JP5100059B2 - Phosphor, its manufacturing method and a light emitting device using the same - Google Patents

Phosphor, its manufacturing method and a light emitting device using the same Download PDF

Info

Publication number
JP5100059B2
JP5100059B2 JP2006227914A JP2006227914A JP5100059B2 JP 5100059 B2 JP5100059 B2 JP 5100059B2 JP 2006227914 A JP2006227914 A JP 2006227914A JP 2006227914 A JP2006227914 A JP 2006227914A JP 5100059 B2 JP5100059 B2 JP 5100059B2
Authority
JP
Japan
Prior art keywords
gt
lt
sb
phosphor
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006227914A
Other languages
Japanese (ja)
Other versions
JP2008050462A (en
Inventor
康之 三宅
弘之 佐藤
Original Assignee
スタンレー電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スタンレー電気株式会社 filed Critical スタンレー電気株式会社
Priority to JP2006227914A priority Critical patent/JP5100059B2/en
Publication of JP2008050462A publication Critical patent/JP2008050462A/en
Application granted granted Critical
Publication of JP5100059B2 publication Critical patent/JP5100059B2/en
Application status is Active legal-status Critical
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies
    • Y02B20/16Gas discharge lamps, e.g. fluorescent lamps, high intensity discharge lamps [HID] or molecular radiators
    • Y02B20/18Low pressure and fluorescent lamps
    • Y02B20/181Fluorescent powders

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel fluorescent substance capable of absorbing near ultraviolet light and emitting various colors ranging from blue to green, neutral colors, and the like and to provide a light emitting device by which white light can be obtained with the emission of the fluorescent substance alone through combination of the novel fluorescent substance and a near ultraviolet light source. <P>SOLUTION: Raw material compounds, MgO, Al<SB>2</SB>O<SB>3</SB>, SiO<SB>2</SB>, Si<SB>3</SB>N<SB>4</SB>, Eu<SB>2</SB>O<SB>3</SB>, and MnO, are mixed so that the mixture ratio (molar ratio), MgO:Al<SB>2</SB>O<SB>3</SB>:SiO<SB>2</SB>:Si<SB>3</SB>N<SB>4</SB>:Eu<SB>2</SB>O<SB>3</SB>:MnO represented by (1-y/2-z):a:b:c:y:z, satisfies 0.04&le;y&le;0.2, 0&le;z&le;0.1, 0.5&le;a&le;1, b=1, and 0.33&le;c&le;1. The mixture of the raw material compounds was baked in a nitrogen-pressurized atmosphere of 1.0 MPa or less. The material was crushed after baking and then further annealed in a nitrogen atmosphere under normal pressure. Thus a novel fluorescent substance containing MgAl<SB>2</SB>Si<SB>4</SB>O<SB>6</SB>N<SB>4</SB>as the main phase and Eu as an activator (Re) can be obtained. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、新規な酸窒化物蛍光体とその蛍光体の製造方法、さらにその蛍光体を利用した発光装置に関するものである。 The present invention is novel oxynitride phosphor and a method of manufacturing the phosphor, to further light emitting device using the phosphor.

蛍光体は、LEDや冷陰極蛍光ランプ(CCFL)などの発光装置において波長変換材料として広く使用されており、YAG系、BAM系、SiAlON系など種々の蛍光体が開発されている。 Phosphor is widely used as a wavelength converting material in the light emitting device such as an LED or a cold cathode fluorescent lamp (CCFL), YAG-based, BAM system, various phosphors such as SiAlON system have been developed. 一般に、これら発光装置では、LEDチップなどの発光源から出て蛍光体により吸収されずに外部に取り出された光と、発光源からの光を吸収することによって蛍光体が発する光とを合成した光が、その発光装置が発する光となる。 Generally, in these light emitting devices, and light emitted to the outside without being absorbed by the phosphor emitted from the light emitting source such as an LED chip, the phosphor by absorbing light from the light emitting source is obtained by synthesizing the light emitted light, the light that the light-emitting device emitted.

例えば、よく知られている白色LEDでは、発光スペクトルが420nmから490nmに単色性ピークを持つ青色発光LEDチップと、この青色発光LEDチップから出た光を吸収し、510nm〜610nm付近にピーク波長を持つ光を発する黄色発光蛍光体であるセリウム賦活ガーネット蛍光体(YAG系蛍光体)と組み合わせることにより白色光を実現している(特許文献1)。 For example, the white LED is well-known, and blue-emitting LED chip with monochromatic peak 490nm emission spectrum from 420 nm, absorbs light emitted from the blue LED chip, the peak wavelength around 510nm~610nm is realized white light by combining a cerium-activated garnet phosphor is a yellow light-emitting phosphor that emits light (YAG phosphor) having (Patent Document 1).

また特許文献2には、一般式:Me x Si 12-(m+n) Al (m+n) O n N 16-n :Re1 y Re2 zで表されるαサイアロン系酸窒化物を母体として、紫外線から青色光で励起可能な黄色発光蛍光体が提案されている。 Further, Patent Document 2, the general formula: Me x Si 12- (m + n) Al (m + n) O n N 16-n: Re1 y Re2 represented by z alpha sialon oxynitride as a host , excitable yellow-emitting phosphor is proposed in the blue light from ultraviolet light. この蛍光体は、発光ピークが450〜500nmの青色LEDと組み合わせることにより白色LEDを得ることができる。 The phosphor may be emission peak obtain white LED by combining the blue LED of 450 to 500 nm.

一方、蛍光体ではないがセラミックスとして、MgA 12 Si 4 O 6 N 4の存在は非特許文献1で知られている。 On the other hand, is not a phosphor as ceramics, the presence of MgA 12 Si 4 O 6 N 4 are known in the non-patent document 1. また非特許文献1には、MgA 12 Si 4 O 6 N 4の製造方法として、ホットプレス法とガス圧焼結法が記載されている。 The Non-Patent Document 1, as a production method of MgA 12 Si 4 O 6 N 4 , hot pressing and gas pressure sintering method is described. ホットプレス法では、ペレット状に成型した材料をN 2気流中で35MPaの圧力で一軸加圧しながら1400℃もしくは1550℃で1時間焼成し、その後試料を1300℃で20時間アニールする。 The hot press method, a molding material into pellets and calcined 1 hour at 1400 ° C. or 1550 ° C. while applying uniaxial pressing at a pressure of 35MPa in N 2 stream, then for 20 hours annealing the samples at 1300 ° C.. ガス圧焼結法では、ペレット状に成型した材料を1.5MPaまで加圧した窒素雰囲気で1640℃で2時間焼成し、その後試料を1300℃で20時間アニールするものである。 In a gas pressure sintering, the molded material into pellets and calcined for 2 hours at 1640 ° C. in a nitrogen atmosphere pressurized to 1.5 MPa, in which subsequently for 20 hours annealing the samples at 1300 ° C..
特許第3503139号公報 Patent No. 3503139 Publication 特開2002−363554号公報 JP 2002-363554 JP

従来の白色LEDでは、青色発光LEDチップからの透過光を白色成分に用いているために、白色LED間で色度が大きくばらつくという問題がある。 In conventional white LED, due to the use of transmitted light from the blue emitting LED chip into white component, there is a problem that the chromaticity varies greatly among white LED. この問題は、青色発光LEDチップからの発光波長が個体間で10nm程度ばらつくので、波長によって励起効率が異なる蛍光体と合わせたときに励起効率が一定とならないこと、およびチップ周囲の蛍光体の塗布状況を厳密に制御しなければチップからの光の光路長が各LEDで一定とならないため、チップからの透過光と蛍光体の発光の比が簡単に変化してしまうことに起因する。 This problem, since the emission wavelength from the blue LED chip varies 10nm approximately between individuals, the excitation efficiency when excitation efficiency by wavelength is combined with different phosphor is not constant, and the coating of the phosphor surrounding the chip because unless strictly controlled conditions the length of the optical path of light from the chip is not constant in each LED, due to the fact that the ratio of the emission of the transmitted light and the phosphor from the chip is changed easily. この色度のばらつきは多数のロットアウト品を生み出すことになり、歩留まりの低下の大きな原因となっている。 This variation in chromaticity becomes to produce a large number of lots out products, it is a major cause of reduction in yield.

特許文献2記載の酸窒化物蛍光体は、励起波長が近紫外(nUV)から可視光にあって発光色が可視光にあるなど特にLED用蛍光体に適した特性を持つが、LEDの用途拡大に伴い、青から緑色、中間色など多様な発光色を示すLED用蛍光体が望まれている。 Patent Document 2 oxynitride phosphor according is emission color excitation wavelength there from near ultraviolet (nUV) to visible light has the properties particularly suited to a phosphor for LED, etc. in the visible light, LED applications with the expansion, green, LED phosphor showing various emission colors including an intermediate color is desired blue.

また非特許文献1に記載された2通りのセラミックスの製造方法のうち、ガス圧焼結法は、蛍光体の製造方法としても適用可能と考えられる。 Also in the manufacturing method of two types of ceramics disclosed in Non-Patent Document 1, a gas pressure sintering method is believed to be applicable as a manufacturing method of the phosphor. しかし本文献に記載された方法では、1.5MPaの窒素加圧雰囲気で焼成を行っており、このような加圧雰囲気では高温高圧に耐えるため装置が高額なものにならざるをえず、装置保守にも工数が必要となる。 However, in the method described in the literature, and was fired in a nitrogen pressurized atmosphere of 1.5 MPa, pictorial help but such devices to withstand the high temperature and high pressure in the pressurized atmosphere within those expensive, device man-hours for maintenance is required.

本発明の一つの目的は、近紫外光を吸収し、可視光の光を発する新規な蛍光体を提供すること、特に青から緑色、中間色など多様な発光を可能にする蛍光体を提供することにある。 One object of the present invention absorbs near-ultraviolet light, to provide a novel phosphor that emits light in the visible light, to particularly provide a phosphor that allows green, and various luminescent intermediate color from blue It is in. また本発明の目的は、本発明の新規な蛍光体を、耐高圧装置を用いることなく製造する方法を提供すること、また本発明の新規な蛍光体と近紫外発光源とを組み合わせることにより蛍光体の発光のみで白色を得ることができる発光装置を提供することにある。 An object of the present invention The fluorescent novel phosphors of the present invention, to provide a method of manufacturing without using a high voltage apparatus, and by combining the novel phosphor and a near-ultraviolet light-emitting source of the present invention it is to provide a light emitting device capable of obtaining a white light-emitting only the body.

上記課題を解決するため、本発明は、新規の組成比を持ち、青から緑、白色の酸窒化物蛍光体を提供する。 To solve the above problems, the present invention has a novel composition ratio, provides green, white oxynitride phosphor blue. すなわち本発明の蛍光体は、MgAl 2 Si 4 O 6 N 4を主相とし、賦活剤(Re)としてEuを含む蛍光体(以下、MgSiAlON蛍光体という)である。 That phosphor of the present invention, the MgAl 2 Si 4 O 6 N 4 and a main phase, a phosphor containing Eu as an activator (Re) (hereinafter, MgSiAlON referred phosphor) is. 賦活剤ReはEuに加えてMnを含んでいても良い。 Activator Re may contain Mn in addition to Eu.

賦活剤となる元素は、Mgの一部と置換し、元素の組み合わせによって青色〜白色の種々の色調で発光させることができる。 Element serving as activator substitutes part of Mg, it is possible to emit light in various shades of blue to white by a combination of elements. 例えば、賦活剤がEuのみの場合には、発光ピークを450〜520nmの間に持ち、その色度がCIExy色度図上で0.15≦x≦0.28、0.25≦y≦0.48を示す青〜緑色蛍光体となる。 For example, in the case of the activator is Eu alone has a light emission peak between 450 to 520 nm, blue-green fluorescence chromaticity indicates 0.15 ≦ x ≦ 0.28,0.25 ≦ y ≦ 0.48 in diagram CIExy chromaticity the body. またEuに加えてMnを含む場合には、発光ピークを450〜520nmの間と590〜660nmの間に持ち、その色度がCIExy色度図上で0.27≦x≦0.40、0.28≦y≦0.40を示す白色蛍光体となる。 Further, when containing Mn in addition to Eu, the emission peak having between between the 590~660nm of 450~520nm, 0.27 ≦ x ≦ 0.40,0.28 ≦ y ≦ the chromaticity on the diagram CIExy chromaticity 0.40 the a white phosphor exhibiting. 賦活剤となる元素としては、Eu、Mnのほか、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等の希土類元素を加えることも可能である。 As the element to be activator, Eu, addition of Mn, it is also possible to add Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, rare earth elements Lu, and the like.

本発明の蛍光体は、MgAl 2 Si 4 O 6 N 4を主相とするものであるが、副相として、MgAl 2 O 4及び/又はSi 3 N 4を含んでいても良い。 Phosphor of the present invention is a MgAl 2 Si 4 O 6 N 4 in which the main phase, as the subphase may include MgAl 2 O 4 and / or Si 3 N 4. すなわち本発明の蛍光体の組成は一般式Mg 1-x Al 2 Si 4 O 6 N 4 Re xで表すことができるが、本発明の蛍光体は、MgAl 2 Si 4 O 6 N 4を主相とするものであれば、一般式で表される組成から若干ずれたものも含む。 I.e. the composition of the phosphor of the present invention can be represented by the general formula Mg 1-x Al 2 Si 4 O 6 N 4 Re x, the phosphor of the present invention, main phase MgAl 2 Si 4 O 6 N 4 as long as the, including those displaced slightly from the composition of the general formula.

すなわち本発明の蛍光体は、出発材料として化学量論比からずれた比率で出発材料を混合した場合にも製造可能である。 That phosphor of the present invention, also be produced when mixing the starting materials in a ratio deviating from the stoichiometric ratio as a starting material. 例えば出発材料が各元素の酸化物および窒化珪素である場合、その混合比(モル比)MgO:Al 2 O 3 :SiO 2 :Si 3 N 4 :Eu 2 O 3 :MnOを(1-y/2-z):a:b:c:y:zで表したときに、0.04≦y≦0.2、0≦z≦0.1、0.5≦a≦1、b=1、0.33≦c≦1の範囲とすることができる。 For example, when the starting material is an oxide and nitride of the elements, the mixing ratio (molar ratio) MgO: Al 2 O 3: SiO 2: Si 3 N 4: Eu 2 O 3: MnO and (1-y / 2-z): a: b: c: y: when expressed in z, and the range of 0.04 ≦ y ≦ 0.2,0 ≦ z ≦ 0.1,0.5 ≦ a ≦ 1, b = 1,0.33 ≦ c ≦ 1 can do.
本発明の蛍光体の出発材料としては、これら酸化物および窒化珪素を用いることが好ましいが、Mg、Alについては、酸化物のほか、炭酸塩、シュウ酸塩、ハロゲン化物や水酸化物なども使用することが可能であり、その場合の価数が酸化物と同じであれば、混合比(モル比)は上述の範囲とすることができる。 The starting materials of the phosphor of the present invention, it is preferable to use these oxides and nitrides of silicon, Mg, for Al, other oxides, carbonates, oxalates, and such a halide or hydroxide it is possible to use, if the same as the valence oxides that case, the mixing ratio (molar ratio) may be in the range described above.

本発明の蛍光体は、原料粉末の混合と焼成工程とを含む一般のセラミックス材料の製造方法により製造することができるが、焼成工程は、窒素雰囲気中で行なうことが好ましい。 Phosphor of the present invention can be produced by the production method of a general ceramic material containing mixed with firing step of the raw material powder, the firing step is preferably carried out in a nitrogen atmosphere. 特に、混合した原料化合物を1MPa以下の窒素加圧雰囲気下で焼成する工程と、焼成後に材料を粉砕し、窒素常圧雰囲気下でアニールする工程とを含むことが好ましい。 In particular, a step of firing the mixed raw material compound under the following nitrogen pressurized atmosphere 1 MPa, the material was ground after firing, and a step of annealing under a nitrogen atmosphere pressure.

以下、本発明の蛍光体の作製手順は一例を説明する。 Hereinafter, steps for manufacturing a phosphor of the present invention will be described an example.
まず材料として窒化物、酸化物もしくは炭酸塩に代表される高温加熱中で酸化物となる材料を目的の組成比で用意し、アルミナの乳鉢と乳棒で十分に混合する。 First nitride as a material, prepared by an oxide or a composition ratio of purposes oxide become the material in a high-temperature heating typified by a carbonate, mixed thoroughly with alumina mortar and pestle. 混合した粉末をBNるつぼに入れて0.9MPaの窒素加圧雰囲気で1600〜1800℃、望ましくは1650〜1750℃で2時間程度焼成する。 Mixed powder was placed in a BN crucible 1600 to 1800 ° C. in a nitrogen pressurized atmosphere of 0.9 MPa, preferably calcined for about 2 hours at 1650 to 1750 ° C.. このとき焼成温度が高いほど発光強度が増大するが、焼成物がるつぼに張り付き回収が困難になる。 Although the firing temperature at this time is higher luminous intensity higher increases, baked product sticking recovery is difficult in the crucible.

続いて焼成物を取り出してアルミナの乳鉢と乳棒で十分に粉砕した後、もう一度BNるつぼに入れて窒素1気圧雰囲気で約1300℃で10時間程度アニールする。 After thoroughly ground in an alumina mortar and pestle Remove the calcined product subsequently annealed 10 hours at about 1300 ° C. in a nitrogen 1 atm atmosphere put again BN crucible. この焼成物を解砕することで目的の蛍光体粉末が得られる。 Phosphor powder of interest is obtained by crushing the fired product.
材料の混合・粉砕、るつぼへの投入作業はすべて、酸素・水分量を1ppm以下に保ち、窒素雰囲気にしたグローブボックス内で行なうことが好ましい。 Mixed and pulverized material, all put work into the crucible, maintaining the oxygen and water content to 1ppm or less, it is preferable to carry out in a glove box in a nitrogen atmosphere.
上述した製造方法は、従来のセラミックスとしてのMgAl 2 Si 4 O 6 N 4の製造法に比べ、0.9MPaの窒素加圧雰囲気で焼成するため装置が安価になり、装置保守の工数が低減でき、安全性も確保しやすくなる。 The manufacturing method described above, compared to the preparation of MgAl 2 Si 4 O 6 N 4 as a conventional ceramic, apparatus for sintering in a nitrogen pressurized atmosphere of 0.9MPa is less expensive, can be reduced man-hours of apparatus maintenance, it becomes easy to secure safety.

本発明の発光装置は、上述した本発明の蛍光体と、波長140nm〜420mnまでの紫外〜近紫外光を発する励起光源と組み合わせたものである。 The light emitting device of the present invention is a combination of an excitation light source that emits the phosphor of the present invention described above, the ultraviolet to near-ultraviolet light to a wavelength 140Nm~420mn. 励起光源としては、例えば紫外ないし近紫外を発光させる半導体発光素子や、水銀、キセノンなどのガスを励起させることにより波長140〜420nmの紫外光を発生するものが挙げられる。 The excitation light source, for example, a semiconductor light-emitting element for ultraviolet to emit near-ultraviolet, mercury, and the like which generate ultraviolet light having a wavelength of 140~420nm by exciting a gas such as xenon. 励起光源の種類により、半導体発光素子と蛍光体とを組み合わせたLED、蛍光灯、冷陰極蛍光ランプ(CCFL)など、発光装置として種々の形態が取りえる。 The type of excitation source, LED combining a phosphor semiconductor light emitting device, a fluorescent lamp, such as a cold cathode fluorescent lamp (CCFL), various forms can take as a light-emitting device.

本発明の発光装置は、蛍光体として、450〜520nmの間に発光ピークを有する光、或いは450〜520nmの間と590〜660nmの間に発光ピークを有する光を発光する蛍光体を用いているので、蛍光体の組成を所望の色調に合わせて適宜調整することにより、1種類の蛍光体のみで青色〜白色のうちの任意の色(例えば白色)で発光する発光装置を実現できる。 The light emitting device of the present invention, the phosphor is used a phosphor which emits light having a light, or a light emission peak between between the 590~660nm of 450~520nm having an emission peak between 450~520nm since, by appropriately adjust the composition of the phosphor to a desired color tone, a light-emitting device which emits light in any color of the blue-white in only one type of phosphor (for example, white) can be realized.

この発光装置は以下のような利点を有する。 The light emitting device has the following advantages.
まず白色を得るのに1種類の蛍光体だけを用いればよく、複数の蛍光体の保管、品質管理行わなくてよいので、製造コストの低減を図ることができる。 First may be used only one type of phosphor to obtain a white, storage of a plurality of phosphors, since it is not necessary to perform quality control, it is possible to reduce the manufacturing cost.
次に1つの蛍光体で白色を得ていることから、複数の蛍光体波長変換部における各蛍光体混合比のばらつきによる色ズレを抑制することができる。 Then since it is obtained a white one phosphor, it is possible to suppress the color shift due to variations in the phosphor mixture ratio in a plurality of phosphor wavelength converter.
複数の蛍光体を用いて白色にしている場合、白色を構成する蛍光体における励起効率の波長依存性が個々の蛍光体によって異なることから励起光源の発光波長が周囲温度、駆動電流によって変化したときに色調変化しやすいが、本発明の発光装置では1種類の蛍光体にて白色を得ているので、周囲温度や駆動電流による色調変化が少ない。 If you have white with a plurality of phosphors, when the emission wavelength of the excitation light source from the wavelength dependency of excitation efficiency in the phosphor constituting the white vary depending on the particular phosphor is changed by ambient temperature, the drive current the color tone tends to vary, so to obtain a white at 1 type of phosphor in the light emitting device of the present invention, a small color change due to ambient temperature and the drive current.

また本発明の発光装置と、従来の青色励起白色LEDと比較した場合、青色励起白色LEDの場合は励起素子の色度座標(すなわちピーク形状やピーク波長)、波長変換部の濃度、充填量によって非常に敏感に色調が変化するので、結果として同じ色調のLEDを得ることはむずかしく高い歩留まりを得るのが困難であるのに対し、本発明の発光装置は、得られる白色光に影響の少ない近紫外LEDによって励起された1種類の蛍光体にて白色光を得るので、励起素子の色度座標がばらついても、また、波長変換部の濃度、充填量がばらついても色調の変化が少なくて高い歩留まりを得やすいという利点がある。 The light emitting device of the present invention, when compared to conventional blue excitation white LED, in the case of blue excitation white LED chromaticity coordinates of the excitation element (or peak shapes and peak wavelength), the concentration of the wavelength converting portion, the amount of filler since very sensitive to color changes, to obtain the LED of the same color is difficult to obtain a difficult high yield of the resulting light-emitting device of the present invention, less impact on the resulting white light near since obtain white light by the type of phosphor which is excited by ultraviolet LED, also it varies chromaticity coordinates of the excitation element, also the concentration of the wavelength converting portion, with a small change in color tone even filling amount varies there is an advantage that it is easy to obtain a high yield.

次に上記蛍光体を用いた本発明の発光装置について説明する。 It will now be described light-emitting device of the present invention using the above phosphor. 本発明の発光装置は、蛍光体として上記MgSiAlON蛍光体を用いたことを除き、公知の発光装置と同様であり、構造や型は特に限定されない。 The light emitting device of the present invention, except using the MgSiAlON phosphor as a phosphor is similar to known light-emitting device, the structure and the type is not particularly limited. 図1に第1の実施の形態として、本発明が適用される典型的な発光装置(LED)を示す。 As a first embodiment in FIG. 1 shows a typical light emitting device to which the present invention is applied (LED). この発光装置は、基体7上に搭載された半導体発光素子1と、引き出し電極6と、引き出し電極6と発光素子1を接続する導線2と、半導体発光素子1を囲むように基体7に設けられた凹部8と、凹部8を充填する封止部4とからなる。 The light emitting device includes a semiconductor light emitting element 1 mounted on a substrate 7, and the extraction electrode 6, and the lead-out electrode 6 and the conductor 2 for connecting the light emitting element 1 is provided on the base 7 so as to surround the semiconductor light emitting element 1 the recess 8 consists of the sealing portion 4 for filling the recess 8. 蛍光体は、発光素子1が発光する光と異なる波長の光を発光する波長変換材3として用いられ、封止部4内に混合されている。 Phosphor, the light emitting device 1 is used as a wavelength conversion material 3 which emits light of wavelength different from the light emitted, and is mixed in the sealing portion 4.

半導体発光素子1は、発光ピーク波長範囲300〜420nmのものが用いられる。 The semiconductor light emitting element 1 is of a peak emission wavelength range 300~420nm is used. 上記発光ピーク波長範囲内にて発光する半導体発光素子1として、例えば、III族−窒素化合物系(InGaAlN系)半導体や酸化亜鉛化合物系(ZnMgO系)半導体、セレン化亜鉛化合物系(ZnMgSeSTe系)半導体、炭化珪素化合物系(SiGeC系)半導体などが代表的なものとして挙げられるが、紫外光から近紫外光を発光する半導体であれば、その他の化合物系半導体であってもよい。 As the semiconductor light emitting element 1 which emits light at the emission peak wavelength range, for example, III group - nitrogen compound-based (InGaAlN-based) semiconductor and a zinc oxide compound type (ZnMgO based) semiconductor, a zinc selenide compound system (ZnMgSeSTe based) semiconductor Although silicon carbide compound type (SiGeC system) such as semiconductor and the like as a typical, any semiconductor that emits near ultraviolet light from the ultraviolet light, may be other compound-based semiconductor. なお本発明においては、半導体発光素子1としては、サブマウント上に固定されたものも含まれる。 Note In the present invention, the semiconductor light emitting element 1, also include those which are fixed on the submount.

基体7と半導体発光素子1および引き出し電極6は、種々の形態を取ることができ、基体7上に半導体発光素子1が固定され、かつ、アノード/カソード用の各引き出し電極6と半導体発光素子1のアノード/カソード電極とが対応して電気的接合がなされていればよい。 Substrate 7 and the semiconductor light emitting element 1 and the lead-out electrode 6 can take various forms, the semiconductor light emitting element 1 is fixed on the base 7, and the anode / the extraction electrode 6 for the cathode and the semiconductor light emitting element 1 anode / cathode electrodes only need to be made electrically bonded correspondingly. 典型的には図1に示すように、ガラス繊維、エポキシ樹脂などの絶縁物により構成されている基体7上にアノード/カソード両極用の引出し電極6が配線されている。 Typically, as shown in FIG. 1, a glass fiber, extraction electrode 6 for the anode / cathode bipolar onto the substrate 7 which is made of an insulating material such as epoxy resin are wired. 半導体発光素子1はエポキシ樹脂等の接着剤により基体7上に固定され、半導体発光素子1のアノード/カソード各電極は、対応する引き出し電極6と導電性ワイヤー2によって電気的接合がなされている。 The semiconductor light emitting element 1 is fixed on the base body 7 by an adhesive such as an epoxy resin, an anode / cathode electrodes of the semiconductor light emitting element 1, the electrical junction is made by the corresponding extraction electrode 6 and the conductive wire 2. 或いは図示しないが、半導体発光素子1のアノード/カソード電極と対応する各引き出し電極6とを、Au-Snなどの共晶材料やAuバンプ、異方性を有した導電性シート、Agペーストに代表されるような導電性樹脂等により、電気的に接合するとともに基体7に固定する形態や、上記した材料により半導体発光素子1の片極のみを対応する引き出し電極6に対し電気的に接合すると共に基体7へ固定し、他方の極と対応する引き出し電極6とは導電性ワイヤーにて電気的接合をとる形態などを取りえる。 Or not shown a representative, and the extraction electrode 6 corresponding to the anode / cathode electrodes of the semiconductor light emitting element 1, eutectic materials and Au bumps such as Au-Sn, a conductive sheet has anisotropy, the Ag paste a conductive resin or the like as a form and fixed to the base 7 while electrically connected, to the lead-out electrode 6 only the corresponding unipolar semiconductor light emitting element 1 of a material described above as well as electrically bonded fixed to the substrate 7, and the lead-out electrode 6 and the corresponding other pole may take such forms to take electrical connection with a conductive wire. さらに、基体7が半導体発光素子1の放熱性を向上させるために金属等の導電性材料で構成され、片極の引き出し電極6を兼ねるようにしてもよい。 Further, the substrate 7 is composed of a conductive material such as metal in order to improve the heat dissipation of the semiconductor light emitting element 1, may also serve as the lead-out electrode 6 of the unipolar.

基体7には半導体発光素子1が内側に固定されている凹部8が設けられることが望ましい。 The substrate 7 it is desirable that the recess 8 of the semiconductor light emitting element 1 is fixed to the inside is provided. 凹部8は、基体7と一体成型をする方法、基体7に後から接合させる方法など種々の方法により形成することができ、本発明においてはどのような方法であってもよい。 Recesses 8, a method of integrally molding a substrate 7 can be formed by various methods such as a method of joining later to the substrate 7, it may be any method in the present invention. 凹部8の表面は、アノード/カソード各極の引き出し電極6が電気的短絡状態にならないような材料であればどのようなものでもよく、例えば、凹部8の内側に塗布、メッキ、または蒸着等により高反射率材を形成してもよい。 Surface of the recess 8, the anode / cathode lead-out electrodes 6 of each pole may be of any type as long as it is a material that does not cause the electrical short-circuit condition, for example, applied to the inside of the recess 8, plating, or by vapor deposition or the like it may be formed of high reflectance material. 凹部8の形状は概円錐台形であることが望ましいが、概四角錐台形でもよい。 Although it is desirable shape of the recess 8 is a schematic frustoconical, or in approximate quadrangular pyramid trapezoidal. 凹部8の側壁は傾斜していることが望ましいが、携帯電話の表示部用バックライト光源用白色LEDのように、素子の薄型化が望まれている発光装置の場合には、端面はほぼ垂直であってもよい。 It is desirable that the side wall of the recess 8 is inclined, as in the white LED backlight source for a mobile phone display unit, in the case of the light emitting device thinner elements are desired, the end faces substantially perpendicular it may be.

凹部8を充填する封止部4の材料としては、半導体発光素子1からの発光ピーク波長よりも短波長領域まで透明であり、波長変換材3を混合できる材料であればよい。 As the material of the sealing portion 4 that fills the recess 8, than the emission peak wavelength from the semiconductor light emitting device 1 is transparent to the short wavelength range may be a material capable of mixing the wavelength converting member 3. 具体的には熱硬化樹脂、光硬化性樹脂や低融点ガラスなどが挙げられる。 Specifically thermosetting resins, such as photocurable resin or a low melting point glass. 特にエポキシ樹脂、シリコーン樹脂、エポキシ基を有するポリジメチルシロキサン誘導体、オキセタン樹脂、アクリル樹脂、シクロオレフィン樹脂等の熱硬化樹脂が好ましい。 In particular epoxy resins, silicone resins, polydimethylsiloxane derivatives having epoxy groups, oxetane resins, acrylic resins, thermosetting resins such as cycloolefin resins. これら樹脂は、1種または2種以上を混合して用いることができる。 These resins may be used alone or in combination.

波長変換材3は、少なくとも本発明のMgSiAlON蛍光体を含んでいることが必要である。 Wavelength converting material 3, it is necessary to contain MgSiAlON phosphor of the present invention at least. また本発明の蛍光体を一つ以上の他の蛍光体と組み合わせて、本発明の蛍光体のみでは達成できない色調を形成することができる。 Also in combination with other phosphors of the phosphor one or more of the present invention, only the phosphor of the present invention can form a color tone that can not be achieved. 他の蛍光体としては、発光素子1が発生する近紫外光或いは本発明の蛍光体が発光する光を吸収し、吸収した光よりも長波長に波長変換する波長変換材料を用いることができる。 Other phosphors can be used a wavelength converting material absorbs light phosphor emits light in the near-ultraviolet light or the present invention, wavelength conversion to a longer wavelength than the absorbed light-emitting element 1 is produced.

他の蛍光体としては、A 3 B 5 O 12 :M(AはY、Gd、Lu、Tb、BはAl、Ga、MはCe 3+ 、Tb 3+ 、Eu 3+ 、Cr 3+ 、Nd +またはEr 3+ )、希土類とマンガンをドープしたバリウム−アルミニウム−マグネシウム系化合物蛍光体(BAM:Mn蛍光体)、Y 2 O 2 S:Eu 3+や(Sr,Ca)S:Eu 2+ 、ZnS:Cu,A1などに代表される硫化物系化合物蛍光体、CaGa 2 S 4 :Eu 2+やSrGa 2 S 4 :Eu 2+などの希土類をドープしたチオガレート系蛍光体、またはCaAl 2 O 4 :Eu 2+などのアルミン酸塩、(Ca,Sr,Ba,) x Si y O z :Eu 2+などのケイ酸塩の少なくとも1つの組成を含有した蛍光体、α-SiAlON、β-SiAlON等のサイアロン系蛍光体、Sr 2 Si 5 N 8 :Eu 2+などの窒化物蛍光体などの一般的に知られている各波長変換材の材料を1種または2種以上を混合して用いることができる。 Other phosphors, A 3 B 5 O 12: M (A is Y, Gd, Lu, Tb, B is Al, Ga, M is Ce 3+, Tb 3+, Eu 3+ , Cr 3+, Nd + or Er 3+), barium doped rare earth and manganese - aluminum - magnesium compounds phosphor (BAM: Mn phosphor), Y 2 O 2 S: Eu 3+ and (Sr, Ca) S: Eu 2 +, ZnS: Cu, A1 sulfide compound phosphors typified, CaGa 2 S 4: Eu 2+ or SrGa 2 S 4: thiogallate based phosphor rare earth-doped such Eu 2+, or CaAl 2 O 4: aluminates such as Eu 2+, (Ca, Sr, Ba,) x Si y O z: phosphor containing at least one composition of the silicate, such as Eu 2+, α-SiAlON, β sialon-based phosphor such -SiAlON, Sr 2 Si 5 N 8 : Eu 2+ commonly known material of the wavelength converting material is such as a nitride phosphor by mixing one or two or more of such it can be used Te. また必要に応じて各波長変換材用材料に、励起光および波長変換された光の反射を補助するために硫酸バリウム、酸化マグネシウム、酸化ケイ素などの散乱材を混在させてもよい。 Also to each wavelength conversion material for a material if necessary, barium sulfate to assist the reflection of the excitation light and the wavelength converted light, magnesium oxide, may be mixed scattering material such as silicon oxide.

波長変換材3は、上述した封止部4に適量混合させて用いることができる。 Wavelength converting material 3 may be used by an appropriate amount mixed in the sealing portion 4 described above. 樹脂に混合する場合の混合量は、特に限定されないが、通常封止部を構成する材料全体の1〜50重量%程度である。 Mixing amount in the case of mixing the resin is not particularly limited, about 1 to 50 wt% of the total material constituting the normal sealing portion. また波長変換材3は、透明基板7中に分散させて用いてもよい。 The wavelength converting material 3 may be used by dispersing in a transparent substrate 7.

なお封止部4の樹脂と波長変換材3との混合物を凹部8に充填した際には、充填物の高さは開口面に形成される水平面の高さと同じか、それよりも凹んだ状態が好ましい。 State Note a mixture of the resin and the wavelength conversion member 3 of the sealing portion 4 when filled in the concave portion 8, the height of the packing is either equal to the height of the horizontal plane is formed in the opening surface, recessed than It is preferred. 充填物は、最終的に、凹んだ状態になっていればよく、材料充填の際に凹みを形成しても、封止部4の封止剤充填時は凸形状で硬化後に凹みが形成されても効果は同じである。 Filling, finally, it is sufficient that the state recessed, be formed a recess in the material filling time of sealing agent filling the sealing portion 4 is recessed after curing a convex shape is formed even if the effect is the same.

次に本発明の第2の実施の形態として図1の発光装置とは異なる構造の発光装置を図2に示す。 Figure 2 shows the light-emitting device having a structure different from that of the next light emitting device of FIG. 1 as a second embodiment of the present invention. この発光装置は、凹部18を有する、1ないし複数のハウジング17が形成されたパッケージ成型体からなり、ハウジング17の凹部18の底部に発光素子11が搭載されている。 The light emitting device has a recess 18, one to a plurality of the molded package housing 17 is formed, the light emitting element 11 is mounted on the bottom of the recess 18 of the housing 17. 図示していないが、発光素子11のアノード/カソード電極は、ハウジング17と一体的に形成されたリードにより外部電源に接続される。 Although not shown, the anode / cathode electrodes of the light emitting element 11 is connected to the external power source through the housing 17 are integrally formed with the lead. また凹部18の上部(開口)は、ガラス板、樹脂板等の透明部材14で覆われており、これにより発光素子11は凹部18内の空間(封止部)に密閉されている。 The upper portion of the concave portion 18 (opening), a glass plate is covered with a transparent member 14 of a resin plate or the like, thereby the light emitting element 11 is sealed in a space (sealing portion) of the recess 18. 封止部は大気圧以下の状態に保たれるかN 2 、Arなどの不活性ガスなど気体などによって満たされている。 The sealing portion is filled with such a gas such as an inert gas such as either N 2, Ar is kept below state atmospheric pressure. 透明部材14の少なくとも片面には、蛍光体層13が形成されている。 At least one surface of the transparent member 14, a phosphor layer 13 is formed. 図示する実施の形態では、発光素子11の真上に当たる透明部材14の外側の面に、発光素子11よりも広い面積となるように第1の蛍光体層131が形成され、第1の蛍光体層131の周辺に相当する透明部材14の内側面に、第2の蛍光体層132が形成されている。 In the depicted embodiment, the outer surface of the transparent member 14 falls just above the light emitting element 11, the first phosphor layer 131 is formed to have a larger area than the light emitting element 11, the first phosphor the inner surface of the transparent member 14 corresponding to the peripheral layers 131, second phosphor layers 132 are formed.

このように透明部材14の両面に第1および第2の蛍光体層を配置することにより、発光素子1から発光した光の一部は、第1の蛍光体層131で波長変換され、外部へ発光されるとともに、第1の蛍光体層131の裏面で反射された光は、内側面に形成された第2の蛍光体層132により波長変換され、外部へ発光される。 By thus arranging on both sides of the transparent member 14 to the first and second phosphor layers, part of the light emitted from the light emitting element 1 is wavelength-converted by the first phosphor layer 131, to the outside with the emitted light reflected by the back surface of the first phosphor layer 131 is wavelength-converted by the second phosphor layer 132 formed on the inner surface, it is emitted to the outside.

第1および第2の蛍光体層を構成する材料は同一でも異なっていてもよく、そのうち少なくとも一方は本発明のMgSiAlON蛍光体を含んでいる。 The material constituting the first and second phosphor layers may be the same or different, of which at least one contains MgSiAlON phosphor of the present invention. 蛍光体層13は、本発明のMgSiAlON蛍光体を含む蛍光体を、スクリーン印刷、スピンコート等により成膜することにより形成することができる。 Phosphor layer 13, a phosphor containing MgSiAlON phosphor of the present invention can be formed by forming a film screen printing, by spin coating or the like. 蛍光体層13に含まれるMgSiAlON蛍光体の量については特に制限はないが、樹脂に対する総蛍光体量は作業性等の観点から概ね1〜80重量%程度、好ましくは3〜50重量%である。 There is no particular restriction on the amount of MgSiAlON phosphor contained in the phosphor layer 13, the total phosphor weight is approximately 1-80% by weight approximately from the viewpoint of workability for the resin, preferably from 3 to 50 wt% . また蛍光体層の膜厚は、光取り出し効率の観点から500μm以下が望ましく、10〜150μmがさらに望ましい。 The thickness of the phosphor layer, less preferably 500μm from the viewpoint of light extraction efficiency, 10 to 150 m is more desirable.

以上、本発明の発光装置の実施の形態として、本発明の蛍光体を近紫外LEDと組み合わせた2つのタイプのLEDを説明したが、本発明の蛍光体は、420nm以下の波長で励起可能なので、近紫外LED限らず励起された水銀ガスなどのガスから発光する波長140〜420nmの紫外〜近紫外線で蛍光体を励起させる蛍光灯や冷陰極蛍光ランプ(CCFL)などにも利用可能である。 Above, as an embodiment of the light-emitting device of the present invention, although the phosphor of the present invention have been described two types of LED in combination with a near ultraviolet LED, the phosphor of the present invention, since the 420nm excitable at wavelengths below is available in a fluorescent lamp or a cold cathode fluorescent lamp which excites a phosphor with ultraviolet to near ultraviolet wavelengths 140~420nm which emits light from a gas such as mercury gas excited not only near-ultraviolet LED (CCFL).

以下、本発明のMgSiAlON蛍光体の実施例および発光装置の実施例を説明する。 Hereinafter, an embodiment of the examples and light emitting device of MgSiAlON phosphor of the present invention.

1. 1. 蛍光体の実施例<実施例1> Example of the phosphor <Example 1>
出発材料として、MgO(関東化学4N)、Al 2 O 3 (住友化学AKP-Y3000)、SiO 2 (フルウチ化学5N)、Si 3 N 4 (宇部興産SN-E10)およびEu 2 O 3 (フルウチ化学4N)を用い、その混合比(モル比)が(1-y/2)MgO:aAl 2 O 3 :bSiO 2 :cSi 3 N 4 :yEu 2 O 3が表1に記載の比率(y=0.04、a=1、b=1、c=1)となるように秤量した。 As starting materials, MgO (Kanto Chemical 4N), Al 2 O 3 (Sumitomo Chemical AKP-Y3000), SiO 2 (Furuuchi Chemical 5N), Si 3 N 4 (Ube Industries SN-E10) and Eu 2 O 3 (Furuuchi Chemical using 4N), the mixing ratio (molar ratio) of (1-y / 2) MgO : aAl 2 O 3: bSiO 2: cSi 3 N 4: yEu 2 O 3 ratio described in Table 1 (y = 0.04 were weighed so as to a = 1, b = 1, c = 1).
・MgO (関東化学4N) 0.500g · MgO (Kanto Chemical 4N) 0.500g
・Al 2 O 3 (住友化学AKP-Y3000) 1.290g · Al 2 O 3 (Sumitomo Chemical AKP-Y3000) 1.290g
・SiO 2 (フルウチ化学5N) 0.760g · SiO 2 (Furuuchi chemical 5N) 0.760g
・Si 3 N 4 (宇部興産SN-Elo) 1.775g · Si 3 N 4 (Ube Industries, SN-Elo) 1.775g
・Eu 2 0 3 (フルウチ化学4N) 0.045g · Eu 2 0 3 (Furuuchi chemical 4N) 0.045g

これらの材料を水分量1ppm以下の窒素雰囲気としたグローブボックス内でアルミナ乳鉢、乳棒を使い十分に混合し、粉末をBNるつぼ(電気化学)に投入した。 Alumina mortar these materials in a glove box with a nitrogen atmosphere moisture content 1 ppm, using a pestle thoroughly mixed, the powder was placed in a BN crucible (electrochemical). この試料を黒鉛の抵抗加熱を用いる多目的高温炉(富士電波工業)にいれ、まず炉内を1×10 -2 Pa以下の真空状態に保持したまま800℃まで昇温し、次に炉内を窒素9気圧加圧雰囲気として1600℃で2時間の焼成を行った。 Put the sample into multi-purpose high temperature furnace using resistive heating of graphite (Fuji Telecommunications Industry), first, the inside of the furnace 1 × 10 -2 Pa or less still the temperature was raised to 800 ° C. and held in a vacuum state, then in the furnace calcined for 2 hours at 1600 ° C. as nitrogen 9 atm pressurized atmosphere was carried out. 降温後、試料をとりだすと焼成物は灰色の塊であった。 After cooling, the fired product and taking out the sample was a gray mass. この焼成物をもう一度窒素雰囲気のグローブボックス内でアルミナ乳鉢、乳棒を使い十分に粉砕した後、BNるつぼに戻した。 Alumina mortar in a glove box of the calcined product again nitrogen atmosphere, was thoroughly pulverized using a pestle, it was returned to the BN crucible.

その粉末を黒点の抵抗加熱を用いる多目的高温炉にて窒素1気圧雰囲気で1300℃で10時間の焼成を行った。 The powder was baked for 10 hours at 1300 ° C. in a nitrogen 1 atmosphere pressure atmosphere at a multipurpose high temperature furnace using resistive heating of black spots. 焼成物は灰白色の粉体が凝集した状態であった。 Calcined product was state off-white powder are aggregated. 焼成物を解砕し、目的の蛍光体粉末を得た。 The fired product was disintegrated to obtain a phosphor powder of interest. なお焼成時の昇温速度はすべて500℃/hとした。 Incidentally heating rate during sintering was all 500 ° C. / h. 得られた蛍光体をX線回折装置(Bruker Advanced D8)でCuのKα線を用いて測定した。 The obtained phosphor was measured using a Kα ray of Cu in an X-ray diffractometer (Bruker Advanced D8). 結果を図3に示す。 The results are shown in Figure 3.

測定の結果、非特許文献2に報告され、ICDD(International Centre for Diffraction Dataにも収録されているMgAl 2 Si 4 0 6 N 4のX線回折パターンとよく一致し、MgAl 2 Si 4 0 6 N 4を主相として含むことが確認された。また副相としてMgAl 2 0 4 、Si 3 N 4を含んでいた。 As a result of the measurement, are reported in Non-Patent Document 2, in good agreement with X-ray diffraction pattern of MgAl 2 Si 4 0 6 N 4 which has been recorded in ICDD (International Centre for Diffraction Data, MgAl 2 Si 4 0 6 N include 4 as main phase was confirmed. Further contained MgAl 2 0 4, Si 3 N 4 as a subphase.
さらに分光蛍光光度計(日立F4500)により、得られた蛍光体の365nm励起時の発光スペクトルを測定した。 Further by spectrofluorometer (Hitachi F4500), the emission spectrum at 365nm excitation phosphor obtained was measured. 結果を図4に示す。 The results are shown in Figure 4. 発光ピーク波長は477nm、色度は(x,y)=(0.19,0.28)であった。 Emission peak wavelength 477 nm, the chromaticity was (x, y) = (0.19,0.28).

<実施例2> <Example 2>
実施例1と同じ出発材料を用い、その混合比(モル比)が表1に記載の組成比になるように秤量した。 Using the same starting materials as in Example 1, the mixing ratio (molar ratio) was weighed so as to obtain the composition ratios shown in Table 1.
・MgO 0.500g · MgO 0.500g
・Al 2 O 3 1.331g · Al 2 O 3 1.331g
・SiO 2 0.784g · SiO 2 0.784g
・Si 3 N 4 1.831g · Si 3 N 4 1.831g
・Eu 2 O 3 0.115g · Eu 2 O 3 0.115g

その他は実施例1と同様に焼成を行い、目的の蛍光体粉末を得た。 Others and fired in the same manner as in Example 1 to obtain a phosphor powder of interest. 実施例1と同様に測定した365nm励起時の発光スペクトルの結果を図5および表1に示す。 The results of the emission spectrum at 365nm excitation was measured in the same manner as in Example 1 shown in FIG. 5 and Table 1. 発光ピーク波長は499nm、色度は(x,y)=(0.24,0.40)、輝度は実施例1の蛍光体に対して170%であった。 Emission peak wavelength 499 nm, chromaticity (x, y) = (0.24,0.40), the luminance was 170% with respect to the phosphor of Example 1.

<実施例3> <Example 3>
実施例1と同じ出発材料およびMnCO 3 (高純度化学3N以上)を用い、その混合比(モル比)が(1-y/2-z)MgO:aAl 2 O 3 :bSiO 2 :cSi 3 N 4 :yEu 2 O 3 :zMnCO 3が表1に記載の組成比になるように秤量した。 Example 1 The same starting material as and MnCO 3 with (high purity chemical 3N or higher), the mixing ratio (molar ratio) of (1-y / 2-z ) MgO: aAl 2 O 3: bSiO 2: cSi 3 N 4: yEu 2 O 3: zMnCO 3 were weighed so that the composition ratio shown in Table 1.
・MgO 0.500g · MgO 0.500g
・Al 2 O 3 1.331g · Al 2 O 3 1.331g
・SiO 2 0.784g · SiO 2 0.784g
・Si 3 N 4 1.831g · Si 3 N 4 1.831g
・Eu 2 O 3 0.115g · Eu 2 O 3 0.115g
・MnCO 3 0.045g · MnCO 3 0.045g

焼成温度を1650℃とした以外は実施例1と同様に焼成を行い、目的の蛍光体粉末を得た。 Except that the firing temperature was 1650 ° C. is then fired in the same manner as in Example 1 to obtain a phosphor powder of interest. 実施例1と同様に測定した蛍光体粉末の発光スペクトル(365nm励起時)の結果を図6および表1に示す。 The results of the emission spectrum of the phosphor powder was measured in the same manner as in Example 1 (at 365nm excitation) is shown in FIG. 6 and Table 1. 発光ピーク波長は484nm、607nm、色度は(x,y)=(0.33,0.36)であった。 Emission peak wavelength 484 nm, 607 nm, the chromaticity was (x, y) = (0.33,0.36).

<実施例4> <Example 4>
実施例3と同じ出発材料を用い、その混合比(モル比)が表1に記載の組成比になるように秤量した。 Using the same starting material as in Example 3, the mixing ratio (molar ratio) was weighed so as to obtain the composition ratios shown in Table 1.
・MgO 0.500g · MgO 0.500g
・Al 2 O 3 1.345g · Al 2 O 3 1.345g
・SiO 2 0.793g · SiO 2 0.793g
・Si 3 N 4 1.851g · Si 3 N 4 1.851g
・Eu 2 O 3 0.046g · Eu 2 O 3 0.046g
・MnCO 3 0.061g · MnCO 3 0.061g

その他は実施例1と同様に焼成を行い、目的の蛍光体粉末を得た。 Others and fired in the same manner as in Example 1 to obtain a phosphor powder of interest. 実施例1と同様に測定した蛍光体粉末の発光スペクトル(365nm励起時)の結果を図7および表1に示す。 The results of the emission spectrum of the phosphor powder was measured in the same manner as in Example 1 (at 365nm excitation) is shown in FIG. 7 and Table 1. 発光ピーク波長は485nm、613nm、色度は(x,y)=(0.35,0.36)、輝度は実施例3の蛍光体に対して63%であった。 Emission peak wavelength 485 nm, 613 nm, chromaticity (x, y) = (0.35,0.36), the luminance was 63% with respect to the phosphor of Example 3.

<実施例5> <Example 5>
実施例3と同じ出発材料を用い、その混合比(モル比)が表1に記載の組成比になるように秤量した。 Using the same starting material as in Example 3, the mixing ratio (molar ratio) was weighed so as to obtain the composition ratios shown in Table 1.
・MgO 0.500g · MgO 0.500g
・Al 2 O 3 1.360g · Al 2 O 3 1.360g
・SiO 2 0.801g · SiO 2 0.801g
・Si 3 N 4 1.871g · Si 3 N 4 1.871g
・Eu 2 O 3 0.047g · Eu 2 O 3 0.047g
・MnCO 3 0.077g · MnCO 3 0.077g

その他は実施例1と同様に焼成を行い、目的の蛍光体粉末を得た。 Others and fired in the same manner as in Example 1 to obtain a phosphor powder of interest. 実施例1と同様に測定した蛍光体粉末の発光スペクトル(365nm励起時)の結果を図8および表1に示す。 The results of the emission spectrum of the phosphor powder was measured in the same manner as in Example 1 (at 365nm excitation) is shown in FIG. 8 and Table 1. 発光ピーク波長は471nm、623nm、色度は(x,y)=(0.35,0.32)、輝度は実施例3の蛍光体に対して66%であった。 Emission peak wavelength 471 nm, 623 nm, chromaticity (x, y) = (0.35,0.32), the luminance was 66% with respect to the phosphor of Example 3.

<実施例6> <Example 6>
実施例3と同じ出発材料を用い、その混合比(モル比)が表1に記載の組成比になるように秤量した。 Using the same starting material as in Example 3, the mixing ratio (molar ratio) was weighed so as to obtain the composition ratios shown in Table 1.
・MgO 0.500g · MgO 0.500g
・Al 2 O 3 1.345g · Al 2 O 3 1.345g
・SiO 2 0.793g · SiO 2 0.793g
・Si 3 N 4 1.851g · Si 3 N 4 1.851g
・Eu 2 O 3 0.070g · Eu 2 O 3 0.070g
・MnCO 3 0.045g · MnCO 3 0.045g

焼成温度を1650℃とした以外は実施例1と同様に焼成を行い、目的の蛍光体粉末を得た。 Except that the firing temperature was 1650 ° C. is then fired in the same manner as in Example 1 to obtain a phosphor powder of interest. 実施例1と同様に測定した蛍光体粉末の発光スペクトル(365nm励起時)の結果を図9および表1に示す。 The results of the emission spectrum of the phosphor powder was measured in the same manner as in Example 1 (at 365nm excitation) is shown in FIG. 9 and Table 1. 発光ピーク波長は479nm、602nm、色度は(x,y)=(0.31,0.35)、輝度は実施例3の蛍光体に対して135%であった。 Emission peak wavelength 479 nm, 602 nm, chromaticity (x, y) = (0.31,0.35), the luminance was 135% with respect to the phosphor of Example 3.

<実施例7> <Example 7>
実施例3と同じ出発材料を用い、その混合比(モル比)が表1に記載の組成比になるように秤量した。 Using the same starting material as in Example 3, the mixing ratio (molar ratio) was weighed so as to obtain the composition ratios shown in Table 1.
・MgO 0.500g · MgO 0.500g
・Al 2 O 3 1.360g · Al 2 O 3 1.360g
・SiO 2 0.801g · SiO 2 0.801g
・Si 3 N 4 1.871g · Si 3 N 4 1.871g
・Eu 2 O 3 0.070g · Eu 2 O 3 0.070g
・MnCO 3 0.061g · MnCO 3 0.061g

焼成温度を1650℃とした以外は実施例1と同様に焼成を行い、目的の蛍光体粉末を得た。 Except that the firing temperature was 1650 ° C. is then fired in the same manner as in Example 1 to obtain a phosphor powder of interest. 実施例1と同様に測定した蛍光体粉末の発光スペクトル(365nm励起時)の結果を図10および表1に示す。 The results of the emission spectrum of the phosphor powder was measured in the same manner as in Example 1 (at 365nm excitation) is shown in FIG. 10 and Table 1. 発光ピーク波長は487nm、609nm、色度は(x,y)=(0.35,0.38)、輝度は実施例3の蛍光体に対して102%であった。 Emission peak wavelength 487 nm, 609 nm, the chromaticity was 102% (x, y) = (0.35,0.38), the luminance for phosphors of Example 3.

<実施例8> <Example 8>
実施例1と同じ出発材料を用い、その混合比(モル比)が表1に記載の組成比(y=0.10,a=0.5,b=1,c=0.33)になるように秤量した。 Using the same starting materials as in Example 1, the mixing ratio (molar ratio) was weighed so as to obtain the composition ratios shown in Table 1 (y = 0.10, a = 0.5, b = 1, c = 0.33).
・MgO 1.000g · MgO 1.000g
・Al 2 O 3 1.331g · Al 2 O 3 1.331g
・SiO 2 1.569g · SiO 2 1.569g
・Si 3 N 4 1.221g · Si 3 N 4 1.221g
・Eu 2 O 3 0.230g · Eu 2 O 3 0.230g

焼成温度を1750℃とした以外は実施例1と同様に焼成を行い、目的の蛍光体粉末を得た。 Except that the firing temperature was 1750 ° C. is then fired in the same manner as in Example 1 to obtain a phosphor powder of interest. 得られた蛍光体のX線回折測定の結果を図3に示す。 The results of X-ray diffraction measurement of the obtained phosphor is shown in FIG. 測定の結果、実施例1と同様にMgAl 2 Si 4 O 6 N 4のX線回折パターンとよく一致し、MgAl 2 Si 4 O 6 N 4を主相として含むことが確認された。 As a result of the measurement, similarly good agreement with X-ray diffraction pattern of MgAl 2 Si 4 O 6 N 4 as in Example 1, to contain MgAl 2 Si 4 O 6 N 4 as a main phase was confirmed. また副相としてMgAl 2 O 4 、Mg 2 SiO 4を含んでいた。 Also it contained MgAl 2 O 4, Mg 2 SiO 4 as a subphase.
実施例1と同様に測定した蛍光体粉末の発光スペクトル(365nm励起時)の結果を図11および表1に示す。 The results of the emission spectrum of the phosphor powder was measured in the same manner as in Example 1 (at 365nm excitation) is shown in Figure 11 and Table 1. 発光ピーク波長は487nm、色度は(x,y)=(0.21,0.36)、輝度は実施例1の蛍光体に対し260%であった。 Emission peak wavelength 487 nm, chromaticity (x, y) = (0.21,0.36), the luminance was 260% with respect to the phosphor of Example 1.

<実施例9> <Example 9>
実施例1と同じ出発材料を用い、その混合比(モル比)が表1に記載の組成比になるように秤量した。 Using the same starting materials as in Example 1, the mixing ratio (molar ratio) was weighed so as to obtain the composition ratios shown in Table 1.
・MgO 1.000g · MgO 1.000g
・Al 2 O 3 1.367g · Al 2 O 3 1.367g
・SiO 2 1.611g · SiO 2 1.611g
・Si 3 N 4 1.254g · Si 3 N 4 1.254g
・Eu 2 O 3 0.354g · Eu 2 O 3 0.354g

その他は実施例8と同様に焼成を行い、目的の蛍光体粉末を得た。 Others and fired in the same manner as in Example 8, to obtain a phosphor powder of interest. 実施例1と同様に測定した蛍光体粉末の発光スペクトル(365nm励起時)の結果を図12および表1に示す。 The results of the emission spectrum of the phosphor powder was measured in the same manner as in Example 1 (at 365nm excitation) is shown in FIG. 12 and Table 1. 発光ピーク波長は502nm、色度は(x,y)=(0.24,0.41)、輝度は実施例1の蛍光体に対して262%であった。 Emission peak wavelength 502 nm, chromaticity (x, y) = (0.24,0.41), the luminance was 262% with respect to the phosphor of Example 1.

<実施例10> <Example 10>
実施例1と同じ出発材料を用い、その混合比(モル比)が表1に記載の組成比になるように秤量した。 Using the same starting materials as in Example 1, the mixing ratio (molar ratio) was weighed so as to obtain the composition ratios shown in Table 1.
・MgO 1.000g · MgO 1.000g
・Al 2 O 3 1.405g · Al 2 O 3 1.405g
・SiO 2 1.656g · SiO 2 1.656g
・Si 3 N 4 1.289g · Si 3 N 4 1.289g
・Eu 2 O 3 0.485g · Eu 2 O 3 0.485g

その他は実施例8と同様に焼成を行い、目的の蛍光体粉末を得た。 Others and fired in the same manner as in Example 8, to obtain a phosphor powder of interest. 実施例1と同様に測定した蛍光体粉末の発光スペクトル(365nm励起時)の結果を図13および表1に示す。 The results of the emission spectrum of the phosphor powder was measured in the same manner as in Example 1 (at 365nm excitation) 13 and Table 1. 発光ピーク波長は503nm、色度は(x,y)=(0.26,0.44)、輝度は実施例1の蛍光体に対して271%であった。 Emission peak wavelength 503 nm, chromaticity (x, y) = (0.26,0.44), the luminance was 271% with respect to the phosphor of Example 1.

<実施例11> <Example 11>
実施例3と同じ出発材料を用い、その混合比(モル比)が表1に記載の組成比になるように秤量した。 Using the same starting material as in Example 3, the mixing ratio (molar ratio) was weighed so as to obtain the composition ratios shown in Table 1.
・MgO 1.000g · MgO 1.000g
・Al 2 O 3 1.345g · Al 2 O 3 1.345g
・SiO 2 1.585g · SiO 2 1.585g
・Si 3 N 4 1.234g · Si 3 N 4 1.234g
・Eu 2 O 3 0.093g · Eu 2 O 3 0.093g
・MnCO 3 0.121g · MnCO 3 0.121g

焼成温度を1700℃とした以外は実施例1と同様に焼成を行い、目的の蛍光体粉末を得た。 Except that the firing temperature was 1700 ° C. is then fired in the same manner as in Example 1 to obtain a phosphor powder of interest. 実施例1と同様に測定した蛍光体粉末の発光スペクトル(365nm励起時)の結果を図14および表1に示す。 The results of the emission spectrum of the phosphor powder was measured in the same manner as in Example 1 (at 365nm excitation) 14 and Table 1. 発光ピーク波長は471nm、602nm、色度は(x,y)=(0.30,0.30)、輝度は実施例3の蛍光体に対して162%であった。 Emission peak wavelength 471 nm, 602 nm, chromaticity (x, y) = (0.30,0.30), the luminance was 162% with respect to the phosphor of Example 3.

<実施例12> <Example 12>
実施例3と同じ出発材料を用い、その混合比(モル比)が表1に記載の組成比になるように秤量した。 Using the same starting material as in Example 3, the mixing ratio (molar ratio) was weighed so as to obtain the composition ratios shown in Table 1.
・MgO 1.000g · MgO 1.000g
・Al 2 O 3 1.360g · Al 2 O 3 1.360g
・SiO 2 1.603g · SiO 2 1.603g
・Si 3 N 4 1.247g · Si 3 N 4 1.247g
・Eu 2 O 3 0.094g · Eu 2 O 3 0.094g
・MnCO 3 0.153g · MnCO 3 0.153g

焼成温度を1700℃とした以外は実施例1と同様に焼成を行い、目的の蛍光体粉末を得た。 Except that the firing temperature was 1700 ° C. is then fired in the same manner as in Example 1 to obtain a phosphor powder of interest. 実施例1と同様に測定した蛍光体粉末の発光スペクトル(365nm励起時)の結果を図15および表1に示す。 The results of the emission spectrum of the phosphor powder was measured in the same manner as in Example 1 (at 365nm excitation) is shown in FIG. 15 and Table 1. 発光ピーク波長は470nm、621nm、色度は(x,y)=(0.33,0.31)、輝度は実施例3の蛍光体に対して162%であった。 Emission peak wavelength 470 nm, 621 nm, chromaticity (x, y) = (0.33,0.31), the luminance was 162% with respect to the phosphor of Example 3.

<実施例13> <Example 13>
実施例3と同じ出発材料を用い、その混合比(モル比)が表1に記載の組成比になるように秤量した。 Using the same starting material as in Example 3, the mixing ratio (molar ratio) was weighed so as to obtain the composition ratios shown in Table 1.
・MgO 1.000g · MgO 1.000g
・Al 2 O 3 1.437g · Al 2 O 3 1.437g
・SiO 2 1.694g · SiO 2 1.694g
・Si 3 N 4 1.318g · Si 3 N 4 1.318g
・Eu 2 O 3 0.099g · Eu 2 O 3 0.099g
・MnCO 3 0.324g · MnCO 3 0.324g

焼成温度を1700℃とした以外は実施例1と同様に焼成を行い、目的の蛍光体粉末を得た。 Except that the firing temperature was 1700 ° C. is then fired in the same manner as in Example 1 to obtain a phosphor powder of interest. 実施例1と同様に測定した蛍光体粉末の発光スペクトル(365nm励起時)の結果を図16および表1に示す。 The results of the emission spectrum of the phosphor powder was measured in the same manner as in Example 1 (at 365nm excitation) is shown in FIG. 16 and Table 1. 発光ピーク波長は469nm、653nm、色度は(x,y)=(0.38,0.31)、輝度は実施例3の蛍光体に対して46%であった。 Emission peak wavelength 469 nm, 653 nm, chromaticity (x, y) = (0.38,0.31), the luminance was 46% with respect to the phosphor of Example 3.

表1および図3、図5〜図16に示す結果からもわかるように、Mnを含有しない場合(実施例1、2、8−10)は、450〜520nmに単一の発光ピークを持つ青〜緑色蛍光体が得られた。 Table 1 and FIG. 3, as can be seen from the results shown in FIGS. 5 to 16, when containing no Mn (Example 1,2,8-10) is blue with a single emission peak at 450~520nm to green phosphor was obtained. また青〜緑色蛍光体では、窒素の含有量が比較的多い蛍光体(実施例1、2)より、比較的少ない蛍光体(実施例8−10)において高い輝度が得られた。 In addition blue-green phosphor, the content of nitrogen is relatively large phosphor from (Examples 1 and 2), a high luminance was obtained in a relatively small phosphor (Example 8-10). 一方、Mnを含有する場合(実施例3−7、11−13)には、450〜520nmと590〜660nmに発光ピークを持つ白色蛍光体が得られた。 On the other hand, when containing Mn (Example 3-7,11-13), white phosphor having an emission peak at 450~520nm and 590~660nm was obtained.
またX線回折の結果は、実施例1および実施例8のみ図示したが、全ての実施例の蛍光体において、MgAl 2 Si 4 0 6 N 4が主相と確認された。 The results of X-ray diffraction has been illustrated only Example 1 and Example 8, in the phosphor of all the examples, MgAl 2 Si 4 0 6 N 4 was identified as the main phase.

2. 2. 発光装置の実施例<実施例L-1>(青〜緑色蛍光体を用いた実施例) Example of the light emitting device <Example L-1> (Example of using a blue-green phosphor)
波長変換材として、上述した実施例1、実施例2、実施例8および実施例9で得られた蛍光体を用いて、図1に示すような発光素子(LED)を以下のようにして作製した。 Produced as a wavelength conversion material, the first embodiment described above, Example 2, using a phosphor obtained in Examples 8 and 9, in the following manner the light-emitting device (LED) as shown in FIG. 1 did. まず、基体7として、高反射率を有したナイロン系樹脂により凹部8(壁となる端面角度約52°)がAgメッキされた引き出し電極6と一体成型されたものを用意した。 First, as the substrate 7 was prepared which recess 8 by a nylon resin having a high reflectivity (the end face angle of about 52 ° to the wall) is integrally molded with the lead-out electrode 6 Ag plating. 半導体発光素子1として、n型SiC基板上に形成されたInGaN系化合物半導体(発光波長ピーク395nm)を用意した。 As the semiconductor light-emitting element 1 was prepared n-type SiC substrate on the formed InGaN based compound semiconductor (emission wavelength peak 395 nm). この半導体発光素子1を、n型基板に形成されたカソード電極と対応する引き出し電極6とにAgペーストにて電気的接合を得ると共に基体7に固定した。 The semiconductor light-emitting device 1 and fixed to the base 7 with gain electrical junction at Ag paste and lead-out electrode 6 and the corresponding cathode electrode formed on the n-type substrate. 他方、InGaN系化合物半導体に形成されたアノード電極と対応する引き出し電極とは、Auワイヤーにて電気的接合を確保した。 On the other hand, the extraction electrode corresponding to the anode electrode formed on the InGaN-based compound semiconductor, and secure electrical junction with Au wire.

各々の蛍光体を混合させたシリコーン樹脂を凹部8の開口部端まで充填し、150℃で2時間加熱し、樹脂を硬化させ、発光素子を作製した。 Filling the obtained by mixing each of the phosphor silicone resin to the opening end of the recess 8, then heated for 2 hours at 0.99 ° C., to cure the resin, to produce a light-emitting element. それぞれの蛍光体濃度は、実施例1および2の蛍光体はシリコーン樹脂に対して40wt%、混合させ、実施例7および8の蛍光体はシリコーン樹脂に対して20wt%とした。 Each phosphor concentration, the phosphors of Examples 1 and 2 40 wt% with respect to the silicone resin, is mixed, the phosphor of Example 7 and 8 was 20 wt% with respect to the silicone resin.
このように作製した発光素子の色度座標を表2に示す。 It shows the chromaticity coordinates of the thus fabricated light-emitting element in Table 2.

<実施例L-2>(白色系蛍光体を用いた実施例) <Example L-2> (Example of using a white phosphor)
波長変換材として、実施例3〜7および実施例13の蛍光体を用いた以外は、実施例L-2と同様にして、図1に示すような発光素子(LED)を作製した。 As the wavelength conversion material, except for using the phosphor of Example 3-7 and Example 13, in the same manner as in Example L-2, to produce a light-emitting device (LED) as shown in FIG. それぞれの蛍光体濃度は、シリコーン樹脂に対して40wt%とした。 Each phosphor concentration was 40 wt% with respect to the silicone resin. このように作製した発光素子の色度座標を表3に示す。 It shows the chromaticity coordinates of the thus fabricated light-emitting device are shown in Table 3.

表2および表3に示す結果からも、本発明の発光素子では蛍光体の発光とほぼ同じ色の発光が得られていることがわかる。 From the results shown in Tables 2 and 3 also, the light emitting device of the present invention it can be seen that substantially the same color emission of the light emitted from the phosphor is obtained. これにより半導体発光素子の発光波長のばらつきに起因する色ばらつきを軽減することが可能となる。 Thus it is possible to reduce the color variation due to variation in emission wavelength of the semiconductor light emitting device.

3. 3. 白色系蛍光体のばらつきを評価した実施例<実施例L-3、L-4> Example of evaluating the variation in the white phosphor <Example L-3, L-4>
波長変換材として、実施例11および実施例12の蛍光体を用いた以外は、実施例L-1と同様にして、図1に示すような発光素子(LED)を作製した。 As the wavelength conversion material, except for using the phosphor of Example 11 and Example 12, in the same manner as in Example L-1, to produce a light-emitting device (LED) as shown in FIG. それぞれの蛍光体濃度は、シリコーン樹脂に対して40wt%とした。 Each phosphor concentration was 40 wt% with respect to the silicone resin.

<比較例1> <Comparative Example 1>
発光色(青色)が実施例L-3とほぼ同じ色調となるように、波長変換材として、青色励起ケイ酸塩系蛍光体、半導体発光素子として青色LED(発光ピーク波長462nm)を組み合わせて用い、実施例L-3と同様に発光素子(LED)を作製した。 As emission color (blue) is substantially the same color tone as in Example L-3, as the wavelength conversion material, blue excitation silicate based phosphor, a combination of blue LED (emission peak wavelength 462 nm) as a semiconductor light-emitting device using It was prepared in the same manner as the light-emitting device (LED) as in example L-3.
<比較例2> <Comparative Example 2>
発光色(青色)が実施例L-3とほぼ同じ色調となるように、波長変換材として、青色BAM蛍光体、半導体発光素子として近紫外LED(発光ピーク波長395nm)を組み合わせて用い、実施例L-3と同様に発光素子(LED)を作製した。 As emission color (blue) is substantially the same color tone as in Example L-3, as the wavelength conversion material, used in combination near-ultraviolet LED (emission peak wavelength 395 nm) blue BAM phosphor, as the semiconductor light-emitting device of Example to prepare a light emitting device (LED) as well as L-3.

実施例L-3、L-4および比較例1、2の各発光素子をそれぞれ8個ずつ作製し、各色度座標の標準偏差を求め、各発光素子のばらつき具合を評価した。 Example L-3, L-4 and the light-emitting elements of Comparative Examples 1 and 2 were prepared by eight, respectively, the standard deviation of the chromaticity coordinates was determined and evaluated statistical variations of each light emitting element. 蛍光体および発光素子の色度座標および標準偏差の結果を表4に示す。 The results of the chromaticity coordinates and the standard deviation of the phosphor and the light emitting element shown in Table 4.

表4に示すように、本発明の発光素子では色度座標のばらつきが低減されることが確認された。 As shown in Table 4, that the variation of the chromaticity coordinates is reduced has been confirmed in the light-emitting device of the present invention.

本発明の蛍光体は、LED、蛍光灯、CCFL等の一般照明用光源に適用することができる。 Phosphor of the present invention, LED, fluorescent lamp, can be applied to light sources for general lighting such as a CCFL. 特に蛍光体のみで白色光を得ることができるので、励起光源となる近紫外LEDと併せて製作されるLEDに好適である。 In particular, since it is possible to obtain white light only by the phosphor, it is suitable for LED fabricated in conjunction with near-ultraviolet LED as a pumping light source.

本発明が適用される発光装置の一実施の形態を示す図 It illustrates an embodiment of a light-emitting device to which the present invention is applied 本発明が適用される発光装置の他の実施の形態を示す図 It shows another embodiment of a light-emitting device to which the present invention is applied 実施例1、実施例8およびMgAl 2 Si 4 O 6 N 4の蛍光体のX線回折データを示す図 Example 1, illustrates the X-ray diffraction data of the phosphor of Example 8 and MgAl 2 Si 4 O 6 N 4 実施例1の蛍光体の励起スペクトルを示す図 It shows the excitation spectrum of the phosphor of Example 1 実施例2の蛍光体の発光スペクトルを示す図 It shows an emission spectrum of the phosphor of Example 2 実施例3の蛍光体の励起スペクトルを示す図 It shows the excitation spectrum of the phosphor of Example 3 実施例4の蛍光体の励起スペクトルを示す図 It shows the excitation spectrum of the phosphor of Example 4 実施例5の蛍光体の発光スペクトルを示す図 It shows an emission spectrum of the phosphor of Example 5 実施例6の蛍光体の励起スペクトルを示す図 It shows the excitation spectrum of the phosphor of Example 6 実施例7の蛍光体の発光スペクトルを示す図 It shows an emission spectrum of the phosphor of Example 7 実施例8の蛍光体の励起スペクトルを示す図 It shows the excitation spectrum of the phosphor of Example 8 実施例9の蛍光体の発光スペクトルを示す図 It shows an emission spectrum of the phosphor of Example 9 実施例10の蛍光体の励起スペクトルを示す図 It shows the excitation spectrum of the phosphor of Example 10 実施例11の蛍光体の発光スペクトルを示す図 It shows an emission spectrum of the phosphor of Example 11 実施例12の蛍光体の発光スペクトルを示す図 It shows an emission spectrum of the phosphor of Example 12 実施例13の蛍光体の励起スペクトルを示す図 It shows the excitation spectrum of the phosphor of Example 13

符号の説明 DESCRIPTION OF SYMBOLS

1・・・発光素子、2・・・導線、3・・・波長変換材、4・・・封止部、6・・・引き出し電極、7・・・基体、8・・・凹部 1 ... light emitting element, 2 ... lead, 3 ... wavelength converting material, 4 ... sealing portion 6 ... extraction electrode 7 ... substrate, 8 ... recess

Claims (12)

  1. MgAl 2 Si 4 O 6 N 4を主相とし、賦活剤(Re)としてEuを含むことを特徴とする蛍光体。 The MgAl 2 Si 4 O 6 N 4 and a main phase, a phosphor which comprises a Eu as an activator (Re).
  2. 賦活剤(Re)として、さらにMnを含むことを特徴とする請求項1記載の蛍光体。 Phosphor of claim 1 as an activator (Re), which further comprises an Mn.
  3. 副相としてMgAl 2 O 4及び/又はSi 3 N 4を含むことを特徴とする請求項1又は2に記載の蛍光体。 The phosphor according to claim 1 or 2, characterized in that containing MgAl 2 O 4 and / or Si 3 N 4 as a subphase.
  4. 請求項1から3のいずれか1項に記載の蛍光体であって、発光ピークを450〜520nmの間に持ち、その色度がCIExy色度図上で0.15≦x≦0.28、0.25≦y≦0.48であることを特徴とする青色ないし緑色蛍光体。 The phosphor according to any one of claims 1 3, having an emission peak between 450 to 520 nm, the chromaticity 0.15 ≦ x ≦ 0.28,0.25 ≦ y ≦ on the diagram CIExy chromaticity blue to green phosphor, characterized in that 0.48.
  5. 請求項1から3のいずれか1項に記載の蛍光体であって、発光ピークを450〜520nmの間と590〜660nmの間に持ち、その色度がCIExy色度図上で0.27≦x≦0.40、0.28≦y≦0.40であることを特徴とする白色蛍光体。 The phosphor according to any one of claims 1 to 3, a light emission peak having between between the 590~660nm of 450 to 520 nm, the chromaticity 0.27 ≦ x ≦ on the diagram CIExy chromaticity white phosphor, which is a 0.40,0.28 ≦ y ≦ 0.40.
  6. 請求項1から5のいずれか1項に記載の蛍光体であって、 The phosphor according to any one of claims 1 to 5,
    原料化合物が、MgO、Al 2 O 3 、SiO 2 、Si 3 N 4 、Eu 2 O 3 、MnOであって、その混合比(モル比)MgO:Al 2 O 3 :SiO 2 :Si 3 N 4 :Eu 2 O 3 :MnOを(1-y/2-z):a:b:c:y:zで表したときに、0.04≦y≦0.2、0≦z≦0.1、0.5≦a≦1、b=1、0.33≦c≦1であることを特徴とする蛍光体。 Starting compound, MgO, a Al 2 O 3, SiO 2, Si 3 N 4, Eu 2 O 3, MnO, the mixing ratio (molar ratio) MgO: Al 2 O 3: SiO 2: Si 3 N 4 : Eu 2 O 3: the MnO (1-y / 2- z): a: b: c: y: when expressed in z, 0.04 ≦ y ≦ 0.2,0 ≦ z ≦ 0.1,0.5 ≦ a ≦ 1 phosphor, which is a b = 1,0.33 ≦ c ≦ 1.
  7. 請求項1から6のいずれか1項記載の蛍光体の製造方法であって、原料化合物を混合する第一の工程と、混合した原料化合物を1.0MPa以下の窒素加圧雰囲気下で焼成する第二の工程と、焼成後に材料を粉砕する第三の工程と、窒素常圧雰囲気下でアニールする第四の工程と、を有する製造方法。 A method of manufacturing a phosphor of any one of claims 1 6, first firing a first step of mixing the starting compounds, mixed raw material compound under the following nitrogen pressurized atmosphere 1.0MPa manufacturing process having a second step, a third step of pulverizing the material after firing, and a fourth step of annealing under a nitrogen atmosphere pressure, the.
  8. 前記第二の工程では、粉末試料を窒素9気圧加圧雰囲気で1600〜1800℃で2時間の焼成を行い、第四の工程では、窒素1気圧雰囲気で1300℃で10時間の焼成を行うことを特徴とする請求項記載の製造方法。 Wherein in the second step, the powder sample baked for 2 hours at 1600 to 1800 ° C. in a nitrogen 9 atm pressurized atmosphere, in the fourth step, by performing the calcination for 10 hours at 1300 ° C. in a nitrogen 1 atm atmosphere the method of claim 7, wherein.
  9. 請求項1ないし5いずれか1項に記載の蛍光体を含む波長変換材料と、波長140nm〜420mnまでの紫外から近紫外の光を発光する光源とを組み合わせた発光装置。 And a wavelength converting material comprising a phosphor according to any one of claims 1 to 5, the light-emitting device combining a light source for emitting light in the near ultraviolet from the ultraviolet to a wavelength 140Nm~420mn.
  10. 前記光源が、波長300〜420nmで発光する近紫外LEDであることを特徴とする請求項9記載の発光装置。 Said light source, the light emitting device according to claim 9, characterized in that the near-ultraviolet LED that emits light at a wavelength 300~420Nm.
  11. 1種類以上の蛍光体からの発光で白色光を得る白色LEDであることを特徴とする請求項10記載の発光装置。 The light emitting device of claim 10, wherein the light-emitting from one or more types of phosphors are white LED to obtain white light.
  12. 1種類のみの蛍光体からの発光で白色光を得る白色LEDであることを特徴とする請求項10記載の発光装置。 The light emitting device of claim 10, wherein the light-emitting from only one type phosphor is a white LED to obtain white light.
JP2006227914A 2006-08-24 2006-08-24 Phosphor, its manufacturing method and a light emitting device using the same Active JP5100059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006227914A JP5100059B2 (en) 2006-08-24 2006-08-24 Phosphor, its manufacturing method and a light emitting device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006227914A JP5100059B2 (en) 2006-08-24 2006-08-24 Phosphor, its manufacturing method and a light emitting device using the same

Publications (2)

Publication Number Publication Date
JP2008050462A JP2008050462A (en) 2008-03-06
JP5100059B2 true JP5100059B2 (en) 2012-12-19

Family

ID=39234806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006227914A Active JP5100059B2 (en) 2006-08-24 2006-08-24 Phosphor, its manufacturing method and a light emitting device using the same

Country Status (1)

Country Link
JP (1) JP5100059B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218422A (en) * 2008-03-11 2009-09-24 Sharp Corp Semiconductor light emitting device, and image display device
JP4978846B2 (en) * 2008-04-04 2012-07-18 昭栄化学工業株式会社 The light-emitting device
JP2009289816A (en) * 2008-05-27 2009-12-10 Kyocera Corp Light emitting device, and lighting system
WO2011028033A2 (en) * 2009-09-02 2011-03-10 엘지이노텍주식회사 Phosphor, preparation method of phosphor, and white light emitting device
JP5508817B2 (en) * 2009-11-05 2014-06-04 電気化学工業株式会社 Method of manufacturing a β-sialon phosphor
KR101163902B1 (en) 2010-08-10 2012-07-09 엘지이노텍 주식회사 Light emitting device
JP2014055238A (en) * 2012-09-12 2014-03-27 Kaneka Corp Polysiloxane-based composition for led sealing

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW383508B (en) * 1996-07-29 2000-03-01 Nichia Kagaku Kogyo Kk Light emitting device and display
JP3763719B2 (en) * 2000-02-02 2006-04-05 独立行政法人科学技術振興機構 It phosphors the oxynitride glass as a matrix material
JP3668770B2 (en) * 2001-06-07 2005-07-06 独立行政法人物質・材料研究機構 Oxynitride was activated by rare-earth element phosphor
DE10147040A1 (en) * 2001-09-25 2003-04-24 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Lighting unit having at least one LED as a light source
JP4128564B2 (en) * 2004-04-27 2008-07-30 松下電器産業株式会社 The light-emitting device
JP4674348B2 (en) * 2004-09-22 2011-04-20 独立行政法人物質・材料研究機構 Phosphor and its manufacturing method and light-emitting device
JP4895541B2 (en) * 2005-07-08 2012-03-14 シャープ株式会社 Wavelength conversion member, the method of manufacturing the light emitting device and the wavelength converting member
EP2518129B1 (en) * 2006-03-10 2014-04-23 Kabushiki Kaisha Toshiba Luminescent material and light-emitting device

Also Published As

Publication number Publication date
JP2008050462A (en) 2008-03-06

Similar Documents

Publication Publication Date Title
US7274045B2 (en) Borate phosphor materials for use in lighting applications
JP4280038B2 (en) The light-emitting device
CN1977030B (en) Fluorescent substance and light-emitting equipment
JP4072632B2 (en) Emitting device and a light-emitting METHOD
JP4038509B2 (en) Emitter and an optical device using the same
JP4543253B2 (en) Phosphor mixture and the light emitting device
CN101752492B (en) Luminescent body and optical device including the same
JP4674348B2 (en) Phosphor and its manufacturing method and light-emitting device
US8398892B2 (en) Phosphor, method for producing the same and light-emitting device using the same
JP5323216B2 (en) The light-emitting device
CN101018841B (en) Phosphor, production method thereof and light emitting instrument
EP1806389B1 (en) Phosphor, process for producing the same and luminescence apparatus
US20050230689A1 (en) Ce3+ and Eu2+ doped phosphors for light generation
JP5151002B2 (en) The light-emitting device
US7351356B2 (en) Luminescent material, especially for LED application
JP4374913B2 (en) The light-emitting device
US8053970B2 (en) Light emitting device and illumination device
JP4529349B2 (en) Nitride phosphor and light emitting device
US8674388B2 (en) Phosphor, method of manufacturing the same, and light-emitting device
US6674233B2 (en) Illumination unit having at least one LED as light source
US20050242329A1 (en) Phosphor and light source comprising such a phosphor
JP4756261B2 (en) Phosphor and its manufacturing method and light-emitting device
KR100754034B1 (en) Light-emitting device and illumination apparatus
JP5138145B2 (en) Phosphor multilayer structure and a light source using the same
CN100549129C (en) Light-emitting device and illuminating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120925

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250