TW200944577A - Phosphor composition and method for producing the same, and light-emitting device using the same - Google Patents

Phosphor composition and method for producing the same, and light-emitting device using the same Download PDF

Info

Publication number
TW200944577A
TW200944577A TW098119010A TW98119010A TW200944577A TW 200944577 A TW200944577 A TW 200944577A TW 098119010 A TW098119010 A TW 098119010A TW 98119010 A TW98119010 A TW 98119010A TW 200944577 A TW200944577 A TW 200944577A
Authority
TW
Taiwan
Prior art keywords
light
phosphor
emitting
composition
emitting device
Prior art date
Application number
TW098119010A
Other languages
Chinese (zh)
Other versions
TWI394815B (en
Inventor
Shozo Oshio
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39697774&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TW200944577(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from JP2004250739A external-priority patent/JP2005336450A/en
Application filed by Panasonic Corp filed Critical Panasonic Corp
Publication of TW200944577A publication Critical patent/TW200944577A/en
Application granted granted Critical
Publication of TWI394815B publication Critical patent/TWI394815B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]

Abstract

A light-emitting device is produced using a phosphor composition containing a phosphor host having as a main component a composition represented by a composition formula: aM3N2.bAlN.cSi3N4, where "M" is at least one element selected from the group consisting of Mg, Ca, Sr, Ba, and Zn, and "a", "b", and "c" are numerical values satisfying 0.2 ≤ a/(a+b) ≤ 0.95, 0.05 ≤ b/(b+c) ≤ 0.8, and 0.4 ≤ c/(c+a) ≤ 0.95. This enables a light-emitting device emitting white light and satisfying both a high color rendering property and a high luminous flux to be provided.

Description

200944577 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種新穎的螢光體組成物及其製造方 法、以及使用該螢光體組成物之發光裝置;該螢光體組成 物可應用於例如白色發光二極艎(以下,稱為白色led)等各 種發光裝置’而本發明特別是關於一種螢光體組成物,其 會被近紫外光、紫色或藍色光激發而放出橙色或紅色之暖 色系光。 【先前技術】 以往已知有如下之氮化物系的螢光體。如此之氮化物 螢光體,可被紫外光〜近紫外光〜紫色〜藍色光激發,並且放 出在580nm以上、未滿660nm波長區域具有發光峰的暖色 系可見光,故已知可適用於例如白色LED光源等發光裝置。 (1) M2Si5N8:Eu2+(參照日本特表2〇〇3 515665號公報) (2) MSi7N1():Eu (參照曰本特表2〇〇3 515665號公報) (3) M2Si5Ns:Ce3 + (參照日本特開2〇〇2 322474號公報) (^CauAUSbNu.Ce (參照日本特開 2〇〇3 2〇35〇4 號公 報) (5) Ca! 5Al3Si9Ni6:Eu2+ (春昭 η ▲认 1手照日本特開2003-124527號 公報) (6) CaAl2Si10Ni6:Eu2+ (參昭 Β 士 此士 、、日本特開2003-124527號公 報) (7) Sr 丨.5Al3Si9Ni6:Eu2+(參照日太 、W本特開2003-124527號公 報) 200944577 (8) MSi3N5:Eu2+(參照曰本特開2003-206481號公報) (9) M2Si4N7:Eu2+(參照曰本特開 2003-206481 號公報) (10) CaSi6A10N9:Eu2+(參照日本特開 2003-206481 號公 報) (11) Sr2Si4A10N7:Eu2+(參照日本特開 2〇〇3_2〇6481 號公 報) (12) CaSiN2_Eu (參照 S. S. Lee,S. Lim,S. S. Sun and J. F. Wager, Proceedings of SPIE-the International Society for ❹ Optical Engineering,第 3241 卷(1997 年),p 75·83)。 其中,上述Μ,係表示鹼土類金屬元素(Mg、^、Sr、 Ba)之至少之一或鋅(Zn)。 該種氮化物螢光體,以往主要係以該元素Μ之氮化物 或金屬、與石夕之氮化物及/或銘之氮化物作為榮光體母體的 原料’並與含有形成發光中心離子之元素的化合物一起於 氮化性氣體環境氣氛中反應來製造。又,習知之發光裝置 係使用該種氮化物螢光體來構成。 ❹ 但是,由於對上述發光裝置的要求逐年多樣化,而期 盼能有與上述習知氮化物螢光體不同的新穎螢光體。特別 是’對上述暖色系的發光成分,其中以具有多量紅色發光 成分的發光裝置的需求大,而對其之開發有強烈之期盼, 但目則可應用於其的螢光體材料很少,故期待能有新賴的 螢光體材料與具有多量暖色系發光成分的新穎發光裝置之 開發。 又,以往的氮化物螢光體的製造方法中,高純度材料 200944577 之取得及製造不易,且由於係以化學性質不安定而在大氣 中操作困難之驗土類金屬的氮化物或驗土類金屬等作為榮 光體主原料來製造,故難以大量生產高純度螢光體,製造 產率下降’而使螢光體價格升高,是其問題。 再者,由於以往的發光裝置中,可適用的勞光體材料 的種類不多,故材料選擇性少,而限定於某幾家螢光體的 供應商’如此也會造成發光裝置價格高昂◦又,暖色系發 光成分(尤其是紅色)的發光強度強、且特殊現色評價數R9 大的廉價發光裝置的種類少,亦為問題。 本發明係為解決上述問題而完成者,其目的在於提供 一種可以放出暖色系光之完全新穎的勞光體組成物尤其 是提供放出紅色光的榮光體組成物…本發明之目的亦 為提供-種螢光體組成物之製造方法,财法適用於大量 生產本發明《氮化㈣螢光體組絲,且彳以廉價地進行 製造°再者’本發明亦提供-種廉價的發光裝ϊ,該裝置 的暖色系發光成分(尤其是紅色)的發光強度強且特殊現色 評價數R9大。 又’關於測定本發明螢光體之内部量子效率及外部量 子效率的技術方面’已建立能進行高精度敎的技術,而 螢光燈用之邰分螢光體在特定激發波長之光照射下 (4nm紫外光激發),其内部量子效率與外部量子效率的絕 對值為已知(例如,參考大久保和明等,「照明學會諸」, 平成11年,第83卷,第2期,ρ87)β 【發明内容】 200944577 本發明為一種螢光體組成物,係以 alV^N2 · bAIN · cSisN4之結構式表示的組成物作為螢光鱧母 體的主體,其特徵為:前述結構式中M,為使用選自Mg、 Ca、Sr、Ba及Zn所構成群中之至少1種元素,而a、^ c 則分別為滿足 0.2$a/(a+b)$〇.95、〇.〇5$b/(b+c)S〇.8、 0.4$c/(c + a)$0.95 之數值。 又,本發明為一種發光裝置,其特徵為:使用上述螢光 體組成物作為發光源。 © 又,本發明為一種螢光體組成物之製造方法,係製造 上述螢光體組成物,其特徵為:使含有藉由將選自Mg、Ca、 Sr、Ba及Zn所構成群中至少丨種元素的氧化物加熱而生成 之化合物、矽化合物、鋁化合物、與含形成發光中心離子 之元素的化合物、及含碳原料,於氮化性氣體環境氣氛中 進行反應。 又’本發明為一種發光裝置,其具備含有氮化物螢光 體之螢光體層及發光元件,該發光元件在36〇ηηι以上、未 ❹ 滿5〇〇nm的波長區域有發光峰,該氮化物螢光體,會被前 述發光元件所放出的光激發發光,並至少以前述氮化物榮 光體所發出之發光成分作為發光裝置的輸出光,該發光裝 置的特徵為:前述氮化物螢光體為以Eu2+活化且以結構式 (MhxEudAlSiNs表示之螢光體,前述Μ為選自Mg、Ca、 Sr、Ba及Zn中至少1種元素,且前述X滿足〇.005 $χ^〇 3。 又’本發明為一種發光裝置,其具備含有氮化物螢光 體之螢光體層及發光元件,前述發光元件在360nm以上、 7 200944577 未滿500nm的波長區域有發光峰,前述氮化物螢光體會被 前述發光元件所放出的光激發而發光,並至少以前述氮化 物螢光體所發出之發光成分作為發光裝置的輸出光’該發 光裝置的特徵為:前述氮化物螢光體包括會被Eu2+活化、且 於600以上、未滿660nm波長區域具有發光峰之氮化物螢 光體或氧氮化物勞光體,以及會被Eu2+活化、且於5〇〇以 上、未滿600nm波長區域具有發光岭之驗土金屬類原石夕酸 鹽螢光體’且於上述發光元件所發光之光的激發下,上述 螢光體的内部量子效率為80%以上。 【實施方式】 以下說明本發明之實施形態。 (實施形態1) 首先,先說明本發明之螢光體組成物之實施形態。本 發明之螢光體組成物之一例,係含有螢光體母體及發光中 心離子’為含有以aM^2 · bAIN · cShN4結構式表示之組成 物作為螢光鱧母體之主鱧,前述結構式中,Μ為選自Mg、 Ca、Sr、Ba及Zn所構成群中至少一種元素,a、b、c分別 滿足 〇.2Sa/(a+b)$0.95 、 0.05 ^b/(b+c)^0.8 > 〇-4Sc/(c+a)s〇.95之數值。若使用該種組成物作為螢光體 母體’則添加Eu2 +離子作為發光中心時,螢光體組成物會 被紫外、近紫外、紫色或藍色光所激發,而成為發出橙色 或紅色之暖色系光的螢光體。 此處,作為主體,意指含量超過50重量%,而以含量 為75重量%以上較佳,又以85重量%以上更佳。 200944577 由發光效率或發光色色調的觀點,較佳為,上述a、b、 c 分別滿足 〇.2Sa/(a+b)S0.6 、0.3$b/(b+c)S0.8、 0.4$c/(c+a)S0.8 的數值’更佳為滿足 0.2sa/(a+b)$0.3、 0.6Sb/(b+c)S0.8、0.4^c/(c+a)S0.6 之數值。 上述螢光體母體’係可為以MAlSiN3之結構式表示的 組成物。 又,本發明之螢光體母體之另 ❺ M2Si5N8 > MSi7N,〇 ^ M1.5Al3Si9N16 ^ MAl2Si10N16 > MSi3N5 ' M2Si4N7、MSi6A10N9、M2Si4A10N7、MSiN2 之結構式表示 的組成物,其係將選自驗土類金屬之氮化物及辞之說化物 中任一者的氮化物與氧化鎖、氣化石夕、銘之氮化物,以各 莫耳比為2(1-x):3x:2:6(4 〇化〇」)之比例混合之混合原 料於16GGC之氮氣氫氣混合氣趙中燒成2小時而產生之 組成物。 為選白由發光效率或發光色色調的觀點,較佳為,上述元素Μ 為選自Ca及Sr t之至少一矛去二 度之红&止 夕70素,而以能得到發出良好純 、、色光的螢光體之目的上,& 或Sr去也从 也以兀素肘之主成分為Ca 者為佳。元素Μ可為前述元素群中至 合物所構成。 種疋素的混 以上Γ較佳元/Μ之主成分為…,係指元素"半數 佳為80原子%以上)為 製造方面者县^ )為^或Sr。又,由原料管理或 種,例如-音,佳組成為元素^^皆為前述元素群中之一 :如…全部為由如所組成。中之 ,从上述MAlSiN3結構式类_ 耩式表不之組成物較佳為包括 200944577 以上述化學式MAlSiNs表示之化合物’又以上述化合物為 主體者更佳。本實施形態之螢光體化合物較佳為不含雜 質’但是’也可以含有相當於元素M、A1' Si或n中至少 之一之低於1〇原子%量之金屬雜質元素或者氣化雜質元素 至少一種。又,如果上述組成物以化學式MAlSiN3表示時, 只要在不超過10原子%的範圍内,即使上述化學式MAiSiN3 之Al、Si或N超過或不足,只要螢光體母以係以化學式 MA1SiN3表示之化合物為主體者即可。也就是說,為了對勞 光體之發光性能作一些改良,可以添加微量或少量雜質戋 ^ 者稍為偏離化學量理論組成。 例如’為了稍微改良本實施形態之螢光體組成物之發 光性能,可以將Si之一部分取代為可為4價之元素至少之 一,例如Ge或Ti等,而A1之一部分取代為可為3價之元 素至少之一,例如 B、Ga、In、Sc、Y、Fe、Cr、Ti、Zr Hf ' V、Nb、Ta等。此處,上述一部分,意指例如對^或 A1之原子數低於30原子%者。 上述組成物之實質組成範圍為 ❹ MAllt〇 3Si 1±/) 31^3(40.3)0(^0 3 ’ 較佳為結構式 MA11±_0.表示之組成範圍。 又,上述組成物尤其以SrAlSiNs或CaAlSiN3的結構式 或化學式所表示者為佳。例如,可為(Sr Ca)A1SiN3、(&BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel phosphor composition, a method of manufacturing the same, and a light-emitting device using the same; the phosphor composition can be applied For example, various light-emitting devices such as white light-emitting diodes (hereinafter referred to as white LEDs), and the present invention relates in particular to a phosphor composition which is excited by near-ultraviolet, purple or blue light to emit orange or red. The warm color is light. [Prior Art] A nitride-based phosphor is known as follows. Such a nitride phosphor can be excited by ultraviolet light to near-ultraviolet light to purple-blue light, and emits warm-colored visible light having a light-emitting peak in a wavelength region of 580 nm or more and less than 660 nm, and thus is known to be applicable to, for example, white light. A light source such as an LED light source. (1) M2Si5N8: Eu2+ (refer to Japanese Patent Publication No. 2〇〇3 515665) (2) MSi7N1(): Eu (Refer to 曰本特表2〇〇3 515665) (3) M2Si5Ns: Ce3 + (Ref. Japanese Patent Laid-Open Publication No. 2 222 324474) (^CauAUSbNu.Ce (Refer to JP-A-2-2〇〇35〇4) (5) Ca! 5Al3Si9Ni6:Eu2+ (Chun Zhao η ▲ recognizes 1 hand photo Japanese Unexamined Patent Publication No. 2003-124527 (6) CaAl2Si10Ni6:Eu2+ (J. Sho., JP-A-2003-124527) (7) Sr 丨.5Al3Si9Ni6: Eu2+ (refer to Japanese, W Bent Japanese Patent Publication No. 2003-124527 (Embodiment) No. 2003-44527 (8) MSi3N5: Eu2+ (refer to Japanese Patent Laid-Open Publication No. 2003-206481) (9) M2Si4N7: Eu2+ (refer to Japanese Unexamined Patent Publication No. 2003-206481) (10) CaSi6A10N9: Eu2+ (Refer to JP-A-2003-206481) (11) Sr2Si4A10N7: Eu2+ (Refer to JP-A-2-2-3-481) (12) CaSiN2_Eu (Refer to SS Lee, S. Lim, SS Sun and JF Wager, Proceedings of SPIE-the International Society for ❹ Optical Engineering, Vol. 3241 (1997), p 75·83). At least one of the earth metal elements (Mg, ^, Sr, Ba) or zinc (Zn). The nitride phosphor is mainly a nitride or a metal of the element, and a nitride of the stone And/or the nitride of the glory is produced as a raw material of the glomanium precursor and is reacted with a compound containing an element forming the luminescent center ion in a nitriding gas atmosphere. Further, the conventional illuminating device uses the nitride. However, since the requirements for the above-mentioned light-emitting device are diversified year by year, it is expected that there is a novel phosphor different from the above-described conventional nitride phosphor. In particular, the light emission to the above-mentioned warm color system The composition, in which a light-emitting device having a large amount of red light-emitting components is in great demand, and there is a strong expectation for its development, but the phosphor material which can be applied to it is rare, so it is expected to have a new firefly. Development of a novel light-emitting device and a novel light-emitting device having a large amount of warm-colored light-emitting components. Moreover, in the conventional method for producing a nitride phosphor, the high-purity material 200944577 is difficult to obtain and manufacture, and It is difficult to mass produce high-purity phosphors and produce a decrease in yield by making nitrides of soil-based metals or soils such as soils that are difficult to operate in the atmosphere with chemical instability and operating in the atmosphere. The rise in the price of phosphors is a problem. Furthermore, since the conventional light-emitting device has a small variety of applicable labor materials, the material selectivity is small, and the supplier limited to a certain number of phosphors can cause the price of the light-emitting device to be high. Further, the warm color-based luminescent component (especially red) has a strong illuminating intensity, and the number of inexpensive illuminating devices having a large special color evaluation number R9 is small, which is also a problem. The present invention has been made to solve the above problems, and an object thereof is to provide a completely novel luminous body composition which can emit warm color light, in particular, a glare body composition which emits red light. The object of the present invention is also to provide - A method for producing a phosphor composition, which is suitable for mass production of the nitrided (four) phosphor assembly wire of the present invention, and which is manufactured at low cost. Further, the present invention also provides an inexpensive light-emitting device. The warm color luminescent component (especially red) of the device has a strong illuminating intensity and a special color rendering number R9 is large. Further, 'the technical aspect of measuring the internal quantum efficiency and the external quantum efficiency of the phosphor of the present invention' has established a technique capable of performing high-precision chirp, and the phosphor for the fluorescent lamp is irradiated with light of a specific excitation wavelength. (Excitation of 4 nm ultraviolet light), the absolute values of internal quantum efficiency and external quantum efficiency are known (for example, refer to Okubo and Akira, "Lighting Society", Heisei 11 (Vol. 83, No. 2, p87) β [Abstract] 200944577 The present invention is a phosphor composition, which is a composition represented by the structural formula of alV^N2 · bAIN · cSisN4 as a main body of a fluorescent fluorene matrix, characterized in that: M in the above structural formula, In order to use at least one element selected from the group consisting of Mg, Ca, Sr, Ba, and Zn, and a and ^ c respectively satisfy 0.2$a/(a+b)$〇.95, 〇.〇5 $b/(b+c)S〇.8, 0.4$c/(c + a)$0.95. Further, the present invention is a light-emitting device characterized by using the above-described phosphor composition as a light-emitting source. Further, the present invention provides a method for producing a phosphor composition, which comprises producing the above phosphor composition, characterized in that it is contained in at least a group selected from the group consisting of Mg, Ca, Sr, Ba, and Zn. The compound formed by heating the oxide of the element, the ruthenium compound, the aluminum compound, the compound containing the element forming the luminescent center ion, and the carbon-containing raw material are reacted in a nitriding gas atmosphere. Further, the present invention provides a light-emitting device comprising a phosphor layer containing a nitride phosphor and a light-emitting element, wherein the light-emitting element has an emission peak in a wavelength region of 36 〇ηη or more and not more than 5 〇〇 nm. The phosphor is excited by the light emitted from the light-emitting element, and at least the light-emitting component emitted by the nitride horn is used as the output light of the light-emitting device. The light-emitting device is characterized by: the nitride phosphor a phosphor which is activated by Eu2+ and represented by a structural formula (MhxEudAlSiNs, the oxime is at least one element selected from the group consisting of Mg, Ca, Sr, Ba, and Zn, and the aforementioned X satisfies 〇.005 $χ^〇3. The present invention provides a light-emitting device comprising a phosphor layer containing a nitride phosphor and a light-emitting element, wherein the light-emitting element has an emission peak in a wavelength region of 360 nm or more and 7 200944577 less than 500 nm, and the nitride phosphor is The light emitted from the light-emitting element is excited to emit light, and at least the light-emitting component emitted by the nitride phosphor is used as an output light of the light-emitting device. The light-emitting device is characterized by: the nitrogen The phosphor includes a nitride phosphor or an oxynitride colloid which is activated by Eu2+ and has an emission peak in a wavelength region of 600 or more and less than 660 nm, and is activated by Eu2+ and is not more than 5 Å. The internal quantum efficiency of the phosphor is 80% or more under excitation of light emitted from the light-emitting element in a region having a wavelength of 600 nm and having a luminescence of a soil-reactive metal-based phosphoric acid phosphor. Embodiments of the present invention are described below. (Embodiment 1) First, an embodiment of a phosphor composition of the present invention will be described. An example of the phosphor composition of the present invention contains a phosphor precursor and a luminescent center ion. 'A composition containing a structural formula represented by aM^2 · bAIN · cShN4 as a main component of a fluorescent fluorene matrix, wherein hydrazine is at least one selected from the group consisting of Mg, Ca, Sr, Ba, and Zn. The elements a, b, and c satisfy the values of 〇.2Sa/(a+b)$0.95, 0.05^b/(b+c)^0.8 > 〇-4Sc/(c+a)s〇.95, respectively. When such a composition is used as a phosphor precursor, when Eu2 + ions are added as a luminescent center, The bulk composition is excited by ultraviolet, near-ultraviolet, violet, or blue light to become a phosphor that emits a warm orange or red color. Here, as a host, it means that the content is more than 50% by weight, and the content is More preferably, it is 75 wt% or more, and more preferably 85 wt% or more. 200944577 From the viewpoint of luminous efficiency or luminescent color tone, it is preferable that the above a, b, and c satisfy 〇.2Sa/(a+b)S0, respectively. 6, 0.3$b / (b + c) S0.8, 0.4 $ c / (c + a) S0.8 value 'better to meet 0.2sa / (a + b) $ 0.3, 0.6 Sb / (b + c) The value of S0.8, 0.4^c/(c+a)S0.6. The above-mentioned phosphor precursor ' can be a composition represented by the structural formula of MAlSiN3. Further, the phosphor precursor of the present invention is further selected from the group consisting of M2Si5N8 > MSi7N, 〇^ M1.5Al3Si9N16^MAl2Si10N16 > MSi3N5 'M2Si4N7, MSi6A10N9, M2Si4A10N7, MSiN2, which is selected from the soil test. The nitride of the metal-like nitride and the nitride of the compound, the oxidized lock, the vaporized stone, the nitride of the Ming, and the molar ratio of 2 (1-x): 3x: 2:6 (4) The composition of the mixed raw materials mixed in a ratio of 16 GGC nitrogen gas mixture gas was burned for 2 hours. In order to select white from the viewpoint of luminous efficiency or luminescent color tone, it is preferred that the above element Μ is at least one selected from the group consisting of Ca and Sr t, and the red color of the cerium is 70 y, and can be obtained as a good pure For the purpose of the phosphor of the colored light, & or Sr is also preferred from the case where the main component of the bismuth elbow is Ca. The element Μ can be composed of a conjugate of the aforementioned element group. The mixture of the above-mentioned species of bismuth is preferably the main component of 元/Μ, which means that the element "half is preferably 80 atom% or more.) For the manufacturer, the county ^) is ^ or Sr. Further, the raw material management or species, such as - sound, and the composition of the elements are all one of the aforementioned element groups: such as ... all composed of as. In the above, it is preferable that the composition of the above-mentioned MAlSiN3 structural formula is preferably a compound represented by the above chemical formula MAlSiNs, and the above compound is preferred. The phosphor compound of the present embodiment preferably contains no impurities 'but' may contain a metal impurity element or a vaporized impurity equivalent to less than 1 atom% of at least one of the elements M, A1' Si or n. At least one element. Further, if the above composition is represented by the chemical formula MAlSiN3, as long as it is in the range of not more than 10 atom%, even if Al, Si or N of the above chemical formula MAiSiN3 is excessive or insufficient, the phosphor parent is a compound represented by the chemical formula MA1SiN3. For the subject. That is to say, in order to improve the luminescence properties of the work, a small amount or a small amount of impurities may be added, which is slightly deviated from the chemical composition. For example, in order to slightly improve the luminescent properties of the phosphor composition of the present embodiment, one part of Si may be substituted with at least one of elements which may be tetravalent, such as Ge or Ti, and a part of A1 may be substituted for 3 At least one of the elements of the valence, such as B, Ga, In, Sc, Y, Fe, Cr, Ti, Zr Hf 'V, Nb, Ta, and the like. Here, the above part means, for example, that the number of atoms of ? or A1 is less than 30 atom%. The substantial composition range of the above composition is ❹ MAllt〇3Si 1±/) 31^3(40.3)0 (^0 3 ' is preferably a composition range represented by the structural formula MA11±_0. Further, the above composition is especially SrAlSiNs Or the structural formula or chemical formula of CaAlSiN3 is preferred. For example, it may be (Sr Ca) A1SiN3, (&

Mg)AlSiN3、(Ca,Mg)AlSiN3、(Sr,Ca,Ba)AlSiN3 等具有複數 鹼土類金屬元素之組成物。又,上述結構式中之〇(氧)為製 造螢光體組成物時混入的雜質元素。 10 200944577 於構成上述螢光體母體之化合物的結晶格子中,係添 加至少1種可作為發光中心之離子(發光中心離子)以構成 螢光體組成物》如果在螢光體母體中添加發光中心離子, 則會構成發出螢光之螢光體。 發光中心離子可視需要適當選擇選自從各種稀土類離 子或過渡金屬離子中之金屬離子。發光中心離子之具體 例,可舉例如 Ce3+、Pr3+、Nd3+、Sm3+、Eu3+、Gd3+、Tb3+、 Dy3+、Ho3+、Er3+、Tm3+、Yb3+等 3 價稀土 類金屬離子、Sm2+、 © Eu2+、Yb2+等2價稀土類金屬離子、Mn2+等2價過渡金屬離 子、Cr3 +或Fe3+等3價過渡金屬離子、Mn4+等4價過渡金屬 離子等。A composition having a plurality of alkaline earth metal elements such as Mg)AlSiN3, (Ca, Mg)AlSiN3, (Sr, Ca, Ba)AlSiN3. Further, the ruthenium (oxygen) in the above structural formula is an impurity element which is mixed when the phosphor composition is produced. 10 200944577 In the crystal lattice of the compound constituting the above-mentioned phosphor precursor, at least one ion (luminescence center ion) which can serve as an illuminating center is added to constitute a phosphor composition. If a luminescent center is added to the phosphor precursor The ions form a fluorescent body that emits fluorescence. The luminescent center ion may be appropriately selected from metal ions selected from various rare earth ions or transition metal ions. Specific examples of the luminescent center ion include a valence of a trivalent rare earth metal ion such as Ce3+, Pr3+, Nd3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, Ho3+, Er3+, Tm3+, and Yb3+, Sm2+, © Eu2+, and Yb2+. a rare earth metal ion, a divalent transition metal ion such as Mn2+, a trivalent transition metal ion such as Cr3 + or Fe3+, or a tetravalent transition metal ion such as Mn4+.

本實施形態之螢光體組成物,由發光效率的觀點考 量’較佳為發光中心離子為選自Ce3 +及Eu2+中至少之一的 離子°又’如果為含有該種離子之螢光體,則可成為適用 於白色LED之較佳螢光體。如果以Eu2 +為發光中心離子, 則可得到發出暖色系光之螢光體,可成為適用於發光裝 置’尤其是照明裝置用的螢光體。如果以Ce3 +為發光中心 離子’則可得到發出藍綠系光的螢光體,適用於高演色性 之發光裝置,尤其是照明裝置用的螢光體。 本實施形態之螢光體組成物從發光色的觀點,較佳為 以選自Ce3+、Eu2+、Eu3 +及Tb3+中至少之一的離子作為發光 中〜離子。如果以Ce3+作為發光中心離子,則可得至少發 出藍綠系光之高效率螢光體,如果以Eu2+為發光中心離子, 貝J可得到發出橙〜紅色系光之高效率螢光體,如果以如3 +為 200944577 發先中心離子,目丨丨句* a:丨w •發出紅色系光之高效率螢光體。 如果以Μ作為發光中 之门效车螢光體 子則了得到發出綠色光之尚 效半受光體。任一去沾路止规+^j , 螢光體身放出作為光之三原色之高 色純度的紅或綠或藍,或者 飞t蓠要量大的橙系的光,故適用 於作為發光裝置用的螢光體。 ❹ 發光中心離子之較佳之添加量,依發光中心離子之種 類:有所不同’例如’卩恥2+或。3 +作為發光中心離子時, 對刖述元素M’較佳之發光中心離子添加量為〇」原子%〜3〇 原子% t佳為G.5原子%〜1G原子%。若添加量少於此或多 於此’皆無法成為兼顧良好發光色與高亮度的螢光體。又, 基本上,較佳為將發光中心離子以取代元素M之一部分格 子位置之方式添加,但也可以取代A1或Si之一部分格子位 置。 本實施形態之螢光體組成物可為將複數發光中心離子 共活化的螢光體。發光中心離子共活化的螢光髏之例,可 舉出如’ Ce3離子與Eu2+離子共活化之螢光體、Eu2+離子與 Dy3+離子共活化之螢光體、Eu2+離子與Nd3+離子共活化之螢 光醴、Ce3+離子與Mn2+離子共活化之螢光體、eu2+離子與 Mn2+離子共活化之螢光體等。如此,可利用從其中之一的 發光中心離子朝另一離子之能量轉移現象,而得到激發光 譜或發光光譜的形狀經控制之螢光體,或者,利用因熱之 激發現象以得到餘輝(afterglow )長的長餘輝螢光體。 本發明之發光裝置所使用的較佳螢光體如下所示。藉 由改變上述a、b、c之數值或者元素Μ的元素比例或發光 12 200944577 中心種類或添加量,可得到如此之螢光體。 (1) 於580nm以上、未滿660nm (由作為發光裝置所需 色純度與可見度的觀點’較佳為610以上、未滿65〇nm)之 波長區域具有發光峰之發暖色系、尤其是發紅色光的榮光 體。 (2) 可被350nm以上、未滿420nm (由作為發光裝置所 需激發特性的觀點,較佳為38Onm以上、未滿41 Onm)之 近紫外光或紫外光照射而激發的螢光體。 © (3)可被420nm以上、未滿500nm (由作為發光裝置所 需激發特性的觀點,較佳為440nm以上、未滿480nm)之 藍色系光照射而激發的螢光體。 (4)可被550nm以上、未滿560nm的綠色系光照射而激 發的螢光體。 又’本實施形態之螢光體組成物的性狀,並無特別限 疋’可為單結晶塊、陶瓷成形體、厚度數nm〜數// m的薄膜、 厚度數10# m〜數1〇〇 的厚膜、粉末等,但是應用為發 ^ 光裝置時’較佳為粉末,又以中心粒徑(D5G)為0.1〜30# m 的粉末更佳,又更佳為以中心粒徑(D5Q)為〇 5〜2〇 A m的粉 末。又’螢光體組成物的粒子本身形狀不特別限定,可為 球狀、板狀、棒狀等任一者。 如上所述得到的本實施形態螢光體組成物至少可被 250〜600nm的紫外〜近紫外〜藍色〜綠色〜黃色〜橙色之光所 激發’至少可成為發出藍綠、橙色或紅色光的螢光體。亦 i得到在610〜650nm波長區域具有發光峰的發紅色光之螢 13 200944577 光體。又,以Eu2+離子作為發光中心之上述發出紅色系光 的螢光體其激發光譜與發光光譜形狀,係與習知的以 Si^SieNg氮化物矽酸鹽為母艎材料的Eu2+活化螢光體其激 發光譜與發光光譜形狀相似。 以下’說明本實施形態之螢光體組成物的製造方法。 〈本發明之製造方法1&gt; 本實施形態的螢光體組成物,例如可依以下所說明的 製造方法製造。 首先,準備驗土類金屬Μ之氮化物(Μ〗Ν2)或鋅之氮化 物(Ζη3Ν2)、氮化矽(Si3N4)、氮化鋁(Α1Ν),作為用以形成 螢光體母體的原料《其中,鹼土類金屬之氮化物或鋅之氣 化物’並不是陶瓷原料常用者,不僅不容易取得且價格高 昂’並且容易與大氣中的水蒸氣反應而變質,在大氣中操 作困難。 再者’使用各種稀土類金屬或過渡金屬或該等之化人 物,作為用以添加發光中心離子的原料。該元素,例如有 原子序58〜60或62〜71之網系元素或過渡金屬,尤其是Ce、 Pl*、Eu、Tb、Μη。含有該種元素之化合物,有上述鑭系元 素或過渡金屬之氧化物、氮化物、氫氧化物、碳酸鹽、草 酸鹽、硝酸鹽、硫酸鹽、齒化物、磷酸鹽等。具體而+, 例如有,碳酸鈽、氧化銪、氮化銪、金屬铽、碳酸錳等。 其次’秤量該等螢光體原料使各原子的原子比例為 a(Mi-xLcx)3N2 · bAIN · cSi3N4 ’並混合以得到混合原料。其 中,Μ為選自由Mg、Ca、Sr、Ba及Zn所構成之群中之至 200944577 少一種元素,a、b、c 為滿足 0.2Sa/(a+b)$〇.95、 0.05$b/(b+c)S0.8、0.4 各 c/(c + a)$〇.95 之數值 ’ Lc 表示作 為發光中心離子之元素,x表示滿足〇&lt;x&lt;〇.3,較佳為 O.OOlSx各〇,2 ’更佳為〇〇〇5$χ^〇ι之數值。例如,原子 比例可定為MhLqAlSi%。 接著’將上述混合原料於真空環境氣氛、中性環境氣 氛(惰性氣體或氮氣中等)、還原環境氣氛(CO中、氮氣氫氣 混合氣體中等)任一者的環境氣氛中進行燒成。In the phosphor composition of the present embodiment, it is preferable that the luminescent center ion is an ion selected from at least one of Ce3 + and Eu 2+ from the viewpoint of luminous efficiency, and if it is a phosphor containing the ion, It can be a better phosphor for white LEDs. When Eu2 + is used as the luminescent center ion, a phosphor that emits warm light can be obtained, and it can be used as a luminescent device, particularly for a illuminating device. If Ce3+ is used as the luminescent center ion, a phosphor emitting blue-green light can be obtained, which is suitable for a high color rendering light-emitting device, especially a phosphor for illumination devices. The phosphor composition of the present embodiment is preferably an ion selected from at least one of Ce3+, Eu2+, Eu3+, and Tb3+ as a light-emitting medium from the viewpoint of luminescent color. If Ce3+ is used as the luminescent center ion, a high-efficiency phosphor emitting at least blue-green light can be obtained. If Eu2+ is used as the luminescent center ion, Bay J can obtain a high-efficiency phosphor that emits orange to red light. For example, 3 + is the first central ion of 200944577, and the target sentence is * a: 丨 w • A high-efficiency phosphor that emits red light. If Μ is used as the illuminating body in the illuminating light, then the half-receiving body that emits green light is obtained. Any one of the decontamination roads +^j, the fluorescent body emits red or green or blue as the light color of the three primary colors of light, or the orange light that is large in the fly, so it is suitable as a light-emitting device. The phosphor used.较佳 The preferred addition amount of the luminescent center ion depends on the type of luminescent center ion: it is different 'for example, 卩 2+ 2+ or . When 3 + is used as the luminescent center ion, the amount of the luminescent center ion added to the element M' is preferably 〇" atom% to 3 〇 atom% t is preferably G. 5 atom% to 1 G atom%. If the amount added is less than this or more than this, it cannot be a phosphor which combines both good luminescent color and high brightness. Further, basically, it is preferable to add the luminescent center ion in such a manner as to replace a part of the lattice position of the element M, but it is also possible to replace the lattice position of one part of A1 or Si. The phosphor composition of the present embodiment may be a phosphor in which a plurality of luminescent center ions are co-activated. Examples of the fluorescent conjugates in which the luminescent center ions are co-activated include a phosphor that is co-activated with Ce3 ions and Eu2+ ions, a phosphor that is coactivated with Eu2+ ions and Dy3+ ions, and a phosphor that is coactivated with Eu2+ ions and Nd3+ ions. A phosphor, a phosphor that co-activates Ce3+ ions and Mn2+ ions, a phosphor that is co-activated with eu2+ ions and Mn2+ ions, and the like. In this way, the energy transfer phenomenon from one of the luminescent center ions to the other ion can be utilized to obtain a phosphor whose shape of the excitation spectrum or the luminescence spectrum is controlled, or to use the excitation phenomenon due to heat to obtain afterglow ( Afterglow) Long long afterglow phosphor. Preferred phosphors for use in the light-emitting device of the present invention are as follows. Such a phosphor can be obtained by changing the value of the above a, b, c or the element ratio of the element 或 or the amount of the illuminating 12 200944577 center or the amount added. (1) A warm color system having a luminescence peak, particularly red, in a wavelength region of 580 nm or more and less than 660 nm (from the viewpoint of color purity and visibility required for a light-emitting device, preferably 610 or more and less than 65 〇 nm) The glory of the shade of light. (2) A phosphor which can be excited by irradiation of ultraviolet light or ultraviolet light of 350 nm or more and less than 420 nm (from the viewpoint of the excitation characteristics required for the light-emitting device, preferably 38 Onm or more and less than 41 Onm). (3) A phosphor that can be excited by blue light of 420 nm or more and less than 500 nm (from the viewpoint of the excitation characteristics required for the light-emitting device, preferably 440 nm or more and less than 480 nm). (4) A phosphor that can be excited by irradiation with green light of 550 nm or more and less than 560 nm. Further, the properties of the phosphor composition of the present embodiment are not particularly limited, and may be a single crystal block, a ceramic molded body, a film having a thickness of several nm to several m/m, and a thickness of 10 #m to several 1 〇. Thick film, powder, etc., but when applied as a light-emitting device, it is preferably a powder, and a powder having a center particle diameter (D5G) of 0.1 to 30 #m is more preferable, and more preferably a center particle diameter ( D5Q) is a powder of 〇5~2〇A m. Further, the shape of the particles of the phosphor composition itself is not particularly limited, and may be any of a spherical shape, a plate shape, and a rod shape. The phosphor composition of the present embodiment obtained as described above can be excited by at least 250 to 600 nm of ultraviolet to near ultraviolet to blue to green to yellow to orange light 'at least to emit blue-green, orange or red light. Fluorescent body. Also, i obtains a red-lighted fluorescent light having a luminescence peak in a wavelength region of 610 to 650 nm. Further, the excitation spectrum and the luminescence spectrum shape of the above-mentioned red-emitting phosphor having Eu2+ ions as an illuminating center are a conventional Eu2+ activated phosphor using Si^SieNg nitride citrate as a mother material. Its excitation spectrum is similar to the shape of the luminescence spectrum. Hereinafter, a method of producing the phosphor composition of the present embodiment will be described. <Manufacturing Method 1 of the Present Invention> The phosphor composition of the present embodiment can be produced, for example, by the production method described below. First, prepare a nitride of a soil-like metal bismuth (Μ Ν Ν 2) or a zinc nitride (Ζη3Ν2), tantalum nitride (Si3N4), or aluminum nitride (Α1Ν) as a raw material for forming a phosphor precursor. Among them, the nitride of an alkaline earth metal or the vapor of zinc is not commonly used as a ceramic raw material, and is not only difficult to obtain and expensive, and is easily deteriorated by reaction with water vapor in the atmosphere, and is difficult to handle in the atmosphere. Further, various rare earth metals or transition metals or such humans are used as a raw material for adding luminescent center ions. The element is, for example, a network element or a transition metal having an atomic number of 58 to 60 or 62 to 71, particularly Ce, Pl*, Eu, Tb, Μη. The compound containing such an element may be an oxide, a nitride, a hydroxide, a carbonate, an oxalate, a nitrate, a sulfate, a tooth, a phosphate or the like of the above-described lanthanide or transition metal. Specifically, for example, there are cesium carbonate, cerium oxide, cerium nitride, metal cerium, manganese carbonate, and the like. Next, the phosphor raw materials are weighed so that the atomic ratio of each atom is a(Mi-xLcx)3N2 · bAIN · cSi3N4 ' and mixed to obtain a mixed raw material. Wherein, Μ is selected from the group consisting of Mg, Ca, Sr, Ba, and Zn, and one element is less than 200944577, and a, b, and c satisfy 0.2Sa/(a+b)$〇.95, 0.05$b. /(b+c)S0.8, 0.4 The value of each c/(c + a)$〇.95' Lc represents an element as a luminescent center ion, and x represents 〇&lt;x&lt;〇.3, preferably O.OOlSx each, 2 'better is the value of χ5$χ^〇ι. For example, the atomic ratio can be set to MhLqAlSi%. Then, the mixed raw material is fired in an atmosphere of a vacuum atmosphere, a neutral atmosphere (inert gas or nitrogen), or a reducing atmosphere (CO, nitrogen-hydrogen mixed gas, etc.).

又’上述環境氣氛中,以可利用簡單設備的考量,較 佳為常壓環境氣氛,但也可為高壓環境氣氛、加壓環境氣 氛、減壓環境氣氛、真空環境氣氛之任一者。為使螢光體 南性能化,較佳反應環境氣氛為高壓環境氣氛,例如2〜 大氣壓,而如果考慮環境氣氛操作的觀點,則較佳為 大氣壓之以氮氣氣鱧為主體所構成的環境氣氛。如果為該 高壓環境氣氛,則可防止或抑制氮化物螢光體組成物於高 溫燒成中發生分解,而可抑制螢光體組成偏離,以製造高 性能的螢光體組成物。 3又,作為發光中心離子,為了多量生成例如ce3+、Eu2+、 Tb3+、Μπ2+等離子,較佳的環境氣氛為還原環境氣氛。燒成 溫度為例如1300〜200(TC,若為了使螢光體高性能化,則較 佳為1600〜200(rc,更佳為17〇〇〜19〇(rc。而如果要大量生 產,則較佳為,更佳為16〇〇〜17〇〇β(:。燒成 間例如為30分鐘〜1GM、時,而若考量生產性,則較成 時間為2〜8小時。燒成可於相異環境氣氛或相同環境氣氛 15 200944577 中分數次進行^經過該燒成所製得之燒成物係成為螢光體 組成物。 又,本實施形態之螢光體組成物並不限定以上述製造 方法製造。不僅可藉上述已說明之固相反應製造,也可以 使用例如氣相反應、液相反應等來製造。 又,ShN4或A1N等氮化物雖不像鹼土類金屬之氮化物 那麼難取得,但是很難得到高純度者。上述或ain等 氮化物在大氣中大部分的情形中,都會有極少部分會氧化 變成Si〇2或ΑΙΑ3,使純度稍為下降。由於如上的理由,本 〇 實施形態之螢光體組成物只要實質上具有上述所欲之原子 比例組成即可,包括在前述結構式MA1SiNs中,ΜΑ#或 A1N有一部分氧化變質為Si〇2或ai2〇3的情形。 &lt;本發明之製造方法2&gt; 本實施形態的螢光體組成物,例如可依以下所說明的 製造方法製造。 本發明之製造方法2,係製造以前述 aCMhLcAN2 · bAIN · cShN4結構式表示之組成物為螢光 © 體母體之螢光體組成物,係將含有選自Mg、Ca、Sr、Ba 及Zn所構成群中之至少一種元素M加熱生成之氧化物,與 梦化物、IS化物、含有形成發光中心離子之元素的化合物、 碳之原料,於氮化性氣體環境氣氛令反應。 本發明之製造方法2之一例’係將藉由加熱可生成金 屬氧化物MO(其中’厘為Mg、Ca、〜、仏及zn)之驗土類 金屬氧化物或辞化合物(較佳為可加熱生成CaO或SrO之 16 200944577 7土類金屬化合物)於氮化性氣體環境氣氛中一邊藉由與 碳反應而還原與氮化,一邊使上述鹼土類金屬化合物或辞 化合物與氮化物、鋁化物、含有形成發光中心離子之元素 的化合物進行反應。 本發明之製造方法2可稱為還原氮化法,係製造前述 • · bA1N · _Ν4 (尤其是 M! xLCxA丨則3 )螢光 體之製造方法,尤其是適用於工業化生產粉末化榮光體組 成物之方法。 n 珍 以下詳細說明本發明之製造方法2。 首先準備藉加熱可形成前述元素Μ之氧化物的化合 物、矽化物、鋁化物,用以作為形成螢光艎母體之原料。 藉加熱可形成前述元素Μ之氧化物的化合物(後述),較佳 為陶瓷原料常用者。該種原料不僅容易取得而且廉價,並 且在大氣中安定而容易於大氣中進行操作。 再者,準備前述各種稀土類金屬或過渡金屬或該等之 化合物,作為用以添加於發光中心離子之原料。並且,準 ® 備碳作為還原劑。 其次,秤量該等螢光體原料及還原劑,使各原子的原 子比例為例如a(Ml_xLCx)3N2 · bA1N · cSi3N4,且藉由與還原 劑之碳反應生成一氡化碳氣體(c〇)以完全去除螢光體原料 中氧的比例,並混合以得到混合原料。其中,Lc表示成為 發光中心離子的金屬元素,X表示滿足〇&lt;x&lt;〇.3,較佳為 0.001 SxS0.2,更佳為 〇 〇〇5$χ$〇 1 之數值。 接著’將上述混合原料於氮化性氣體環境氣氛中燒成 17 200944577 使之反應。 體。 此處,氮化性氣體係指可使氣化 反應產生的氣 又’作為發光中心離子,為了多量生成例如Ce3+、Eu2+、 Tb3+、Mnh等離子的觀點,較佳的環境氣氛為還原環1氣 氛’例如氮氣氫氣混合環境氣氛。燒成溫度為例如 1300〜2000°C,若為了使螢光體高性能化,較佳為16〇〇~2〇〇〇Further, in the above-mentioned ambient atmosphere, it is preferable to use a simple equipment, and it is preferably an atmospheric atmosphere, but it may be any of a high-pressure atmosphere, a pressurized atmosphere, a reduced-pressure atmosphere, and a vacuum atmosphere. In order to improve the performance of the phosphor, the reaction atmosphere is preferably a high-pressure atmosphere, for example, 2 to atmospheric pressure, and if considering the viewpoint of the operation of the ambient atmosphere, it is preferably an atmospheric atmosphere composed of nitrogen gas as a main component. . According to this high-pressure atmosphere, it is possible to prevent or suppress decomposition of the nitride phosphor composition during high-temperature firing, and to suppress the phosphor composition deviation, thereby producing a high-performance phosphor composition. Further, as the luminescent center ion, in order to generate a large amount of ions such as ce3+, Eu2+, Tb3+, and Μπ2+, a preferred ambient atmosphere is a reducing atmosphere. The firing temperature is, for example, 1300 to 200 (TC), and in order to improve the performance of the phosphor, it is preferably 1600 to 200 (rc, more preferably 17 to 19 〇 (rc.) if mass production is required, More preferably, it is preferably 16 〇〇 to 17 〇〇 β (:. For example, the firing interval is 30 minutes to 1 GM, and when the productivity is considered, the comparison time is 2 to 8 hours. The firing is possible. In the case of a different ambient atmosphere or the same ambient atmosphere 15 in 200944577, the fired product obtained by the firing is a phosphor composition. The phosphor composition of the present embodiment is not limited to the above. The production method can be produced not only by the solid phase reaction described above, but also by, for example, a gas phase reaction or a liquid phase reaction. Further, nitrides such as ShN4 or A1N are not as difficult as nitrides of alkaline earth metals. Obtained, but it is difficult to obtain high-purity. In most cases of the above-mentioned or ain nitrides, most of them will be oxidized to become Si〇2 or ΑΙΑ3, and the purity will be slightly lowered. For the above reasons, Benedict The phosphor composition of the embodiment is as long as the substance The above-mentioned atomic ratio composition may be included, and in the above structural formula MA1SiNs, a part of ΜΑ# or A1N may be oxidized and deteriorated to Si〇2 or ai2〇3. <Production Method 2 of the Present Invention> This embodiment The phosphor composition can be produced, for example, according to the production method described below. In the production method 2 of the present invention, a composition in which the composition represented by the aCMhLcAN2 · bAIN · cShN4 structural formula is a fluorescent-derived precursor is produced. The composition is an oxide obtained by heating at least one element M selected from the group consisting of Mg, Ca, Sr, Ba, and Zn, and a compound, an IS compound, a compound containing an element forming a luminescent center ion, and carbon. The raw material is reacted in an atmosphere of a nitriding gas atmosphere. An example of the manufacturing method 2 of the present invention is to form a metal oxide MO (wherein 'PCT is Mg, Ca, 仏, 仏 and zn) by heating. The earth metal oxide or the compound (preferably a metal compound which can be heated to form CaO or SrO 16 200944577 7) is reduced and nitrided by reacting with carbon in a nitriding atmosphere. The alkaline earth metal compound or the compound is reacted with a nitride, an aluminide, or a compound containing an element forming a luminescent center ion. The production method 2 of the present invention may be referred to as a reduction nitridation method, and the above-mentioned ?·bA1N · _Ν4 (especially M! xLCxA丨3) A method for producing a phosphor, in particular, a method for industrially producing a powdered glomerium composition. n. The manufacturing method 2 of the present invention will be described in detail below. The compound, telluride, and aluminide of the above-mentioned element lanthanum oxide are used as a raw material for forming a fluorescent ruthenium precursor. A compound (described later) which forms an oxide of the above element cerium by heating is preferably used as a ceramic material. This raw material is not only easy to obtain but also inexpensive, and is stable in the atmosphere and easy to handle in the atmosphere. Further, various rare earth metals or transition metals or the like are prepared as a raw material to be added to the luminescent center ions. Also, quasi-prepared carbon is used as a reducing agent. Next, the phosphor raw materials and the reducing agent are weighed so that the atomic ratio of each atom is, for example, a(Ml_xLCx)3N2 · bA1N · cSi3N4, and a carbon monoxide gas (c〇) is formed by reacting with the carbon of the reducing agent. The ratio of oxygen in the phosphor raw material is completely removed and mixed to obtain a mixed raw material. Wherein, Lc represents a metal element which becomes a luminescent center ion, and X represents a value satisfying 〇&lt;x&lt;3., preferably 0.001 SxS0.2, more preferably 〇5$χ$〇1. Next, the above mixed raw materials are fired in a nitriding gas atmosphere at a temperature of 17 200944577 to cause a reaction. body. Here, the nitriding gas system means that the gas generated by the gasification reaction can be used as the luminescent center ion, and in order to generate a large amount of ions such as Ce3+, Eu2+, Tb3+, Mnh, the preferred ambient atmosphere is the reducing ring 1 atmosphere. For example, nitrogen and hydrogen are mixed in an ambient atmosphere. The firing temperature is, for example, 1300 to 2000 ° C, and in order to improve the performance of the phosphor, it is preferably 16 〇〇 to 2 〇〇〇.

°C,更佳為1700〜1900。(:。而如果要大量生產則較佳為 14〇0〜180(TC,更佳為1600〜1700t。燒成時間例如為”分 鐘〜100小時,而若考量生產性,則較佳燒成時間為2〜8小 時。燒成可於相異環境氣氛或相同環境氣氛中分數次進 行。經過該燒成所製得之燒錢係成為勞㈣組成物。 上述可藉加熱生成上述元素厘之氧化物河〇的化合物 並無特別限定’若從高純度化合物之取得容易度或於大氣 中的取得容易纟、價格等觀點,較佳為選自驗土類金屬或 鋅之碳酸鹽、草酸鹽、硝酸鹽、乙酸鹽、氧化物、過氧化 :、氫氧化物中至少一種的驗土類金屬化合物或辞化合 ’更佳為鹼土類金屬之碳酸鹽、草酸鹽、氧化物尤盆 以鹼土類金屬之碳酸鹽更佳❶ 八 可從粉末狀、 ,較佳的性狀 上述鹼土類金屬 塊狀等適當選擇。又 為粉末。 之性狀並無特別限定, ’為得到粉末狀螢光體 光艚矽化物只要可藉由上述反應形成本實施形態之螢 九體組成物卽可,了&amp; ^ Μ , 特別限定,基於與上述鹼土類金屬同 子衣的理由或袅制 ^ 為製每南性能之螢光體的理由,較佳之矽化物 18 200944577 為氮化矽(ShN4)或矽二醯亞胺(Si(NH)2),更佳為氮化矽。 上述梦化物之性狀不特別限定,可從粉末狀、塊狀等 適*選擇。又,為得到粉末狀螢光體,較佳的性狀為粉末。 本發明之製造方法2中,矽之供給源可為矽單體。此 It形中,可將⑦單體與氮化性氣體環境氣氛巾的氮等進行 反應,而形成矽之氮化物(氮化矽等),再與上述鹼土類金屬 氮化物或鋁化物等反應.因此,本發明之製造方法2亦包 括上述梦化物為石夕單體者。°C, more preferably 1700~1900. (: If it is to be mass-produced, it is preferably 14 〇 0 to 180 (TC, more preferably 1600 to 1700 t. The firing time is, for example, "minutes to 100 hours", and if productivity is considered, the firing time is preferred. It is 2 to 8 hours. The firing can be carried out in several different ambient atmospheres or in the same ambient atmosphere. The burnt money obtained by the firing is a composition of labor (4). The above-mentioned oxidation of the above elements can be generated by heating. The compound of the product is not particularly limited. From the viewpoints of easiness of obtaining a high-purity compound or easy to obtain in the atmosphere, the price is preferably selected from a metal or zinc carbonate or oxalate. , nitrate, acetate, oxide, peroxidation: or at least one of the soil-recovering metal compounds or the compound of the hydroxide, more preferably an alkali earth metal carbonate, an oxalate or an oxide The metal-based carbonate is more preferably selected from the group consisting of a powdery form, a preferred form of the above-mentioned alkaline earth metal block, and the like. It is also a powder. The properties are not particularly limited, 'for obtaining a powdery phosphor lens As long as it can be The composition of the fluorescene body of the present embodiment is formed by the above reaction, and is particularly limited to the phosphor of each of the properties based on the reason of the above-mentioned alkaline earth metal. For the reason, the preferred telluride 18 200944577 is tantalum nitride (ShN4) or bismuth imide (Si(NH) 2 ), more preferably tantalum nitride. The properties of the dream compound are not particularly limited and may be from powder form, Further, in order to obtain a powdery phosphor, a preferred property is a powder. In the production method 2 of the present invention, the supply source of the crucible may be a germanium monomer. The monomer reacts with nitrogen or the like of the nitriding atmosphere atmosphere to form a niobium nitride (such as tantalum nitride), and then reacts with the alkaline earth metal nitride or aluminide or the like. Therefore, the production method of the present invention 2 also includes the above-mentioned dream compound for Shi Xi single.

上述鋁化物,只要可藉由上述反應形成本實施形態之 螢光體組成物即可,*制限定,基於與上㈣化物同樣 的理由’較佳為氮化鋁(A1N)。 ,上述銘化物之性狀不特別限定,可從粉末狀、塊狀等 適田選擇X ’為得到粉末狀螢光體,較佳的性狀為粉末。 本發明之製造方法2中,銘之供給源可為金屬單體。 此情形中,可將銘金屬與氮化性氣體環境氣氛中的氮等進 行反應’以形成紹之敗化物(氮化銘等),再與上述驗土類金 屬氮化物或石夕化物等反應。因此’本發明之製造方法2亦 包括上述鋁化物為金屬鋁者。 上述碳之性狀並無特別限定,較佳為固體碳,可使用 碳黑、南純度碳粉、碳塊等,其中特別以石墨較佳。但是, 也可以使用無定形碳(煤類、焦炭、木炭、氣體碳等)。此外, 也可使用滲碳性氣體,例如天然氣、甲燒(CH4)、丙烧 _、丁烧(C4Hl〇)等煙作為碳源。又,於真空環境氣氛中 或惰性氣體環境氣氛中等中性環境氣氛中,使用碳質的燒 200944577 此種蒸發的碳理論 成容器或發熱體時,會有部分碳蒸發 上也可以作為還原劑使用。 上述固趙碳其大小與形妝並姓〇, 办狀無特別限定&quot;從取得容易度 的觀點’較佳的固體碳大小與形狀為最長直㈣最長邊為 l〇nm〜lcm的微粉、粉末或粒子, 也了為其他的固體碳。可 使用粉末狀、粒狀、塊肤、刼扯 塊狀板狀、棒狀等各種形狀的固體 碳。固體碳的純度不特別限定,作 1一馬了得到咼品質的氮化The aluminide may be formed by the above-described reaction to form the phosphor composition of the present embodiment, and is preferably limited to aluminum nitride (A1N) for the same reason as the above (four) compound. The properties of the above-mentioned inscription are not particularly limited, and X' may be selected from a powdery or blocky form to obtain a powdery phosphor, and a preferred property is a powder. In the production method 2 of the present invention, the supply source of the invention may be a metal monomer. In this case, the metal can be reacted with nitrogen or the like in the atmosphere of the nitriding gas to form a sulphur compound (nitriding, etc.), and then reacted with the above-mentioned soil-based metal nitride or lithium compound. . Therefore, the manufacturing method 2 of the present invention also includes the case where the aluminide is aluminum metal. The properties of the carbon are not particularly limited, and solid carbon is preferred, and carbon black, southern purity carbon powder, carbon block or the like can be used, and among them, graphite is particularly preferable. However, amorphous carbon (coal, coke, charcoal, gaseous carbon, etc.) can also be used. Further, a carburizing gas such as natural gas, smoldering (CH4), propyl sulphide, or butyl sulphide (C4H1 fluorene) may be used as the carbon source. In addition, in a vacuum atmosphere or a neutral atmosphere in an inert atmosphere, a carbonaceous burn 200944577 is used. When the vaporized carbon is used as a container or a heating element, some of the carbon may be used as a reducing agent. . The above-mentioned solid Zhao carbon has the size and shape of the makeup, and there is no special limitation on the shape. From the point of view of ease of use, the preferred solid carbon size and shape are the longest straight (four) and the longest side is micronized powder of l〇nm~lcm. Powder or particles, also other solid carbon. Solid carbon of various shapes such as powder, granules, lumps, lumps, and rods can be used. The purity of solid carbon is not particularly limited.

物螢光體’固體碳的純度愈高愈佳’例如為純度99%以上, 較佳為醇度99.9%以上的高純度碳。 上述固體碳之添加量,係採用可除去勞光體原料所含 乳之化學計量上所需的反應比例,但為了完全除去上述 氧’反應比例較佳為過剩的。若以具體數值說明,固體碳 之過剩添加量較佳為不超過上述化學計量所需之原子 0/〇。 ’、 又,反應之上述固體碳亦可兼作發熱體(碳加熱器)或兼 作燒成容器(碳坩堝等)。作為還原劑之上述碳可以與螢光體 原料混合使用’也可以單純只接觸。 ❹ 又,上述氮化性氣體只要為可使上述被碳還原的上述 鹼土類金屬或鋅化合物氮化者即可,不特別限定,從高純 度氟體取传容易度或操作容易度、價格等觀點,較佳選自 氮氣及氨氣之至少一種,更佳為氮氣。又’為了提高燒成 環境氣氛之還原力、使螢光鱧高性能化或者製得高性能之 螢光體,可以為氮氣氫氣混合氣體。 含有氮化性氣體之反應環境氣氛中,以使用設備單純 20 200944577 的理由來考量,較佳為常壓環境氣氛,但也可為高壓環境 氣氛、加壓環境氣氛、減壓環境氣氛、真空環境氣氛任一 者。為使螢光體高性能化,較佳反應環境氣氛為高壓環境 氣氛,例如為2〜1〇〇大氣壓,而如果考慮環境氣氛操作的 觀點,較佳為5〜20大氣壓之以氮氣氣體為主體所構成的環 境氣氛。如果為該高壓環境氣氛,則可以防止或抑制氮化 物螢光體組成物於高溫燒成中發生分解,而能抑制螢光體 組成偏離,並製造高性能的螢光體組成物。又,為了促進 ® 反應物(燒成物)之脫碳,可於上述反應環境氣氛♦含有少量 或微3C的水蒸氣。 為了提高上述化合物原料彼此的反應性,可以添加助 熔劑反應。助熔劑可從鹼金屬化合物(Na2C〇3、Naa、uf) 或鹵化物(SrFa、CaCl2)等中適當選擇。 本發明製造方法2之最大特徵為:(1)本實施形態之螢 光體組成物之原料,實質上不使用鹼土類金屬或辞之氮化 物、鹼土類金屬或鋅金屬;(2)取而代之,使用可藉加熱而 〇 生成金屬氧化物(前述M〇)之化合物;(3)將該等化合物所含 的氧成分以碳(較佳為固體碳)反應除去;(4)再藉由與氮化性 氣體反應使上述鹼土類金屬化合物氮化;(5)並使與矽化物 及鋁化物反應,以製造本實施形態之螢光體組成物。 上述本發明之製造方法2中較佳反應溫度為i 3〇〇〜2〇〇〇 C,為使螢光體高性能化,較佳為ι6〇〇〜2〇〇〇艺,更佳為 1700〜1900°〇而若為了大量生產,則較佳為14〇〇〜18〇〇&lt;t, 更佳為1600〜1700°C。。又,反應可分數次進行。如此一來, 21 200944577 藉加熱可生成金屬氧化物之化合物成為金屬氧化物M〇,並 進一步與碳反應,而使上述金屬氧化物邊產生一氧化碳或 二氧化碳邊被還原《再將還原的上述金屬氧化物以氮化性 氣體氮化,形成氮化物,同時與上述矽化物或鋁化物等其 他化合物或氣體等反應。藉此,可生成本實施形態的氮化 物螢光體組成物。 如果以較上述溫度範圍低的溫度反應時,上述反應或 還原會不完全’而難以製得高品質的氮化物螢光體組成 物,而若以較上述溫度範圍高的溫度反應時,則氮化物螢 0 光體組成物會分解或熔解,而難以得到所欲組成或形狀(粉 末狀、成形想狀等)之螢光趙組成物。且,以較上述溫度範 圍高的溫度反應時’製造設備必需使用高價的發熱體或高 耐熱性隔熱材料,而使設備費用提高,很難提供廉價的螢 光體組成物。 依照本發明之製造方法2,不需使用高純度材料取得困 難且於大氣中操作困難的鹼土類金屬或鋅的氮化物作為螢 光艎的主原料。本發明之製造方法2之特徵為:將含有可藉 〇 加熱生成前述元素M之氧化物的化合物與矽化物、鋁化 物、破之原料與含有形成發光中心離子的元素的化合物, 於氮化性氣體環境氣氛中反應。該等原料皆為較廉價且取 得容易,而且在大氣中容易操作,故適於大量生產,而可 廉價地製造本實施形態的螢光體。同時,如果使用以本發 明製造方法2所製造的螢光艎組成物,可以使發光裝置更 為廉價’可以提供廉價的發光裝置。 22 200944577 再者’補充說明’上述本發明之製造方法2也可以應 用於上述本發明之製造方法1。例如,如果將形成榮光體母 體原料所使用之鹼土類金屬之氮化物(M3N2)及鋅之氮化物 (ZnsN2)中至少一種’與添加於氮化矽(Si3N4)及氮化鋁(A1N) 中作為還原劑的碳(Carbon)進行燒成,則可將燒成中之雜質 氧以一氧化碳麻*體(CO)的形式去除,而能防止或抑制螢光 體中有氧混入,故可製造高純度氮化物螢光體組成物。 也就是說’在將選自驗土類金屬之氮化物及鋅之氮化 〇 物中至少一種氮化物作為至少一種螢光體原料之氮化物蟹 光體組成物製造方法中’在螢光體原料中添加碳後燒成之 螢光體組成物之製造方法也可以作為上述其他形態的螢光 體組成物製造方法。又,上述氮化物螢光體組成物,意指 氮化物螢光體組成物或氧氮化物螢光體組成物等含有氮作 為構成螢光體母體之氣體元素的螢光體組成物,尤其是, 以氮為主要氣體成分元素的螢光體組成物。 又,以前述MAlSiN3表示之組成物作為螢光體母體之 © 主體的螢光體組成物原料中,即使混有一些例如Si3N4、 M^SisNg、MSiN2、MSi7Ni〇等氮化物系化合物而燒成,也可 以得到類似於上述螢光體組成物之發光特性的螢光體組成 物。因此,本實施形態之螢光體組成物也可以為以 MAlSiN3 · aSi3N4 、 MAlSiN3 · aM2Si5N8 、 MAlSiN3 · aMSiN2、MAlSiN3 · aMSi7N10 中任一個結構式所 表示之氮化物為螢光體母體主體的螢光體組成物。其中,M 為選自Mg、Ca、Sr、Ba及Zn所構成群中之至少一種元素, 23 200944577 a為滿足0SaS2、較佳為osagi之數值。該種螢光體組成 物例如有以 2MAlSiN3 · Si3N4、4MAlSiN3 · 3Si3N4、 MAIS1N3 · S13N4 ' MAIS1N3 * 2Si3N4 ' 2MAlSiN3 · M2Si5N8 ' MAIS1N3 · M2Si5N8 、 MAlSiN3 · 2M2Si5N8 、 2MAlSiN3 · MSiN2、MAlSiN3 · MSiN2、MAlSiN3 · 2MSiN2 ' 2MAlSiN3 · MSi7N10、 MAlSiN3 · MSi7N10、MAlSiN3 · 2 MSi7N10等所表示之組成物中添加發光中心離子的螢光體 組成物等。 (實施形態2) 〇 以下’說明本發明之發光裝置的實施形態。本發明之 發光裝置的一例’只要使用上述實施形態丨之螢光體組成 物作為發光源即可,其形態不特別限定。例如,勞光體之 激發源可以使用選自X光、電子束、紫外線、近紫外線、 可見光(紫、藍、綠色光等)' 近紅外線、紅外線等至少之一 的電磁波。亦可對實施形態1之螢光體施加電場,或者注 入電子等’以激發並發光而作為發光源。 本實施形態之發光裝置’係例如以下名稱之裝置。 ο (1)螢光燈、(2)電漿顯示器、(3)無機電致發光面板、(4) 場發射顯示器、(5)電子管、(6)白色led光源。 更具體地說,本實施形態之發光裝置,有白色lED、 使用白色LED構成之各種顯示裝置(例如,LED資訊顯示終 端機、LED交通信號燈、汽車用之LED燈(煞車燈、方向燈、 前照燈等)、使用白色LED構成之各種照明裝置(LED屋内 外照明燈、車内LED燈、LED緊急照明燈、LED光源、led 24 200944577 裝飾燈)、不使用白色LED燈之各種顯示裝置(電子管、無 機電致發光面板、電漿顯示器面板等)、不使用白色LED 之各種照明裝置(螢光燈等)。 又,從另一觀點’本實施形態之發光裝置,為例如將 發紫外或藍色光之注入型電致發光元件(發光二極體、半導 體雷射、有機電致發光元件等)至少與實施形態1之螢光體 組成物組合成白色發光元件或各種光源、照明裝置、顯示 裝置等中任一者。又,上述發光裝置包括使用至少一上述 © 白色發光元件所構成之顯示裝置、照明裝置、光源等。 本實施形態之發光裝置’較佳為發出在580〜660nm的 波長區域具有發光峰之暖色系光’更佳為在610〜65〇nm的 波長區域具有發光峰之紅色系光的氮化物螢光體組成物作 為發光源所構成之發光裝置,其中,以實施形態1之勞光 體組成物作為上述氮化物螢光體組成物。 又,本實施形態之發光裝置,例如,係組合發出36〇nm 以上、未滿560nm之一次光的發射源、與吸收上述發射源 〇 之一次光並轉換為較上述一次光之波長為長的可見光之螢 光體組成物的發光裝置,其中,上述螢光體組成物係使用 實施形態1的螢光體組成物,更佳為使用放出暖色系光之 螢光體組成物。更具體而言,為將發出之光於36〇nm以上、 未滿420nm、420nm以上、未滿500nm、5〇〇nm以上、未滿 560nm任一者之波長區域具有發光峰之發射源,與吸收上述 發射源之一次光並轉換為較上述一次光之波長為長的可見 光的螢光體組成物組合而成的發光裝置,其中,上述螢光 25 200944577 體組成物係使用實施形態1的螢光趙組成物β 本實施形態之發光裝置中,上述發射源可以使用注入 型電致發光元件。又’注入型電致發光元件意指藉由給予 電力以於螢光物質中注入電子,而可以將電能轉換為光能 而發光的光電轉換元件。其具體例如前所述。 本實施形態之發光裝置,係使用可以增廣螢光體材料 選擇度之完全新穎的螢光體作為發光源,因此不需使用稀 有且高價之習知螢光體所構成之發光裝置,可以製作廉價 的發光裝置。且,由於係以發出暖色系光、尤其是發出紅 ❹ 色光的螢光體作為發光源,故,暖色系的發光成分強度強, 可成為特殊現色評價數R9數值高的發光裝置。 以下,依據圖示說明本實施形態之發光裝置。本實施 形態之發光裝置,只要使用上述實施形態丨之螢光體組成 物作為發光源構成即可,不特別限定。較佳形態為除使用 實施形態1之螢光體組成物之外,並使用發光元件作為發 光源,以上述螢光體組成物覆蓋上述發光元件的方式將上 述螢光體組成物與上述發光元件組合所構成。 ❹ 圖1、圖2、圖3為實施形態丨之螢光體組成物與發光 儿件組合而成之發光裝置的代表實施形態半導體發光裝置 的截面圖。 圖1係顯示一半導體發光裝置,其於基座(submount) 兀件4上構裝至少1個發光元件1,並藉由至少内含實施形 態1之螢光體組成物、且兼作為螢光體層3之母材(例如, 透明樹脂或低㈣玻璃等)的封裝而將發光元件1密封。圖 26 200944577 2係顯示一半導體發光裝置,於設置於導電架5之承載導線 内的杯體6内至少封裝i個發光元件丨,並於杯體6内設 置以至少内含實施形態i之螢光體組成物2之母材形成2 螢光體層3,並且,整體係以樹脂等封裝材封裝。圖3係顯 示一種晶片式的半導體發光裝置,係於框體8内至少配置‘ ι 個發光元件1’並於框體8内至少設有内含實施形態丨之螢 光體組成物2之母材所形成之榮光體層3。 圖1〜圖3中,發光元件i為將電能轉換為光能的光電 〇 轉換元件,具體而言,例如有,發光二極鱧、雷射二極體、 面發光雷射二極體 '無機電致發光元件、有機電致發光元 件等。尤Μ,由使+導體發光體組成物高輸出化的觀點, 較佳為發光二極體或面發光二極體。關於發光元件丨所發 出的光波長,基本上不特別限定,只要在可以激發實施形 態1之螢光艎組成物的波長範圍内即可(例如, 250〜550nm)。但是,為了以高效率激發實施形態1之螢光 體組成物,以製造發白色光系之高發光性能半導體發光裝 ® 置,發光元件1較佳為在超過340、5 OOnm以下,更佳為超 過350、以下420nm,又更佳為超過42〇、5〇〇nm以下,再 更佳為超過360、41〇nm以下,又再更佳為超過44〇、48〇nm 以下之波長範圍,也就是近紫外、紫色或藍色的波長區域 有發光峰。 又’圖1〜圖3中’榮光體層3至少含有實施形態ι之 螢光體組成物2,例如,可將實施形態丨之螢光體組成物分 散於透明樹脂(環氧樹脂或矽嗣樹脂等)或低熔點玻璃等透 27 200944577 明母材來構成。螢光體組成物2在透明母材中之含量,例 如,在上述透明樹脂中時,較佳為5〜8〇重量%,更佳為1〇〜6〇 重量%。被包含於螢光體層3之實施形態丨的螢光體組成物 2為光轉換材料,可吸收上述發光元件1所發出之一部分光 或全部的光’並轉換為黃〜深紅色的光,故螢光體組成物2 會被發光元件1所激發’使半導體發光裝置可以發出至少 含螢光體組成物2所發出的發光成分。 因此’如上所述’如果製作為如下組合構造的發光裝 置’則發光元件1所發的光會與螢光體層所發的光混色等, 0 而得到白色系光,成為可放出需求量大白色系光的半導體 發光元件。 U)發出近紫外光(波長300以上、未滿380nm,由輸出 的觀點’較佳為350以上、未滿38Onm)或紫色光(波長380 以上、未滿420nm,由輸出的觀點,較佳為395以上、未滿 41 5nm)任一者光之發光元件與藍色螢光體、綠色螢光體、 及實施形態1之紅色螢光體組成物組合而成的構造。 (2) 發出近紫外光或紫色光任一者光之發光元件與藍色 © 螢光體、綠色螢光體、黃色螢光體、及實施形態1之紅色 螢光體組成物組合而成的構造。 (3) 發出近紫外光或紫色光任一者光之發光元件與藍色 螢光體、黃色螢光體、及實施形態1之紅色螢光體組成物 組合而成的構造。 (4) 發出藍色光(波長420以上、未滿480nm,由輸出的 觀點’較佳為450以上、未滿480nm)之發光元件與綠色勞 28 200944577 光體、黃色螢光體、及實施形態1之紅色螢光艎組成物組 合而成的構造。 (5) 發出藍色光之發光元件與藍色螢光體、黃色發光 體、及實施形態1之紅色螢光體組成物組合而成的構造。 (6) 發出藍色光之發光元件與綠色螢光體、實施形態^ 之紅色螢光體組成物組合而成的構造。 (7) 發出藍綠色光(波長480nm以上、未滿510nm)之發 光元件與實施形態1之紅色螢光體組成物組合而成的構造。 © 由於發紅色光的實施形態1的螢光體組成物,也可以 被波長5 1 Onm以上、未滿560nm之綠光或波長560nm以上、 未滿590nm的黃光所激發,故也可將發出上述綠色光或黃 色光任一者的發光元件與實施形態1之紅色螢光體組成物 組合以製造半導體發光裝置。 且’由於實施形態1之螢光體組成物也可以發出黃色 光’故上述黃色螢光體也可作為實施形態1之黃色螢光體 組成物。又,此情形中,紅色螢光體組成物也可以作為實 〇 施形態1之螢光體組成物以外的紅色螢光體。再者,發出 藍色光之發光元件與實施形態1之黃色螢光體組成物組合 也可得到白色光。 再者’實施形態1之螢光體組成物以外的上述藍色螢 光體、上述綠色螢光體、上述黃色螢光體、上述紅色螢光 體可於Eu2+活化鋁酸鹽系螢光體、Ειι2+活化鹵磷酸鹽系螢光 體、Eu2+活化磷酸鹽系螢光體、Eu2+活化矽酸鹽系螢光體、 Ce3+活化石榴石系螢光鱧(尤其是,yaG(釔•鋁•石榴 29 200944577 石):ce系螢光體)、Tb3 +活化矽酸鹽系螢光體、Eu2+活化硫 代掊酸鹽、Eu2+活化氮化物系螢光體(特別是SiAi〇N(赛隆) 系螢光鱧)、Eu2+活化驗土類金屬硫化物系螢光體、Eu3 +活 化酸硫化物系螢光體等中廣泛地選擇,更具體而言,可以 使用例如 ’(Ba,Sr)MgAl10O17:Eu2+藍色螢光體、(Sr,Ca,Ba, Mg)i〇(P04)6Cl2:Eu2+藍色螢光體、(Ba,Sr)2Si04:Eu2+綠色螢 光體、BaMgAl10O17:Eu2+,Mn2+綠色螢光體、Y3Al5012:Ce3 + 綠色螢光體、BaY2SiAl4012:Ce3+綠色螢光體、 Ca3Sc2Si3012:Ce3 +綠色螢光體、Y2Si05:Ce3 +,Tb3+綠色螢光 體、BaSiN2:Eu2+綠色螢光體、SrGa2S4:Eu2+綠色螢光體、(Y, Gd)3Al5012:Ce3+黃色螢光體、Y3Al5012:Ce3 +,Pr3+黃色螢光 體、(Sr,Ba)2Si04:Eu2 +黃色螢光體、CaGa2S4:Eu2+黃色螢光 體、〇.75CaO · 2.25A1N · 3.25Si3N4:Eu2+ 黃色螢光體、 CaS:Eu2+紅色螢光體、SrS:Eu2+紅色螢光體、La202S:Eu3 +紅 色螢光逋、Y202S:Eu3 +紅色螢光體等。 又,自以往’已知有以藍色LED作為螢光體的激發源, 並且於螢光體層含有例如Sr2Si5N8:Eu2+氮化物系紅色螢光 體、與上述YAG:Ce系之黃色螢光體、或綠色螢光體之強光 束及高現色的白色LED,而由於實施形態1之螢光體組成 物與上述Sr2Si5N8:Eu2+氮化物系紅色螢光體可以顯示類似 的發光特性,故’以藍色LED作為螢光體之激發源,將實 施形態1之紅色螢光體組成物與上述YAG:Ce系之黃色螢光 體組合而成的發光裝置也可成為與習知的發光裝置同等之 發出強光束及高現色的白色系光的白色LED。 200944577 本實施形態之半導體發光裝置可被近紫外〜藍色光激 發,製造容易且發光強度強,並且化學性安定,而且係使 用紅色發光成分多的實施形態1之螢光體組成物而構成, 故,可成為較習知發光裝置之紅色發光成分的發光強度更 強,可靠度良好,且可廉價地製造的發光裝置。 (實施形態3) 圖4及圖5為本發明發光裝置一例之照明與顯示裝置 的構成概略圖。於圖4,顯示至少使用1個半導鱧發光裝置 Ο 9所構成的照明及顯示裝置,該半導體發光裝置9係將上述 已說明之實施形態1的螢光體組成物與發光元件組合成之 發光裝置之一例。圖5,係表示將至少一種發光元件1與至 少含有實施形態1之螢光體組成物2的螢光體層3組合而 成之照明與顯示裝置。發光元件1及螢光體層3可使用與 上述已說明之實施形態2的半導體發光裝置同樣者。又, 該種構成之照明與顯示裝置的作用或效果也與實施形態2 的半導體發光裝置的情形相同。又,圖4與圖5中,10為 ©輸出光。 圖6〜圖12為以上述圖4及圖5概略顯示之本實施形態 的照明與顯示裝置組合成的照明裝置具體例。圖6顯示具 有一體型發光部11之照明模組12的立體圖。圖7顯示具 有複數發光部11之照明模組12的立體圖。圖8顯示具有 發光部11且可以用開關13控制〇n_〇ff或可控制光量之 桌上臺型照明裝置的立體圖。圖9為使用具有旋入式燈頭 14、反射板15、複數發光部U之照明模組構成光源的照明 31 200944577 裝置侧視圖。又,圖10為圖9之照明裝置的仰視圖。圖1 1 為具有發光部11之平板型影像顯示裝置的立體圖。圖12 為具有發光部之線段式數字顯示裝置的立體圖。 本實施形態之照明、顯示裝置製造容易且發光強度 強,並且化學性安定’而且可使用紅色發光成分多的實施 形態1之螢光體組成物或紅色發光成分的發光強度強、可 靠度良好且可廉價地製造的實施形態2之半導體發光裝置 所構成,故可成為較習知的照明顯示裝置紅色發光成分的 發光強度更強,且可靠度良好’可廉價製造的照明顯示裝 〇 置。 (實施形態4) 圖13為使用實施形態1之螢光艘組成物之發光裝置之 一例的螢光燈端部局部透視圖。圖π中,玻璃管16被電 子管17將兩端密封,内部被封入氖、氬、氪等稀有氣體及 水銀。玻璃管16的内面塗佈有實施形態i之螢光體組成物 18。電子管17藉由2條導線19安裝燈絲電極2〇。玻璃管 16的兩端接著有具有電極端子21之帽22,且電極端子21 ❹ 與導線19相連接》 本實施形態之螢光燈的形狀、大小、瓦數及螢光燈所 發射之光的光色、演色性等不特別限定。形狀不限定於本 實施形態之直管,也可為例如圓形、雙環形、雙子型、小 巧形、U字形、燈泡形等,也包括液晶背光用的細管等。大 小例如有4形〜11〇形等。瓦數例如有數瓦〜數百瓦,可視用 途適當決定。光色例如有畫光色、畫白色、白色、溫白色 32 200944577 等。 本實施形態之螢光燈,由於係以製造容易且發光強度 強、化學性安定且可使用紅色發光成分多的實施形態丨之 螢光體組成物所構成,故與習知的螢光燈相比,紅色發光 成分的發光強度更強,可廉價製造螢光燈。 (實施形態5) 圖14 ’為使用實施形態丨之螢光體組成物之發光裝置 一例的雙絕緣構造薄膜電致發光面板的截面圖。圖14中, 〇 背面基板23為保持薄膜EL面板的基板,係由金屬、玻璃、 陶瓷等所構成。下部電極24為用以對厚膜介電體25/薄臈 螢光體26/薄膜介電體27之積層構造施加1〇〇~3〇〇v左右交 流電壓的電極,例如,為藉由印刷技術等方法形成之金屬 電極或In-Sn-O透明電極等。厚膜介電體25除了作為薄膜 螢光體26之製膜基板以外,亦用於在施加上述交流電壓時 限制流過薄膜螢光體26之電荷量,例如,可由厚度數1〇 ㈣〜數⑽之㈣叫等陶究材料形成。又,薄膜螢光體% 鼙係由可藉電荷流過勞光體層中而發出高亮度榮光之電致發 光材料所構成,例如’以電子束蒸錢法或賤鍍法等薄膜化 技術製膜之硫代鋁酸鹽螢光體(藍色發光藍 色發光(Ba,Mg)Al2S4:Eu2+等)或硫代梧酸鹽登光體(藍色發 光caGa2s4:ce3+等)等。薄膜介電體27除了限制流過薄膜勞 光體26之電荷量,尚可預防薄膜勞光體%與大氣中之水 蒸氣等反應而劣化’例如,U ^ , 1 ^ 以化學氣相沉積法或濺鍍法等 薄膜化技術製膜之氧化石夕、氧化銘等透光性介電體。又, 33 200944577 上述電極28與下部電極24成對,為對厚膜介電體25/薄膜 勞光體26/薄膜介電趙27之積層構造施加1〇〇〜3〇〇v左右交 流電壓之電極’例如’藉由真空蒸鍛法或滅鍵法等製膜技 術’於薄膜介電體27上面形成由In_Sn_〇等構成之透明電 極。光波長轉換層29,為將薄膜螢光體26所放出、並透過 薄膜介電體27及上部電極28之光(例如,藍色光)轉換為例 如綠色光或黃色光或紅色光等波長者。又’光波長轉換層 29也可以設置複數種類,表面玻璃3〇係用於保護如上構成 之雙絕緣構造薄膜EL面板者。 〇 如果於上述薄膜EL面板之下部電極24與上部電極28 之間施加100〜300V左右之交流電壓,則會對厚膜介電體25/ 薄膜螢光體26/薄膜介電體27之積層構造施加1〇〇〜3 00V左 右交流電壓,使電荷流過薄膜螢光體26並發光。該發光穿 過具有透光性之薄膜介電體27及上部電極28,並激發光波 長轉換層29成為經波長轉換的光。該經過波長轉換的光, 穿過表面玻璃30朝面板外發射,而可從面板外觀察。 使用實施形態1之螢光體組成物之發光裝置的實施形 © 態中’至少一個光波長轉換層29係以實施形態1之螢光體 組成物、尤其是發紅色光的螢光體組成物所構成。又,較 佳實施形態係以發藍色光之薄膜藍色螢光體作為薄膜勞光 體26,而光波長轉換層29,係以藍色激發綠色發光材料(例 如’ SrGa2S4:Eu2+螢光體)等所構成之綠色光的波長轉換層 31,以及作為紅色光波長轉換層之具有發紅光的實施形態1 的螢光體組成物的波長轉換層32所構成,再者,如圖14 34 200944577 所示薄臈藍色螢光體所發出之一部分藍色光不會激發光 波長轉換層29,而朝面板外發射。再者,將電極構成作成 為可矩陣驅動之格子狀。 如上所示’如果使發光裝置發出由薄膜螢光體26發出 之藍色光33、以光波長轉換層29(31)進行波長轉換為綠色 光34、及以光波長轉換層29(32)波長轉換為紅色光35,則 發光裝置可以放出藍、綠、紅等光之三原色。再者,由於 可以分別控制放出藍、綠、紅光的各像素之點燈,可提供 © 能作全彩顯示之顯示裝置。 使用實施形態1之螢光體組成物的較佳實施形態,由 於為使用實施形態1之紅色螢光體組成物(製造容易、化學 性安定、且可被藍色光激發而發出色純度良好的紅色光)構 成光波長轉換層29的一部分’故可提供具有良好紅色發光 特性的紅色像素且可靠度高的上述發光裝置。 如上所述,本發明可以提供一種螢光體組成物,其含 有以上述aM#2 · bAIN · cShlSU之結構式表示的組成物作 ◎ 為螢光體母體之主體,可發射完全新穎的暖色系光(尤其是 紅色)。又’本發明提供一種氮化物螢光體組成物之製造方 法’適於大量生產’而可廉價製造本發明之氮化物螢光體 組成物。再者,藉由使用高效率的新穎氮化物榮光體組成 物來構成,可以提供暖色系發光成分(尤其是紅色)的發光強 度強、且廉價並使用新穎材料構成之發光裝置。 以下依據實施例具體說明本發明。 (實施例1) 200944577 作為本發明之氮化物螢光體組成物,依如下方法製造 實質組成為Sr0 98Eu0.02AlSiN3之螢光體組成物》 本實施例中之螢光體組成物係使用以下化合物。 (1) 氮化锶粉末(Sr3N2:純度 99.5%):25.〇〇g (2) 氧化銪粉末(Eu203:純度 99.9%):0.93g (3) 氮化矽粉末(Si3N4:純度99%):13.00g (4) 氮化鋁粉末(A1N:純度99.9%):10.78g 使用手套箱,將該等螢光體原料於氮氣環境氣氛中秤 量之後,以研缽充分混合。之後,將該混合粉末放入鋁坩 〇 場’配置於環境氣氛爐之既定位置,於1600°c之氮氣氫氣 混合氣韹(97%氮3%氫)環境氣氛中加熱2小時。為求簡化, 省略粉碎、分級、清洗等後處理。 以下,說明上述製造方法所得到之燒成物 (SrAlSiN3:Eu2+螢光體組成物)的特性。 上述螢光體組成物為鮮橙色。圖15表示上述製造方法 所得到本實施例之螢光體組成物的發光光譜(254ηιη激 發)37與激發光譜36。圖15為上述燒成物在波長63 5nm附 ◎ 近具有發光峰之紅色螢光體’可被220〜600nm的廣波長範 圍的光,亦即’以紫外〜近紫外〜紫〜青〜綠〜黃〜橙光所激發。 又,CIE色度座標中發光的色度(x,y)為χ=〇 612、y=〇 379。 使用螢光X光分析法對上述燒成物之構成金屬元素進 行半定量分析評價的結果’上述燒成物為以Sr、EU、A1, 及Si為主成分所構成的化合物。 該等結果’顯示藉由本實施例之製造方法可製造以 36 200944577 (SrQ.98EuG_〇2)AlSiN3所表示之組成物,且可製造The phosphor of the material "the purity of the solid carbon is preferably as high as possible", for example, a purity of 99% or more, preferably a high purity carbon having an alcohol degree of 99.9% or more. The amount of the solid carbon to be added is a reaction ratio required to remove the stoichiometric amount of the milk contained in the abrasive material, but it is preferably excessive in order to completely remove the oxygen. If specified by specific values, the excess amount of solid carbon added is preferably not more than 0/〇 of the atom required for the above stoichiometry. Further, the solid carbon to be reacted may also serve as a heating element (carbon heater) or as a firing container (carbon crucible or the like). The above-mentioned carbon as a reducing agent may be used in combination with a phosphor raw material, or may be simply contacted. In addition, the nitriding gas is not particularly limited as long as it is nitriding the above-mentioned alkaline earth metal or zinc compound which is reduced by the carbon, and it is easy to take in high-purity fluorine, ease of handling, price, etc. The viewpoint is preferably at least one selected from the group consisting of nitrogen and ammonia, and more preferably nitrogen. Further, in order to increase the reducing power of the firing atmosphere, to improve the performance of the fluorescent iridium or to obtain a high-performance phosphor, a nitrogen-hydrogen mixed gas may be used. The reaction atmosphere containing a nitriding gas is considered to be a reason for using the apparatus 20 200944577, and is preferably a normal-pressure atmosphere, but may be a high-pressure atmosphere, a pressurized atmosphere, a reduced-pressure atmosphere, or a vacuum environment. Any of the atmosphere. In order to improve the performance of the phosphor, the reaction atmosphere is preferably a high-pressure atmosphere, for example, 2 to 1 Torr atmosphere, and if considering the operation of the ambient atmosphere, it is preferably 5 to 20 atm with nitrogen gas as the main component. The atmosphere of the environment. According to this high-pressure atmosphere, it is possible to prevent or suppress decomposition of the nitride phosphor composition during high-temperature firing, and it is possible to suppress the phosphor composition deviation and to manufacture a high-performance phosphor composition. Further, in order to promote the decarburization of the ® reactant (calcined product), a small amount or a slightly 3C water vapor may be contained in the above reaction atmosphere ♦. In order to increase the reactivity of the above-mentioned compound raw materials, a flux reaction may be added. The flux can be appropriately selected from an alkali metal compound (Na2C〇3, Naa, uf) or a halide (SrFa, CaCl2) or the like. The most important feature of the production method 2 of the present invention is that: (1) the raw material of the phosphor composition of the present embodiment does not substantially use an alkaline earth metal or a nitride, an alkaline earth metal or a zinc metal; (2) instead, Using a compound which can form a metal oxide (the above M〇) by heating; (3) reacting the oxygen component contained in the compound with carbon (preferably solid carbon); (4) by further reacting with nitrogen The alkaline gas metal compound is nitrided by a chemical gas reaction, and (5) is reacted with a telluride and an aluminide to produce a phosphor composition of the present embodiment. In the above-described production method 2 of the present invention, the reaction temperature is preferably i 3 〇〇 2 2 〇〇〇 C, and in order to improve the performance of the phosphor, it is preferably ι 6 〇〇 2 2, more preferably 1700. If it is a large amount of production, it is preferably 14 〇〇 18 〇〇 &lt; t, more preferably 1600 〜 1700 ° C. . Also, the reaction can be carried out in fractions. In this way, 21 200944577 by heating, the metal oxide compound can be formed into a metal oxide M〇, and further reacted with carbon, and the metal oxide is reduced by generating carbon monoxide or carbon dioxide, and then the reduced metal is oxidized. The substance is nitrided by a nitriding gas to form a nitride, and is simultaneously reacted with other compounds such as the above-mentioned telluride or aluminide or a gas or the like. Thereby, the nitride phosphor composition of the present embodiment can be produced. If the reaction is carried out at a temperature lower than the above temperature range, the above reaction or reduction may be incomplete, and it is difficult to obtain a high-quality nitride phosphor composition, and if it is reacted at a temperature higher than the above temperature range, nitrogen is required. The phosphor composition is decomposed or melted, and it is difficult to obtain a fluorescent composition having a desired composition or shape (powder, shape, and the like). Further, when the reaction is carried out at a temperature higher than the above temperature range, the manufacturing equipment must use a high-priced heat generating body or a high heat-resistant heat insulating material, and the equipment cost is increased, so that it is difficult to provide an inexpensive phosphor composition. According to the production method 2 of the present invention, it is not necessary to use a high-purity material to obtain an alkaline earth metal or zinc nitride which is difficult to handle in the atmosphere, and it is used as a main raw material of the fluorescent ruthenium. The production method 2 of the present invention is characterized in that a compound containing a compound capable of forming an oxide of the element M by heating with a telluride, an aluminide, a raw material for breaking, and a compound containing an element forming an emission center ion is used for nitriding property. The reaction is carried out in a gaseous atmosphere. Since these raw materials are relatively inexpensive and easy to handle, and are easy to handle in the atmosphere, they are suitable for mass production, and the phosphor of the present embodiment can be produced at low cost. Meanwhile, if the fluorescent iridium composition manufactured by the manufacturing method 2 of the present invention is used, the illuminating device can be made more inexpensive, and an inexpensive illuminating device can be provided. 22 200944577 Further, the above-described manufacturing method 2 of the present invention can be applied to the above-described manufacturing method 1 of the present invention. For example, if at least one of the alkaline earth metal nitride (M3N2) and the zinc nitride (ZnsN2) used for forming the glomanium parent material is formed and added to tantalum nitride (Si3N4) and aluminum nitride (A1N). When the carbon (Carbon) as a reducing agent is fired, the impurity oxygen in the firing can be removed as carbon monoxide (CO), and the oxygen in the phosphor can be prevented or suppressed, so that it can be produced high. Purity nitride phosphor composition. That is, in the method of producing a nitride crab composition in which at least one nitride selected from the group consisting of a nitride of a soil-based metal and a tantalum nitride of zinc is used as at least one kind of phosphor raw material A method for producing a phosphor composition obtained by adding carbon to a raw material and firing the same may be used as a method for producing a phosphor composition of the above other embodiment. In addition, the nitride phosphor composition means a phosphor composition containing nitrogen as a gas element constituting a phosphor precursor, such as a nitride phosphor composition or an oxynitride phosphor composition, in particular, A phosphor composition containing nitrogen as a main gas component element. In addition, the composition of the composition of the above-mentioned MAlSiN3 is used as a raw material of the phosphor composition of the main body of the phosphor precursor, and even if a nitride compound such as Si3N4, M^SisNg, MSiN2, or MSi7Ni〇 is mixed and fired, A phosphor composition similar to the luminescent properties of the above-described phosphor composition can also be obtained. Therefore, the phosphor composition of the present embodiment may be a phosphor in which the nitride represented by any one of MAlSiN3 · aSi3N4, MAlSiN3 · aM2Si5N8, MAlSiN3 · aMSiN2, MAlSiN3 · aMSi7N10 is a phosphor precursor. Composition. Wherein M is at least one element selected from the group consisting of Mg, Ca, Sr, Ba, and Zn, and 23 200944577 a is a value satisfying 0SaS2, preferably osagi. Such a phosphor composition is, for example, 2MAlSiN3 · Si3N4, 4MAlSiN3 · 3Si3N4, MAIS1N3 · S13N4 ' MAIS1N3 * 2Si3N4 ' 2MAlSiN3 · M2Si5N8 ' MAIS1N3 · M2Si5N8 , MAlSiN3 · 2M2Si5N8 , 2MAlSiN3 · MSiN2, MAlSiN3 · MSiN2, MAlSiN3 · 2MSiN2 ' A phosphor composition in which a luminescent center ion is added to a composition represented by 2MAlSiN3, MSi7N10, MAlSiN3, MSi7N10, MAlSiN3, 2MSi7N10 or the like. (Embodiment 2) Hereinafter, an embodiment of a light-emitting device of the present invention will be described. In the example of the light-emitting device of the present invention, the phosphor composition of the above embodiment may be used as the light-emitting source, and the form thereof is not particularly limited. For example, an electromagnetic wave of at least one selected from the group consisting of X-ray, electron beam, ultraviolet ray, near-ultraviolet light, visible light (purple, blue, green light, etc.), near infrared ray, infrared ray, or the like can be used as the excitation source of the work beam. An electric field may be applied to the phosphor of the first embodiment, or an electron or the like may be injected to excite and emit light to serve as a light-emitting source. The light-emitting device of the present embodiment is, for example, a device of the following name. ο (1) Fluorescent lamps, (2) plasma displays, (3) inorganic electroluminescent panels, (4) field emission displays, (5) electron tubes, and (6) white led light sources. More specifically, the light-emitting device of the present embodiment includes various types of display devices including white LEDs and white LEDs (for example, LED information display terminals, LED traffic signals, and LED lights for automobiles (lights, lights, front lights) Various lighting devices (lighting inside and outside LEDs, in-vehicle LED lights, LED emergency lights, LED light sources, led 24 200944577 decorative lights) using white LEDs, various display devices without using white LED lights (electron tubes) For example, an inorganic electroluminescence panel, a plasma display panel, or the like, and various illumination devices (fluorescent lamps, etc.) of a white LED are not used. From another viewpoint, the light-emitting device of the present embodiment is, for example, ultraviolet or blue. A color light-injecting electroluminescent device (a light-emitting diode, a semiconductor laser, an organic electroluminescence device, or the like) is combined with at least the phosphor composition of the first embodiment to form a white light-emitting element, various light sources, an illumination device, and a display device. Or a light-emitting device comprising: a display device and a lighting device using at least one of the above-mentioned white light-emitting elements The light-emitting device of the present embodiment is preferably a warm-colored light having a light-emitting peak in a wavelength region of 580 to 660 nm, and more preferably a red-based light-emitting nitride having a light-emitting peak in a wavelength region of 610 to 65 nm. A light-emitting device comprising a light-emitting device as a light-emitting source, wherein the light-emitting body composition of the first embodiment is used as the nitride phosphor composition. Further, the light-emitting device of the embodiment is, for example, a combination of 36. a light-emitting device having an emission source of primary light of 〇nm or more and less than 560 nm, and a phosphor composition of visible light that is longer than a wavelength of the primary light, and a primary light that absorbs the primary light of the emission source, wherein the fluorescent device The phosphor composition is the phosphor composition of the first embodiment, and more preferably a phosphor composition that emits warm color light. More specifically, the emitted light is 36 〇 nm or more and less than 420 nm. An emission source having a luminescence peak in a wavelength region of 420 nm or more, less than 500 nm, 5 〇〇 nm or more, and less than 560 nm, and absorbing the primary light of the emission source and converting to the above-mentioned one time A light-emitting device in which a phosphor composition having a long wavelength of visible light is combined, wherein the phosphor 25 200944577 body composition uses the fluorescent composition of the first embodiment, and the light-emitting device of the embodiment is The above-mentioned emission source can use an injection type electroluminescence element. The 'injection type electroluminescence element means a photoelectric conversion element which can convert electric energy into light energy to emit light by injecting electric power to inject electrons into the fluorescent substance. The specific example is as described above. The light-emitting device of the present embodiment uses a completely novel phosphor that can increase the selectivity of the phosphor material as a light-emitting source, so that it is not necessary to use a rare and expensive conventional phosphor. A light-emitting device can be constructed to produce an inexpensive light-emitting device. Further, since a phosphor that emits warm light, in particular, red light, is used as the light source, the intensity of the light-emitting component of the warm color is strong, and the light-emitting device having a high number of special color evaluation numbers R9 can be obtained. Hereinafter, the light-emitting device of the present embodiment will be described with reference to the drawings. The light-emitting device of the present embodiment is not particularly limited as long as it is configured by using the phosphor composition of the above embodiment as a light-emitting source. In a preferred embodiment, in addition to using the phosphor composition of the first embodiment, a light-emitting element is used as a light-emitting source, and the phosphor composition and the light-emitting element are provided so that the phosphor composition covers the light-emitting element. Combined composition. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1, Fig. 2, and Fig. 3 are cross-sectional views showing a semiconductor light-emitting device of a representative embodiment of a light-emitting device in which a phosphor composition of an embodiment is combined with a light-emitting device. 1 shows a semiconductor light-emitting device in which at least one light-emitting element 1 is mounted on a submount element 4, and at least contains the phosphor composition of Embodiment 1 and also serves as a fluorescent light. The light-emitting element 1 is sealed by encapsulation of a base material of the bulk layer 3 (for example, a transparent resin or a low (four) glass or the like). Figure 26 200944577 2 shows a semiconductor light-emitting device in which at least one light-emitting element 封装 is packaged in a cup 6 disposed in a carrier wire of the conductive frame 5, and is disposed in the cup body 6 to contain at least the firefly of the embodiment i The base material of the photo composition 2 forms the phosphor layer 3, and the whole is encapsulated by a sealing material such as a resin. Fig. 3 is a view showing a wafer type semiconductor light-emitting device in which at least '1 light-emitting elements 1' are disposed in a housing 8 and at least a mother body containing a phosphor composition 2 of an embodiment is provided in the housing 8. The glory layer 3 formed by the material. In FIGS. 1 to 3, the light-emitting element i is a photoelectric conversion element that converts electrical energy into light energy, and specifically, for example, a light-emitting diode, a laser diode, and a surface-emitting laser diode Electroluminescent elements, organic electroluminescent elements, and the like. In particular, from the viewpoint of increasing the output of the +conductor illuminant composition, a light-emitting diode or a surface-emitting diode is preferable. The wavelength of light emitted by the light-emitting element 基本上 is basically not particularly limited as long as it can excite the wavelength range of the fluorescent iridium composition of the embodiment 1 (for example, 250 to 550 nm). However, in order to excite the phosphor composition of the first embodiment with high efficiency, and to produce a high-luminance semiconductor light-emitting device having a white light-emitting system, the light-emitting element 1 preferably exceeds 340 and 500 nm, and more preferably More than 350, 420 nm or less, more preferably more than 42 〇, 5 〇〇 nm or less, more preferably more than 360, 41 〇 nm or less, and even more preferably more than 44 〇, 48 〇 nm or less, also That is, the wavelength region near the ultraviolet, purple or blue has a luminescence peak. Further, in the 'Fig. 1 to Fig. 3', the refractory layer 3 contains at least the phosphor composition 2 of the embodiment, and for example, the phosphor composition of the embodiment can be dispersed in a transparent resin (epoxy resin or tantalum resin). Etc.) or low-melting glass, etc. 27 200944577 Ming base material. The content of the phosphor composition 2 in the transparent base material, for example, in the above transparent resin, is preferably 5 to 8 % by weight, more preferably 1 to 6 % by weight. The phosphor composition 2 included in the embodiment of the phosphor layer 3 is a light conversion material, and absorbs part or all of the light emitted by the light-emitting element 1 and converts it into yellow to deep red light. The phosphor composition 2 is excited by the light-emitting element 1 to cause the semiconductor light-emitting device to emit a light-emitting component emitted from at least the phosphor composition 2. Therefore, if the light-emitting device of the combination structure is manufactured as described above, the light emitted from the light-emitting element 1 is mixed with the light emitted from the phosphor layer, and the white light is obtained, so that the demand is large. A light-emitting semiconductor light-emitting element. U) emits near-ultraviolet light (wavelength of 300 or more, less than 380 nm, from the viewpoint of output, preferably 350 or more, less than 38 Onm) or violet light (wavelength of 380 or more and less than 420 nm, from the viewpoint of output, preferably A structure in which a light-emitting element of any of 395 or more and less than 41 5 nm is combined with a blue phosphor, a green phosphor, and a red phosphor composition of the first embodiment. (2) A combination of a light emitting element that emits light of either near-ultraviolet light or violet light, and a blue phosphor, a green phosphor, a yellow phosphor, and a red phosphor composition of the first embodiment structure. (3) A structure in which a light-emitting element of either near-ultraviolet light or violet light is combined with a blue phosphor, a yellow phosphor, and a red phosphor composition of the first embodiment. (4) A light-emitting element that emits blue light (having a wavelength of 420 or more and less than 480 nm, which is preferably 450 or more and less than 480 nm from the viewpoint of output), green light 28 200944577 light body, yellow phosphor, and embodiment 1 The structure of the combination of the red fluorescent 艎 composition. (5) A structure in which a blue light emitting element is combined with a blue phosphor, a yellow illuminant, and a red phosphor composition of the first embodiment. (6) A structure in which a blue light emitting element is combined with a green phosphor and a red phosphor composition of the embodiment. (7) A structure in which a light-emitting element of blue-green light (wavelength: 480 nm or more and less than 510 nm) is combined with the red phosphor composition of the first embodiment. © The phosphor composition of Embodiment 1 which emits red light may be excited by green light having a wavelength of 5 1 Onm or less, green light of less than 560 nm, or yellow light of 560 nm or more and less than 590 nm. The light-emitting element of either the green light or the yellow light is combined with the red phosphor composition of the first embodiment to fabricate a semiconductor light-emitting device. Further, since the phosphor composition of the first embodiment can emit yellow light, the yellow phosphor can also be used as the yellow phosphor composition of the first embodiment. Further, in this case, the red phosphor composition may be used as the red phosphor other than the phosphor composition of the embodiment 1. Further, white light can be obtained by combining the light-emitting element emitting blue light with the yellow phosphor composition of the first embodiment. Further, the blue phosphor, the green phosphor, the yellow phosphor, and the red phosphor other than the phosphor composition of the first embodiment may be used in the Eu2+ activated aluminate phosphor. Ειι2+ activated halophosphate-based phosphor, Eu2+-activated phosphate-based phosphor, Eu2+-activated citrate-based phosphor, Ce3+-activated garnet-based fluorescent iridium (especially, yaG (钇•aluminium•pomegranate 29 200944577) Stone): ce-based phosphor), Tb3 + activated citrate-based phosphor, Eu2+-activated thiosilicate, Eu2+ activated nitride-based phosphor (especially SiAi〇N (Sialon) fluorescence鳢), Eu2+ activated soil-based metal sulfide-based phosphors, Eu3 + activated acid sulfide-based phosphors, and the like are widely selected, and more specifically, for example, '(Ba,Sr)MgAl10O17:Eu2+ blue can be used. Color phosphor, (Sr, Ca, Ba, Mg) i〇 (P04) 6Cl2: Eu2+ blue phosphor, (Ba, Sr) 2Si04: Eu2+ green phosphor, BaMgAl10O17: Eu2+, Mn2+ green phosphor , Y3Al5012: Ce3 + green phosphor, BaY2SiAl4012: Ce3+ green phosphor, Ca3Sc2Si3012: Ce3 + green phosphor, Y2Si05: Ce3 + , Tb3+ green phosphor, BaSiN2: Eu2+ green phosphor, SrGa2S4: Eu2+ green phosphor, (Y, Gd) 3Al5012: Ce3 + yellow phosphor, Y3Al5012: Ce3 +, Pr3 + yellow phosphor, (Sr, Ba) 2Si04: Eu2 + yellow phosphor, CaGa2S4: Eu2+ yellow phosphor, 〇.75CaO · 2.25A1N · 3.25Si3N4: Eu2+ yellow phosphor, CaS: Eu2+ red phosphor, SrS: Eu2+ red phosphor , La202S: Eu3 + red fluorescent 逋, Y202S: Eu3 + red fluorescent body. Further, conventionally, a blue LED has been known as an excitation source for a phosphor, and the phosphor layer contains, for example, a Sr2Si5N8:Eu2+ nitride-based red phosphor, and the YAG:Ce-based yellow phosphor. Or a strong green light beam and a high-color white LED, and since the phosphor composition of Embodiment 1 and the above-mentioned Sr2Si5N8:Eu2+ nitride red phosphor can exhibit similar light-emitting characteristics, The color LED is used as an excitation source of the phosphor, and the light-emitting device in which the red phosphor composition of the first embodiment and the YAG:Ce-based yellow phosphor are combined can also be emitted in the same manner as the conventional light-emitting device. A strong light beam and a high-color white light white LED. 200944577 The semiconductor light-emitting device of the present embodiment can be excited by near-ultraviolet to blue light, is easy to manufacture, has high luminous intensity, and is chemically stable, and is composed of the phosphor composition of the first embodiment having a large red light-emitting component. It can be a light-emitting device which is stronger than the red light-emitting component of the conventional light-emitting device, has high luminous intensity, is excellent in reliability, and can be manufactured at low cost. (Embodiment 3) Figs. 4 and 5 are schematic diagrams showing the configuration of an illumination and display device as an example of a light-emitting device of the present invention. Fig. 4 shows an illumination and display device comprising at least one semi-conductive light-emitting device 9 which combines the phosphor composition of the first embodiment described above with a light-emitting element. An example of a light-emitting device. Fig. 5 shows an illumination and display device in which at least one light-emitting element 1 is combined with a phosphor layer 3 containing at least the phosphor composition 2 of the first embodiment. The light-emitting element 1 and the phosphor layer 3 can be the same as those of the semiconductor light-emitting device of the second embodiment described above. The operation and effect of the illumination and display device of this configuration are also the same as those of the semiconductor light-emitting device of the second embodiment. Further, in Fig. 4 and Fig. 5, 10 is © output light. Fig. 6 to Fig. 12 show a specific example of an illumination device which is combined with the illumination and display device of the embodiment schematically shown in Figs. 4 and 5 described above. Fig. 6 shows a perspective view of the illumination module 12 having the integrated light-emitting portion 11. Fig. 7 shows a perspective view of the illumination module 12 having the plurality of light-emitting portions 11. Fig. 8 is a perspective view showing a table type illumination device having a light-emitting portion 11 and capable of controlling 〇n_〇ff or a controllable light amount with a switch 13. Fig. 9 is a perspective view showing the illumination of a light source using a lighting module having a screw-in base 14, a reflector 15, and a plurality of light-emitting portions U. 10 is a bottom view of the lighting device of FIG. 9. Fig. 11 is a perspective view of a flat-panel image display device having a light-emitting portion 11. Figure 12 is a perspective view of a line segment type digital display device having a light emitting portion. The illumination and display device of the present embodiment are easy to manufacture, have high luminous intensity, and are chemically stable, and the phosphor composition or the red luminescent component of the first embodiment in which the red luminescent component is used has high luminous intensity and good reliability. Since the semiconductor light-emitting device of the second embodiment can be manufactured at a low cost, it can be a light-emitting intensity of a red light-emitting component of a conventional illumination display device, and the reliability is good, and the illumination display device can be manufactured at low cost. (Fourth Embodiment) Fig. 13 is a partial perspective view showing an end portion of a fluorescent lamp using an example of a light-emitting device of the fluorescent boat composition of the first embodiment. In Fig. π, the glass tube 16 is sealed at both ends by the electron tube 17, and the inside is sealed with a rare gas such as helium, argon or neon, and mercury. The phosphor composition 18 of the embodiment i is applied to the inner surface of the glass tube 16. The electron tube 17 is provided with the filament electrode 2〇 by two wires 19. Both ends of the glass tube 16 are followed by a cap 22 having an electrode terminal 21, and the electrode terminal 21 ❹ is connected to the lead wire 19. The shape, size, wattage of the fluorescent lamp of the present embodiment and the light emitted by the fluorescent lamp Light color, color rendering, and the like are not particularly limited. The shape is not limited to the straight tube of the present embodiment, and may be, for example, a circular shape, a double ring shape, a double subtype, a small shape, a U shape, a light bulb shape, or the like, and a thin tube for liquid crystal backlight. The size is, for example, a shape of 4 to 11 等. The wattage is, for example, several watts to several hundreds of watts, which can be appropriately determined depending on the application. Light colors such as painted light, painted white, white, warm white 32 200944577 and so on. The fluorescent lamp of the present embodiment is formed of a phosphor composition which is easy to manufacture, has high luminous intensity, is chemically stable, and can use a red light-emitting component. Therefore, it is compatible with a conventional fluorescent lamp. Compared with the red luminescent component, the illuminating intensity is stronger, and the fluorescent lamp can be manufactured at low cost. (Fifth Embodiment) Fig. 14 is a cross-sectional view showing a double-insulation structure thin film electroluminescent panel which is an example of a light-emitting device using a phosphor composition of an embodiment. In Fig. 14, the back surface substrate 23 is a substrate for holding a thin film EL panel, and is made of metal, glass, ceramics or the like. The lower electrode 24 is an electrode for applying an alternating voltage of about 1 〇〇 to 3 〇〇 v to the laminated structure of the thick film dielectric 25 / the thin phosphor 26 / the thin film dielectric 27, for example, by printing. A metal electrode or an In-Sn-O transparent electrode formed by a method such as a technique. In addition to the film formation substrate of the thin film phosphor 26, the thick film dielectric body 25 is also used to limit the amount of charge flowing through the thin film phosphor 26 when the AC voltage is applied. For example, the thickness may be 1 〇 (four) to several (10) (4) is called the formation of ceramic materials. Further, the thin film phosphor % is composed of an electroluminescent material which can emit a high-brightness glory by a charge flowing through the working layer, for example, a film formed by a thin film technique such as an electron beam evaporation method or a ruthenium plating method. A thioaluminate phosphor (blue-emitting blue light (Ba, Mg) Al2S4: Eu2+, etc.) or a thiodecanoate light-emitting body (blue light-emitting caGa2s4: ce3+, etc.). In addition to limiting the amount of charge flowing through the film working body 26, the thin film dielectric body 27 can prevent the film colloidal body from reacting with water vapor in the atmosphere to deteriorate, for example, U ^ , 1 ^ by chemical vapor deposition Or a light-transmissive dielectric such as Oxide Oxide or Oxide, which is formed by a thin film technique such as a sputtering method. Further, 33 200944577 The electrode 28 and the lower electrode 24 are paired, and an alternating current voltage of about 1 〇〇 3 〇〇 v is applied to the laminated structure of the thick film dielectric body 25 / the film varnish 26 / the thin film dielectric ZH 27 . The electrode 'for example, a transparent electrode made of In_Sn_〇 or the like is formed on the film dielectric body 27 by a film forming technique such as a vacuum vapor forging method or a bond-killing method. The light wavelength conversion layer 29 converts light emitted from the thin film phosphor 26 and transmitted through the thin film dielectric body 27 and the upper electrode 28 (for example, blue light) into wavelengths such as green light or yellow light or red light. Further, the optical wavelength conversion layer 29 may be provided in a plurality of types, and the surface glass 3 is used for protecting the double insulating structural film EL panel having the above configuration.施加 If a voltage of about 100 to 300 V is applied between the lower electrode 24 and the upper electrode 28 of the thin film EL panel, the laminated structure of the thick film dielectric 25 / the thin film phosphor 26 / the thin film dielectric 27 An alternating voltage of about 1 〇〇 to about 30,000 volts is applied to cause a charge to flow through the thin film phosphor 26 and emit light. This light is transmitted through the light transmissive thin film dielectric body 27 and the upper electrode 28, and the optical wavelength conversion layer 29 is excited to become wavelength-converted light. The wavelength converted light is emitted through the surface glass 30 toward the outside of the panel and can be viewed from outside the panel. In the embodiment of the light-emitting device using the phosphor composition of the first embodiment, at least one of the light-wavelength conversion layers 29 is a phosphor composition of the first embodiment, in particular, a red-light-emitting phosphor composition. Composition. Further, in a preferred embodiment, a blue-light thin film blue phosphor is used as the thin film working body 26, and the optical wavelength conversion layer 29 is excited by a blue-emitting green light-emitting material (for example, 'SrGa2S4: Eu2+ phosphor). The wavelength conversion layer 31 of the green light and the wavelength conversion layer 32 of the phosphor composition of the first embodiment which emits red light as a red light wavelength conversion layer are formed, and further, as shown in FIG. 14 34 200944577 A portion of the blue light emitted by the thin neon blue phosphor shown does not excite the light wavelength conversion layer 29 and is emitted toward the outside of the panel. Further, the electrode structure is formed in a lattice shape which can be driven by a matrix. As shown above, 'if the light-emitting device emits the blue light 33 emitted from the thin film phosphor 26, the wavelength is converted into the green light 34 by the light wavelength conversion layer 29 (31), and the wavelength is converted by the wavelength conversion layer 29 (32). When it is red light 35, the light-emitting device can emit three primary colors of light such as blue, green, and red. Furthermore, since the lighting of each pixel emitting blue, green, and red light can be separately controlled, a display device capable of full color display can be provided. According to a preferred embodiment of the phosphor composition of the first embodiment, the red phosphor composition of the first embodiment is used (it is easy to manufacture, chemically stable, and can be excited by blue light to emit red with good color purity) The light) constitutes a part of the light wavelength conversion layer 29, so that the above-described light-emitting device having high red light-emitting characteristics and high reliability can be provided. As described above, the present invention can provide a phosphor composition containing a composition represented by the above structural formula of aM#2 · bAIN · cShlSU as a main body of a phosphor precursor, which can emit a completely novel warm color system. Light (especially red). Further, the present invention provides a method for producing a nitride phosphor composition which is suitable for mass production, and which can inexpensively produce the nitride phosphor composition of the present invention. Further, by using a highly efficient novel nitride chrome composition, it is possible to provide a light-emitting device which is excellent in luminous intensity of a warm-colored luminescent component (especially red) and which is inexpensive and uses a novel material. Hereinafter, the present invention will be specifically described based on examples. (Example 1) 200944577 As a nitride phosphor composition of the present invention, a phosphor composition having a substantial composition of Sr0 98Eu0.02AlSiN3 was produced by the following method. The phosphor composition in this example was the following compound. . (1) Cerium nitride powder (Sr3N2: purity 99.5%): 25. 〇〇g (2) cerium oxide powder (Eu203: purity 99.9%): 0.93 g (3) cerium nitride powder (Si3N4: purity 99%) : 13.00 g (4) Aluminum nitride powder (A1N: purity: 99.9%): 10.78 g Using a glove box, the phosphor raw materials were weighed in a nitrogen atmosphere, and then thoroughly mixed in a mortar. Thereafter, the mixed powder was placed in an aluminum crucible field and placed in a predetermined position in an ambient atmosphere furnace, and heated in a nitrogen atmosphere of 1600 ° C (97% nitrogen 3% hydrogen) for 2 hours. For simplification, post-processing such as pulverization, classification, and cleaning is omitted. Hereinafter, the properties of the fired product (SrAlSiN3: Eu2+ phosphor composition) obtained by the above production method will be described. The above phosphor composition is bright orange. Fig. 15 is a view showing the luminescence spectrum (254 η η excitation) 37 and the excitation spectrum 36 of the phosphor composition of the present embodiment obtained by the above production method. Fig. 15 is a view showing the above-mentioned fired material having a broad wavelength range of 220 to 600 nm in a red phosphor having a peak of luminescence at a wavelength of 63 5 nm, that is, 'in the ultraviolet to near ultraviolet to violet ~ cyan to green to yellow to yellow. ~ Orange light is excited. Further, the chromaticity (x, y) of the luminescence in the CIE chromaticity coordinates is χ = 〇 612, y = 379 379. As a result of semi-quantitative analysis of the constituent metal elements of the fired product by the fluorescent X-ray analysis method, the fired product is a compound mainly composed of Sr, EU, A1, and Si. These results show that the composition represented by 36 200944577 (SrQ.98EuG_〇2)AlSiN3 can be manufactured by the manufacturing method of the present embodiment, and can be manufactured.

SrAlSiN3:Eu2+螢光體。。 為便於參考,圖16顯示本實施例之螢光體組成物的X 光繞射圖案。如圖16所示,本實施例之螢光體組成物在至 少使用Cu-Ko:線於常溫常壓下以X光繞射法所進行之繞射 評價中’於繞射角(20)在28〜370附近,與鹼土類金屬氧化 物或氮化矽或氮化鋁等螢光體原料、或者習知的Sr2Si5N8 化合物之繞射峰不同,為有複數強繞射峰之結晶質的螢光 ❹ 體。 又’本實施例可認為是依以下化學反應式,生成以化 學式(SrQ.MEuo.GjAlSiN3表示之化合物、或者以 (Sro^Euo.UAlSiN3之結構式或相近的結構式表示的組成 物。 (化學反應式1) 1.96Sr3N2+0.06Eu2O3+2Si3N4+6AlN+0.04N2+0.l8H2 + 6Sr0.98Eu0.02AlSiN3+〇.18H2〇 个 如此’使用本實施例之製造方法,即使使用化學性不 安定而在大氣中操作困難且高價的&amp;小2,仍能製造 SrAlSiN3:Eu2+螢光體。 又,本實施例係說明含有Eu2 +離子作為發光中心離子 之氮化物螢光體組成物的情形,但是,也可以用同樣方法 製造含有Eu離子以外之發光中心離子(例如,Ce3 +離子) 之螢光體組成物。 (實施例2) 37 200944577 作為本發明之氮化物螢光體組成物,以下述之與實施 例1不同之製造方法製造實質組成為Sr〇 98Eu〇 〇2AlSiN3之 螢光體組成物。 本實施例中使用以下化合物作為螢光體原料。 (1) 碳酸鳃粉末(Sr3C03:純度 99.9%):2.894g (2) 氧化銪粉末(Eu203:純度 99.9%):0.070g (3) 氮化矽粉末(Si3N4:純度99%):〇.988g (4) 氮化鋁粉末(A1N:純度99.9%):0.820g 又,使用下述固體碳作為上述碳酸锶及上述氧化銪之 還原劑(添加還原劑)。 (5) 碳(石墨)粉(C:純度 99.9%):0.240g 首先,將該等螢光體原料與添加還原劑以自動研砵充 分混合。之後,將混合粉末放入鋁製坩堝,配置於環境氣 氛爐中既定的位置,於16〇〇。(:之氮氣氫氣混合氣體(97%氮 3%氫)環境氣氛中加熱2小時。為了簡化,省略粉碎、分級' 清洗等後處理。 以下,說明上述製造方法所得到之燒成物 (STAlSiN3:Eu2+螢光體組成物)的特性。 上述螢光體組成物為橙色。圖17,係表示上述製造方 法所得到本實施例之螢光體組成物的發光光譜(254ηπ1激 發)37與激發光譜36。圖17為上述燒成物在波長640nm附 近具有發光峰之紅色螢光體’可被220〜600nm的廣波長範 圍的光,亦即,以紫外〜近紫外〜紫〜青〜綠〜黃〜橙光所激發。 又’使用螢光X光分析法對上述燒成物之構成金屬元 200944577 素進行半定量分析評價的結果,上述燒成物為以心士、 A1’及Si為主成分所構成的化合物。 該等結果顯示,以本實施例之製造方法可以製造以 (Sro^Euo.JAlSiN3所表示之組成物,且可製造 SrAlSiN3:Eu2+螢光體。 為便於參考,圖18顯示本實施例之螢光體組成物的X 光繞射圖案。如圖18所示,本實施例之螢光體組成物在至 少使用Cu-Κα線於常溫常壓下以χ光繞射法所進行之繞射 〇 .評價中,於繞射角(2幻在30〜37〇附近,與檢土類金屬氧化 物或氮化矽或氮化鋁等螢光體原料或者習知的化 合物之繞射峰不同,為有複數強繞射峰之結晶質的螢光體。 又,本實施例可認為是依以下化學反應式,實質上以 碳c邊還原鹼土類金屬氧化物Sr0及鑭系氧化物Eu〇,邊 與氮及氮化矽反應,而生成以化學式(Sr〇 98EU() ^八丨以乂表 示之化合物,或者以(Sro.wEuo.oJAlSiN3之結構式或相近的 結構式表不的組成物。 〇 (化學反應式2) 0.98SrCO3 + 0.01Eu2O3 + (l/3)Si3N4+AlN+C + (l/3)N2+0.0 lH2^Sr〇.98Eu〇.〇2AlSiN3+〇.98C〇2 t+CO t+0.01H2O t 如此,使用本實施例之製造方法,可以完全不使用化 學性不安定在大氣中操作困難且高價的Sr金屬或Sr3N2,而 使用操作容易且廉價的碳酸锶作為鹼土類金屬之供給源, 以製造SrAlSiN3:Eu2+螢光體。 以下,說明於實施例2之SrAlSiN3:Eu2+螢光體組成物 39 200944577 中’改變對Sr之Eu取代比例(Eu取代量:Eu/(Sr+Eu)xl00(原 子%))時的特性。 圖19,為不同Eu取代量之SrAlSiN3:Eu2+螢光體在 254nm之紫外光激發下的發光光譜。從圖19可以瞭解,發 光峰波長隨著Eu取代量增加,而由約615nm(Eu取代量:100 原子%)逐漸偏移到長波長侧之約750nm(Eu取代量:100原 子%)為止的範圍。又,隨著Eu取代量增加,發光峰強度逐 漸變強,於Eu取代量為1〜3原子%附近呈現最大值後逐漸 下降。又,即使以波長範圍250〜550nm之紫外〜近紫外〜紫 色〜藍色〜綠色光激發,發光光譜之波峰位置也幾乎沒有改 變。 圖20為SrAlSiN3:Eu2 +螢光體組成物對鹼土類金屬元素 (Sr)之Eu取代量及發光峰波長之關係圖。若考量適於作為 發光裝置之發光峰波長為610〜660nm,較佳為620〜650nm, 則從圖上可以瞭解於發光色方面,作為發光裝置用之紅色 螢光體的較佳Eu取代量為〇·丨以上、未滿7原子%。 又,圖21為SrAlSiN3:Eu2+螢光體組成物對鹼土類金屬 元素(Sr)之Eu取代量及發光峰高度(發光強度)之關係圖。 又,即使激發光源之峰波長在波長範圍250〜500nm之間變 化,也呈現同樣的傾向。從圖21可以瞭解於發光色方面, 較佳Eu取代量為0.3原子%以上、未滿6原子%,更佳為t 原子%以上、未滿4原子〇/〇。 也就疋說,從圖20及圖21可以瞭解,作為發光裝置 用之紅色螢光體的較佳Eu取代量為〇丨以上、未滿7原子 200944577 °/〇 ’更佳為1原子%以上、未滿4原子〇/0。 又’本實施例’係說明含有Eu2 +離子作為發光中心離 子之氮化物螢光體組成物的情形,但是,也可以用同樣方 法製造含有Eu2+離子以外之發光中心離子之螢光體組成物。 (實施例3) 作為本發明之氮化物螢光體組成物,以下述方法製造 實質組成為Sr〇.98Ce〇.〇2AlSiN3之螢光體組成物。 本實施例中使用以下化合物作為螢光體原料。 &amp; ⑴碳酸锶粉末(Sr3C03:純度99.9%):2.894g (2) 氧化鈽粉末(ce〇2:純度 99.99%):〇.〇69g (3) 氮化梦粉末(Si3N4:純度99%):〇.988g (4) 氮化鋁粉末(A1N:純度99.9%):0.820g 又’使用下述固體碳作為上述碳酸錄及上述氧化鈽之 還原劑。 (5) 碳(石墨)粉(c:純度 99.9%):0.240g 使用該等螢光體原料與實施例2以同樣的方法/條件製 ® 作螢光體組成物。 以下’說明上述製造方法所得到之燒成物 (SrAlSiN3:Ce3 +螢光體組成物)的特性。 上述螢光體組成物為帶有藍綠色之白色。圖22表示上 述製造方法所得到本實施例之螢光體組成物的發光光譜 (254nm激發)37與激發光譜36〇圖22為上述燒成物在波長 504nm附近具有發光峰之藍綠色螢光體,可被 的廣波長範圍的光,亦即,紫外〜近紫外〜紫〜藍色光所激發。 200944577 該等結果顯示,本實施例之製造方法可以製造以 SrAlSiN3:Ce3 +表示之組成物。 又’本實施例可認為是依與實施例2同樣的化學反應 式’實質上以碳C邊還原鹼土類金屬氧化物SrO及鑭系氧 化物Ce〇2,邊與氮及氮化矽反應,以生成接近化學式 (SrQ.98Ce〇.()2)AlSiN3結構式所表示之組成物。 如此,使用本實施例之製造方法,可以完全不使用化 學性不安定、且大氣中操作困難且高價的Sr金屬或Sr3N2, 而使用操作容易且廉價的碳酸勰作為鹼土類金屬之供給 源,以製造SrAlSiN3:Ce3+螢光體組成物。 (實施例4) 作為本發明之氮化物螢光鱧組成物,以下述方法製造 實質組成為Ca〇.98Eu〇.〇2AlSiN3之勞光體組成物。 本實施例中除改用以下材料作為螢光體原料及添加還 原劑(碳粉)以外’與實施例2使用同樣製造方法及燒成條件 製造螢光體組成物。 (1) 碳酸鈣粉末(CaC03:純度 99.9%):1.962g (2) 氧化銪粉末(Eu203:純度 99.9%):0.070g (3) 氮化矽粉末(Si3N4:純度99%):〇.988g (4) 氮化鋁粉末(A1N:純度99.9%):0.820g (5) 碳(石墨)粉(C:純度 99.9%):〇.240g 以下,說明上述製造方法所得到之燒成物 (CaAlSiN3:Eu2+螢光體組成物)的特性。 上述螢光體組成物為橙色《圖23表示上述製造方法所 200944577 得到本實施例之螢光體組成物的發光光譜(254nm激發)37 與激發光譜36。圖23中顯示上述燒成物係在波長6〇〇nm 附近具有發光峰之紅橙色螢光體,可被22〇〜55〇nm的廣波 長範圍的光、亦即紫外〜近紫外〜紫〜青〜綠光所激發。又, 於CIE色度座標中之發光色度(乂,7)為χ=〇 496,y=〇 471。 又,使用螢光X光分析法對上述燒成物之構成金屬元 素進行半定量分析評價的結果,上述燒成物為以Ca、Eu、 A1,及Si為主成分所構成的化合物β 該4結果顯示,本實施例之製造方法可製造以 (CaQ,98EuQ,G2)AlSiN3所表示之組成物,且可製造 CaAlSiN3:Eu2+螢光體。 又,本實施例可認為是依以下化學反應式,實質上以 碳C邊還原鹼土類金屬氧化物Ca〇及鑭系氧化物Eu〇,邊 與氮及氮化矽反應’以生成接近化學式(CaG.98Ce().()2)AlSiN3 結構式所表示之組成物,或者接近(CaQ 98CeQ Q2)AlsiN3結構 式表示之組成物。 (化學反應式3) 〇.98CaC03+0.01Eu2〇3+(l/3)Si3N4+AlN+C+(l/3)N2+〇.〇 lH2~&gt;Ca〇,98Eu〇 〇2AlSiN3 + 0.98C02 t+CO t+0.01H20 t 如此,使用本實施例之製造方法,可以完全不使用化 學性不安定在大氣中操作困難且高價的Ca金屬或Ca3N2, 而使用操作容易且廉價的碳酸鈣作為鹼土類金屬之供給 源,以製造CaAlSiN3:Eu2+螢光體。 本實施例,係說明含有Eu2+離子作為發光中心離子之 43 200944577 氮化物螢光體組成物的情形,但是,也可以用同樣方法製 造含有Eu2離子以外之發光中心離子(例如,ce3+)之螢光體 組成物。 又本實施例係說明使用碳粉作為添加還原劑之製造方 法,但螢光體原料如使用鹼土類金屬元素(鈣)之氮化物 (Ca3N2)、氮化矽(Si3N4)、氮化鋁(AIN)、Eu原料(氧化銪 (Eu2〇3)或氮化銪(EuN)或金屬Eu等,而不使用添加還原 劑’也可與實施例1以同樣的方法製造CaAlSiN3:Eu2+螢光 體。 又’藉由適當選擇Eu2+添加量或製造條件,可從SrAlSiN3: Eu2+ phosphor. . For ease of reference, Fig. 16 shows an X-ray diffraction pattern of the phosphor composition of this embodiment. As shown in FIG. 16, the phosphor composition of the present embodiment is in the diffraction evaluation by X-ray diffraction method using at least Cu-Ko: line at normal temperature and normal pressure, at the diffraction angle (20). In the vicinity of 28 to 370, unlike the phosphorous raw material such as an alkaline earth metal oxide or a tantalum nitride or aluminum nitride, or a diffraction peak of a conventional Sr2Si5N8 compound, it is a crystalline fluorescent fluorene having a plurality of strong diffraction peaks. body. Further, in the present embodiment, it is considered that a compound represented by a chemical formula (SrQ.MEuo.GjAlSiN3 or a structural formula represented by (Sro^Euo.UAlSiN3) or a similar structural formula is formed according to the following chemical reaction formula. Reaction formula 1) 1.96Sr3N2+0.06Eu2O3+2Si3N4+6AlN+0.04N2+0.l8H2 + 6Sr0.98Eu0.02AlSiN3+〇18H2〇The use of the production method of the present example, even if chemical instability is used in the atmosphere In the case where the operation is difficult and the price is small, the SrAlSiN3:Eu2+ phosphor can be produced. In addition, this embodiment describes the case of a nitride phosphor composition containing Eu2+ ions as the luminescent center ion, but also A phosphor composition containing a luminescent center ion other than Eu ions (for example, Ce3 + ion) can be produced in the same manner. (Example 2) 37 200944577 As a nitride phosphor composition of the present invention, the following In the production method of Example 1, a phosphor composition having a substantial composition of Sr〇98Eu〇〇2AlSiN3 was produced. In the present example, the following compounds were used as a phosphor raw material. (1) Barium carbonate powder (Sr3C03: purity 99.9%): 2.894g (2) Cerium oxide powder (Eu203: purity 99.9%): 0.070g (3) Cerium nitride powder (Si3N4: purity 99%): 〇.988g (4) Aluminum nitride powder (A1N: Purity: 99.9%): 0.820 g Further, the following solid carbon was used as the above-mentioned cerium carbonate and the above-mentioned reducing agent of cerium oxide (adding a reducing agent). (5) Carbon (graphite) powder (C: purity: 99.9%): 0.240 g First The phosphor raw materials and the added reducing agent are thoroughly mixed in an automatic mortar. Thereafter, the mixed powder is placed in an aluminum crucible, and placed in a predetermined position in an ambient atmosphere furnace at 16 Torr. The mixed gas (97% nitrogen and 3% hydrogen) was heated in an atmosphere for 2 hours. For the sake of simplification, the post-treatment such as pulverization and classification 'cleaning is omitted. Hereinafter, the fired product obtained by the above production method (STAlSiN3: Eu2+ phosphor composition) will be described. The phosphor composition is orange. Fig. 17 shows the luminescence spectrum (254ηπ1 excitation) 37 and the excitation spectrum 36 of the phosphor composition of the present embodiment obtained by the above production method. The red phosphor having a luminescent peak near the wavelength of 640 nm can be 220 600nm wide wavelength range of light, that is, excited by ultraviolet ~ near ultraviolet ~ purple ~ cyan ~ green ~ yellow ~ orange light. Also 'fluorescence X-ray analysis of the above-mentioned burnt composition of the metal element 200944577 As a result of the semi-quantitative analysis evaluation, the fired product was a compound mainly composed of a heart, A1', and Si. These results show that the composition represented by (Sro^Euo.JAlSiN3) can be manufactured by the manufacturing method of the present embodiment, and the SrAlSiN3:Eu2+ phosphor can be manufactured. For convenience of reference, FIG. 18 shows the fluorescence of this embodiment. The X-ray diffraction pattern of the bulk composition. As shown in Fig. 18, the phosphor composition of the present embodiment is diffracted by a calender diffraction method using at least a Cu-Κα line at normal temperature and pressure. In the evaluation, in the vicinity of the diffraction angle (2 illusion in the vicinity of 30 to 37 ,, different from the diffraction peak of the phosphorous material such as the metal oxide or the tantalum nitride or the aluminum nitride or the conventional compound, In addition, in the present embodiment, it is considered that the alkaline earth metal oxide Sr0 and the lanthanide oxide Eu 〇 are substantially reduced by carbon c according to the following chemical reaction formula. And a reaction of cerium nitride to form a compound represented by a chemical formula (Sr 〇 98 EU ( ) ^ octagonal oxime, or a composition represented by a structural formula of Sro.wEuo.oJAlSiN3 or a similar structural formula. Reaction formula 2) 0.98SrCO3 + 0.01Eu2O3 + (l/3) Si3N4+AlN+C + (l/3)N2+0.0 lH2^Sr〇.9 8Eu〇.〇2AlSiN3+〇.98C〇2 t+CO t+0.01H2O t Thus, using the manufacturing method of the present embodiment, it is possible to completely eliminate the use of Sr metal or Sr3N2 which is difficult to operate in the atmosphere and which is difficult to operate in the atmosphere. The SrAlSiN3:Eu2+ phosphor is produced by using cesium carbonate which is easy and inexpensive to operate as a supply source of an alkaline earth metal. Hereinafter, the description of the SrAlSiN3:Eu2+ phosphor composition 39 200944577 of the second embodiment will be changed. The substitution ratio (Eu substitution amount: Eu / (Sr + Eu) x 100 (atomic %)). Fig. 19 is an emission spectrum of a different Eu substitution amount of SrAlSiN3:Eu2+ phosphor under ultraviolet light excitation of 254 nm. As can be understood from Fig. 19, the luminescence peak wavelength is gradually shifted from about 615 nm (Eu substitution amount: 100 atom%) to about 750 nm on the long wavelength side (Eu substitution amount: 100 atom%) as the Eu substitution amount increases. In addition, as the Eu substitution amount increases, the luminescence peak intensity gradually becomes stronger, and the Eu substitution amount is 1 to 3 atom%, and the maximum value is gradually decreased. Further, even in the ultraviolet range to the near ultraviolet range of 250 to 550 nm. ~ purple ~ blue ~ green light excitation, hair The peak position of the optical spectrum is also hardly changed. Fig. 20 is a graph showing the relationship between the Eu substitution amount of the SrAlSiN3:Eu2 + phosphor composition to the alkaline earth metal element (Sr) and the luminescence peak wavelength. The luminescence peak wavelength is 610 to 660 nm, preferably 620 to 650 nm. From the above, it can be understood from the figure that the preferred Eu substitution amount of the red phosphor used as the light-emitting device is 〇·丨 or more, less than 7 atom%. Further, Fig. 21 is a graph showing the relationship between the amount of Eu substitution of the alkaline earth metal element (Sr) and the height of the luminescence peak (luminescence intensity) of the composition of the SrAlSiN3:Eu2+ phosphor. Further, even if the peak wavelength of the excitation light source changes between the wavelength range of 250 to 500 nm, the same tendency is exhibited. As can be seen from Fig. 21, in terms of luminescent color, the Eu substitution amount is preferably 0.3 atom% or more, less than 6 atom%, more preferably t atom% or more, and less than 4 atom 〇/〇. In other words, as can be seen from FIG. 20 and FIG. 21, the preferred Eu substitution amount of the red phosphor used as the light-emitting device is 〇丨 or more, and less than 7 atoms 200944577 ° / 〇 ' is preferably 1 atom% or more. , less than 4 atoms 〇 / 0. Further, the present embodiment describes a case of a nitride phosphor composition containing Eu2+ ions as an emission center ion, but a phosphor composition containing an emission center ion other than Eu2+ ions may be produced in the same manner. (Example 3) As the nitride phosphor composition of the present invention, a phosphor composition having a substantial composition of Sr〇.98Ce〇.2AlSiN3 was produced by the following method. The following compounds were used as the phosphor raw material in this example. &amp; (1) Barium carbonate powder (Sr3C03: purity 99.9%): 2.894 g (2) Yttrium oxide powder (ce〇2: purity: 99.99%): 〇.〇69g (3) Nitriding dream powder (Si3N4: purity 99%) 〇.988g (4) Aluminum nitride powder (A1N: purity: 99.9%): 0.820 g Further, the following solid carbon was used as the reducing agent for the above-mentioned cerium oxide. (5) Carbon (graphite) powder (c: purity: 99.9%): 0.240 g A phosphor composition was produced in the same manner as in Example 2 using these phosphor materials. The following describes the characteristics of the fired product (SrAlSiN3: Ce3 + phosphor composition) obtained by the above production method. The above phosphor composition is white with a blue-green color. Fig. 22 is a view showing an emission spectrum (254 nm excitation) 37 and an excitation spectrum 36 of the phosphor composition of the present embodiment obtained by the above-described production method. Fig. 22 is a blue-green phosphor having an emission peak at a wavelength of 504 nm in the above-mentioned fired product. It can be excited by a wide wavelength range of light, that is, ultraviolet ~ near ultraviolet ~ violet ~ blue light. 200944577 These results show that the manufacturing method of the present embodiment can produce a composition represented by SrAlSiN3:Ce3 + . In the present embodiment, it is considered that the same chemical reaction formula as in Example 2 substantially reduces the alkaline earth metal oxide SrO and the lanthanide oxide Ce〇2 by carbon C, and reacts with nitrogen and tantalum nitride. A composition represented by a structural formula close to the chemical formula (SrQ.98Ce〇.()2) AlSiN3 was produced. As described above, by using the production method of the present embodiment, it is possible to use a commercially inexpensive and inexpensive strontium carbonate as a supply source of an alkaline earth metal without using a Sr metal or Sr3N2 which is chemically unstable and which is difficult to operate in the atmosphere and expensive. A SrAlSiN3:Ce3+ phosphor composition was produced. (Example 4) As a nitride fluorescent iridium composition of the present invention, a mortar composition having a substantial composition of Ca〇.98Eu〇.〇2AlSiN3 was produced by the following method. In the present embodiment, a phosphor composition was produced by the same production method and firing conditions as in Example 2 except that the following materials were used as the phosphor raw material and the addition of the reducing agent (carbon powder). (1) Calcium carbonate powder (CaC03: purity: 99.9%): 1.962 g (2) Cerium oxide powder (Eu203: purity: 99.9%): 0.070 g (3) Barium nitride powder (Si3N4: purity: 99%): 〇.988g (4) Aluminum nitride powder (A1N: purity: 99.9%): 0.820 g (5) Carbon (graphite) powder (C: purity: 99.9%): 240240 g or less, the calcined product obtained by the above production method (CaAlSiN3) : Characteristics of Eu2+ phosphor composition). The above phosphor composition is orange. Fig. 23 shows the above-mentioned production method 200944577. The luminescence spectrum (254 nm excitation) 37 and the excitation spectrum 36 of the phosphor composition of this example were obtained. Fig. 23 shows that the above-mentioned fired product is a red-orange phosphor having a luminescence peak at a wavelength of about 6 〇〇 nm, and can be light of a wide wavelength range of 22 〇 to 55 〇 nm, that is, ultraviolet to near ultraviolet to purple to blue. ~ Green light is inspired. Also, the illuminance chromaticity (乂, 7) in the CIE chromaticity coordinates is χ = 〇 496, y = 471 471. Moreover, as a result of semi-quantitative analysis and evaluation of the constituent metal elements of the fired product by the fluorescent X-ray analysis method, the fired product is a compound β composed mainly of Ca, Eu, A1, and Si. As a result, it was revealed that the manufacturing method of the present embodiment can produce a composition represented by (CaQ, 98EuQ, G2)AlSiN3, and a CaAlSiN3:Eu2+ phosphor can be produced. Further, in the present embodiment, it is considered that the alkaline earth metal oxide Ca〇 and the lanthanide oxide Eu〇 are substantially reduced by carbon C in the following chemical reaction formula, and reacted with nitrogen and tantalum nitride to generate a near chemical formula ( CaG.98Ce().()2) A composition represented by the structural formula of AlSiN3, or a composition represented by a structural formula of (CaQ 98CeQ Q2) AlsiN3. (Chemical reaction formula 3) 〇.98CaC03+0.01Eu2〇3+(l/3)Si3N4+AlN+C+(l/3)N2+〇.〇lH2~&gt;Ca〇, 98Eu〇〇2AlSiN3 + 0.98C02 t+ CO t+0.01H20 t Thus, by using the production method of the present embodiment, it is possible to use calcium carbonate or Ca3N2 which is difficult to operate in the atmosphere and which is difficult to operate in the atmosphere, and to use an easy-to-use and inexpensive calcium carbonate as an alkaline earth metal. The source is supplied to produce a CaAlSiN3:Eu2+ phosphor. In the present embodiment, the case of the 43 200944577 nitride phosphor composition containing the Eu2+ ion as the luminescent center ion is described. However, the fluorescence of the luminescent center ion (for example, ce3+) other than the Eu2 ion can be produced in the same manner. Body composition. Further, this embodiment describes the use of carbon powder as a method of producing a reducing agent, but a phosphor material such as a nitride (Ca3N2), a tantalum nitride (Si3N4), or an aluminum nitride (AIN) using an alkaline earth metal element (calcium). A CaAlSiN3:Eu2+ phosphor can also be produced in the same manner as in Example 1 using an Eu raw material (Eu2〇3) or lanthanum nitride (EuN) or a metal Eu, without using a reducing agent. 'By appropriate selection of Eu2+ addition amount or manufacturing conditions,

CaAlSiN3:Eu2+螢光體得到在61〇nm以上、未滿650nm的波 長區域具有發光峰之紅色光,CaAlSiN3:Eu2+螢光體也可以 成為紅色螢光體。 (實施例5〜8) 作為本發明實施例5〜8之螢光體組成物,以下述方法 製造以實質組成為SrAlSiNs · a,SisN4之結構式表示的氮化 物作為螢光體母體的螢光體組成物。 以下’作為一例,對a’之數值各為〇_5、〇.75、1·2之 螢光體組成物’亦即以 2SrAlSiN3 · Si3N4 、 4SrAlSiN3 · 3Si3N4、SrAlSiN3 · Si3N4、SrAlSiN3 · 2Si3N4 各 組成物作為螢光體母體、並將Sr中2原子%以Eu取代之鸯 光體組成物其製造方法及其特性加以說明。 該等在製造時’係使用與實施例2中已說明相同之鸯 光體原料與添加還原劑。除將混合比例設為表1所示之重 200944577 量比例外,與實施例2以同樣的手法及條件製造螢光體組 成物並進行評價。 表1 結構式 SrC03 EU2O3 S13N4 AIN C 實施例5 2(Sr〇.98Eu〇.〇2)AlSiN3 · Si3N4 5.787g 0.141g 4.942g 1.639g 0.480g 實施例6 4(Sr〇.98Eu〇.〇2)AlSiN3 · 3S13N4 11.574g 0.282g 12.849g 3.279g 0.961g 實施例7 (Sr〇.98Eu〇.〇2)AlSiN3 · S13N4 2.894g 0.070g 3.953g 0.820g 0.240g 實施例8 (Sr〇,98Eu〇,〇2)AlSiN3 · 2S13N4 2.894g 0.070g 6.919g 0.820g 0.240g _ 以下說明所得到螢光體組成物的特性。 上述螢光體組成物皆為橙色。圖24〜27為代表例,表 示上述製造方法所製得之實施例5〜8之螢光體組成物的發 光光譜(254nm激發)37與激發光譜36。圖24〜27中顯示上 述燒成物皆為在波長640nm附近具有發光峰之紅色螢光 體,可被220〜600nm的廣波長範圍的光,亦即紫外〜近紫外 〜紫〜青〜綠〜黃〜橙光所激發。 又,省略詳細數據,如實施例5〜8所說明,不僅SrAlSiN3 Q 中過剩添加Si3N4之樣態組成物中添加Eu2+離子的螢光體組 成物,前述 SrAlSiN3 中過剩添加 Sr2Si5N8、SrSiN2、SrSi7N10 之組成物中添加Eu2+離子之組成物,也就是實質組成為以 SrAlSiN3 · a’Sr2Si5N8、SrAlSiN3 . a’SrSiN2 等結構式表示的 組成物作為螢光體母體之主體,並添加Eu2+離子為發光中 心之一例的氮化物系螢光體組成物也與上述過剩添加Si3N4 之組成物中添加Eu2 +離子的螢光體組成物有同樣的發光特 性。其中,上述a’可為滿足0Sa’S2,較佳為OSa’Sl的 數值,具體而言,為包含0,為0.25、0.33、0.5、0.67、0.75、 45 200944577 1、1.15、2等數值。又,上述a’亦可為滿足0.25 Sa’S2, 較佳為滿足0.25Sa’Sl之數值。 過剩添加之Si3N4、Sr2Si5N8、SrSi7N1()於該等螢光體組 成物係與上述SrAlSiN3共存,或者形成新穎化合物,例如, Sr2Al2Si5N10、Sr4Al4Si13N24、SrAlSi4N7、SrAlSi7Nn ' Sr4Al2Si7N14、Sr3AlSi6Nn、Sr5AlSinN19、Sr3Al2Si3N8、 Sr2AlSi2N5、Sr3AlSi3N7、Sr3Al2Si9N16、Sr2AlSi8N13、 Sr3AlSi15N23等,該種新穎化合物是否具作為螢光體母體之 功能尚未確認,今後需要以各種結晶構造解析方法等仔細 〇 檢查,但兩者都有很大的可能性。 (實施例9〜25) 作為本發明實施例9〜25之螢光體組成物,以下述方法 製造以實質組成為aSr3N2 · bAIN · cSi3N4之結構式表示的 組成物作為螢光體母體的螢光體組成物。 以下,作為一例,a、b、c之數值各為表2所示之值,The CaAlSiN3:Eu2+ phosphor has red light having an emission peak in a wavelength region of 61 〇 nm or more and less than 650 nm, and the CaAlSiN3:Eu2+ phosphor may also be a red phosphor. (Examples 5 to 8) As the phosphor composition of Examples 5 to 8 of the present invention, a nitride having a structural formula of SrAlSiNs · a and a structural formula of SisN4 as a phosphor precursor was produced by the following method. Body composition. In the following 'as an example, the phosphor composition of a_5, 〇.75, 1-2, for each a', is composed of 2SrAlSiN3 · Si3N4, 4SrAlSiN3 · 3Si3N4, SrAlSiN3 · Si3N4, SrAlSiN3 · 2Si3N4 The production method and characteristics of the phosphor composition which is a phosphor precursor and in which 2 atom% of Sr is substituted with Eu will be described. These are used at the time of manufacture to use the same phosphor raw materials and addition reducing agents as described in Example 2. A phosphor composition was produced and evaluated in the same manner and under the same conditions as in Example 2 except that the mixing ratio was set to the weight ratio of 200944577 shown in Table 1. Table 1 Structural formula SrC03 EU2O3 S13N4 AIN C Example 5 2 (Sr〇.98Eu〇.〇2) AlSiN3 · Si3N4 5.787g 0.141g 4.942g 1.639g 0.480g Example 6 4(Sr〇.98Eu〇.〇2) AlSiN3 · 3S13N4 11.574g 0.282g 12.849g 3.279g 0.961g Example 7 (Sr〇.98Eu〇.〇2) AlSiN3 · S13N4 2.894g 0.070g 3.953g 0.820g 0.240g Example 8 (Sr〇, 98Eu〇, 〇 2) AlSiN3 · 2S13N4 2.894g 0.070g 6.919g 0.820g 0.240g _ The characteristics of the obtained phosphor composition are demonstrated below. The above phosphor compositions are all orange. Figs. 24 to 27 are representative examples showing the luminescence spectrum (254 nm excitation) 37 and the excitation spectrum 36 of the phosphor compositions of Examples 5 to 8 obtained by the above production method. 24 to 27 show that the above-mentioned fired materials are red phosphors having an emission peak near a wavelength of 640 nm, and can be light of a wide wavelength range of 220 to 600 nm, that is, ultraviolet to near ultraviolet to violet to blue to green to yellow to yellow. ~ Orange light is excited. Further, the detailed data is omitted. As described in the fifth to eighth embodiments, not only the phosphor composition in which the Eu2+ ion is added to the composition of Si3N4 is excessively added to the SrAlSiN3Q, but the composition of Sr2Si5N8, SrSiN2, and SrSi7N10 is excessively added to the SrAlSiN3. A composition in which Eu2+ ions are added, that is, a composition represented by a structural formula such as SrAlSiN3 · a'Sr2Si5N8 or SrAlSiN3. a'SrSiN2 is used as a main body of the phosphor precursor, and Eu2+ ions are added as an illuminating center. The nitride-based phosphor composition also has the same light-emitting characteristics as the phosphor composition in which Eu2 + ions are added to the composition in which Si3N4 is excessively added. Here, the above a' may be a value satisfying 0Sa'S2, preferably OSa'Sl, specifically, a value of 0, 0.25, 0.33, 0.5, 0.67, 0.75, 45 200944577 1, 1.15, 2, and the like. Further, the above a' may be a value satisfying 0.25 Sa'S2, preferably 0.25 Sa'Sl. Excess Si3N4, Sr2Si5N8, and SrSi7N1() are present in the phosphor composition to coexist with the above-mentioned SrAlSiN3, or to form a novel compound, for example, Sr2Al2Si5N10, Sr4Al4Si13N24, SrAlSi4N7, SrAlSi7Nn'Sr4Al2Si7N14, Sr3AlSi6Nn, Sr5AlSinN19, Sr3Al2Si3N8, Sr2AlSi2N5, Sr3AlSi3N7 Sr3Al2Si9N16, Sr2AlSi8N13, Sr3AlSi15N23, etc., whether or not the novel compound has a function as a phosphor precursor has not been confirmed, and it is necessary to carry out careful inspection by various crystal structure analysis methods in the future, but both have great possibilities. (Examples 9 to 25) As a phosphor composition of Examples 9 to 25 of the present invention, a composition represented by a structural formula having a substantial composition of aSr3N2 · bAIN · cSi3N4 was produced as a phosphor precursor by the following method. Body composition. Hereinafter, as an example, the values of a, b, and c are each shown in Table 2.

Sr中之2原子%以Eu取代之螢光體組成物示於表2、表3、 表6,而說明其製造方法及特性。表2、表3及表6之螢光 ® 體組成物雖然表示方法略有不同,但分別表示同樣組成比 之螢光體組成物。 表2 a b c 螢光體組成物 實施例9 2 3 2 2(Sr〇.98Eu〇.〇2)3N2 · 3A1N · 2S13N4 實施例10 1 1 1 (Sr〇.98Eu〇.〇2)3N2 · AIN · SI3N4 實施例11 4 3 4 4(Sr〇.98Eu〇.〇2)3N2 · 3A1N · 4Si3N4 實施例12 1 2 1 (Sr〇.9gEu〇.〇2)3N2 · 2A1N · S13N4 實施例13 1 1 2 (Sr〇.98Eu〇.〇2)3N2 · AIN · 2S“N4 實施例14 5 3 11 5(Sr〇.98En〇.〇2)3N2 · 3AIN * IIS13N4 實施例15 7 3 16 7(Sr0.98Eu〇.02)3N2 · 3A1N · 16Si3N4 46 200944577 實施例16 4 6 7 4(Sr〇.98Eu〇.〇2)3N2 · 6A1N · 7Si〗N4 實施例17 2 3 8 2(Sr〇,98Eu〇,〇2)3N2 · 3A1N · 8S13N4 實施例18 1 1 5 (Sr〇.98Eu〇.〇2)3N2 * AIN · 5SI3N4 實施例19 4 3 22 4(Sr0.98Eu〇.02)3N2 · 3A1N · 22Si3N4 實施例20 1 2 3 (Sr〇.9gEu〇.〇2)3N2 · 2AIN · 3S13N4 實施例21 1 3 10 (Sr〇.98Eu〇.〇2)3N2 · 3A1N · 10Si3N4 實施例22 1 2 3 (Sr〇.98Eu〇.〇2)3N2 · 2AIN · 3S13N4 實施例23 5 6 14 5(Sr〇.98Eu〇.〇2)3N2 · 6AIN · I4S13N4 實施例24 7 6 19 7(Sr〇.98Eu〇.〇2)3N2 · 6A1N · I9S13N4 實施例25 9 6 24 9(Sr〇.98Eu〇.〇2)3N2 · 6A1N · 24S13N4 表3 螢光體組成物 實施例9 (Sr〇.98Eu〇.〇2)3AlSiN3 · (Sr〇_9sEu〇.〇2)SiN2 實施例10 (Sr〇.98Eu〇,〇2)3AlSiN3 · 2(Sr〇.98Eu〇,〇2)SiN2 實施例11 (Sr〇,98Eu〇.〇2)3AlSiN3 · 3(Sr〇.98Eu〇.〇2)SiN2 實施例12 2(Sr〇.98Eu〇,〇2)3AlSiN3 · (Sr〇.98Eu〇.〇2)SiN2 實施例13 (Sr〇.98Eu〇.〇2)3AlSiN3 · (Sra98Eu〇,〇2)2Si5N8 實施例14 (Sr〇.98Eu〇.〇2)3AlSiN3 · 2(Sr〇.98Eu〇.〇2)2Si5N8 實施例15 (Sr〇.9sEu〇.〇2)3AlSiN3 · 3(Sr〇.98Eu〇.〇2)2Si5N8 實施例16 2(Sr〇.98Eu〇_〇2)3AlSiN3 · (Sr〇.98Eu〇.〇2)2Si5N8 實施例17 (Sr〇.98Eu〇.〇2)3AlSiN3 · (Sr〇.98Eu〇.〇2)2Si7Ni〇 實施例18 (Sr〇_98Eu〇.〇2)3AlSiN3 · 2(Sr〇.98Eu〇_〇2)2Si7Ni〇 實施例19 (Sr〇.98Eu〇.〇2)3AlSiN3 · 3(Sra98Eu〇.〇2)2Si7Ni〇 實施例20 2(Sr〇.98Eu〇.〇2)3AlSiN3 · (Sr〇.98Eu〇.〇2)2Si7Ni〇 實施例21 (Sr〇.98Eu〇,〇2)AlSiN3 · 3S13N4 實施例22 (Sr〇.9gEu〇.〇2)Al2 · SI9N16 實施例23 (Sr〇.98Eu〇.〇2)Al2 · SI14N24 實施例24 (Sr〇.98Eu〇,〇2)Al2 · S119N32 實施例25 (Sr〇.9sEu〇.〇2)Al2 · SI249N40 又,作為比較例1〜5,a、b、c之數值分別為表4所示 之數值,Sr中之2原子%以Eu取代之螢光體組成物示於表 4、表5及表6,並與上述以相同方法製作、評價。表4、 表5及表6之螢光體組成物表示法略有不同,但各表示相 同組成比的螢光體組成物。 47 200944577 表4 a b c 螢光體組成物 比較例1 1 6 1 (Sr〇.98Eu〇.〇2)N2 * 6A1N · S13N4 比較例2 1 9 1 (Sr〇.98Eu〇.〇2)N2 · 9A1N · S13N4 比較例3 2 9 2 2(Sr〇,98Eu〇.〇2)N2 · 9A1N · 2S13N4 比較例4 1 6 4 (Sr〇.98Eu〇.〇2)N2 · 6A1N · 4S13N4 比較例5 2 0 5 2(Sr〇.98Eu〇.〇2)N2 · 5SI3N4 表5 a b c 螢光體組成物 比較例1 1 6 1 (Sr〇.98Eu〇.〇2)AlSiN3 · AIN 比較例2 1 9 1 (Sr〇.98Eu〇_〇2)AlSiN3 _ 2A1N 比較例3 2 9 2 2(Sr〇.98Eu〇.〇2)AlSiN3 · AIN 比較例4 1 6 4 (Sr〇.98Eu〇.〇2)Al2Si4N8 比較例5 2 0 5 (Sr〇.98Ell〇_〇2)2Si5N8 於製造該等時,係使用與實施例2中已說明之相同之 螢光體原料及添加還原劑。除將混合重量比例設為表6所 示之重量比例以外,與實施例2以同樣的方法及條件製造 螢光體組成物並進行評價。 表6 結構式 SrC〇3 Eu2〇3 S13N4 AIN C 實施例9 (Sr〇.98Eu〇.〇2)3AlSi2N5 5.787g 0.141g 1.977g 0.820g 0.480g 例 l〇 (Sr〇.98Eu〇.〇2)3AlSi3N7 8.681g 0.211g 2.965g 0.820g 0.721g 實施例11 (Sr〇.98Eu〇.〇2)3AlSi4N9 11.574g 0.282g 3.953g 0.820g 0.96 lg 實施例12 (Sr〇‘98Eu〇.〇2)3Al2Si3N8 8.681g 0.21 lg 2.965g 1.639g 0.721g 實施例13 (Sr〇,98Eu〇.〇2)3AlSi6Ni 1 8.681g 0.21 lg 5.930g 0.820g 0.721g 實施例14 (Sr〇.98Eu〇.〇2)5AlSillNi9 14.468g 0.352g 10.87¾ 0.820g 1.201g 實施例15 (Sr〇.9gEu〇.〇2)7AlSii6N27 20.255g 0.493g 15.814g 0.820g 1.682g 實施例16 (Sr〇.9sEu〇.〇2)4Al2Si7Ni4 11.574g 0.282g 6.919g 1.639g 0.961g 實施例17 (Sr〇.9gEu〇.〇2)2AlSi8Ni3 5.787g 0.141g 7.907g 0.820g 0.480g 實施例18 (Sr〇.98Eu〇.〇2)3AlSii5N23 8.681g 0.21 lg 14.825g 0.820g 0.72 lg 48 200944577 實施例19 (Sr〇.98Eu〇.〇2)4AlSi22N33 11.574g 0.282g 21.744g 0.820g 0.961g 實施例20 (Sr〇.98Eu〇.〇2)3Al2Sl9Ni6 8.681g 0.21 lg 8.895g 1.639g 〇.721g 實施例21 (Sr〇.98Eu〇.〇2)AlSii〇Ni5 2.894g 0.070g 9.884g 0.820g 0.240g 實施例22 (Sr〇.98Eu〇.〇2)3Al2Si9Ni6 8.681g 0.21 lg 8.895g 1.639g 0.72 lg 實施例23 (Sr〇,9sEu〇.〇2)5Al2Sii4N24 14.468g 0.352g 13.837g 1.639g 1.201g 實施例24 (Sr〇.9sEu〇.〇2)7Al2Sii9N32 20.255g 0.493g 18.779g 1.639g 1.682g 實施例25 (Sr〇.98Eu〇.〇2)9Al2Si24N4〇 26.042g 0.663g 23.721g l_639g 2.162g 比較例1 (Sr〇.9sEu〇.〇2)Al2SiN4 2.894g 0.070g 0.988g 1.639g 0.240g 比較例2 (Sr〇.98Eu〇,〇2)Al2SiN5 2.894g 0.070g 0.988g 2.459g 0.240g 比較例3 (Sr〇.98Eu〇.〇2)2Al3Si2N7 5.787g 0.141g 1.977g 2.459g 0.480g 比較例4 (Sr〇.9gEu〇.〇2)Al2Si4N8 2.894g 0.070g 3.953g 1.639g 0.240g 比較例5 (Sr〇.98Eu〇.〇2)2Si5N8 14.468g 0.352g 12.355g 〇g 1.2〇lg 〇 以下,簡單說明所製得之螢光體組成物之特性。 上述實施例之螢光體組成物皆為橙色。省略發光光譜 與激發光譜,但實施例9〜25之螢光體組成物任一者皆與' 圖 15或圖17所示之實施例1或實施例2的螢光體同樣為在波 長620〜640nm附近具有發光峰之紅色螢光體,可以被 220〜600nm之廣波長範圍的光,亦即紫外〜近紫外〜紫〜青〜 綠〜黃〜橙光所激發。 為便於參考,於表7整理了實施例9〜25及比較例1〜5 〇 之螢光體組成物的發光峰波長及發光峰高度的相對值。 表7 發光峰波長(nm) 相對發光峰高度(任意單位) 實施例9 639 39 實施例10 626 38 實施例11 629 38 實施例12 639 40 實施例13 625 97 實施例14 630 100 實施例15 628 86 實施例16 628 92 49 200944577 實施例17 631 73 實施例18 628 67 實施例19 628 66 實施例20 626 54 實施例21 638 55 實施例22 625 60 實施例23 630 67 實施例24 625 82 實施例25 628 92 比較例1 490 69 比較例2 484 79 比較例3 487 99 比鮫例4 594 12 比較例5 621 104The phosphor composition in which 2 atom% of Sr is substituted with Eu is shown in Table 2, Table 3, and Table 6, and the production method and characteristics thereof will be described. The fluorescent ® body compositions of Tables 2, 3, and 6 have slightly different expression methods, but represent phosphor compositions of the same composition ratio. Table 2 abc Phosphor composition Example 9 2 3 2 2 (Sr〇.98Eu〇.〇2) 3N2 · 3A1N · 2S13N4 Example 10 1 1 1 (Sr〇.98Eu〇.〇2) 3N2 · AIN · SI3N4 Example 11 4 3 4 4 (Sr〇.98Eu〇.〇2) 3N2 · 3A1N · 4Si3N4 Example 12 1 2 1 (Sr〇.9gEu〇.〇2) 3N2 · 2A1N · S13N4 Example 13 1 1 2 (Sr〇.98Eu〇.〇2) 3N2 · AIN · 2S "N4 Example 14 5 3 11 5(Sr〇.98En〇.〇2) 3N2 · 3AIN * IIS13N4 Example 15 7 3 16 7(Sr0.98Eu 〇.02)3N2 · 3A1N · 16Si3N4 46 200944577 Example 16 4 6 7 4(Sr〇.98Eu〇.〇2)3N2 · 6A1N · 7Si〗N4 Example 17 2 3 8 2 (Sr〇, 98Eu〇,〇 2) 3N2 · 3A1N · 8S13N4 Example 18 1 1 5 (Sr〇.98Eu〇.〇2) 3N2 * AIN · 5SI3N4 Example 19 4 3 22 4(Sr0.98Eu〇.02)3N2 · 3A1N · 22Si3N4 Example 20 1 2 3 (Sr〇.9gEu〇.〇2) 3N2 · 2AIN · 3S13N4 Example 21 1 3 10 (Sr〇.98Eu〇.〇2) 3N2 · 3A1N · 10Si3N4 Example 22 1 2 3 (Sr〇. 98Eu〇.〇2)3N2 · 2AIN · 3S13N4 Example 23 5 6 14 5(Sr〇.98Eu〇.〇2)3N2 · 6AIN · I4S13N4 Example 24 7 6 19 7(Sr〇.98Eu〇. 2) 3N2 · 6A1N · I9S13N4 Example 25 9 6 24 9 (Sr〇.98Eu〇.〇2) 3N2 · 6A1N · 24S13N4 Table 3 Phosphor composition Example 9 (Sr〇.98Eu〇.〇2) 3AlSiN3 (Sr〇_9sEu〇.〇2) SiN2 Example 10 (Sr〇.98Eu〇,〇2)3AlSiN3 · 2(Sr〇.98Eu〇,〇2)SiN2 Example 11 (Sr〇, 98Eu〇.〇 2) 3AlSiN3 · 3 (Sr〇.98Eu〇.〇2) SiN2 Example 12 2 (Sr〇.98Eu〇,〇2)3AlSiN3 · (Sr〇.98Eu〇.〇2)SiN2 Example 13 (Sr〇. 98Eu〇.〇2)3AlSiN3 · (Sra98Eu〇,〇2)2Si5N8 Example 14 (Sr〇.98Eu〇.〇2)3AlSiN3 · 2(Sr〇.98Eu〇.〇2) 2Si5N8 Example 15 (Sr〇. 9sEu〇.〇2)3AlSiN3 · 3(Sr〇.98Eu〇.〇2) 2Si5N8 Example 16 2(Sr〇.98Eu〇_〇2)3AlSiN3 · (Sr〇.98Eu〇.〇2) 2Si5N8 Example 17 (Sr〇.98Eu〇.〇2)3AlSiN3 · (Sr〇.98Eu〇.〇2) 2Si7Ni〇Example 18 (Sr〇_98Eu〇.〇2)3AlSiN3 · 2(Sr〇.98Eu〇_〇2) 2Si7Ni〇Example 19 (Sr〇.98Eu〇.〇2) 3AlSiN3 · 3(Sra98Eu〇.〇2) 2Si7Ni〇Example 20 2(Sr〇.98Eu〇.〇2)3AlSiN3 · (Sr〇.98Eu〇. 〇 2) 2Si7Ni〇 Example 21 (Sr〇.98Eu , 〇 2) AlSiN3 · 3S13N4 Example 22 (Sr〇.9gEu〇.〇2)Al2 · SI9N16 Example 23 (Sr〇.98Eu〇.〇2)Al2 · SI14N24 Example 24 (Sr〇.98Eu〇,〇 2) Al2 · S119N32 Example 25 (Sr〇.9sEu〇.〇2) Al2 · SI249N40 Further, as Comparative Examples 1 to 5, the values of a, b, and c are the values shown in Table 4, and 2 in Sr. The phosphor composition in which the atomic % was replaced with Eu is shown in Table 4, Table 5, and Table 6, and was produced and evaluated in the same manner as described above. The phosphor compositions of Tables 4, 5 and 6 are slightly different, but each represents a phosphor composition of the same composition ratio. 47 200944577 Table 4 abc Phosphor composition comparison example 1 1 6 1 (Sr〇.98Eu〇.〇2)N2 * 6A1N · S13N4 Comparative example 2 1 9 1 (Sr〇.98Eu〇.〇2)N2 · 9A1N · S13N4 Comparative Example 3 2 9 2 2 (Sr〇, 98Eu〇.〇2) N2 · 9A1N · 2S13N4 Comparative Example 4 1 6 4 (Sr〇.98Eu〇.〇2)N2 · 6A1N · 4S13N4 Comparative Example 5 2 0 5 2(Sr〇.98Eu〇.〇2)N2 · 5SI3N4 Table 5 abc Phosphor composition Comparative Example 1 1 6 1 (Sr〇.98Eu〇.〇2)AlSiN3 · AIN Comparative Example 2 1 9 1 (Sr 〇.98Eu〇_〇2)AlSiN3 _ 2A1N Comparative Example 3 2 9 2 2(Sr〇.98Eu〇.〇2)AlSiN3 · AIN Comparative Example 4 1 6 4 (Sr〇.98Eu〇.〇2)Al2Si4N8 Comparative Example 5 2 0 5 (Sr〇.98Ell〇_〇2) 2Si5N8 In the production of these, the same phosphor raw materials and addition reducing agents as described in Example 2 were used. The phosphor composition was produced and evaluated in the same manner and under the same conditions as in Example 2 except that the mixing weight ratio was changed to the weight ratio shown in Table 6. Table 6 Structural formula SrC〇3 Eu2〇3 S13N4 AIN C Example 9 (Sr〇.98Eu〇.〇2)3AlSi2N5 5.787g 0.141g 1.977g 0.820g 0.480g Example l〇(Sr〇.98Eu〇.〇2) 3AlSi3N7 8.681g 0.211g 2.965g 0.820g 0.721g Example 11 (Sr〇.98Eu〇.〇2)3AlSi4N9 11.574g 0.282g 3.953g 0.820g 0.96 lg Example 12 (Sr〇'98Eu〇.〇2)3Al2Si3N8 8.681 g 0.21 lg 2.965g 1.639g 0.721g Example 13 (Sr〇, 98Eu〇.〇2) 3AlSi6Ni 1 8.681g 0.21 lg 5.930g 0.820g 0.721g Example 14 (Sr〇.98Eu〇.〇2)5AlSillNi9 14.468g 0.352g 10.873⁄4 0.820g 1.201g Example 15 (Sr〇.9gEu〇.〇2)7AlSii6N27 20.255g 0.493g 15.814g 0.820g 1.682g Example 16 (Sr〇.9sEu〇.〇2)4Al2Si7Ni4 11.574g 0.282g 6.919 g 1.639 g 0.961 g Example 17 (Sr〇.9gEu〇.〇2) 2AlSi8Ni3 5.787g 0.141g 7.907g 0.820g 0.480g Example 18 (Sr〇.98Eu〇.〇2)3AlSii5N23 8.681g 0.21 lg 14.825g 0.820 g 0.72 lg 48 200944577 Example 19 (Sr〇.98Eu〇.〇2) 4AlSi22N33 11.574g 0.282g 21.744g 0.820g 0.961g Example 20 (Sr〇.98Eu〇.〇2)3Al2Sl9Ni6 8.681g 0.21 lg 8.895g 1.639g 721.721g Example 21 (Sr〇.98Eu〇.〇2) AlSii〇Ni5 2.894g 0.070g 9.884g 0.820g 0.240g Example 22 (Sr〇.98Eu〇.〇2)3Al2Si9Ni6 8.681g 0.21 lg 8.895g 1.639 g 0.72 lg Example 23 (Sr〇, 9sEu〇.〇2)5Al2Sii4N24 14.468g 0.352g 13.837g 1.639g 1.201g Example 24 (Sr〇.9sEu〇.〇2)7Al2Sii9N32 20.255g 0.493g 18.779g 1.639g 1.682 g Example 25 (Sr〇.98Eu〇.〇2) 9Al2Si24N4〇26.042g 0.663g 23.721g l_639g 2.162g Comparative Example 1 (Sr〇.9sEu〇.〇2)Al2SiN4 2.894g 0.070g 0.988g 1.639g 0.240g Comparison Example 2 (Sr〇.98Eu〇, 〇2) Al2SiN5 2.894g 0.070g 0.988g 2.459g 0.240g Comparative Example 3 (Sr〇.98Eu〇.〇2) 2Al3Si2N7 5.787g 0.141g 1.977g 2.459g 0.480g Comparative Example 4 (Sr〇.9gEu〇.〇2)Al2Si4N8 2.894g 0.070g 3.953g 1.639g 0.240g Comparative Example 5 (Sr〇.98Eu〇.〇2) 2Si5N8 14.468g 0.352g 12.355g 〇g 1.2〇lg 〇 Below, simple The characteristics of the resulting phosphor composition are illustrated. The phosphor compositions of the above examples were all orange. The luminescence spectrum and the excitation spectrum were omitted, but any of the phosphor compositions of Examples 9 to 25 was the same as the phosphor of Example 1 or Example 2 shown in Fig. 15 or Fig. 17 at a wavelength of 620 〜 A red phosphor having a luminescent peak near 640 nm can be excited by a wide wavelength range of light of 220 to 600 nm, that is, ultraviolet ~ near ultraviolet ~ violet ~ cyan ~ green ~ yellow ~ orange light. For the sake of reference, the relative values of the luminescence peak wavelength and the luminescence peak height of the phosphor compositions of Examples 9 to 25 and Comparative Examples 1 to 5 are summarized in Table 7. Table 7 Luminescence peak wavelength (nm) Relative luminescence peak height (arbitrary unit) Example 9 639 39 Example 10 626 38 Example 11 629 38 Example 12 639 40 Example 13 625 97 Example 14 630 100 Example 15 628 86 Example 16 628 92 49 200944577 Example 17 631 73 Example 18 628 67 Example 19 628 66 Example 20 626 54 Example 21 638 55 Example 22 625 60 Example 23 630 67 Example 24 625 82 Example 25 628 92 Comparative Example 1 490 69 Comparative Example 2 484 79 Comparative Example 3 487 99 Comparative Example 4 594 12 Comparative Example 5 621 104

又,圖28為顯示本發明之螢光體組成物之組成範圍的 三元組成圖。圖28中’實施例1、2、5及5〜25之螢光體 組成物及比較例1〜5之螢光體組成物的發光色中,紅色以 •表示,紅色以外之顏色以△表示。 圖28中之〇表示習知之紅色發光Sr2Si5N8:Eu2+氮化物 矽酸鹽螢光體。再者,圖28之◊表示在大氣中化學特性不 安定,而實施上無法進行發光特性評價之Si*3A12N5:Eu2+榮 光體組成物。又,使用實施例2之製造條件時,圖2 8之三 元組成圖中SqN2比例高的組成物會炫解使製作變得困 難,而於大氣中有化學性不安定的傾向。 由圖28及表7中,可以瞭解本發明為與習知的氮化物 矽酸鹽螢光體(例如,SnALNyEu2—)不同之螢光體組成物, 本發明之螢光體組成物係以aSrsN2 · bAIN · cShN4之結構 式表示的組成物作為螢光體母體的主體,並以Eu2 +離子作 為活化劑’且a、b、c分別為滿足0.2$a/(a+b)S0.95、 50 200944577 0.05Sb/(b+c)S0.8、0.4$c/(c+a)S0.95 之數值,而成為紅 色螢光體。 又,與上述習知之氮化物矽酸鹽螢光體比較,在構成 組成方面代表的螢光體組成物為上述a、b、c分別為滿足 0.2Sa/(a+b)S0.6、0.3$b/(b+c)S0.8、0.4$c/(c+a)g〇.8 之 數值者’尤其是’為a、b、c分別滿足0.2Sa/〇+b:)S0.3、 0.6Sb/(b+c)S0.8、0.4gc/(c+a)S0.6 之數值者,並且為含 有Eu2+作為活化劑之以SrA1SiN3結構式表示之螢光體組成 ❹ 物。Further, Fig. 28 is a ternary composition diagram showing the composition range of the phosphor composition of the present invention. In the luminescent color of the phosphor compositions of Examples 1, 2, 5, and 5 to 25 and the phosphor compositions of Comparative Examples 1 to 5 in Fig. 28, red is indicated by ?, and colors other than red are indicated by Δ. . In Fig. 28, a conventional red light-emitting Sr2Si5N8:Eu2+ nitride tellurite phosphor is shown. Further, Fig. 28 shows a Si*3A12N5:Eu2+ glaze composition in which the chemical properties are not stabilized in the atmosphere and the luminescent properties are not evaluated. Further, when the production conditions of the second embodiment are used, the composition having a high ratio of SqN2 in the composition diagram of Fig. 28 will be dazzled to make the production difficult, and there is a tendency for chemical instability in the atmosphere. From Fig. 28 and Table 7, it can be understood that the present invention is a phosphor composition different from a conventional nitride bismuth silicate phosphor (e.g., SnALNyEu2), and the phosphor composition of the present invention is aSrsN2. · The structure represented by bAIN · cShN4 is the main body of the phosphor precursor, and Eu2+ ions are used as the activator', and a, b, and c respectively satisfy 0.2$a/(a+b)S0.95, 50 200944577 0.05Sb / (b + c) S0.8, 0.4 $ c / (c + a) S0.95 value, and become a red phosphor. Further, in comparison with the conventional nitride phthalate phosphor, the composition of the phosphor represented by the composition is such that a, b, and c satisfy 0.2Sa/(a+b)S0.6, 0.3, respectively. The value of $b/(b+c)S0.8, 0.4$c/(c+a)g〇.8 is 'especially' for a, b, and c respectively satisfying 0.2Sa/〇+b:)S0. 3. A value of 0.6Sb/(b+c)S0.8, 0.4gc/(c+a)S0.6, and a phosphor composition composition represented by the SrA1SiN3 structural formula containing Eu2+ as an activator.

又,實施例9〜25,說明與實施例2之製造方法以同樣 方法製造螢光體組成物之情形,但以實施例1所示之將I 化物原料彼此直接反應的製造方法也可以得到同樣的結 果。 又’實施例9〜25係說明元素Μ為Sr的情形,但是M 為Ca ’或者以Ca或Sr作為Μ之主體、並將一部分上述M 以Ba、Mg或Zn取代時也可得到同樣的結果。 以下’說明本發明之其他實施形態。 詳細檢查以Eu2+活化之螢光體的特性,發現以下(丨)〜(3) 所示螢光體不僅於波長360nm以上、未滿420nm的近紫外〜 紫光區具有發光峰之紫色發光元件激發下内部量子效率 尚’且於波長420nm以上、未滿500nm,尤其是,波長440nm 以上、未滿500nm之藍色區域具有發光峰之藍色發光元件 激發下内部量子效率亦高且良好,其内部量子效率為 90〜1〇〇〇/0。 51 200944577 (1) 以Eu2+活化,且於500nm~未滿560nm之波長區域 具有發光峰之鹼土類金屬原矽酸鹽系、硫代掊酸鹽系、鋁 酸鹽系及氮化物系(氮化物矽酸鹽系或赛隆系等)之綠色螢 光體,例如,(Ba, Sr)2Si04:Eu2+、SrGa2S4:Eu2+ &gt; SrAl204:Eu2+、BaSiN2:Eu2+、SruAhSisN^Ei^等螢光體。 (2) 以Eu2 +活化且於560nm〜未滿600nm之波長區域具 有發光峰之鹼土類金屬原矽酸鹽系、硫代掊酸鹽系及氮化 物系(氮化物矽酸鹽系或赛隆系等)之黃色螢光體,例如,(Sr, Ba)2Si04:Eu2+ 、 CaGa2S4:Eu2+ 、 〇 〇.75(Ca〇.9Eu〇.i)0 · 2.25A1N · 3.25Si3N4:Eu2+ 、Further, in the examples 9 to 25, the case where the phosphor composition is produced in the same manner as the production method of the second embodiment will be described. However, the same production method as in the first embodiment in which the raw material of the compound is directly reacted with each other can be obtained. the result of. Further, 'Examples 9 to 25 show the case where the element Μ is Sr, but the same result can be obtained when M is Ca' or Ca or Sr is the main body of ruthenium, and a part of the above M is substituted with Ba, Mg or Zn. . The following describes other embodiments of the present invention. The characteristics of the phosphors activated by Eu2+ were examined in detail, and it was found that the phosphors shown in the following (丨) to (3) were excited not only by the violet light-emitting elements having a luminescence peak in the near-ultraviolet to violet region of wavelengths of 360 nm or more and less than 420 nm. The quantum efficiency is good at a wavelength of 420 nm or more and less than 500 nm. In particular, a blue light-emitting element having a light-emitting peak in a blue region having a wavelength of 440 nm or more and less than 500 nm has a high internal quantum efficiency and is excellent, and the internal quantum efficiency thereof is 90~1〇〇〇/0. 51 200944577 (1) Alkaline earth metal orthosilicate type, thiophthalate type, aluminate type and nitride type (nitride 活化 activated by Eu2+ and having a luminescence peak in a wavelength range of 500 nm to less than 560 nm A green phosphor such as an acid salt or a sialon system, for example, a phosphor such as (Ba, Sr) 2Si04: Eu2+, SrGa2S4: Eu2+ &gt; SrAl204: Eu2+, BaSiN2: Eu2+, SruAhSisN^Ei^. (2) Alkaline earth metal orthosilicates, thiosilicates, and nitrides (nitride tellurite or sialon) having an emission peak in a wavelength region of 560 nm to less than 600 nm activated by Eu2+ a yellow phosphor such as (Sr, Ba)2Si04:Eu2+, CaGa2S4:Eu2+, 〇〇.75(Ca〇.9Eu〇.i)0 · 2.25A1N · 3.25Si3N4:Eu2+ ,

Ca15Al3Si9N16:Eu2+、(Sr,Ca)2Si04:Eu2+、CaSiAl203N2:Eu2+、Ca15Al3Si9N16: Eu2+, (Sr, Ca) 2Si04: Eu2+, CaSiAl203N2: Eu2+,

CaSi6A10N9:Eu2+等螢光體。 (3) 以Eu2 +活化且於600nm〜未滿660nm之波長區域具 有發光峰之氮化物系(氮化物矽酸鹽系或氮化物胺基矽酸鹽 系等)之紅色螢光體,例如,Sr2Si5N8:Eu2+、SrSiN2:Eu2+、 SrAlSiN3:Eu2+、CaAlSiN3:Eu2+、Sr2Si4A10N7:Eu2+等榮光體。 該等螢光體之激發光譜在較上述藍色發光元件所發出 〇 之光波長為短的區域,多為波長360nm以上、未滿420nm 之近紫外〜紫色區域具有激發光譜,故於上述藍色發光元件 之激發下的外部量子效率不見得高。而内部量子效率則是 意外地較從激發光譜推想為高,為70%以上,特別良好時 為 90〜100%。 作為一例,圖29顯示SrSiN2:Eu2+紅色螢光體之内部量 子效率40、外部量子效率及激發光譜42,又,為便於參考, 52 200944577 亦顯示榮光體的發光光譜43。圖3〇〜圖35中,SrAisiN3:Eu2+ 紅色螢光體(圖3〇)、Sr2lSi5N8:Eu2+紅色螢光體(圖3i) (BaCaSi6A10N9: phosphor such as Eu2+. (3) A red phosphor which is activated by Eu2+ and has a luminescence peak (nitride bismuth hydride or nitride amide citrate) in a wavelength range of from 600 nm to less than 660 nm, for example, Sr2Si5N8 : Eu2+, SrSiN2: Eu2+, SrAlSiN3: Eu2+, CaAlSiN3: Eu2+, Sr2Si4A10N7: Eu2+ and the like. The excitation spectrum of the phosphors is in a region shorter than the wavelength of the light emitted by the blue light-emitting element, and the ultraviolet-violet-purple region having a wavelength of 360 nm or more and less than 420 nm has an excitation spectrum. The external quantum efficiency under excitation of the illuminating element is not necessarily high. The internal quantum efficiency is unexpectedly higher than the excitation spectrum, which is 70% or more, and particularly good is 90 to 100%. As an example, Fig. 29 shows the internal quantum efficiency 40, the external quantum efficiency, and the excitation spectrum 42 of the SrSiN2:Eu2+ red phosphor. Further, for ease of reference, 52 200944577 also shows the luminescence spectrum 43 of the glare. In Fig. 3〇 to Fig. 35, SrAisiN3:Eu2+ red phosphor (Fig. 3〇), Sr2lSi5N8: Eu2+ red phosphor (Fig. 3i) (Ba

Sr)2Si〇4:心綠色螢光體(圖 32)、(Sr,Ba)2si〇4:Eu2+黃色螢 光鱧(圖33)、(Sr,Ca)2Si〇4:Eu2+黃色榮光體(圖叫、 〇.75(Ca〇 9EuG·^ 2·25Α1Ν · u5Si3N4:Eu2+黃色營光體(圖 35)+,與圖29以同樣的方式表示。例如,如圖33所示,以Sr) 2Si〇4: heart green phosphor (Fig. 32), (Sr, Ba) 2si〇4: Eu2+ yellow fluorescent iridium (Fig. 33), (Sr, Ca) 2Si 〇 4: Eu2+ yellow glory (Fig. 、, 〇.75(Ca〇9EuG·^ 2·25Α1Ν · u5Si3N4: Eu2+ yellow camping body (Fig. 35)+, which is represented in the same manner as Fig. 29. For example, as shown in Fig. 33,

Eu2+活化之驗土類全厲盾功 類金屬原石夕酸鹽螢光體之(Sr, ❹ ❹Eu2+ activated soil test type full shield function metal orthosilicate phosphoric acid (Sr, ❹ ❹

Ba)2Si〇4:Eu1色勞光體之外部量子效率,在波長物細 的藍色發光π件激發下約為75%,於波長“On時約為 67%,於波長470nm時約為6〇%。而内部量子效率於波長 楊㈣M、未滿5_m之藍色區域中,皆為較從激發光 譜推想為⑥之85%以上,特別良好的情形為約94%。 又,可以瞭解除上述之螢光體之外,以Eu2+或Ce3 +活 化之勞光體也具有同樣的特性。作為—例,圖36〜圖”中/, (Y,Gd)3Al5012:Ce3 +黃色勞光艎(圖 36)、BaMgAiiQ〇”Eu2+ 藍色螢光體(圖37)、Sr4Al14〇25:Eu2 +藍綠色螢光體(圖%)、 (Sr,Ba)10(P〇4)6Cl2:Eu2+藍色榮光體(圖39),也與圖μ以同 樣的方式表示。 從圖29~® 36可知’各榮光體之外部量子效率對激發 波長之依存性與激發光错的形狀類似,當較激發光譜之峰 為長波長的光激發冑’例&gt;,於上述藍色發光元件激發下, 外部量子效率雖不-定數值高,但是内部量子效率於上述 藍色發光元件之激發下呈現高數值。又,從圖29〜35及圖 37〜39亦可發現,各螢光體在上述紫外發光元件之激發下, 53 200944577 内部量子效率高,良好者為90〜100%。 進一步研究的結果發現,上述(1)〜(3)以外之螢光體, 下述(4)及(5)於上述紫色發光元件激發下,内部量子效率高。 (4) 以Eu或Ce活化’且於49〇nm〜550nm之波長區域 具有發光峰之氣化物系(氮化物碎酸鹽系、赛隆系等)之藍綠 色或綠色螢光體’例如,Sr2Si5N8:Ce3+、SrSiAl203N2:Eu2+、Ba) 2Si〇4: The external quantum efficiency of the Eu1 color laborer is about 75% under the excitation of the blue light-emitting π element with a fine wavelength, about 67% at the wavelength "On" and about 6 at the wavelength 470nm.内部%. The internal quantum efficiency is in the blue region of the wavelength Young (4) M and less than 5 mm, which is 85% or more from the excitation spectrum, and is particularly good, about 94%. In addition to the phosphor, the mortar which is activated by Eu2+ or Ce3+ has the same characteristics. As an example, Fig. 36 to Fig. ", /, (Y, Gd) 3Al5012: Ce3 + yellow Laoguang 艎 (Fig. 36), BaMgAiiQ〇”Eu2+ blue phosphor (Fig. 37), Sr4Al14〇25: Eu2 + blue-green phosphor (Fig. %), (Sr, Ba) 10 (P〇4) 6Cl2: Eu2+ blue glory The body (Fig. 39) is also expressed in the same way as Fig. μ. From Fig. 29~®36, it can be seen that the dependence of the external quantum efficiency of each glory on the excitation wavelength is similar to that of the excitation optical error. The peak is a long-wavelength photoexcited 胄'example>, and under the excitation of the blue light-emitting element, the external quantum efficiency is not high, but the internal quantum efficiency is The blue light-emitting element exhibits a high value under excitation. Further, it can be seen from FIGS. 29 to 35 and FIGS. 37 to 39 that each of the phosphors is excited by the ultraviolet light-emitting element, 53 200944577, and the internal quantum efficiency is high, and the good is good. As a result of further investigation, it was found that the phosphors other than the above (1) to (3) have the internal quantum efficiency high under the excitation of the above-mentioned purple light-emitting elements (4) and (5). a cyan or green phosphor that is activated by Eu or Ce and has a luminescence peak in the wavelength range of 49 〇 nm to 550 nm (nitride sulphate system, sialon system, etc.), for example, Sr2Si5N8: Ce3+ , SrSiAl203N2: Eu2+,

Ca丨.5Al3Si9N16:Ce3 +等螢光體。 (5) 以Eu2 +活化,並且於420nm以上、未滿500nm之波 長區域具有發光峰之鹼土類金屬原矽酸鹽系、鹵磷酸鹽系 〇 之藍綠或藍色螢光體,例如,Ba3Mgsi2〇8:Eu2+、(Sr, Ca)10(PO4)6Cl2:Eu2+等螢光體。 該等榮光體之激發光譜由於在波長360nm以上、未滿 420nm的近紫外〜紫色區域具有激發峰,故於上述紫色發光 元件激發時,外部量子效率不高。 作為一例,於圖40顯示常用於與習知上述紫色發光元 件組合的La2〇2s:Eu3 +紅色螢光體之内部量子效率4〇、外部 量子效率41、及激發光譜42,為便於參考,將螢光體之發 ❹ 光光譜43也一起表示。從圖40可以瞭解,在激發光譜之 峰為380nm以上、未滿420nm的紫外區域及約360〜380nm 左右之激發波長上述La2〇2s:Eu3 +紅色螢光體之内部量子效 率與外部量子效率會隨激發波長的增加而急速下降。例 如,於激發波長為380nm以上、未滿420nm之紫色區域中, 當激發波長依序增長時,内部量子效率呈約80%(380nm)、 約62%(400nm)、約25%(420nm)之大幅度地變低。 54 200944577 又’雖資料省略,Y2〇2S:Eu3 +紅色螢光體之内部量子效 率、外部量子效率及激發光譜,以及上述La2〇2s:Eu3 +紅色 螢光體之内部量子效率與外部量子效率及激發特性’會向 短波長側偏移1〇〜5〇nm。 也就是說,常用於與習知之上述紫色發光元件組合之 La2〇2s:Eu3 +紅色螢光體及Y2〇2S:Eu3 +紅色螢光體,雖然可 以同轉換效率將在波長360nm以上、未滿42〇nm之近紫外〜 紫色區域(尤其是波長380nm以上、未滿420nm之紫色區 ❻域)具有發光峰之發光元件所發出之光轉換為紅色光波 長’但是為材料物性方面難以處理的螢光體。 又’上述La2〇2S:Eu3 +紅色螢光體及Y2〇2S:Eu3 +紅色螢 光體,會顯示上述内部量子效率之激發波長依存性的原因 為’當Eu3+以電荷移動狀態(CTS:charge transfer sute)作為 激發狀態時,於經過CTS之仙3 +之4f能量位準使激發能量 緩和並發光時,會以高效率發光,而若不經CTS由Eu3 +直 接激發發光時,則不能以高效率發光。上述CTS為i個電 〇子從周圍的陰離子(〇或S)移到Eu3 +之狀態。因此,由於上 述機制,上述酸硫化物系之紅色螢光體與發光元件,特別 疋使用紫外發光元件,要得到強光束之發光裝置是困難的。 再者’使用紫色發光元件激發數種螢光體以構成白色 發光裝置時,為了考量色相平衡’輸出光的強度與内部量 子效率最低之螢光體的内部量子效率有相關性。也就是 說,構成發光裝置之螢光體中,如果有1個内部量子效率 低的螢光體,則輸出光的強度也會變低,無法得到強光束 55 200944577 之白色系光。 此處,内部量子效率係指從螢光體所發射之光量子數 對於被螢光體吸收之激發光量子數的比例,外部量子效率 為螢光體所發射之光量子數對照射於螢光體之激發光的量 子數。也就是說,高量子效率表示激發光有效地進行光轉 換°量子效率之測定方法係已建立,於前述照明學會諸中 有詳載。 被内部量子效率高之螢光體所吸收之發光元件所發出 之光,會有效率地進行光轉換後而發出。另一方面,未被 ❽ 螢光體吸收之發光元件所發出之光則會直接放出。因此, 包括於上述波長區域具有發光峰之發光元件,以及,於該 發光元件激發下具有高内部量子效率之螢光體的發光裝置 可以有效地使用光能。故,藉由至少組合上述之螢 光體與上述發光元件,可以製成強光束及高現色的發光裝 置。 另方面,具備於上述波長區域具有發光峰之發光元 件、與在該發光元件所發出之光的激發時内部量子效率低❹ 之螢光體的發光裝置,為了使發光元件所發出之光能無法 有效地變換,而使用低光束的發光裝置。 又,具備於360nm〜未滿420nm之近紫外〜紫色區域具 有發光峰的發光元件、與於該發光元件所發出之光激發下 内°卩量子效率低之螢光體的發光裝置,由於會發出可見度 低之與提強光束幾乎無關之近紫外〜紫色區域的光,故如果 不增厚螢光體層厚度使螢光體層中之螢光體濃度提高,使 56 200944577 上述發光元件所發出之光被螢光體多量吸收,則會變成低 光束的發光裝置。 以下,說明本發明之發光裝置的其他實施形態。 (實施形態6) 本發明之發光裝置之一例,具備含有氮化物螢光體之 螢光體層及發光元件。該發光裝置中,上述發光元件於 360nm以上、未滿500nm的波長區域具有發光♦,上述氮 化物螢光體會被上述發光元件所放出之光所激發而發光, 〇 上述氮化物螢光體所發出之成分係作為輸出光。又,上述 氮化物螢光體係以 Eu2+活化,且為以結構式 (Ml-xEux)AlSiN3表示之螢光體,上述Μ為選自Mg、Ca、 Sr、Ba及Zn至少1種之元素,上述x為滿足0.005 S x S 0.3 之數值。 上述發光元件為將電能轉換為光之光電轉換元件,只 要可以發出於360nm以上、未滿420nm或420nm以上、未 滿500nm,更佳為380nm以上、未滿420nm或440nm以上、 〇 未滿500nm任一波長區域具有發光峰之光即可,不特別限 定,例如可以使用發光二極體(LED)、雷射二極體(LD)、面 發光LD、無機電致發光(EL)元件、有機EL元件等。 如果發光元件中使用以GaN系化合物作為發光層之 LED或LD,以能得到高輸出的觀點,較佳為發出於380nm 以上、未滿420nm,更佳為395mn〜415nm具有發光峰之光 的紫色發光元件,或者,較佳為發出於440nm以上、未滿 500nm,更佳為450〜480nm之波長區域具有發光峰之藍色發 57 200944577 光元件。 上述輪出光,較佳為含有上述發光元件所發光的發光 成分°尤其是,當上述發光元件為於藍色系區域具有發光 峰時’如果輸出光含有上述氮化物螢光體所放出之發光成 分及輸出光’則可以得到演色性更高的白色光。 上述氮化物螢光體為發出於6〇〇nm以上、未滿660nm 波長區具有發光峰之暖色系光,較佳為會發出於 610nm〜65 Onm之波長區域具有發光峰之紅色光,且以上述 結構式(MhEuJAlSiN3表示者,上述於360nm以上、未滿 ❹ 5 OOnm之波長區域的激發光下具有高内部量子效率之氮化 物螢光體’例如圖30所示之SrAlSiN3:Eu2+紅色螢光體或 CaAlSiN3:Eu2+紅色螢光艎等。 至少具有含高内部量子效率之氮化物螢光體的螢光體 層、與上述發光元件的發光裝置,可以高效率地輸出光能。 如上述構成之發光裝置,為暖色系發光成分強且特殊現色 評價數R9值高的裝置。該等可以比美使用La202S:Eu3+螢 光體之習知發光裝置’或者組合Si*2Si5N8:Eu2+螢光體與❹ YAG(紀•銘·石權石):Ce系榮光體)之習知發光裝置具有 強光束及高演色性。 本實施形態之發光裝置只要至少具有含上述氮化物螢 光體之螢光體層與上述發光元件即可,不特別限定,例如,A phosphor such as Ca丨.5Al3Si9N16: Ce3+. (5) An alkaline earth metal orthosilicate type having a luminescence peak in a wavelength region of 420 nm or more and less than 500 nm, a blue-green or blue phosphor of a halophosphate type, for example, Ba3Mgsi2〇 8: a phosphor such as Eu2+, (Sr, Ca)10(PO4)6Cl2: Eu2+. Since the excitation spectrum of the luminescent elements has an excitation peak in a near-ultraviolet to purple region having a wavelength of 360 nm or more and less than 420 nm, the external quantum efficiency is not high when the purple light-emitting element is excited. As an example, FIG. 40 shows an internal quantum efficiency 4 〇, an external quantum efficiency 41, and an excitation spectrum 42 of a La 2 〇 2 s:Eu 3 + red phosphor commonly used in combination with the above-described purple light-emitting element, for convenience of reference. The fluorescence spectrum of the phosphor is also shown together. As can be seen from FIG. 40, the internal quantum efficiency and external quantum efficiency of the above-mentioned La2〇2s:Eu3+ red phosphor are obtained in the ultraviolet region of the excitation spectrum of 380 nm or more, the ultraviolet region of less than 420 nm, and the excitation wavelength of about 360 to 380 nm. It decreases rapidly as the excitation wavelength increases. For example, in a purple region having an excitation wavelength of 380 nm or more and less than 420 nm, when the excitation wavelength is sequentially increased, the internal quantum efficiency is about 80% (380 nm), about 62% (400 nm), and about 25% (420 nm). Drastically lower. 54 200944577 'Also omitted, Y2〇2S: internal quantum efficiency, external quantum efficiency and excitation spectrum of Eu3 + red phosphor, and internal quantum efficiency and external quantum efficiency of the above La2〇2s:Eu3 + red phosphor And the excitation characteristic 'is shifted by 1 〇 to 5 〇 nm toward the short wavelength side. That is to say, La2〇2s:Eu3+ red phosphor and Y2〇2S:Eu3 + red phosphor, which are commonly used in combination with the above-mentioned purple light-emitting elements, can have the same conversion efficiency at a wavelength of 360 nm or more and less than The near-ultraviolet to purple region of 42〇nm (especially the purple region with a wavelength of 380 nm or more and less than 420 nm) is converted into a red light wavelength by light emitted from a light-emitting element having a light-emitting peak, but is fluorescently difficult to handle in terms of material properties. body. 'The above La2〇2S:Eu3 + red phosphor and Y2〇2S:Eu3 + red phosphor, the reason for the excitation wavelength dependence of the above internal quantum efficiency is 'When Eu3+ is in charge transfer state (CTS:charge) When the transfer sute) is in the excited state, when the excitation energy is relaxed and illuminates through the energy level of C 4, the 4f energy level of CTS will emit light with high efficiency, and if the light is directly excited by Eu3 + without CTS, it cannot be High efficiency illumination. The above CTS is a state in which i electric rafts are moved from the surrounding anions (〇 or S) to Eu3 + . Therefore, due to the above mechanism, the above-mentioned acid sulfide-based red phosphor and the light-emitting element, particularly the ultraviolet light-emitting element, are difficult to obtain a light-emitting device of a strong light beam. Further, when a plurality of phosphors are excited by a purple light-emitting element to constitute a white light-emitting device, in order to consider the hue balance, the intensity of the output light is correlated with the internal quantum efficiency of the phosphor having the lowest internal quantum efficiency. In other words, if there is one phosphor having a low internal quantum efficiency in the phosphor constituting the light-emitting device, the intensity of the output light is also lowered, and the white light of the strong light beam 55 200944577 cannot be obtained. Here, the internal quantum efficiency refers to the ratio of the quantum number of light emitted from the phosphor to the quantum number of the excitation light absorbed by the phosphor, and the external quantum efficiency is the excitation of the quantum number of the light emitted by the phosphor to the phosphor. The quantum number of light. That is to say, the high quantum efficiency indicates that the excitation light is efficiently subjected to optical conversion. The measurement method of the quantum efficiency has been established, and is described in detail in the aforementioned illumination society. The light emitted by the light-emitting element absorbed by the phosphor having a high internal quantum efficiency is efficiently emitted after light conversion. On the other hand, light emitted from a light-emitting element that is not absorbed by the phosphor is directly discharged. Therefore, a light-emitting device including a light-emitting peak in the above-mentioned wavelength region, and a light-emitting device having a phosphor having a high internal quantum efficiency excited by the light-emitting element can effectively use light energy. Therefore, by combining at least the above-described phosphor and the above-mentioned light-emitting element, a strong light beam and a high-color light-emitting device can be obtained. On the other hand, a light-emitting device having a light-emitting element having a light-emitting peak in the wavelength region and a phosphor having a low internal quantum efficiency when excited by the light emitted from the light-emitting element is not effective in order to make the light emitted from the light-emitting element The ground is changed, and a low beam illumination device is used. Further, a light-emitting device having a light-emitting peak having a light-emitting peak in a near-ultraviolet to purple region of 360 nm to less than 420 nm, and a light-emitting device having a low quantum efficiency of excitation by light emitted from the light-emitting element are emitted Light with a low visibility and a near-ultraviolet to purple region that is almost independent of the enhanced beam, so if the thickness of the phosphor layer is not increased, the concentration of the phosphor in the phosphor layer is increased, so that the light emitted by the above-mentioned light-emitting element is When the phosphor absorbs a large amount, it becomes a low-beam light-emitting device. Hereinafter, other embodiments of the light-emitting device of the present invention will be described. (Embodiment 6) An example of a light-emitting device of the present invention includes a phosphor layer containing a nitride phosphor and a light-emitting element. In the light-emitting device, the light-emitting element has light emission ♦ in a wavelength region of 360 nm or more and less than 500 nm, and the nitride phosphor is excited by light emitted from the light-emitting element to emit light, and the nitride phosphor emits light. The components are used as output light. Further, the nitride fluorescent system is activated by Eu2+ and is a phosphor represented by a structural formula (M1-xEux)AlSiN3, wherein the lanthanum is an element selected from at least one of Mg, Ca, Sr, Ba, and Zn, x is a value satisfying 0.005 S x S 0.3. The light-emitting element is a photoelectric conversion element that converts electric energy into light, and may be emitted at 360 nm or more, less than 420 nm or 420 nm or more, less than 500 nm, more preferably 380 nm or more, less than 420 nm or 440 nm or more, and less than 500 nm. The light source having a light-emitting peak in one wavelength region is not particularly limited, and for example, a light-emitting diode (LED), a laser diode (LD), a surface light-emitting LD, an inorganic electroluminescence (EL) element, or an organic EL element can be used. Wait. When an LED or LD having a GaN-based compound as a light-emitting layer is used for a light-emitting element, it is preferable to emit purple light having a light-emitting peak at 380 nm or more, less than 420 nm, and more preferably 395 nm to 415 nm from the viewpoint of obtaining a high output. The element, or, preferably, is a blue-emitting 57 200944577 optical element having a light-emitting peak in a wavelength region of 440 nm or more, less than 500 nm, and more preferably 450 to 480 nm. Preferably, the circulated light includes a luminescent component that emits light by the illuminating element. In particular, when the illuminating element has an illuminating peak in the blue region, the illuminating component emitted by the output phosphor includes the nitride phosphor. And the output light' can get white light with higher color rendering. The nitride phosphor is a warm-colored light having an emission peak in a wavelength region of 6 〇〇 nm or more and less than 660 nm, and preferably emits red light having a luminescence peak in a wavelength region of 610 nm to 65 Onm, and has the above structure. The formula (MhEuJAlSiN3, the above-mentioned nitride phosphor having high internal quantum efficiency under excitation light of a wavelength region of 360 nm or more and less than 5,000 nm, for example, SrAlSiN3: Eu2+ red phosphor or CaAlSiN3 shown in FIG. : Eu2+ red fluorescent iridium, etc. A phosphor layer having at least a nitride phosphor having a high internal quantum efficiency and a light-emitting device having the above-described light-emitting element can efficiently output light energy. A device with a strong luminescent component and a high color R9 value. These can be compared to the conventional illuminating device using La202S:Eu3+luminescence' or a combination of Si*2Si5N8:Eu2+ phosphor and ❹YAG. Ming·Shi Quanshi): The well-known illuminating device of the Ce glory body has a strong light beam and high color rendering. The light-emitting device of the present embodiment is not particularly limited as long as it has at least a phosphor layer containing the nitride phosphor and the light-emitting element.

可為使用半導禮發光裝置、白色LED、使用白色lED之顯 示裝置及使用白色LED之照明裝置等。更具體地說,使用 白色LED之顯示裝置例如有,LED資訊顯示終端機、LED 58 200944577 交通信號燈、汽車用之LED燈 等使用白色LED之照明 裝置例如有,LED屋内外照明燈、車内咖燈、哪緊急 燈、led裝飾燈等。 ΟIt can be used with a semi-lighting device, a white LED, a display device using a white lED, and a lighting device using a white LED. More specifically, a display device using a white LED includes, for example, an LED information display terminal, an LED 58 200944577 traffic signal lamp, an LED lamp for an automobile, and the like, and a lighting device using a white LED, for example, an LED indoor and outdoor lighting lamp, a car interior lamp , which emergency lights, led decorative lights, etc. Ο

、中尤以上述LED為較佳的。-般而言,習知的LED 由,、發光原理,為發出特定波長之單色光源的發光元件。 也就是說,習知的無法得到發出白色系光的發光元 相對於此’本實施形態之白I咖,例如藉由將習知 的LED與螢光體加以組合的方法可得到白色螢光。 本實施形態中,上述氮化物勞光體中,若上述元素m 之主成分為Sr或Ca,則可得到良好色調與強發光強度,為 較佳。又,主成分為&amp;或Ca,意指元素Μ的%原子%為 U或Sn,更佳為元素Μ&lt;8〇原子%以上為&amp;或^, 又以元素Μ全部原子為Sr或Ca更佳。 再者,若上述發光元件使用前述注人型電致發光元 件’則可發出強輸出光,故為較佳。如果使用於活性層含 有GaN系之半導體的LED或LED,則可得到強且安定的輸 出光,為更佳。 (實施形態7) 本發明發光裝置之另一例,可為於上述實施形態6.之 螢光體層中,尚含有被Eu2%tCe3+活化且M5〇〇nm以上、 未滿56〇nm之波長區具有發光峰之綠色螢光體。上述螢光 體只要是可被實施形態6所說明之發光元件所發出的光所 激發,且會發出於550nm以上、未滿56〇nm之波長區(較 佳為51〇nm〜550nm之波長區,更佳為525〜55〇nm之波長區) 59 200944577 具有發光峰的螢光體即可,不特別限定。 例如,使用藍色發光元件時,可為激發光譜之最長波 長側的激發峰不是在420nm以上、未滿500nm之波長區的 綠色螢光體,也就是說,可以為激發光譜之最長波長側的 激發峰為未滿420nm波長區的綠色螢光趙。 上述綠色螢光體為於上述360nm以上、未滿5〇〇nm之 波長的激發光下内部量子效率高的螢光體,例如,為圖32 所示’(Ba,Sr)2Si〇4:Eu2+綠色螢光髖。至少具備含有該螢光 體之螢光體層與上述發光元件之發光裝置可以有效率地輸 出光能’故為較佳。該發光裝置中,輸出光所含綠色系的 發光強度會變強,且演色性提高。而且,綠色系光其可見 度尚、且光束較強。尤其是,藉由與螢光體層所含之螢光 體組合’可以得到平均現色評價數(Ra)為90以上之具有高 演色性的輸出光。 如果上述綠色螢光體為以Eu2+活化之氮化物螢光體或 氧氮化物勞光體’例如 BaSiN2:Eu2+、sri 5Al3Si9N16:Eu2+、 cai.5Al3Si9N16;Eu2+% CaSiAl2〇3N2:Eu2+' SrSiAl203N2:Eu2+ ' CaSl2〇2N2:Eu2+、SrSi2〇2N2:Eu2+、BaSi202N2:Eu2+等;以 Eu 活之給丄 + 峨土類金屬原矽酸鹽螢光體,例如(Ba: ST)2S1〇4‘Eu2+、(Ba,Ca)2Si04:Eu2+等;以 Eu 活化之硫代掊 酸·鹽榮^光t 艰’例如’ SrGa2S4:Eu2+等;以Eu活化之鋁酸鹽 勞光體» » J如,SrAl2〇4:Eu2+等;以Eu2+與Mn2+共活化之銘 酸鹽螢光器 /. 艰例如,以 BaMgAl10O17:Eu2+,Mn2+等;以 Ce3 + 活化之氣几&amp; ^化物螢光體或氧氮化物螢光體,例如, 200944577In particular, the above LEDs are preferred. In general, the conventional LED is a light-emitting element that emits a monochromatic light source of a specific wavelength. That is, it is conventionally impossible to obtain a light-emitting element that emits white light. In contrast to the white light of the present embodiment, white fluorescent light can be obtained by, for example, a combination of a conventional LED and a phosphor. In the present embodiment, in the nitride working body, when the main component of the element m is Sr or Ca, a good color tone and a strong light-emitting intensity can be obtained, which is preferable. Further, the main component is &amp; or Ca, meaning that the % atomic % of the element Μ is U or Sn, more preferably the element Μ &lt; 8 〇 atomic % or more is &amp; or ^, and all the atoms of the element 为 are Sr or Ca Better. Further, it is preferable that the light-emitting element can emit strong output light by using the above-mentioned injection type electroluminescent element. If it is used for an LED or LED having a GaN-based semiconductor in its active layer, a strong and stable output light can be obtained, which is more preferable. (Embodiment 7) In another embodiment of the light-emitting device of the present invention, the phosphor layer of the above-described Embodiment 6 may further include a wavelength region activated by Eu2%tCe3+ and having a wavelength of M5〇〇nm or more and less than 56〇nm. Green phosphor of the luminescence peak. The phosphor may be excited by light emitted from the light-emitting element described in the sixth embodiment, and may be emitted in a wavelength region of 550 nm or more and less than 56 〇 nm (preferably, a wavelength region of 51 〇 nm to 550 nm). More preferably, it is a wavelength region of 525 to 55 〇 nm) 59 200944577 A phosphor having an illuminating peak is not particularly limited. For example, when a blue light-emitting element is used, the excitation peak at the longest wavelength side of the excitation spectrum is not a green phosphor in a wavelength region of 420 nm or more and less than 500 nm, that is, it may be the longest wavelength side of the excitation spectrum. The excitation peak is a green fluorescent ray that is below the 420 nm wavelength region. The green phosphor is a phosphor having a high internal quantum efficiency at excitation light having a wavelength of 360 nm or more and less than 5 nm, and is, for example, '(Ba,Sr)2Si〇4:Eu2+ shown in FIG. Green fluorescent hip. It is preferable that at least the light-emitting device including the phosphor layer containing the phosphor and the light-emitting device can efficiently emit light energy. In the light-emitting device, the green light intensity of the output light is increased, and the color rendering property is improved. Moreover, the green light has a good visibility and a strong beam. In particular, by combining with the phosphor contained in the phosphor layer, it is possible to obtain an output light having a high color rendering property with an average color rendering number (Ra) of 90 or more. If the green phosphor is an oxide phosphor or oxynitride colloid activated by Eu2+, such as BaSiN2:Eu2+, sri 5Al3Si9N16:Eu2+, cai.5Al3Si9N16; Eu2+% CaSiAl2〇3N2:Eu2+'SrSiAl203N2:Eu2+ ' CaSl2〇2N2: Eu2+, SrSi2〇2N2: Eu2+, BaSi202N2: Eu2+, etc.; Eu-active 丄+alumina-based metal orthosilicate phosphor, for example (Ba: ST) 2S1〇4'Eu2+, (Ba , Ca) 2Si04: Eu2+, etc.; Eu-activated thiodecanoic acid·salt rong ^ t t difficult 'for example 'SrGa2S4: Eu 2+, etc.; Eu-activated aluminate lacquer» » J, SrAl2 〇 4: Eu2+, etc.; a citrate phosphor that is co-activated with Eu2+ and Mn2+/. For example, BaMgAl10O17:Eu2+, Mn2+, etc.; a gas activated by Ce3+ and an oxynitride phosphor or oxynitride phosphor , for example, 200944577

Sr2Si5N8:Ce3+、CauAhSbNwCe3、Ca2Si5N8:Ce3 +等;及以Sr2Si5N8: Ce3+, CauAhSbNwCe3, Ca2Si5N8: Ce3 +, etc.;

Ce3+活化之具石榴石構造的螢光體,例如 Y3(Al,Ga)5〇i2:Ce3+、Y3Al5〇12:Ce3+、BaY2SiAl4〇12:Ce3+、 CagSc^S^ObCe3—等’則於上述發元件激發下,内部量子效 率會提高,為更佳。 由上所述,本實施形態之發光裝置具備至少含有實施 形態6之氮化物螢光體與上述綠色螢光體的螢光體層,以 及實施形態6之發光元件’且,輸出光含有上述氮化物榮 〇 光體所發出之紅色系成分以及上述綠色螢光體所發出之綠 色系發光成分。 (實施形態8) 本發明發光裝置之另一例可為於上述實施形態6或實 施形態7之螢光體層中’尚含有可被如2+或Ce3 +活化,且 於560nm以上、未滿600nm之波長區具有發光峰之黃色螢 光體。上述黃色螢光體只要是可被實施形態6所說明之發 光元件所發出的光所激發,且會發出於56〇nm以上、未滿 600nm之波長區’較佳為565nm〜580nm之波長區,更佳為 525〜550nm之波長區具有發光峰的螢光體即可,不特別限 定。 例如’使用藍色發光元件時,可為激發光譜之最長波 長側的激發峰不是在42〇nm以上、未滿5〇〇nm之波長區的 黃色勞光體’也就是說’可為激發光譜之最長波長側的激 發峰為未滿42〇nm波長區的黃色螢光體。 上述5¾色榮光趙為於上述36〇nm以上、未滿500nm之 200944577 波長的激發光下内部量子效率高的螢光體,例如,為圖η 所示之(Sr,Ba)2Si04:Eu2+黃色螢光體、圖34所示之 Ca)2Si〇4:Eu2+黃色螢光體、圖35所示 0.75CaO · 2.25A1N · 3.25Si3N4:Eu2+黃色螢光體等不及= 420nm以上、未滿50’0nm波長區之激發光下具有高内部量 子效率之螢光體,例如圖36所示之(γ,Gd)3A15〇12:Ce3 +黃 色螢光體等。至少具備含有該螢光體之螢光體層與上述S 光元件之發光裝置,可以高效率地輸出光能,故為較佳。 該發光裝置中,輸出光所含黃色系的發光強度會變強,且 ❹ 演色性提高,特別是可以提供發出溫色系或暖色系光之發 光裝置。而且,黃色系光可見度高’且光束較強。尤其是, 藉由螢光體材之材料設計,可以得到Ra為90以上之具有 尚演色性的輸出光。 如果上述黃色螢光體,為以Eu2+活化之氮化物螢光體 或氧 氮化物 螢光體 , 例如 0.75CaO · 2.25A1N · 3.25Si3N4:Eu2+、Cai.5Al3Si9N16:Eu2+、Ce3+ activated garnet-structured phosphor, such as Y3(Al,Ga)5〇i2:Ce3+, Y3Al5〇12:Ce3+, BaY2SiAl4〇12:Ce3+, CagSc^S^ObCe3—etc. Under excitation, the internal quantum efficiency will increase, which is better. As described above, the light-emitting device of the present embodiment includes the phosphor layer including at least the nitride phosphor of the sixth embodiment and the green phosphor, and the light-emitting element of the sixth embodiment, and the output light contains the nitride. The red component emitted by the light body and the green light component emitted by the green phosphor. (Embodiment 8) Another example of the light-emitting device of the present invention may be that the phosphor layer of the above-described Embodiment 6 or Embodiment 7 may be activated by, for example, 2+ or Ce3 + and may be 560 nm or more and less than 600 nm. A yellow phosphor having a luminescence peak in the wavelength region. The yellow phosphor may be excited by light emitted from the light-emitting element described in the sixth embodiment, and may be emitted in a wavelength region of 56 〇 nm or more and less than 600 nm, preferably 565 nm to 580 nm. More preferably, it is a fluorescent body having a light-emitting peak in a wavelength region of 525 to 550 nm, and is not particularly limited. For example, when a blue light-emitting element is used, a yellow light-emitting body in which the excitation peak on the longest wavelength side of the excitation spectrum is not in a wavelength region of 42 〇 nm or more and less than 5 〇〇 nm may be an excitation spectrum. The excitation peak on the longest wavelength side is a yellow phosphor having a wavelength region of less than 42 〇 nm. The above-mentioned 53⁄4 color glory Zhao is a phosphor having a high internal quantum efficiency under the excitation light of the above-mentioned 36 〇 nm or more and less than 500 nm of the wavelength of 200944577, for example, (Sr, Ba) 2Si04: Eu 2+ yellow fluorite shown in FIG. Light body, Ca) 2Si〇4: Eu2+ yellow phosphor shown in Fig. 34, 0.75CaO · 2.25A1N · 3.25Si3N4: Eu2+ yellow phosphor shown in Fig. 35, etc. = 420 nm or more, less than 50'0 nm wavelength A phosphor having high internal quantum efficiency under the excitation light of the region, for example, (γ, Gd) 3A15〇12: Ce3 + yellow phosphor shown in Fig. 36. It is preferable that the light-emitting device including the phosphor layer containing the phosphor and the S-light element can efficiently output light energy. In the light-emitting device, the yellow light-emitting intensity of the output light is increased, and the color rendering property is improved, and in particular, a light-emitting device that emits a warm color system or a warm color light can be provided. Moreover, the yellow light has a high visibility and the light beam is strong. In particular, by designing the material of the phosphor material, it is possible to obtain an output light having a color rendering property of Ra of 90 or more. If the yellow phosphor is a nitride phosphor or an oxynitride phosphor activated with Eu2+, for example, 0.75CaO · 2.25A1N · 3.25Si3N4:Eu2+, Cai.5Al3Si9N16:Eu2+,

CaSiAl203N2:Eu2+、CaSi6A10N9:Eu2+等;以 Eu2+活化之鹼土 © 金屬類原矽酸鹽螢光體,例如,(Sr,Ba)2Si04:Eu2+、CSr, Ca)2Si〇4:Eu2+等;以Eu2+活化之硫代掊酸鹽螢光體,例如 CaGaaSvEu2—等;及以Ce3 +活化之具石榴石構造的螢光體, 例如(Y,Gd)3Al5〇12:Ce3+等,則於上述發光元件激發下,内 部量子效率會升高,為更佳。 由上所述,本實施形態之發光裝置具有至少含有實施 形態6之氮化物螢光體與上述黃色螢光體的螢光體層,以 62 200944577 及實施形態6之發光元件,且,輸出光含有上述氮化物螢 光體所發出之紅色系成分以及上述黃色螢光體所發出之黃 色系發光成分^ (實施形態9) 本發明發光裝置之另一例,可為於上述實施形態6〜8 中任一項之螢光體層中,尚含有可被Eu2 +活化、且於42〇nm 以上、未滿500nm之波長區具有發光峰之藍色螢光體。上 述藍色螢光體可被實施形態6所說明之發光元件所發出的 ® 光激發,且於420nm以上、未滿500nm之波長區(從演色性 及輸出的觀點,較佳為440〜480nm的波長區)具有發光峰之 螢光髏即可,不特別限定。此時,發光元件只要是實施形 態中所說明的發光元件即可,不特別限定,而以使用紫色 發光元件較佳,其原因為可以增廣螢光體材料之選擇性, 不僅可以使設計發光裝置所發出之光色變得容易,且即使 發光元件所發出的波長位置由於發光元件之投入電力等驅 動條件而變動’對於輸出光的影響也不大。 上述藍色勞光體為於上述36〇nm以上、未滿5〇〇nm(較 佳為360nm以上、未滿420nm)之波長區域的激發光下内 部量子效率高的螢光體,例如,為圖37所示之 BaMgAl10〇17:Eu2+藍色螢光艎、圖38所示之以4幻14〇25:如2+ 藍色螢光體、圖39所示之(Sr,Ba)1〇(P〇4)6Ci2:Eu2_^色螢光 體等。至少具備含有該螢光體之螢光體層與上述發光元件 之發光裝置,可以有效率地輸出光能,故為較佳。該發光 裝置中,輸出光所含藍色系的發光強度會變強、且演色性 63 200944577 、β高光束提间。尤其是,藉由螢光體材之材料設計,可 以得到Ra4 90以上之具有高演色性的輸出*,ri〜ri5所 有的特殊現色評價數為8。以上,較佳的情形為85以上, 更佳的情形可得到9G以上之接近太陽光之白色輸出光。例 如’藉由使用 BaMgAllG〇17:Eu2+、(Sr,Ba)iG(p〇4)6Ci2:Eu2+、CaSiAl203N2: Eu2+, CaSi6A10N9: Eu2+, etc.; alkaline earth activated by Eu2+ © metal orthosilicate phosphor, for example, (Sr, Ba) 2Si04: Eu2+, CSr, Ca) 2Si〇4: Eu2+, etc.; activated with Eu2+ a thiophthalate phosphor, such as CaGaaSvEu2, etc.; and a garnet-structured phosphor activated by Ce3+, such as (Y, Gd)3Al5〇12:Ce3+, etc., excited by the above-mentioned light-emitting element The internal quantum efficiency will increase, which is better. As described above, the light-emitting device of the present embodiment includes the phosphor layer including at least the nitride phosphor of the sixth embodiment and the yellow phosphor, and the light-emitting elements of 62 200944577 and the sixth embodiment, and the output light contains The red component emitted by the nitride phosphor and the yellow luminescent component emitted by the yellow phosphor (Embodiment 9) Another example of the illuminating device of the present invention may be any of the above embodiments 6-8 One of the phosphor layers further contains a blue phosphor which is activated by Eu2+ and has a light-emitting peak in a wavelength region of 42 nm or more and less than 500 nm. The blue phosphor can be excited by the light emitted from the light-emitting element described in the sixth embodiment, and is in a wavelength region of 420 nm or more and less than 500 nm (preferably from 440 to 480 nm from the viewpoints of color rendering and output). The wavelength region is a fluorescent fluorene having a luminescence peak, and is not particularly limited. In this case, the light-emitting element is not particularly limited as long as it is a light-emitting element described in the embodiment, and it is preferable to use a purple light-emitting element because the selectivity of the phosphor material can be increased, and not only the design light can be made. The light color emitted by the device is easy, and even if the wavelength position emitted by the light-emitting element fluctuates due to driving conditions such as the input power of the light-emitting element, the influence on the output light is not large. The blue light-emitting body is a phosphor having a high internal quantum efficiency in excitation light in a wavelength region of 36 〇 nm or more and less than 5 〇〇 nm (preferably 360 nm or more and less than 420 nm), for example, The BaMgAl10〇17:Eu2+ blue fluorescent enamel shown in Fig. 37 and the four phantom 14 〇25 shown in Fig. 38: 2+ blue phosphor, (Sr, Ba) 1 〇 shown in Fig. 39 ( P〇4) 6Ci2: Eu2_^ color phosphor, etc. It is preferable that the light-emitting device including the phosphor layer containing the phosphor and the light-emitting element can efficiently output light energy. In the illuminating device, the illuminating intensity of the blue light contained in the output light is increased, and the color rendering property 63 200944577 and the β high beam are lifted. In particular, by designing the material of the phosphor material, it is possible to obtain an output of high color rendering of Ra4 90 or higher*, and all the special color evaluation numbers of ri to ri5 are 8. In the above, the preferred case is 85 or more. More preferably, a white output light of 9 G or more close to sunlight can be obtained. For example, 'by using BaMgAllG〇17: Eu2+, (Sr, Ba)iG(p〇4)6Ci2:Eu2+,

Ba3MgSi2〇8:Eu2+ 、 SrMgAl1()017:EU2+ 、 (Sr,Ba3MgSi2〇8: Eu2+, SrMgAl1() 017: EU2+, (Sr,

Ca)10(P〇4)Cl2:Eu2+ . Ba5Si〇4Cl6:Eu2+ ^ BaAl8〇1,:Eu- /Ca)10(P〇4)Cl2:Eu2+ . Ba5Si〇4Cl6:Eu2+ ^ BaAl8〇1,:Eu- /

Sr10(P〇4)Cl2:Eu、黃色勞光體,彳以得到具有上述高演色 性及特殊現色評價數之輸出光。 又,上述藍色螢光體,如果為以Eu2+活化之氮化物螢 光體或氧氮化物螢光體,例如SrSiAl2〇3N2:Eu2+等;以如2+ 活化之鹼土類金屬原矽酸鹽螢光體,例如Sr10(P〇4)Cl2: Eu, a yellow mortar, 彳 to obtain an output light having the above-described high color rendering property and special color rendering number. Further, the blue phosphor is a nitride phosphor or an oxynitride phosphor activated by Eu2+, for example, SrSiAl2〇3N2:Eu2+ or the like; and an alkaline earth metal protoporate fired by 2+ Light body, for example

Ba3MgSi208:Eu2+、Sr3MgSi2〇8:Eu2+等;以 Eu2+活化之鋁酸 鹽螢光體,例如 BaMgAl1Q〇17:Eu2+、BaAl8013:EU2+、Ba3MgSi208: Eu2+, Sr3MgSi2〇8: Eu2+, etc.; Eu2+ activated aluminate phosphor, such as BaMgAl1Q〇17: Eu2+, BaAl8013: EU2+,

Sr4AlM〇25:Eu2+等;及以Eu2+活化之齒磷酸螢光體,例如,Sr4AlM〇25: Eu2+, etc.; and a tooth phosphoric acid phosphor activated with Eu2+, for example,

Sr 丨 0(PO4)6C12:Eu2+ 、 (Sr,Ca)10(PO4)6Cl2:Eu2+ 、 (Ba,Ca,Mg)1()(P04)6Cl2:Eu2+等,則於上述發光元件激發下, 内部量子效率會提高,故更佳。 實施形態6〜9中,為了得到強光束,上述螢光體層所 含螢光體較佳為實質上不含有以仙2+或Ce3 +活化之螢光體 以外的螢光體,且以實質上不含氮化物螢光體或氧氮化物 螢光體以外的無機螢光鱧為佳。上述螢光體實質不含以Eu2+ 或Ce3+活化之螢光體以外之螢光艎係指,螢光體層所含螢 光體之90重量%以上,較佳為95重量%以上,更佳為% 200944577 重量%以上為以Eu2 +或Ce3 +活化之螢光體。實質上不含氮化 物螢光體或氧氮化物螢光體以外的無機螢光體,係指榮光 體層所含螢光體之90重量%以上,較佳為95重量%以上, 更佳為98重量%以上為氮化物螢光體或氧氮化物螢光體。 上述氮化物螢光體及氧氮化物螢光體即使於1〇〇~15〇〇C之 動作溫度下及周圍溫度下也可以保持較高的内部量子效 率’且’發光光譜之波長峰,不會像前述鹼土類金屬原矽 酸鹽螢光體或者具有石榴石構造的螢光體一樣往短波長側 Ο 偏移。因此,具有上述構成之螢光裝置,即使增加投入電 力並增強激發光強度,或者於高溫環境氣氛下使用,發光 色的變動也很小,可以得到穩定的輸出光。 又,為了得到發出強光束之發光裝置,螢光體層中實 質含有之螢光體中,於發光元件所發出之光激發下之内部 量子效率最低的螢光鱧,内部量子效率(絕對值)為8〇%以 上,較佳為85%以上,更佳為9〇%以上。 (實施形態10) ® 纟發明發光裝置之另-例,具有含螢光艎之螢光體層 與發光το件,該述發光元件在36〇nm以上未滿的 波長區具有發光峰,該螢光體會被上述發光元件所發出之 光所激發而發光,輸出光至少含有上述榮光體所發出之發 光成分。又,上述螢光體包括可被Eu2+活化且於_咖以 上、未滿66〇nm之波長區具有發光峰之氮化物螢光體或氧 氣化物登光體,以及被如2+活化且於5⑽nm以上未滿 600nm的波長區具有發光峰之鹼土類金屬原矽酸鹽螢光 65 200944577 體’於上述發光元件所發出之光激發下,該等螢光體之内 部量子效率為80%以上。 上述發光元件可使用於實施形態6所說明之發光元件 同樣者。 上述輸出光較佳為含有上述發光元件所發出之發光成 为。尤其是,當上述發光元件於藍色系波長區具有發光峰, 則若輸出光含有上述螢光體所發出之發光成分與上述發光Sr 丨0(PO4)6C12:Eu2+, (Sr,Ca)10(PO4)6Cl2:Eu2+, (Ba,Ca,Mg)1()(P04)6Cl2:Eu2+, etc., under the excitation of the above-mentioned light-emitting element, internal The quantum efficiency will increase, so it is better. In the sixth to ninth embodiments, in order to obtain a strong light beam, it is preferable that the phosphor contained in the phosphor layer does not substantially contain a phosphor other than the phosphor activated by the 2+ or Ce3 + , and substantially It is preferred that the inorganic fluorescent ray other than the nitride phosphor or the oxynitride phosphor is contained. The phosphor is substantially free of fluorescent fluorophores other than the phosphor activated by Eu2+ or Ce3+, and 90% by weight or more, preferably 95% by weight or more, more preferably %, of the phosphor contained in the phosphor layer. 200944577 Above weight% is a phosphor activated with Eu2+ or Ce3+. The inorganic phosphor other than the nitride phosphor or the oxynitride phosphor is substantially 90% by weight or more, preferably 95% by weight or more, and more preferably 98% or more of the phosphor contained in the glare layer. The weight % or more is a nitride phosphor or an oxynitride phosphor. The nitride phosphor and the oxynitride phosphor can maintain a high internal quantum efficiency and a wavelength peak of the luminescence spectrum even at an operating temperature of 1 〇〇 to 15 〇〇C and at an ambient temperature. It is shifted to the short-wavelength side like the alkaline earth metal orthosilicate phosphor or the phosphor having a garnet structure. Therefore, in the fluorescent device having the above configuration, even if the input power is increased and the intensity of the excitation light is increased, or the use is performed in a high-temperature atmosphere, the fluctuation of the luminescent color is small, and stable output light can be obtained. Further, in order to obtain a light-emitting device that emits a strong light beam, the internal quantum efficiency (absolute value) of the phosphor having the lowest internal quantum efficiency excited by the light emitted from the light-emitting element among the phosphors substantially contained in the phosphor layer is 8〇% or more, preferably 85% or more, more preferably 9〇% or more. (Embodiment 10) An example of a light-emitting device of the invention includes a phosphor layer containing a fluorescent ray and a light-emitting element, wherein the light-emitting element has an emission peak in a wavelength region not larger than 36 Å or more, and the luminescence The light is excited by the light emitted by the light-emitting element, and the output light contains at least the light-emitting component emitted by the glare. Further, the phosphor includes a nitride phosphor or an oxygen oxide light-emitting body which is activated by Eu2+ and has a light-emitting peak in a wavelength region of less than 66 Å, and is activated by 2+ and above 5 (10) nm. The alkaline earth metal orthosilicate phosphorescent light having a luminescence peak in a wavelength region of less than 600 nm is excited by the light emitted from the light-emitting element, and the internal quantum efficiency of the phosphor is 80% or more. The light-emitting element described above can be used in the same manner as the light-emitting element described in the sixth embodiment. Preferably, the output light is included in the light emitted by the light-emitting element. In particular, when the light-emitting element has a light-emitting peak in a blue-wavelength region, the output light contains the light-emitting component emitted by the phosphor and the light-emitting component

元件所發出之發光成分,可以得到具有較高演色性之白色 光’為更佳。 上述以Eu2+活化之氮化物螢光體或氧氮化物螢光體 為,會發出於600nm以上、未滿660nm的波長區具有發光 峰之暖色系光,較佳為於61〇〜650nm之波長區具有發光峰 之紅色系光的螢光體,而為上述36〇nm以上、未滿5〇〇nm ❹ 之波長區的激發光下内部量子效率高的螢光體。更詳細地 說,為結構式(M^xEuJAlSiN3表示之氮化物鋁矽酸鹽螢光 體,例如,圖30所示之SrAiSiN3_Eu2+紅色螢光體或 CaAlSiN3:Eu2+紅色勞光體等;結構式(Mi xEux)SiN2表示之氮 化物矽酸鹽螢光體,例如,圖29所示之SrSiN2.Eu2+紅色螢 光體或CaSiNyEuh紅色螢光體等;結構式(Mi xEux)si5Ns 表示之氮化物矽酸鹽螢光體,例如,圖31所示之 紅色勞光體或以2以5^:如2+紅色螢光體或 叫卟心如2、色螢光體等;結構式(Μι為)丨〇N7表示 之氧代氮化物銘石夕酸鹽螢光體,例如,Sr2Si4Ai〇N7:Eu2 +紅 色螢光體。其中,上述結構式之馗為選自Mg c;a、sr、 66 200944577It is more preferable that the luminescent component emitted from the component can obtain white light having a higher color rendering property. The above-mentioned Eu2+-activated nitride phosphor or oxynitride phosphor is a warm-colored light having an emission peak in a wavelength region of 600 nm or more and less than 660 nm, preferably having a wavelength region of 61 Å to 650 nm. The phosphor having a red light of the luminescence peak is a phosphor having a high internal quantum efficiency under excitation light in a wavelength region of 36 〇 nm or more and less than 5 〇〇 nm 上述. More specifically, it is a nitride aluminosilicate phosphor represented by the structural formula (M^xEuJAlSiN3, for example, SrAiSiN3_Eu2+ red phosphor or CaAlSiN3: Eu2+ red mortar shown in FIG. 30; structural formula (Mi xEux) a nitride silicate phosphor represented by SiN2, for example, SrSiN2.Eu2+ red phosphor or CaSiNyEuh red phosphor shown in Fig. 29; nitride citrate represented by structural formula (Mi xEux) si5Ns A phosphor, for example, a red mortar as shown in FIG. 31 or 2 with 5^: such as 2+ red phosphor or 卟 如 2, color phosphor, etc.; structural formula (Μι 为)丨〇 N7 represents an oxonitride sulphate phosphor, for example, a Sr2Si4Ai〇N7:Eu2 + red phosphor, wherein the enthalpy of the above structural formula is selected from the group consisting of Mg c; a, sr, 66 200944577

Ba及Zn中至少之一沾;本 ^ ^ 的7^素’又為滿足0.005S xS 0.3之數 值。 上述驗土類金屬原梦酸鹽螢光體,為被Eu2+活化且於 500nm以上、未滿6〇〇nm,較佳為525nm以上未滿⑼如爪 之波長區具有發光峰之螢光體,更詳細地說,為於525腿 以上、未滿56〇nm之波長區,較佳為53〇nm〜55〇nm之波長 區具有發光峰之綠色螢光體,例如,圖32所示之 (Ba,Sr)2Si〇4:Eu2+綠色螢光體;或者於56〇nm以上、未滿 〇 6〇〇nm之波長區具有發光峰之黃色榮光體,例如圖33所示 (Sr’Ba)2Si04:Eii2+黃色螢光體’圖 34 所示(Sr,Cahsi〇4:Eu2+ 黃色螢光體等,該等於上述36〇nm以上、未滿5〇〇nm之波 長區的激發光下,内部量子效率高。 上述螢光體於上述發光元件所發出之光激發下,内部 量子效率為80%以上,較佳為85%以上,更佳為9〇%以上。 至少具有含如上述高内部量子效率之螢光體之螢光體層、 以及上述發光元件的發光裝置’可以有效率地輸出光能。 © 又’使用如上述氮化物螢光體或氧氮化物螢光體所構成之 發光裝置其暖色系發光成分之強度強,且特殊現色評價數 R9數值大。 又’上述構成之發光裝置不使用可靠度有問題的硫化 物系螢光體,而僅採用使用高價氮化物螢光體或氧氮化物 螢光體之紅色螢光體,故’可以提供強光束且高現色的白 色光源,並可降低白色光源等發光裝置之成本。 本實施形態的發光裝置,只要至少含有上述含以Eu2+ 67 200944577 活化之發紅光的上述氮化物螢光體或氧氮 化物螢光體、及At least one of Ba and Zn is doped; the 7^ prime of ^ ^ is again a value satisfying 0.005S xS 0.3. The above-mentioned soil-based metal orthophosphate phosphor is a phosphor which is activated by Eu2+ and has a luminescence peak at a wavelength of 500 nm or more and less than 6 Å, preferably 525 nm or more, and (9) a wavelength region such as a claw. More specifically, in the wavelength region of 525 or more and less than 56 〇 nm, a green phosphor having a light-emitting peak in a wavelength region of 53 〇 nm to 55 〇 nm is preferable, for example, as shown in FIG. 32 (Ba, Sr) 2Si 〇 4: Eu 2+ green phosphor; or a yellow glory having an illuminating peak in a wavelength region of 56 〇 nm or more and less than 〇〇 6 〇〇 nm, for example, (Sr'Ba) 2Si04: Eii 2+ yellow as shown in FIG. The phosphor is shown in Fig. 34 (Sr, Cahsi〇4: Eu2+ yellow phosphor, etc., and the internal quantum efficiency is high under the excitation light of the wavelength region of 36 〇 nm or more and less than 5 〇〇 nm. The phosphor has an internal quantum efficiency of 80% or more, preferably 85% or more, more preferably 9% or more, excited by the light emitted from the light-emitting element. At least a phosphor having a high internal quantum efficiency as described above The phosphor layer and the light-emitting device of the above-described light-emitting element can efficiently output light energy. The light-emitting device comprising the above-described nitride phosphor or oxynitride phosphor has a strong intensity of a warm-colored light-emitting component, and has a large number of special color evaluation numbers R9. Further, the light-emitting device having the above configuration does not have reliability. The problem is a sulfide-based phosphor, and only a red phosphor using a high-priced nitride phosphor or an oxynitride phosphor is used, so that a white light source with a strong beam and a high color can be provided, and the white color can be lowered. The cost of the light-emitting device such as a light source. The light-emitting device of the present embodiment includes at least the above-described nitride phosphor or oxynitride phosphor containing red light activated by Eu2+ 67 200944577, and

氧氮化物螢光體,若前 Sr或Ca,則 ’以則述結構式表示之氮化物螢光體或 若前述元素Μ之主成分為Sr或Ca,則In the oxynitride phosphor, if the pre-Sr or Ca is a nitride phosphor represented by the structural formula or if the main component of the element 为 is Sr or Ca,

佳為全部的元素Μ皆為Sr或Ca任一元素。 fAll of the elements are all Sr or Ca. f

Sr或 斧。而 又更 又,若上述發光元件使用前述注入型電致發光元件, 則可發出強輸出光,為更佳。 上述鹼土類金屬原矽酸鹽螢光體較佳為以EU2+活化, 且於500nm以上、未滿56〇11111之波長區,較佳為525以上、 未滿560nm之波長區,更佳為53〇〜55〇nm以下波長區具有 發光峰之綠色螢光體,例如,可使用(Ba,s〇2Si〇4:Eu2+、(Ba,Sr or axe. Further, if the light-emitting element uses the injection-type electroluminescent element, it is possible to emit strong output light, which is more preferable. The alkaline earth metal orthosilicate phosphor is preferably activated by EU 2+ and is in a wavelength region of 500 nm or more and less than 56 〇 11111, preferably 525 or more and less than 560 nm, more preferably 53 Å. A green phosphor having a luminescence peak in a wavelength region of less than 55 〇 nm, for example, (Ba, s〇2Si〇4: Eu2+, (Ba,

Ca)2Si〇4:Eu2+。該使用綠色螢光體之發光裝置,輸出光所含 綠色系的發光強度強,且演色性高。而且,綠色系光可見 © 度高且光束更強》尤其是’依不同螢光體層含螢光體組合, 可以得到Ra為90以上之高演色性輸出光。 ,且尤 又’上述驗土類金屬原砍酸鹽勞光艘較佳為以eu2+活 化’且於560nm以上、未滿600nm之波長區,較佳為 565〜580nm之波長區具有發光峰之黃色螢光體,例如,可 使用(Sr,Ba)2Si〇4:Eu2+。使用該黃色螢光體之發光裝置,輸 出光所含黃色系的發光強度會變強,且演色性提高 68 200944577 其是可提供發出溫色系或暖色系發光之發光裝置。而且, 黃色系光可見度較高且光束也變強。尤其是,依螢光體$ 材料之設計,可以得到Ra為90以上之高演色性輸出光。 又,較佳為使用發出接近上述黃色榮光體榮光之 (Sr,Ca)2Si04:Eu2+黃色螢光體等。 本實施形態中,於上述螢光體層所含前述紅色榮光體 以外的螢光體較佳為實質上不含氮化物螢光體或氧氮化物 螢光體。藉此’使發光裝置使用的氮化物勞光體或氧氮化 〇 物螢光體使用量減到最小’可以使發光裝置的製造成本減 低°於上述螢光體層所含前述紅色螢光體以外的螢光體較 佳為實質上不含硫化物螢光髏。藉此,可以提高發光裝置 之可靠度,例如,可提供劣化等經時變化少之發光裝置。 又,實施形態10中,上述螢光體層所含螢光體為得到 強光束,較佳為實質上不♦ Eu2+或Ce3 +活化之榮光體以外 的螢光體。又’螢光逋層中實質所含的螢光體中較佳為 於發光元件所發出之光的激發下,内部量子效率最低的榮 光體内部量子效率為80%以上》 以下,使用前述圖1〜圖12說明實施形態6〜1〇之發光 裝置。 圖卜圖2及圖3為顯示本發明之發光裝置之一例的 導體發光裝置截面圖。 :卜顯示一半導體發光裝置,其係於基座元件4上至 勞光體思個發光70件卜並以含有螢光體組錢2且兼作為 層3的母材密封的構造。圖2,顯示一半導體發光裝 69 200944577 置’其係於導線架5之載具導線上所設置之杯體6中,至 )構襄1個發光元件卜並且,於杯體6内設置含有勞光體 組成物2之螢光體層3,而將整體以例如樹脂等密封材7密 封之構造。圖3顯示一晶片型半導體發光元件,其係於框 體8内至少安裝1個發光元件1,並設有含螢光體組成物之 螢光體層3。 圖1〜圖3中,發光元件i為可將電能轉換為光能之光 電轉換元件,只要是於36〇nm以上、未滿5〇〇nm,較佳為 38〇nm以上、未滿42〇nm,或44〇nm以上未滿5〇如瓜, 更佳為395〜415im或450〜480nm之波長區具有發光峰之光 者即可,不特別限定,可以使用例如,led、ld、面發光 LED、無機EL元件、有機EL元件等。尤其是為使半導 體發光元件高輸出化,又以LED或面發光LED較佳。 圖卜圖3中,螢光艘層3中的螢光體組成物2,係以 結構式%為)八卿3表示之氮化物發光體,其係將勞光 體分散而成。Μ為選自…'。、〜、如及〜中至少之一 的元素’ χ為滿足0·005$χ$0.3之數值。 f光體層3之母材所使用之材料不特別限定,一般而 二:用透明之例如環氧樹脂、相樹脂等樹脂或低溶點 ==即可。為提供發光強度隨運作時Fa1之降低減少之發 光性無機母材較佳為使时酮樹脂或㈣點玻璃等透 尤性無機材料,更佳為上述透光性無 罄氺, 機材枓。例如,如果 量較L 材使用上述透明樹脂,則氣化物勞光體之含 ,為5〜8〇重量%,又以1〇〜6〇重量%更佳。勞光體層3 200944577 所含之氮化物螢光體可以吸收上述發光元件所發出之光的 一部分或全部以轉換為紅色光’故半導體發光裝置之輸出 光至少會含有氮化物螢光體所發出的發光成分。 又,於螢光體組成物2至少含有結構式 所示之氮化物螢光體之場合,螢光體層3中可以進一步含 有上述氮化物螢光體以外的螢光體,也可以不含。例如, 如果將例如上述以Eu2+或Ce3 +活化並於360nm以上、未滿 500nm之波長區的激發光下具有高内部量子效率之高驗土 〇 類金屬原矽酸鹽螢光體、氮化物螢光體及氧氮化物勞光 體、銘酸鹽螢光體、_磷酸鹽螢光體、硫代掊酸鹽费光體 等依以下所示(1)〜(6)之組合,將發光元件1製作為於36〇nm 以上、未滿420nm之波長區具有發光峰之紫色發光元件, 則發光元件1所發出之光可以高效率地激發螢光體,並藉 由複數螢光體所發出之光的混色,成為例如發白色系光之 半導體發光元件。 ' ⑴一種勞光體層,含有:藍色勞光體,發出於420nm 以上、未滿500nm,較佳為440nm以上、未滿5〇〇nm之波 長區具有發光峰之光;綠色螢光體,發出於5〇〇nm以上、 未滿56〇nm,較佳為51〇nm〜55〇nm2波長區具有發光峰之 光;黃色勞光體,發出於560nm以上、未滿6〇〇nm,較佳 為565nm〜580nm之波長區具有發光峰之光;及上述氮化 螢光體。 ⑺-種螢光體層,含有:藍色螢光體,發出於42〇_ 以上、未滿50〇nm,較佳為44〇nm以上、未滿5〇〇nm之波 71 200944577 長區具有發光峰之光;綠色螢光體,發出於500nm以上、 未滿560nm,較佳為510nm〜5 5 0nm之波長區具有發光峰之 光;及上述氣化物螢光體。 (3) —種螢光體層,含有:藍色螢光體,發出於420nm 以上、未滿500nm,較佳為440nm以上、未滿500nm之波 長區具有發光峰之光;黃色螢光體,發出於560nm以上、 未滿600nm,較佳為565nm〜580nm之波長區具有發光峰之 光;及上述氮化物螢光體。 (4) 一種螢光體層,含有:綠色螢光體,發出於500nm 以上、未滿560nm,較佳為5 1 Onm〜550nm之波長區具有發 光峰之光;黃色螢光體,會發出於5 60nm以上、未滿600nm, 較佳為565nm〜580nm之波長區具有發光峰之光;及上述氮 化物螢光體。 (5) —種螢光體層,含有上述黃色螢光體及上述氮化物 螢光體。 〇 (6) —種螢光體層,含有上述綠色螢光體及上述氮化物 螢光體。 又,如果使用以下所使(7)〜(9)之螢光體組合,將發光 元件1製成於420nm〜未滿500nm之波長區具有發光峰之藍 色發光元件,將發光元件1所發出之光與螢光體所發出之 光混色,則可成為發出白色系光之半導體發光裝置。 (7) —種螢光體層,含有:綠色螢光體,發出於500nm 以上、未滿560nm,較佳為525nm以上、未滿560nm之波 長區具有發光峰之光;黃色螢光體,會發出於560nm以上、 72 200944577 未滿600nm,較佳為565nm〜580nm之波長區具有發光峰之 光;及上述氮化物螢光體。 (8) —種蝥光體層,含有上述黃色螢光體及上述氮化物 螢光體。 (9) 一種螢光體層’含有上述綠色螢光體及上述氮化物 螢光體。 如果發光元件為藍色發光元件時,上述綠色螢光體、 上述黃色螢光體除了以Eu2+活化之鹼土類金屬原矽酸鹽螢 © 光體、以Eu2+活化之氮化物螢光體或氧氮化物螢光體以外, 也可以使用具有以Ce3 +活化石榴石構造之螢光體(尤其是, YAG:Ce系螢光體)、以Eu2+活化之硫代掊酸鹽螢光體等。 更具體而言’例如可使用SrGa2S4:Eu2+綠色螢光體、γ3(Α1, Ga)5〇12:Ce3+綠色螢光艘、Y3Al5〇i2:ce3+綠色螢光體、 知丫281八14012:〇63 +綠色螢光體、〇&amp;38(;2313012:€63 +綠色螢光 體、(Y,Gd)3Al5〇12:Ce3 +黃色螢光體、Y3Al5〇i2:Ce3+ pr3 +黃 色螢光體、CaGa2S4:Eu2+黃色螢光體等。 或者’圖1〜圖3中之螢光體層3之螢光體組成物2, 可為將至少以Eu2+活化之發紅色光氮化物螢光艎或氧氮化 物螢光體、與以Eu2+活化且於500nm以上、未滿560nm或 560nm以上、未滿6〇〇nm之任一波長區具有發光峰之鹼土 類金屬原矽酸鹽螢光體分散以構成。 螢光體層3可使用上述螢光體層3之母材。又,榮光 體層3所含之螢光體組成物2可吸收上述發光元件丨所發 出之光的一部分或全部並轉換為光,故半導體發光裝置之 73 200944577 輸出光會至少含有氮化物螢光體或氧氮化物螢光體所發出 之發光成分以及鹼土類金屬原矽酸鹽螢光體所發出之發光 成分。 又,螢光體組成物2,係含有以Eu2+活化之發紅色光氮 化物螢光體或氧氮化物螢光體、以及以Eu2+活化且於500nmCa) 2Si〇4: Eu2+. In the light-emitting device using a green phosphor, the output light contains a green light having a high luminous intensity and a high color rendering property. Moreover, the green light is visible. The degree of light is higher and the beam is stronger. In particular, the combination of phosphors in different phosphor layers can produce high color rendering output light with Ra of 90 or more. And especially the above-mentioned soil-based metal ortho-alkaline mortar is preferably activated by eu2+ and has a luminescence peak in a wavelength region of 560 nm or more and less than 600 nm, preferably 565 to 580 nm. For the light body, for example, (Sr, Ba) 2Si〇4: Eu2+ can be used. By using the yellow phosphor light-emitting device, the yellow light intensity of the output light is enhanced, and the color rendering property is improved. 68 200944577 It is a light-emitting device that emits a warm color or a warm color. Moreover, the yellow light has a higher visibility and the light beam also becomes stronger. In particular, according to the design of the phosphor $ material, it is possible to obtain a high color rendering output light with Ra of 90 or more. Further, it is preferable to use (Sr, Ca) 2Si04: Eu2+ yellow phosphor which emits a glory close to the above-mentioned yellow glory. In the present embodiment, it is preferable that the phosphor other than the red refractory contained in the phosphor layer substantially does not contain a nitride phosphor or an oxynitride phosphor. By using the nitride working agent or the oxynitride phosphor used in the light-emitting device to minimize the manufacturing cost of the light-emitting device, the manufacturing cost of the light-emitting device can be reduced by 0.2% of the red phosphor contained in the phosphor layer. Preferably, the phosphor is substantially free of sulfide fluorescene. Thereby, the reliability of the light-emitting device can be improved, and for example, a light-emitting device having little change with time such as deterioration can be provided. Further, in the tenth embodiment, the phosphor contained in the phosphor layer is a strong light beam, and is preferably a phosphor other than the phosphor which is substantially not activated by Eu2+ or Ce3+. Further, in the phosphor contained in the phosphor layer, it is preferable that the internal quantum efficiency of the glory having the lowest internal quantum efficiency is 80% or more under the excitation of the light emitted from the light-emitting element. Fig. 12 illustrates a light-emitting device of Embodiment 6 to 1A. Fig. 2 and Fig. 3 are cross-sectional views showing a conductor light-emitting device which is an example of a light-emitting device of the present invention. A semiconductor light-emitting device is shown which is attached to the base member 4 to a structure in which a light-emitting body is 70 pieces of light and sealed with a base material containing the phosphor group 2 and also serving as the layer 3. 2, a semiconductor light-emitting device 69 200944577 is disposed in the cup body 6 provided on the carrier wire of the lead frame 5, to constitute a light-emitting element, and is disposed in the cup body 6. The phosphor layer 3 of the photobody composition 2 has a structure in which the sealing material 7 such as a resin is sealed as a whole. Fig. 3 shows a wafer type semiconductor light-emitting device in which at least one light-emitting element 1 is mounted in a housing 8, and a phosphor layer 3 containing a phosphor composition is provided. In FIGS. 1 to 3, the light-emitting element i is a photoelectric conversion element capable of converting electric energy into light energy, and is preferably 36 〇 nm or more, less than 5 〇〇 nm, preferably 38 〇 nm or more, and less than 42 〇. N, or 44 〇 nm or more, less than 5 〇, such as melon, more preferably 395 to 415 im or 450 to 480 nm, the wavelength region has a luminescence peak light, and is not particularly limited, and for example, LED, ld, surface-emitting LED can be used. Inorganic EL elements, organic EL elements, and the like. In particular, in order to increase the output of the semiconductor light-emitting element, it is preferable to use an LED or a surface-emitting LED. In Fig. 3, the phosphor composition 2 in the phosphor layer 3 is a nitride emitter represented by the formula %), which is obtained by dispersing a labyrinth. Μ is selected from...'. An element of at least one of ~, such as and ~ is 满足 to satisfy the value of 0.005$χ$0.3. The material used for the base material of the f-light layer 3 is not particularly limited, and generally: a transparent resin such as an epoxy resin or a phase resin or a low melting point == may be used. In order to provide a luminescent inorganic base material having a decrease in luminous intensity with a decrease in Fa1 during operation, it is preferably a transparent inorganic material such as a ketone resin or a (four) point glass, and more preferably the above-mentioned light-transmitting property is not sufficient. For example, if the amount of the transparent material is the same as that of the L material, the content of the vaporizer is 5 to 8 % by weight, more preferably 1 to 6 % by weight. The nitride phosphor contained in the working layer 3 200944577 can absorb a part or all of the light emitted by the light-emitting element to be converted into red light. Therefore, the output light of the semiconductor light-emitting device at least contains the nitride fluorescent body. Luminous composition. Further, in the case where the phosphor composition 2 contains at least the nitride phosphor of the structural formula, the phosphor layer 3 may further contain a phosphor other than the above-described nitride phosphor, or may not be contained. For example, if the above-mentioned high-internal bismuth metal orthosilicate phosphor, nitride fluorite having high internal quantum efficiency, for example, activated by Eu2+ or Ce3+ and excited in a wavelength region of 360 nm or more and less than 500 nm is used. Light body, oxynitride mortar, chromic acid phosphor, _phosphate phosphor, thioxanthate, etc., according to the combination of (1) to (6) shown below, the light-emitting element (1) A purple light-emitting element having a light-emitting peak in a wavelength region of 36 〇 nm or more and less than 420 nm is formed, and light emitted from the light-emitting element 1 can efficiently excite the phosphor and emit light by the plurality of phosphors. The color mixture is, for example, a semiconductor light-emitting element that emits white light. ' (1) A working layer comprising: a blue luminous body, which emits light having a luminescence peak in a wavelength region of 420 nm or more and less than 500 nm, preferably 440 nm or more and less than 5 〇〇 nm; a green phosphor emits Preferably, the light having a luminescence peak is in a wavelength region of 5 〇〇 nm or more, less than 56 〇 nm, preferably 51 〇 nm to 55 〇 nm 2 ; and the yellow light-emitting body is emitted at 560 nm or more and less than 6 〇〇 nm, preferably The wavelength region of 565 nm to 580 nm has light of a luminescence peak; and the above nitrided phosphor. (7) - a phosphor layer comprising: a blue phosphor, emitted at 42 〇 or more, less than 50 〇 nm, preferably 44 〇 nm or more, and less than 5 〇〇 nm wave 71 200944577 long area has luminescence The light of the peak; the green phosphor emits light having a luminescence peak in a wavelength region of 500 nm or more, less than 560 nm, preferably 510 nm to 550 nm; and the vapor phosphor. (3) a phosphor layer comprising: a blue phosphor which emits light having a luminescence peak in a wavelength region of 420 nm or more and less than 500 nm, preferably 440 nm or more and less than 500 nm; a yellow phosphor emitted from Light having a luminescence peak in a wavelength region of 560 nm or more, less than 600 nm, preferably 565 nm to 580 nm; and the above-described nitride phosphor. (4) A phosphor layer comprising: a green phosphor which emits light having a luminescence peak in a wavelength region of 500 nm or more and less than 560 nm, preferably 5 1 Onm to 550 nm; and a yellow phosphor which emits at 5 60 nm The light having a luminescence peak in a wavelength region of less than 600 nm, preferably 565 nm to 580 nm; and the above-described nitride phosphor. (5) A phosphor layer comprising the yellow phosphor and the nitride phosphor. 〇 (6) A phosphor layer comprising the above green phosphor and the above nitride phosphor. Further, when the phosphor combinations of (7) to (9) are used as follows, the light-emitting element 1 is formed into a blue light-emitting element having a light-emitting peak in a wavelength region of 420 nm to less than 500 nm, and the light-emitting element 1 is emitted. When the light is mixed with the light emitted by the phosphor, it can be a semiconductor light-emitting device that emits white light. (7) A phosphor layer comprising: a green phosphor which emits light having a luminescence peak in a wavelength region of 500 nm or more and less than 560 nm, preferably 525 nm or more and less than 560 nm; a yellow phosphor is emitted from 560 nm or more, 72 200944577 less than 600 nm, preferably 565 nm to 580 nm, having a luminescence peak in a wavelength region; and the above nitride phosphor. (8) A phosphor layer comprising the yellow phosphor and the nitride phosphor. (9) A phosphor layer 'containing the green phosphor and the nitride phosphor. When the light-emitting element is a blue light-emitting element, the green phosphor and the yellow phosphor are in addition to Eu2+-activated alkaline earth metal orthofluoride phosphor, Eu2+-activated nitride phosphor or oxygen-nitrogen In addition to the phosphor, a phosphor having a Ce3 + activated garnet structure (particularly, YAG: Ce-based phosphor), a thiosilicate phosphor activated with Eu2+, or the like can be used. More specifically, for example, SrGa2S4:Eu2+ green phosphor, γ3(Α1, Ga)5〇12:Ce3+green fluorescent vessel, Y3Al5〇i2:ce3+green phosphor, 丫281 181140: 〇63 can be used. + green phosphor, 〇 &amp; 38 (; 2313012: € 63 + green phosphor, (Y, Gd) 3Al5 〇 12: Ce3 + yellow phosphor, Y3Al5 〇 i2: Ce3 + pr3 + yellow phosphor, CaGa2S4: Eu2+ yellow phosphor, etc. or 'The phosphor composition 2 of the phosphor layer 3 in FIGS. 1 to 3 may be a red photonitride fluorescein or oxynitride which is activated by at least Eu2+. The phosphor is formed by dispersing an alkaline earth metal orthosilicate phosphor having an emission peak in any wavelength region of 500 nm or more, less than 560 nm or more than 560 nm, and less than 6 nm in activation with Eu2+. The base material 3 can use the base material of the phosphor layer 3. Further, the phosphor composition 2 contained in the luminescent layer 3 can absorb a part or all of the light emitted by the light-emitting element 并 and convert it into light, so the semiconductor light-emitting device 73 200944577 The output light will contain at least the luminescent component and alkali emitted by the nitride phosphor or oxynitride phosphor. a luminescent component emitted by a metal-like orthophosphate phosphor. Further, the phosphor composition 2 contains a red-emitting photo-nitride phosphor or oxynitride phosphor activated by Eu2+, and is activated by Eu2+. And at 500nm

以上、未滿560nm或者560nm以上、未滿600nm任一波長 區具有發光峰之驗土類金屬原碎酸鹽螢光體時,螢光體層3 尚可含有除上述氮化物螢光體或氧氮化物螢光體及鹼土類 金屬原矽酸鹽螢光體以外的螢光體,但不含亦可。 其中,為了減少氮化物螢光體或氧氮化物螢光體或硫 化物系螢光體之使用量,較佳為不含上述以外之氮化物螢 光趙或氧氮化物螢光體或硫化物系螢光體。 例如’將上述以Eu2+或Ce3 +活化且於36〇nm以上、未 滿5 OOnm之波長區激發下内部量子效率高之銘酸鹽螢光 體鹵磷酸鹽螢光體等與上述(1)〜(6)之螢光體組合時,發 光元件1所發出之光可以尚效率激發螢光體,並藉由複數 〇 螢光體所發出之光混色而成為發出白色系光之半導體發光 裝置。又,如果將上述(7)~(9)所示之螢光體組合,則發光 元件1所發出之光會與勞光體所發出之光混色,而成為發 出白色系光之半導體發光裝置。 本實施形態之半導體發光襄置中,由於使用於上述3 色發光元件激發下外部量子效率不見得高但是内部量子5 =勞光趙,故當例如欲將藍色發光元件所發出之心 勞先體所發出之光混色以得到所欲之白色系光時,需要· 74 200944577 多的螢光體。因此,欲得到所欲的白色系光時,需要將螢 光體層的厚度增加,而如果螢光體層厚度增加,會成為白 色系光的色斑少的發光裝置,是其優點。 如果使螢光體層3為複數或多層構造,使其一部分層 為含有上述氮化物螢光體或氧氮化物螢光體之螢光體層, 則可以抑制本實施形態之半導體發光裝置之發光色斑或者 輸出斑,故為較佳。 又’由於以Eu2+為發光中心離子之氮化物螢光體或氧 〇 氮化物螢光體可以吸收藍、綠、黃的可見光並轉換為紅色 光’故如果上述含有氮化物螢光體或氧氮化物螢光體之螢 光體層,係將藍色螢光體、綠色螢光體、黃色螢光體任一 者之螢光體與上述氮化物螢光體或氧氮化物螢光體混合形 成者’則上述藍、綠、黃色螢光體之發光也會吸收,使上 述氮化物螢光體或氧氮化物螢光體發出紅色光。因此,會 使得發光裝置之發光色控制由於螢光體層之製程而變得困 難。為了防止此問題,較佳為使螢光體層3為複數層或多 〇 層構造,使最接近上述發光元件1之主光輸出面的層為發 紅色光之氮化物螢光體或氧氮化物螢光體,而使其不易被 上述藍、綠、黃色勞光體之發光所激發。又,由於以Eu2 + 或Ce3 +活化之上述黃色螢光體會被藍色系光或綠色系光所 激發’而以Eu2+或Ce3 +活化之綠色螢光體會被藍色系光所 激發’故當混合發光色不同之複數種螢光體以形成螢光體 層3時’會發生前述同樣的問題。為了解決此問題,本實 施形態之半導體發光裝置中,螢光體層3較佳為複層或多 75 200944577 層構造,並使遠離發光元件丨主光輸出面的層為含有發出 短波長光之螢光體的層。 本實施形態之半導鱧發光裝置,具有含有上述發光元 件、以及於該發光元件激發下内部量子效率高且可將激發 光有效轉換為紅色系光之氮化物螢光體或氧氮化物螢光體 之螢光體層,故該發光裝置的輸出光中至少含有上述氮化 物螢光體或氧氮化物螢光體所發出之紅色系發光成分,且 兼具強光束及尚演色性,尤其是會發出暖色系之白色光。 又,如果上述發光元件為藍色發光元件,則上述輸出光會 進一步含有上述發光元件所發出之發光成分。 囫4及圖5為本發 〇 —— J 、顯 裝置之構成之概略圖。圖4顯示至少使用一個半導體發The above-mentioned nitride phosphor 3 or oxynitride may be contained in the phosphor layer 3 having a luminescent peak in the wavelength range of less than 560 nm or more than 560 nm or less than 600 nm. Phosphors other than phosphors and alkaline earth metal orthosilicate phosphors, but they are not included. In order to reduce the amount of use of the nitride phosphor or the oxynitride phosphor or the sulfide-based phosphor, it is preferred to contain the nitride fluorescent or oxynitride phosphor or sulfide other than the above. A fluorescent body. For example, 'the above-mentioned (1) to (6) are the above-mentioned (1) to (6) activated by Eu2+ or Ce3+ and excited by a wavelength region of 36 〇 nm or more and less than 5,000 nm. When the phosphors are combined, the light emitted from the light-emitting element 1 can efficiently excite the phosphor, and the color light emitted by the plurality of phosphors becomes a semiconductor light-emitting device that emits white light. Further, when the phosphors shown in the above (7) to (9) are combined, the light emitted from the light-emitting element 1 is mixed with the light emitted from the plaster to become a semiconductor light-emitting device that emits white light. In the semiconductor light-emitting device of the present embodiment, since the external quantum efficiency is not high when excited by the above-described three-color light-emitting element, but the internal quantum 5 = Laoguang Zhao, for example, the blue light-emitting element is intended to be used first. When the light emitted by the body is mixed to obtain the desired white light, a fluorescent body of more than 74,044,577 is required. Therefore, in order to obtain desired white light, it is necessary to increase the thickness of the phosphor layer, and if the thickness of the phosphor layer is increased, it becomes a light-emitting device having less white color light spots, which is an advantage. When the phosphor layer 3 has a complex or multilayer structure and a part of the layer is a phosphor layer containing the nitride phosphor or the oxynitride phosphor, the luminescent color spot of the semiconductor light-emitting device of the embodiment can be suppressed. Or it is better to output spots. 'Because the nitride phosphor or yttrium nitride phosphor with Eu2+ as the luminescent center ion can absorb blue, green, and yellow visible light and convert it into red light, so if the above contains a nitride phosphor or oxygen nitrogen The phosphor layer of the phosphor is a mixture of a phosphor of a blue phosphor, a green phosphor, and a yellow phosphor, and the above-described nitride phosphor or oxynitride phosphor. The light emission of the blue, green, and yellow phosphors is also absorbed, so that the nitride phosphor or the oxynitride phosphor emits red light. Therefore, the illuminating color control of the illuminating device becomes difficult due to the process of the phosphor layer. In order to prevent this problem, it is preferable that the phosphor layer 3 has a multi-layer or multi-layer structure, and the layer closest to the main light output surface of the light-emitting element 1 is a red-emitting nitride phosphor or oxynitride. The phosphor is not easily excited by the luminescence of the blue, green, and yellow labor bodies described above. In addition, since the yellow phosphor activated by Eu2+ or Ce3+ is excited by blue light or green light, and the green phosphor activated by Eu2+ or Ce3+ is excited by blue light, When a plurality of kinds of phosphors having different luminescent colors are mixed to form the phosphor layer 3, the same problem as described above occurs. In order to solve this problem, in the semiconductor light-emitting device of the present embodiment, the phosphor layer 3 is preferably a multi-layer or multi-layer 75, 2009, 577, 577 layer structure, and the layer away from the main light output surface of the illuminating element is a fluorite emitting short-wavelength light. The layer of light. The semiconductor light-emitting device of the present embodiment includes the above-described light-emitting element and a nitride phosphor or oxynitride phosphor which has high internal quantum efficiency and can efficiently convert excitation light into red light under excitation of the light-emitting element. a phosphor layer of the body, so that the output light of the light-emitting device contains at least the red-based luminescent component emitted by the nitride phosphor or the oxynitride phosphor, and has both a strong light beam and a color rendering property, especially It emits white light in warm colors. Further, when the light-emitting element is a blue light-emitting element, the output light further includes a light-emitting component emitted by the light-emitting element.囫4 and Fig. 5 are schematic diagrams showing the structure of the 〇-J and the display device. Figure 4 shows at least one semiconductor hair

裝置9(組合含有上述螢光體組成&amp; 2之榮光體層3、及發 疋件1)所構成之照明顯示裝置以及其輸出光1〇。圖5, 示至少含有i個發光元件!與上述勞光體組成物2之瑩 體層3組合所構成之照明顯示裝置與其輪出光I發光 件1之螢光體層3’可使用與前述說明之半導體發光裝置 同者。又,該構成之照明顯示裝置的作用或效果 所說明之半導體發光裝置相同。 圃¢)〜圖12為於上述圖4及圖5椒政土 _ U. 表示之本發明發朵 裝置之實施形態照明顯示裝置之且艚 赞尤 八稷例。圖6顯示 體成形發光部11之照明模組12的令脚m 、4一 刃立體圖。圖7顯 複數發光部11之照明模組12的立餚閣 頌不具有 趙圖。圖8顯示具右狢 光部11並且可藉由開關11控制開與 、有發 科關或先量的桌上^ 76 200944577 型照明裝置的立體圓。圖9顯示由具有旋入式燈頭14、反 射板15及複數發光部11之照明模組12構成光源之照明裝 置側視圖。又’圖10為圖9之照明裝置的仰視圖。圖t i 為具有發光部11之平板型影像顯示裝置的立體圖。圖12 為具有發光部11之分段式數字顯示裝置的立體圖。 本實施形態之照明、顯示裝置,由於係使用於上述發 光元件激發下具有高内部量子效率之螢光體,尤其是紅色 系之發光成分強度強、且演色性良好的半導體發光裝置而 〇 構成,故具有較習知之照明顯示裝置同等以上的良好特 性,兼具強光束與特別是紅色系之發光成分強度強的高演 色性。 如上所述,依照本發明,藉由至少組合上述結構式 (MNxEUx)AlSiN3所示之氮化物螢光體及上述發光元件可 得到兼具強光束及高演色性之發光裝置,特別是,發出暖 色系之白色光的發光裝置。 又’依照本發明,藉由至少組合上述於6〇〇nm以上、 〇未滿66〇nm波長區具有發光峰之氮化物勞光體或氧氮化物 螢光體、上述於500mn以上、未滿6〇〇nm之波長區具有發 光峰之鹼土類金屬原矽酸鹽螢光體、以及上述發光元件, 可以提供兼具強光束及高演色性之發光裝置,特別是發出 暖色系之白色光的發光裝置。 乂下用實施例更詳細說明本發明之發光裝置。 (實施例26) 本實施例係製作圖41所示之卡片型照明模組光源之發 77 200944577 光裝置’並對發光特性進行評價。圖42為圖41之局部截 面圖。 首先’說明半導體發光裝置44之製造方法。於以陣列 狀形成於n型Si晶圓上之Si二極體元件(基座元件)45之各 成對之n電極46與p電極47上,透過微突塊(microbump ; 構裝以GalnN作為發光層之會發出於470nm左右具有發光 峰的光的藍色led晶片49。An illumination display device comprising the device 9 (combining the glare layer 3 of the above-described phosphor composition &amp; 2 and the hairpin 1) and its output light 1 。. Figure 5 shows at least i illuminating elements! The illuminating display device composed of the luminescent body layer 3 of the above-described working body composition 2 and the phosphor layer 3' of the illuminating light emitting device 1 can be used in the same manner as the semiconductor light-emitting device described above. Further, the operation and effect of the illumination display device of this configuration are the same as those of the semiconductor light-emitting device described.圃¢) to Fig. 12 is an example of the illumination display device of the embodiment of the hair-emitting device of the present invention shown in the above-mentioned Fig. 4 and Fig. 5, and the 艚 尤 八 八 八. Fig. 6 is a perspective view showing the steps of the legs m and 4 of the illumination module 12 of the body shaping light-emitting portion 11. Fig. 7 shows that the lighting module 12 of the plurality of light-emitting portions 11 does not have a Zhao map. Fig. 8 shows a solid circle having a right-hand light-emitting portion 11 and which can be controlled by the switch 11 to be turned on and off, and has a light-off or a predetermined amount of the table illumination device of the type 76 200944577. Fig. 9 shows a side view of a lighting device comprising a lighting module 12 having a screw-in base 14, a reflector 15 and a plurality of light-emitting portions 11. Further, Fig. 10 is a bottom view of the lighting device of Fig. 9. Figure t i is a perspective view of a flat-panel image display device having a light-emitting portion 11. Figure 12 is a perspective view of a segmented digital display device having a light emitting portion 11. In the illumination and display device of the present embodiment, a phosphor having a high internal quantum efficiency under excitation by the above-described light-emitting element is used, and in particular, a semiconductor light-emitting device having a strong red light-emitting component and excellent color rendering properties is used. Therefore, it has better characteristics than the conventional illumination display device, and has high color rendering properties of strong light beams and particularly red-based light-emitting components. As described above, according to the present invention, a light-emitting device having both a strong light beam and high color rendering property can be obtained by combining at least the nitride phosphor shown by the above structural formula (MNxEUx) AlSiN3 and the above-mentioned light-emitting element, in particular, a warm color is obtained. A white light emitting device. Further, according to the present invention, at least the above-mentioned nitride or oxynitride phosphor having an emission peak in a wavelength region of 6 〇〇 nm or more and 〇 less than 66 〇 nm is combined, and the above is 500 nm or more and less than 6 An alkaline earth metal orthosilicate phosphor having an emission peak in a wavelength region of 〇〇nm, and the above-mentioned light-emitting element, can provide a light-emitting device having both a strong light beam and high color rendering, and in particular, a light-emitting device that emits white light of warm color . The illuminating device of the present invention will be described in more detail by way of examples. (Embodiment 26) In this embodiment, a light source of a card type lighting module shown in Fig. 41 was produced, and the light-emitting characteristics were evaluated. Figure 42 is a partial cross-sectional view of Figure 41. First, a method of manufacturing the semiconductor light-emitting device 44 will be described. The pair of n-electrode 46 and p-electrode 47 of the Si diode element (base element) 45 formed on the n-type Si wafer in an array form are passed through a microbump (microbump; A blue LED wafer 49 having a light-emitting peak at about 470 nm is emitted from the light-emitting layer.

又’於形成為矩陣狀之各Si二極體元件45上安裝藍色 LED晶片49 ’故藍色LED晶片49也會被構裝程矩陣狀。 接著’將η電極46與p電極47連接於各藍色LED晶 片49之n電極與P電極後,使用印刷技術在上述藍色LEE 晶片49周邊部形成含有螢光體組成物之螢光體層3。將上 述螢光體I 3的上表面研削使其平坦化後,使用鑽石刀切 割分離成半導體發光裝置44。Further, the blue LED chips 49 are mounted on the respective Si diode elements 45 formed in a matrix shape. Therefore, the blue LED chips 49 are also arranged in a matrix. Next, the n electrode 46 and the p electrode 47 are connected to the n electrode and the P electrode of each of the blue LED chips 49, and then a phosphor layer 3 containing a phosphor composition is formed on the peripheral portion of the blue LEE wafer 49 by a printing technique. . The upper surface of the above-mentioned phosphor I 3 was ground and flattened, and then cut into semiconductor light-emitting devices 44 by using a diamond knife.

其次,於鋁金屬基板5〇(大小3cmx3cm,厚度lmm)上 依序積層第1絕緣體厚膜51 (厚度75#m)、銅電極52(厚度 約Mem,寬〇.5mm)、第2絕緣體厚膜53(厚度 電極墊54a及54b(厚度約1〇//m,合計64對),以形成散熱 多層基板55。上述第1絕緣體厚骐51與第2絕緣體厚膜 53’係由熱壓接所形成之氧化銘分散環氧樹脂構成。又, 上述銅電極52係藉由㈣技術形成圓案,上述電極塾… 及5仆係藉由蝕刻技術形成供電用之負極及正極。又第2 =膜厚膜53之-部分設有接觸孔,使上述電極墊^及⑽ 可以經過上述銅電極52供電。 78 200944577 其次’將半導體發光裝置44載置於散熱性多層基板55 上之既疋位置。此時,Si二極體元件45之内側電極(η電 極)56係使用Ag糊固定連接於電極墊54a,而p電極47上 之連結墊(bonding pad)部58,係使用Au線57連接於電極 墊54b,使可對半導體發光裝置供電。 其次’使用黏著劑將具有倒圓錐圓筒狀研磨孔的鋁金 屬反射板59黏著於散熱性多層基板55上,此時,散熱性 多層基板55上之半導體發光裝置44,可以被包在鋁金屬反 〇 射板59的研磨孔部内。然後,使用環氧樹脂包袠半導體發 光裝置44及研磨孔部整體,以形成圓頂狀的稜鏡,得到 實施例26的發光裝置。 圖41為實施例26之發光裝置的立體圖。實施例26, 係使用64個半導體發光裝置44製作卡型的照明模組光 源’並對其發光特性進行評價。 實施例26中,係藉由於2個將32個銅電極52直列連 接之半導體發光裝置群’分別流過4〇mA左右總計80mA左 ® 右的電流’以驅動半導體發光裝置44,得到輸出光。該輸 出光為上述藍色LED晶片49所發出之光、與以該光激發所 發光之含於螢光體層3中之螢光體所發出之光的混色光。 該輸出光藉由適當選擇LED晶片及螢光體種類及量,可以 得到任意的白色光。 以下詳細說明螢光體層3。 螢光體層3’係使添加螢光體之環氧樹脂乾燥凝固而形 成。實施例26中,螢光體使用2種,一種為於625nm波長 79 200944577 附近具有發光峰之SrA1SiN3:Eu2+紅色螢光體(中心粒徑:2 2 //m’最大内部量子效率:6G%)’另—種為於奶⑽波長附 近”有發S峰之(Ba Sr)2Si()4:Eu2+綠色螢光體(中心粒 徑:12.7心’最大内部量子效率·91%),環氧樹脂使用二液 混合型環氧樹脂,主劑為以雙酚A型液狀樹脂為主成分之 環氧樹脂’硬化劑為以脂環式酸野為主成分之環氧樹脂。 SrA1SlN3:Eu2+紅色螢光體與(Ba,Sr)2Si〇4:Eu2'綠色螢光體 11: H tt例約$ i:。該混合螢光體與環氧樹脂之重 量比例約為1:3(螢光體濃度=25重量%)。 (比較例6) 使用2種螢光體,一種為於625nm波長附近具有發光 峰之Sr2Si5N8:Eu2+紅色螢光體(中心粒徑:1.8_,最大内部 量子效率:62%) ’另一種為於56〇nm波長附近具有發光峰之 YsAlsOaCeK黃色螢光體(中心粒徑:17 6 a爪,最大内部量 子效率.98 /〇)’與實施例26以同樣方式製作卡型照明模組光 源。螢光體層3中’ Sr2Si5Ns:Eu2+紅色螢光體與 YsAlsOaCeh黃色螢光體混合重量比例約為1:6,該混合螢 光體與環氧樹脂之重量混合比約為1:14(螢光體濃度=67重 量%)。然後,與實施例同樣,藉由將電流流過半導體發光 裳置得到輸出光,並對其發光特性進行評價。 關於螢光體層3之厚度,為得到同質光色(相關色溫約 3800K,duv,色度)的白色光,實施例26中厚度為約5〇〇 β m,比較例6厚度約為100从m。又,實施例26之 SrAlSiN3:Eu2+紅色螢光體與比較例6之Sr2Si5N8:Eu2+紅色 200944577 榮光體之發光特性類似。因此,為了儘可能提高比較精度, 實施例26之螢光體係儘可能選擇與比較例6之發光性能類 似的綠色螢光體。實施例26之(仏,Sr)2Si〇4:Eu2 +綠色螢光 體與圖32所示之(Ba,Sr)2Si〇4:Eu2 +綠色螢光體之心與β&amp; 的原子比雖然不同,但是,關於内部量子效率及外部量子 效率之激發波長依存性為類似的。 以下,說明實施例26與比較例6之發光裝置的發光特 性。 圖43、圖44分別顯示實施例26及比較例ό之發光光 譜。從圖43、圖44可以瞭解,實施例26及比較例6之發 光裝置具有很類似的發光光譜,皆會發出在47〇nm附近及 600nm附近具有發光峰之白色光,也就是發出藍色系光與黃 色系光混色之白色光。 表8顯示實施例26與比較例6之發光裝置的特性。 表8 實施例26 比較例6 相關色溫(K) 3800 3797 duv 0 -0.02 色度(x,y) (0.3897,0.3823) (0.3898,0.3823) Ra 83 83 R9 31 33 相對光束 98.7 100 表8之duv為顯示白色光從黑體發射軌跡偏離的指 數。Ra為平均現色評價數’ R9為紅色之特殊現色評價數, 以基準光所見之顏色作為100,係表示試驗光對試驗色忠實 81 200944577 再現的程度。 於約相同光色(相關色溫、duv及色度)的條件下,實施Next, a first insulator thick film 51 (thickness 75#m), a copper electrode 52 (thickness about Mem, a width of 55 mm), and a second insulator thickness are sequentially laminated on an aluminum metal substrate 5 (size: 3 cm x 3 cm, thickness: 1 mm). The film 53 (thickness electrode pads 54a and 54b (having a thickness of about 1 〇//m, a total of 64 pairs) is formed to form the heat dissipation multilayer substrate 55. The first insulator thickness 51 and the second insulator thick film 53' are thermocompression bonded. The formed oxide electrode is composed of an epoxy resin, and the copper electrode 52 is formed into a round shape by the technique of (4), and the electrodes 塾 and 5 are formed by a etching technique to form a negative electrode and a positive electrode for power supply. A portion of the film thickness film 53 is provided with a contact hole, so that the electrode pads and (10) can be supplied with power through the copper electrode 52. 78 200944577 Next, the semiconductor light-emitting device 44 is placed on the heat-dissipating multilayer substrate 55 at a predetermined position. At this time, the inner electrode (n electrode) 56 of the Si diode element 45 is fixedly connected to the electrode pad 54a by using an Ag paste, and the bonding pad portion 58 on the p electrode 47 is connected to the bonding pad 58 by using the Au wire 57. The electrode pad 54b enables power supply to the semiconductor light-emitting device. The aluminum metal reflector 59 having an inverted conical cylindrical grinding hole is adhered to the heat dissipation multilayer substrate 55. At this time, the semiconductor light emitting device 44 on the heat dissipation multilayer substrate 55 may be wrapped in an aluminum metal reverse sputtering plate. The inside of the polishing hole portion of 59. Then, the semiconductor light-emitting device 44 and the entire polishing hole portion were sealed with an epoxy resin to form a dome-shaped crucible, thereby obtaining the light-emitting device of Example 26. Fig. 41 is a light-emitting device of Example 26. In the embodiment 26, a card-type illumination module light source ' is fabricated using 64 semiconductor light-emitting devices 44 and its light-emitting characteristics are evaluated. In the embodiment 26, 32 copper electrodes 52 are connected in series by two. The semiconductor light-emitting device group 'flows a total of 80 mA left-right current of about 4 mA, respectively, to drive the semiconductor light-emitting device 44 to obtain output light. The output light is the light emitted by the blue LED chip 49, and Light-exciting the mixed color light of the light emitted by the phosphor contained in the phosphor layer 3. The output light can be obtained by appropriately selecting the type and amount of the LED chip and the phosphor. The phosphor layer 3 will be described in detail below. The phosphor layer 3' is formed by drying and solidifying an epoxy resin to which a phosphor is added. In the embodiment 26, two kinds of phosphors are used, one of which has a wavelength of 625 nm and a frequency of 79,2009,577. SrA1SiN3:Eu2+ red phosphor of luminescence peak (center particle size: 2 2 //m' maximum internal quantum efficiency: 6G%) 'Another species is near the wavelength of milk (10)" has S peak (Ba Sr) 2Si () 4: Eu2+ green phosphor (center particle size: 12.7 core 'maximum internal quantum efficiency · 91%), epoxy resin using two-liquid mixed epoxy resin, the main agent is bisphenol A liquid resin as the main component The epoxy resin 'hardener is an epoxy resin mainly composed of an alicyclic acid field. SrA1SlN3: Eu2+ red phosphor and (Ba,Sr)2Si〇4:Eu2' green phosphor 11: H tt example about $i:. The weight ratio of the mixed phosphor to the epoxy resin was about 1:3 (phosphor concentration = 25% by weight). (Comparative Example 6) Two types of phosphors were used, one of which was an Sr2Si5N8:Eu2+ red phosphor having a luminescence peak at a wavelength of 625 nm (central particle diameter: 1.8 _, maximum internal quantum efficiency: 62%) 'The other is 56 A YsAlsOaCeK yellow phosphor having a luminescence peak near the 〇nm wavelength (central particle diameter: 17 6 a-claw, maximum internal quantum efficiency: 98 / 〇) was fabricated in the same manner as in Example 26 to produce a card-type illumination module light source. In the phosphor layer 3, the mixing ratio of the 'Sr2Si5Ns:Eu2+ red phosphor to the YsAlsOaCeh yellow phosphor is about 1:6, and the mixing ratio of the mixed phosphor to the epoxy resin is about 1:14 (fluorescent body). Concentration = 67% by weight). Then, as in the embodiment, the output light was obtained by flowing a current through the semiconductor light emission, and the light-emitting characteristics were evaluated. Regarding the thickness of the phosphor layer 3, in order to obtain white light of a homochromatic color (correlation color temperature of about 3800 K, duv, chromaticity), the thickness in Example 26 is about 5 〇〇 β m, and the thickness of Comparative Example 6 is about 100 m from m. . Further, the luminescent characteristics of the SrAlSiN3:Eu2+ red phosphor of Example 26 and the Sr2Si5N8:Eu2+ red 200944577 glory of Comparative Example 6 were similar. Therefore, in order to increase the comparison accuracy as much as possible, the fluorescent system of Example 26 was selected as much as possible from the green phosphor of Comparative Example 6. The atomic ratio of the (仏,Sr)2Si〇4:Eu2+ green luminescent agent of Example 26 to the heart of [Ba,Sr)2Si〇4:Eu2+ green luminescent agent shown in Fig. 32 is different from that of β&amp; However, the excitation wavelength dependence on internal quantum efficiency and external quantum efficiency is similar. Hereinafter, the light-emitting characteristics of the light-emitting devices of Example 26 and Comparative Example 6 will be described. Fig. 43 and Fig. 44 show the luminescence spectra of Example 26 and Comparative Example, respectively. As can be seen from FIG. 43 and FIG. 44, the light-emitting devices of Example 26 and Comparative Example 6 have very similar luminescence spectra, and all emit white light having a luminescence peak near 47 〇 nm and around 600 nm, that is, blue light is emitted. White light mixed with yellow light. Table 8 shows the characteristics of the light-emitting devices of Example 26 and Comparative Example 6. Table 8 Example 26 Comparative Example 6 Correlated color temperature (K) 3800 3797 duv 0 -0.02 Chromaticity (x, y) (0.3897, 0.3823) (0.3898, 0.3823) Ra 83 83 R9 31 33 Relative beam 98.7 100 Table 8 duv An index that shows the deviation of white light from the black body emission trajectory. Ra is the average color rendering number 'R9 is the special color evaluation number of red, and the color seen by the reference light is 100, which indicates the degree of reproduction of the test light to the test color faithful 81 200944577. Implemented under the same light color (correlated color temperature, duv and chromaticity)

例26雖然使用於47〇nm光照射下發光強度低的(Β\ S〇2Si〇4:Eu2+綠色螢光體,但是仍顯示與比較例6為大致同 等的Ra、R9及光束。也就是說,實施例26與習知兼具高 演色性及強光束的發光裝置相比,具有同等的發光性能。 其原因推測為於藍色led所發出之光照射下,實施例26所 使用之螢光體内部量子效率高,使螢光體所吸收之藍色[EDIn Example 26, although 发光\S〇2Si〇4:Eu2+ green phosphor having a low light-emitting intensity under irradiation of 47 〇nm light was used, Ra, R9 and a light beam which were substantially equivalent to those of Comparative Example 6 were also exhibited. Example 26 has the same luminescent performance as the conventional light-emitting device having both high color rendering and strong light beam. The reason is presumed to be the fluorescence used in Example 26 under the illumination of blue led light. The quantum efficiency inside the body is high, so that the blue color absorbed by the phosphor [ED

所發出之光可以有效率的進行波長轉換並發光,而且將未 吸收之藍色LED所發出之光有效率地輸出。 又’發光裝置之相關色溫可以藉由改變上述螢光邀濃 度或螢光體層厚度而作任意調整,並使用至少丨種具有既 定分光分布及既定内部量子效率之螢光體、以及穿透率為 1〇〇%(例如樹脂等)之母材來構成螢光體層,並且,使用具 有既定分光分布之固定輸出發光元件構成發光裝置,而能The emitted light can be efficiently wavelength-converted and illuminated, and the light emitted by the unabsorbed blue LED is efficiently output. Moreover, the correlated color temperature of the illuminating device can be arbitrarily adjusted by changing the above-mentioned fluorescence concentration or the thickness of the phosphor layer, and at least a phosphor having a predetermined spectral distribution and a predetermined internal quantum efficiency, and a transmittance are used. a base material of 1% by mass (for example, a resin) constitutes a phosphor layer, and a fixed output light-emitting element having a predetermined spectral distribution is used to constitute a light-emitting device, and

以模擬來評價改變輸出光之相關色溫時的現色評價數、光 束等發光特性。其中,現色評價數可以不需内部量子效率 數值,可僅從螢光體與發光元件之分光分布作模擬評價。 因此,為了檢驗上述發光裝置之兼具高演色性及強光束的 光色,將實施例26及比較例6之發光裝置所發出之白色光 之duv作為〇並改變相關色溫時,以模擬對Ra與相對光束 之舉動進行評價。 圖45’顯示實施例26及比較例6之發光裝置所發出白 色光以模擬評價改變相關色溫時對相對光束的影響。由圖 82 200944577 45可知’實施例26及比較例6顯示相同的波動,當製作白 色光之相關色溫為3000〜6000K,較佳為3500〜5000K之發 光裝置時,當相關色溫為3797K時,實施例26為比較例6 之光束的95〜100%,為較強之光束。又,上述比較例6之 相關色溫控制為3797K時之光束,係以圖45中之為實線表 示0 圖46為實施例26及比較例6之發光裝置所發出白色 光以模擬評價改變相關色溫時對Ra的影響。當製作白色光 〇 之相關色溫為〜5000K,較佳為2500〜4000K之發光裝 置時’實施例26及比較例6之Ra為80以上之較高數值。 由圖45及圖46可瞭解,當製作白色光之相關色溫為 3000~5000K,較佳為 3000〜4500K’ 更佳為 3500〜4000K 之 發光裝置時’實施例26及比較例6可以製得兼具強光束及 高Ra的發光裝置。 (實施例27) 將實施例26之(Ba,Sr)2Si〇4:Eu2 +綠色螢光體從於波長 Ο 555ηπι附近具有發光峰之螢光體改變為於波長535nm附近 具有發光峰之螢光體,製作duv作成〇以改變相關色溫之 發光裝置。 圖47顯示對實施例27所發出之白色光的以模擬進 行評價的結果。由圖47可知,製作相關色溫愈低Ra愈高 且相關色溫為2000〜5000K之發白色光之發光裝置時,Ra 為80以上,且相關色溫為30〇〇κ以下時,Ra為9〇以上。 圖48顯示對實施例27所發出之白色光的R9以模擬進 83 200944577 行評價的結果。由圖48可知,製作相關色溫為2000〜8000K 之發白色光之發光裝置時,R9為40以上之高數值,且相關 色溫為2500〜6500K時,Ra高達約80以上。 圖49顯示對實施例27所發出之白色光之相關色溫改 變時之相對光束以模擬進行評價的結果。圖49中,當製作 實施例27之白色光之相關色溫為2500〜8000K,較佳為 3000〜5000K,更佳為3500〜4500K之發光裝置時,實施例 27,係顯示為比較例6中相關色溫為3797K時之光束的 82〜85%之較強之光束。又,上述比較例6之相關色溫為3797 時的光束係以圖49中之實線顯示。 圖47〜圖49中,當實施例27之發光裝置相關色溫為 3000〜5000K時,Ra及R9為80以上,且會達成強光束並發 出高演色性的輸出光。而相關色溫為3500〜4500K時,Ra 及R9為82以上,且會達成強光束並發出更高演色性的輸 出光。而尤其是相關色溫約為4000K時,Ra及R9為85以 上,且會達成更強光束並發出再更高演色性的輸出光。 圖50顯示發出尤佳之相關色溫4000K(duv=0)之暖色系 白色光的實施例27之發光裝置其發光光譜之模擬數據。該 發光光譜中,色度(X,y)為(0.3805,0.3768),Ra 為 86,R9 為95。該發光光譜形狀,與藍色LED所發出於波長區 460〜480nm之發光峰、由於稀土類離子之5d-4f電子遷移而 發光之實施例27之綠色螢光體所發出之於520〜550nm之發 光峰、由於稀土類離子之5d-4f電子遷移而發光之實施例 27之紅色螢光體所發出之於610〜640nm之發光峰的強度比 200944577 率 460 〜480nm:520 〜55〇nm:6l〇 〜64〇nm 為 24〜28 、 12〜15:16〜20。本發明之較佳形態之一,為一種發光裝置, 其特徵為#出發光峰具有H匕率之發光光譜形狀的暖色 系白色光。又,發出上述藉由稀土類離子之5(1_竹電子遷移 而發光的螢光體,係顯示主要以如2+或Ce3 +等稀土類離子 作為發光中心離子之勞光體。該種螢光體當發光峰的波長 相同時,不論螢光體母體種類,都會形成類似之發光光譜 形狀。 又,如果將實施例26之綠色螢光體改變為於 520〜550nm波長範圍具有發光峰之(BaSr)2Si〇4:Eu2+綠色螢 光體,並加入於560〜580nm波長範圍具有發光峰之 (Sr,Ba)Si〇4:Eu2+黃色螢光體,則從模擬可知可得到高演色 性之發光裝置。例如’相對色溫為380〇K、duv=〇、色度 (0.3897,0.3823)之輸出光中,1^為88、119為72、相對光束 為 93% 〇 將實施例26之螢光體,改變為更短例如於52〇nm 長區具有發光峰之(Ba, Sr)2Si〇4:Eu2+綠色螢光體時,於 duv=〇之光色條件下’以模擬評價相關色溫與Ra、R9與相 對光束的關係。其結果發現,綠色螢光體之發光峰波長愈 短的發光裝置,其Ra、R9及相對光束的數·值愈低,照明裝 置的性能愈低。例如,使用於波長520nm具有發光峰之綠 色螢光體時,當相關色溫為3800K,duv=0,色度 (〇.3897,0.3823)時,以為80、尺9為71,相對光束為85%。 由以上可知’較佳為使用發光峰之波長為525mn以上的綠 85 200944577 色螢光體。 又,實施例26及實施例27使用之SrAlSiN3:Eu2+紅色 螢光體,只要為以結構式(MhxEuJAlSiN3表示之紅色螢光 體、並且Μ為選自Mg、Ca、Sr、Ba及Zn中至少一種元素、 且X滿足0.005 S X S 0.3即可’不特別限定。例如 CaAlSiN3:Eu2+紅色螢光體亦可得到同樣的作用效果。 又,取代SrAlSiN3:Eu2 +紅色螢光體而以例如顯示類似 發光特性之周知氮化物螢光體或氧氮化物螢光體,例如以 結構式(Mi-xEux)SiN2或結構式等表示之氮 © 化物矽酸鹽螢光體或以結構式(M^EUxhSiAmN?表示之氧 代氮化物鋁矽酸鹽螢光體時,也可得到同樣的作用效果。 其中,Μ為選自Mg、Ca、Sr、Ba及Zn中之至少一種元素、 且 X 滿足 0.005 S 0.3。 又’綠色螢光體及黃色螢光體不限定於上述實施例所 使用者’只要是會發出於525nm以上、未滿600nm之波長 區具有發光峰之勞光體即可’例如可使用於未滿42〇nm之 波長區之激發光譜之最長波長側具有激發峰之螢光體。 © 又,白色LED中使用作為螢光體而周知之YAG:Ce系螢光 體’例如 ’(Y3(A1,Ga)5〇12:Ce3+綠色螢光體、Y3Al5〇i2:Ce3 + 綠色螢光體、(Y, GdhAlsOaCe^黃色螢光體、 YsAlsOeCe'Pi^黃色螢光體等作為上述綠色螢光體或黃 色螢光體時,也可得到同樣的作用效果。 (實施例28) 本實施例製作圖41及圊42所示之卡型照明模組光源 86 200944577 並評價其發光特性,係將實施例26或實施例27中已說明 的藍色LED晶片49改為構裝以㈣心為發光層並會發出 術細附近具有發光峰之紫色咖晶片。本實施例之輸出 光至/可被上述紫色led晶片所發出之光激發而發光,為 乂勞光體層3所含螢光體所發出之光為主體的混色光。且, 藉由適當選擇螢光體種類及量,可以使輸出光為任意的白 色光。 以下,詳細說明本實施例之螢光體層3。 螢光體層3’係將添加有螢光體之環氧樹脂乾燥凝固而 形成。本實施例中的螢光體使用3種螢光體:於波長625邮 附近具有發光峰之SrA1SiN3:Eu2+紅色榮光體(中心粒徑·2 2 最大内部量子效率:6〇%,於術⑽激發下之内部量 子效率.約60%)、於波長535nm附近具有發光峰之叫, S〇2Si〇4:Eu2+綠色螢光體(中心粒徑:i 5 2心最大内部量子 效率㈣,於405nm激發下之内部量子效率約97〇椒於 波長4〇5咖附近具有發光峰之BaMgAlu)〇i7:Eu2+藍色螢光 體(中心粒徑:8.5&quot;m,最大内部量子效率:約1〇〇%,於4〇細 激發下之内部量子效率:約刚%),而環氧樹脂係使用二液 混合型環氧樹脂,以雙盼A型液狀環氧樹脂為主成分之環 氧樹腊為主劑,及以脂環式酸酐為主成分之環氧樹脂為硬 化劑。又’上述,SrA1SiN3:Eu2+紅色榮光體,由於製造條 件尚未最適化’故内部量子效率低,但今後藉由製造條件 最適化,能改善内部量子效率至h5倍以上。SrAisiN3:Eu2+ 紅色螢光體、(Ba,Sr)2Si〇4:Eu2+綠色螢光體及 87 200944577The number of color evaluations and the light-emitting characteristics such as the light beam when the correlated color temperature of the output light is changed are evaluated by simulation. Among them, the color evaluation number may not require an internal quantum efficiency value, and may be simulated only from the spectral distribution of the phosphor and the light-emitting element. Therefore, in order to examine the light color of the light-emitting device which has both high color rendering properties and strong light beams, the duv of the white light emitted by the light-emitting devices of Example 26 and Comparative Example 6 is used as the 〇 and the correlated color temperature is changed to simulate Ra Evaluate with the behavior of the relative beam. Fig. 45' shows the white light emitted from the light-emitting devices of Example 26 and Comparative Example 6 to simulate the influence of the relative light beam when the correlation color temperature was changed. It can be seen from FIG. 82 200944577 45 that 'Example 26 and Comparative Example 6 show the same fluctuation. When the color temperature of the white light is 3,000 to 6000 K, preferably 3500 to 5000 K, when the correlated color temperature is 3797 K, the implementation is performed. Example 26 is 95 to 100% of the light beam of Comparative Example 6, which is a strong beam. Further, the light beam when the correlated color temperature of Comparative Example 6 is controlled to 3797 K is indicated by a solid line in FIG. 45. FIG. 46 is a white light emitted from the light-emitting devices of Example 26 and Comparative Example 6 to change the correlated color temperature by analog evaluation. The impact on Ra. When the color temperature of the white light ray is ~5000 K, preferably 2500 to 4000 K, the Ra of Example 26 and Comparative Example 6 is a higher value of 80 or more. As can be seen from FIG. 45 and FIG. 46, when the color temperature of the white light is 3,000 to 5,000 K, preferably 3,000 to 4,500 K', more preferably 3,500 to 4,000 K, the embodiment 26 and the comparative example 6 can be obtained. A light-emitting device with a strong beam and high Ra. (Example 27) The (Ba,Sr)2Si〇4:Eu2 + green phosphor of Example 26 was changed from a phosphor having an emission peak near a wavelength 555 555 ηπι to a phosphor having an emission peak at a wavelength of 535 nm. A light-emitting device in which a duv is made into a crucible to change the correlated color temperature. Fig. 47 shows the results of evaluation of the white light emitted in Example 27 by simulation. As can be seen from Fig. 47, when the light-emitting device with a lower color Ra and a white light having a correlated color temperature of 2000 to 5000 K is produced, Ra is 80 or more, and when the correlated color temperature is 30 〇〇 κ or less, Ra is 9 〇 or more. . Fig. 48 shows the results of evaluation of R9 of the white light emitted in Example 27 in a simulation of 83 200944577. As can be seen from Fig. 48, when a light-emitting device having a white light having a color temperature of 2000 to 8000 K is produced, R9 is a high value of 40 or more, and when the correlated color temperature is 2500 to 6500 K, Ra is as high as about 80 or more. Fig. 49 is a graph showing the results of evaluation of the relative light beams when the correlated color temperature of the white light emitted in Example 27 was changed. In Fig. 49, when the color temperature of the white light of Example 27 is 2500~8000K, preferably 3000~5000K, more preferably 3500~4500K, Example 27 is shown as related in Comparative Example 6. The color temperature is a strong light beam of 82 to 85% of the beam at 3797K. Further, the light beam when the correlated color temperature of Comparative Example 6 is 3797 is shown by the solid line in Fig. 49. In Figs. 47 to 49, when the color temperature of the light-emitting device of Example 27 is 3000 to 5000 K, Ra and R9 are 80 or more, and a strong light beam is obtained and high color rendering output light is emitted. When the correlated color temperature is 3500 to 4500K, Ra and R9 are 82 or more, and a strong light beam is obtained and a higher color rendering output light is emitted. In particular, when the correlated color temperature is about 4000K, Ra and R9 are above 85, and a stronger beam is obtained and a higher color rendering output light is emitted. Fig. 50 is a view showing simulation data of the luminescence spectrum of the illuminating device of Example 27 which emits a particularly warm color-based white light having a correlated color temperature of 4000 K (duv = 0). In the luminescence spectrum, the chromaticity (X, y) was (0.3805, 0.3768), Ra was 86, and R9 was 95. The shape of the luminescence spectrum is emitted from 520 to 550 nm of the green phosphor of Example 27 emitted from the blue LED by the luminescence peak of the wavelength region of 460 to 480 nm and by the 5d-4f electron transfer of the rare earth ion. The luminescence peak, the intensity of the luminescence peak of 610 to 640 nm emitted by the red phosphor of Example 27 which is emitted by the 5d-4f electron transfer of the rare earth ion, is 460 to 480 nm: 520 to 55 〇 nm: 6 l 〇~64〇nm is 24~28, 12~15:16~20. One of the preferred embodiments of the present invention is a light-emitting device characterized in that the light-emitting peak has a warm-light white light having an H 匕 rate of an emission spectrum. Further, the phosphor which emits light by the transfer of the rare earth ions 5 (1_bake electrons) exhibits a rare earth ion such as 2+ or Ce3 + as a light-emitting center ion. When the wavelength of the luminescence peak is the same, a similar luminescence spectrum shape is formed regardless of the type of the phosphor precursor. Further, if the green phosphor of Example 26 is changed to have a luminescence peak in the wavelength range of 520 to 550 nm (BaSr) 2Si〇4: Eu2+ green phosphor, and added to a (Sr, Ba)Si〇4:Eu2+ yellow phosphor having an emission peak in the wavelength range of 560 to 580 nm, a high color rendering light-emitting device can be obtained from the simulation. For example, in the output light with a relative color temperature of 380 〇K, duv=〇, and chromaticity (0.3897, 0.3823), 1^ is 88, 119 is 72, and the relative beam is 93%. The phosphor of Example 26 is changed. For shorter, for example, (Ba, Sr)2Si〇4:Eu2+ green phosphors with a luminescence peak in the 52〇nm long region, the color temperature is compared with Ra, R9 and relative in the simulation of duv=〇 light color conditions. The relationship between the beams, and the result is that the shorter the wavelength of the luminescence peak of the green phosphor The lower the number of Ra, R9 and relative light beams, the lower the performance of the illumination device. For example, when used for a green phosphor having a luminescence peak at a wavelength of 520 nm, when the correlated color temperature is 3800 K, duv = 0, In the case of chromaticity (〇.3897, 0.3823), it is assumed that 80 and ruler 9 are 71, and the relative light beam is 85%. From the above, it is understood that 'green 85 200944577 color phosphor having a wavelength of 525 nm or more is preferably used. The SrAlSiN3:Eu2+ red phosphor used in the embodiment 26 and the embodiment 27 is a red phosphor represented by the structural formula (MhxEuJAlSiN3, and the lanthanum is at least one element selected from the group consisting of Mg, Ca, Sr, Ba, and Zn, Further, X satisfies 0.005 SXS 0.3, which is not particularly limited. For example, CaAlSiN3:Eu2+ red phosphor can also obtain the same effect. Further, in place of SrAlSiN3:Eu2 + red phosphor, for example, a well-known nitrogen exhibiting similar luminescence characteristics can be obtained. a phosphor or an oxynitride phosphor, for example, a nitrogen oxide silicate phosphor represented by a structural formula (Mi-xEux)SiN2 or a structural formula or an oxo represented by a structural formula (M^EUxhSiAm?) When a nitride aluminosilicate phosphor The same effect can be obtained, wherein Μ is at least one element selected from the group consisting of Mg, Ca, Sr, Ba, and Zn, and X satisfies 0.005 S 0.3. Further, the 'green phosphor and the yellow phosphor are not limited to The user of the above embodiment can be used as long as it is a light-emitting body having a light-emitting peak in a wavelength region of 525 nm or more and less than 600 nm. For example, it can be used on the longest wavelength side of an excitation spectrum for a wavelength region of less than 42 〇 nm. The phosphor of the excitation peak. © In addition, YAG:Ce-based phosphors such as 'Y3 (A1, Ga) 5〇12: Ce3+ green phosphor, Y3Al5〇i2: Ce3 + green fluorescent light are known as fluorescent materials in white LEDs. The same effect can be obtained when the body, (Y, GdhAlsOaCe^ yellow phosphor, YsAlsOeCe'Pi^ yellow phosphor, or the like) is used as the green phosphor or the yellow phosphor. (Example 28) This example The card type lighting module light source 86 200944577 shown in FIGS. 41 and 42 is produced and evaluated for its light-emitting characteristics. The blue LED chip 49 described in the embodiment 26 or the embodiment 27 is modified to have a (four) heart illumination. The layer also emits a purple coffee wafer having a luminescence peak near the stencil. The output light of the embodiment can be excited by the light emitted by the purple LED chip to emit light, which is emitted by the phosphor contained in the trowel layer 3. The light is the main color mixed light, and the output light can be made into arbitrary white light by appropriately selecting the type and amount of the phosphor. Hereinafter, the phosphor layer 3 of the present embodiment will be described in detail. The phosphor layer 3' will be The epoxy resin to which the phosphor is added is dried and solidified to form. This embodiment The phosphor used in the three types of phosphors: SrA1SiN3:Eu2+ red glomerium with a luminescence peak near the wavelength of 625 (central particle size · 2 2 maximum internal quantum efficiency: 6〇%, internal quantum under the excitation of (10) Efficiency. About 60%), with a luminescence peak near the wavelength of 535 nm, S〇2Si〇4: Eu2+ green phosphor (central particle size: i 5 2 maximum internal quantum efficiency (4), internal quantum efficiency at 405 nm excitation About 97 〇 pepper has a luminescence peak near the wavelength of 4 〇 5 coffee BaMgAlu) 〇i7: Eu2+ blue phosphor (center particle size: 8.5 &quot; m, maximum internal quantum efficiency: about 1%, at 4 〇 fine The internal quantum efficiency under excitation: about %), while the epoxy resin is a two-liquid mixed epoxy resin, and the epoxy resin is mainly used as a main component of the A-type liquid epoxy resin, and The epoxy resin containing the alicyclic anhydride as the main component is a hardener. Further, the above-mentioned SrA1SiN3:Eu2+ red glory is not optimized as the production conditions are satisfied, so the internal quantum efficiency is low, but in the future, it can be improved by optimizing the manufacturing conditions. Internal quantum efficiency is more than h5 times. SrAisiN3: Eu2+ red Color phosphor, (Ba, Sr) 2Si〇4: Eu2+ green phosphor and 87 200944577

BaMgAl1G〇17:EU2+藍色螢光鱧重量混合比例為約6:丨丨:3〇, 該混合螢光體與環氧樹脂之重量混合比例約為丨:3 (螢光體 濃度=25重量%)。 (比較例7) 使用3種螢光體與實施例28以同樣的方式製作卡型照 明模組光源,該3種螢光體為:於波長626nm附近具有發 光峰之LhOAEf紅色螢光體(中心粒徑:93㈣最大内 部量子效率:84%,於402nm激發下之内部量子效率:約 50%)'於波| 535nm附近具有發光峰之(BaSr)2Si〇4:Eu2+ 〇 綠色螢光體(中心粒徑:15.2“m,最大内部量子效率:97%, 於405nm激發下之内部量子效率:約97%)、及於波長4〇5nm 附近具有發光峰之BaMgAlwOKEu2—藍色螢光體(中心粒 徑:8.5//111,最大内部量子效率:約1〇〇%,於4〇511111激發下 之内部量子效率:約1〇〇%ρ螢光體層3,係將La2〇2S:Eu3 + 紅色螢光體、(Ba, Sr)2Si〇4:Eu2+綠色螢光體及 BaMgAhOaEi^藍色螢光體,以重量混合比例為約 155:20:33混合,該混合螢光體與環氧樹脂之重量混合比例 〇 約為1:3(螢光體濃度=25重量%)。並與實施例28同樣,藉 由將電流流過半導體發光裝置以得到輪出光,並評價該輸 出光之發光特性。 為了传到同質光色(相關色溫約3800K,duv,色度)之白 色光’螢光體層3之厚度與實施例28及比較例7皆形成為 厚度約500以m。 以下’說明實施例28及比較例7之發光裝置的發光特 88 200944577 性。 於圖5卜圖52顯示實施例28及以較例7之發光光譜。 從圖51、圖52可得知,實施例28及以較例7之發光裝置 皆會發出於405nm附近、450nm附近、535nm附近、625nm 附近具有發光峰之白色光,也就是說,會發出紫色光、藍 色光、綠色光與紅色光混色的白色光。又,於405nm附近 之發光聲為上述紫色發光元件之漏光,而45 Onm附近、 5 3 5nm附近及625nm附近之發光峰係藉由螢光體,將上述 © 紫色光波長轉換之光。 表9,係顯示實施例28及比較例7之發光裝置的發光 特性。BaMgAl1G〇17: EU2+ blue fluorescent 鳢 weight mixing ratio is about 6: 丨丨: 3 〇, the mixing ratio of the mixed phosphor to the epoxy resin is about 丨: 3 (phosphor concentration = 25% by weight) ). (Comparative Example 7) A card type illumination module light source was produced in the same manner as in Example 28 using three kinds of phosphors: LhOAEf red phosphor having a luminescence peak near a wavelength of 626 nm (central particle) Diameter: 93 (4) Maximum internal quantum efficiency: 84%, internal quantum efficiency at 402 nm excitation: about 50%) 'Yu wave| (BaSr)2Si〇4: Eu2+ 〇 green phosphor (central particle size) near 535 nm : 15.2 "m, maximum internal quantum efficiency: 97%, internal quantum efficiency at 405 nm excitation: about 97%), and BaMgAlwOKEu2 - blue phosphor with luminescence peak at a wavelength of 4 〇 5 nm (center particle diameter: 8.5 //111, maximum internal quantum efficiency: about 1〇〇%, internal quantum efficiency at 4〇511111 excitation: about 1〇〇%ρ phosphor layer 3, which is La2〇2S:Eu3 + red phosphor, (Ba, Sr) 2Si〇4: Eu2+ green phosphor and BaMgAhOaEi^ blue phosphor, mixed in a weight mixing ratio of about 155:20:33, the mixing ratio of the mixed phosphor to the weight of the epoxy resin〇 It is about 1:3 (phosphor concentration = 25% by weight), and as in Embodiment 28, by flowing a current through half The body light-emitting device obtains the light emitted from the wheel and evaluates the light-emitting characteristics of the output light. The thickness of the white light 'phosphor layer 3 to the homogenous light color (correlation color temperature of about 3800 K, duv, chromaticity) is compared with Example 28 and Each of Examples 7 was formed to have a thickness of about 500 m. The following description of the light-emitting device of Example 28 and Comparative Example 7 was carried out. The light-emitting spectrum of Example 28 and Comparative Example 7 is shown in FIG. As can be seen from FIG. 51 and FIG. 52, the light-emitting devices of Example 28 and Comparative Example 7 emit white light having a luminescence peak near 405 nm, around 450 nm, around 535 nm, and around 625 nm, that is, purple light is emitted. White light mixed with blue light, green light and red light. Further, the illuminating sound near 405 nm is the light leakage of the purple light-emitting element, and the illuminating peak near 45 Onm, around 535 nm, and near 625 nm is fluorescent. The light is converted into light of the above-mentioned purple light wavelength. Table 9 shows the light-emitting characteristics of the light-emitting devices of Example 28 and Comparative Example 7.

表9 實施例28 比較例7 相關色溫(K) 3800 3792 duv 0 0.03 色度(x,y) (0.3897, 0.3823) (0.3901,0.3826) 相對光束(%) 117 100 Ra 96 78 R1 98 71 R2 97 93 R3 92 82 R4 93 67 R5 98 77 R6 98 85 R7 96 85 R8 95 66 R9 83 34 R10 92 91 R11 90 62 R12 92 90 R13 99 77 R14 94 86 R15 97 71 89 200944577 表9之duv為表示白色光從黑體發射軌跡偏離的指 數。Ra為平均現色評價數,R1〜R15為特殊現色評價數,其 係表不若將基準光觀察之顏色設為1〇〇,該試驗光忠實再現 試驗色的程度。特別是R9為紅色之特殊現色評價數。 雖然使用螢光體之製造條件尚未最適化、最大内部量 子效率為60%且性能低的紅色螢光體,但是實施例28於大 約等同之光色(相關色溫、duv及色度)的條件下,可以放出 較比較例7之相對光束高出17%之白色系光。比較例7所 ❹ 使紅色螢光體之最大内部量子效率為83%,可以使發光裝 置之輸出效率再改進約20%,但是,實施例28所使用之紅 色螢光體最大内部量子效率為6〇% ,可以改進發光裝置之 白色輸出約60%以上。也就是說,理論上最終而言,實施 例28之發光裝置的材料構成可以發出較強光束之白色系 光。 ' 又,實施例28之發光裝置,為至少組合上述螢光體而 發出相關色溫為3800K之白色光時,可以較比較例7呈現 〇 較大的Ra。又,不僅是R9’ R1〜R15所有的特殊現色評價 數,都可以得到較比較例7為大的數I此表示實施例28 可以發出演色性極為良好的白色光。 又,實施例28之發光裝置,可以發出R1〜R15之特殊 現色坪價數皆為80以上之高演色性白色光,顯示為可發出 接近太陽光之光。該種發光裝置特別適用於醫療用,例如 可以提供為可應用於内視鏡等之LED光源,且可於接近太 90 200944577 陽光之光下診斷之優良内視鏡系統。 以下,為了檢驗上述發光裝置兼具高演色性與強光束 之光色,將實施例28及比較例7之發光裝置所發出之白色 光之duv為〇而改變相關色溫時之Ra與相對光束影響,以 模擬進行評價,並說明結果。 圖53顯示將實施例28及比較例7之發光裝置所發出 白色光之相關色溫改變之相對光束,使用模擬進行評價結 果。從圖53中,可以得知,實施例28之發光裝置於 〇 2000〜12000K之廣泛相關色溫範圍中,可以較比較例7發出 光束高10〜20%左右的白色光。又當實施例28之發光裝置 製作為輸出光之相關色溫為 2500〜12000K,較佳為 3500〜7000〖時,為比較例7於相關色溫37921^時的光束之 110〜115%左右,為較強之光束。又,圖53中之實線,係表 示上述比較例7之相關色溫為3792K時的光束。 以下,假定實施例28及比較例7所使用之各螢光體製 造條件已最適化,而得到最大内部量子效率為1 〇〇%之登光 ® 體,以該理想螢光體時對光束模擬評價的結果。本模擬, 係由圖30、圖32、圖37及圖40 下的内部内部量子效率以下述表 表10 中各螢光體於405nm激發 10所示估計以進行評價。 螢光髅 内部量子效率(%) SrAlSiN3:EuiT紅色螢光想 100 La202S:Eu3+紅色螢光體 60 (Ba,Sr)2Si〇4:Eu'綠色螢光艎 100 BaMgAl1()〇n:Eua藍色螢光體 100 91 200944577 圖54中為使用理想螢光體時,以模擬對改變實施例28 及比較例7中發光裝置所發出白色光之相關色溫對相對光 束的影響進行評價之結果。由圖54中可以得知,實施例28 之發光裝置中,使用理想螢光體時,於2000〜12000K之廣 泛相關色溫範圍都可以較比較例7發出光束高出45〜65 %左 右的白色光。又,當製作白色光相關色溫為25 00〜1200 0K, 較佳為3500〜6000K之發光裝置時’為比較例7中相關色溫 為3 792K時之光束的150〜160%以上,為較強光束。又,上 述比較例7之相關色溫為3792Κ時的光束,係以圖54中之 © 實線表示。 也就是說,可以推測今後SrAlSiN3:Eu2+紅色螢光體藉 由高性能化,可以得到於同一相關色溫評價下較比較例7 發出光束高45〜65%左右之發光裝置。 又’圖55顯示改變實施例28及比較例7之發光裝置 所發出白色光之相關色溫時,對平均現色評價數(Ra)之影響 以模擬進行評價的結果。實施例28之發光裝置於白色光之 相關色溫為2000〜12000K之廣泛色溫範圍都呈現90以上之 ❹ 向Ra’且較佳為製作3000〜12000K之發光裝置時,會呈現 95以上之非常高Ra。 圖56顯示改變實施例28及比較例7之發光裝置所發 出白色光之相關色溫時’對紅色之特殊現色評價數(R9)之影 響以模擬進行評價之結果。相關色溫為2500〜12000K之實 施例28之發光裝置之R9較比較例7為大。且,實施例28 之發光裝置於白色光之相關色溫為“⑽〜丨2〇〇〇κ之廣泛色 92 200944577 溫範圍都呈現30以上之高R9,於3000〜12000K為70以上, 於3500〜120001^為80以上,於5000〜120001^為90以上之 高R9,為放出高紅色現色評價數之白色光的較佳發光裝 置。又,於6000〜8000K之相關色溫範圍可得到R9最大值 (96〜98)。 由圖53〜55可得知,實施例28之發光裝置,於 2000〜12000K之廣泛相關色溫範圍可以放出較比較例7為 強光束及高Ra之白光。且當製作白色光之相關色溫為 0 2500〜12000K,較佳為 3500〜7000K,更佳為 4000〜5000K 之 發光裝置時,可兼具強光束及高Ra。 由圖56〜58可知,實施例28之發光裝置於2500〜12000K 之廣泛相關色溫範圍可以放出較比較例7為強光束及高R9 之白光。且當製作白色光之相關色溫為3000〜12000K,較佳 為 3500〜12000K,更佳為 5000〜12000K,特佳為 6000~8000k 之發光裝置時,可兼具強光束及高R9» 圖57顯示發出光束及Ra特佳之相關色溫4500K(duv=0) Ο 之暖色系白色光的實施例28發光裝置之發光光譜模擬數 據。該發光光譜中,色度(又,乂)為(〇.3608,0.3635),1^為96, R1 為 96,R2 及 R6〜R8 為 97,R3、R10 及 R11 為 91,R4 及 R14 為 94,R5、R13 及 R15 為 99,R9 及 R12 為 88。由 上,可知可以提供一種發光裝置,可發出R1〜R15所有特殊 現色評價數為85以上之演色性良好的白色光。其發光光譜 之形狀,係由紫外色LED發出於400〜410nm波長區具有發 光峰之光、與由稀土類離子之5&lt;i-4f電子遷移而發光之實施 93 200944577 例28的RGB螢光體在440〜460nm、520〜540nm及 610〜640nm 波長區之發光峰其強度比率 400 〜410nm:440〜460nm:520 〜540nm:610 〜640nm 為 8〜10:12〜14:15〜17:16〜18。本發光較佳形態之一為一種發光 裝置’其特徵為可發出具有發光峰為上述比率之發光光譜 形狀的暖色系白色光。又,上述稀土類離子之5d-4f電子遷 移而發光之螢光體,係指主要含有以Eu2+或Ce3 +之稀土類 離子為發光中心離子的螢光體。該種螢光體當發光峰之波 長相同時,不論螢光體母體之種類為何,其發光光譜形狀 ❹ 皆相似。 圖58顯示發出光束及Ra特佳之相關色溫為 5500K(duv=0)之白色光的實施例28發光裝置的發光光譜模 擬數據。該發光光譜中’色度(x,y)為(0.3324,0.3410),Ra 為 96,R1 及 R13 為 98,R2 及 R8 及 R15 為 97,R3 及 R12 為 90,R4 為 92,R5 為 99 ’ R6 為 96,R7 為 95,R9 及 R14 為94’ R10及R11為91。也就是說,依照本發明,可以提 供一種發光裝置’可發出適用於醫療用途之R1〜R15所有特 〇 殊現色評價數為90以上之接近太陽光的白色光。又,關於 其發光光譜之形狀,紫外色LED發出之於400〜410nm波長 區具有發光峰之光、與由稀土類離子之5 d-4f電子遷移而發 光之實施例28的RGB螢光體在440〜460nm、520〜540nm及 610〜640nm 波長區之發光峰的強度比率 400〜410nm:440〜460nm:520〜540nm:610〜640nm 為 4〜6:9〜11:8〜10:7〜9。本發明光較佳形態之一為一種發光襄 94 200944577 置’其特徵為可發出具有發料為上述比率之發光光譜形 狀的白色光。 實施例28係說明組合紫色LED及紅綠藍(rgb)3種螢 光體,並以SrA1SiN3:Eu2+作為紅色勞光 當至少以上述紫一一 等上述(MhEudMSiN3之結構式表示之螢光體組合、且螢 光體之構成為紅黃綠藍(RYGB)4種或者紅黃藍(ryb)3種 時,也可得到同樣的作用與效果。 ❹ 實施例28係說明使用SrAlSiNyEi^作為紅色螢光體的 情形,但是,只要為以結構式(Mi xEUx)A1SiN3之結構式表 示之螢光體、且Μ為選自Mg、Ca、Sr、Ba、Zn中至少之 一的元素、x為0.005 S 0.3之數值即可,不特別限定β 又,綠色螢光體不限定為上述實施例所使用的綠色螢光 體’只要為會發出於560nm以上、未滿600nm之波長區具 有發光峰之綠色螢光體即可。上述綠色螢光體也可以改為 會發出於560nm以上、未滿600nm具有發光峰之光的黃色 〇 勞光體。又’上述綠或黃色螢光體中發光輸出較佳者為以 Eu2+或Ce3+活化之螢光體。 由於SrAlSiN3:Eu2+紅色螢光體之特性與習知的紅色螢 光體’例如,SrSm2:Eu2+、Sr2Si5N8:Eu2+、Sr2Si4A10N7:Eu2+ 等氮化物螢光體或氧氮化物螢光體類似,故實施例27及28 中如果將SrAlSiN3:Eu2+紅色螢光體以上述習知之氮化物榮 光體或氧氮化物螢光體取代也可以得到同樣的作用效果。 以下,說明上述螢光體中,SrAlSiN3: Eu2+、Sr2Si5N8: 95 200944577Table 9 Example 28 Comparative Example 7 Correlated color temperature (K) 3800 3792 duv 0 0.03 Chromaticity (x, y) (0.3897, 0.3823) (0.3901, 0.3826) Relative beam (%) 117 100 Ra 96 78 R1 98 71 R2 97 93 R3 92 82 R4 93 67 R5 98 77 R6 98 85 R7 96 85 R8 95 66 R9 83 34 R10 92 91 R11 90 62 R12 92 90 R13 99 77 R14 94 86 R15 97 71 89 200944577 The duv of Table 9 is white light The index of deviation from the blackbody emission trajectory. Ra is the average color rendering number, and R1 to R15 are the special color evaluation numbers, and it is not necessary to set the color of the reference light to 1 〇〇, and the test light faithfully reproduces the degree of the test color. In particular, R9 is a special color evaluation number of red. Although a red phosphor having a production condition of a phosphor that has not been optimized, a maximum internal quantum efficiency of 60%, and low performance is used, Example 28 is under the condition of approximately equivalent light color (correlated color temperature, duv, and chromaticity). It is possible to emit white light which is 17% higher than the relative light beam of Comparative Example 7. In Comparative Example 7, the maximum internal quantum efficiency of the red phosphor was 83%, and the output efficiency of the light-emitting device was improved by about 20%. However, the maximum internal quantum efficiency of the red phosphor used in Example 28 was 6. 〇% can improve the white output of the illuminating device by more than 60%. That is to say, in theory, the material of the light-emitting device of Embodiment 28 constitutes a white light which can emit a strong light beam. Further, in the light-emitting device of the twenty-eighth embodiment, when white light having a correlated color temperature of 3800 K is emitted in combination with at least the above-described phosphor, Ra can be larger than that of Comparative Example 7. Further, not only the number of special color renderings of all of R9' R1 to R15, but also a number I which is larger than that of Comparative Example 7, it is shown that Example 28 can emit white light having excellent color rendering properties. Further, in the light-emitting device of the twenty-seventh embodiment, it is possible to emit a high color rendering white light having a special color plaque of R1 to R15 of 80 or more, which is displayed to emit light close to sunlight. The illuminating device is particularly suitable for medical use, for example, it can be provided as an LED light source that can be applied to an endoscope or the like, and can be used in an excellent endoscope system that is diagnosed under the sunlight of the sun. Hereinafter, in order to examine the light color of the light-emitting device having both high color rendering property and strong light beam, the duv of the white light emitted by the light-emitting devices of Example 28 and Comparative Example 7 is 〇, and the Ra and the relative beam influence are changed when the correlated color temperature is changed. , evaluate by simulation, and explain the results. Fig. 53 is a view showing the relative light beams obtained by changing the correlated color temperatures of the white light emitted from the light-emitting devices of Example 28 and Comparative Example 7, and the evaluation results were carried out using simulation. As is apparent from Fig. 53, the light-emitting device of Example 28 can emit white light of about 10 to 20% higher than that of Comparative Example 7 in the wide range of correlated color temperatures of 〜 2000 to 12000K. Further, when the light-emitting device of the embodiment 28 is configured to output light having a correlated color temperature of 2500 to 12000 K, preferably 3500 to 7000, it is about 110 to 115% of the light beam of Comparative Example 7 at a correlated color temperature of 37921^. Strong beam. Further, the solid line in Fig. 53 indicates the light beam when the correlated color temperature of Comparative Example 7 is 3792K. Hereinafter, it is assumed that the production conditions of the respective phosphors used in Example 28 and Comparative Example 7 have been optimized, and a Dengguang® body having a maximum internal quantum efficiency of 1% is obtained, and the beam is simulated with the ideal phosphor. The result of the evaluation. This simulation was evaluated by the internal internal quantum efficiency of Figs. 30, 32, 37, and 40 as estimated by excitation of each of the phosphors in the following Table 10 at 405 nm. Fluorescent 髅 Internal quantum efficiency (%) SrAlSiN3: EuiT red fluorescent light 100 La202S: Eu3+ red fluorescent body 60 (Ba, Sr) 2Si 〇 4: Eu' green fluorescent 艎 100 BaMgAl1 () 〇 n: Eua blue Phosphor 100 91 200944577 In Fig. 54, the effect of changing the influence of the correlated color temperature of the white light emitted from the light-emitting device of Example 28 and Comparative Example 7 on the relative light beam was simulated by using an ideal phosphor. As can be seen from Fig. 54, in the light-emitting device of Example 28, when an ideal phosphor is used, a wide range of correlated color temperatures of 2000 to 12000 K can be used to emit white light of about 45 to 65% higher than that of Comparative Example 7. . Further, when a light-emitting device having a white light-related color temperature of 25 00 to 1200 0K, preferably 3500 to 6000K is produced, it is a light beam of 150 to 160% or more of the light beam at a correlated color temperature of 3 792 K in Comparative Example 7. . Further, the light beam when the correlated color temperature of Comparative Example 7 is 3792 , is indicated by the solid line in Fig. 54. In other words, it is presumed that in the future, the SrAlSiN3:Eu2+ red phosphor can be obtained by a high-performance device, and a light-emitting device having a light beam height of about 45 to 65% higher than that of the comparative example 7 can be obtained under the same correlated color temperature evaluation. Further, Fig. 55 shows the results of the evaluation of the influence on the average color rendering number (Ra) when the color temperature of the white light emitted from the light-emitting devices of Example 28 and Comparative Example 7 was changed. The illuminating device of the illuminating device of the illuminating device of the illuminating device has a color temperature range of 2000 to 12000 K and exhibits a range of 90 or more. To Ra', and preferably a luminescent device of 3000 to 12000 K, a very high Ra of 95 or more is exhibited. . Fig. 56 is a graph showing the results of evaluation by simulation when the correlation color temperature of red (R9) was changed when the correlated color temperature of white light emitted by the light-emitting devices of Example 28 and Comparative Example 7 was changed. The R9 of the light-emitting device of Example 28 having a correlated color temperature of 2500 to 12000 K was larger than Comparative Example 7. Further, the color temperature of the light-emitting device of Example 28 is "(10) ~ 丨 2 〇〇〇 之 广泛 92 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 120001^ is 80 or more, and 50005~120001^ is 90 or more high R9, which is a preferred light-emitting device for emitting white light with a high red color appearance evaluation number. Further, the R9 maximum value can be obtained in a correlated color temperature range of 6000 to 8000K. (96 to 98) It can be seen from Figs. 53 to 55 that the light-emitting device of the embodiment 28 can emit a white light of a strong light beam and a high Ra ratio in Comparative Example 7 over a wide range of correlated color temperatures of 2000 to 12000 K. When the light-related color temperature is 0 2500 to 12000 K, preferably 3500 to 7000 K, and more preferably 4000 to 5000 K, the light beam can have both a strong beam and a high Ra. As can be seen from FIGS. 56 to 58, the light-emitting device of Embodiment 28 The wide range of correlated color temperatures of 2500 to 12000K can emit white light of Comparative Example 7 and high R9, and the correlated color temperature for producing white light is 3000~12000K, preferably 3500~12000K, more preferably 5000~12000K. , especially good for 6000~8000k At the time of setting, it can combine both a strong beam and a high R9». Fig. 57 shows the luminescence spectrum of the illuminating device of the illuminating device of Example 28 which emits a light beam and a Ra to a correlated color temperature of 4500K (duv = 0) Ο. Medium, chromaticity (again, 乂) is (〇.3608, 0.3635), 1^ is 96, R1 is 96, R2 and R6~R8 are 97, R3, R10 and R11 are 91, R4 and R14 are 94, R5 R13 and R15 are 99, and R9 and R12 are 88. From the above, it is known that a light-emitting device can be provided which can emit white light having good color rendering properties of R1 to R15 of 85 or more. The shape of the light-emitting spectrum It is an RGB phosphor that emits light having a luminescence peak in a wavelength range of 400 to 410 nm from an ultraviolet color LED and emits light by electron transfer from a rare earth ion of 5 &lt;i-4f. The RGB phosphor of Example 28 200944577 is at 440 to 460 nm, 520. The luminescence peaks in the wavelength range of ~540nm and 610~640nm have an intensity ratio of 400 to 410 nm: 440 to 460 nm: 520 to 540 nm: 610 to 640 nm are 8 to 10: 12 to 14: 15 to 17: 16 to 18. One of the forms is a light-emitting device 'characterized to emit a light-emitting peak having the above ratio Warm color white light spectrum shape. Further, the rare earth ions 5d-4f electron mobility of the light-emitting phosphor, a phosphor mainly containing means to Eu2 + or Ce3 + rare earth ions such as luminescent center ion. When the wavelength of the luminescence peak is the same, the luminescence spectrum shape of the phosphor is similar regardless of the type of the phosphor precursor. Fig. 58 is a view showing the luminescence spectrum simulation data of the illuminating device of Example 28, which emits a light beam and a white light having a correlated color temperature of 5500 K (duv = 0). In the luminescence spectrum, the chromaticity (x, y) is (0.3324, 0.3410), Ra is 96, R1 and R13 are 98, R2 and R8 and R15 are 97, R3 and R12 are 90, R4 is 92, and R5 is 99. 'R6 is 96, R7 is 95, R9 and R14 are 94' R10 and R11 is 91. That is, according to the present invention, it is possible to provide a light-emitting device which emits white light of almost all of the special color evaluation numbers of R1 to R15 suitable for medical use and which is close to sunlight. Further, regarding the shape of the luminescence spectrum, the RGB phosphor of Example 28 in which the ultraviolet color LED emits light having a luminescence peak in a wavelength range of 400 to 410 nm and emits light by 5 d-4f electron transfer from the rare earth ion is 440. The intensity ratio of the luminescence peaks in the wavelength regions of 460 nm, 520 to 540 nm, and 610 to 640 nm is 400 to 410 nm: 440 to 460 nm: 520 to 540 nm: 610 to 640 nm is 4 to 6: 9 to 11: 8 to 10: 7 to 9. One of the preferred embodiments of the light of the present invention is a luminescent ray 94 200944577 which is characterized by being capable of emitting white light having an illuminating spectral shape having a ratio of the above-mentioned ratio. Example 28 illustrates the combination of three kinds of phosphors of purple LED and red green blue (rgb), and SrA1SiN3:Eu2+ as red light. When at least the above-mentioned purple one or the like (the combination of phosphors represented by the structural formula of MhEudMSiN3) When the composition of the phosphor is four kinds of red yellow green blue (RYGB) or red yellow blue (ryb), the same action and effect can be obtained. 实施 Example 28 shows the use of SrAlSiNyEi^ as red fluorescent light. In the case of a body, the phosphor is represented by the structural formula (Mi x EUx) A1SiN3, and the element is at least one selected from the group consisting of Mg, Ca, Sr, Ba, and Zn, and x is 0.005 S. The value of 0.3 is not particularly limited, and the green phosphor is not limited to the green phosphor used in the above embodiment, and is a green fluorescent light having a light-emitting peak in a wavelength region of 560 nm or more and less than 600 nm. The green phosphor may be replaced by a yellow ruthenium body having a luminescence peak of 560 nm or more and less than 600 nm. The light output of the green or yellow phosphor is preferably Eu2+ or Ce3+ activated phosphor. Due to SrAlS The characteristics of the iN3:Eu2+ red phosphor are similar to those of the conventional red phosphor 'for example, a nitride phosphor or an oxynitride phosphor such as SrSm2: Eu2+, Sr2Si5N8: Eu2+, Sr2Si4A10N7: Eu2+, and thus Example 27 And the same effect can be obtained by substituting the SrAlSiN3:Eu2+ red phosphor with the above-described conventional nitride glomer or oxynitride phosphor. In the following, SrAlSiN3: Eu2+, Sr2Si5N8 in the above phosphor will be described. : 95 200944577

Eu2+、SrSiN2: Eu2+、(Ba,Sr)2Si04: Eu2+(發光峰:555nm)、 (Ba,Sr)2Si04: Eu2+(發光峰:535nm)、(Ba,Sr)2Si04: Eu2+(發光 峰:520nm)、(Sr, Ba)2Si〇4: Eu2+(發光峰:570nm)之製造方法 以供參考。又,Y3Al5012:Ce3 +黃色螢光體、La202S:Eu3 +紅 色螢光體及BaMgAl10O17:Eu2+藍色螢光體係使用市售品。 表11及表12為各螢光體製造時所使用原料化合物的 質量。 表11 螢光體 螢光體原料(g) Sr3N2 Si3N4 AIN Eu2〇3 SrAlSiNj: Eu2+ 10.000 4.291 4.314 0.370 Sr2Si5N8: Eu2+ 10.000 12.303 0 0.370 SrSiN2: Eu2+ 10.000 4.291 0 0.370 表12 螢光體 螢光體原料(g) BaC03 SrC03 Si02 Eu2〇3 (Ba,Sr)2Si〇4: Eu2+(峰:520nm) 386.457 183.348 100.000 11.480 (Ba,Sr)2Si04: Eu2+(峰:535nm) 257.638 279.847 100.000 11.480 (Ba,Sr)2Si04: Eu2+(峰:555nm) 128.819 376.345 100.000 11.480 (Ba,Sr)2Si04: Eu2+(峰:570mn) 32.205 448.719 100.000 11.480Eu2+, SrSiN2: Eu2+, (Ba, Sr)2Si04: Eu2+ (luminescence peak: 555 nm), (Ba, Sr) 2Si04: Eu2+ (luminescence peak: 535 nm), (Ba, Sr) 2Si04: Eu2+ (luminescence peak: 520 nm) A method for producing (Sr, Ba)2Si〇4: Eu2+ (luminescence peak: 570 nm) is for reference. Further, a commercially available product was used for the Y3Al5012:Ce3+ yellow phosphor, the La202S:Eu3+red phosphor, and the BaMgAl10O17:Eu2+ blue fluorescent system. Tables 11 and 12 show the mass of the raw material compound used in the production of each phosphor. Table 11 Phosphor phosphor raw material (g) Sr3N2 Si3N4 AIN Eu2〇3 SrAlSiNj: Eu2+ 10.000 4.291 4.314 0.370 Sr2Si5N8: Eu2+ 10.000 12.303 0 0.370 SrSiN2: Eu2+ 10.000 4.291 0 0.370 Table 12 Fluorescent phosphor raw material (g BaC03 SrC03 Si02 Eu2〇3 (Ba,Sr)2Si〇4: Eu2+ (peak: 520 nm) 386.457 183.348 100.000 11.480 (Ba,Sr)2Si04: Eu2+ (peak: 535 nm) 257.638 279.847 100.000 11.480 (Ba,Sr)2Si04: Eu2+ (peak: 555 nm) 128.819 376.345 100.000 11.480 (Ba, Sr) 2Si04: Eu2+ (peak: 570mn) 32.205 448.719 100.000 11.480

以下說明表11示之3種紅色螢光體之製造方法。首 先,使用套手工作箱及研缽將表11所示既定化合物於乾燥 氮氣環境氣氛中混合,得到混合粉末。此時,不使用反應 促進劑(助熔劑)。接著,將混合粉末放入鋁製坩堝,於溫度 800〜1400°C之氮氣環境氣氛中暫時燒成2〜4小時後,於溫 度1600〜1800°C之氮氣97%、氫氣3%環境氣氛中進行2小 時本燒成,以合成紅色螢光體。本燒成後之螢光體粉末為 96 200944577 撥色。於本燒成後,施以粉碎、分級、清洗、乾燥等既定 後處理,製得紅色螢光體。The method for producing the three red phosphors shown in Table 11 will be described below. First, a predetermined compound shown in Table 11 was mixed in a dry nitrogen atmosphere using a handle box and a mortar to obtain a mixed powder. At this time, no reaction accelerator (flux) is used. Next, the mixed powder is placed in an aluminum crucible, and temporarily calcined in a nitrogen atmosphere at a temperature of 800 to 1400 ° C for 2 to 4 hours, and then at a temperature of 1600 to 1800 ° C in a nitrogen atmosphere of 97%, a hydrogen atmosphere of 3%. The firing was carried out for 2 hours to synthesize a red phosphor. The phosphor powder after the firing is 96 200944577. After the firing, a predetermined post-treatment such as pulverization, classification, washing, and drying is applied to obtain a red phosphor.

,其次,說明圖12所示之4種綠色螢光體及黃色螢光體 之製造方法。首先,使用研缽將表12所示之既定化合物於 大氣中混合’得到混合粉末。其次,將混合粉末放入鋁製 坩堝,於溫度950〜1000t;之大氣中暫時燒成2〜4小時到到 暫時燒成粉末。於該暫時燒成粉末中,添加氣化鈣(CaCD 粉末3.62〇g作為助熔劑,於溫度1200〜1300。(:之氮氣97%、 © 氫氣3%環境氣氛中進行4小時本燒成,以合成綠色發光體 及黃色螢光體。本燒成後螢光體粉末為綠〜黃色。於本燒成 後,施以粉碎、分級、清洗、乾燥等既定後處理,.叙得綠 色螢光體及黃色螢光體。 本發明在不脫離上述精神的範圍内,可以上述以外的 形態實施。本申請案所揭示之實施形態僅為一例,並不限 定於此。本發明之範圍以申請專利範圍優先於上述說明書 之記載,而且,與申請專利範圍均等範圍内之所有改變皆 ❹ 包含於申請專利範圍之内。 本發明之組成物為以· bA1N · “丨3、所示結構 式所表示之組成物為螢光體母體之主髏,前述結構式中Μ 為選自Mg、Ca、Sr、Ba及Ζη中至少之一的元素、a、b、e 滿足 0.2Sa/(a+b)客〇.95、0.05gb/(b+c)各〇 8、〇 4gc/(c+a) S 0.95 ;尤其是,α MA腿3之結構式表示之組成物為勞 光體母體之主體,可提供被紫外〜近紫外〜紫〜藍〜綠〜黃〜橙 色光所激發,尤其是發出暖色系之紅色系光的新穎螢光體。 97 200944577 又’本發明之螢光體組成物之製造方法,係將含因加 熱而生成上述元素Μ之氧化物的化合物、矽化合物、銘化 合物、含有形成發光中心離子之元素的化合物、及碳之原 料’於氮化性氣體環境氣氛中反應以製造螢光體組成物, 不需使用化學性不安定且於大氣中操作困難之高價鹼土類 金屬之氮化物或鹼土類金屬,而使用容易操作且廉價的原 料,以製造本發明之螢光體組部。因此,可以廉價地工業 化生產材料性能良好的新穎氮化物螢光體組成物。 又’本發明之發光裝置,係由發出暖色系光尤其是發 © 出紅色光之新穎、高性能並且廉價的上述本發明螢光體組 成物作為發光源所構成’故,可以提供紅色發光成分強度 強、高性能且廉價、並且材料構成新穎之發光裝置(led光 源等)。 再者,依照本發明’可以提供兼具高演色性及強光束 且發白光之發光裝置。尤其是,可以提供發出暖色系白色 光且紅色系發光成分強度強之LED光源等之發光裝置。 【圖式簡單說明】 © 圖1係本發明實施形態之半導體發光裝置的截面圖。 圖2係本發明實施形態之半導體發光裝置的截面圖。 圖3係本發明實施形態之半導體發光裝置的截面圖。 圖4係本發明實施形態中照明及顯示裝置的構成概略 圖。 圖5係本發明實施形態中照明及顯示裝置的構成概略 圖。 98 200944577 圖6係本發明實施形態中照明模組的立體圖。 圖7係本發明實施形態中照明模組的立體圖。 圖8係本發明實施形態中照明裝置的立體圖。 圖9係本發明實施形態中照明裝置的侧視圖。 圖10係圖9之照明裝置的仰視圖。 圖11係本發明實施形態中影像顯示裝置的立體圖。 圖12係本發明實施形態中數字顯.示裝置的立體圖。 圖13係本發明實施形態中螢光燈的端部的局部透視 ❹ 圖。 圖14係本發明實施形態中EL面板的截面圖。 圖15表示本發明實施例1中螢光體組成物之發光光譜 及激發光譜。 圖16表示本發明實施例1中螢光體組成物之χ光繞射 圖案。 圖17表示本發明實施例2中螢光體組成物之發光光譜 及激發光譜。 © 圖18表示本發明實施例2中榮光體組成物之X光繞射 圖案。 圖19表示本發明實施例2相關之螢光體組成物之發光 光譜。 圖20表示本發明實施例2相關之螢光體組成物之Eu 取代量及發光峰波長的關係圖。 圖21表示本發明實施例2相關之螢光體組成物之Eu 取代量及發光強度的關係圖。 99 200944577 圖22表示本發明實施例3中螢光艎組成物之發光光譜 及激發光譜。 圖23表示本發明實施例4中螢光體組成物之發光光譜 及激發光譜。 圖24表示本發明實施例5中螢光體組成物之發光光譜 及激發光譜。 圖25表示本發明實施例6中螢光體組成物之發光光譜 及激發光譜。; 圖26表示本發明實施例7中螢光體組成物之發光光譜 © 及激發光譜。 圖27表示本發明實施例8中勞光體組成物之發光光譜 及激發光譜。 圖28表示本發明之螢光體組成物的組成範圍之三元組 成圖。 圖29表示SrSiN2:Eu2+紅色螢光體之發光特性圖。 圖30表示SrAlSiN3:Eu2+紅色螢光體之發光特性圖。 圖31表示Si2Si5Ns:Eu2+紅色螢光體之發光特性圖。 ® 圖32表示(Ba,Sr)2Si〇4:Eu2+綠色螢光體之發光特性圖。 圖33表示(Sr,Ba)2Si〇4:Eu2+黃色螢光體之發光特性圖。 圖34表示(Sr,Ca)2Si〇4:Eu2+黃色螢光體之發光體性圖。 圖 35 表示 0.75CaO2.25AlN3.25Si3N4:Eu2+黃色螢光體之 發光特性圖。 圖36表示(Y,Gd)3Al5〇i2:Ce3 +黃色螢光體之發光特性 圖。 100 200944577 圖37表示BaMgAl10O17:Eu2+藍色螢光體之發光特性 圖。 圖38表示Si^AImOkEu2·&quot;藍綠色螢光體之發光特性圖。 圖39表示(Sr, Ba)10(PO4)6Cl2:Eu2+藍色螢光體之發光特 性圖。 圖40表示La202S:Eu3 +紅色螢光體之發光特性圖。 圖41係本發明之實施例26的發光裝置立體圖。 圖42係本發明之實施例26的發光裝置一部分截面圊。 圖43係本發明之實施例26的發光裝置的發光光譜。 圖44係本發明之比較例6的發光裝置的發光光譜。 圖45表示本發明之實施例26及比較例6中,模擬相 關色溫與相對光束關係之結果圖。 圖46表示本發明之實施例26及比較例6中,模擬相 關色溫與Ra關係之結果圖。 圖47表示本發明之實施例27中,模擬相關色溫與Ra 關係之結果圖。 圖48表示本發明之實施例27中,模擬相關色溫與R9 關係之結果圖。 圖49表示本發明之實施例27中,模擬相關色溫與相 對光束關係之結果圖。 圖50係本發明之實施例27中發光裝置之發光光譜。 圖51係本發明之實施例28中發光裝置之發光光譜。 圖52係本發明之比較例7中發光裝置之發光光譜。 圖53係本發明之實施例28及比較例7中,相關色溫 101 200944577 與相對光束關係之模擬結果圖。 圖54表示本發明之實施例28及比較例7中, 1之用理Next, a description will be given of a method of manufacturing four kinds of green phosphors and yellow phosphors shown in Fig. 12 . First, a predetermined compound shown in Table 12 was mixed in the atmosphere using a mortar to obtain a mixed powder. Next, the mixed powder is placed in an aluminum crucible and temporarily calcined in an atmosphere at a temperature of 950 to 1000 t for 2 to 4 hours until the powder is temporarily calcined. Calcined calcium (CaCD powder 3.62 〇g as a fluxing agent was added to the temporarily calcined powder at a temperature of 1200 to 1300. (: Nitrogen 97%, © hydrogen atmosphere 3% ambient atmosphere for 4 hours, this was baked. Synthetic green illuminant and yellow phosphor. After the firing, the phosphor powder is green to yellow. After the firing, the granules are pulverized, classified, washed, dried, and the like, and the green phosphor is described. The present invention can be carried out in other forms than those described above. The embodiments disclosed in the present application are merely examples, and are not limited thereto. All the changes within the scope of the above-mentioned specification are included in the scope of the patent application. The composition of the present invention is represented by the structure shown in the figure b·BN1N. The composition is a main body of the phosphor precursor. In the above structural formula, Μ is an element selected from at least one of Mg, Ca, Sr, Ba, and Ζη, and a, b, and e satisfy 0.2Sa/(a+b). 〇.95, 0.05gb/(b+c) 〇8, 〇4gc/ (c+a) S 0.95 ; in particular, the structural formula of the α MA leg 3 is the main body of the labyrinth precursor, which can be excited by ultraviolet to near ultraviolet ~ violet ~ blue ~ green ~ yellow ~ orange light In particular, a novel phosphor which emits a red color of a warm color is used. 97 200944577 Further, the method for producing a phosphor composition of the present invention is a compound containing a compound which generates an oxide of the above element due to heating, and a ruthenium compound. , a compound containing a compound containing an element forming a luminescent center ion, and a raw material of carbon 'reacted in a nitriding gas atmosphere to produce a phosphor composition, which does not require chemical instability and is difficult to operate in the atmosphere. A high-priced alkaline earth metal nitride or an alkaline earth metal is used, and an easy-to-operate and inexpensive raw material is used to produce the phosphor group of the present invention. Therefore, it is possible to inexpensively industrially produce a novel nitride phosphor having good material properties. Further, the illuminating device of the present invention is made of the above-described phosphor composition of the present invention which emits warm color light, especially novel, high performance and low cost. Therefore, it is possible to provide a light-emitting device (led light source, etc.) having a strong red light-emitting component, high performance, low cost, and novel material composition. Furthermore, according to the present invention, it is possible to provide both high color rendering and strong light beam. Further, a light-emitting device that emits white light, in particular, can provide a light-emitting device such as an LED light source that emits warm white light and has a strong red light-emitting component. [FIG. 1] FIG. 1 is a semiconductor light-emitting device according to an embodiment of the present invention. Fig. 2 is a cross-sectional view of a semiconductor light emitting device according to an embodiment of the present invention. Fig. 3 is a cross-sectional view showing a semiconductor light emitting device according to an embodiment of the present invention. Fig. 4 is a schematic view showing the configuration of an illumination and display device according to an embodiment of the present invention. . Fig. 5 is a schematic view showing the configuration of an illumination and display device according to an embodiment of the present invention. 98 200944577 Fig. 6 is a perspective view of a lighting module in accordance with an embodiment of the present invention. Fig. 7 is a perspective view of a lighting module in accordance with an embodiment of the present invention. Fig. 8 is a perspective view of the lighting device in the embodiment of the present invention. Fig. 9 is a side view of the lighting device in the embodiment of the present invention. Figure 10 is a bottom plan view of the lighting device of Figure 9. Figure 11 is a perspective view of a video display device in accordance with an embodiment of the present invention. Figure 12 is a perspective view of a digital display device in accordance with an embodiment of the present invention. Figure 13 is a partial perspective view of the end portion of the fluorescent lamp in the embodiment of the present invention. Figure 14 is a cross-sectional view showing an EL panel in an embodiment of the present invention. Fig. 15 is a view showing the luminescence spectrum and excitation spectrum of the phosphor composition in the first embodiment of the present invention. Fig. 16 is a view showing a calender diffraction pattern of the phosphor composition in the first embodiment of the present invention. Fig. 17 is a view showing an emission spectrum and an excitation spectrum of a phosphor composition in Example 2 of the present invention. © Fig. 18 shows an X-ray diffraction pattern of the glare composition in the second embodiment of the present invention. Fig. 19 is a view showing the luminescence spectrum of the phosphor composition according to Example 2 of the present invention. Fig. 20 is a graph showing the relationship between the Eu substitution amount and the luminescence peak wavelength of the phosphor composition according to Example 2 of the present invention. Fig. 21 is a graph showing the relationship between the Eu substitution amount and the luminescence intensity of the phosphor composition according to Example 2 of the present invention. 99 200944577 Fig. 22 shows an emission spectrum and an excitation spectrum of a fluorescent iridium composition in Example 3 of the present invention. Fig. 23 is a view showing an emission spectrum and an excitation spectrum of a phosphor composition in Example 4 of the present invention. Fig. 24 is a view showing an emission spectrum and an excitation spectrum of a phosphor composition in Example 5 of the present invention. Fig. 25 is a view showing an emission spectrum and an excitation spectrum of a phosphor composition in Example 6 of the present invention. Fig. 26 is a view showing the luminescence spectrum © and the excitation spectrum of the phosphor composition in Example 7 of the present invention. Fig. 27 is a view showing the luminescence spectrum and excitation spectrum of the varnish composition in the eighth embodiment of the present invention. Fig. 28 is a three-element diagram showing the composition range of the phosphor composition of the present invention. Fig. 29 is a graph showing the luminescence characteristics of a SrSiN2:Eu2+ red phosphor. Fig. 30 is a graph showing the luminescence characteristics of a SrAlSiN3:Eu2+ red phosphor. Fig. 31 is a graph showing the luminescence characteristics of a Si2Si5Ns:Eu2+ red phosphor. ® Figure 32 shows the luminescence characteristics of the (Ba,Sr)2Si〇4:Eu2+ green phosphor. Fig. 33 is a graph showing the luminescence characteristics of (Sr, Ba) 2Si 〇 4: Eu 2+ yellow phosphor. Fig. 34 is a view showing the illuminance of (Sr,Ca)2Si〇4:Eu2+ yellow phosphor. Fig. 35 is a graph showing the luminescence characteristics of a 0.75CaO2.25AlN3.25Si3N4:Eu2+ yellow phosphor. Fig. 36 is a graph showing the luminescence characteristics of (Y, Gd)3Al5〇i2:Ce3 + yellow phosphor. 100 200944577 Figure 37 shows the luminescence characteristics of BaMgAl10O17:Eu2+ blue phosphor. Fig. 38 is a graph showing the luminescence characteristics of a Si^AImOkEu2·&quot; blue-green phosphor. Fig. 39 is a view showing the light-emitting characteristics of (Sr, Ba)10(PO4)6Cl2:Eu2+ blue phosphor. Fig. 40 is a view showing the luminescence characteristics of the La202S:Eu3 + red phosphor. Figure 41 is a perspective view of a light-emitting device of Embodiment 26 of the present invention. Figure 42 is a partial cross-sectional view of a light-emitting device of Example 26 of the present invention. Figure 43 is a graph showing the luminescence spectrum of a light-emitting device of Example 26 of the present invention. Fig. 44 is a chart showing the luminescence spectrum of the light-emitting device of Comparative Example 6 of the present invention. Fig. 45 is a graph showing the results of simulating the relationship between the correlated color temperature and the relative light beam in Example 26 and Comparative Example 6 of the present invention. Fig. 46 is a graph showing the results of simulating the relationship between the correlated color temperature and Ra in Example 26 and Comparative Example 6 of the present invention. Fig. 47 is a graph showing the results of simulating the relationship between the correlated color temperature and Ra in the twenty-seventh embodiment of the present invention. Fig. 48 is a view showing the result of simulating the relationship between the correlated color temperature and R9 in the twenty-seventh embodiment of the present invention. Fig. 49 is a view showing the result of simulating the relationship between the correlated color temperature and the relative light beam in the twenty-seventh embodiment of the present invention. Figure 50 is a graph showing the luminescence spectrum of a light-emitting device in Example 27 of the present invention. Figure 51 is a graph showing the luminescence spectrum of a light-emitting device in Example 28 of the present invention. Figure 52 is a graph showing the luminescence spectrum of a light-emitting device of Comparative Example 7 of the present invention. Figure 53 is a graph showing the results of simulation of the relationship between the correlated color temperature 101 200944577 and the relative light beam in Example 28 and Comparative Example 7 of the present invention. Figure 54 shows the use of 1 in Example 28 and Comparative Example 7 of the present invention.

想螢光體之發光裝置的相關色溫與相對光束關係之模擬結 果圖。 V 圖55表示本發明之實施例28及比較例7中,相關色 溫與Ra關係之模擬結果圖。 圖56表示本發明之實施例28及比較例7中,相關色 溫與R9關係之模擬結果圖。 圖57表示本發明之實施例28中,發光相關色溫 ◎ 4500K(duv=0)之暖色系白色光的發光裝置的發光光譜之模 擬結果圖。 圖58表示本發明之實施例28中,發光相關色溫 5500K(duv=0)之暖色系白色光的發光裝置的發光光譜之模 擬結果圖。 【主要元件符號說明】 1 發光元件 2 螢光體組成物 〇 3 螢光體層 4 基座元件 5 導線架 6 杯體 7 密封材 8 框體 9 半導體發光裝置 102 200944577 ίο 11 12 13 14 15 16 17 ❹ 18 19 20 21 22 23 24 25 Ο 26 27 28 29 30 31 32 輸出光 發光部 照明模組 開關 燈頭 反射板 玻璃管 電子管 螢光體組成物 導線 燈絲電極 電極端子 燈頭 背面基板 下部電極 厚膜介電體 薄膜螢光體 薄膜介電體 上部電極 光波長轉換層 表面玻璃 波長轉換層 波長轉換層 藍色光 33 200944577 34 綠色光 35 紅色光 36 螢光體組成物之激發光譜 37 螢光體組成物之發光光譜 40 螢光體之内部量子效率 41 螢光體之外部量子效率 42 螢光體之内部量子效率 43 螢光體之外部量子效率 44 半導體發光裝置 45 Si二極體 46 η電極 47 ρ電極 48 微突塊 49 藍色LED晶片 50 鋁金屬基板 51 第1絕源體厚膜 52 銅電極 53 第2絕緣體厚膜 54a、54b 電極墊 5 5 散熱性多層基板 56 内側電極 57 Au 線 58 結合墊部 59 鋁金屬反射板 104 200944577 稜鏡 60A simulation result plot of the relationship between the correlated color temperature and the relative beam of a luminescent device of a phosphor. Fig. 55 is a graph showing the results of simulation of the relationship between the correlated color temperature and Ra in Example 28 and Comparative Example 7 of the present invention. Fig. 56 is a graph showing the results of simulation of the relationship between the correlated color temperature and R9 in Example 28 and Comparative Example 7 of the present invention. Fig. 57 is a view showing the simulation results of the luminescence spectrum of the light-emitting device of the warm-light white light of the light-emission-related color temperature ◎ 4500K (duv = 0) in the twenty-eighthth embodiment of the present invention. Fig. 58 is a view showing the simulation results of the luminescence spectrum of the illuminating device of the warm-color white light having an emission-related color temperature of 5,500 K (duv = 0) in Example 28 of the present invention. [Description of main component symbols] 1 Light-emitting element 2 Phosphor composition 〇3 Phosphor layer 4 Base element 5 Lead frame 6 Cup body 7 Sealing material 8 Frame 9 Semiconductor light-emitting device 102 200944577 ίο 11 12 13 14 15 16 17 ❹ 18 19 20 21 22 23 24 25 Ο 26 27 28 29 30 31 32 Output light illuminating part lighting module switch lamp reflector glass tube tube fluorescent body composition wire filament electrode electrode terminal lamp back substrate lower electrode thick film dielectric Bulk film phosphor film dielectric upper electrode light wavelength conversion layer surface glass wavelength conversion layer wavelength conversion layer blue light 33 200944577 34 green light 35 red light 36 excitation spectrum of phosphor composition 37 glow of phosphor composition Spectral 40 Internal quantum efficiency of the phosphor 41 External quantum efficiency of the phosphor 42 Internal quantum efficiency of the phosphor 43 External quantum efficiency of the phosphor 44 Semiconductor light-emitting device 45 Si diode 46 η electrode 47 ρ electrode 48 micro Bump 49 Blue LED chip 50 Aluminum metal substrate 51 1st source thick film 52 Copper electrode 53 2nd insulator thick film 54a, 54b Electrode pad 5 5 Heat-dissipating multi-layer substrate 56 Inner electrode 57 Au wire 58 Bonding pad 59 Aluminum metal reflector 104 200944577 稜鏡 60

105105

Claims (1)

200944577 七、申請專利範圍: 1. 一種螢光體組成物,係含MAlSiN3 · a,Si3N4、 MAlSiN3 · a’M2Si5N8 、 MAlSiN3 · a,MSiN2 、 气 MAlSiN3 · a MSi7N1Q中任一個結構式所表示之氮化物作為 螢光體母體之主體’且含選自稀土類離子及過渡金屬離子 之金屬離子作為發光中心離子,其特徵在於,該結構式中, Μ為選自由Mg、Ca、Sr、Ba及Zn所構成之群中之至少一 種元素,a’係滿足〇.25Sa,$2之數值。 2. 如申請專利範圍第1項之螢光體組成物,其中,該榮 ❹ 光體母體係以mais“n7之結構式所表示之組成物。 3如申請專利範圍第1項之螢光體組成物,其中,該元 素A1之一部分取代為可為三價之元素,其取代量為相對該 元素A1低於30原子%。 4. 如申請專利範圍第1項之螢光體組成物,其含有相當 於該元素Μ、A1、或si中至少之一之低於1〇原子%量之金 屬元素。 5. 如申請專利範圍第i項之螢光體組成物,其含有相當 ❹ 於該元素N之低於1〇原子%量之氧。 6. 如申請專利範圍第1項之螢光體組成物,其含有相當 於該元素Μ、A卜或si中至少之一之低於1〇原子%量之金 屬元素’且含有相當於該元素N之低於1〇原子%量之氧。 7. 如申請專利範圍第1項之螢光體組成物,其中,該發 光中心離子為選自C^ + 及 Eu2+中至少之一的離子。 8. 如申請專利範圍第7項之螢光體組成物,其中,該發 106 200944577 光中心離子之添加量,相對該元素Μ,在0.5原子%以上、 1 0原子%以下。 9·如申請專利範圍第1項之螢光體組成物,其中,該元 素Μ之主成分係選自Ca及Sr之至少一種元素。 10.如申請專利範圍第丨項之螢光體組成物,其中,該 元素Μ之主成分為Sr。 11·如申請專利範圍第7項之螢光體組成物,其中,該 發光中心離子為Eu2+,該螢光體組成物於58〇nm以上、低 〇 於66〇nm之波長區具有發光峰。 12. —種發光裝置’其特徵在於,係含申請專利範圍第 1項之螢光體組成物作為發光源。 13. 如申請專利範圍第12項之發光裝置其進一步含有 可發出360nm以上、低於56〇nm之一次光的發射源,該螢 光體組成物會吸收該發射源所發出之該一次光’而發出波 長大於該一次光之二次光。 14. 如中請專利範㈣13項之發光裝置,其中,該發射 Ο 源為注入型電致發光元件。 15·如申請專利範圍第14項之發光裝置,其為白色發光 元件。 16.如申請專利範圍第14項之發光裝置,其為含有白色 發光元件之顯示裝置、含有白色發光元件之光源、或含有 白色發光元件之照明裝置。 107200944577 VII. Patent application scope: 1. A phosphor composition containing nitrogen represented by any one of MAlSiN3 · a, Si3N4, MAlSiN3 · a'M2Si5N8, MAlSiN3 · a, MSiN2, gas MAlSiN3 · a MSi7N1Q The compound is a main body of the phosphor precursor and contains a metal ion selected from the group consisting of a rare earth ion and a transition metal ion as a light-emitting center ion, wherein the structure is selected from the group consisting of Mg, Ca, Sr, Ba, and Zn. At least one element of the group formed, a' is a value of 〇.25Sa, $2. 2. The phosphor composition according to claim 1, wherein the illuminating light mother system is a composition represented by the structural formula of mais "n7." a composition in which one of the elements A1 is partially substituted with an element which is trivalent, and the amount of substitution is less than 30 atom% with respect to the element A1. 4. The phosphor composition according to claim 1 of the patent application, a metal element having an amount equivalent to less than 1 atomic % of at least one of the elements Μ, A1, or si. 5. The phosphor composition of claim i, which contains equivalent to the element 6. The amount of oxygen of less than 1 atomic % of N. 6. The phosphor composition of claim 1, which contains at least one atom corresponding to at least one of the element Μ, Ab or si. % of the metal element 'and contains an amount of oxygen corresponding to less than 1 atomic % of the element N. 7. The phosphor composition of claim 1, wherein the luminescent center ion is selected from the group consisting of C An ion of at least one of ^ + and Eu2+. 8. A phosphor group as in claim 7 The amount of the light center ion added to the element 106, which is 0.5 atom% or more and 10 atomic % or less with respect to the element Μ. 9. The phosphor composition of the first aspect of the patent application, wherein The main component of the element is selected from the group consisting of at least one element of Ca and Sr. 10. The phosphor composition of claim </ RTI> wherein the main component of the element is Sr. The phosphor composition of the seventh aspect, wherein the luminescent center ion is Eu 2+ , and the phosphor composition has an illuminating peak in a wavelength region of 58 〇 nm or more and lower than 66 〇 nm. The device is characterized in that it comprises a phosphor composition of claim 1 as a light-emitting source. 13. The light-emitting device according to claim 12, further comprising a light emitting device of 360 nm or more and less than 56 nm. a primary light emitting source that absorbs the primary light emitted by the emitting source to emit a secondary light having a wavelength greater than the primary light. 14. For example, in the illumination device of claim 13 (4), wherein , the emission source The light-emitting device of the invention of claim 14 is a white light-emitting device. The light-emitting device of claim 14, which is a display device comprising a white light-emitting element, comprising A light source of a white light-emitting element or an illumination device containing a white light-emitting element.
TW098119010A 2004-04-27 2005-04-26 Phosphor composition and method for producing the same, and light-emitting device using the same TWI394815B (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2004131770 2004-04-27
JP2004182797 2004-06-21
JP2004194196 2004-06-30
JP2004250739A JP2005336450A (en) 2004-04-27 2004-08-30 Phosphor composition, method for producing the same and light-emitting device using the same phosphor composition
JP2004363534A JP4128564B2 (en) 2004-04-27 2004-12-15 Light emitting device

Publications (2)

Publication Number Publication Date
TW200944577A true TW200944577A (en) 2009-11-01
TWI394815B TWI394815B (en) 2013-05-01

Family

ID=39697774

Family Applications (2)

Application Number Title Priority Date Filing Date
TW098119010A TWI394815B (en) 2004-04-27 2005-04-26 Phosphor composition and method for producing the same, and light-emitting device using the same
TW094113213A TW200611963A (en) 2004-04-27 2005-04-26 Phosphor composition and method for producing the same, and light-emitting device using the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW094113213A TW200611963A (en) 2004-04-27 2005-04-26 Phosphor composition and method for producing the same, and light-emitting device using the same

Country Status (4)

Country Link
JP (8) JP4128564B2 (en)
KR (1) KR20110016506A (en)
AT (2) ATE546506T1 (en)
TW (2) TWI394815B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102687296A (en) * 2010-06-25 2012-09-19 三菱化学株式会社 White semiconductor light emitting device
JP2013007610A (en) * 2011-06-23 2013-01-10 Canon Inc Color measuring unit and image forming apparatus
US8460580B2 (en) 2005-04-01 2013-06-11 Mitsubishi Chemical Corporation Alloy powder for raw material of inorganic functional material and phosphor
TWI651395B (en) * 2012-04-18 2019-02-21 日東電工股份有限公司 Phosphor ceramics and methods of making the same
TWI746546B (en) * 2016-05-03 2021-11-21 荷蘭商露明控股公司 Wavelength converting material for a light emitting device
EP3933256A4 (en) * 2019-02-28 2022-11-23 Kyocera Corporation Light emitting device and illumination device

Families Citing this family (129)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3773541B2 (en) 1996-06-26 2006-05-10 シーメンス アクチエンゲゼルシヤフト Semiconductor light emitting device having luminescence conversion element
EP2264798B1 (en) 2003-04-30 2020-10-14 Cree, Inc. High powered light emitter packages with compact optics
US7005679B2 (en) 2003-05-01 2006-02-28 Cree, Inc. Multiple component solid state white light
JP3837588B2 (en) 2003-11-26 2006-10-25 独立行政法人物質・材料研究機構 Phosphors and light emitting devices using phosphors
KR100865624B1 (en) * 2004-04-27 2008-10-27 파나소닉 주식회사 Phosphor composition and method for producing the same, and light-emitting device using the same
JP4128564B2 (en) * 2004-04-27 2008-07-30 松下電器産業株式会社 Light emitting device
US7534633B2 (en) 2004-07-02 2009-05-19 Cree, Inc. LED with substrate modifications for enhanced light extraction and method of making same
JP2007049114A (en) 2005-05-30 2007-02-22 Sharp Corp Light emitting device and method of manufacturing the same
US7262439B2 (en) 2005-11-22 2007-08-28 Lumination Llc Charge compensated nitride phosphors for use in lighting applications
US7859182B2 (en) 2005-08-31 2010-12-28 Lumination Llc Warm white LED-based lamp incoporating divalent EU-activated silicate yellow emitting phosphor
JP4832995B2 (en) * 2005-09-01 2011-12-07 シャープ株式会社 Light emitting device
BRPI0620397A2 (en) 2005-12-22 2011-11-16 Cree Led Lighting Solutions lighting device
NL2000033C1 (en) * 2006-03-20 2007-09-21 Univ Eindhoven Tech Device for converting electromagnetic radiation energy into electrical energy and a method for manufacturing such a device.
JP5239182B2 (en) * 2006-03-27 2013-07-17 三菱化学株式会社 Phosphor and light emitting device using the same
WO2007123183A1 (en) * 2006-04-19 2007-11-01 Mitsubishi Chemical Corporation Color image display device
JP2007312374A (en) * 2006-04-19 2007-11-29 Mitsubishi Chemicals Corp Color image display device
CN101432895B (en) * 2006-04-24 2012-09-05 克利公司 Side-view surface mount white LED
EP2682446A3 (en) 2006-06-27 2014-03-26 Mitsubishi Chemical Corporation Illuminating device
JP5141107B2 (en) * 2006-06-27 2013-02-13 三菱化学株式会社 Lighting device
KR101258229B1 (en) * 2006-06-30 2013-04-25 서울반도체 주식회사 Light emitting device
JP5100059B2 (en) * 2006-08-24 2012-12-19 スタンレー電気株式会社 Phosphor, method for producing the same, and light emitting device using the same
KR100771772B1 (en) * 2006-08-25 2007-10-30 삼성전기주식회사 White light led module
JP5378644B2 (en) * 2006-09-29 2013-12-25 Dowaホールディングス株式会社 Method for producing nitride phosphor or oxynitride phosphor
EP2080235B1 (en) * 2006-10-12 2013-12-04 Panasonic Corporation Light-emitting device
KR100862695B1 (en) 2006-10-17 2008-10-10 삼성전기주식회사 White light emitting diode
US7804239B2 (en) 2006-10-17 2010-09-28 Samsung Led Co., Ltd. White light emitting diode
JP2008116849A (en) 2006-11-07 2008-05-22 Sony Corp Display device
JP5367218B2 (en) 2006-11-24 2013-12-11 シャープ株式会社 Method for manufacturing phosphor and method for manufacturing light emitting device
JP4520972B2 (en) * 2006-11-28 2010-08-11 Dowaエレクトロニクス株式会社 Light emitting device and manufacturing method thereof
JP4228012B2 (en) * 2006-12-20 2009-02-25 Necライティング株式会社 Red light emitting nitride phosphor and white light emitting device using the same
JP5137395B2 (en) * 2006-12-25 2013-02-06 京セラ株式会社 Light emitting device
JP4824600B2 (en) * 2007-02-21 2011-11-30 富士フイルム株式会社 Planar illumination device, evaluation method for planar illumination device, and manufacturing method using the same
JP2008208238A (en) * 2007-02-27 2008-09-11 Showa Denko Kk Fluorescent substance and method for producing the same and lighting apparatus and image display device equipped with the same
JP2008244469A (en) * 2007-02-28 2008-10-09 Toshiba Lighting & Technology Corp Light-emitting device
JP2008244468A (en) * 2007-02-28 2008-10-09 Toshiba Lighting & Technology Corp Light-emitting device
JP2008218485A (en) * 2007-02-28 2008-09-18 Toshiba Lighting & Technology Corp Light emitting device
JP2008270781A (en) * 2007-03-23 2008-11-06 Toshiba Lighting & Technology Corp Light-emitting device
JP2008251664A (en) * 2007-03-29 2008-10-16 Toshiba Lighting & Technology Corp Illumination apparatus
US8178001B2 (en) * 2007-04-18 2012-05-15 Mitsubishi Chemical Corporation Method for producing inorganic compound, phosphor, phosphor-containing composition, light-emitting device, lighting system, and display device
US9279079B2 (en) 2007-05-30 2016-03-08 Sharp Kabushiki Kaisha Method of manufacturing phosphor, light-emitting device, and image display apparatus
JP2009019163A (en) * 2007-07-13 2009-01-29 Sharp Corp Phosphor particle aggregate for light emitting device, light emitting device, and backlight device for liquid crystal display
WO2009011205A1 (en) * 2007-07-19 2009-01-22 Sharp Kabushiki Kaisha Light emitting device
RU2423756C1 (en) 2007-08-30 2011-07-10 Нития Корпорейшн Light-emitting device
JP5092667B2 (en) * 2007-10-05 2012-12-05 三菱化学株式会社 Light emitting device
US9431589B2 (en) 2007-12-14 2016-08-30 Cree, Inc. Textured encapsulant surface in LED packages
US8237348B2 (en) 2008-03-03 2012-08-07 Sharp Kabushiki Kaisha Light-emitting device
US8598618B2 (en) 2008-04-17 2013-12-03 Kabushiki Kaisha Toshiba White light emitting device, backlight, liquid crystal display device, and illuminating device
JP2009289957A (en) * 2008-05-29 2009-12-10 Yamaguchi Univ Semiconductor light-emitting device and imaging device
US8415870B2 (en) 2008-08-28 2013-04-09 Panasonic Corporation Semiconductor light emitting device and backlight source, backlight source system, display device and electronic device using the same
US8378369B2 (en) 2008-09-09 2013-02-19 Showa Denko K.K. Light emitting unit, light emitting module, and display device
JP5220526B2 (en) * 2008-09-11 2013-06-26 昭和電工株式会社 Light emitting device, light emitting module, display device
JP5220527B2 (en) * 2008-09-11 2013-06-26 昭和電工株式会社 Light emitting device, light emitting module
TW201011942A (en) * 2008-09-11 2010-03-16 Advanced Optoelectronic Tech Method and system for configuring high CRI LED
JP2010151851A (en) * 2008-11-28 2010-07-08 Toshiba Corp Display device
JP2010177620A (en) * 2009-02-02 2010-08-12 Showa Denko Kk Production process of light-emitting device
JP5483898B2 (en) * 2009-02-19 2014-05-07 住友金属鉱山株式会社 Method for producing oxide phosphor
EP2432037B1 (en) * 2009-08-26 2019-05-22 Mitsubishi Chemical Corporation Semiconductor white light-emitting device
WO2011024296A1 (en) 2009-08-28 2011-03-03 株式会社 東芝 Process for producing fluorescent substance and fluorescent substance produced thereby
CN102630288B (en) 2009-09-25 2015-09-09 科锐公司 There is the lighting apparatus of low dazzle and high brightness levels uniformity
JP5824676B2 (en) * 2009-09-29 2015-11-25 パナソニックIpマネジメント株式会社 LED illumination light source and illumination device
JP5712428B2 (en) * 2009-10-23 2015-05-07 国立大学法人山梨大学 Red phosphor for ultraviolet excitation light source
CN102686700B (en) * 2010-02-26 2015-03-25 三菱化学株式会社 Halophosphate phosphor and white light emitting device
US8643038B2 (en) 2010-03-09 2014-02-04 Cree, Inc. Warm white LEDs having high color rendering index values and related luminophoric mediums
US20110220920A1 (en) * 2010-03-09 2011-09-15 Brian Thomas Collins Methods of forming warm white light emitting devices having high color rendering index values and related light emitting devices
EP2546897B1 (en) 2010-03-12 2019-01-23 Kabushiki Kaisha Toshiba White lighting device
JP2011225696A (en) * 2010-04-19 2011-11-10 Sharp Corp Red-type light-emitting phosphor, process for producing the same and light-emitting device using the red-type light-emitting phosphor
US8329482B2 (en) 2010-04-30 2012-12-11 Cree, Inc. White-emitting LED chips and method for making same
KR101243773B1 (en) 2010-08-17 2013-03-14 순천대학교 산학협력단 Wavelength converting composition for light emitting device and sollar cell, light emitting device and sollar cell comprising the composition, preparing method for the composition
JP5185421B2 (en) 2010-09-09 2013-04-17 株式会社東芝 Red light emitting phosphor and light emitting device using the same
JP5864851B2 (en) 2010-12-09 2016-02-17 シャープ株式会社 Light emitting device
US9617469B2 (en) * 2011-01-06 2017-04-11 Shin-Etsu Chemical Co., Ltd. Phosphor particles, making method, and light-emitting diode
JP2012246462A (en) 2011-05-31 2012-12-13 Sharp Corp Light-emitting device
US8747697B2 (en) * 2011-06-07 2014-06-10 Cree, Inc. Gallium-substituted yttrium aluminum garnet phosphor and light emitting devices including the same
MX2011007939A (en) * 2011-07-13 2013-01-24 William J Odom Jr Avian house lighting apparatus and method.
EP2739704B1 (en) 2011-08-04 2015-10-14 Koninklijke Philips N.V. Light converter and lighting unit comprising such light converter
DE202011106052U1 (en) 2011-09-23 2011-11-09 Osram Ag Light source with phosphor and associated lighting unit.
JP5899470B2 (en) * 2011-12-16 2016-04-06 パナソニックIpマネジメント株式会社 Lighting device
JP2015083618A (en) * 2012-02-09 2015-04-30 電気化学工業株式会社 Phosphor and light-emitting device
JP2013163722A (en) * 2012-02-09 2013-08-22 Denki Kagaku Kogyo Kk Phosphor and light-emitting device
JP2013163725A (en) * 2012-02-09 2013-08-22 Denki Kagaku Kogyo Kk Phosphor and light-emitting device
JP2015083617A (en) * 2012-02-09 2015-04-30 電気化学工業株式会社 Phosphor and light-emitting device
JP2013163723A (en) * 2012-02-09 2013-08-22 Denki Kagaku Kogyo Kk Phosphor and light-emitting device
KR101409489B1 (en) 2012-02-27 2014-06-18 경기대학교 산학협력단 Silicon oxynitride phosphor and light device having the same
US9030092B2 (en) 2012-02-27 2015-05-12 Kyounggi University Industry & Academia Cooperation Foundation Silicon oxynitride phosphore, production method for same, and optical element comprising same
JP2013207241A (en) * 2012-03-29 2013-10-07 Mitsubishi Chemicals Corp Semiconductor light-emitting device, semiconductor light-emitting system, and luminaire
JP6060259B2 (en) * 2012-07-18 2017-01-11 インテマティックス・コーポレーションIntematix Corporation Red light emitting nitride phosphor
EP2905818B1 (en) * 2012-10-04 2023-12-20 Seoul Semiconductor Co., Ltd. White-light emitting device, lighting device, and lighting device for dentistry
JPWO2014119313A1 (en) * 2013-01-31 2017-01-26 株式会社東芝 Light emitting device and LED bulb
JP6853614B2 (en) * 2013-03-29 2021-03-31 株式会社朝日ラバー LED lighting device, its manufacturing method and LED lighting method
EP2803715B1 (en) * 2013-05-16 2020-02-26 LG Innotek Co., Ltd. Phosphor and light emitting device package including the same
CN104241262B (en) 2013-06-14 2020-11-06 惠州科锐半导体照明有限公司 Light emitting device and display device
JP6266923B2 (en) * 2013-08-26 2018-01-24 シチズン電子株式会社 LED light emitting device
US9142733B2 (en) * 2013-09-03 2015-09-22 Panasonic Intellectual Property Management Co., Ltd. Light source device including a high energy light source and a wavelength conversion member, illuminating device comprising the same, and vehicle
US10020428B2 (en) 2013-10-02 2018-07-10 Glbtech Co., Ltd. White light emitting device having high color rendering
JP2015082596A (en) 2013-10-23 2015-04-27 株式会社東芝 Light-emitting device
JP2017502528A (en) * 2013-11-08 2017-01-19 ルミマイクロ コーポレーション リミテッドLumimicro Corp. Ltd. Light emitting device
KR101487961B1 (en) 2013-11-25 2015-01-30 율촌화학 주식회사 White light emitting device and light emitting apparatus including the same
JP6195117B2 (en) 2013-12-03 2017-09-13 パナソニックIpマネジメント株式会社 Acid chloride phosphor, light emitting device, lighting device, and vehicle
JP6358457B2 (en) * 2014-01-20 2018-07-18 パナソニックIpマネジメント株式会社 Light emitting device, illumination light source, and illumination device
JP6323177B2 (en) * 2014-05-30 2018-05-16 日亜化学工業株式会社 Semiconductor light emitting device
JP6405738B2 (en) * 2014-06-19 2018-10-17 三菱ケミカル株式会社 Light emitting device
JP6407654B2 (en) * 2014-10-08 2018-10-17 株式会社東芝 LED module and lighting device
JP2016111267A (en) * 2014-12-09 2016-06-20 パナソニックIpマネジメント株式会社 Illumination module, lighting device and liquid crystal display device
JP6755090B2 (en) * 2014-12-11 2020-09-16 シチズン電子株式会社 Light emitting device and manufacturing method of light emitting device
US9716212B2 (en) 2014-12-19 2017-07-25 Nichia Corporation Light emitting device
JP6428245B2 (en) * 2014-12-19 2018-11-28 日亜化学工業株式会社 Light emitting device
JP6506037B2 (en) * 2015-02-02 2019-04-24 富士フイルム株式会社 Phosphor-Dispersed Composition, Fluorescent Molded Product Obtained Using the Same, Wavelength Conversion Film, Wavelength Conversion Member, Backlight Unit, Liquid Crystal Display Device
DE102015202159B4 (en) 2015-02-06 2023-06-15 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung semiconductor lighting device
CN107710425B (en) 2015-06-24 2020-01-17 株式会社东芝 White light source system
JP6707728B2 (en) * 2015-06-24 2020-06-10 東芝マテリアル株式会社 White light source system for medical facility lighting
JP6856890B2 (en) * 2015-08-28 2021-04-14 株式会社小糸製作所 Fluorescent material
EP3135746B1 (en) 2015-08-28 2019-05-29 Nichia Corporation Method for producing nitride fluorescent material
KR102514150B1 (en) * 2016-01-05 2023-04-04 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Light emitting device and lighting unit having thereof
US10256374B2 (en) 2016-03-04 2019-04-09 Nichia Corporation Light emitting device
JP6460040B2 (en) * 2016-03-04 2019-01-30 日亜化学工業株式会社 Light emitting device
JP6477779B2 (en) * 2016-05-26 2019-03-06 日亜化学工業株式会社 Light emitting device
JP2016189488A (en) * 2016-07-07 2016-11-04 日亜化学工業株式会社 Light emitting device
JP6848637B2 (en) * 2016-12-02 2021-03-24 豊田合成株式会社 Light emitting device
JP7004892B2 (en) * 2017-04-11 2022-01-21 日亜化学工業株式会社 Luminescent device
JP6934316B2 (en) * 2017-04-24 2021-09-15 日本特殊陶業株式会社 Wavelength conversion member
JP6861389B2 (en) * 2017-07-26 2021-04-21 パナソニックIpマネジメント株式会社 Outdoor lighting equipment
JP2019062173A (en) * 2017-09-26 2019-04-18 パナソニックIpマネジメント株式会社 Luminaire apparatus and light-emitting device
US10837607B2 (en) * 2017-09-26 2020-11-17 Lumileds Llc Light emitting device with improved warm-white color point
JP7009879B2 (en) * 2017-09-26 2022-01-26 豊田合成株式会社 Luminescent device
KR102130817B1 (en) * 2018-01-25 2020-07-08 지엘비텍 주식회사 White Light Emitting Device with High Color Rendering Index
JP2020053664A (en) * 2018-09-20 2020-04-02 豊田合成株式会社 Light emitting device
CN113228314A (en) * 2018-12-27 2021-08-06 电化株式会社 Phosphor substrate, light-emitting substrate, and lighting device
CN110364598B (en) * 2019-06-20 2020-10-09 华灿光电(苏州)有限公司 Light emitting diode epitaxial wafer and manufacturing method thereof
CN116462497A (en) * 2023-03-16 2023-07-21 河北光兴半导体技术有限公司 Tb (Tb) 3+ Doped aluminate green fluorescent ceramic and preparation method and application thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004505172A (en) * 2000-07-28 2004-02-19 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Luminescence conversion based light emitting diodes and phosphors for wavelength conversion
JP4619509B2 (en) * 2000-09-28 2011-01-26 株式会社東芝 Light emitting device
DE10133352A1 (en) * 2001-07-16 2003-02-06 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Lighting unit with at least one LED as a light source
KR100923804B1 (en) * 2001-09-03 2009-10-27 파나소닉 주식회사 Semiconductor light emitting device, light emitting apparatus and production method for semiconductor light emitting device
DE10147040A1 (en) * 2001-09-25 2003-04-24 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Lighting unit with at least one LED as a light source
JP2003321675A (en) * 2002-04-26 2003-11-14 Nichia Chem Ind Ltd Nitride fluorophor and method for producing the same
JP4221950B2 (en) * 2002-05-23 2009-02-12 日亜化学工業株式会社 Phosphor
AU2003215785A1 (en) * 2002-03-25 2003-10-08 Philips Intellectual Property And Standards Gmbh Tri-color white light led lamp
FR2840748B1 (en) * 2002-06-05 2004-08-27 France Telecom METHOD AND SYSTEM FOR VERIFYING ELECTRONIC SIGNATURES AND MICROCIRCUIT CARD FOR IMPLEMENTING THE METHOD
NZ537491A (en) * 2002-06-06 2005-12-23 Ilight Technologies Inc Illumination device for simulating neon lighting through use of fluorescent dyes
JP4207489B2 (en) * 2002-08-06 2009-01-14 株式会社豊田中央研究所 α-sialon phosphor
EP1413619A1 (en) * 2002-09-24 2004-04-28 Osram Opto Semiconductors GmbH Luminescent material, especially for LED application
JP3837588B2 (en) * 2003-11-26 2006-10-25 独立行政法人物質・材料研究機構 Phosphors and light emitting devices using phosphors
JP4362625B2 (en) * 2004-02-18 2009-11-11 独立行政法人物質・材料研究機構 Method for manufacturing phosphor
JP3921545B2 (en) * 2004-03-12 2007-05-30 独立行政法人物質・材料研究機構 Phosphor and production method thereof
JP4128564B2 (en) * 2004-04-27 2008-07-30 松下電器産業株式会社 Light emitting device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8460580B2 (en) 2005-04-01 2013-06-11 Mitsubishi Chemical Corporation Alloy powder for raw material of inorganic functional material and phosphor
US8801970B2 (en) 2005-04-01 2014-08-12 Mitsubishi Chemical Corporation Europium- and strontium-based phosphor
CN102687296A (en) * 2010-06-25 2012-09-19 三菱化学株式会社 White semiconductor light emitting device
JP2013007610A (en) * 2011-06-23 2013-01-10 Canon Inc Color measuring unit and image forming apparatus
TWI651395B (en) * 2012-04-18 2019-02-21 日東電工股份有限公司 Phosphor ceramics and methods of making the same
TWI746546B (en) * 2016-05-03 2021-11-21 荷蘭商露明控股公司 Wavelength converting material for a light emitting device
EP3933256A4 (en) * 2019-02-28 2022-11-23 Kyocera Corporation Light emitting device and illumination device

Also Published As

Publication number Publication date
ATE539135T1 (en) 2012-01-15
JP2006049799A (en) 2006-02-16
JP2007027796A (en) 2007-02-01
JP2008016861A (en) 2008-01-24
JP2008187188A (en) 2008-08-14
JP2011155297A (en) 2011-08-11
JP4128564B2 (en) 2008-07-30
JP4559496B2 (en) 2010-10-06
KR20110016506A (en) 2011-02-17
JP2008177592A (en) 2008-07-31
TWI394815B (en) 2013-05-01
JP5171981B2 (en) 2013-03-27
JP2013021339A (en) 2013-01-31
JP4558808B2 (en) 2010-10-06
JP4094047B2 (en) 2008-06-04
JP2008169395A (en) 2008-07-24
ATE546506T1 (en) 2012-03-15
TW200611963A (en) 2006-04-16
JP5604482B2 (en) 2014-10-08
JP3940162B2 (en) 2007-07-04

Similar Documents

Publication Publication Date Title
TW200944577A (en) Phosphor composition and method for producing the same, and light-emitting device using the same
EP1980605B1 (en) Light-emitting Device
WO2005090514A1 (en) Oxynitride phosphor and light-emitting device
TW201226530A (en) Yellow phosphor having oxyapatite structure, preparation method and white light-emitting diode thereof
JP4009869B2 (en) Light emitting device
JP2006348070A (en) Oxynitride-based phosphor and method for producing the same
JP2007189254A (en) Light emitting device