JP6707728B2 - White light source system for medical facility lighting - Google Patents

White light source system for medical facility lighting Download PDF

Info

Publication number
JP6707728B2
JP6707728B2 JP2015126111A JP2015126111A JP6707728B2 JP 6707728 B2 JP6707728 B2 JP 6707728B2 JP 2015126111 A JP2015126111 A JP 2015126111A JP 2015126111 A JP2015126111 A JP 2015126111A JP 6707728 B2 JP6707728 B2 JP 6707728B2
Authority
JP
Japan
Prior art keywords
white light
light source
phosphor
color temperature
source system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015126111A
Other languages
Japanese (ja)
Other versions
JP2017010817A (en
Inventor
昌彦 山川
昌彦 山川
亮二 津田
亮二 津田
恭正 大屋
恭正 大屋
達規 糸賀
達規 糸賀
康博 白川
康博 白川
淳二 谷口
淳二 谷口
矢野雅彦
杉村啓二郎
宮田博志
松浦成昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Materials Co Ltd
Osaka Prefectural Hospital Organization
Original Assignee
Toshiba Materials Co Ltd
Osaka Prefectural Hospital Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Materials Co Ltd, Osaka Prefectural Hospital Organization filed Critical Toshiba Materials Co Ltd
Priority to JP2015126111A priority Critical patent/JP6707728B2/en
Publication of JP2017010817A publication Critical patent/JP2017010817A/en
Application granted granted Critical
Publication of JP6707728B2 publication Critical patent/JP6707728B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)

Description

本発明は、時間の経過と共に変化する太陽光の発光スペクトル形状および発光強度を、連続的かつ忠実に再現できることを特徴とする白色光源システムに関する。特に医療施設の照明に使用される白色光源システムに関する。 The present invention relates to a white light source system characterized by being able to continuously and faithfully reproduce the emission spectrum shape and emission intensity of sunlight that change with the passage of time. In particular, it relates to a white light source system used for illumination of medical facilities.

近年、省エネや二酸化炭素排出量削減の観点からLED(発光ダイオード)を使った光源が注目されている。タングステンフィラメントを使った従来の白熱電球と比べて、長寿命かつ省エネが可能であり、その利便性からLED照明は急速に市場を伸ばしつつある。当初のLED照明は、青色発光のLEDと黄色発光の蛍光体を組み合わせて白色光を得るタイプのものが多く、暖かみに欠ける不自然な白色しか再現することができなかった。しかしながら、LED製品の市場拡大と共に性能向上も著しく、LEDと蛍光体の組み合わせに関する改良が行われた結果、様々な種類のLED白色光源が開発されている。 In recent years, a light source using an LED (light emitting diode) has attracted attention from the viewpoint of energy saving and reduction of carbon dioxide emission. Compared with the conventional incandescent light bulb using a tungsten filament, it has a long life and can save energy, and because of its convenience, LED lighting is rapidly expanding its market. Many of the initial LED illuminations are of a type that obtains white light by combining a blue light emitting LED and a yellow light emitting phosphor, and it has been possible to reproduce only an unnatural white color that lacks warmth. However, the performance of LED products has been significantly expanded along with the market expansion, and various types of LED white light sources have been developed as a result of improvements in the combination of LEDs and phosphors.

例えば特許文献1では、5種類の白色光を再現することが可能な照明器具が開示されている。LEDと種々の蛍光体を組合せて、色温度の高い白色光と色温度の低い白色光を発する2種類のLEDを用意し、それらの発光を種々の割合で混合することにより、電球色、温白色、白色、昼白色、昼光色の5種類の白色光を得るものである。屋内照明において、この様な複数種の白色光を適宜使い分けることにより、日常生活の様々な場面において、目的に応じた照明演出効果を得ることができる。 For example, Patent Document 1 discloses a lighting fixture capable of reproducing five types of white light. Two types of LEDs that emit white light with a high color temperature and white light with a low color temperature are prepared by combining LEDs with various phosphors, and the light emission of these LEDs is mixed at various ratios to obtain the bulb color and temperature. It obtains five types of white light: white, white, neutral white, and daylight. By appropriately using such plural kinds of white light in indoor lighting, it is possible to obtain a lighting effect according to the purpose in various scenes of daily life.

一方、近年では、単なる演出効果にとどまらず、人体への影響に配慮した照明が開発されている。1つは、青色LEDの放つ強い光が、人体のホルモン(メラトニン)分泌を抑制する等、人体への悪影響が懸念されることから、青色光の影響を低減した照明が提案されている。例えば特許文献2では、単純に青色光の強度を低減するのではなく、発光ピークの異なるLEDと蛍光体とを組合せて4種類の発光ピークを混合するとの工夫を加え、青色光の影響が少なく、かつ分光視感効率とのずれが少ない白色光を提供している。 On the other hand, in recent years, lighting has been developed that takes into consideration not only mere effects but also effects on the human body. First, there is a concern that the strong light emitted by the blue LED may adversely affect the human body, such as suppressing the hormone (melatonin) secretion of the human body. Therefore, lighting that reduces the influence of blue light has been proposed. For example, in Patent Document 2, the effect of blue light is reduced by adding a device of combining LEDs and phosphors having different emission peaks and mixing four types of emission peaks, instead of simply reducing the intensity of blue light. It also provides white light with little deviation from the spectral luminous efficiency.

他の1つは、LED光源を体力の回復や増強に積極的に活用しようとする動きもある。例えば、人体に優しい太陽光をそのまま再現し、人体の持つ体内時計に対し積極的に働きかけて、健康の増進を図る等の試みである。特許文献3及び特許文献7は、太陽光と同等の発光スペクトルを有する白色光源に関する発明で、色温度の異なる太陽光を、同じ色温度の黒体輻射スペクトルで再現させたものである。この発明では、種々の色温度の太陽光を、スペクトル形状まで含めて近似させており、体内時計のリズムに対応可能な白色照明を得ることができる。特許文献4は、人体の周囲の照度や温度を検知する手段を持ち、入手したデータを元に、人体周囲の照明や空調を、生体リズムに合わせて調整する制御装置に関する発明である。また特許文献5は、白色光源を用いた照明システムに関する発明で、照明の対象は人間等を中心としたオフィス照明等に関するものである。屋外光の変化を検知しながら、屋内光の色温度や照度を調整できるシステムで、人体の生理現象や季節による変化に対応した白色照明を得ることができる。最後に特許文献6は、異なる色温度の複数個の発光ダイオードモジュールを組み合わせた人工太陽光システムに関する発明で、地球上の異なる緯度や経度の地点に照射される太陽光の色温度の時間変化を再現することができるものである。 The other one is a movement to actively utilize the LED light source for recovery and enhancement of physical strength. For example, it is an attempt to improve the health by reproducing sunlight that is friendly to the human body as it is and actively acting on the body clock of the human body. Patent Document 3 and Patent Document 7 are inventions relating to a white light source having an emission spectrum equivalent to that of sunlight, in which sunlight having different color temperatures is reproduced with a black body radiation spectrum having the same color temperature. According to the present invention, sunlight having various color temperatures is approximated including spectral shapes, and white illumination that can cope with the rhythm of the body clock can be obtained. Patent Document 4 is an invention relating to a control device that has means for detecting illuminance and temperature around the human body and adjusts lighting and air conditioning around the human body according to a biological rhythm based on the obtained data. Further, Patent Document 5 is an invention relating to an illumination system using a white light source, and the subject of illumination relates to office illumination or the like centering on a person or the like. It is a system that can adjust the color temperature and illuminance of indoor light while detecting the change of outdoor light, and can obtain white illumination corresponding to the physiological phenomenon of the human body and seasonal changes. Finally, Patent Document 6 is an invention relating to an artificial sunlight system in which a plurality of light emitting diode modules having different color temperatures are combined, and shows the time variation of the color temperature of sunlight radiated to points on the earth at different latitudes and longitudes. It can be reproduced.

特開2007−265818号公報JP, 2007-265818, A 国際公開WO2008/069101号パンフレットInternational publication WO2008/069101 pamphlet 国際公開WO2012/144087号パンフレットInternational publication WO2012/144087 pamphlet 特開平8−193738号公報JP-A-8-193738 特開2011−23339号公報JP, 2011-23339, A 特表2009−540599号公報Japanese Patent Publication No. 2009-540599 国際公開WO2012/108065号パンフレットInternational publication WO2012/108065 pamphlet

近年ではLED光源を用いて様々な白色光を得ることができる様になり、人工の白色光源で太陽光と同等の照明効果を得る試みが、種々行われている。しかしながら、太陽光と同等の発光特性を謳っていても、表面上の特性を近似させているだけで、太陽光を再現するとの観点では、不十分な特性のものが多い。例えば特許文献6は、人工太陽光システムに関する発明だが、時間や場所によって変化する太陽光の発光特性を、色温度を基準として再現させたものである。しかしながら、色温度のみを合わせても、太陽光の再現レベルとしては十分でない。何故なら、太陽光を真に再現する為には、単なる色温度のみでなく、特定の色温度を形成する各発光成分の波長や強度を含めて、一致させる必要があるためである。この点において、特許文献6の人工太陽光システムでは、見かけ上の発光色のみを再現しているに過ぎず、再現レベルが十分とは言えないものである。また特許文献5は、自然環境における太陽光の変化と合致して対応できる照明システムに関する発明である。しかしこの発明でも、色温度と照度に着目して照明をコントロールしているに過ぎず、太陽光に対する再現レベルが十分とは言えない。 In recent years, it has become possible to obtain various white lights by using an LED light source, and various attempts have been made to obtain an illumination effect equivalent to that of sunlight with an artificial white light source. However, even if the light emitting characteristics are the same as those of the sunlight, many of the characteristics are insufficient from the viewpoint of reproducing the sunlight only by approximating the characteristics on the surface. For example, Patent Document 6 is an invention relating to an artificial sunlight system, but reproduces the light emission characteristics of sunlight that change depending on time and place with reference to color temperature. However, even if only the color temperature is adjusted, the reproduction level of sunlight is not sufficient. This is because in order to truly reproduce sunlight, not only the mere color temperature but also the wavelengths and intensities of the respective luminescent components forming a specific color temperature need to be matched. In this respect, the artificial sunlight system of Patent Document 6 reproduces only the apparent emission color, and the reproduction level cannot be said to be sufficient. Further, Patent Document 5 is an invention relating to a lighting system that can respond to changes in sunlight in a natural environment. However, even in this invention, the illumination is controlled only by paying attention to the color temperature and the illuminance, and the reproduction level for sunlight is not sufficient.

一方、特許文献3及び特許文献7は、色温度の異なる太陽光を、同じ色温度の黒体輻射スペクトルで再現させたものである。太陽は黒体の1種と看做すことができ、かつ黒体輻射スペクトルの形状まで近似させていることから、太陽光の再現との観点からは、引用特許文献の中で最も優れた方式である。またこの発明では、太陽光の1日の変化に対応した色温度の変化も再現することができる。しかしながら、この発明の場合、発光特性の再現としては、ある程度満足できるレベルにあるが、発光特性の変化を再現するとの面では不十分である。何故なら各種色温度の白色光を再現することはできるが、特定の色温度を断片的に再現できるだけであり、太陽光の色温度変化を連続的に再現しているわけではない。 On the other hand, Patent Literature 3 and Patent Literature 7 reproduce sunlight having different color temperatures with a black body radiation spectrum having the same color temperature. Since the sun can be regarded as one type of black body, and the shape of the black body radiation spectrum is approximated, from the viewpoint of the reproduction of sunlight, the most excellent method in the cited patent documents. Is. Further, according to the present invention, it is possible to reproduce a change in color temperature corresponding to a change in sunlight for one day. However, in the case of the present invention, although the light emission characteristics can be reproduced to some extent, the change in the light emission characteristics is not sufficient. Because it is possible to reproduce white light of various color temperatures, it is possible to reproduce a specific color temperature in a piecemeal manner, and not to continuously reproduce the color temperature change of sunlight.

発光特性の変化を再現するとの点では、他の特許文献も同じである。様々な色温度の白色光が再現できるとか、発光色の変化を再現できるとしている特許文献はいくつかあるが、具体的な方式としては、特定の色温度の白色光を、断片的に再現する方式が殆どである。それらの中で、特許文献5は、太陽光の色温度変化に着目し、変化に合わせた照明方法を採り入れているが、色温度の変化を時間単位で切り換えているだけであり、連続的な変化を再現している訳ではない。 The other patent documents are also the same in that the change in the light emission characteristic is reproduced. There are several patent documents that describe that white light with various color temperatures can be reproduced or changes in emission color can be reproduced, but as a specific method, white light with a specific color temperature is reproduced in pieces. Most methods are used. Among them, Patent Document 5 focuses on a change in the color temperature of sunlight and adopts an illumination method adapted to the change, but the change in the color temperature is only switched in units of time, and continuous. It's not a reproduction of the changes.

以上の通り、太陽光の発光特性を再現できる照明として、種々の発明が開示されているものの、太陽光の発光色や発光スペクトルの再現が不十分であったり、発光色や発光スペクトルの変化する様子を連続的に再現していなかったり、前記のいずれか一方もしくは、両特性共に不十分な照明しか無かったのが現状である。
本発明の目的は、色温度および発光スペクトル分布が時々刻々変化する太陽光の発光特性を白色光源システムにおいて再現し、医療施設用照明として利用することである。
As described above, although various inventions have been disclosed as lighting capable of reproducing the emission characteristics of sunlight, the reproduction of the emission color or emission spectrum of sunlight is insufficient, or the emission color or emission spectrum changes. In the present situation, the situation is not continuously reproduced, or only one of the above-mentioned characteristics or both of the characteristics is insufficient.
An object of the present invention is to reproduce the light emission characteristics of sunlight whose color temperature and light emission spectrum distribution change from moment to moment in a white light source system and use it as illumination for medical facilities.

本発明によれば、色温度の異なる複数の白色光源を含む医療施設照明用白色光源システムが提供される。各白色光源の発光スペクトルをP(λ)、各白色光源と同じ色温度を示す黒体輻射の発光スペクトルをB(λ)、分光視感効率のスペクトルをV(λ)、P(λ)×V(λ)が最大となる波長をλmax1、B(λ)×V(λ)が最大となる波長をλmax2としたとき、(P(λ)×V(λ))/(P(λmax1)×V(λmax1))と(B(λ)×V(λ))/(B(λmax2)×V(λmax2))の差分の絶対値が下記の数1に示す関係式を満たす。複数の白色光源からの光の混合割合を変化させることにより白色光源システムから出射される白色光の色温度を変化させた際、変化の前後における白色光の色温度の差異がマクアダムの楕円で規定される範囲内に収まる様にする。これにより、システムから出射される白色光の発光特性が時間の経過とともに連続して変化してゆくと共に、白色光の発光特性の経時変化が、太陽光の日の出から日の入りまでを実測した結果に基づく複数の変化パターンから選択されたパターンに従って進行することを特徴とする。
本発明の白色光源システムに用いられる白色光源は、太陽光と同等レベルの発光スペクトル形状を持ち、色温度の異なる少なくとも2種類以上の白色光源を組合せて、様々な色温度における太陽光を再現するものである。本発明で使用する夫々の白色光源は、太陽光が持つ可視光領域の発光成分を、太陽光と同等レベルで含有しており、各白色光源を任意の割合で混合した混合白色光もまた、太陽光と同等レベルの発光成分を含むことができるものである。
According to the present invention, there is provided a white light source system for medical facility illumination, which includes a plurality of white light sources having different color temperatures. The emission spectrum of each white light source is P(λ), the emission spectrum of black body radiation showing the same color temperature as each white light source is B(λ), and the spectral luminous efficiency spectrum is V(λ), P(λ)× When the wavelength at which V(λ) is maximum is λmax1 and the wavelength at which B(λ)×V(λ) is maximum is λmax2, (P(λ)×V(λ))/(P(λmax1)× The absolute value of the difference between V(λmax1)) and (B(λ)×V(λ))/(B(λmax2)×V(λmax2)) satisfies the relational expression shown in Expression 1 below. When the color temperature of the white light emitted from the white light source system is changed by changing the mixing ratio of the light from multiple white light sources, the difference in the color temperature of the white light before and after the change is specified by the McAdam ellipse. Try to fit within the range. Thus, emission characteristics of the white light with rather boiled vary continuously with time, which is emitted from the system, emission aging characteristics of the white light, the result of the actual measurement from sunrise sunlight until sunset It is characterized in that it proceeds according to a pattern selected from a plurality of change patterns based on it.
The white light source used in the white light source system of the present invention has an emission spectrum shape equivalent to that of sunlight and combines at least two types of white light sources having different color temperatures to reproduce sunlight at various color temperatures. It is a thing. Each white light source used in the present invention, the visible light region of the sunlight has a light emitting component, at a level equivalent to that of the sunlight, mixed white light mixed with each white light source in any proportion, also, It can contain a light emitting component at a level similar to that of sunlight.

そして本発明の白色光源システムは、異なる色温度間の白色光を断片的に再現するのでは無く、時間と共に変化する発光特性を、連続的に追跡し再現することが可能である。本発明では、地球上の様々な地点における太陽光の一日の変化、および一年の変化について、事前に観測したデータに基づいて、光源の発する発光スペクトル形状や強度をコントロールしており、経時変化を再現する事が可能である。従い、特定の色温度の白色光源を長時間継続して利用したり、白色光源の色温度や強度変化を人為的に不自然に調節すること無く、人体のサーカディアンリズムに適応した、極めて自然な太陽光の変化をも、本発明の白色光源システムでは再現することが可能となる。 The white light source system of the present invention is not capable of reproducing white light between different color temperatures in a piecemeal manner, but is capable of continuously tracking and reproducing light emission characteristics that change with time. In the present invention, the daily change of sunlight at various points on the earth, and the annual change are controlled based on the data observed in advance to control the emission spectrum shape and intensity of the light source. It is possible to reproduce the changes. Therefore, without using a white light source with a specific color temperature continuously for a long time or artificially adjusting the color temperature and intensity changes of the white light source, it is extremely natural that it adapts to the circadian rhythm of the human body. Even the change in sunlight can be reproduced by the white light source system of the present invention.

本発明の医療施設照明用白色光源システムは、太陽光に極めて近い自然光を得ることができるため、高演色照明等の用途に利用できるばかりでなく、人体の生理現象に働きかける生体適応照明として、医療等の分野への応用も期待される。例えば、病院等の医療施設で使用される照明において、太陽光の一日乃至1年の変化を採り入れた照明を採用することにより、入院加療のため長期間に亘り屋内照明を利用せざるを得ない患者に対し、体内時計のリズムを適正に保ち、患者の社会復帰を促す効果等が期待できる。 Since the white light source system for medical facility lighting of the present invention can obtain natural light extremely close to sunlight, it can be used not only for applications such as high color rendering lighting, but also as bio-adaptive lighting that works on physiological phenomena of the human body. It is also expected to be applied to such fields. For example, in lighting used in medical facilities such as hospitals, it is necessary to use indoor lighting for a long period of time for hospital treatment by adopting lighting that takes into account changes in sunlight for one to one year. For patients who do not have this, it is expected that the rhythm of the body clock will be maintained appropriately and that the patients' reintegration into society will be promoted.

分光視感効率のスペクトルを示す図。The figure which shows the spectrum of spectral luminous efficiency. 色温度5100Kの黒体輻射スペクトルを示す図。The figure which shows the black body radiation spectrum of color temperature 5100K. 図2の黒体輻射スペクトルに対応する本発明のシステムの白色光源のスペクトルを示す図。FIG. 3 shows a spectrum of a white light source of the system of the present invention corresponding to the black body radiation spectrum of FIG. 2. 本発明のシステムの白色光源の(P(λ)×V(λ))/(P(λmax1)×V(λmax1))を示す図。The figure which shows (P((lambda))*V((lambda)))/(P((lambda)max1)*V((lambda)max1)) of the white light source of the system of this invention. 図2の黒体輻射の(B(λ)×V(λ))/(B(λmax2)×V(λmax2))を示す図。The figure which shows (B((lambda))*V((lambda)))/(B((lambda)max2)*V((lambda)max2)) of the black body radiation of FIG. 図4及び図5に基づく差分スペクトル(P(λ)×V(λ))/(P(λmax1)×V(λmax1))−(B(λ)×V(λ))/(B(λmax2)×V(λmax2))を示す図。Difference spectrum based on FIGS. 4 and 5 (P(λ)×V(λ))/(P(λmax1)×V(λmax1))−(B(λ)×V(λ))/(B(λmax2) The figure which shows xV((lambda)max2)). 本発明の白色光源システムによる色温度の再現領域を示す図。The figure which shows the reproduction|regeneration area|region of the color temperature by the white light source system of this invention. 春の日本・東京における1日の太陽光の色温度および照度変化を示す図。The figure which shows the color temperature and illuminance change of the sunlight of one day in Tokyo, Japan in spring. 実施例1の白色光源の発光スペクトルを表す図。FIG. 3 is a diagram showing an emission spectrum of the white light source of Example 1. 実施例1の白色光源の(P(λ)×V(λ))/(P(λmax1)×V(λmax1))を示す図。FIG. 5 is a diagram showing (P(λ)×V(λ))/(P(λmax1)×V(λmax1)) of the white light source of Example 1. 実施例1の黒体輻射の発光スペクトルを示す図。FIG. 3 is a diagram showing an emission spectrum of black body radiation of Example 1. 実施例1の黒体輻射の(B(λ)×V(λ))/(B(λmax2)×V(λmax2))を示す図。FIG. 5 is a diagram showing (B(λ)×V(λ))/(B(λmax2)×V(λmax2)) of black body radiation of the first embodiment. 実施例1の差分スペクトル(P(λ)×V(λ))/(P(λmax1)×V(λmax1))−(B(λ)×V(λ))/(B(λmax2)×V(λmax2))を示す図。Difference spectrum of Example 1 (P(λ)×V(λ))/(P(λmax1)×V(λmax1))−(B(λ)×V(λ))/(B(λmax2)×V( The figure which shows (lambda)max2)). 実施例2の白色光源の(P(λ)×V(λ))/(P(λmax1)×V(λmax1))を示す図。FIG. 6 is a diagram showing (P(λ)×V(λ))/(P(λmax1)×V(λmax1)) of the white light source of Example 2. 実施例2の黒体輻射の(B(λ)×V(λ))/(B(λmax2)×V(λmax2))を示す図。FIG. 6 is a diagram showing (B(λ)×V(λ))/(B(λmax2)×V(λmax2)) of black body radiation of the second embodiment. 実施例2の差分スペクトル(P(λ)×V(λ))/(P(λmax1)×V(λmax1))−(B(λ)×V(λ))/(B(λmax2)×V(λmax2))を示す図。Difference spectrum of Example 2 (P(λ)×V(λ))/(P(λmax1)×V(λmax1))−(B(λ)×V(λ))/(B(λmax2)×V( The figure showing (lambda)max2)). 実施例3の白色光源の(P(λ)×V(λ))/(P(λmax1)×V(λmax1))を示す図。FIG. 9 is a diagram showing (P(λ)×V(λ))/(P(λmax1)×V(λmax1)) of the white light source of Example 3. 実施例3の黒体輻射の(B(λ)×V(λ))/(B(λmax2)×V(λmax2))を示す図。FIG. 10 is a diagram showing (B(λ)×V(λ))/(B(λmax2)×V(λmax2)) of black body radiation of the third embodiment. 実施例3の差分スペクトル(P(λ)×V(λ))/(P(λmax1)×V(λmax1))−(B(λ)×V(λ))/(B(λmax2)×V(λmax2))を示す図。Difference spectrum of Example 3 (P(λ)×V(λ))/(P(λmax1)×V(λmax1))−(B(λ)×V(λ))/(B(λmax2)×V( The figure which shows (lambda)max2)). 実施例4の白色光源の(P(λ)×V(λ))/(P(λmax1)×V(λmax1))を示す図。FIG. 10 is a diagram showing (P(λ)×V(λ))/(P(λmax1)×V(λmax1)) of the white light source of Example 4. 実施例4の黒体輻射の(B(λ)×V(λ))/(B(λmax2)×V(λmax2))を示す図。FIG. 11 is a diagram showing (B(λ)×V(λ))/(B(λmax2)×V(λmax2)) of black body radiation of the fourth embodiment. 実施例4の差分スペクトル(P(λ)×V(λ))/(P(λmax1)×V(λmax1))−(B(λ)×V(λ))/(B(λmax2)×V(λmax2))を示す図。Difference spectrum of Example 4 (P(λ)×V(λ))/(P(λmax1)×V(λmax1))−(B(λ)×V(λ))/(B(λmax2)×V( The figure which shows (lambda)max2)). 実施例5の白色光源の(P(λ)×V(λ))/(P(λmax1)×V(λmax1))を示す図。FIG. 10 is a diagram showing (P(λ)×V(λ))/(P(λmax1)×V(λmax1)) of the white light source of Example 5. 実施例5の黒体輻射の(B(λ)×V(λ))/(B(λmax2)×V(λmax2))を示す図。FIG. 10 is a diagram showing (B(λ)×V(λ))/(B(λmax2)×V(λmax2)) of black body radiation of Example 5. 実施例5の差分スペクトル(P(λ)×V(λ))/(P(λmax1)×V(λmax1))−(B(λ)×V(λ))/(B(λmax2)×V(λmax2))を示す図。Difference spectrum of Example 5 (P(λ)×V(λ))/(P(λmax1)×V(λmax1))−(B(λ)×V(λ))/(B(λmax2)×V( The figure which shows (lambda)max2)). 実施例6の白色光源の(P(λ)×V(λ))/(P(λmax1)×V(λmax1))を示す図。FIG. 16 is a diagram showing (P(λ)×V(λ))/(P(λmax1)×V(λmax1)) of the white light source of Example 6. 実施例6の黒体輻射の(B(λ)×V(λ))/(B(λmax2)×V(λmax2))を示す図。FIG. 16 is a diagram showing (B(λ)×V(λ))/(B(λmax2)×V(λmax2)) of black body radiation of Example 6. 実施例6の差分スペクトル(P(λ)×V(λ))/(P(λmax1)×V(λmax1))−(B(λ)×V(λ))/(B(λmax2)×V(λmax2))を示す図。Difference spectrum of Example 6 (P(λ)×V(λ))/(P(λmax1)×V(λmax1))−(B(λ)×V(λ))/(B(λmax2)×V( The figure which shows (lambda)max2)). 比較例1の白色光源の(P(λ)×V(λ))/(P(λmax1)×V(λmax1))を示す図。FIG. 6 is a diagram showing (P(λ)×V(λ))/(P(λmax1)×V(λmax1)) of the white light source of Comparative Example 1. 比較例1の黒体輻射の(B(λ)×V(λ))/(B(λmax2)×V(λmax2))を示す図。FIG. 5 is a diagram showing (B(λ)×V(λ))/(B(λmax2)×V(λmax2)) of black body radiation of Comparative Example 1. 比較例1の白色光源と、対応する色温度の黒体輻射スペクトルとの差分スペクトル(P(λ)×V(λ))/(P(λmax1)×V(λmax1))−(B(λ)×V(λ))/(B(λmax2)×V(λmax2))を示す図。Difference spectrum (P(λ)×V(λ))/(P(λmax1)×V(λmax1))−(B(λ)) between the white light source of Comparative Example 1 and the black body radiation spectrum of the corresponding color temperature. The figure which shows xV((lambda))/(B((lambda)max2)*V((lambda)max2)). 実施例7の白色光源システムによる色温度の再現領域を示す図。FIG. 16 is a diagram showing a color temperature reproduction region by the white light source system according to the seventh embodiment. 実施例8の白色光源システムによる色温度の再現領域を示す図。FIG. 16 is a diagram showing a color temperature reproduction region by the white light source system of Example 8. 秋の日本・沖縄・那覇市における1日の太陽光の色温度および照度変化を示す図。The figure which shows the color temperature and illuminance change of the sunlight of Japan, Okinawa, and Naha city in autumn in one day. 夏の米国・ロサンゼルス市における1日の太陽光の色温度および照度変化を示す図。The figure which shows the color temperature and illuminance change of the sunlight in Los Angeles, USA in the summer. 比較例2の白色光源システムによる色温度の再現領域を示す図。FIG. 6 is a diagram showing a color temperature reproduction region by a white light source system of Comparative Example 2; 春の日本・北海道・稚内市における1日の太陽光の色温度および照度変化を示す図。The figure which shows the color temperature and illuminance change of sunlight of Japan, Hokkaido, and Wakkanai in spring. 夏の台湾・台北市における1日の太陽光の色温度および照度変化を示す図。The figure which shows the color temperature and illuminance change of one day of sunlight in Taipei City, Taiwan in the summer. 夏の日本・北海道・稚内市における1日の太陽光の色温度および照度変化を示す図。The figure which shows the color temperature and illuminance change of the sunlight of Japan, Hokkaido, and Wakkanai in summer. 冬の日本・沖縄・那覇市における1日の太陽光の色温度および照度変化を示す図。The figure which shows the color temperature and illuminance change of the sunlight of Japan, Okinawa, and Naha city in winter in one day. 冬の日本・東京都における1日の太陽光の色温度および照度変化を示す図。The figure which shows the color temperature and illuminance change of the sunlight of 1 day in Tokyo, Japan in winter. 冬の日本・北海道・稚内市における1日の太陽光の色温度および照度変化を示す図。The figure which shows the color temperature and illuminance change of the sunlight of Japan, Hokkaido, and Wakkanai in winter. 実施形態の白色光源システムの一例の概略図。The schematic diagram of an example of the white light source system of an embodiment.

以下、実施の形態について、図面を参照して説明する。
本発明の実施形態の医療施設照明用白色光源システムは、複数の白色光源と、複数の白色光源をコントロールする制御部を備えるものである。複数の白色光源は、それぞれ、LEDモジュールを備える。以下、白色光源システムについて説明する。
Hereinafter, embodiments will be described with reference to the drawings.
The white light source system for medical facility illumination according to the embodiment of the present invention includes a plurality of white light sources and a control unit that controls the plurality of white light sources. Each of the plurality of white light sources includes an LED module. The white light source system will be described below.

(白色光源の発光特性)
本発明のシステムに用いられる白色光源では、各種色温度の太陽光を再現することを基本とする。即ち、特定の色温度の太陽光を再現するに当り、太陽光と同じ色温度の黒体輻射スペクトルを、太陽光線による発光スペクトルと看做し、その形状まで近似させることを基本とする。太陽は黒体の1種であると考えることが出来、黒体の輻射スペクトル曲線と太陽光の発光スペクトル曲線の一致は良好であり、実際の太陽光線のスペクトル分布は5800Kの黒体輻射スペクトルに近いとされている。
(Emission characteristics of white light source)
The white light source used in the system of the present invention basically reproduces sunlight having various color temperatures. That is, when reproducing sunlight having a specific color temperature, it is basically considered that a black body radiation spectrum having the same color temperature as that of sunlight is regarded as an emission spectrum due to sunlight and its shape is approximated. The sun can be considered as a type of black body, and the radiation spectrum curve of the black body and the emission spectrum curve of sunlight are in good agreement, and the actual spectral distribution of the sun's rays is 5800K in the black body radiation spectrum. It is said to be close.

ところが、地球上に到達する太陽光は、時々刻々と色温度が変化する。地球の自転や公転の影響で、地球上から見た太陽光の高度が、一日単位や年間単位で周期的に変化するためである。地球の表面には空気や水分、更には各種浮遊物が存在する為、太陽光が地球の表面に到達するまでには、それら浮遊物層を通過する間に、各種粒子と衝突することで、特定波長成分の光が散乱されてしまう。この時、地球上から見た太陽高度が変化すると、太陽光が浮遊物層を通過する距離が変化し、更に散乱光の見え方が角度により変化するため、様々な色温度の白色光が周期的に現れることになる。通常、太陽高度の低い朝方や夕方には概ね2000〜4000Kの白色光、そして太陽の高度が最も高くなる正午で概ね5000〜6000Kの白色光、更に日陰や曇り空では概ね6000〜7000Kの白色光となることが知られている。 However, the color temperature of the sunlight that reaches the earth changes from moment to moment. This is because the altitude of the sunlight seen from the earth periodically changes on a daily or annual basis due to the effects of the rotation and revolution of the earth. Since air, moisture, and various suspended matter are present on the surface of the earth, by the time sunlight reaches the surface of the earth, it collides with various particles while passing through these suspended matter layers, The light of the specific wavelength component is scattered. At this time, when the altitude of the sun seen from above the earth changes, the distance that the sunlight passes through the floating material layer changes, and the appearance of scattered light changes depending on the angle. Will appear. Usually, in the morning and the evening when the sun is low, white light of about 2000 to 4000K, and at noon when the sun's highest altitude is about 5000 to 6000K, and in the shade and cloudy sky, about 6000 to 7,000K. Is known to be.

前記の様な種々の色温度の太陽光を再現するため、本発明のシステムに用いられる白色光源では、色温度の範囲が2000Kから8000Kの黒体輻射スペクトルに近似させた発光スペクトルを合成した。この温度範囲によると、地球上で観測することのできる太陽光の色温度範囲をほぼ網羅することが可能である。なお照明光源として多用される色温度の範囲は更に狭く、2000Kから6500Kの範囲である。 In order to reproduce sunlight having various color temperatures as described above, in the white light source used in the system of the present invention, an emission spectrum approximated to a black body radiation spectrum having a color temperature range of 2000K to 8000K was synthesized. According to this temperature range, it is possible to substantially cover the color temperature range of sunlight that can be observed on the earth. The range of color temperature often used as an illumination light source is narrower, and is in the range of 2000K to 6500K.

ところで、前記した黒体輻射スペクトルは、下記式(1)に示されるプランクの公式により求めることができる。式中、hはプランク定数、kはボルツマン定数、cは光速、eは自然対数の底であり、一定の数値で固定されるため、色温度Tが決まれば、各波長(λ)に対応したスペクトル分布B(λ)を容易に求めることができる。
By the way, the above-mentioned black body radiation spectrum can be obtained by Planck's formula shown in the following equation (1). In the formula, h is Planck's constant, k is Boltzmann's constant, c is the speed of light, and e is the base of the natural logarithm. Since it is fixed at a constant value, if the color temperature T is determined, it corresponds to each wavelength (λ). The spectral distribution B(λ) can be easily obtained.

本発明のシステムに用いられる白色光源は、具体的に以下の様に定義されるものである。各白色光源の発光スペクトルをP(λ)、白色光源と同じ色温度を示す黒体輻射の発光スペクトルをB(λ)、分光視感効率のスペクトルをV(λ)、P(λ)×V(λ)が最大となる波長をλmax1、B(λ)×V(λ)が最大となる波長をλmax2としたとき、(P(λ)×V(λ))/(P(λmax1)×V(λmax1))と(B(λ)×V(λ))/(B(λmax2)×V(λmax2))の差分の絶対値が下記式(2)を満たすことを特徴としている。絶対値は、各波長において下記式(2)を満たすことが望ましい。
The white light source used in the system of the present invention is specifically defined as follows. The emission spectrum of each white light source is P(λ), the emission spectrum of black body radiation showing the same color temperature as the white light source is B(λ), and the spectral luminous efficiency spectrum is V(λ), P(λ)×V. Assuming that the wavelength having the maximum (λ) is λmax1 and the wavelength having the maximum B(λ)×V(λ) is λmax2, (P(λ)×V(λ))/(P(λmax1)×V The absolute value of the difference between (λmax1)) and (B(λ)×V(λ))/(B(λmax2)×V(λmax2)) satisfies the following formula (2). It is desirable that the absolute value satisfy the following formula (2) at each wavelength.

さらに本発明のシステムに用いられる白色光源は、黒体輻射の発光スペクトルを、より厳密に再現する意味で、下記式(3)を満足することが望ましい。
Furthermore, it is desirable that the white light source used in the system of the present invention satisfy the following expression (3) in the sense that the emission spectrum of black body radiation is reproduced more strictly.

以上の定義について、図面を用いて具体的に説明する。図1は分光視感効率のスペクトルを示す図である。人の目の感度に対応したスペクトル分布で、約555nmにおいて最大感度を有する左右対称なスペクトル分布を示すことがわかる。 The above definitions will be specifically described with reference to the drawings. FIG. 1 is a diagram showing a spectrum of spectral luminous efficiency. It can be seen that a spectral distribution corresponding to the sensitivity of the human eye shows a symmetrical spectral distribution having the maximum sensitivity at about 555 nm.

図2は色温度5100Kの太陽光に対応する黒体輻射スペクトルであり、図3は5100Kの黒体輻射スペクトルに近似させた本発明のシステムに用いられる白色光源の発光スペクトルである。両者を比較すると、450nmから650nmの波長領域において、2つの発光スペクトル形状が良好に一致していることが判る。450nm未満および650nmを超える波長では、両者のスペクトル分布が大きく異なっているが、これらの波長域は図1からも判る様に人間の目には殆ど感度のない領域であり、無視しても実質的に問題のないものである。なお、本発明のシステムに用いられる光源の発光スペクトルは、例えば図3に示すものを含む。図3に例示される発光スペクトルは、後述する様に発光ダイオード(LED)と蛍光体の発光スペクトルを組合せたもので、3種類以上の蛍光体の発光スペクトルを適宜混合調整することにより、黒体輻射のスペクトル形状に近似させることができる。 FIG. 2 is a black body radiation spectrum corresponding to sunlight having a color temperature of 5100K, and FIG. 3 is an emission spectrum of a white light source used in the system of the present invention which is approximated to a black body radiation spectrum of 5100K. Comparing the two, it can be seen that the two emission spectrum shapes are in good agreement in the wavelength region of 450 nm to 650 nm. At wavelengths below 450 nm and above 650 nm, the spectral distributions of the two differ greatly, but these wavelength ranges are regions with little sensitivity to the human eye, as can be seen from FIG. There is no problem. The emission spectrum of the light source used in the system of the present invention includes that shown in FIG. 3, for example. The emission spectrum illustrated in FIG. 3 is a combination of the emission spectra of a light emitting diode (LED) and a phosphor as described later, and by appropriately adjusting the emission spectra of three or more types of phosphors, a black body It can be approximated to the spectral shape of radiation.

図4、図5は、図3、図2の発光スペクトルに分光視感効率を掛けたものである。図4に示すスペクトルは、本発明のシステムに用いられる白色光源の(P(λ)×V(λ))/(P(λmax1)×V(λmax1))で表される発光スペクトルを示す。図5は黒体輻射の(B(λ)×V(λ))/(B(λmax2)×V(λmax2))で表される発光スペクトルを示す。また図6は、図4及び図5の両スペクトル分布の差分スペクトルを示すもので、具体的には、式(P(λ)×V(λ))/(P(λmax1)×V(λmax1))−(B(λ)×V(λ))/(B(λmax2)×V(λmax2))で表される。図6の差分スペクトルを見ると判る様に、両者間のスペクトルの差分の絶対値は、350nm〜800nmの範囲の各波長において0.05以下であり、以下の数5に示す前記式(3)の関係を満足していることがわかる。
4 and 5 show the emission spectra of FIGS. 3 and 2 multiplied by the spectral luminous efficiency. The spectrum shown in FIG. 4 is an emission spectrum represented by (P(λ)×V(λ))/(P(λmax1)×V(λmax1)) of the white light source used in the system of the present invention. FIG. 5 shows an emission spectrum of black body radiation represented by (B(λ)×V(λ))/(B(λmax2)×V(λmax2)). Further, FIG. 6 shows a difference spectrum between both spectrum distributions of FIG. 4 and FIG. 5, and specifically, the formula (P(λ)×V(λ))/(P(λmax1)×V(λmax1) )-(B(λ)×V(λ))/(B(λmax2)×V(λmax2)). As can be seen from the difference spectrum of FIG. 6, the absolute value of the difference between the spectra between the two is 0.05 or less at each wavelength in the range of 350 nm to 800 nm, and the equation (3) shown in the following Equation 5 is used. It can be seen that the relationship is satisfied.

(LEDモジュール)
本発明のシステムに用いられる白色光源は、LEDモジュールを含む。LEDモジュールは、発光ダイオード(LED)と蛍光体とを含むものが望ましい。蛍光体は、LEDが発する1次光を吸収して2次光に変換するものであることが好ましい。この時、蛍光体の材料として、可視光域において様々な発光色を示すものをいくつか用意し任意に組み合わせると、様々な色温度の白色光を得ることができる。
(LED module)
The white light source used in the system of the present invention comprises an LED module. The LED module preferably includes a light emitting diode (LED) and a phosphor. The phosphor preferably absorbs the primary light emitted by the LED and converts it into secondary light. At this time, white light with various color temperatures can be obtained by preparing some fluorescent materials that exhibit various emission colors in the visible light range and combining them arbitrarily.

LEDは、発光ピーク波長が紫外線から紫色光までの領域にあるものを使用することが望ましく、具体的には350〜420nmの範囲とすることが好ましい。発光ピーク波長が420nmを超えるLEDを使用した場合、LEDの発光は、可視光領域の特定波長でシャープな発光を示すため、一般的にブロードなスペクトル形状を持つ蛍光体の発光とのバランスが悪くなり、前記した式(2)または(3)の関係を満足することが困難となる。その上、LEDが青色発光であった場合には、青色光が過剰に含まれることになり、人体への影響等の面でも好ましくない。 It is desirable to use an LED whose emission peak wavelength is in the range from ultraviolet rays to violet light, and specifically, it is preferable to set it in the range of 350 to 420 nm. When an LED having an emission peak wavelength of more than 420 nm is used, the emission of the LED shows sharp emission at a specific wavelength in the visible light region, and therefore the balance with the emission of a fluorescent substance having a broad spectrum shape is generally poor. Therefore, it becomes difficult to satisfy the relation of the above formula (2) or (3). In addition, if the LED emits blue light, blue light will be excessively included, which is not preferable in terms of effects on the human body.

紫外又は紫色の領域で発光するLEDは、視感度が低いため、白色光に与える影響を少なくすることができる。また、LEDからの一次光(紫外又は紫色の発光)が白色光源システムから放出されない様に一次光をカットすることで、紫外光を無くすことも可能である。なおLEDの種類について、発光ピーク波長以外では特に制限される条件はなく、レーザー発光のLEDであっても、またLEDの材料がどの様なものであっても構わない。 An LED that emits light in the ultraviolet or violet region has a low luminosity factor, so that the influence on white light can be reduced. It is also possible to eliminate the ultraviolet light by cutting the primary light so that the primary light (ultraviolet or violet emission) from the LED is not emitted from the white light source system. There are no particular restrictions on the type of LED other than the emission peak wavelength, and it may be a laser emitting LED or any LED material.

白色光源の発光スペクトルが、前記式(2)または(3)の関係を満足するには、LEDに組み合わせる蛍光体として、青色蛍光体、緑色蛍光体、黄色蛍光体および赤色蛍光体の中から3種以上、できれば4種以上用いることが好ましい。これらの蛍光体を、対応する黒体輻射のスペクトルに合わせ任意に混合することにより、任意の色温度持つ白色発光を得ることができる。具体的な混合比率としては、青色発光蛍光体が45重量部以上75重量部以下、緑色発光蛍光体が3重量部以上7重量部以下、黄色発光蛍光体が9重量部以上17重量部以下、赤色蛍光体が9重量部以上18重量部以下の割合に混合され、蛍光体全量が100重量部となるよう調整することにより、白色発光の混合蛍光体を得ることができる。また使用する蛍光体の具体的な種類としては、発光ピークが420〜700nmにあれば特に限定されるものではないが、350〜420nmで励起される蛍光体として以下の材料が好ましい。 In order for the emission spectrum of the white light source to satisfy the relationship of the above formula (2) or (3), the phosphor to be combined with the LED is selected from among blue phosphor, green phosphor, yellow phosphor and red phosphor. It is preferable to use one or more, preferably four or more. White light emission having an arbitrary color temperature can be obtained by arbitrarily mixing these phosphors according to the spectrum of the corresponding black body radiation. As a specific mixing ratio, the blue light emitting phosphor is 45 parts by weight or more and 75 parts by weight or less, the green light emitting phosphor is 3 parts by weight or more and 7 parts by weight or less, and the yellow light emitting phosphor is 9 parts by weight or more and 17 parts by weight or less, By mixing the red phosphor in a proportion of 9 parts by weight or more and 18 parts by weight or less and adjusting the total amount of the phosphor to be 100 parts by weight, a white-emitting mixed phosphor can be obtained. The specific type of phosphor used is not particularly limited as long as the emission peak is in the range of 420 to 700 nm, but the following materials are preferable as the phosphor excited at 350 to 420 nm.

青色蛍光体の例には、発光ピーク波長440〜455nmであるユーロピウム付活アルカリ土類リン酸塩蛍光体(M10(POCl:Eu、式中MはSr,Ba,Ca,Mgの少なくとも1種の元素)、発光ピーク波長が450〜460nmであるユーロピウム付活マグネシウムアルミン酸塩蛍光体(NMgAl1017:Eu、式中NはSrもしくはBaの少なくとも1種の元素)、ピーク波長が450nmであるユーロピウム付活アルカリ土類アルミン塩青色蛍光体、ピーク波長が452nmであるユーロピウム付活アルミン酸塩青色蛍光体などが含まれる。 Examples of the blue phosphor include a europium-activated alkaline earth phosphate phosphor (M 10 (PO 4 ) 6 Cl 2 :Eu having an emission peak wavelength of 440 to 455 nm, where M is Sr, Ba, Ca, At least one element of Mg), a europium-activated magnesium aluminate phosphor having an emission peak wavelength of 450 to 460 nm (NMgAl 10 O 17 :Eu, where N is at least one element of Sr or Ba), The europium-activated alkaline earth aluminate blue phosphor having a peak wavelength of 450 nm and the europium-activated aluminate blue phosphor having a peak wavelength of 452 nm are included.

緑色蛍光体の例には、発光ピーク波長が520〜550nmであるユーロピウム、マンガン付活オルソ珪酸塩蛍光体((Sr,Ba,Mg)SiO4:Eu,Mn)、発光ピーク波長が535〜545nmであるユーロピウム付活βサイアロン蛍光体(Si6−ZAl8−Z:Euであり例えばSiAl:Eu)、発光ピーク波長が520〜540nmであるユーロピウム付活ストロンチウムサイアロン蛍光体(Sr3−XEuXSi13Al3221、式中xは0.03〜0.30であり、特にx=0.2が望ましい)、ピーク波長が530nmであるユーロピウム付活オルソ珪酸塩緑色蛍光体、ユーロピウム、マンガン共付活アルカリ土類マグネシウム珪酸塩緑色蛍光体などが含まれる。 Examples of the green phosphor include europium having an emission peak wavelength of 520 to 550 nm, a manganese-activated orthosilicate phosphor ((Sr,Ba,Mg) 2 SiO 4 :Eu,Mn), and an emission peak wavelength of 535 to 535 nm. europium-activated β-sialon phosphor is 545nm (Si 6-Z Al Z O Z N 8-Z: a Eu e.g. Si 4 Al 2 O 2 N 6 : Eu), europium emission peak wavelength of 520~540nm Activated strontium sialon phosphor (Sr 3-X Eu X Si 13 Al 3 O 2 N 21 , where x is 0.03 to 0.30, and particularly preferably x=0.2), peak wavelength is 530 nm The europium-activated orthosilicate green phosphor, the europium-manganese co-activated alkaline earth magnesium silicate green phosphor, and the like are included.

黄色蛍光体の例には、発光ピーク波長550〜580nmであるユーロピウム、マンガン付活オルソ珪酸塩蛍光体((Sr,Ba,Mg)SiO:Eu,Mn)、発光ピーク波長が550〜580nmであるセリウム付活希土類アルミニウムガーネット蛍光体(YAl12:Ce)、発光ピーク波長が550〜580nmであるセリウム付活希土類マグネシウムシリコン含有ガーネット蛍光体(Y(Al,(Mg,Si))12:Ce)、発光ピーク波長が550〜580nmであるセリウム付活ストロンチウムサイアロン蛍光体(Sr2−XCeSiAlON13、式中xは0.04〜0.10であり、特にx=0.05が望ましい。)、ピーク波長が555nmであるユーロピウム付活オルソ珪酸塩黄色蛍光体、ユーロピウム、マンガン共付活アルカリ土類マグネシウム珪酸塩黄色蛍光体などが含まれる。 Examples of the yellow phosphor include europium and manganese-activated orthosilicate phosphor ((Sr,Ba,Mg) 2 SiO 4 :Eu,Mn) having an emission peak wavelength of 550 to 580 nm and an emission peak wavelength of 550 to 580 nm. cerium activated rare-earth aluminum garnet phosphor is (Y 3 Al 5 O 12: Ce), cerium-activated rare earth magnesium silicon-containing garnet phosphor emission peak wavelength of 550~580nm (Y 3 (Al, ( Mg, Si )) 5 O 12 :Ce), a cerium-activated strontium sialon phosphor (Sr 2−X Ce X Si 7 Al 3 ON 13 ) having an emission peak wavelength of 550 to 580 nm, where x is 0.04 to 0.10. And x=0.05 is particularly desirable.), and a europium-activated orthosilicate yellow phosphor having a peak wavelength of 555 nm, a europium-manganese co-activated alkaline earth magnesium silicate yellow phosphor, and the like are included.

赤色蛍光体の例には、発光ピーク波長が600〜630nmであるユーロピウム付活ストロンチウムサイアロン蛍光体(Sr2−XEuSiAlON13、式中x0.02〜0.10であり、特にx=0.05が望ましい。)、発光ピーク波長が620〜660nmであるユーロピウム付活カルシウムニトリドアルミノシリケート蛍光体(CaAlSiN:Eu)、発光ピーク波長が620〜660nmであるユーロピウム付活アルカリ土類ニトリドアルミノシリケート蛍光体(MAlSiN:Eu、式中MはCa,Sr及びBaよりなる群から選択される少なくとも1種の元素)などが含まれる。 Examples of the red phosphor, europium-activated strontium SiAlON phosphor emission peak wavelength of 600~630nm (Sr 2-X Eu X Si 7 Al 3 ON 13, a wherein X0.02~0.10, In particular, x=0.05 is preferable.), europium-activated calcium nitridoaluminosilicate phosphor (CaAlSiN 3 :Eu) having an emission peak wavelength of 620 to 660 nm, and europium-activated alkali having an emission peak wavelength of 620 to 660 nm. An earth nitridoaluminosilicate phosphor (MAlSiN 3 :Eu, where M is at least one element selected from the group consisting of Ca, Sr, and Ba) is included.

蛍光体は樹脂材料と混ぜ合わされ、蛍光膜の形で使用されることが望ましい。LEDチップの周囲を直接または間接的に蛍光膜で被覆することにより、LEDから出射された一次光が、蛍光膜で二次光(白色光)に変換され、光源の外部に放射されることになる。使用する樹脂材料としては、透明な材料であれば特に制限されることは無いが、LEDとして紫外または紫色の領域で発光するLEDを用いる場合は、紫外線に対する耐劣化特性の良好な、シリコーン樹脂等を用いることが望ましい。 The phosphor is preferably mixed with a resin material and used in the form of a phosphor film. By directly or indirectly covering the periphery of the LED chip with a fluorescent film, the primary light emitted from the LED is converted into secondary light (white light) by the fluorescent film and radiated to the outside of the light source. Become. The resin material to be used is not particularly limited as long as it is a transparent material, but when an LED that emits light in the ultraviolet or violet region is used as the LED, a silicone resin or the like that has good resistance to deterioration by ultraviolet rays. Is preferred.

本発明のシステムに用いられる白色光源は、蛍光体発光の組み合わせにより白色発光を得るものであることが望ましい。LEDからの一次光は、なるべく多くのエネルギーが蛍光体に吸収されることが望ましく、同時に、LED光が光源外部に漏出することを避ける必要がある。特にLED光に紫外線が含まれる場合には、人体の皮膚や眼を損傷する恐れがあり、極力除外されることが望ましい。 The white light source used in the system of the present invention preferably obtains white light emission by a combination of phosphor light emission. In the primary light from the LED, it is desirable that as much energy as possible be absorbed by the phosphor, and at the same time, it is necessary to prevent the LED light from leaking out of the light source. In particular, when the LED light contains ultraviolet rays, it may damage the skin and eyes of the human body, and it is desirable to exclude them as much as possible.

本発明のシステムに用いられるLEDモジュールは、LED素子と、LED素子の発光面を覆う蛍光膜とを含むものであり得る。LED素子に紫外光又は紫色に発光するものを使用した場合の紫外線の漏出を防止するために、蛍光膜の厚さを十分な厚膜に形成することが望ましい。蛍光膜を厚膜化すると、個々の蛍光体粒子表面で反射されたLED光が、蛍光膜を透過して光源の外部に漏出さないようにすることができる。この時、蛍光膜の厚さが極端に厚すぎると、蛍光体の発光自身も蛍光膜の外に出ることができず、蛍光膜の発光強度が低下してしまう。一般的に、蛍光体の粒子径と最適膜厚は比例関係にあることが知られている。蛍光膜は実用上できるだけ大粒子となる蛍光体を用い、蛍光膜をできるだけ厚膜化することが望ましい。この様な目的のため、LEDモジュールに用いられる蛍光体は、平均粒子径が10μm以上40μm以下の範囲の粒子であることが望ましい。そして、この平均粒子径を持つ蛍光体の粒子を含む蛍光膜の厚さは、100μm以上1000μm以下にすることが望ましい。この様にして、蛍光膜の発光は極力低下させず、かつ紫外線の漏出を極力抑制したLEDモジュールを得ることができる。これにより、紫外線の影響の小さい人工太陽光が得られる。 The LED module used in the system of the present invention may include an LED element and a fluorescent film covering the light emitting surface of the LED element. In order to prevent leakage of ultraviolet rays when an LED element that emits ultraviolet light or violet light is used, it is desirable to form the fluorescent film to a sufficiently thick film. By increasing the thickness of the fluorescent film, it is possible to prevent the LED light reflected on the surface of each phosphor particle from passing through the fluorescent film and leaking to the outside of the light source. At this time, if the thickness of the fluorescent film is excessively large, the light emission itself of the fluorescent material cannot go out of the fluorescent film, and the emission intensity of the fluorescent film decreases. It is generally known that the particle size of the phosphor and the optimum film thickness are in a proportional relationship. For the fluorescent film, it is desirable to use a fluorescent substance having a particle size as large as practically possible and to make the fluorescent film as thick as possible. For this purpose, the phosphor used in the LED module is preferably particles having an average particle size of 10 μm or more and 40 μm or less. The thickness of the phosphor film containing the phosphor particles having the average particle diameter is preferably 100 μm or more and 1000 μm or less. In this way, it is possible to obtain an LED module in which the light emission of the fluorescent film is not reduced as much as possible and the leakage of ultraviolet rays is suppressed as much as possible. As a result, artificial sunlight that is less affected by ultraviolet rays can be obtained.

また紫外線漏出防止を更に徹底するために、蛍光膜の外側に紫外線吸収膜を形成しても良い。この場合、紫外線の吸収・反射材料として酸化亜鉛、酸化チタン、酸化アルミニウム等の微粒子白色顔料を使用することができる。これらの微粒子顔料を蛍光膜の場合と同様にして樹脂中に分散させ、これを用いて蛍光膜の外側に直接的もしくは間接的に紫外線吸収膜を形成することにより、目的のLEDモジュールを得ることができる。この様にして得られるLEDモジュールでは、モジュール外部に漏出される紫外線の量を0.4mW/lm以下に低減することが可能である。 Further, in order to further prevent the leakage of ultraviolet rays, an ultraviolet absorbing film may be formed outside the fluorescent film. In this case, a fine particle white pigment such as zinc oxide, titanium oxide or aluminum oxide can be used as the ultraviolet absorbing/reflecting material. Similar to the case of the fluorescent film, these fine particle pigments are dispersed in a resin, and by using this, an ultraviolet absorbing film is formed directly or indirectly on the outside of the fluorescent film to obtain the target LED module. You can In the LED module thus obtained, it is possible to reduce the amount of ultraviolet rays leaked to the outside of the module to 0.4 mW/lm or less.

前記紫外線量の数値は以下の方法により求めることができる。白色光源より出射される白色光の発光スペクトルをP(λ)、分光視感効率のスペクトルをV(λ)として、両者を掛け合わせて積分しφを求める。
LEDより出射される一次光エネルギーは、下記式よりスペクトルF(λ)を350〜420nmの範囲で積分してUVを求めることにより得られる。
白色光源より出射される発光の光束あたりの1次光エネルギーはUV/φにより求めることができる。
The numerical value of the amount of ultraviolet rays can be obtained by the following method. Let P(λ) be the emission spectrum of white light emitted from the white light source and V(λ) be the spectrum of the spectral luminous efficiency, and multiply both to obtain φ.
The primary light energy emitted from the LED is obtained by integrating the spectrum F(λ) in the range of 350 to 420 nm and obtaining UV by the following formula.
The primary light energy per luminous flux emitted from the white light source can be obtained by UV/φ.

(白色光源システムの発光特性)
本発明の白色光源システムは、1つのシステムの中に、異なる色温度を有する複数の白色光源を備えている。色温度の異なる複数の白色光源の発光を適宜混合することにより、種々の色温度の白色光を再現することができる。この時、夫々の白色光源に含まれる可視光発光成分は、太陽光線とほぼ同等の種類と強度を有しており、複数の白色光源を混合して得られる中間色温度の白色光もまた、太陽光と同等の発光特性を有するものである。従い、本発明の白色光源システムにより得られる白色光は全て、前記記載の関係式(2)、好ましくは(3)を満たす白色光となる。
(Emission characteristics of white light source system)
The white light source system of the present invention includes a plurality of white light sources having different color temperatures in one system. By appropriately mixing the light emitted from a plurality of white light sources having different color temperatures, white light with various color temperatures can be reproduced. At this time, the visible light emission components contained in the respective white light sources have almost the same kind and intensity as the sun rays, and the white light of the intermediate color temperature obtained by mixing a plurality of white light sources is also the solar light. It has a light emission characteristic equivalent to that of light. Therefore, all white light obtained by the white light source system of the present invention is white light that satisfies the above-mentioned relational expression (2), preferably (3).

一方、複数の白色光源の発光を混合して得られる白色光の色温度は、図7に記載されている通り求めることができる。例えば、黒体軌跡上の色温度が6500K(図中のA点)、2000K(図中のB点)の2点および、両者の中間色温度(図中のCまたはD点)の白色発光を示す3つの白色光源からなる白色光源システムを構成する。この時、もし白色光源を2種類しか使用しない場合、例えば6500Kの白色光と2000Kの白色光を用いた場合、両者を任意の割合で混合すると、図中のA点とB点を結ぶ直線上の任意の色温度の白色光しか得ることができない。従って、図中の直線ABを見ると判る通り、得られる白色光の色温度は、黒体軌跡からの偏差が大きくなり、−0.01duvを超える場合がある。例えば3200Kの色温度では、偏差が−0.013duvであり、−0.01duvを超えている。本発明の白色光源システムでは、混合白色光の色温度が黒体軌跡上の点から大きくずれるのを防ぐため、少なくとも3種類以上の白色光源を用いて混合白色を得ている。例えば、中間色温度の白色光源4100Kの白色光源を追加使用した場合、この光源と色温度が2000Kの白色光源を任意の割合で混合すると、図中の直線BC上の任意の白色光を得ることができ、黒体輻射からの偏差は0と−0.005duvの範囲内に抑えることができる。また、中間色温度の白色光源として、色温度が例えば2950Kの白色光源を使用した場合、この光源と色温度が6500Kの白色光源を任意の割合で混合すると、図中の直線AD上の任意の白色光を得ることができ、黒体輻射からの偏差は前記同様に0と−0.005duvの範囲内に低減することができる。従い、色温度が2000Kの白色光源と、色温度が6500Kの白色光源に加える、第3の白色光源として、色温度が2950Kから4100Kの間のいずれか1つの白色光源を選択することで、色温度が2000Kから6500Kまでの範囲の白色光で、黒体軌跡からの偏差の絶対値が0.005duv以下の任意の色温度の白色光を得ることができる。
色温度が2000Kから6500Kまでの範囲の白色光で、黒体軌跡からの偏差の絶対値が0.005duv以下の任意の色温度の白色光を得るための白色光源の組み合わせは、上記第1〜第3の白色光源に限定されない。上記(2)に示す関係式を満たし、かつ色温度の異なる3種類以上の白色光源から色温度が高い順又は低い順に従って2種類の白色光源を選択して混合することにより、色温度及び偏差が前述の範囲を満たす白色光を得ることが可能である。
On the other hand, the color temperature of white light obtained by mixing the light emitted from a plurality of white light sources can be obtained as shown in FIG. 7. For example, white light emission is shown at two points with a color temperature on the blackbody locus of 6500K (point A in the figure) and 2000K (point B in the figure) and an intermediate color temperature between them (point C or D in the figure). A white light source system consisting of three white light sources is constructed. At this time, if only two types of white light sources are used, for example, if 6500K white light and 2000K white light are used, and if both are mixed at an arbitrary ratio, then on the straight line connecting points A and B in the figure Only white light of any color temperature can be obtained. Therefore, as can be seen from the straight line AB in the figure, the color temperature of the obtained white light has a large deviation from the black body locus and may exceed -0.01 duv. For example, at a color temperature of 3200K, the deviation is -0.013 duv, which exceeds -0.01 duv. In the white light source system of the present invention, in order to prevent the color temperature of the mixed white light from largely deviating from the point on the black body locus, the mixed white light is obtained by using at least three kinds of white light sources. For example, when a white light source of a white light source 4100K having an intermediate color temperature is additionally used, if this light source and a white light source having a color temperature of 2000K are mixed at an arbitrary ratio, an arbitrary white light on a straight line BC in the figure can be obtained. Therefore, the deviation from the black body radiation can be suppressed within the range of 0 and −0.005 duv. Further, when a white light source having a color temperature of, for example, 2950K is used as a white light source having an intermediate color temperature, if this light source and a white light source having a color temperature of 6500K are mixed at an arbitrary ratio, an arbitrary white color on a straight line AD in the figure is obtained. Light can be obtained and the deviation from blackbody radiation can be reduced to within the range of 0 and -0.005 duv as before. Therefore, in addition to the white light source with a color temperature of 2000K and the white light source with a color temperature of 6500K, by selecting any one white light source with a color temperature between 2950K and 4100K as the third white light source, It is possible to obtain white light having an arbitrary color temperature in which the absolute value of the deviation from the black body locus is 0.005 duv or less with white light having a temperature in the range of 2000K to 6500K.
The combination of white light sources for obtaining white light having a color temperature in the range of 2000 K to 6500 K and an absolute value of the deviation from the black body locus of 0.005 duv or less is one of the above It is not limited to the third white light source. Color temperature and deviation can be obtained by selecting and mixing two types of white light sources from the three or more types of white light sources that satisfy the relational expression shown in (2) and have different color temperatures, in order of increasing or decreasing color temperature. It is possible to obtain white light that satisfies the above range.

白色光源システムにおいて使用される複数の白色光源の数は、少なくとも3種類以上を必要とするが、発光特性面、とりわけ黒体輻射の軌跡上の色温度を忠実に再現するとの観点からは、できるだけ多い方が望ましい。特に白色光源システムが再現する色温度の範囲が広い場合、例えば2000Kから8000Kの色温度の白色光を再現する場合には、少なくとも4種類以上の白色光源を用いた方が望ましい。ただし、白色光源の種類を余り多くすると、色温度の再現特性は優れているものの、各白色光源の発光強度をコントロールするための制御回路や、装置のシステム構成が複雑となるため、制約も存在する。本発明の白色光源システムが再現する色温度の範囲において、最も効率的な使用個数としては、白色光源の種類が3乃至4であることが望ましい。 The number of the plurality of white light sources used in the white light source system needs to be at least three or more, but from the viewpoint of faithfully reproducing the color temperature on the locus of emission characteristics, especially black body radiation, The larger the number, the better. In particular, when the color temperature range reproduced by the white light source system is wide, for example, when white light having a color temperature of 2000K to 8000K is reproduced, it is preferable to use at least four types of white light sources. However, if the number of types of white light sources is too large, the color temperature reproduction characteristics are excellent, but there are restrictions because the control circuit for controlling the emission intensity of each white light source and the system configuration of the device are complicated. To do. In the range of color temperature reproduced by the white light source system of the present invention, it is desirable that the number of types of white light sources is 3 to 4 as the most efficient use number.

(発光特性の経時変化)
本発明の白色光源システムでは、太陽光の示す白色光について、地球上の特定地域の、日の出から日の入りまでの一日の変化の様子を、季節に応じて再現することができる。そして、本発明の白色光源システムでは、太陽光の一日の変化について、人間の眼には極めて自然な連続的な変化として表すことができる。このような変化を再現するため、本発明においては、地球上の主要地点で、太陽光の一日の変化を実測し、得られたデータを活用して、発光特性を制御するシステムとした。
(Change in emission characteristics over time)
With the white light source system of the present invention, it is possible to reproduce the state of a day change from sunrise to sunset in a specific area on the earth for white light represented by sunlight. Then, in the white light source system of the present invention, the change of sunlight in one day can be expressed as a continuous change that is extremely natural to the human eye. In order to reproduce such a change, in the present invention, a system for controlling the light emission characteristics by actually measuring the daily change of sunlight at main points on the earth and utilizing the obtained data.

David Lewis MacAdam が視覚の等色実験から導き出した結果によると(色彩工学 第2版, 東京電機大学出版局)、特定の中心色に対する識別変動の標準偏差をxy色度図に表すと、“マクアダム楕円”と呼ばれる形状の範囲に表され、人間が識別できるのは前記標準偏差の3倍であることを見出している。この所見に従い、5000Kの白色光に当て嵌めて計算すると、識別できる閾値は330K(4850K〜5180K)との値が得られた。従い、例えば5000Kの白色光であれば、約330K以下の色温度の差異を人間の眼では識別することができないことになる。 According to the results derived from visual color matching experiments by David Lewis MacAdam (Color Engineering 2nd Edition, Tokyo Denki University Press), the standard deviation of discriminative variation with respect to a specific central color can be expressed in the xy chromaticity diagram as "McAdam It has been found that it is represented by a range of shapes called "ovals" and that it is three times the standard deviation that can be identified by humans. According to this finding, when a calculation was performed by applying it to white light of 5000K, a discriminable threshold value was 330K (4850K to 5180K). Therefore, for example, with white light of 5000 K, the difference in color temperature of about 330 K or less cannot be discriminated by the human eye.

図8は、北緯35度に位置する東京の春の一日について、午前6時から午後6時までの太陽光の色温度変化および照度変化を示したグラフである。図8において符号1で示すグラフが色温度変化を示し、符号2で示すグラフが照度変化を示す。このグラフは、太陽光の経時変化を3分毎に実測した結果に基づき作成した。測定はUPRtek社製MP350を用いて行い、色温度はケルビン(K)、照度はルックス(lx)を単位としてデータを得た。なお、図表中の照度は、特定の値を基準として相対比較を行い、照度比(%)として表したものである。また、太陽光の一日の色温度変化は、3分間で概ね200K弱の速度であるため、本発明における測定単位毎の色温度の違いは、人間の目で識別することはできない。従い、この測定データを用いて色温度変化を再現しても、光源の色温度が変化する瞬間を認識することができず、さも連続的に変化した様に、自然な形で変化を受け入れることができる。
実施形態の医療施設照明用白色光源システムの一例を図43に示す。図43に示す通り、実施例の医療施設照明用白色光源システムは、白色光源部21と、制御部22とを含む。白色光源部21は、基板23と、基板23上に配置された複数の白色光源24と、複数の白色光源を覆うように基板23に固定された発光装置外囲器25とを含む。複数の白色光源24は、それぞれ、LEDモジュールからなる。LEDモジュールは、基板23上に配置されたLEDチップ26と、基板23上に配置され、LEDチップ26を覆う蛍光膜27とを含む。基板23には配線網が設けられており、LEDチップ26の電極は基板23の配線網と電気的に接続されている。
制御部22は、コントロール部28と、メモリー部29と、データ入出力部30とを備える。LEDモジュールからなる白色光源24は、コントロール部28の電子回路(図示しない)と配線31により接続されており、コントロール部28から配線31を通して流れる電流により白色光源24が発光する。コントロール部28の電子回路メモリー部29には、太陽光の一日の変化データが場所毎並びに季節(時期)毎に保存されている。希望するパターンの照明光源を得るために、システム使用者が、都市名または緯度・経度などの場所情報、季節等の時間情報を、データ入出力部30に入力し、得られたデータをコントロール部28に送り出す。コントロール部28は、入力データに対応する保存データを抽出し、場所と季節の特定された太陽光の色温度と照度のデータを読み取り、これらデータを元に、各白色光源の混合強度比を計算する。計算結果を元にコントロール部28の電子回路が、各白色光源24に印加する電流値を制御して、必要とする太陽光の特性変化を再現する。
FIG. 8 is a graph showing a change in color temperature and a change in illuminance of sunlight from 6:00 am to 6:00 pm for a spring day in Tokyo located at 35 degrees north latitude. In FIG. 8, the graph indicated by reference numeral 1 indicates the change in color temperature, and the graph indicated by reference numeral 2 indicates the change in illuminance. This graph was created based on the results of actual measurement of changes in sunlight with time every 3 minutes. The measurement was performed using MP350 manufactured by UPRtek, and data was obtained in units of color temperature Kelvin (K) and illuminance lux (lx). The illuminance in the chart is expressed as an illuminance ratio (%) by performing relative comparison with a specific value as a reference. Further, since the change in color temperature of sunlight per day is approximately 200K or less in 3 minutes, the difference in color temperature between the measurement units in the present invention cannot be discriminated by human eyes. Therefore, even if the color temperature change is reproduced using this measurement data, it is not possible to recognize the moment when the color temperature of the light source changes, and accept the change in a natural manner as if it changed continuously. You can
FIG. 43 shows an example of the white light source system for medical facility illumination of the embodiment. As shown in FIG. 43, the white light source system for medical facility illumination of the embodiment includes a white light source unit 21 and a control unit 22. The white light source unit 21 includes a substrate 23, a plurality of white light sources 24 arranged on the substrate 23, and a light emitting device envelope 25 fixed to the substrate 23 so as to cover the plurality of white light sources. Each of the plurality of white light sources 24 is composed of an LED module. The LED module includes an LED chip 26 arranged on the substrate 23 and a fluorescent film 27 arranged on the substrate 23 and covering the LED chip 26. A wiring network is provided on the substrate 23, and the electrodes of the LED chips 26 are electrically connected to the wiring network of the substrate 23.
The control unit 22 includes a control unit 28, a memory unit 29, and a data input/output unit 30. The white light source 24 including an LED module is connected to an electronic circuit (not shown) of the control unit 28 by a wiring 31, and the white light source 24 emits light by a current flowing from the control unit 28 through the wiring 31. In the electronic circuit memory unit 29 of the control unit 28, daily change data of sunlight is stored for each place and each season (time). In order to obtain a desired pattern of illumination light source, the system user inputs location information such as city name or latitude/longitude and time information such as season to the data input/output unit 30, and the obtained data is controlled by the control unit. Send to 28. The control unit 28 extracts the stored data corresponding to the input data, reads the data of the color temperature and the illuminance of the sunlight where the place and the season are specified, and calculates the mixing intensity ratio of each white light source based on these data. To do. Based on the calculation result, the electronic circuit of the control unit 28 controls the current value applied to each white light source 24 to reproduce the required characteristic change of sunlight.

本発明においては、図8に示した太陽光の発光特性の変化を、実施例で示す具体的な方法に従い、太陽光近似の複数の白色光源を組み合わせる方法にて再現した。 In the present invention, the change in the light emission characteristics of sunlight shown in FIG. 8 was reproduced by a method of combining a plurality of white light sources similar to sunlight according to the specific method shown in the examples.

(実施例)
以下において、本発明の医療施設照明用白色光源システムについて、実施例を用いて具体的に説明する。
(Example)
Hereinafter, the white light source system for illuminating a medical facility of the present invention will be specifically described with reference to examples.

(実施例1)
本発明のシステムに用いられる白色光源1を製造した。
青色蛍光体、緑色蛍光体、黄色蛍光体、赤色蛍光体の4種類の蛍光体とLEDの組み合わせによる白色光源を作成した。LEDは395nmに発光ピークを有する紫色または紫外光を発光するLEDを用いた。また蛍光体としては、ピーク波長が445nmであるユーロピウム付活アルカリ土類燐酸塩青色蛍光体、ピーク波長が530nmであるユーロピウム付活オルソ珪酸塩緑色蛍光体、ピーク波長が555nmであるユーロピウム付活オルソ珪酸塩黄色蛍光体と、ピーク波長が650nmであるユーロピウム付活カルシウムニトリドアルミノシリケート蛍光体(CaAlSiN:Eu)を用意した。各蛍光体は重量比として、青色蛍光体:緑色蛍光体:黄色蛍光体:赤色蛍光体=58:6:15:21の割合で混合した。各蛍光体には平均粒径が30〜35μmの粉末を用いた。蛍光体の粒子をシリコーン樹脂に分散させた蛍光体スラリーを、基板上に載置されたLEDチップを覆うように塗布することで、LEDモジュールを作成した。蛍光膜の膜厚は約780μmとした。
(Example 1)
The white light source 1 used in the system of the present invention was manufactured.
A white light source was created by combining four types of phosphors of a blue phosphor, a green phosphor, a yellow phosphor, and a red phosphor and an LED. As the LED, an LED that emits purple or ultraviolet light having an emission peak at 395 nm was used. As the phosphor, a europium-activated alkaline earth phosphate blue phosphor having a peak wavelength of 445 nm, a europium-activated orthosilicate green phosphor having a peak wavelength of 530 nm, and a europium-activated orthosilicate having a peak wavelength of 555 nm. A yellow silicate phosphor and a europium-activated calcium nitridoaluminosilicate phosphor (CaAlSiN 3 :Eu) with a peak wavelength of 650 nm were prepared. The respective phosphors were mixed in a weight ratio of blue phosphor:green phosphor:yellow phosphor:red phosphor=58:6:15:21. Powder having an average particle size of 30 to 35 μm was used for each phosphor. An LED module was prepared by applying a phosphor slurry in which phosphor particles were dispersed in a silicone resin so as to cover an LED chip mounted on a substrate. The thickness of the fluorescent film was about 780 μm.

次に、JIS−C−8152に準じた積分球を備えた全光束測定器を用いて、LEDモジュールの発光特性を測定した。白色光源の色温度は2074Kであり、発光スペクトル分布は図9に示す通りであった。また図1の分光視感分布V(λ)を使用して、実施例1の(P(λ)×V(λ))/(P(λmax1)×V(λmax1))を求めたものが図10である。一方、対応する2074K色温度の黒体輻射スペクトルは図11に示す通りであり、同様に(B(λ)×V(λ))/(B(λmax2)×V(λmax2))を求めると、図12の曲線が得られた。また図10と図12の差分スペクトル(P(λ)×V(λ))/(P(λmax1)×V(λmax1))−(B(λ)×V(λ))/(B(λmax2)×V(λmax2))は、図13に示す曲線が得られた。図13の曲線からわかる通り、差分スペクトルは−0.04〜+0.10の範囲内に分布されており、350nm〜800nmの範囲の各波長において下記数8に示す前記式(2)の関係を満たすことがわかった。
Next, the light emission characteristics of the LED module were measured using a total luminous flux measuring instrument equipped with an integrating sphere according to JIS-C-8152. The color temperature of the white light source was 2074K, and the emission spectrum distribution was as shown in FIG. Further, using the spectral luminous intensity distribution V(λ) of FIG. 1, (P(λ)×V(λ))/(P(λmax1)×V(λmax1)) of Example 1 is obtained. It is 10. On the other hand, the corresponding black body radiation spectrum of 2074K color temperature is as shown in FIG. 11, and similarly, when (B(λ)×V(λ))/(B(λmax2)×V(λmax2)) is obtained, The curve of FIG. 12 was obtained. In addition, the difference spectrum of FIG. 10 and FIG. 12 (P(λ)×V(λ))/(P(λmax1)×V(λmax1))−(B(λ)×V(λ))/(B(λmax2) For xV(λmax2)), the curve shown in FIG. 13 was obtained. As can be seen from the curve of FIG. 13, the difference spectrum is distributed in the range of −0.04 to +0.10, and the relationship of the equation (2) shown in the following Expression 8 is obtained at each wavelength in the range of 350 nm to 800 nm. I found it satisfied.

前記LEDモジュールに、リフレクタ、外囲器、必要に応じてレンズ等を取付け、更に電子回路を接続して、本発明のシステムに用いられる白色光源とした。前記白色光源の発光効率は65lm/W、白色光源から漏出されるLED一次光の強度は、0.12mW/lmであり、漏出される紫外線の強度に問題の無いことが判明した。また、この白色光源の平均演色評価数Raは97であった。 A reflector, an envelope, and a lens, if necessary, were attached to the LED module, and an electronic circuit was further connected to obtain a white light source used in the system of the present invention. It was found that the luminous efficiency of the white light source was 65 lm/W and the intensity of the LED primary light leaked from the white light source was 0.12 mW/lm, and there was no problem in the intensity of the leaked ultraviolet light. The average color rendering index Ra of this white light source was 97.

(実施例2)
本発明のシステムに用いられる白色光源2を製造した。
青色蛍光体、緑色蛍光体、黄色蛍光体、赤色蛍光体の4種類の蛍光体とLEDの組み合わせによる白色光源を作成した。LEDは410nmに発光ピークを有する紫色または紫外を発光するLEDを用いた。また蛍光体としては、ピーク波長が450nmであるユーロピウム付活アルカリ土類アルミン塩青色蛍光体、ピーク波長が541nmであるユーロピウム付活オルソ珪酸塩緑色蛍光体、ピーク波長が565nmであるユーロピウム付活オルソ珪酸塩黄色蛍光体と、ピーク波長が650nmであるユーロピウム付活カルシウムニトリドアルミノシリケート蛍光体(CaAlSiN:Eu)を用意した。各蛍光体は重量比として、青色蛍光体:緑色蛍光体:黄色蛍光体:赤色蛍光体=62:3:17:18の割合で混合した。各蛍光体には平均粒径が35〜40μmの粉末を用いた。蛍光体の粒子をシリコーン樹脂に分散させた蛍光体スラリーを、基板上に載置されたLEDチップを覆うように塗布することで、LEDモジュールを作成した。蛍光膜の膜厚は約850μmとした。
(Example 2)
The white light source 2 used in the system of the present invention was manufactured.
A white light source was created by combining four types of phosphors of a blue phosphor, a green phosphor, a yellow phosphor, and a red phosphor and an LED. As the LED, an LED emitting purple or ultraviolet having an emission peak at 410 nm was used. As the phosphor, a europium-activated alkaline earth aluminate blue phosphor having a peak wavelength of 450 nm, a europium-activated orthosilicate green phosphor having a peak wavelength of 541 nm, and a europium-activated orthosilicate having a peak wavelength of 565 nm are used. A yellow silicate phosphor and a europium-activated calcium nitridoaluminosilicate phosphor (CaAlSiN 3 :Eu) with a peak wavelength of 650 nm were prepared. The respective phosphors were mixed in a weight ratio of blue phosphor:green phosphor:yellow phosphor:red phosphor=62:3:17:18. Powder having an average particle size of 35 to 40 μm was used for each phosphor. An LED module was prepared by applying a phosphor slurry in which phosphor particles were dispersed in a silicone resin so as to cover an LED chip mounted on a substrate. The thickness of the fluorescent film was about 850 μm.

得られた白色光源の色温度は3077Kであり、発光スペクトル特性、(P(λ)×V(λ))/(P(λmax1)×V(λmax1))は図14に示す通りであった。また、対応する3077Kの色温度の黒体輻射スペクトルに関し、(B(λ)×V(λ))/(B(λmax2)×V(λmax2))を求めると、図15の曲線が得られた。更に図14と図15の差分スペクトル(P(λ)×V(λ))/(P(λmax1)×V(λmax1))−(B(λ)×V(λ))/(B(λmax2)×V(λmax2))は、図16に示す通りである。図16の曲線からわかる通り、差分スペクトルは−0.06〜+0.09の範囲内に分布されており、350nm〜800nmの範囲の各波長において下記前記数8の式(2)の関係を満たすことがわかった。 The color temperature of the obtained white light source was 3077 K, and the emission spectrum characteristics (P(λ)×V(λ))/(P(λmax1)×V(λmax1)) were as shown in FIG. Further, regarding the black body radiation spectrum of the corresponding color temperature of 3077K, (B(λ)×V(λ))/(B(λmax2)×V(λmax2)) was obtained, and the curve of FIG. 15 was obtained. .. Further, the difference spectrum of FIG. 14 and FIG. 15 (P(λ)×V(λ))/(P(λmax1)×V(λmax1))−(B(λ)×V(λ))/(B(λmax2) ×V(λmax2)) is as shown in FIG. As can be seen from the curve of FIG. 16, the difference spectrum is distributed in the range of −0.06 to +0.09, and satisfies the relationship of the following expression (2) of the equation 8 at each wavelength in the range of 350 nm to 800 nm. I understood it.

前記LEDモジュールに、リフレクタ、レンズ、外囲器等を取付け、更に電子回路を接続して、本発明のシステムに用いられる白色光源とした。前記白色光源の発光効率は66lm/W、白色光源から漏出されるLED一次光の強度は、0.09mW/lmであり、漏出される紫外線の強度に問題の無いことが判明した。また、この白色光源の平均演色評価数Raは97であった。 A reflector, a lens, an envelope, etc. were attached to the LED module, and an electronic circuit was further connected to obtain a white light source used in the system of the present invention. It was found that the luminous efficiency of the white light source was 66 lm/W and the intensity of the LED primary light leaked from the white light source was 0.09 mW/lm, and there was no problem in the intensity of the leaked ultraviolet light. The average color rendering index Ra of this white light source was 97.

(実施例3)
本発明のシステムに用いられる白色光源3を製造した。
青色蛍光体、緑色蛍光体、黄色蛍光体、赤色蛍光体の4種類の蛍光体とLEDの組み合わせによる白色光源を作成した。LEDは420nmに発光ピークを有する紫色または紫外光を発光するLEDを用いた。また蛍光体としては、ピーク波長が452nmであるユーロピウム付活アルカリ土類燐酸塩青色蛍光体、ピーク波長が530nmであるユーロピウム付活オルソ珪酸塩緑色蛍光体、ピーク波長が560nmであるセリウム付活希土類マグネシウムシリコン含有ガーネット蛍光体と、ピーク波長が629nmであるユーロピウム付活ストロンチウムサイアロン蛍光体を用意した。各蛍光体は重量比として、青色蛍光体:緑色蛍光体:黄色蛍光体:赤色蛍光体=65:6:14:15の割合で混合した。各蛍光体には平均粒径が20〜30μmの粉末を用いた。蛍光体の粒子をシリコーン樹脂に分散させた蛍光体スラリーを、基板上に載置されたLEDチップを覆うように塗布することで、LEDモジュールを作成した。蛍光膜の膜厚は約705μmとした。
(Example 3)
The white light source 3 used in the system of the present invention was manufactured.
A white light source was created by combining four types of phosphors of a blue phosphor, a green phosphor, a yellow phosphor, and a red phosphor and an LED. As the LED, an LED that emits violet or ultraviolet light having an emission peak at 420 nm was used. As the phosphor, europium-activated alkaline earth phosphate blue phosphor having a peak wavelength of 452 nm, europium-activated orthosilicate green phosphor having a peak wavelength of 530 nm, and cerium-activated rare earth having a peak wavelength of 560 nm. A magnesium silicon-containing garnet phosphor and a europium-activated strontium sialon phosphor having a peak wavelength of 629 nm were prepared. The respective phosphors were mixed in a weight ratio of blue phosphor:green phosphor:yellow phosphor:red phosphor=65:6:14:15. Powder having an average particle size of 20 to 30 μm was used for each phosphor. An LED module was prepared by applying a phosphor slurry in which phosphor particles were dispersed in a silicone resin so as to cover an LED chip mounted on a substrate. The thickness of the fluorescent film was about 705 μm.

得られた白色光源の色温度は4029Kであり、発光スペクトル特性、(P(λ)×V(λ))/(P(λmax1)×V(λmax1))は図17に示す通りであった。また、対応する4029Kの色温度の黒体輻射スペクトルに関し、(B(λ)×V(λ))/(B(λmax2)×V(λmax2))を求めると、図18の曲線が得られた。更に図17と図18の差分スペクトル(P(λ)×V(λ))/(P(λmax1)×V(λmax1))−(B(λ)×V(λ))/(B(λmax2)×V(λmax2))は、図19に示す通りである。図19の曲線からわかる通り、差分スペクトルは−0.08〜+0.05の範囲内に分布されており、350nm〜800nmの範囲の各波長において下記前記数8の式(2)の関係を満たすことがわかった。 The color temperature of the obtained white light source was 4029K, and the emission spectrum characteristics (P(λ)×V(λ))/(P(λmax1)×V(λmax1)) were as shown in FIG. Further, regarding the black body radiation spectrum of the corresponding color temperature of 4029 K, (B(λ)×V(λ))/(B(λmax2)×V(λmax2)) was obtained, and the curve of FIG. 18 was obtained. .. Further, the difference spectrum (P(λ)×V(λ))/(P(λmax1)×V(λmax1))−(B(λ)×V(λ))/(B(λmax2) in FIG. 17 and FIG. ×V(λmax2)) is as shown in FIG. As can be seen from the curve in FIG. 19, the difference spectrum is distributed in the range of −0.08 to +0.05, and satisfies the relationship of the following expression (2) of the equation 8 at each wavelength in the range of 350 nm to 800 nm. I understood it.

前記LEDモジュールに、リフレクタ、レンズ、外囲器等を取付け、更に電子回路を接続して、本発明のシステムに用いられる白色光源とした。前記白色光源の発光効率は63lm/W、白色光源から漏出されるLED一次光の強度は、0.21mW/lmであり、漏出される紫外線の強度に問題の無いことが判明した。また、この白色光源の平均演色評価数Raは98であった。 A reflector, a lens, an envelope, etc. were attached to the LED module, and an electronic circuit was further connected to obtain a white light source used in the system of the present invention. It was found that the luminous efficiency of the white light source was 63 lm/W and the intensity of the LED primary light leaked from the white light source was 0.21 mW/lm, and there was no problem in the intensity of the leaked ultraviolet light. The average color rendering index Ra of this white light source was 98.

(実施例4)
本発明のシステムに用いられる白色光源4を製造した。
青色蛍光体、緑色蛍光体、黄色蛍光体、赤色蛍光体の4種類の蛍光体とLEDの組み合わせによる白色光源を作成した。LEDは415nmに発光ピークを有する紫色または紫外光を発光するLEDを用いた。また蛍光体としては、ピーク波長が452nmであるユーロピウム付活アルミン酸塩青色蛍光体、ピーク波長が537nmであるユーロピウム付活βサイアロン蛍光体、ピーク波長が572nmであるセリウム付活希土類アルミニウムガーネット蛍光体と、ピーク波長が640nmであるユーロピウム付活アルカリ土類ニトリドアルミノシリケート蛍光体を用意した。各蛍光体は重量比として、青色蛍光体:緑色蛍光体:黄色蛍光体:赤色蛍光体=71:7:9:13の割合で混合した。各蛍光体には平均粒径が15〜25μmの粉末を用いた。蛍光体の粒子をシリコーン樹脂に分散させた蛍光体スラリーを、基板上に載置されたLEDチップを覆うように塗布することで、LEDモジュールを作成した。蛍光膜の膜厚は約660μmとした。
(Example 4)
The white light source 4 used in the system of the present invention was manufactured.
A white light source was created by combining four types of phosphors of a blue phosphor, a green phosphor, a yellow phosphor, and a red phosphor and an LED. The LED used was an LED that emits purple or ultraviolet light having an emission peak at 415 nm. As the phosphor, a europium-activated aluminate blue phosphor having a peak wavelength of 452 nm, a europium-activated β-sialon phosphor having a peak wavelength of 537 nm, and a cerium-activated rare earth aluminum garnet phosphor having a peak wavelength of 572 nm. And a europium-activated alkaline earth nitridoaluminosilicate phosphor having a peak wavelength of 640 nm was prepared. The respective phosphors were mixed in a weight ratio of blue phosphor:green phosphor:yellow phosphor:red phosphor=71:7:9:13. Powder having an average particle size of 15 to 25 μm was used for each phosphor. An LED module was prepared by applying a phosphor slurry in which phosphor particles were dispersed in a silicone resin so as to cover an LED chip mounted on a substrate. The thickness of the fluorescent film was about 660 μm.

得られた白色光源の色温度は5085Kであり、発光スペクトル特性、(P(λ)×V(λ))/(P(λmax1)×V(λmax1))は図20に示す通りであった。また、対応する5085Kの色温度の黒体輻射スペクトルに関し、(B(λ)×V(λ))/(B(λmax2)×V(λmax2))を求めると、図21の曲線が得られた。更に図20と図21の差分スペクトル(P(λ)×V(λ))/(P(λmax1)×V(λmax1))−(B(λ)×V(λ))/(B(λmax2)×V(λmax2))は、図22に示す通りである。図22の曲線からわかる通り、差分スペクトルは−0.10〜+0.025の範囲内に分布されており、350nm〜800nmの範囲の各波長において下記前記数8の式(2)の関係を満たすことがわかった。 The color temperature of the obtained white light source was 5085 K, and the emission spectrum characteristics (P(λ)×V(λ))/(P(λmax1)×V(λmax1)) were as shown in FIG. Further, regarding the black body radiation spectrum of the corresponding color temperature of 5085K, (B(λ)×V(λ))/(B(λmax2)×V(λmax2)) was obtained, and the curve of FIG. 21 was obtained. .. Further, the difference spectrum of FIG. 20 and FIG. 21 (P(λ)×V(λ))/(P(λmax1)×V(λmax1))−(B(λ)×V(λ))/(B(λmax2) ×V(λmax2)) is as shown in FIG. As can be seen from the curve in FIG. 22, the difference spectrum is distributed in the range of −0.10 to +0.025, and satisfies the relationship of the following expression (2) of the equation 8 at each wavelength in the range of 350 nm to 800 nm. I understood it.

前記LEDモジュールに、リフレクタ、レンズ、外囲器等を取付け、更に電子回路を接続して、本発明のシステムに用いられる白色光源とした。前記白色光源の発光効率は63lm/W、白色光源から漏出されるLED一次光の強度は、0.24mW/lmであり、漏出される紫外線の強度に問題の無いことが判明した。また、この白色光源の平均演色評価数Raは97であった。 A reflector, a lens, an envelope, etc. were attached to the LED module, and an electronic circuit was further connected to obtain a white light source used in the system of the present invention. It was found that the luminous efficiency of the white light source was 63 lm/W and the intensity of the LED primary light leaked from the white light source was 0.24 mW/lm, and there was no problem in the intensity of the leaked ultraviolet light. The average color rendering index Ra of this white light source was 97.

(実施例5)
本発明のシステムに用いられる白色光源5を製造した。
青色蛍光体、緑色蛍光体、黄色蛍光体、赤色蛍光体の4種類の蛍光体とLEDの組み合わせによる白色光源を作成した。LEDは410nmに発光ピークを有する紫色または紫外光を発光するLEDを用いた。また蛍光体としては、ピーク波長が440〜455nmであるユーロピウム付活アルカリ土類リン酸塩蛍光体、ピーク波長が525nmであるユーロピウム付活ストロンチウムサイアロン蛍光体、ピーク波長が575nmであるユーロピウム付活ストロンチウムサイアロン蛍光体と、ピーク波長が640nmであるユーロピウム付活アルカリ土類ニトリドアルミノシリケート蛍光体を用意した。各蛍光体は重量比として、青色蛍光体:緑色蛍光体:黄色蛍光体:赤色蛍光体=75:6:9:10の割合で混合した。各蛍光体には平均粒径が40〜45μmの粉末を用いた。蛍光体の粒子をシリコーン樹脂に分散させた蛍光体スラリーを、基板上に載置されたLEDチップを覆うように塗布することで、LEDモジュールを作成した。蛍光膜の膜厚は約850μmとした。
(Example 5)
The white light source 5 used in the system of the present invention was manufactured.
A white light source was created by combining four types of phosphors of a blue phosphor, a green phosphor, a yellow phosphor, and a red phosphor and an LED. As the LED, an LED that emits purple or ultraviolet light having an emission peak at 410 nm was used. As the phosphor, a europium-activated alkaline earth phosphate phosphor having a peak wavelength of 440 to 455 nm, a europium-activated strontium sialon phosphor having a peak wavelength of 525 nm, and a europium-activated strontium having a peak wavelength of 575 nm. A sialon phosphor and a europium-activated alkaline earth nitridoaluminosilicate phosphor having a peak wavelength of 640 nm were prepared. The respective phosphors were mixed in a weight ratio of blue phosphor:green phosphor:yellow phosphor:red phosphor=75:6:9:10. Powder having an average particle size of 40 to 45 μm was used for each phosphor. An LED module was prepared by applying a phosphor slurry in which phosphor particles were dispersed in a silicone resin so as to cover an LED chip mounted on a substrate. The thickness of the fluorescent film was about 850 μm.

得られた白色光源の色温度は6020Kであり、発光スペクトル特性、(P(λ)×V(λ))/(P(λmax1)×V(λmax1))は図23に示す通りであった。また、対応する6020Kの色温度の黒体輻射スペクトルに関し、(B(λ)×V(λ))/(B(λmax2)×V(λmax2))を求めると、図24の曲線が得られた。更に図23と図24の差分スペクトル(P(λ)×V(λ))/(P(λmax1)×V(λmax1))−(B(λ)×V(λ))/(B(λmax2)×V(λmax2))は、図25に示す通りである。図25の曲線からわかる通り、差分スペクトルは−0.12〜+0.02の範囲内に分布されており、350nm〜800nmの範囲の各波長において下記前記数8の式(2)の関係を満たすことがわかった。 The color temperature of the obtained white light source was 6020K, and the emission spectrum characteristics (P(λ)×V(λ))/(P(λmax1)×V(λmax1)) were as shown in FIG. Further, regarding the black body radiation spectrum of the corresponding color temperature of 6020K, (B(λ)×V(λ))/(B(λmax2)×V(λmax2)) was obtained, and the curve of FIG. 24 was obtained. .. Further, the difference spectrum of FIG. 23 and FIG. 24 (P(λ)×V(λ))/(P(λmax1)×V(λmax1))−(B(λ)×V(λ))/(B(λmax2) ×V(λmax2)) is as shown in FIG. As can be seen from the curve in FIG. 25, the difference spectrum is distributed in the range of −0.12 to +0.02, and satisfies the relationship of the following expression (2) of the equation 8 at each wavelength in the range of 350 nm to 800 nm. I understood it.

前記LEDモジュールに、リフレクタ、レンズ、外囲器等を取付け、更に電子回路を接続して、本発明のシステムに用いられる白色光源とした。前記白色光源の発光効率は64lm/W、白色光源から漏出されるLED一次光の強度は、0.08mW/lmであり、漏出される紫外線の強度に問題の無いことが判明した。また、この白色光源の平均演色評価数Raは97であった。 A reflector, a lens, an envelope, etc. were attached to the LED module, and an electronic circuit was further connected to obtain a white light source used in the system of the present invention. The luminous efficiency of the white light source was 64 lm/W, and the intensity of the LED primary light leaked from the white light source was 0.08 mW/lm, and it was found that there is no problem in the intensity of the leaked ultraviolet light. The average color rendering index Ra of this white light source was 97.

(実施例6)
本発明のシステムに用いられる白色光源6を製造した。
青色蛍光体、黄色蛍光体、赤色蛍光体の3種類の蛍光体とLEDの組み合わせによる白色光源を作成した。LEDは405nmに発光ピークを有する紫色または紫外光を発光するLEDを用いた。また蛍光体としては、ピーク波長が450nmであるユーロピウム付活アルカリ土類燐酸塩青色蛍光体、ピーク波長が560nmであるユーロピウム付活オルソ珪酸塩緑色蛍光体と、ピーク波長が655nmであるユーロピウム付活アルカリ土類ニトリドアルミノシリケート蛍光体を用意した。各蛍光体は重量比として、青色蛍光体:黄色蛍光体:赤色蛍光体=82:9:9の割合で混合した。各蛍光体には平均粒径が30〜35μmの粉末を用いた。蛍光体の粒子をシリコーン樹脂に分散させた蛍光体スラリーを、基板上に載置されたLEDチップを覆うように塗布することで、LEDモジュールを作成した。蛍光膜の膜厚は約730μmとした。
(Example 6)
The white light source 6 used in the system of the present invention was manufactured.
A white light source was created by combining three types of phosphors of a blue phosphor, a yellow phosphor, and a red phosphor and an LED. The LED used was an LED that emits purple or ultraviolet light having an emission peak at 405 nm. As the phosphor, europium-activated alkaline earth phosphate blue phosphor having a peak wavelength of 450 nm, europium-activated orthosilicate green phosphor having a peak wavelength of 560 nm, and europium-activated phosphorescence having a peak wavelength of 655 nm. An alkaline earth nitrido aluminosilicate phosphor was prepared. The respective phosphors were mixed in a weight ratio of blue phosphor:yellow phosphor:red phosphor=82:9:9. Powder having an average particle size of 30 to 35 μm was used for each phosphor. An LED module was prepared by applying a phosphor slurry in which phosphor particles were dispersed in a silicone resin so as to cover an LED chip mounted on a substrate. The thickness of the fluorescent film was about 730 μm.

得られた白色光源の色温度は6785Kであり、発光スペクトル特性、(P(λ)×V(λ))/(P(λmax1)×V(λmax1))は図26に示す通りであった。また、対応する6785Kの色温度の黒体輻射スペクトルに関し、(B(λ)×V(λ))/(B(λmax2)×V(λmax2))を求めると、図27の曲線が得られた。更に図26と図27の差分スペクトル(P(λ)×V(λ))/(P(λmax1)×V(λmax1))−(B(λ)×V(λ))/(B(λmax2)×V(λmax2))は、図28に示す通りである。図28の曲線からわかる通り、差分スペクトルは−0.125〜+0.015の範囲内に分布されており、350nm〜800nmの範囲の各波長において下記前記数8の式(2)の関係を満たすことがわかった。 The color temperature of the obtained white light source was 6785K, and the emission spectrum characteristics (P(λ)×V(λ))/(P(λmax1)×V(λmax1)) were as shown in FIG. Further, regarding the black-body radiation spectrum of the corresponding color temperature of 6785K, (B(λ)×V(λ))/(B(λmax2)×V(λmax2)) was obtained, and the curve of FIG. 27 was obtained. .. Further, the difference spectrum of FIG. 26 and FIG. 27 (P(λ)×V(λ))/(P(λmax1)×V(λmax1))−(B(λ)×V(λ))/(B(λmax2) ×V(λmax2)) is as shown in FIG. As can be seen from the curve in FIG. 28, the difference spectrum is distributed in the range of −0.125 to +0.015, and satisfies the relationship of the following expression (2) of the equation 8 at each wavelength in the range of 350 nm to 800 nm. I understood it.

前記LEDモジュールに、リフレクタ、レンズ、外囲器等を取付け、更に電子回路を接続して、本発明のシステムに用いられる白色光源とした。前記白色光源の発光効率は60lm/W、白色光源から漏出されるLED一次光の強度は、0.14mW/lmであり、漏出される紫外線の強度に問題の無いことが判明した。また、この白色光源の平均演色評価数Raは97であった。 A reflector, a lens, an envelope, etc. were attached to the LED module, and an electronic circuit was further connected to obtain a white light source used in the system of the present invention. The luminous efficiency of the white light source was 60 lm/W, and the intensity of the LED primary light leaked from the white light source was 0.14 mW/lm, and it was found that there is no problem in the intensity of the leaked ultraviolet light. The average color rendering index Ra of this white light source was 97.

(比較例1)
比較例のシステムに用いられる白色光源7を製造した。
黄色蛍光体とLEDの組み合わせによる白色光源を作成した。LEDは448nmに発光ピークを有する青色発光LEDを用いた。また蛍光体には、ピーク波長が560nmであるユーロピウム付活オルソ珪酸塩緑色蛍光体を用いた。蛍光体には平均粒径が7μmの粉末を用いた。蛍光体の粒子をシリコーン樹脂に分散させた蛍光体スラリーを、基板上に載置されたLEDチップを覆うように均一に塗布することで、LEDモジュールを作成した。蛍光膜の膜厚は、LEDの青色光と蛍光体の黄色光が混合して、所望の白色光となる厚さに調整した結果、約65μmとなった。
(Comparative Example 1)
A white light source 7 used in the system of the comparative example was manufactured.
A white light source was created by combining a yellow phosphor and an LED. As the LED, a blue light emitting LED having an emission peak at 448 nm was used. A europium-activated orthosilicate green phosphor having a peak wavelength of 560 nm was used as the phosphor. A powder having an average particle size of 7 μm was used as the phosphor. An LED module was prepared by uniformly applying a phosphor slurry in which phosphor particles were dispersed in a silicone resin so as to cover an LED chip mounted on a substrate. The thickness of the phosphor film was about 65 μm as a result of adjusting the thickness to obtain a desired white light by mixing the blue light of the LED and the yellow light of the phosphor.

得られた白色光源の色温度は6338Kであり、発光スペクトル特性、(P(λ)×V(λ))/(P(λmax1)×V(λmax1))は図29に示す通りであった。また、対応する6338Kの色温度の黒体輻射スペクトルに関し、(B(λ)×V(λ))/(B(λmax2)×V(λmax2))を求めると、図30の曲線が得られた。更に図33と図34の差分スペクトル(P(λ)×V(λ))/(P(λmax1)×V(λmax1))−(B(λ)×V(λ))/(B(λmax2)×V(λmax2))は、図31に示す通りである。図31の曲線からわかる通り、差分スペクトルは−0.32〜+0.02の範囲内に分布されており、前記数8の式(2)の関係を満たすことができず、範囲外の0.34との大きな値を示すことが判明した。 The color temperature of the obtained white light source was 6338 K, and the emission spectrum characteristics (P(λ)×V(λ))/(P(λmax1)×V(λmax1)) were as shown in FIG. Further, regarding the black-body radiation spectrum of the corresponding color temperature of 6338K, (B(λ)×V(λ))/(B(λmax2)×V(λmax2)) was obtained, and the curve of FIG. 30 was obtained. .. Further, the difference spectrum of FIG. 33 and FIG. 34 (P(λ)×V(λ))/(P(λmax1)×V(λmax1))−(B(λ)×V(λ))/(B(λmax2) ×V(λmax2)) is as shown in FIG. As can be seen from the curve of FIG. 31, the difference spectrum is distributed within the range of −0.32 to +0.02, and the relationship of the equation (2) of the above-mentioned expression 8 cannot be satisfied, and the difference of 0. It was found to show a large value of 34.

前記LEDモジュールに、リフレクタ、レンズ、外囲器等を取付け、更に電子回路を接続して、比較例の白色光源とした。前記白色光源の発光効率は71lm/Wで、高い効率の発光を示したが、平均演色評価数Raは70で、極端に低い値となった。このように比較例のシステムに用いられる白色光源は、見かけ上は本発明と同様の白色発光を示したものの、赤味が乏しく、演色性に劣る特性を示した。この様な光源を用いて、例えば病室などの照明に使用すると、患者の顔色が青白く見えて、心理面に悪影響を与えるばかりでなく、LEDから出射される強い青色光の影響により、ブルーハザード等の障害も懸念されるものであった。 A reflector, a lens, an envelope, etc. were attached to the LED module, and an electronic circuit was further connected to obtain a white light source of a comparative example. The emission efficiency of the white light source was 71 lm/W, which showed high efficiency emission, but the average color rendering index Ra was 70, which was an extremely low value. As described above, the white light source used in the system of the comparative example apparently emitted white light similar to that of the present invention, but exhibited poor redness and poor color rendering properties. When such a light source is used for illumination of, for example, a patient's room, the patient's complexion looks pale, which not only adversely affects the psychological side, but also causes a strong blue light emitted from the LED to cause a blue hazard, etc. The obstacles were also worrisome.

(実施例7)
白色光源1,3,6の3種類の光源を使用して、本発明の医療施設照明用白色光源システム1を製造した。各白色光源に制御回路と電源を接続し、各白色光源に流れる電流値を任意の値に調整して、各白色光源が放射する白色光を任意の割合で混合し、2074Kから6785Kまでの種々の色温度の白色光の得られる白色光源システムとした。得られる白色光の色温度は、図32に記載された黒体軌跡上の2074K(P)、4029K(P)および6785K(P)の3点で結ばれた2本の直線上の点で示される。6785Kの色温度の白色光源と4029Kの色温度の白色光源とを任意の割合で混合させることにより、白色光源システム1から出射される白色光の色温度を6785Kから4029Kの範囲で変化させた。また、4029Kの色温度の白色光源と2074Kの色温度の白色光源とを任意の割合で混合させることにより、白色光源システム1から出射される白色光の色温度を4029Kから2074Kの範囲で変化させた。このように、色温度の差が小さくなるように二つの白色光源を選択し、これらを任意の割合で混合することにより、白色光源システム1から白色光を出射させた。その結果、図32から明らかなように、白色光源システム1で得られる白色光源の色温度は、2074Kから6785Kまでの範囲で黒体軌跡からの偏差が0.005duv以下の値を示した。また本システムにより得られる白色光源の平均演色評価数は97であった。
(Example 7)
The white light source system 1 for medical facility illumination of the present invention was manufactured by using three kinds of light sources of the white light sources 1, 3, and 6. A control circuit and a power supply are connected to each white light source, the current value flowing in each white light source is adjusted to an arbitrary value, the white light emitted by each white light source is mixed at an arbitrary ratio, and various values from 2074K to 6785K are mixed. A white light source system that can obtain white light with a color temperature of The color temperature of the obtained white light is on two straight lines connected at three points of 2074K (P 1 ), 4029K (P 2 ) and 6785K (P 3 ) on the black body locus shown in FIG. Indicated by dots. The color temperature of white light emitted from the white light source system 1 was changed in the range of 6785K to 4029K by mixing the white light source having a color temperature of 6785K and the white light source having a color temperature of 4029K at an arbitrary ratio. Further, by mixing the white light source having the color temperature of 4029K and the white light source having the color temperature of 2074K at an arbitrary ratio, the color temperature of the white light emitted from the white light source system 1 is changed in the range of 4029K to 2074K. It was Thus, two white light sources were selected so that the difference in color temperature was small, and these were mixed at an arbitrary ratio, whereby white light was emitted from the white light source system 1. As a result, as is clear from FIG. 32, in the color temperature of the white light source obtained by the white light source system 1, the deviation from the black body locus was 0.005 duv or less in the range from 2074K to 6785K. The average color rendering index of the white light source obtained by this system was 97.

(実施例8)
白色光源1,2、4,6の4種類の光源を使用して、本発明の医療施設照明用白色光源システム2を製造した。各白色光源に制御回路と電源を接続し、各白色光源に流れる電流値を任意の値に調整して、各白色光源が放射する白色光を任意の割合で混合し、2074Kから6785Kまでの種々の色温度の白色光の得られる白色光源システムとした。得られる白色光の色温度は、図33に記載された黒体軌跡上の2074K(P)、3077K(P)、4029K(P)、5085K(P)および6785K(P)の5点で結ばれた4本の直線上の点で示される。6785Kの色温度の白色光源と5085Kの色温度の白色光源とを任意の割合で混合させることにより、白色光源システム1から出射される白色光の色温度を6785Kから5085Kの範囲で変化させた。また、5085Kの色温度の白色光源と4029Kの色温度の白色光源とを任意の割合で混合させることにより、白色光源システム1から出射される白色光の色温度を5085Kから4029Kの範囲で変化させた。4029Kの色温度の白色光源と3077Kの色温度の白色光源とを任意の割合で混合させることにより、白色光源システム1から出射される白色光の色温度を4029Kから3077Kの範囲で変化させた。3077Kの色温度の白色光源と2074Kの色温度の白色光源とを任意の割合で混合させることにより、白色光源システム1から出射される白色光の色温度を3077Kから2074Kの範囲で変化させた。このように、色温度の差が小さくなるように二つの白色光源を選択し、これらを任意の割合で混合することにより、白色光源システム1から白色光を出射させた。その結果、図33から明らかなように、白色光源システム1で得られる白色光源の色温度は、2074Kから6785Kまでの範囲で黒体軌跡からの偏差が0.0025duv以下の値を示した。また本システムにより得られる白色光源の平均演色評価数は97であった。
(Example 8)
The white light source system 2 for medical facility illumination of the present invention was manufactured using four types of white light sources 1, 2, 4, and 6. A control circuit and a power supply are connected to each white light source, the current value flowing in each white light source is adjusted to an arbitrary value, the white light emitted by each white light source is mixed at an arbitrary ratio, and various values from 2074K to 6785K are mixed. A white light source system that can obtain white light with a color temperature of The color temperatures of the obtained white light are 2074K (P 4 ), 3077K (P 5 ), 4029K (P 6 ), 5085K (P 7 ) and 6785K (P 8 ) on the black body locus shown in FIG. It is indicated by points on four straight lines connected by five points. The color temperature of white light emitted from the white light source system 1 was changed in the range of 6785K to 5085K by mixing the white light source having a color temperature of 6785K and the white light source having a color temperature of 5085K at an arbitrary ratio. Further, by mixing the white light source having a color temperature of 5085K and the white light source having a color temperature of 4029K at an arbitrary ratio, the color temperature of the white light emitted from the white light source system 1 is changed in the range of 5085K to 4029K. It was By mixing the white light source having a color temperature of 4029K and the white light source having a color temperature of 3077K at an arbitrary ratio, the color temperature of the white light emitted from the white light source system 1 was changed in the range of 4029K to 3077K. The color temperature of the white light emitted from the white light source system 1 was changed in the range of 3077K to 2074K by mixing the white light source having the color temperature of 3077K and the white light source having the color temperature of 2074K at an arbitrary ratio. Thus, two white light sources were selected so that the difference in color temperature was small, and these were mixed at an arbitrary ratio, whereby white light was emitted from the white light source system 1. As a result, as is clear from FIG. 33, in the color temperature of the white light source obtained by the white light source system 1, the deviation from the black body locus showed a value of 0.0025 duv or less in the range of 2074K to 6785K. The average color rendering index of the white light source obtained by this system was 97.

(実施例9)
白色光源システム1を用いて、秋の沖縄那覇市の日の出から日の入りを再現した。図34は朝の6:30頃から夜の6:30頃までの、太陽光の色温度および照度変化を示した図である。図34の曲線3は色温度の変化を示す曲線で、曲線4は照度の変化を示す曲線である。日の出と共に明るくなり、12:00頃に照度は最も高くなり、その後14:00頃まで照度の高い状態が継続した後、日の入りに向けて照度は徐々に低下していった。一方の色温度については、日の出時に2000Kの真っ赤な太陽が現れ、照度の増加と共に色温度も上昇し、温白色から白色さらに昼白色と変化し、14:00頃には最高度に達して、6500Kの昼光色となった。その後は午前中と逆の経過を辿って、18:30頃には2000Kに戻り、日の入りとなった。
(Example 9)
Using the white light source system 1, the sunset was reproduced from the sunrise in autumn Naha, Okinawa. FIG. 34 is a diagram showing changes in the color temperature and illuminance of sunlight from about 6:30 in the morning to about 6:30 in the evening. Curve 3 in FIG. 34 is a curve showing a change in color temperature, and curve 4 is a curve showing a change in illuminance. It became brighter with the sunrise, the illuminance became highest around 12:00, and after that the illuminance continued to be high until around 14:00, after which the illuminance gradually decreased toward the setting sun. Regarding the color temperature, the bright red sun of 2000K appeared at sunrise, the color temperature increased with the increase of illuminance, and it changed from warm white to white and neutral white, reaching the highest level around 14:00. It became a daylight color of 6500K. After that, the course opposite to that in the morning was followed, and it returned to 2000K around 18:30, and the sunset came.

本発明の医療施設照明用白色光源システムでは、図34に示された色温度や照度の経時変化を、白色光源に加える電流値をコントロールすることにより再現した。まず特定の色温度の白色光を得るため、複数の白色光源に加える電流の比率を決定した。次に、照度の変化に対応するため、前記の電流比率を保ったまま、所定の照度が得られる様に、トータル電流の強度を調整した。本発明の医療施設照明用白色光源システムでは、図34に示された経時変化のデータについて、3分毎の実測値をもとに調整できる様、電流値のプログラム制御を行い、太陽光の経時変化を再現した。 In the white light source system for illuminating a medical facility of the present invention, the temporal changes in color temperature and illuminance shown in FIG. 34 are reproduced by controlling the current value applied to the white light source. First, in order to obtain white light of a specific color temperature, the ratio of currents applied to a plurality of white light sources was determined. Next, in order to deal with the change in illuminance, the intensity of the total current was adjusted so that a predetermined illuminance was obtained while maintaining the above current ratio. In the white light source system for illuminating a medical facility of the present invention, program control of the current value is performed so that the data of the change over time shown in FIG. Reproduced the change.

この様な白色光源システムを、病院における入院患者の病室照明として使用した。照明では、太陽光の瞬間的な特性を再現するのでは無く、時々刻々変化する発光特性を再現しており、人体の持つ体内時計等への好影響が期待される。更に、白色照明による特性変化は、人間の目では識別することのできない緩やかな変化を再現しているため、太陽光同様の極めて自然な変化として、人間に知覚されるものである。従い、体力的に劣位にある病院患者等においても、無理のない優しい照明として受け入れられることが可能なものである。 Such a white light source system was used as room lighting for inpatients in a hospital. The lighting does not reproduce the instantaneous characteristics of sunlight, but reproduces the light emitting characteristics that change from moment to moment, which is expected to have a positive effect on the human body clock and the like. Furthermore, the characteristic change due to white illumination reproduces a gentle change that cannot be discerned by human eyes, and therefore is perceived by humans as an extremely natural change similar to sunlight. Therefore, even in a physically inferior hospital patient, etc., it can be accepted as a reasonably gentle lighting.

(実施例10)
白色光源システム2を用いて、夏の米国ロサンゼルスの日の出から日の入りを再現した。図35は朝の4:30頃から夜の6:30頃までの太陽光の色温度や照度の経時変化を追跡したものである。図35の曲線5は色温度の変化を示す曲線で、曲線6は照度の変化を示す曲線である。最も高い色温度は11:00頃から12:00頃にかけての、6600Kであった。また照度が最も高い時刻も、色温度と同様、11:00頃から12:00頃の間であった。季節の中で、照度は夏に最も高くなり、同じロサンゼルスで最低の照度を示す冬の季節と比べると、照度比で175%となり、大きな差異を示した。
(Example 10)
The white light source system 2 was used to reproduce the sunset from the sunrise in Los Angeles, USA in the summer. FIG. 35 shows changes in color temperature and illuminance of sunlight over time from about 4:30 in the morning to about 6:30 in the evening. A curve 5 in FIG. 35 is a curve showing a change in color temperature, and a curve 6 is a curve showing a change in illuminance. The highest color temperature was 6600K from about 11:00 to about 12:00. Further, the time when the illuminance was highest was also between 11:00 and 12:00, similar to the color temperature. Among the seasons, the illuminance was the highest in summer, and compared to the winter season, which had the lowest illuminance in the same Los Angeles, the illuminance ratio was 175%, showing a large difference.

本発明の医療施設照明用白色光源システムでは、図35に示された色温度や照度の経時変化を、3分毎の実測値をもとに、白色光源に加える電流値をコントロールすることにより再現した。そして、この白色光源システムを、家庭内の一般照明として採用した。照明では、太陽光の瞬間的な特性を再現するのでは無く、時々刻々変化する発光特性を、自然な形で再現しており、太陽光の入射しない室内においても、人工の太陽光を創り出すができた。この様な照明は、人体の健康面に好影響を与えるばかりでなく、平均演色評価数Raが97を示す超高演色照明として、一般用途に用いても、優れた特徴を示すものである。 In the white light source system for illuminating a medical facility of the present invention, the time-dependent changes in color temperature and illuminance shown in FIG. 35 are reproduced by controlling the current value applied to the white light source based on the measured value every 3 minutes. did. Then, this white light source system was adopted as general lighting in the home. Lighting does not reproduce the instantaneous characteristics of sunlight, but reproduces the luminescence characteristics that change from moment to moment in a natural form, creating artificial sunlight even in a room where sunlight does not enter. did it. Such an illumination not only has a good effect on the health of the human body, but also exhibits excellent characteristics when used for general purposes as an ultra-high color rendering illumination having an average color rendering index Ra of 97.

(比較例2)
実施例の白色光源1と比較例の白色光源7を用いて、比較例の白色光源システム3を製造した。各白色光源に制御回路と電源を接続し、各白色光源に流れる電流値を任意の値に調整して、各白色光源が放射する白色光を任意の割合で混合し、2074Kから6338Kまでの種々の色温度の白色光の得られる白色光源システムとした。得られる白色光の色温度は、図36に記載された黒体軌跡上の2074K(P)および6338K(P10)の2点で結ばれた直線上の点で示される。従い図36より、白色光源システム3で得られる白色光源の色温度は、2074Kと6338Kの2点に限って、黒体軌跡上の色温度の白色光が得られるものの、両者以外の中間色温度では、黒体軌跡上からの偏差の大きな白色光しか得ることができなかった。特に3500K近辺では、偏差が0.01duvを超える大きなズレとなった。
(Comparative example 2)
Using the white light source 1 of the example and the white light source 7 of the comparative example, the white light source system 3 of the comparative example was manufactured. A control circuit and a power supply are connected to each white light source, the current value flowing in each white light source is adjusted to an arbitrary value, the white light emitted by each white light source is mixed at an arbitrary ratio, and various values from 2074K to 6338K A white light source system that can obtain white light with a color temperature of The color temperature of the obtained white light is indicated by a point on a straight line connected by two points of 2074K (P 9 ) and 6338K (P 10 ) on the black body locus shown in FIG. 36. Therefore, from FIG. 36, the color temperature of the white light source obtained by the white light source system 3 is limited to two points of 2074K and 6338K, and white light of the color temperature on the black body locus is obtained, but at the intermediate color temperature other than the two. , Only white light with a large deviation from the black body locus could be obtained. Especially, in the vicinity of 3500K, there was a large deviation exceeding 0.01 duv.

比較例の白色光源システム3を用いた照明では、黒体軌跡上の色温度を正確に再現できないばかりか、各色温度の黒体輻射の発光スペクトルとの間に形状差異があるため、太陽光に近い自然な色合いの白色光を得ることができなかった。2074Kに限れば、太陽光の再現レベルは本発明の実施例光源と同様であったが、色温度が高くなるほどズレが大きくなり、6338Kでは青色成分の強い、不自然な白色光しか示さなかった。また、このシステムでは様々な色温度の白色光を得ることができるが、都度色調を調整する必要がある為、同じ色温度の白色光が長時間継続したり、切換えの度に色温度が大きく変わる不自然な変化を示したため、太陽光の自然な変化とは大きく異なる照明しか得ることが出来なかった。 With the illumination using the white light source system 3 of the comparative example, not only the color temperature on the black body locus cannot be accurately reproduced, but also there is a shape difference with the emission spectrum of the black body radiation of each color temperature. It was not possible to obtain a white light with a natural color. With respect to 2074K, the reproduction level of sunlight was similar to that of the light source of the embodiment of the present invention, but the deviation increased as the color temperature increased, and at 6338K, only unnatural white light with a strong blue component was shown. .. Also, with this system, white light with various color temperatures can be obtained, but since it is necessary to adjust the color tone each time, white light with the same color temperature continues for a long time, and the color temperature increases with each switch. Because of the changing unnatural changes, we were only able to obtain lighting that was significantly different from the natural changes in sunlight.

(実施例11〜16)
時期毎に異なる変化パターン及び場所毎に異なる変化パターンを含む複数の変化パターンから季節単位か、緯度または経度の違いでパターンを選択することにより、各実施例において、下記の通り、様々な地点や季節の太陽光を再現した。
実施例11:春の北海道・稚内、時間5:30頃〜17:30頃、色温度2000K〜6500K、
実施例12:夏の台湾・台北、時間5:30頃〜19:30頃、色温度2000K〜6600K
実施例13:夏の北海道・稚内、時間4:00頃〜18:00頃、色温度2000K〜6600K
実施例14:冬の沖縄・那覇市、時間6:30頃〜18:30頃、色温度2000K〜6500K
実施例15:冬の日本・東京、時間5:30頃〜17:30頃、色温度2000K〜6500K
実施例16:冬の北海道・稚内、時間5:30頃〜17:30頃、色温度2000〜6500K
それぞれの色温度変化、照度変化は各順に、図37〜42に示す通りである。図37〜42において、色温度の変化を示す曲線を7,9,11,13,15,17で示す。また、照度の変化を示す曲線を8,10,12,14,16,18で示す。本発明の白色光源システムでは、図37〜42に示された色温度や照度の経時変化を、3分毎の実測値をもとに、白色光源に加える電流値をコントロールすることにより再現した。このような光源を、病院をはじめ、オフィスや一般家庭用照明として使用することにより、医療補助や健康促進、更には快適な空間を造り出す高演色照明として、様々な目的に役立てることが可能である。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
以下に、本願出願の当初の特許請求の範囲に記載された発明を付記する。
[1] 複数の白色光源を含む医療施設照明用白色光源システムであって、
各白色光源の発光スペクトルをP(λ)、前記各白色光源と同じ色温度を示す黒体輻射の発光スペクトルをB(λ)、分光視感効率のスペクトルをV(λ)、P(λ)×V(λ)が最大となる波長をλmax1、B(λ)×V(λ)が最大となる波長をλmax2としたとき、(P(λ)×V(λ))/(P(λmax1)×V(λmax1))と(B(λ)×V(λ))/(B(λmax2)×V(λmax2))の差分の絶対値が前記の数1に示す関係式を満たし、前記複数の白色光源からの光の混合割合を変化させることにより、前記システムから出射される白色光の発光特性が時間の経過とともに連続して変化してゆくことを特徴とする医療施設照明用白色光源システム。
[2] [1]記載の医療施設照明用白色光源システムにおいて、前記白色光の発光特性の経時変化が、太陽光の1日の変化を実測した結果に基づく複数の変化パターンから選択されたパターンに従って進行することを特徴とする医療施設照明用白色光源システム。
[3] [2]記載の医療施設照明用白色光源システムにおいて、前記複数の変化パターンが、時期毎に異なる変化パターン及び場所毎に異なる変化パターンを含み、前記複数の変化パターンから季節単位か、緯度または経度の違いでパターンを選択できることを特徴とする医療施設照明用白色光源システム。
[4] [1]乃至[3]のいずれかに記載の医療施設照明用白色光源システムにおいて、前記複数の白色光源は、前記数1に示す関係式を満たす色温度の異なる3種類以上の白色光源からなり、前記3種類以上の白色光源から色温度が高い順又は低い順に従って2種類の白色光源を選択して混合することにより、前記システムから出射される白色光を黒体軌跡上の2000K以上6500K以下の色温度で、前記色温度に対する偏差が±0.005duv以内の白色光とすることを特徴とする医療施設照明用白色光源システム。
[5] [4]記載の医療施設照明用白色光源システムにおいて、前記複数の白色光源が、色温度の異なる3種類の白色光源からなることを特徴とする医療施設照明用白色光源システム。
[6] [5]記載の医療施設照明用白色光源システムにおいて、前記3種類の白色光源は、色温度の最も高い白色光源が6500K以下であり、最も色温度の低い白色光源が2000K以上であり、両者の中間色温度の白色光源が、2950K以上4050K以下の範囲内にあることを特徴とする医療施設照明用白色光源システム。
[7] [1]乃至[6]のいずれかに記載の医療施設照明用白色光源システムにおいて、前記複数の白色光源は、それぞれ、発光ダイオード及び蛍光体を含み、前記発光ダイオードがピーク波長が350nm〜420nmである紫外または紫色の1次光を出射し、前記蛍光体が前記発光ダイオードからの前記1次光を吸収して白色の2次光に変換することを特徴とする医療施設照明用白色光源システム。
[8] [7]記載の医療施設照明用白色光源システムにおいて、前記蛍光体は、青色発光蛍光体、緑色発光蛍光体、黄色発光蛍光体及び赤色蛍光体よりなる群から選択される3種類以上の蛍光体が混合されてなることを特徴とする医療施設照明用白色光源システム。
[9] [8]記載の医療施設照明用白色光源システムにおいて、前記蛍光体は、青色発光蛍光体が45重量部以上75重量部以下、緑色発光蛍光体が3重量部以上7重量部以下、黄色発光蛍光体が9重量部以上17重量部以下、赤色蛍光体が9重量部以上18重量部以下の割合に混合され、蛍光体全量が100重量部に調整されたものであることを特徴とする医療施設照明用白色光源システム。
[10] [8]乃至[9]のいずれかに記載の医療施設照明用白色光源システムにおいて、前記青色発光蛍光体がユーロピウム付活アルカリ土類リン酸塩蛍光体、前記緑色発光蛍光体がユーロピウム、マンガン共付活アルカリ土類マグネシウム珪酸塩蛍光体、前記黄色発光蛍光体がユーロピウム、マンガン共付活アルカリ土類マグネシウム珪酸塩蛍光体、そして前記赤色蛍光体がユーロピウム付活カルシウムニトリドアルミノシリケート蛍光体であることを特徴とする医療施設照明用白色光源システム。
(Examples 11 to 16)
By selecting a pattern by a seasonal unit or a difference in latitude or longitude from a plurality of change patterns including a change pattern different for each time period and a change pattern for each place, in each example, various points and Reproduced seasonal sunlight.
Example 11: Spring Wakkanai, Hokkaido, time 5:30 to 17:30, color temperature 2000K to 6500K,
Example 12: Summer of Taipei, Taiwan, time 5:30 time to 19: 30 time, color temperature 2000 K~6600K
Example 13: Wakkanai, Hokkaido in summer, time from 4:00 to 18:00, color temperature 2000K to 6600K
Example 14: Naha City, Okinawa, winter, time from 6:30 to 18:30, color temperature from 2000K to 6500K
Example 15: Tokyo, Japan in winter, time around 5:30 to 17:30, color temperature 2000K to 6500K
Example 16: Wakkanai, Hokkaido in winter, time 5:30 to 17:30, color temperature 2000 to 6500K
The respective color temperature changes and illuminance changes are as shown in FIGS. 37 to 42, curves showing changes in color temperature are shown by 7, 9, 11, 13, 15, and 17. Also, curves showing changes in illuminance are shown by 8, 10, 12, 14, 16, and 18. In the white light source system of the present invention, the changes over time in the color temperature and the illuminance shown in FIGS. 37 to 42 were reproduced by controlling the current value applied to the white light source based on the measured value every 3 minutes. By using such a light source as lighting for hospitals, offices, and general households, it can be used for various purposes such as medical assistance, health promotion, and high color rendering lighting that creates a comfortable space. .
Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope and the gist of the invention, and are also included in the invention described in the claims and the scope equivalent thereto.
The inventions described in the initial claims of the present application will be additionally described below.
[1] A white light source system for medical facility lighting, comprising a plurality of white light sources,
The emission spectrum of each white light source is P(λ), the emission spectrum of black body radiation showing the same color temperature as each white light source is B(λ), and the spectral luminous efficiency spectrum is V(λ), P(λ). Assuming that the wavelength that maximizes ×V(λ) is λmax1 and the wavelength that maximizes B(λ)×V(λ) is λmax2, (P(λ)×V(λ))/(P(λmax1) The absolute value of the difference between (×V(λmax1)) and (B(λ)×V(λ))/(B(λmax2)×V(λmax2)) satisfies the relational expression shown in Equation 1 above, A white light source system for illuminating a medical facility, characterized in that the emission characteristics of white light emitted from the system are continuously changed by changing the mixing ratio of light from the white light source.
[2] In the white light source system for medical facility illumination according to [1], the change over time in the emission characteristics of the white light is selected from a plurality of change patterns based on the results of actual measurement of changes in sunlight for one day. A white light source system for medical facility lighting, which is characterized by the following.
[3] In the white light source system for medical facility illumination according to [2], the plurality of change patterns include a change pattern that is different for each time period and a change pattern that is different for each place. A white light source system for medical facility lighting, which can select a pattern depending on the latitude or longitude.
[4] In the white light source system for illuminating a medical facility according to any one of [1] to [3], the plurality of white light sources are three or more types of white having different color temperatures that satisfy the relational expression shown in Formula 1. The white light emitted from the system is 2000K on a black body locus by being composed of a light source, and by selecting and mixing two kinds of white light sources from the three or more kinds of white light sources in order of increasing or decreasing color temperature. A white light source system for illuminating a medical facility, wherein the white light has a color temperature of 6500 K or less and a deviation from the color temperature of ±0.005 duv or less.
[5] The white light source system for medical facility illumination according to [4], wherein the plurality of white light sources are three types of white light sources having different color temperatures.
[6] In the white light source system for medical facility illumination according to [5], among the three types of white light sources, the white light source having the highest color temperature is 6500K or less, and the white light source having the lowest color temperature is 2000K or more. The white light source system for illuminating a medical facility is characterized in that a white light source having an intermediate color temperature between them is in a range of 2950K or more and 4050K or less.
[7] In the white light source system for medical facility illumination according to any one of [1] to [6], each of the plurality of white light sources includes a light emitting diode and a phosphor, and the light emitting diode has a peak wavelength of 350 nm. White for medical facility illumination, which emits ultraviolet or violet primary light having a wavelength of up to 420 nm, and the phosphor absorbs the primary light from the light emitting diode and converts it into white secondary light. Light source system.
[8] In the white light source system for medical facility illumination according to [7], the phosphor is three or more kinds selected from the group consisting of a blue light emitting phosphor, a green light emitting phosphor, a yellow light emitting phosphor and a red phosphor. A white light source system for illuminating a medical facility, characterized by being mixed with the above phosphors.
[9] In the white light source system for medical facility illumination according to [8], the phosphor includes a blue light emitting phosphor of 45 parts by weight or more and 75 parts by weight or less, a green light emitting phosphor of 3 parts by weight or more and 7 parts by weight or less, The yellow light emitting phosphor is mixed in a ratio of 9 parts by weight or more and 17 parts by weight or less, and the red phosphor is mixed in a ratio of 9 parts by weight or more and 18 parts by weight or less, and the total amount of the phosphors is adjusted to 100 parts by weight. White light source system for medical facility lighting.
[10] In the white light source system for medical facility illumination according to any one of [8] to [9], the blue light emitting phosphor is a europium-activated alkaline earth phosphate phosphor, and the green light emitting phosphor is europium. , Manganese co-activated alkaline earth magnesium silicate phosphor, the yellow light-emitting phosphor is europium, manganese co-activated alkaline earth magnesium silicate phosphor, and the red phosphor is europium-activated calcium nitrido aluminosilicate phosphor White light source system for medical facility lighting, which is a body.

1…色温度の変化を示す曲線、2…照度の変化を示す曲線、3…色温度の変化を示す曲線、4…照度の変化を示す曲線、5…色温度の変化を示す曲線、6…照度の変化を示す曲線、7…色温度の変化を示す曲線、8…照度の変化を示す曲線、9…色温度の変化を示す曲線、10…照度の変化を示す曲線、11…色温度の変化を示す曲線、12…照度の変化を示す曲線、13…色温度の変化を示す曲線、14…照度の変化を示す曲線、15…色温度の変化を示す曲線、16…照度の変化を示す曲線、17…色温度の変化を示す曲線、18…照度の変化を示す曲線、21…白色光源部、22…制御部、23…基板、24…複数の白色光源、25…発光装置外囲器、26…LEDチップ、27…蛍光膜、28…コントロール部、29…メモリー部、30…データ入出力部。 1... Curve showing change in color temperature, 2... Curve showing change in illuminance, 3... Curve showing change in color temperature, 4... Curve showing change in illuminance, 5... Curve showing change in color temperature, 6... Curve showing change of illuminance, 7 curve showing change of color temperature, 8 curve showing change of illuminance, 9 curve showing change of color temperature, 10 curve showing change of illuminance, 11 curve of color temperature Curve showing change, 12... Curve showing change of illuminance, 13... Curve showing change of color temperature, 14... Curve showing change of illuminance, 15... Curve showing change of color temperature, 16... Showing change of illuminance Curves, 17... Curves showing changes in color temperature, 18... Curves showing changes in illuminance, 21... White light source section, 22... Control section, 23... Substrate, 24... Plural white light sources, 25... Light emitting device envelope , 26... LED chip, 27... Fluorescent film, 28... Control section, 29... Memory section, 30... Data input/output section.

Claims (9)

色温度の異なる複数の白色光源を含む医療施設照明用白色光源システムであって、
各白色光源の発光スペクトルをP(λ)、前記各白色光源と同じ色温度を示す黒体輻射の発光スペクトルをB(λ)、分光視感効率のスペクトルをV(λ)、P(λ)×V(λ)が最大となる波長をλmax1、B(λ)×V(λ)が最大となる波長をλmax2としたとき、
(P(λ)×V(λ))/(P(λmax1)×V(λmax1))と(B(λ)×V(λ))/(B(λmax2)×V(λmax2))の差分の絶対値が下記の数1に示す関係式を満たし、前記複数の白色光源からの光の混合割合を変化させることにより、前記白色光源システムから出射される白色光の色温度を変化させた際、前記変化の前後における前記白色光の色温度の差異がマクアダムの楕円で規定される範囲内に収まる様にすることにより、前記システムから出射される白色光の発光特性が時間の経過とともに連続して変化してゆくと共に、前記白色光の発光特性の経時変化が、太陽光の日の出から日の入りまでを実測した結果に基づく複数の変化パターンから選択されたパターンに従って進行することを特徴とする医療施設照明用白色光源システム。
A white light source system for medical facility lighting, comprising a plurality of white light sources having different color temperatures,
The emission spectrum of each white light source is P(λ), the emission spectrum of black body radiation showing the same color temperature as each white light source is B(λ), and the spectral luminous efficiency spectrum is V(λ), P(λ). When the wavelength at which xV(λ) is maximum is λmax1 and the wavelength at which B(λ)×V(λ) is maximum is λmax2,
The difference between (P(λ)×V(λ))/(P(λmax1)×V(λmax1)) and (B(λ)×V(λ))/(B(λmax2)×V(λmax2)) When changing the color temperature of the white light emitted from the white light source system by changing the mixing ratio of the light from the plurality of white light sources, the absolute value satisfies the relational expression shown in the following Expression 1, By making the difference in color temperature of the white light before and after the change fall within the range defined by the McAdam ellipse, the emission characteristics of the white light emitted from the system are continuously changed with the passage of time. A medical facility illumination characterized in that, along with the change, the temporal change of the emission characteristics of the white light proceeds according to a pattern selected from a plurality of change patterns based on the result of actual measurement from sunrise to sunset of sunlight. White light source system.
請求項記載の医療施設照明用白色光源システムにおいて、前記複数の変化パターンが、時期毎に異なる変化パターン及び場所毎に異なる変化パターンを含み、前記複数の変化パターンから季節単位か、緯度または経度の違いでパターンを選択できることを特徴とする医療施設照明用白色光源システム。 The white light source system for illuminating a medical facility according to claim 1 , wherein the plurality of change patterns include a different change pattern for each time period and a different change pattern for each place, and the plurality of change patterns include a seasonal unit, a latitude or a longitude. A white light source system for lighting medical facilities, which is characterized in that the pattern can be selected depending on the difference. 請求項1乃至請求項のいずれか1項に記載の医療施設照明用白色光源システムにおいて、前記複数の白色光源は、前記数1に示す関係式を満たす色温度の異なる3種類以上の白色光源からなり、前記3種類以上の白色光源から色温度が高い順又は低い順に従って2種類の白色光源を選択して混合することにより、前記システムから出射される白色光を黒体軌跡上の2000K以上6500K以下の色温度で、前記色温度に対する偏差が±0.005duv以内の白色光とすることを特徴とする医療施設照明用白色光源システム。 The white light source system for medical facility illumination according to any one of claims 1 and 2 , wherein the plurality of white light sources are three or more types of white light sources having different color temperatures that satisfy the relational expression shown in the mathematical expression 1. The white light emitted from the system is 2000K or more on a black body locus by selecting and mixing two kinds of white light sources from the three or more kinds of white light sources in order of increasing or decreasing color temperature. A white light source system for illuminating a medical facility, which is a white light having a color temperature of 6500K or less and a deviation from the color temperature within ±0.005 duv. 請求項記載の医療施設照明用白色光源システムにおいて、前記複数の白色光源が、色温度の異なる3種類の白色光源からなることを特徴とする医療施設照明用白色光源システム。 The white light source system for medical facility illumination according to claim 3 , wherein the plurality of white light sources are three types of white light sources having different color temperatures. 請求項記載の医療施設照明用白色光源システムにおいて、前記3種類の白色光源は、色温度の最も高い白色光源が6500K以下であり、最も色温度の低い白色光源が2000K以上であり、両者の中間色温度の白色光源が、2950K以上4050K以下の範囲内にあることを特徴とする医療施設照明用白色光源システム。 The white light source system for medical facility illumination according to claim 4 , wherein among the three types of white light sources, the white light source having the highest color temperature is 6500K or less, and the white light source having the lowest color temperature is 2000K or more. A white light source system for illuminating a medical facility, characterized in that the white light source having an intermediate color temperature is in a range of 2950K or higher and 4050K or lower. 請求項1乃至請求項のいずれか1項に記載の医療施設照明用白色光源システムにおいて、前記複数の白色光源は、それぞれ、発光ダイオード及び蛍光体を含み、前記発光ダイオードがピーク波長が350nm〜420nmである紫外または紫色の1次光を出射し、前記蛍光体が前記発光ダイオードからの前記1次光を吸収して白色の2次光に変換することを特徴とする医療施設照明用白色光源システム。 The white light source system for medical facility illumination according to any one of claims 1 to 5 , wherein each of the plurality of white light sources includes a light emitting diode and a phosphor, and the light emitting diode has a peak wavelength of 350 nm to. A white light source for medical facility illumination, which emits ultraviolet or violet primary light of 420 nm, and the phosphor absorbs the primary light from the light emitting diode and converts the primary light into white secondary light. system. 請求項記載の医療施設照明用白色光源システムにおいて、前記蛍光体は、青色発光蛍光体、緑色発光蛍光体、黄色発光蛍光体及び赤色蛍光体よりなる群から選択される3種類以上の蛍光体が混合されてなることを特徴とする医療施設照明用白色光源システム。 The white light source system for medical facility illumination according to claim 6 , wherein the phosphors are three or more kinds of phosphors selected from the group consisting of blue light emitting phosphors, green light emitting phosphors, yellow light emitting phosphors, and red phosphors. A white light source system for medical facility lighting, which is a mixture of 請求項記載の医療施設照明用白色光源システムにおいて、前記蛍光体は、青色発光蛍光体が45重量部以上75重量部以下、緑色発光蛍光体が3重量部以上7重量部以下、黄色発光蛍光体が9重量部以上17重量部以下、赤色蛍光体が9重量部以上18重量部以下の割合に混合され、蛍光体全量が100重量部に調整されたものであることを特徴とする医療施設照明用白色光源システム。 The white light source system for illuminating a medical facility according to claim 7 , wherein the phosphors are 45 parts by weight or more and 75 parts by weight or less of blue emitting phosphor, 3 parts by weight or more and 7 parts by weight or less of green emitting phosphor, and yellow emitting fluorescence. A medical facility characterized in that the body is mixed in a ratio of 9 parts by weight to 17 parts by weight and the red phosphor is mixed in a ratio of 9 parts by weight to 18 parts by weight, and the total amount of the phosphor is adjusted to 100 parts by weight. White light source system for lighting. 請求項乃至のいずれか1項に記載の医療施設照明用白色光源システムにおいて、前記青色発光蛍光体がユーロピウム付活アルカリ土類リン酸塩蛍光体、前記緑色発光蛍光体がユーロピウム、マンガン共付活アルカリ土類マグネシウム珪酸塩蛍光体、前記黄色発光蛍光体がユーロピウム、マンガン共付活アルカリ土類マグネシウム珪酸塩蛍光体、そして前記赤色蛍光体がユーロピウム付活カルシウムニトリドアルミノシリケート蛍光体であることを特徴とする医療施設照明用白色光源システム。 The white light source system for medical facility illumination according to any one of claims 7 to 8 , wherein the blue light emitting phosphor is a europium-activated alkaline earth phosphate phosphor, and the green light emitting phosphor is a europium-manganese compound. Activated alkaline earth magnesium silicate phosphor, the yellow light emitting phosphor is europium, manganese co-activated alkaline earth magnesium silicate phosphor, and the red phosphor is europium activated calcium nitridoaluminosilicate phosphor A white light source system for medical facility lighting.
JP2015126111A 2015-06-24 2015-06-24 White light source system for medical facility lighting Active JP6707728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015126111A JP6707728B2 (en) 2015-06-24 2015-06-24 White light source system for medical facility lighting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015126111A JP6707728B2 (en) 2015-06-24 2015-06-24 White light source system for medical facility lighting

Publications (2)

Publication Number Publication Date
JP2017010817A JP2017010817A (en) 2017-01-12
JP6707728B2 true JP6707728B2 (en) 2020-06-10

Family

ID=57761726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015126111A Active JP6707728B2 (en) 2015-06-24 2015-06-24 White light source system for medical facility lighting

Country Status (1)

Country Link
JP (1) JP6707728B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206558500U (en) * 2016-09-30 2017-10-13 深圳市玲涛光电科技有限公司 Light-emitting component, backlight source module and electronic equipment
EP3804669A4 (en) * 2018-05-29 2022-01-05 Neuroceuticals Inc. Intraocular illumination device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4128564B2 (en) * 2004-04-27 2008-07-30 松下電器産業株式会社 Light emitting device
KR101318968B1 (en) * 2006-06-28 2013-10-17 서울반도체 주식회사 artificial solar system using a light emitting diode
EP2132960B1 (en) * 2007-03-29 2012-05-16 Koninklijke Philips Electronics N.V. Natural daylight mimicking system and user interface
JP4526559B2 (en) * 2007-11-13 2010-08-18 スタンレー電気株式会社 LED lighting fixtures
EP3683494A1 (en) * 2011-02-09 2020-07-22 Kabushiki Kaisha Toshiba White light source and white light source system including the same
EP3176837B1 (en) * 2011-03-15 2018-08-08 Kabushiki Kaisha Toshiba White light source
JP5462211B2 (en) * 2011-03-16 2014-04-02 株式会社東芝 White light emitting device
JP2014086271A (en) * 2012-10-24 2014-05-12 Panasonic Corp Illumination apparatus and lighting device

Also Published As

Publication number Publication date
JP2017010817A (en) 2017-01-12

Similar Documents

Publication Publication Date Title
JP6794486B2 (en) White light source system
JP6918091B2 (en) White light source system
JP7285877B2 (en) white light source system
JP6707728B2 (en) White light source system for medical facility lighting
CN109473534B (en) Light-emitting element, light-emitting device, method for operating a light-emitting device, and conversion element
LT6215B (en) PHOTOBIOLOGICALLY FRIENDLY CONVERSION LEDs

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20150803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150803

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200206

R150 Certificate of patent or registration of utility model

Ref document number: 6707728

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250