAl 2 O 4 : Eu 2+ , Sr 2 Si 5 N 8 : Ce 3+ , Ca 1.5 Al 3 Si 9 N 16 : Ce 3+ , Ca 2 Si 5 N 8 : Ce 3+ , Y 3 (Al, Ga) 5 O 12 : Ce 3+ , BaY 2 SiAl 7. The light emitting device according to claim 1, wherein the light emitting device is any one selected from the group consisting of 4 O 12 : Ce 3+ and Ca 3 Sc 2 Si 3 O 12 : Ce 3+ . 前記青色発光素子の発光ピーク波長は、450nm以上480nm以下である請求項1〜のいずれかに記載の発光装置。 Emission peak wavelength of the blue light emitting element, the light emitting device according to any one of claims 1 to 7 at 450nm than 480nm or less. 前記緑色蛍光体の発光ピーク波長は、510nm以上550nm以下である請求項1〜のいずれかに記載の発光装置。 The light emitting device according to any one of claims 1 to 8 , wherein an emission peak wavelength of the green phosphor is not less than 510 nm and not more than 550 nm. 前記緑色蛍光体の発光ピーク波長は、525nm以上560nm未満である請求項1〜のいずれかに記載の発光装置。 The light emitting device according to any one of claims 1 to 8 , wherein an emission peak wavelength of the green phosphor is not less than 525 nm and less than 560 nm.
JP2012183375A 2004-04-27 2012-08-22 Light emitting device Active JP5604482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012183375A JP5604482B2 (en) 2004-04-27 2012-08-22 Light emitting device

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2004131770 2004-04-27
JP2004131770 2004-04-27
JP2004182797 2004-06-21
JP2004182797 2004-06-21
JP2004194196 2004-06-30
JP2004194196 2004-06-30
JP2012183375A JP5604482B2 (en) 2004-04-27 2012-08-22 Light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011087503A Division JP5171981B2 (en) 2004-04-27 2011-04-11 Light emitting device

Publications (2)

Publication Number Publication Date
JP2013021339A JP2013021339A (en) 2013-01-31
JP5604482B2 true JP5604482B2 (en) 2014-10-08

Family

ID=39697774

Family Applications (8)

Application Number Title Priority Date Filing Date
JP2004363534A Active JP4128564B2 (en) 2004-04-27 2004-12-15 Light emitting device
JP2006286477A Active JP3940162B2 (en) 2004-04-27 2006-10-20 Light emitting device
JP2007210888A Active JP4094047B2 (en) 2004-04-27 2007-08-13 Light emitting device
JP2008021762A Pending JP2008169395A (en) 2004-04-27 2008-01-31 Light-emitting device
JP2008034051A Active JP4559496B2 (en) 2004-04-27 2008-02-15 Light emitting device
JP2008034050A Active JP4558808B2 (en) 2004-04-27 2008-02-15 Light emitting device
JP2011087503A Active JP5171981B2 (en) 2004-04-27 2011-04-11 Light emitting device
JP2012183375A Active JP5604482B2 (en) 2004-04-27 2012-08-22 Light emitting device

Family Applications Before (7)

Application Number Title Priority Date Filing Date
JP2004363534A Active JP4128564B2 (en) 2004-04-27 2004-12-15 Light emitting device
JP2006286477A Active JP3940162B2 (en) 2004-04-27 2006-10-20 Light emitting device
JP2007210888A Active JP4094047B2 (en) 2004-04-27 2007-08-13 Light emitting device
JP2008021762A Pending JP2008169395A (en) 2004-04-27 2008-01-31 Light-emitting device
JP2008034051A Active JP4559496B2 (en) 2004-04-27 2008-02-15 Light emitting device
JP2008034050A Active JP4558808B2 (en) 2004-04-27 2008-02-15 Light emitting device
JP2011087503A Active JP5171981B2 (en) 2004-04-27 2011-04-11 Light emitting device

Country Status (4)

Country Link
JP (8) JP4128564B2 (en)
KR (1) KR20110016506A (en)
AT (2) ATE546506T1 (en)
TW (2) TWI394815B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013007610A (en) * 2011-06-23 2013-01-10 Canon Inc Color measuring unit and image forming apparatus

Families Citing this family (134)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1441395B9 (en) 1996-06-26 2012-08-15 OSRAM Opto Semiconductors GmbH Light-emitting semiconductor device with luminescence conversion element
EP1620903B1 (en) 2003-04-30 2017-08-16 Cree, Inc. High-power solid state light emitter package
US7005679B2 (en) 2003-05-01 2006-02-28 Cree, Inc. Multiple component solid state white light
JP3837588B2 (en) 2003-11-26 2006-10-25 独立行政法人物質・材料研究機構 Phosphors and light emitting devices using phosphors
JP4128564B2 (en) * 2004-04-27 2008-07-30 松下電器産業株式会社 Light emitting device
KR100865624B1 (en) * 2004-04-27 2008-10-27 파나소닉 주식회사 Phosphor composition and method for producing the same, and light-emitting device using the same
US7534633B2 (en) 2004-07-02 2009-05-19 Cree, Inc. LED with substrate modifications for enhanced light extraction and method of making same
KR20140063899A (en) 2005-04-01 2014-05-27 미쓰비시 가가꾸 가부시키가이샤 Alloy powder for aw material of inorganic functional material and phosphor
JP2007049114A (en) 2005-05-30 2007-02-22 Sharp Corp Light emitting device and method of manufacturing the same
US7859182B2 (en) 2005-08-31 2010-12-28 Lumination Llc Warm white LED-based lamp incoporating divalent EU-activated silicate yellow emitting phosphor
US7262439B2 (en) 2005-11-22 2007-08-28 Lumination Llc Charge compensated nitride phosphors for use in lighting applications
JP4832995B2 (en) * 2005-09-01 2011-12-07 シャープ株式会社 Light emitting device
KR20090009772A (en) 2005-12-22 2009-01-23 크리 엘이디 라이팅 솔루션즈, 인크. Lighting device
NL2000033C1 (en) * 2006-03-20 2007-09-21 Univ Eindhoven Tech Device for converting electromagnetic radiation energy into electrical energy and a method for manufacturing such a device.
JP5239182B2 (en) * 2006-03-27 2013-07-17 三菱化学株式会社 Phosphor and light emitting device using the same
TW200807104A (en) * 2006-04-19 2008-02-01 Mitsubishi Chem Corp Color image display device
JP2007312374A (en) * 2006-04-19 2007-11-29 Mitsubishi Chemicals Corp Color image display device
EP2011164B1 (en) * 2006-04-24 2018-08-29 Cree, Inc. Side-view surface mount white led
JP5141107B2 (en) * 2006-06-27 2013-02-13 三菱化学株式会社 Lighting device
US7923928B2 (en) 2006-06-27 2011-04-12 Mitsubishi Chemical Corporation Illuminating device
KR101258229B1 (en) * 2006-06-30 2013-04-25 서울반도체 주식회사 Light emitting device
JP5100059B2 (en) * 2006-08-24 2012-12-19 スタンレー電気株式会社 Phosphor, method for producing the same, and light emitting device using the same
KR100771772B1 (en) * 2006-08-25 2007-10-30 삼성전기주식회사 White light led module
JP5378644B2 (en) * 2006-09-29 2013-12-25 Dowaホールディングス株式会社 Method for producing nitride phosphor or oxynitride phosphor
TW200822403A (en) * 2006-10-12 2008-05-16 Matsushita Electric Ind Co Ltd Light-emitting device and method for manufacturing the same
US7804239B2 (en) 2006-10-17 2010-09-28 Samsung Led Co., Ltd. White light emitting diode
KR100862695B1 (en) * 2006-10-17 2008-10-10 삼성전기주식회사 White light emitting diode
JP2008116849A (en) * 2006-11-07 2008-05-22 Sony Corp Display device
JP5367218B2 (en) 2006-11-24 2013-12-11 シャープ株式会社 Method for manufacturing phosphor and method for manufacturing light emitting device
JP4520972B2 (en) * 2006-11-28 2010-08-11 Dowaエレクトロニクス株式会社 Light emitting device and manufacturing method thereof
JP4228012B2 (en) * 2006-12-20 2009-02-25 Necライティング株式会社 Red light emitting nitride phosphor and white light emitting device using the same
JP5137395B2 (en) * 2006-12-25 2013-02-06 京セラ株式会社 Light emitting device
JP4824600B2 (en) * 2007-02-21 2011-11-30 富士フイルム株式会社 Planar illumination device, evaluation method for planar illumination device, and manufacturing method using the same
JP2008208238A (en) * 2007-02-27 2008-09-11 Showa Denko Kk Fluorescent substance and method for producing the same and lighting apparatus and image display device equipped with the same
JP2008244468A (en) * 2007-02-28 2008-10-09 Toshiba Lighting & Technology Corp Light-emitting device
JP2008218485A (en) * 2007-02-28 2008-09-18 Toshiba Lighting & Technology Corp Light emitting device
JP2008244469A (en) * 2007-02-28 2008-10-09 Toshiba Lighting & Technology Corp Light-emitting device
JP2008270781A (en) * 2007-03-23 2008-11-06 Toshiba Lighting & Technology Corp Light-emitting device
JP2008251664A (en) * 2007-03-29 2008-10-16 Toshiba Lighting & Technology Corp Illumination apparatus
EP2135920B1 (en) * 2007-04-18 2016-12-21 Mitsubishi Chemical Corporation Process for producing inorganic compound, fluorescent material, fluorescent-material-containing composition, luminescent device, illuminator, and image display
US9279079B2 (en) 2007-05-30 2016-03-08 Sharp Kabushiki Kaisha Method of manufacturing phosphor, light-emitting device, and image display apparatus
JP2009019163A (en) * 2007-07-13 2009-01-29 Sharp Corp Phosphor particle aggregate for light emitting device, light emitting device, and backlight device for liquid crystal display
WO2009011205A1 (en) * 2007-07-19 2009-01-22 Sharp Kabushiki Kaisha Light emitting device
JPWO2009028656A1 (en) 2007-08-30 2010-12-02 日亜化学工業株式会社 Light emitting device
JP5092667B2 (en) * 2007-10-05 2012-12-05 三菱化学株式会社 Light emitting device
US9431589B2 (en) 2007-12-14 2016-08-30 Cree, Inc. Textured encapsulant surface in LED packages
WO2009110285A1 (en) 2008-03-03 2009-09-11 シャープ株式会社 Light-emitting device
US8598618B2 (en) 2008-04-17 2013-12-03 Kabushiki Kaisha Toshiba White light emitting device, backlight, liquid crystal display device, and illuminating device
JP2009289957A (en) * 2008-05-29 2009-12-10 Yamaguchi Univ Semiconductor light-emitting device and imaging device
US8415870B2 (en) 2008-08-28 2013-04-09 Panasonic Corporation Semiconductor light emitting device and backlight source, backlight source system, display device and electronic device using the same
JP5220527B2 (en) * 2008-09-11 2013-06-26 昭和電工株式会社 Light emitting device, light emitting module
US8378369B2 (en) 2008-09-09 2013-02-19 Showa Denko K.K. Light emitting unit, light emitting module, and display device
JP5220526B2 (en) * 2008-09-11 2013-06-26 昭和電工株式会社 Light emitting device, light emitting module, display device
TW201011942A (en) * 2008-09-11 2010-03-16 Advanced Optoelectronic Tech Method and system for configuring high CRI LED
JP2010151851A (en) * 2008-11-28 2010-07-08 Toshiba Corp Display device
JP2010177620A (en) * 2009-02-02 2010-08-12 Showa Denko Kk Production process of light-emitting device
JP5483898B2 (en) * 2009-02-19 2014-05-07 住友金属鉱山株式会社 Method for producing oxide phosphor
WO2011024818A1 (en) 2009-08-26 2011-03-03 三菱化学株式会社 Semiconductor white light-emitting device
WO2011024296A1 (en) * 2009-08-28 2011-03-03 株式会社 東芝 Process for producing fluorescent substance and fluorescent substance produced thereby
CN102630288B (en) 2009-09-25 2015-09-09 科锐公司 There is the lighting apparatus of low dazzle and high brightness levels uniformity
JP5824676B2 (en) * 2009-09-29 2015-11-25 パナソニックIpマネジメント株式会社 LED illumination light source and illumination device
JP5712428B2 (en) * 2009-10-23 2015-05-07 国立大学法人山梨大学 Red phosphor for ultraviolet excitation light source
WO2011105571A1 (en) * 2010-02-26 2011-09-01 三菱化学株式会社 Halophosphate phosphor and white light emitting device
US20110220920A1 (en) * 2010-03-09 2011-09-15 Brian Thomas Collins Methods of forming warm white light emitting devices having high color rendering index values and related light emitting devices
US8643038B2 (en) 2010-03-09 2014-02-04 Cree, Inc. Warm white LEDs having high color rendering index values and related luminophoric mediums
WO2011111368A1 (en) 2010-03-12 2011-09-15 株式会社 東芝 White light illumination device
JP2011225696A (en) * 2010-04-19 2011-11-10 Sharp Corp Red-type light-emitting phosphor, process for producing the same and light-emitting device using the red-type light-emitting phosphor
US8329482B2 (en) 2010-04-30 2012-12-11 Cree, Inc. White-emitting LED chips and method for making same
JP2012060097A (en) * 2010-06-25 2012-03-22 Mitsubishi Chemicals Corp White semiconductor light-emitting device
KR101243773B1 (en) 2010-08-17 2013-03-14 순천대학교 산학협력단 Wavelength converting composition for light emitting device and sollar cell, light emitting device and sollar cell comprising the composition, preparing method for the composition
JP5185421B2 (en) 2010-09-09 2013-04-17 株式会社東芝 Red light emitting phosphor and light emitting device using the same
JP5864851B2 (en) 2010-12-09 2016-02-17 シャープ株式会社 Light emitting device
US9617469B2 (en) * 2011-01-06 2017-04-11 Shin-Etsu Chemical Co., Ltd. Phosphor particles, making method, and light-emitting diode
JP2012246462A (en) 2011-05-31 2012-12-13 Sharp Corp Light-emitting device
US8747697B2 (en) * 2011-06-07 2014-06-10 Cree, Inc. Gallium-substituted yttrium aluminum garnet phosphor and light emitting devices including the same
MX2011007939A (en) * 2011-07-13 2013-01-24 William J Odom Jr Avian house lighting apparatus and method.
WO2013018041A1 (en) 2011-08-04 2013-02-07 Koninklijke Philips Electronics N.V. Light converter and lighting unit comprising such light converter
DE202011106052U1 (en) * 2011-09-23 2011-11-09 Osram Ag Light source with phosphor and associated lighting unit.
JP5899470B2 (en) * 2011-12-16 2016-04-06 パナソニックIpマネジメント株式会社 Lighting device
JP2013163722A (en) * 2012-02-09 2013-08-22 Denki Kagaku Kogyo Kk Phosphor and light-emitting device
JP2015083618A (en) * 2012-02-09 2015-04-30 電気化学工業株式会社 Phosphor and light-emitting device
JP2015083617A (en) * 2012-02-09 2015-04-30 電気化学工業株式会社 Phosphor and light-emitting device
JP2013163723A (en) * 2012-02-09 2013-08-22 Denki Kagaku Kogyo Kk Phosphor and light-emitting device
JP2013163725A (en) * 2012-02-09 2013-08-22 Denki Kagaku Kogyo Kk Phosphor and light-emitting device
KR101409489B1 (en) 2012-02-27 2014-06-18 경기대학교 산학협력단 Silicon oxynitride phosphor and light device having the same
US9030092B2 (en) 2012-02-27 2015-05-12 Kyounggi University Industry & Academia Cooperation Foundation Silicon oxynitride phosphore, production method for same, and optical element comprising same
JP2013207241A (en) * 2012-03-29 2013-10-07 Mitsubishi Chemicals Corp Semiconductor light-emitting device, semiconductor light-emitting system, and luminaire
WO2013158930A1 (en) * 2012-04-18 2013-10-24 Nitto Denko Corporation Phosphor ceramics and methods of making the same
CN104583365B (en) * 2012-07-18 2016-05-11 英特曼帝克司公司 Based on the red emitting phosphor of nitride
EP2905818B1 (en) * 2012-10-04 2023-12-20 Seoul Semiconductor Co., Ltd. White-light emitting device, lighting device, and lighting device for dentistry
JPWO2014119313A1 (en) * 2013-01-31 2017-01-26 株式会社東芝 Light emitting device and LED bulb
JP6853614B2 (en) * 2013-03-29 2021-03-31 株式会社朝日ラバー LED lighting device, its manufacturing method and LED lighting method
EP2803715B1 (en) * 2013-05-16 2020-02-26 LG Innotek Co., Ltd. Phosphor and light emitting device package including the same
CN104241262B (en) 2013-06-14 2020-11-06 惠州科锐半导体照明有限公司 Light emitting device and display device
JP6266923B2 (en) * 2013-08-26 2018-01-24 シチズン電子株式会社 LED light emitting device
US9142733B2 (en) * 2013-09-03 2015-09-22 Panasonic Intellectual Property Management Co., Ltd. Light source device including a high energy light source and a wavelength conversion member, illuminating device comprising the same, and vehicle
EP3054490B1 (en) 2013-10-02 2019-06-26 Glbtech Co. Ltd. White light emitting device having high color rendering
JP2015082596A (en) 2013-10-23 2015-04-27 株式会社東芝 Light-emitting device
US9837585B2 (en) * 2013-11-08 2017-12-05 Lumimicro Corp. Ltd. Light emitting device
KR101487961B1 (en) 2013-11-25 2015-01-30 율촌화학 주식회사 White light emitting device and light emitting apparatus including the same
JP6195117B2 (en) 2013-12-03 2017-09-13 パナソニックIpマネジメント株式会社 Acid chloride phosphor, light emitting device, lighting device, and vehicle
JP6358457B2 (en) * 2014-01-20 2018-07-18 パナソニックIpマネジメント株式会社 Light emitting device, illumination light source, and illumination device
JP6323177B2 (en) * 2014-05-30 2018-05-16 日亜化学工業株式会社 Semiconductor light emitting device
JP6405738B2 (en) * 2014-06-19 2018-10-17 三菱ケミカル株式会社 Light emitting device
JP6407654B2 (en) * 2014-10-08 2018-10-17 株式会社東芝 LED module and lighting device
JP2016111267A (en) * 2014-12-09 2016-06-20 パナソニックIpマネジメント株式会社 Illumination module, lighting device and liquid crystal display device
JP6755090B2 (en) * 2014-12-11 2020-09-16 シチズン電子株式会社 Light emitting device and manufacturing method of light emitting device
JP6428245B2 (en) * 2014-12-19 2018-11-28 日亜化学工業株式会社 Light emitting device
US9716212B2 (en) 2014-12-19 2017-07-25 Nichia Corporation Light emitting device
JP6506037B2 (en) * 2015-02-02 2019-04-24 富士フイルム株式会社 Phosphor-Dispersed Composition, Fluorescent Molded Product Obtained Using the Same, Wavelength Conversion Film, Wavelength Conversion Member, Backlight Unit, Liquid Crystal Display Device
DE102015202159B4 (en) 2015-02-06 2023-06-15 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung semiconductor lighting device
JP6707728B2 (en) * 2015-06-24 2020-06-10 東芝マテリアル株式会社 White light source system for medical facility lighting
EP3316322B1 (en) * 2015-06-24 2023-12-13 Seoul Semiconductor Co., Ltd. White light source system
EP3135746B1 (en) 2015-08-28 2019-05-29 Nichia Corporation Method for producing nitride fluorescent material
JP6856890B2 (en) * 2015-08-28 2021-04-14 株式会社小糸製作所 Fluorescent material
KR102514150B1 (en) * 2016-01-05 2023-04-04 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Light emitting device and lighting unit having thereof
JP6460040B2 (en) * 2016-03-04 2019-01-30 日亜化学工業株式会社 Light emitting device
US10256374B2 (en) 2016-03-04 2019-04-09 Nichia Corporation Light emitting device
EP3241880B1 (en) * 2016-05-03 2018-04-18 Lumileds Holding B.V. Wavelength converting material for a light emitting device
JP6477779B2 (en) * 2016-05-26 2019-03-06 日亜化学工業株式会社 Light emitting device
JP2016189488A (en) * 2016-07-07 2016-11-04 日亜化学工業株式会社 Light emitting device
JP6848637B2 (en) * 2016-12-02 2021-03-24 豊田合成株式会社 Light emitting device
JP7004892B2 (en) * 2017-04-11 2022-01-21 日亜化学工業株式会社 Luminescent device
JP6934316B2 (en) * 2017-04-24 2021-09-15 日本特殊陶業株式会社 Wavelength conversion member
JP6861389B2 (en) * 2017-07-26 2021-04-21 パナソニックIpマネジメント株式会社 Outdoor lighting equipment
JP7009879B2 (en) * 2017-09-26 2022-01-26 豊田合成株式会社 Luminescent device
JP2019062173A (en) * 2017-09-26 2019-04-18 パナソニックIpマネジメント株式会社 Luminaire apparatus and light-emitting device
US10837607B2 (en) * 2017-09-26 2020-11-17 Lumileds Llc Light emitting device with improved warm-white color point
KR102130817B1 (en) * 2018-01-25 2020-07-08 지엘비텍 주식회사 White Light Emitting Device with High Color Rendering Index
JP2020053664A (en) * 2018-09-20 2020-04-02 豊田合成株式会社 Light emitting device
WO2020137760A1 (en) * 2018-12-27 2020-07-02 デンカ株式会社 Phosphor substrate, light-emitting substrate, and lighting device
WO2020175710A1 (en) * 2019-02-28 2020-09-03 京セラ株式会社 Light emitting device and illumination device
CN110364598B (en) * 2019-06-20 2020-10-09 华灿光电(苏州)有限公司 Light emitting diode epitaxial wafer and manufacturing method thereof
CN116462497A (en) * 2023-03-16 2023-07-21 河北光兴半导体技术有限公司 Tb (Tb) 3+ Doped aluminate green fluorescent ceramic and preparation method and application thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6850002B2 (en) * 2000-07-28 2005-02-01 Osram Opto Semiconductors Gmbh Light emitting device for generating specific colored light, including white light
JP4619509B2 (en) * 2000-09-28 2011-01-26 株式会社東芝 Light emitting device
DE10133352A1 (en) * 2001-07-16 2003-02-06 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Lighting unit with at least one LED as a light source
EP2017901A1 (en) * 2001-09-03 2009-01-21 Panasonic Corporation Semiconductor light emitting device, light emitting apparatus and production method for semiconductor light emitting DEV
DE10147040A1 (en) * 2001-09-25 2003-04-24 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Lighting unit with at least one LED as a light source
JP4221950B2 (en) * 2002-05-23 2009-02-12 日亜化学工業株式会社 Phosphor
JP2003321675A (en) * 2002-04-26 2003-11-14 Nichia Chem Ind Ltd Nitride fluorophor and method for producing the same
AU2003215785A1 (en) * 2002-03-25 2003-10-08 Philips Intellectual Property And Standards Gmbh Tri-color white light led lamp
FR2840748B1 (en) * 2002-06-05 2004-08-27 France Telecom METHOD AND SYSTEM FOR VERIFYING ELECTRONIC SIGNATURES AND MICROCIRCUIT CARD FOR IMPLEMENTING THE METHOD
CN100552283C (en) * 2002-06-06 2009-10-21 埃莱特技术公司 By using fluorescent dye to come the lighting device of simulate neon
JP4207489B2 (en) * 2002-08-06 2009-01-14 株式会社豊田中央研究所 α-sialon phosphor
EP1413619A1 (en) * 2002-09-24 2004-04-28 Osram Opto Semiconductors GmbH Luminescent material, especially for LED application
JP3837588B2 (en) * 2003-11-26 2006-10-25 独立行政法人物質・材料研究機構 Phosphors and light emitting devices using phosphors
JP4362625B2 (en) * 2004-02-18 2009-11-11 独立行政法人物質・材料研究機構 Method for manufacturing phosphor
JP3921545B2 (en) * 2004-03-12 2007-05-30 独立行政法人物質・材料研究機構 Phosphor and production method thereof
JP4128564B2 (en) * 2004-04-27 2008-07-30 松下電器産業株式会社 Light emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013007610A (en) * 2011-06-23 2013-01-10 Canon Inc Color measuring unit and image forming apparatus

Also Published As

Publication number Publication date
JP2008169395A (en) 2008-07-24
JP2011155297A (en) 2011-08-11
JP4558808B2 (en) 2010-10-06
JP4559496B2 (en) 2010-10-06
JP5171981B2 (en) 2013-03-27
JP4094047B2 (en) 2008-06-04
ATE546506T1 (en) 2012-03-15
JP2007027796A (en) 2007-02-01
JP4128564B2 (en) 2008-07-30
JP2013021339A (en) 2013-01-31
KR20110016506A (en) 2011-02-17
TW200944577A (en) 2009-11-01
TWI394815B (en) 2013-05-01
ATE539135T1 (en) 2012-01-15
JP3940162B2 (en) 2007-07-04
JP2006049799A (en) 2006-02-16
TW200611963A (en) 2006-04-16
JP2008187188A (en) 2008-08-14
JP2008016861A (en) 2008-01-24
JP2008177592A (en) 2008-07-31

Similar Documents

Publication Publication Date Title
JP5604482B2 (en) Light emitting device
KR100894372B1 (en) Semiconductor light emitting element and light emitting device using this
JP5042999B2 (en) Lighting system with luminescent material to compensate for color shortage
JP3985486B2 (en) Semiconductor light emitting element and light emitting device using the same
JP5599483B2 (en) Light emitting device using non-stoichiometric tetragonal alkaline earth silicate phosphor
JP4477854B2 (en) Phosphor conversion light emitting device
JP4587330B2 (en) Light source with low color temperature
TWI420710B (en) White light and its use of white light-emitting diode lighting device
US7859182B2 (en) Warm white LED-based lamp incoporating divalent EU-activated silicate yellow emitting phosphor
JP5236397B2 (en) Light emitting device using non-stoichiometric tetragonal alkaline earth silicate phosphor
WO2006135005A1 (en) Light emitting device
JP5677463B2 (en) Phosphor and light emitting device
JP2011159809A (en) White light-emitting device
JP2013187358A (en) White light-emitting device
KR101176212B1 (en) Alkali-earth Phosporus Nitride system phosphor, manufacturing method thereof and light emitting devices using the same
JP2009073914A (en) Green light emitting phosphor and light emitting module using the same
JP2017034179A (en) Light-emitting module
JP2011096685A (en) Light-emitting module using phosphor and lighting fixture for vehicle using same
KR100684044B1 (en) White light emitting diode and method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140825

R151 Written notification of patent or utility model registration

Ref document number: 5604482

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350