JP5100059B2 - Phosphor, method for producing the same, and light emitting device using the same - Google Patents

Phosphor, method for producing the same, and light emitting device using the same Download PDF

Info

Publication number
JP5100059B2
JP5100059B2 JP2006227914A JP2006227914A JP5100059B2 JP 5100059 B2 JP5100059 B2 JP 5100059B2 JP 2006227914 A JP2006227914 A JP 2006227914A JP 2006227914 A JP2006227914 A JP 2006227914A JP 5100059 B2 JP5100059 B2 JP 5100059B2
Authority
JP
Japan
Prior art keywords
phosphor
light
light emitting
emitting device
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006227914A
Other languages
Japanese (ja)
Other versions
JP2008050462A (en
Inventor
康之 三宅
弘之 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2006227914A priority Critical patent/JP5100059B2/en
Publication of JP2008050462A publication Critical patent/JP2008050462A/en
Application granted granted Critical
Publication of JP5100059B2 publication Critical patent/JP5100059B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)
  • Luminescent Compositions (AREA)

Description

本発明は、新規な酸窒化物蛍光体とその蛍光体の製造方法、さらにその蛍光体を利用した発光装置に関するものである。   The present invention relates to a novel oxynitride phosphor, a method for producing the phosphor, and a light emitting device using the phosphor.

蛍光体は、LEDや冷陰極蛍光ランプ(CCFL)などの発光装置において波長変換材料として広く使用されており、YAG系、BAM系、SiAlON系など種々の蛍光体が開発されている。一般に、これら発光装置では、LEDチップなどの発光源から出て蛍光体により吸収されずに外部に取り出された光と、発光源からの光を吸収することによって蛍光体が発する光とを合成した光が、その発光装置が発する光となる。   Phosphors are widely used as wavelength conversion materials in light emitting devices such as LEDs and cold cathode fluorescent lamps (CCFL), and various phosphors such as YAG, BAM, and SiAlON have been developed. In general, in these light emitting devices, light emitted from a light emitting source such as an LED chip and extracted outside without being absorbed by the phosphor is synthesized with light emitted from the phosphor by absorbing light from the light emitting source. The light becomes light emitted from the light emitting device.

例えば、よく知られている白色LEDでは、発光スペクトルが420nmから490nmに単色性ピークを持つ青色発光LEDチップと、この青色発光LEDチップから出た光を吸収し、510nm〜610nm付近にピーク波長を持つ光を発する黄色発光蛍光体であるセリウム賦活ガーネット蛍光体(YAG系蛍光体)と組み合わせることにより白色光を実現している(特許文献1)。   For example, a well-known white LED absorbs light emitted from a blue light emitting LED chip having a monochromatic peak from 420 nm to 490 nm and a peak wavelength in the vicinity of 510 nm to 610 nm. White light is realized by combining with a cerium-activated garnet phosphor (YAG phosphor), which is a yellow light-emitting phosphor that emits light (Patent Document 1).

また特許文献2には、一般式:MexSi12-(m+n)Al(m+n)OnN16-n:Re1yRe2zで表されるαサイアロン系酸窒化物を母体として、紫外線から青色光で励起可能な黄色発光蛍光体が提案されている。この蛍光体は、発光ピークが450〜500nmの青色LEDと組み合わせることにより白色LEDを得ることができる。 Further, Patent Document 2, the general formula: Me x Si 12- (m + n) Al (m + n) O n N 16-n: Re1 y Re2 represented by z alpha sialon oxynitride as a host A yellow light-emitting phosphor that can be excited by ultraviolet light to blue light has been proposed. This phosphor can obtain a white LED by combining with a blue LED having an emission peak of 450 to 500 nm.

一方、蛍光体ではないがセラミックスとして、MgA12Si4O6N4の存在は非特許文献1で知られている。また非特許文献1には、MgA12Si4O6N4の製造方法として、ホットプレス法とガス圧焼結法が記載されている。ホットプレス法では、ペレット状に成型した材料をN2気流中で35MPaの圧力で一軸加圧しながら1400℃もしくは1550℃で1時間焼成し、その後試料を1300℃で20時間アニールする。ガス圧焼結法では、ペレット状に成型した材料を1.5MPaまで加圧した窒素雰囲気で1640℃で2時間焼成し、その後試料を1300℃で20時間アニールするものである。
特許第3503139号公報 特開2002−363554号公報 ”Formation of N-phase and Phase Relationshipsin MgO-Si2N2O-Al2O3 System” Z.K.Huang et al,J.Am.Ceram.Soc.,77(12),3251-54,(1994)
On the other hand, the presence of MgA 12 Si 4 O 6 N 4 as a ceramic, not a phosphor, is known from Non-Patent Document 1. Non-Patent Document 1 describes a hot press method and a gas pressure sintering method as methods for producing MgA 12 Si 4 O 6 N 4 . In the hot press method, the material molded into pellets is baked at 1400 ° C. or 1550 ° C. for 1 hour while uniaxially pressing at 35 MPa in an N 2 gas flow, and then the sample is annealed at 1300 ° C. for 20 hours. In the gas pressure sintering method, a material molded into a pellet is baked at 1640 ° C. for 2 hours in a nitrogen atmosphere pressurized to 1.5 MPa, and then the sample is annealed at 1300 ° C. for 20 hours.
Japanese Patent No. 3503139 JP 2002-363554 A “Formation of N-phase and Phase Relationshipsin MgO-Si2N2O-Al2O3 System” ZKHuang et al, J. Am. Ceram. Soc., 77 (12), 3251-54, (1994)

従来の白色LEDでは、青色発光LEDチップからの透過光を白色成分に用いているために、白色LED間で色度が大きくばらつくという問題がある。この問題は、青色発光LEDチップからの発光波長が個体間で10nm程度ばらつくので、波長によって励起効率が異なる蛍光体と合わせたときに励起効率が一定とならないこと、およびチップ周囲の蛍光体の塗布状況を厳密に制御しなければチップからの光の光路長が各LEDで一定とならないため、チップからの透過光と蛍光体の発光の比が簡単に変化してしまうことに起因する。この色度のばらつきは多数のロットアウト品を生み出すことになり、歩留まりの低下の大きな原因となっている。   A conventional white LED has a problem that chromaticity varies greatly between white LEDs because light transmitted from a blue light emitting LED chip is used as a white component. This problem is that the emission wavelength from the blue LED chip varies by about 10 nm between individuals, so the excitation efficiency is not constant when combined with phosphors with different excitation efficiency depending on the wavelength, and the phosphor coating around the chip If the situation is not strictly controlled, the optical path length of the light from the chip is not constant in each LED, and this is because the ratio of the transmitted light from the chip and the emission of the phosphor easily changes. This variation in chromaticity results in a large number of lot-out products, which is a major cause of a decrease in yield.

特許文献2記載の酸窒化物蛍光体は、励起波長が近紫外(nUV)から可視光にあって発光色が可視光にあるなど特にLED用蛍光体に適した特性を持つが、LEDの用途拡大に伴い、青から緑色、中間色など多様な発光色を示すLED用蛍光体が望まれている。   The oxynitride phosphor described in Patent Document 2 has characteristics particularly suitable for phosphors for LEDs, such as an excitation wavelength ranging from near-ultraviolet (nUV) to visible light and an emission color in visible light. With the expansion, LED phosphors exhibiting various emission colors such as blue, green, and intermediate colors are desired.

また非特許文献1に記載された2通りのセラミックスの製造方法のうち、ガス圧焼結法は、蛍光体の製造方法としても適用可能と考えられる。しかし本文献に記載された方法では、1.5MPaの窒素加圧雰囲気で焼成を行っており、このような加圧雰囲気では高温高圧に耐えるため装置が高額なものにならざるをえず、装置保守にも工数が必要となる。   Of the two ceramic manufacturing methods described in Non-Patent Document 1, the gas pressure sintering method is considered to be applicable as a phosphor manufacturing method. However, in the method described in this document, firing is performed in a nitrogen-pressurized atmosphere of 1.5 MPa, and in such a pressurized atmosphere, the apparatus must be expensive to withstand high temperatures and pressures. Man-hours are also required for maintenance.

本発明の一つの目的は、近紫外光を吸収し、可視光の光を発する新規な蛍光体を提供すること、特に青から緑色、中間色など多様な発光を可能にする蛍光体を提供することにある。また本発明の目的は、本発明の新規な蛍光体を、耐高圧装置を用いることなく製造する方法を提供すること、また本発明の新規な蛍光体と近紫外発光源とを組み合わせることにより蛍光体の発光のみで白色を得ることができる発光装置を提供することにある。   One object of the present invention is to provide a novel phosphor that absorbs near-ultraviolet light and emits visible light, and in particular, to provide a phosphor that enables various light emission such as blue, green, and intermediate colors. It is in. Another object of the present invention is to provide a method for producing the novel phosphor of the present invention without using a high-pressure resistant apparatus, and to combine the novel phosphor of the present invention with a near-ultraviolet light source for fluorescence. An object of the present invention is to provide a light emitting device capable of obtaining white color only by light emission from the body.

上記課題を解決するため、本発明は、新規の組成比を持ち、青から緑、白色の酸窒化物蛍光体を提供する。すなわち本発明の蛍光体は、MgAl2Si4O6N4を主相とし、賦活剤(Re)としてEuを含む蛍光体(以下、MgSiAlON蛍光体という)である。賦活剤ReはEuに加えてMnを含んでいても良い。 In order to solve the above problems, the present invention provides a blue to green and white oxynitride phosphor having a novel composition ratio. That is, the phosphor of the present invention is a phosphor containing MgAl 2 Si 4 O 6 N 4 as a main phase and Eu as an activator (Re) (hereinafter referred to as MgSiAlON phosphor). The activator Re may contain Mn in addition to Eu.

賦活剤となる元素は、Mgの一部と置換し、元素の組み合わせによって青色〜白色の種々の色調で発光させることができる。例えば、賦活剤がEuのみの場合には、発光ピークを450〜520nmの間に持ち、その色度がCIExy色度図上で0.15≦x≦0.28、0.25≦y≦0.48を示す青〜緑色蛍光体となる。またEuに加えてMnを含む場合には、発光ピークを450〜520nmの間と590〜660nmの間に持ち、その色度がCIExy色度図上で0.27≦x≦0.40、0.28≦y≦0.40を示す白色蛍光体となる。賦活剤となる元素としては、Eu、Mnのほか、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等の希土類元素を加えることも可能である。   The element which becomes an activator can be substituted with a part of Mg, and can emit light in various colors from blue to white depending on the combination of elements. For example, when the activator is only Eu, it has a light emission peak between 450 and 520 nm, and its chromaticity is 0.15 ≦ x ≦ 0.28 and 0.25 ≦ y ≦ 0.48 on the CIExy chromaticity diagram. Become a body. When Mn is contained in addition to Eu, the emission peak is between 450 to 520 nm and 590 to 660 nm, and the chromaticity is 0.27 ≦ x ≦ 0.40, 0.28 ≦ y ≦ 0.40 on the CIExy chromaticity diagram. It becomes white fluorescent substance which shows. In addition to Eu and Mn, it is also possible to add rare earth elements such as Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu as the activator element.

本発明の蛍光体は、MgAl2Si4O6N4を主相とするものであるが、副相として、MgAl2O4及び/又はSi3N4を含んでいても良い。すなわち本発明の蛍光体の組成は一般式Mg1-xAl2Si4O6N4Rexで表すことができるが、本発明の蛍光体は、MgAl2Si4O6N4を主相とするものであれば、一般式で表される組成から若干ずれたものも含む。 The phosphor of the present invention has MgAl 2 Si 4 O 6 N 4 as a main phase, but may contain MgAl 2 O 4 and / or Si 3 N 4 as a subphase. That is, the composition of the phosphor of the present invention can be represented by the general formula Mg 1-x Al 2 Si 4 O 6 N 4 Re x , but the phosphor of the present invention contains MgAl 2 Si 4 O 6 N 4 as the main phase. In this case, a composition slightly deviated from the composition represented by the general formula is included.

すなわち本発明の蛍光体は、出発材料として化学量論比からずれた比率で出発材料を混合した場合にも製造可能である。例えば出発材料が各元素の酸化物および窒化珪素である場合、その混合比(モル比)MgO:Al2O3:SiO2:Si3N4:Eu2O3:MnOを(1-y/2-z):a:b:c:y:zで表したときに、0.04≦y≦0.2、0≦z≦0.1、0.5≦a≦1、b=1、0.33≦c≦1の範囲とすることができる。
本発明の蛍光体の出発材料としては、これら酸化物および窒化珪素を用いることが好ましいが、Mg、Alについては、酸化物のほか、炭酸塩、シュウ酸塩、ハロゲン化物や水酸化物なども使用することが可能であり、その場合の価数が酸化物と同じであれば、混合比(モル比)は上述の範囲とすることができる。
That is, the phosphor of the present invention can be produced even when the starting material is mixed at a ratio deviating from the stoichiometric ratio as the starting material. For example, when the starting material is an oxide of each element and silicon nitride, the mixing ratio (molar ratio) of MgO: Al 2 O 3 : SiO 2 : Si 3 N 4 : Eu 2 O 3 : MnO (1-y / 2-z): When expressed as a: b: c: y: z, the ranges of 0.04 ≦ y ≦ 0.2, 0 ≦ z ≦ 0.1, 0.5 ≦ a ≦ 1, b = 1, 0.33 ≦ c ≦ 1 can do.
As the starting material of the phosphor of the present invention, it is preferable to use these oxides and silicon nitride. For Mg and Al, besides oxides, carbonates, oxalates, halides, hydroxides, and the like are also included. If the valence in this case is the same as that of the oxide, the mixing ratio (molar ratio) can be in the above range.

本発明の蛍光体は、原料粉末の混合と焼成工程とを含む一般のセラミックス材料の製造方法により製造することができるが、焼成工程は、窒素雰囲気中で行なうことが好ましい。特に、混合した原料化合物を1MPa以下の窒素加圧雰囲気下で焼成する工程と、焼成後に材料を粉砕し、窒素常圧雰囲気下でアニールする工程とを含むことが好ましい。   The phosphor of the present invention can be produced by a general method for producing a ceramic material including mixing of raw material powders and a firing step, but the firing step is preferably performed in a nitrogen atmosphere. In particular, it is preferable to include a step of firing the mixed raw material compound in a nitrogen pressure atmosphere of 1 MPa or less, and a step of crushing the material after firing and annealing in a nitrogen atmospheric pressure atmosphere.

以下、本発明の蛍光体の作製手順は一例を説明する。
まず材料として窒化物、酸化物もしくは炭酸塩に代表される高温加熱中で酸化物となる材料を目的の組成比で用意し、アルミナの乳鉢と乳棒で十分に混合する。混合した粉末をBNるつぼに入れて0.9MPaの窒素加圧雰囲気で1600〜1800℃、望ましくは1650〜1750℃で2時間程度焼成する。このとき焼成温度が高いほど発光強度が増大するが、焼成物がるつぼに張り付き回収が困難になる。
Hereinafter, an example of the procedure for producing the phosphor of the present invention will be described.
First, a material that becomes an oxide during high-temperature heating represented by nitrides, oxides, or carbonates is prepared as a material at a desired composition ratio, and sufficiently mixed with an alumina mortar and pestle. The mixed powder is put in a BN crucible and fired at 1600-1800 ° C., preferably 1650-1750 ° C. for about 2 hours in a nitrogen pressurized atmosphere of 0.9 MPa. At this time, the higher the firing temperature, the higher the emission intensity, but the fired product sticks to the crucible and is difficult to recover.

続いて焼成物を取り出してアルミナの乳鉢と乳棒で十分に粉砕した後、もう一度BNるつぼに入れて窒素1気圧雰囲気で約1300℃で10時間程度アニールする。この焼成物を解砕することで目的の蛍光体粉末が得られる。
材料の混合・粉砕、るつぼへの投入作業はすべて、酸素・水分量を1ppm以下に保ち、窒素雰囲気にしたグローブボックス内で行なうことが好ましい。
上述した製造方法は、従来のセラミックスとしてのMgAl2Si4O6N4の製造法に比べ、0.9MPaの窒素加圧雰囲気で焼成するため装置が安価になり、装置保守の工数が低減でき、安全性も確保しやすくなる。
Subsequently, the fired product is taken out and sufficiently pulverized with an alumina mortar and pestle, and then again put in a BN crucible and annealed at about 1300 ° C. for about 10 hours in a nitrogen atmosphere. The desired phosphor powder is obtained by crushing the fired product.
It is preferable to perform all the mixing / pulverization of the materials and the charging operation into the crucible in a glove box in which the oxygen / water content is kept at 1 ppm or less and the atmosphere is nitrogen.
Compared to the conventional manufacturing method of MgAl 2 Si 4 O 6 N 4 as a ceramic, the manufacturing method described above is fired in a nitrogen-pressurized atmosphere of 0.9 MPa, so the equipment becomes inexpensive and the number of man-hours for equipment maintenance can be reduced. It becomes easy to secure safety.

本発明の発光装置は、上述した本発明の蛍光体と、波長140nm〜420mnまでの紫外〜近紫外光を発する励起光源と組み合わせたものである。励起光源としては、例えば紫外ないし近紫外を発光させる半導体発光素子や、水銀、キセノンなどのガスを励起させることにより波長140〜420nmの紫外光を発生するものが挙げられる。励起光源の種類により、半導体発光素子と蛍光体とを組み合わせたLED、蛍光灯、冷陰極蛍光ランプ(CCFL)など、発光装置として種々の形態が取りえる。   The light-emitting device of the present invention is a combination of the phosphor of the present invention described above and an excitation light source that emits ultraviolet to near-ultraviolet light having a wavelength of 140 nm to 420 mn. Examples of the excitation light source include a semiconductor light emitting element that emits ultraviolet light or near ultraviolet light, and a light source that generates ultraviolet light having a wavelength of 140 to 420 nm by exciting a gas such as mercury or xenon. Depending on the type of excitation light source, various forms of light emitting devices such as LEDs, a combination of a semiconductor light emitting element and a phosphor, a fluorescent lamp, and a cold cathode fluorescent lamp (CCFL) can be used.

本発明の発光装置は、蛍光体として、450〜520nmの間に発光ピークを有する光、或いは450〜520nmの間と590〜660nmの間に発光ピークを有する光を発光する蛍光体を用いているので、蛍光体の組成を所望の色調に合わせて適宜調整することにより、1種類の蛍光体のみで青色〜白色のうちの任意の色(例えば白色)で発光する発光装置を実現できる。   The light emitting device of the present invention uses a phosphor that emits light having an emission peak between 450 to 520 nm, or light having an emission peak between 450 to 520 nm and between 590 to 660 nm, as the phosphor. Therefore, by appropriately adjusting the composition of the phosphor according to the desired color tone, it is possible to realize a light emitting device that emits light of any color (for example, white) from blue to white with only one type of phosphor.

この発光装置は以下のような利点を有する。
まず白色を得るのに1種類の蛍光体だけを用いればよく、複数の蛍光体の保管、品質管理行わなくてよいので、製造コストの低減を図ることができる。
次に1つの蛍光体で白色を得ていることから、複数の蛍光体波長変換部における各蛍光体混合比のばらつきによる色ズレを抑制することができる。
複数の蛍光体を用いて白色にしている場合、白色を構成する蛍光体における励起効率の波長依存性が個々の蛍光体によって異なることから励起光源の発光波長が周囲温度、駆動電流によって変化したときに色調変化しやすいが、本発明の発光装置では1種類の蛍光体にて白色を得ているので、周囲温度や駆動電流による色調変化が少ない。
This light emitting device has the following advantages.
First, it is sufficient to use only one type of phosphor to obtain white, and it is not necessary to store and quality control a plurality of phosphors, so that the manufacturing cost can be reduced.
Next, since white is obtained with one phosphor, it is possible to suppress color misregistration due to variations in the phosphor mixture ratios in the plurality of phosphor wavelength conversion units.
When multiple phosphors are used to make white, the wavelength dependence of the excitation efficiency of the phosphors that make up the white color varies depending on the individual phosphors, so that the emission wavelength of the excitation light source varies with the ambient temperature and drive current. However, in the light emitting device of the present invention, white color is obtained with one kind of phosphor, so that there is little change in color tone due to ambient temperature and drive current.

また本発明の発光装置と、従来の青色励起白色LEDと比較した場合、青色励起白色LEDの場合は励起素子の色度座標(すなわちピーク形状やピーク波長)、波長変換部の濃度、充填量によって非常に敏感に色調が変化するので、結果として同じ色調のLEDを得ることはむずかしく高い歩留まりを得るのが困難であるのに対し、本発明の発光装置は、得られる白色光に影響の少ない近紫外LEDによって励起された1種類の蛍光体にて白色光を得るので、励起素子の色度座標がばらついても、また、波長変換部の濃度、充填量がばらついても色調の変化が少なくて高い歩留まりを得やすいという利点がある。   In addition, when compared with the light emitting device of the present invention and a conventional blue excited white LED, in the case of a blue excited white LED, the chromaticity coordinates of the excitation element (that is, the peak shape and peak wavelength), the concentration of the wavelength conversion unit, and the filling amount Since the color tone changes very sensitively, it is difficult to obtain an LED having the same color tone as a result, and it is difficult to obtain a high yield, whereas the light emitting device of the present invention has a little influence on the obtained white light. Since white light is obtained with one type of phosphor excited by an ultraviolet LED, even if the chromaticity coordinates of the excitation element vary, and the concentration and filling amount of the wavelength conversion section vary, there is little change in color tone. There is an advantage that it is easy to obtain a high yield.

次に上記蛍光体を用いた本発明の発光装置について説明する。本発明の発光装置は、蛍光体として上記MgSiAlON蛍光体を用いたことを除き、公知の発光装置と同様であり、構造や型は特に限定されない。図1に第1の実施の形態として、本発明が適用される典型的な発光装置(LED)を示す。この発光装置は、基体7上に搭載された半導体発光素子1と、引き出し電極6と、引き出し電極6と発光素子1を接続する導線2と、半導体発光素子1を囲むように基体7に設けられた凹部8と、凹部8を充填する封止部4とからなる。蛍光体は、発光素子1が発光する光と異なる波長の光を発光する波長変換材3として用いられ、封止部4内に混合されている。   Next, the light emitting device of the present invention using the above phosphor will be described. The light emitting device of the present invention is the same as a known light emitting device except that the above MgSiAlON phosphor is used as the phosphor, and the structure and type are not particularly limited. FIG. 1 shows a typical light emitting device (LED) to which the present invention is applied as a first embodiment. The light-emitting device is provided on the base 7 so as to surround the semiconductor light-emitting element 1, the semiconductor light-emitting element 1 mounted on the base 7, the extraction electrode 6, the lead wire 2 connecting the extraction electrode 6 and the light-emitting element 1, and the semiconductor light-emitting element 1. And the sealing portion 4 that fills the recess 8. The phosphor is used as a wavelength conversion material 3 that emits light having a wavelength different from that of light emitted from the light emitting element 1, and is mixed in the sealing portion 4.

半導体発光素子1は、発光ピーク波長範囲300〜420nmのものが用いられる。上記発光ピーク波長範囲内にて発光する半導体発光素子1として、例えば、III族−窒素化合物系(InGaAlN系)半導体や酸化亜鉛化合物系(ZnMgO系)半導体、セレン化亜鉛化合物系(ZnMgSeSTe系)半導体、炭化珪素化合物系(SiGeC系)半導体などが代表的なものとして挙げられるが、紫外光から近紫外光を発光する半導体であれば、その他の化合物系半導体であってもよい。なお本発明においては、半導体発光素子1としては、サブマウント上に固定されたものも含まれる。   As the semiconductor light emitting element 1, one having an emission peak wavelength range of 300 to 420 nm is used. Examples of the semiconductor light emitting device 1 that emits light within the above emission peak wavelength range include a group III-nitrogen compound (InGaAlN) semiconductor, a zinc oxide compound (ZnMgO) semiconductor, and a zinc selenide compound (ZnMgSeSTe) semiconductor. Typical examples include silicon carbide compound (SiGeC) semiconductors, but other compound semiconductors may be used as long as they emit light from ultraviolet light to near ultraviolet light. In the present invention, the semiconductor light emitting element 1 includes those fixed on the submount.

基体7と半導体発光素子1および引き出し電極6は、種々の形態を取ることができ、基体7上に半導体発光素子1が固定され、かつ、アノード/カソード用の各引き出し電極6と半導体発光素子1のアノード/カソード電極とが対応して電気的接合がなされていればよい。典型的には図1に示すように、ガラス繊維、エポキシ樹脂などの絶縁物により構成されている基体7上にアノード/カソード両極用の引出し電極6が配線されている。半導体発光素子1はエポキシ樹脂等の接着剤により基体7上に固定され、半導体発光素子1のアノード/カソード各電極は、対応する引き出し電極6と導電性ワイヤー2によって電気的接合がなされている。或いは図示しないが、半導体発光素子1のアノード/カソード電極と対応する各引き出し電極6とを、Au-Snなどの共晶材料やAuバンプ、異方性を有した導電性シート、Agペーストに代表されるような導電性樹脂等により、電気的に接合するとともに基体7に固定する形態や、上記した材料により半導体発光素子1の片極のみを対応する引き出し電極6に対し電気的に接合すると共に基体7へ固定し、他方の極と対応する引き出し電極6とは導電性ワイヤーにて電気的接合をとる形態などを取りえる。さらに、基体7が半導体発光素子1の放熱性を向上させるために金属等の導電性材料で構成され、片極の引き出し電極6を兼ねるようにしてもよい。   The base body 7, the semiconductor light emitting element 1, and the lead electrode 6 can take various forms. The semiconductor light emitting element 1 is fixed on the base body 7, and each lead electrode 6 for the anode / cathode and the semiconductor light emitting element 1 are provided. It is only necessary that the anode / cathode electrode is electrically connected to each other. Typically, as shown in FIG. 1, an extraction electrode 6 for both anode and cathode is wired on a base 7 made of an insulating material such as glass fiber or epoxy resin. The semiconductor light emitting element 1 is fixed on the substrate 7 with an adhesive such as an epoxy resin, and the anode / cathode electrodes of the semiconductor light emitting element 1 are electrically joined by the corresponding lead electrode 6 and the conductive wire 2. Alternatively, although not shown in the drawing, the anode / cathode electrodes corresponding to the anode / cathode electrodes of the semiconductor light emitting device 1 are represented by eutectic materials such as Au—Sn, Au bumps, anisotropic conductive sheets, and Ag pastes. With such a conductive resin or the like, it is electrically joined and fixed to the base 7, and only one electrode of the semiconductor light emitting element 1 is electrically joined to the corresponding extraction electrode 6 with the material described above. The lead electrode 6 fixed to the base body 7 and corresponding to the other electrode can take a form of electrical connection with a conductive wire. Further, the base 7 may be made of a conductive material such as metal in order to improve the heat dissipation of the semiconductor light emitting device 1 and may also serve as the single electrode lead electrode 6.

基体7には半導体発光素子1が内側に固定されている凹部8が設けられることが望ましい。凹部8は、基体7と一体成型をする方法、基体7に後から接合させる方法など種々の方法により形成することができ、本発明においてはどのような方法であってもよい。凹部8の表面は、アノード/カソード各極の引き出し電極6が電気的短絡状態にならないような材料であればどのようなものでもよく、例えば、凹部8の内側に塗布、メッキ、または蒸着等により高反射率材を形成してもよい。凹部8の形状は概円錐台形であることが望ましいが、概四角錐台形でもよい。凹部8の側壁は傾斜していることが望ましいが、携帯電話の表示部用バックライト光源用白色LEDのように、素子の薄型化が望まれている発光装置の場合には、端面はほぼ垂直であってもよい。   The substrate 7 is preferably provided with a recess 8 in which the semiconductor light emitting element 1 is fixed inside. The concave portion 8 can be formed by various methods such as a method of integrally molding with the base body 7 and a method of bonding to the base body 7 later, and any method may be used in the present invention. The surface of the recess 8 may be any material as long as the lead electrode 6 of each electrode of the anode / cathode is not electrically short-circuited. For example, the surface of the recess 8 may be coated, plated, or deposited on the inside of the recess 8. A high reflectivity material may be formed. The shape of the recess 8 is preferably a substantially truncated cone, but may be a substantially quadrangular pyramid. Although it is desirable that the side wall of the recess 8 is inclined, in the case of a light-emitting device in which a thin element is desired, such as a white LED for a backlight light source for a display unit of a mobile phone, the end face is almost vertical It may be.

凹部8を充填する封止部4の材料としては、半導体発光素子1からの発光ピーク波長よりも短波長領域まで透明であり、波長変換材3を混合できる材料であればよい。具体的には熱硬化樹脂、光硬化性樹脂や低融点ガラスなどが挙げられる。特にエポキシ樹脂、シリコーン樹脂、エポキシ基を有するポリジメチルシロキサン誘導体、オキセタン樹脂、アクリル樹脂、シクロオレフィン樹脂等の熱硬化樹脂が好ましい。これら樹脂は、1種または2種以上を混合して用いることができる。   The material of the sealing part 4 filling the recess 8 may be any material that is transparent up to a wavelength region shorter than the emission peak wavelength from the semiconductor light emitting element 1 and can be mixed with the wavelength conversion material 3. Specifically, thermosetting resin, photocurable resin, low melting point glass, and the like can be given. Particularly preferred are thermosetting resins such as epoxy resins, silicone resins, polydimethylsiloxane derivatives having an epoxy group, oxetane resins, acrylic resins and cycloolefin resins. These resins can be used alone or in combination of two or more.

波長変換材3は、少なくとも本発明のMgSiAlON蛍光体を含んでいることが必要である。また本発明の蛍光体を一つ以上の他の蛍光体と組み合わせて、本発明の蛍光体のみでは達成できない色調を形成することができる。他の蛍光体としては、発光素子1が発生する近紫外光或いは本発明の蛍光体が発光する光を吸収し、吸収した光よりも長波長に波長変換する波長変換材料を用いることができる。   The wavelength conversion material 3 needs to contain at least the MgSiAlON phosphor of the present invention. Further, the phosphor of the present invention can be combined with one or more other phosphors to form a color tone that cannot be achieved by the phosphor of the present invention alone. As another phosphor, a wavelength conversion material that absorbs near-ultraviolet light generated by the light-emitting element 1 or light emitted from the phosphor of the present invention and converts the wavelength to a longer wavelength than the absorbed light can be used.

他の蛍光体としては、A3B5O12:M(AはY、Gd、Lu、Tb、BはAl、Ga、MはCe3+、Tb3+、Eu3+、Cr3+、Nd+またはEr3+)、希土類とマンガンをドープしたバリウム−アルミニウム−マグネシウム系化合物蛍光体(BAM:Mn蛍光体)、Y2O2S:Eu3+や(Sr,Ca)S:Eu2+、ZnS:Cu,A1などに代表される硫化物系化合物蛍光体、CaGa2S4:Eu2+やSrGa2S4:Eu2+などの希土類をドープしたチオガレート系蛍光体、またはCaAl2O4:Eu2+などのアルミン酸塩、(Ca,Sr,Ba,)xSiyOz:Eu2+などのケイ酸塩の少なくとも1つの組成を含有した蛍光体、α-SiAlON、β-SiAlON等のサイアロン系蛍光体、Sr2Si5N8:Eu2+などの窒化物蛍光体などの一般的に知られている各波長変換材の材料を1種または2種以上を混合して用いることができる。また必要に応じて各波長変換材用材料に、励起光および波長変換された光の反射を補助するために硫酸バリウム、酸化マグネシウム、酸化ケイ素などの散乱材を混在させてもよい。 Other phosphors include A 3 B 5 O 12 : M (A is Y, Gd, Lu, Tb, B is Al, Ga, M is Ce 3+ , Tb 3+ , Eu 3+ , Cr 3+ , Nd + or Er 3+ ), rare earth and manganese doped barium-aluminum-magnesium compound phosphor (BAM: Mn phosphor), Y 2 O 2 S: Eu 3+ and (Sr, Ca) S: Eu 2 + , Sulfide compound phosphors represented by ZnS: Cu, A1, etc., rare earth doped thiogallate phosphors such as CaGa 2 S 4 : Eu 2+ and SrGa 2 S 4 : Eu 2+ , or CaAl 2 Phosphors containing at least one composition of O 4 : aluminate such as Eu 2+ , (Ca, Sr, Ba,) x Si y O z : silicate such as Eu 2+ , α-SiAlON, β -Commonly used wavelength conversion materials such as sialon-based phosphors such as SiAlON and nitride phosphors such as Sr 2 Si 5 N 8 : Eu 2+ are mixed with one or more materials. Can be used. Further, if necessary, scattering materials such as barium sulfate, magnesium oxide, and silicon oxide may be mixed in each wavelength conversion material for assisting reflection of excitation light and wavelength-converted light.

波長変換材3は、上述した封止部4に適量混合させて用いることができる。樹脂に混合する場合の混合量は、特に限定されないが、通常封止部を構成する材料全体の1〜50重量%程度である。また波長変換材3は、透明基板7中に分散させて用いてもよい。   The wavelength conversion material 3 can be used by mixing an appropriate amount with the sealing portion 4 described above. The mixing amount in the case of mixing with the resin is not particularly limited, but is usually about 1 to 50% by weight of the entire material constituting the sealing portion. The wavelength converting material 3 may be used by being dispersed in the transparent substrate 7.

なお封止部4の樹脂と波長変換材3との混合物を凹部8に充填した際には、充填物の高さは開口面に形成される水平面の高さと同じか、それよりも凹んだ状態が好ましい。充填物は、最終的に、凹んだ状態になっていればよく、材料充填の際に凹みを形成しても、封止部4の封止剤充填時は凸形状で硬化後に凹みが形成されても効果は同じである。   When the mixture of the resin of the sealing portion 4 and the wavelength conversion material 3 is filled in the concave portion 8, the height of the filling is the same as the height of the horizontal plane formed on the opening surface or a state where it is recessed more than that. Is preferred. The filling material only needs to be in a concave state in the end, and even if a dent is formed when filling the material, the dent is formed after curing with a convex shape when filling the sealant in the sealing part 4. But the effect is the same.

次に本発明の第2の実施の形態として図1の発光装置とは異なる構造の発光装置を図2に示す。この発光装置は、凹部18を有する、1ないし複数のハウジング17が形成されたパッケージ成型体からなり、ハウジング17の凹部18の底部に発光素子11が搭載されている。図示していないが、発光素子11のアノード/カソード電極は、ハウジング17と一体的に形成されたリードにより外部電源に接続される。また凹部18の上部(開口)は、ガラス板、樹脂板等の透明部材14で覆われており、これにより発光素子11は凹部18内の空間(封止部)に密閉されている。封止部は大気圧以下の状態に保たれるかN2、Arなどの不活性ガスなど気体などによって満たされている。透明部材14の少なくとも片面には、蛍光体層13が形成されている。図示する実施の形態では、発光素子11の真上に当たる透明部材14の外側の面に、発光素子11よりも広い面積となるように第1の蛍光体層131が形成され、第1の蛍光体層131の周辺に相当する透明部材14の内側面に、第2の蛍光体層132が形成されている。 Next, FIG. 2 shows a light emitting device having a structure different from that of FIG. 1 as a second embodiment of the present invention. This light emitting device is formed of a molded package having one or more housings 17 each having a recess 18, and the light emitting element 11 is mounted on the bottom of the recess 18 of the housing 17. Although not shown, the anode / cathode electrode of the light emitting element 11 is connected to an external power source through a lead formed integrally with the housing 17. The upper portion (opening) of the recess 18 is covered with a transparent member 14 such as a glass plate or a resin plate, whereby the light emitting element 11 is sealed in a space (sealing portion) in the recess 18. The sealing portion is maintained at a pressure lower than atmospheric pressure or filled with a gas such as an inert gas such as N 2 or Ar. A phosphor layer 13 is formed on at least one surface of the transparent member 14. In the illustrated embodiment, a first phosphor layer 131 is formed on the outer surface of the transparent member 14 that is directly above the light emitting element 11 so as to have a larger area than the light emitting element 11. A second phosphor layer 132 is formed on the inner surface of the transparent member 14 corresponding to the periphery of the layer 131.

このように透明部材14の両面に第1および第2の蛍光体層を配置することにより、発光素子1から発光した光の一部は、第1の蛍光体層131で波長変換され、外部へ発光されるとともに、第1の蛍光体層131の裏面で反射された光は、内側面に形成された第2の蛍光体層132により波長変換され、外部へ発光される。   By arranging the first and second phosphor layers on both surfaces of the transparent member 14 in this way, a part of the light emitted from the light emitting element 1 is wavelength-converted by the first phosphor layer 131 to the outside. The light that is emitted and reflected by the back surface of the first phosphor layer 131 is converted in wavelength by the second phosphor layer 132 formed on the inner surface, and is emitted to the outside.

第1および第2の蛍光体層を構成する材料は同一でも異なっていてもよく、そのうち少なくとも一方は本発明のMgSiAlON蛍光体を含んでいる。蛍光体層13は、本発明のMgSiAlON蛍光体を含む蛍光体を、スクリーン印刷、スピンコート等により成膜することにより形成することができる。蛍光体層13に含まれるMgSiAlON蛍光体の量については特に制限はないが、樹脂に対する総蛍光体量は作業性等の観点から概ね1〜80重量%程度、好ましくは3〜50重量%である。また蛍光体層の膜厚は、光取り出し効率の観点から500μm以下が望ましく、10〜150μmがさらに望ましい。   The materials constituting the first and second phosphor layers may be the same or different, and at least one of them contains the MgSiAlON phosphor of the present invention. The phosphor layer 13 can be formed by depositing a phosphor containing the MgSiAlON phosphor of the present invention by screen printing, spin coating or the like. The amount of the MgSiAlON phosphor contained in the phosphor layer 13 is not particularly limited, but the total phosphor amount relative to the resin is approximately 1 to 80% by weight, preferably 3 to 50% by weight from the viewpoint of workability and the like. . The thickness of the phosphor layer is preferably 500 μm or less, more preferably 10 to 150 μm, from the viewpoint of light extraction efficiency.

以上、本発明の発光装置の実施の形態として、本発明の蛍光体を近紫外LEDと組み合わせた2つのタイプのLEDを説明したが、本発明の蛍光体は、420nm以下の波長で励起可能なので、近紫外LED限らず励起された水銀ガスなどのガスから発光する波長140〜420nmの紫外〜近紫外線で蛍光体を励起させる蛍光灯や冷陰極蛍光ランプ(CCFL)などにも利用可能である。   As described above, two types of LEDs in which the phosphor of the present invention is combined with a near-ultraviolet LED have been described as embodiments of the light emitting device of the present invention. However, the phosphor of the present invention can be excited at a wavelength of 420 nm or less. The present invention is not limited to near-ultraviolet LEDs, and can also be used for fluorescent lamps and cold cathode fluorescent lamps (CCFL) that excite phosphors with ultraviolet to near-ultraviolet light having a wavelength of 140 to 420 nm that emit light from excited mercury gas or other gases.

以下、本発明のMgSiAlON蛍光体の実施例および発光装置の実施例を説明する。   Examples of the MgSiAlON phosphor of the present invention and examples of the light emitting device will be described below.

1.蛍光体の実施例
<実施例1>
出発材料として、MgO(関東化学4N)、Al2O3(住友化学AKP-Y3000)、SiO2(フルウチ化学5N)、Si3N4(宇部興産SN-E10)およびEu2O3(フルウチ化学4N)を用い、その混合比(モル比)が(1-y/2)MgO:aAl2O3:bSiO2:cSi3N4:yEu2O3が表1に記載の比率(y=0.04、a=1、b=1、c=1)となるように秤量した。
・MgO (関東化学4N) 0.500g
・Al2O3 (住友化学AKP-Y3000) 1.290g
・SiO2 (フルウチ化学5N) 0.760g
・Si3N4(宇部興産SN-Elo) 1.775g
・Eu203(フルウチ化学4N) 0.045g
1. Example of phosphor <Example 1>
Starting materials include MgO (Kanto Chemical 4N), Al 2 O 3 (Sumitomo Chemical AKP-Y3000), SiO 2 (Furuuchi Chemical 5N), Si 3 N 4 (Ube Industries SN-E10) and Eu 2 O 3 (Fluuchi Chemical) 4N), and the mixing ratio (molar ratio) was (1-y / 2) MgO: aAl 2 O 3 : bSiO 2 : cSi 3 N 4 : yEu 2 O 3 described in Table 1 (y = 0.04). , A = 1, b = 1, c = 1).
・ MgO (Kanto Chemical 4N) 0.500g
・ Al 2 O 3 (Sumitomo Chemical AKP-Y3000) 1.290g
・ SiO 2 (Furuuchi Chemical 5N) 0.760g
・ Si 3 N 4 (Ube Industries SN-Elo) 1.775 g
・ Eu 2 0 3 (Furuuchi Chemical 4N) 0.045g

これらの材料を水分量1ppm以下の窒素雰囲気としたグローブボックス内でアルミナ乳鉢、乳棒を使い十分に混合し、粉末をBNるつぼ(電気化学)に投入した。この試料を黒鉛の抵抗加熱を用いる多目的高温炉(富士電波工業)にいれ、まず炉内を1×10-2Pa以下の真空状態に保持したまま800℃まで昇温し、次に炉内を窒素9気圧加圧雰囲気として1600℃で2時間の焼成を行った。降温後、試料をとりだすと焼成物は灰色の塊であった。この焼成物をもう一度窒素雰囲気のグローブボックス内でアルミナ乳鉢、乳棒を使い十分に粉砕した後、BNるつぼに戻した。 These materials were thoroughly mixed using an alumina mortar and pestle in a glove box having a nitrogen atmosphere with a moisture content of 1 ppm or less, and the powder was put into a BN crucible (electrochemistry). Place this sample in a multi-purpose high-temperature furnace (Fuji Denpa Kogyo Co., Ltd.) that uses resistance heating of graphite. First, raise the temperature to 800 ° C while maintaining the inside of the furnace at a vacuum of 1 × 10 -2 Pa or less, Firing was performed at 1600 ° C. for 2 hours in a nitrogen atmosphere at 9 atmospheres. When the sample was taken out after cooling, the fired product was a gray lump. The fired product was once again sufficiently pulverized using an alumina mortar and pestle in a nitrogen atmosphere glove box, and then returned to the BN crucible.

その粉末を黒点の抵抗加熱を用いる多目的高温炉にて窒素1気圧雰囲気で1300℃で10時間の焼成を行った。焼成物は灰白色の粉体が凝集した状態であった。焼成物を解砕し、目的の蛍光体粉末を得た。なお焼成時の昇温速度はすべて500℃/hとした。得られた蛍光体をX線回折装置(Bruker Advanced D8)でCuのKα線を用いて測定した。結果を図3に示す。   The powder was fired at 1300 ° C. for 10 hours in a 1 atmosphere of nitrogen in a multipurpose high-temperature furnace using black spot resistance heating. The fired product was in a state where grayish white powder was agglomerated. The fired product was crushed to obtain the desired phosphor powder. Note that the heating rate during firing was 500 ° C./h. The obtained phosphor was measured with an X-ray diffractometer (Bruker Advanced D8) using Cu Kα rays. The results are shown in FIG.

測定の結果、非特許文献2に報告され、ICDD(International Centre for Diffraction Dataにも収録されているMgAl2Si406N4のX線回折パターンとよく一致し、MgAl2Si406N4を主相として含むことが確認された。また副相としてMgAl204、Si3N4を含んでいた。
さらに分光蛍光光度計(日立F4500)により、得られた蛍光体の365nm励起時の発光スペクトルを測定した。結果を図4に示す。発光ピーク波長は477nm、色度は(x,y)=(0.19,0.28)であった。
As a result of the measurement, the X-ray diffraction pattern of MgAl 2 Si 4 0 6 N 4 reported in Non-Patent Document 2 and recorded in ICDD (International Center for Diffraction Data) is well matched, and MgAl 2 Si 4 0 6 N 4 was confirmed to be contained as a main phase, and MgAl 2 0 4 and Si 3 N 4 were contained as subphases.
Furthermore, the emission spectrum of the obtained phosphor at 365 nm excitation was measured with a spectrofluorometer (Hitachi F4500). The results are shown in FIG. The emission peak wavelength was 477 nm, and the chromaticity was (x, y) = (0.19, 0.28).

<実施例2>
実施例1と同じ出発材料を用い、その混合比(モル比)が表1に記載の組成比になるように秤量した。
・MgO 0.500g
・Al2O3 1.331g
・SiO2 0.784g
・Si3N4 1.831g
・Eu2O3 0.115g
<Example 2>
The same starting materials as in Example 1 were used and weighed so that the mixing ratio (molar ratio) was the composition ratio shown in Table 1.
・ MgO 0.500g
・ Al 2 O 3 1.331g
・ SiO 2 0.784g
・ Si 3 N 4 1.831 g
・ Eu 2 O 3 0.115g

その他は実施例1と同様に焼成を行い、目的の蛍光体粉末を得た。実施例1と同様に測定した365nm励起時の発光スペクトルの結果を図5および表1に示す。発光ピーク波長は499nm、色度は(x,y)=(0.24,0.40)、輝度は実施例1の蛍光体に対して170%であった。   The others were fired in the same manner as in Example 1 to obtain the intended phosphor powder. FIG. 5 and Table 1 show the results of the emission spectrum measured at 365 nm excitation as measured in the same manner as in Example 1. The emission peak wavelength was 499 nm, the chromaticity was (x, y) = (0.24, 0.40), and the luminance was 170% with respect to the phosphor of Example 1.

<実施例3>
実施例1と同じ出発材料およびMnCO3(高純度化学3N以上)を用い、その混合比(モル比)が(1-y/2-z)MgO:aAl2O3:bSiO2:cSi3N4:yEu2O3:zMnCO3が表1に記載の組成比になるように秤量した。
・MgO 0.500g
・Al2O3 1.331g
・SiO2 0.784g
・Si3N4 1.831g
・Eu2O3 0.115g
・MnCO3 0.045g
<Example 3>
Using the same starting materials and MnCO 3 (high purity chemical 3N or more) as in Example 1, the mixing ratio (molar ratio) was (1-y / 2-z) MgO: aAl 2 O 3 : bSiO 2 : cSi 3 N 4 : Weighed so that yEu 2 O 3 : zMnCO 3 had the composition ratio shown in Table 1.
・ MgO 0.500g
・ Al 2 O 3 1.331g
・ SiO 2 0.784g
・ Si 3 N 4 1.831 g
・ Eu 2 O 3 0.115g
・ MnCO 3 0.045g

焼成温度を1650℃とした以外は実施例1と同様に焼成を行い、目的の蛍光体粉末を得た。実施例1と同様に測定した蛍光体粉末の発光スペクトル(365nm励起時)の結果を図6および表1に示す。発光ピーク波長は484nm、607nm、色度は(x,y)=(0.33,0.36)であった。   Firing was carried out in the same manner as in Example 1 except that the firing temperature was 1650 ° C., to obtain the intended phosphor powder. The results of the emission spectrum (when excited at 365 nm) of the phosphor powder measured in the same manner as in Example 1 are shown in FIG. The emission peak wavelengths were 484 nm and 607 nm, and the chromaticity was (x, y) = (0.33, 0.36).

<実施例4>
実施例3と同じ出発材料を用い、その混合比(モル比)が表1に記載の組成比になるように秤量した。
・MgO 0.500g
・Al2O3 1.345g
・SiO2 0.793g
・Si3N4 1.851g
・Eu2O3 0.046g
・MnCO3 0.061g
<Example 4>
The same starting materials as in Example 3 were used and weighed so that the mixing ratio (molar ratio) was the composition ratio shown in Table 1.
・ MgO 0.500g
・ Al 2 O 3 1.345g
・ SiO 2 0.793g
・ Si 3 N 4 1.851 g
・ Eu 2 O 3 0.046g
・ MnCO 3 0.061g

その他は実施例1と同様に焼成を行い、目的の蛍光体粉末を得た。実施例1と同様に測定した蛍光体粉末の発光スペクトル(365nm励起時)の結果を図7および表1に示す。発光ピーク波長は485nm、613nm、色度は(x,y)=(0.35,0.36)、輝度は実施例3の蛍光体に対して63%であった。   The others were fired in the same manner as in Example 1 to obtain the intended phosphor powder. The results of the emission spectrum (when excited at 365 nm) of the phosphor powder measured in the same manner as in Example 1 are shown in FIG. The emission peak wavelengths were 485 nm and 613 nm, the chromaticity was (x, y) = (0.35, 0.36), and the luminance was 63% with respect to the phosphor of Example 3.

<実施例5>
実施例3と同じ出発材料を用い、その混合比(モル比)が表1に記載の組成比になるように秤量した。
・MgO 0.500g
・Al2O3 1.360g
・SiO2 0.801g
・Si3N4 1.871g
・Eu2O3 0.047g
・MnCO3 0.077g
<Example 5>
The same starting materials as in Example 3 were used and weighed so that the mixing ratio (molar ratio) was the composition ratio shown in Table 1.
・ MgO 0.500g
・ Al 2 O 3 1.360g
・ SiO 2 0.801g
・ Si 3 N 4 1.871 g
・ Eu 2 O 3 0.047g
・ MnCO 3 0.077g

その他は実施例1と同様に焼成を行い、目的の蛍光体粉末を得た。実施例1と同様に測定した蛍光体粉末の発光スペクトル(365nm励起時)の結果を図8および表1に示す。発光ピーク波長は471nm、623nm、色度は(x,y)=(0.35,0.32)、輝度は実施例3の蛍光体に対して66%であった。   The others were fired in the same manner as in Example 1 to obtain the intended phosphor powder. The results of the emission spectrum (when excited at 365 nm) of the phosphor powder measured in the same manner as in Example 1 are shown in FIG. The emission peak wavelengths were 471 nm and 623 nm, the chromaticity was (x, y) = (0.35, 0.32), and the luminance was 66% with respect to the phosphor of Example 3.

<実施例6>
実施例3と同じ出発材料を用い、その混合比(モル比)が表1に記載の組成比になるように秤量した。
・MgO 0.500g
・Al2O3 1.345g
・SiO2 0.793g
・Si3N4 1.851g
・Eu2O3 0.070g
・MnCO3 0.045g
<Example 6>
The same starting materials as in Example 3 were used and weighed so that the mixing ratio (molar ratio) was the composition ratio shown in Table 1.
・ MgO 0.500g
・ Al 2 O 3 1.345g
・ SiO 2 0.793g
・ Si 3 N 4 1.851 g
・ Eu 2 O 3 0.070g
・ MnCO 3 0.045g

焼成温度を1650℃とした以外は実施例1と同様に焼成を行い、目的の蛍光体粉末を得た。実施例1と同様に測定した蛍光体粉末の発光スペクトル(365nm励起時)の結果を図9および表1に示す。発光ピーク波長は479nm、602nm、色度は(x,y)=(0.31,0.35)、輝度は実施例3の蛍光体に対して135%であった。   Firing was carried out in the same manner as in Example 1 except that the firing temperature was 1650 ° C., to obtain the intended phosphor powder. The results of the emission spectrum (when excited at 365 nm) of the phosphor powder measured in the same manner as in Example 1 are shown in FIG. The emission peak wavelengths were 479 nm and 602 nm, the chromaticity was (x, y) = (0.31,0.35), and the luminance was 135% with respect to the phosphor of Example 3.

<実施例7>
実施例3と同じ出発材料を用い、その混合比(モル比)が表1に記載の組成比になるように秤量した。
・MgO 0.500g
・Al2O3 1.360g
・SiO2 0.801g
・Si3N4 1.871g
・Eu2O3 0.070g
・MnCO3 0.061g
<Example 7>
The same starting materials as in Example 3 were used and weighed so that the mixing ratio (molar ratio) was the composition ratio shown in Table 1.
・ MgO 0.500g
・ Al 2 O 3 1.360g
・ SiO 2 0.801g
・ Si 3 N 4 1.871 g
・ Eu 2 O 3 0.070g
・ MnCO 3 0.061g

焼成温度を1650℃とした以外は実施例1と同様に焼成を行い、目的の蛍光体粉末を得た。実施例1と同様に測定した蛍光体粉末の発光スペクトル(365nm励起時)の結果を図10および表1に示す。発光ピーク波長は487nm、609nm、色度は(x,y)=(0.35,0.38)、輝度は実施例3の蛍光体に対して102%であった。   Firing was carried out in the same manner as in Example 1 except that the firing temperature was 1650 ° C., to obtain the intended phosphor powder. The results of the emission spectrum (when excited at 365 nm) of the phosphor powder measured in the same manner as in Example 1 are shown in FIG. The emission peak wavelengths were 487 nm and 609 nm, the chromaticity was (x, y) = (0.35, 0.38), and the luminance was 102% with respect to the phosphor of Example 3.

<実施例8>
実施例1と同じ出発材料を用い、その混合比(モル比)が表1に記載の組成比(y=0.10,a=0.5,b=1,c=0.33)になるように秤量した。
・MgO 1.000g
・Al2O3 1.331g
・SiO2 1.569g
・Si3N4 1.221g
・Eu2O3 0.230g
<Example 8>
The same starting materials as in Example 1 were used and weighed so that the mixing ratio (molar ratio) was the composition ratio (y = 0.10, a = 0.5, b = 1, c = 0.33) shown in Table 1.
・ MgO 1.000g
・ Al 2 O 3 1.331g
・ SiO 2 1.569g
・ Si 3 N 4 1.221 g
・ Eu 2 O 3 0.230g

焼成温度を1750℃とした以外は実施例1と同様に焼成を行い、目的の蛍光体粉末を得た。得られた蛍光体のX線回折測定の結果を図3に示す。測定の結果、実施例1と同様にMgAl2Si4O6N4のX線回折パターンとよく一致し、MgAl2Si4O6N4を主相として含むことが確認された。また副相としてMgAl2O4、Mg2SiO4を含んでいた。
実施例1と同様に測定した蛍光体粉末の発光スペクトル(365nm励起時)の結果を図11および表1に示す。発光ピーク波長は487nm、色度は(x,y)=(0.21,0.36)、輝度は実施例1の蛍光体に対し260%であった。
Firing was carried out in the same manner as in Example 1 except that the firing temperature was 1750 ° C., to obtain the target phosphor powder. The result of the X-ray diffraction measurement of the obtained phosphor is shown in FIG. As a result of the measurement, similarly good agreement with X-ray diffraction pattern of MgAl 2 Si 4 O 6 N 4 as in Example 1, to contain MgAl 2 Si 4 O 6 N 4 as a main phase was confirmed. Further, MgAl 2 O 4 and Mg 2 SiO 4 were contained as subphases.
The results of the emission spectrum (when excited at 365 nm) of the phosphor powder measured in the same manner as in Example 1 are shown in FIG. The emission peak wavelength was 487 nm, the chromaticity was (x, y) = (0.21,0.36), and the luminance was 260% with respect to the phosphor of Example 1.

<実施例9>
実施例1と同じ出発材料を用い、その混合比(モル比)が表1に記載の組成比になるように秤量した。
・MgO 1.000g
・Al2O3 1.367g
・SiO2 1.611g
・Si3N4 1.254g
・Eu2O3 0.354g
<Example 9>
The same starting materials as in Example 1 were used and weighed so that the mixing ratio (molar ratio) was the composition ratio shown in Table 1.
・ MgO 1.000g
・ Al 2 O 3 1.367g
・ SiO 2 1.611g
・ Si 3 N 4 1.254 g
・ Eu 2 O 3 0.354g

その他は実施例8と同様に焼成を行い、目的の蛍光体粉末を得た。実施例1と同様に測定した蛍光体粉末の発光スペクトル(365nm励起時)の結果を図12および表1に示す。発光ピーク波長は502nm、色度は(x,y)=(0.24,0.41)、輝度は実施例1の蛍光体に対して262%であった。   The others were fired in the same manner as in Example 8 to obtain the intended phosphor powder. The results of the emission spectrum (when excited at 365 nm) of the phosphor powder measured in the same manner as in Example 1 are shown in FIG. The emission peak wavelength was 502 nm, the chromaticity was (x, y) = (0.24, 0.41), and the luminance was 262% with respect to the phosphor of Example 1.

<実施例10>
実施例1と同じ出発材料を用い、その混合比(モル比)が表1に記載の組成比になるように秤量した。
・MgO 1.000g
・Al2O3 1.405g
・SiO2 1.656g
・Si3N4 1.289g
・Eu2O3 0.485g
<Example 10>
The same starting materials as in Example 1 were used and weighed so that the mixing ratio (molar ratio) was the composition ratio shown in Table 1.
・ MgO 1.000g
・ Al 2 O 3 1.405g
・ SiO 2 1.656g
・ Si 3 N 4 1.289 g
・ Eu 2 O 3 0.485g

その他は実施例8と同様に焼成を行い、目的の蛍光体粉末を得た。実施例1と同様に測定した蛍光体粉末の発光スペクトル(365nm励起時)の結果を図13および表1に示す。発光ピーク波長は503nm、色度は(x,y)=(0.26,0.44)、輝度は実施例1の蛍光体に対して271%であった。   The others were fired in the same manner as in Example 8 to obtain the intended phosphor powder. The results of the emission spectrum (when excited at 365 nm) of the phosphor powder measured in the same manner as in Example 1 are shown in FIG. The emission peak wavelength was 503 nm, the chromaticity was (x, y) = (0.26, 0.44), and the luminance was 271% with respect to the phosphor of Example 1.

<実施例11>
実施例3と同じ出発材料を用い、その混合比(モル比)が表1に記載の組成比になるように秤量した。
・MgO 1.000g
・Al2O3 1.345g
・SiO2 1.585g
・Si3N4 1.234g
・Eu2O3 0.093g
・MnCO3 0.121g
<Example 11>
The same starting materials as in Example 3 were used and weighed so that the mixing ratio (molar ratio) was the composition ratio shown in Table 1.
・ MgO 1.000g
・ Al 2 O 3 1.345g
・ SiO 2 1.585g
・ Si 3 N 4 1.234g
・ Eu 2 O 3 0.093g
・ MnCO 3 0.121g

焼成温度を1700℃とした以外は実施例1と同様に焼成を行い、目的の蛍光体粉末を得た。実施例1と同様に測定した蛍光体粉末の発光スペクトル(365nm励起時)の結果を図14および表1に示す。発光ピーク波長は471nm、602nm、色度は(x,y)=(0.30,0.30)、輝度は実施例3の蛍光体に対して162%であった。   Firing was carried out in the same manner as in Example 1 except that the firing temperature was 1700 ° C., to obtain the target phosphor powder. The results of the emission spectrum (when excited at 365 nm) of the phosphor powder measured in the same manner as in Example 1 are shown in FIG. The emission peak wavelengths were 471 nm and 602 nm, the chromaticity was (x, y) = (0.30, 0.30), and the luminance was 162% with respect to the phosphor of Example 3.

<実施例12>
実施例3と同じ出発材料を用い、その混合比(モル比)が表1に記載の組成比になるように秤量した。
・MgO 1.000g
・Al2O3 1.360g
・SiO2 1.603g
・Si3N4 1.247g
・Eu2O3 0.094g
・MnCO3 0.153g
<Example 12>
The same starting materials as in Example 3 were used and weighed so that the mixing ratio (molar ratio) was the composition ratio shown in Table 1.
・ MgO 1.000g
・ Al 2 O 3 1.360g
・ SiO 2 1.603g
・ Si 3 N 4 1.247 g
・ Eu 2 O 3 0.094g
・ MnCO 3 0.153g

焼成温度を1700℃とした以外は実施例1と同様に焼成を行い、目的の蛍光体粉末を得た。実施例1と同様に測定した蛍光体粉末の発光スペクトル(365nm励起時)の結果を図15および表1に示す。発光ピーク波長は470nm、621nm、色度は(x,y)=(0.33,0.31)、輝度は実施例3の蛍光体に対して162%であった。   Firing was carried out in the same manner as in Example 1 except that the firing temperature was 1700 ° C., to obtain the intended phosphor powder. FIG. 15 and Table 1 show the results of the emission spectrum (when excited at 365 nm) of the phosphor powder measured in the same manner as in Example 1. The emission peak wavelengths were 470 nm and 621 nm, the chromaticity was (x, y) = (0.33, 0.31), and the luminance was 162% with respect to the phosphor of Example 3.

<実施例13>
実施例3と同じ出発材料を用い、その混合比(モル比)が表1に記載の組成比になるように秤量した。
・MgO 1.000g
・Al2O3 1.437g
・SiO2 1.694g
・Si3N4 1.318g
・Eu2O3 0.099g
・MnCO3 0.324g
<Example 13>
The same starting materials as in Example 3 were used and weighed so that the mixing ratio (molar ratio) was the composition ratio shown in Table 1.
・ MgO 1.000g
・ Al 2 O 3 1.437g
・ SiO 2 1.694g
・ Si 3 N 4 1.318 g
・ Eu 2 O 3 0.099g
・ MnCO 3 0.324g

焼成温度を1700℃とした以外は実施例1と同様に焼成を行い、目的の蛍光体粉末を得た。実施例1と同様に測定した蛍光体粉末の発光スペクトル(365nm励起時)の結果を図16および表1に示す。発光ピーク波長は469nm、653nm、色度は(x,y)=(0.38,0.31)、輝度は実施例3の蛍光体に対して46%であった。

Figure 0005100059
Firing was carried out in the same manner as in Example 1 except that the firing temperature was 1700 ° C., to obtain the target phosphor powder. The results of the emission spectrum (when excited at 365 nm) of the phosphor powder measured in the same manner as in Example 1 are shown in FIG. The emission peak wavelengths were 469 nm and 653 nm, the chromaticity was (x, y) = (0.38, 0.31), and the luminance was 46% with respect to the phosphor of Example 3.
Figure 0005100059

表1および図3、図5〜図16に示す結果からもわかるように、Mnを含有しない場合(実施例1、2、8−10)は、450〜520nmに単一の発光ピークを持つ青〜緑色蛍光体が得られた。また青〜緑色蛍光体では、窒素の含有量が比較的多い蛍光体(実施例1、2)より、比較的少ない蛍光体(実施例8−10)において高い輝度が得られた。一方、Mnを含有する場合(実施例3−7、11−13)には、450〜520nmと590〜660nmに発光ピークを持つ白色蛍光体が得られた。
またX線回折の結果は、実施例1および実施例8のみ図示したが、全ての実施例の蛍光体において、MgAl2Si406N4が主相と確認された。
As can be seen from the results shown in Table 1 and FIGS. 3 and 5 to 16, when Mn is not contained (Examples 1, 2 and 8-10), blue having a single emission peak at 450 to 520 nm. A green phosphor was obtained. Further, in the blue to green phosphors, higher luminance was obtained in the phosphor (Examples 8 to 10) having a relatively small amount than the phosphors (Examples 1 and 2) having a relatively large nitrogen content. On the other hand, when Mn was contained (Examples 3-7 and 11-13), white phosphors having emission peaks at 450 to 520 nm and 590 to 660 nm were obtained.
The results of X-ray diffraction show only Example 1 and Example 8, but MgAl 2 Si 4 0 6 N 4 was confirmed to be the main phase in the phosphors of all Examples.

2.発光装置の実施例
<実施例L-1>(青〜緑色蛍光体を用いた実施例)
波長変換材として、上述した実施例1、実施例2、実施例8および実施例9で得られた蛍光体を用いて、図1に示すような発光素子(LED)を以下のようにして作製した。まず、基体7として、高反射率を有したナイロン系樹脂により凹部8(壁となる端面角度約52°)がAgメッキされた引き出し電極6と一体成型されたものを用意した。半導体発光素子1として、n型SiC基板上に形成されたInGaN系化合物半導体(発光波長ピーク395nm)を用意した。この半導体発光素子1を、n型基板に形成されたカソード電極と対応する引き出し電極6とにAgペーストにて電気的接合を得ると共に基体7に固定した。他方、InGaN系化合物半導体に形成されたアノード電極と対応する引き出し電極とは、Auワイヤーにて電気的接合を確保した。
2. Example of light emitting device <Example L-1> (Example using blue to green phosphor)
A light-emitting element (LED) as shown in FIG. 1 is produced as follows using the phosphor obtained in Example 1, Example 2, Example 8, and Example 9 described above as a wavelength conversion material. did. First, a substrate 7 was prepared in which a concave portion 8 (an end surface angle of about 52 ° serving as a wall) was integrally molded with an extraction electrode 6 made of nylon resin having high reflectivity. As the semiconductor light-emitting element 1, an InGaN-based compound semiconductor (emission wavelength peak: 395 nm) formed on an n-type SiC substrate was prepared. The semiconductor light emitting device 1 was electrically bonded to the cathode 7 formed on the n-type substrate and the corresponding extraction electrode 6 with Ag paste, and fixed to the substrate 7. On the other hand, the anode electrode formed on the InGaN-based compound semiconductor and the extraction electrode corresponding to the anode electrode were secured by an Au wire.

各々の蛍光体を混合させたシリコーン樹脂を凹部8の開口部端まで充填し、150℃で2時間加熱し、樹脂を硬化させ、発光素子を作製した。それぞれの蛍光体濃度は、実施例1および2の蛍光体はシリコーン樹脂に対して40wt%、混合させ、実施例7および8の蛍光体はシリコーン樹脂に対して20wt%とした。
このように作製した発光素子の色度座標を表2に示す。

Figure 0005100059
A silicone resin mixed with each phosphor was filled up to the end of the opening of the recess 8 and heated at 150 ° C. for 2 hours to cure the resin, thereby manufacturing a light emitting device. The phosphor concentrations of Examples 1 and 2 were 40 wt% with respect to the silicone resin and mixed, and the phosphors of Examples 7 and 8 were 20 wt% with respect to the silicone resin.
Table 2 shows chromaticity coordinates of the light-emitting element thus manufactured.
Figure 0005100059

<実施例L-2>(白色系蛍光体を用いた実施例)
波長変換材として、実施例3〜7および実施例13の蛍光体を用いた以外は、実施例L-2と同様にして、図1に示すような発光素子(LED)を作製した。それぞれの蛍光体濃度は、シリコーン樹脂に対して40wt%とした。このように作製した発光素子の色度座標を表3に示す。

Figure 0005100059
<Example L-2> (Example using white phosphor)
A light emitting device (LED) as shown in FIG. 1 was produced in the same manner as in Example L-2 except that the phosphors of Examples 3 to 7 and Example 13 were used as the wavelength conversion material. Each phosphor concentration was 40 wt% with respect to the silicone resin. Table 3 shows chromaticity coordinates of the light-emitting element thus manufactured.
Figure 0005100059

表2および表3に示す結果からも、本発明の発光素子では蛍光体の発光とほぼ同じ色の発光が得られていることがわかる。これにより半導体発光素子の発光波長のばらつきに起因する色ばらつきを軽減することが可能となる。   From the results shown in Tables 2 and 3, it can be seen that the light emitting device of the present invention can emit light having substantially the same color as that of the phosphor. Thereby, it is possible to reduce the color variation caused by the variation in the emission wavelength of the semiconductor light emitting element.

3.白色系蛍光体のばらつきを評価した実施例
<実施例L-3、L-4>
波長変換材として、実施例11および実施例12の蛍光体を用いた以外は、実施例L-1と同様にして、図1に示すような発光素子(LED)を作製した。それぞれの蛍光体濃度は、シリコーン樹脂に対して40wt%とした。
3. Examples in which variation of white phosphor was evaluated <Examples L-3 and L-4>
A light emitting device (LED) as shown in FIG. 1 was produced in the same manner as in Example L-1, except that the phosphors of Example 11 and Example 12 were used as the wavelength conversion material. Each phosphor concentration was 40 wt% with respect to the silicone resin.

<比較例1>
発光色(青色)が実施例L-3とほぼ同じ色調となるように、波長変換材として、青色励起ケイ酸塩系蛍光体、半導体発光素子として青色LED(発光ピーク波長462nm)を組み合わせて用い、実施例L-3と同様に発光素子(LED)を作製した。
<比較例2>
発光色(青色)が実施例L-3とほぼ同じ色調となるように、波長変換材として、青色BAM蛍光体、半導体発光素子として近紫外LED(発光ピーク波長395nm)を組み合わせて用い、実施例L-3と同様に発光素子(LED)を作製した。
<Comparative Example 1>
Combined with blue-excited silicate phosphor as wavelength conversion material and blue LED (emission peak wavelength 462nm) as semiconductor light-emitting element so that the emission color (blue) has almost the same color tone as Example L-3 A light emitting device (LED) was produced in the same manner as in Example L-3.
<Comparative example 2>
Example: Using blue BAM phosphor as a wavelength conversion material and near-ultraviolet LED (emission peak wavelength: 395 nm) as a semiconductor light-emitting element so that the emission color (blue) has almost the same color as Example L-3. A light emitting device (LED) was fabricated in the same manner as L-3.

実施例L-3、L-4および比較例1、2の各発光素子をそれぞれ8個ずつ作製し、各色度座標の標準偏差を求め、各発光素子のばらつき具合を評価した。蛍光体および発光素子の色度座標および標準偏差の結果を表4に示す。

Figure 0005100059
Eight light-emitting elements of Examples L-3 and L-4 and Comparative Examples 1 and 2 were produced, the standard deviation of each chromaticity coordinate was determined, and the degree of variation of each light-emitting element was evaluated. Table 4 shows the results of chromaticity coordinates and standard deviations of the phosphors and the light emitting elements.
Figure 0005100059

表4に示すように、本発明の発光素子では色度座標のばらつきが低減されることが確認された。   As shown in Table 4, it was confirmed that variations in chromaticity coordinates were reduced in the light emitting device of the present invention.

本発明の蛍光体は、LED、蛍光灯、CCFL等の一般照明用光源に適用することができる。特に蛍光体のみで白色光を得ることができるので、励起光源となる近紫外LEDと併せて製作されるLEDに好適である。   The phosphor of the present invention can be applied to general illumination light sources such as LEDs, fluorescent lamps, and CCFLs. In particular, since white light can be obtained only with a phosphor, it is suitable for an LED manufactured together with a near-ultraviolet LED serving as an excitation light source.

本発明が適用される発光装置の一実施の形態を示す図The figure which shows one Embodiment of the light-emitting device with which this invention is applied. 本発明が適用される発光装置の他の実施の形態を示す図The figure which shows other embodiment of the light-emitting device to which this invention is applied. 実施例1、実施例8およびMgAl2Si4O6N4の蛍光体のX線回折データを示す図Example 1, illustrates the X-ray diffraction data of the phosphor of Example 8 and MgAl 2 Si 4 O 6 N 4 実施例1の蛍光体の励起スペクトルを示す図The figure which shows the excitation spectrum of the fluorescent substance of Example 1 実施例2の蛍光体の発光スペクトルを示す図The figure which shows the emission spectrum of the fluorescent substance of Example 2. 実施例3の蛍光体の励起スペクトルを示す図The figure which shows the excitation spectrum of the fluorescent substance of Example 3 実施例4の蛍光体の励起スペクトルを示す図The figure which shows the excitation spectrum of the fluorescent substance of Example 4 実施例5の蛍光体の発光スペクトルを示す図The figure which shows the emission spectrum of the fluorescent substance of Example 5. 実施例6の蛍光体の励起スペクトルを示す図The figure which shows the excitation spectrum of the fluorescent substance of Example 6 実施例7の蛍光体の発光スペクトルを示す図The figure which shows the emission spectrum of the fluorescent substance of Example 7. 実施例8の蛍光体の励起スペクトルを示す図The figure which shows the excitation spectrum of the fluorescent substance of Example 8 実施例9の蛍光体の発光スペクトルを示す図The figure which shows the emission spectrum of the fluorescent substance of Example 9. 実施例10の蛍光体の励起スペクトルを示す図The figure which shows the excitation spectrum of the fluorescent substance of Example 10 実施例11の蛍光体の発光スペクトルを示す図The figure which shows the emission spectrum of the fluorescent substance of Example 11. 実施例12の蛍光体の発光スペクトルを示す図The figure which shows the emission spectrum of the fluorescent substance of Example 12. 実施例13の蛍光体の励起スペクトルを示す図The figure which shows the excitation spectrum of the fluorescent substance of Example 13

符号の説明Explanation of symbols

1・・・発光素子、2・・・導線、3・・・波長変換材、4・・・封止部、6・・・引き出し電極、7・・・基体、8・・・凹部
DESCRIPTION OF SYMBOLS 1 ... Light emitting element, 2 ... Lead wire, 3 ... Wavelength conversion material, 4 ... Sealing part, 6 ... Extraction electrode, 7 ... Base | substrate, 8 ... Recessed part

Claims (12)

MgAl2Si4O6N4を主相とし、賦活剤(Re)としてEuを含むことを特徴とする蛍光体。 A phosphor comprising MgAl 2 Si 4 O 6 N 4 as a main phase and Eu as an activator (Re). 賦活剤(Re)として、さらにMnを含むことを特徴とする請求項1記載の蛍光体。   The phosphor according to claim 1, further comprising Mn as an activator (Re). 副相としてMgAl2O4及び/又はSi3N4を含むことを特徴とする請求項1又は2に記載の蛍光体。 3. The phosphor according to claim 1, comprising MgAl 2 O 4 and / or Si 3 N 4 as a subphase. 請求項1から3のいずれか1項に記載の蛍光体であって、発光ピークを450〜520nmの間に持ち、その色度がCIExy色度図上で0.15≦x≦0.28、0.25≦y≦0.48であることを特徴とする青色ないし緑色蛍光体。   The phosphor according to any one of claims 1 to 3, wherein the phosphor has an emission peak between 450 and 520 nm, and the chromaticity is 0.15 ≦ x ≦ 0.28, 0.25 ≦ y ≦ on the CIExy chromaticity diagram. A blue to green phosphor characterized by 0.48. 請求項1から3のいずれか1項に記載の蛍光体であって、発光ピークを450〜520nmの間と590〜660nmの間に持ち、その色度がCIExy色度図上で0.27≦x≦0.40、0.28≦y≦0.40であることを特徴とする白色蛍光体。   The phosphor according to any one of claims 1 to 3, wherein the phosphor has an emission peak between 450 to 520 nm and 590 to 660 nm, and the chromaticity is 0.27 ≦ x ≦ on the CIExy chromaticity diagram. White phosphor characterized by 0.40, 0.28 ≦ y ≦ 0.40. 請求項1から5のいずれか1項に記載の蛍光体であって、
原料化合物が、MgO、Al2O3、SiO2、Si3N4、Eu2O3、MnOであって、その混合比(モル比)MgO:Al2O3:SiO2:Si3N4:Eu2O3:MnOを(1-y/2-z):a:b:c:y:zで表したときに、0.04≦y≦0.2、0≦z≦0.1、0.5≦a≦1、b=1、0.33≦c≦1であることを特徴とする蛍光体。
The phosphor according to any one of claims 1 to 5,
The raw material compounds are MgO, Al 2 O 3 , SiO 2 , Si 3 N 4 , Eu 2 O 3 , MnO, and the mixing ratio (molar ratio) MgO: Al 2 O 3 : SiO 2 : Si 3 N 4 : Eu 2 O 3 : When MnO is represented by (1-y / 2-z): a: b: c: y: z, 0.04 ≦ y ≦ 0.2, 0 ≦ z ≦ 0.1, 0.5 ≦ a ≦ 1 , B = 1, and 0.33 ≦ c ≦ 1.
請求項1から6のいずれか1項記載の蛍光体の製造方法であって、原料化合物を混合する第一の工程と、混合した原料化合物を1.0MPa以下の窒素加圧雰囲気下で焼成する第二の工程と、焼成後に材料を粉砕する第三の工程と、窒素常圧雰囲気下でアニールする第四の工程と、を有する製造方法。   The method for producing a phosphor according to any one of claims 1 to 6, wherein the first step of mixing the raw material compounds and the step of firing the mixed raw material compounds in a nitrogen pressure atmosphere of 1.0 MPa or less. The manufacturing method which has a 2nd process, the 3rd process of grind | pulverizing a material after baking, and the 4th process annealed in nitrogen atmospheric pressure atmosphere. 前記第二の工程では、粉末試料を窒素9気圧加圧雰囲気で1600〜1800℃で2時間の焼成を行い、第四の工程では、窒素1気圧雰囲気で1300℃で10時間の焼成を行うことを特徴とする請求項記載の製造方法。 In the second step, the powder sample is fired at 1600-1800 ° C. for 2 hours in a nitrogen atmosphere at 9 atmospheres under pressure, and in the fourth step, the powder sample is fired for 10 hours at 1300 ° atmosphere in a nitrogen atmosphere. The manufacturing method of Claim 7 characterized by these. 請求項1ないし5いずれか1項に記載の蛍光体を含む波長変換材料と、波長140nm〜420mnまでの紫外から近紫外の光を発光する光源とを組み合わせた発光装置。   A light emitting device comprising a combination of a wavelength converting material containing the phosphor according to any one of claims 1 to 5 and a light source that emits ultraviolet to near ultraviolet light having a wavelength of 140 nm to 420 mn. 前記光源が、波長300〜420nmで発光する近紫外LEDであることを特徴とする請求項9記載の発光装置。   The light-emitting device according to claim 9, wherein the light source is a near-ultraviolet LED that emits light at a wavelength of 300 to 420 nm. 1種類以上の蛍光体からの発光で白色光を得る白色LEDであることを特徴とする請求項10記載の発光装置。   The light emitting device according to claim 10, wherein the light emitting device is a white LED that obtains white light by light emission from one or more kinds of phosphors. 1種類のみの蛍光体からの発光で白色光を得る白色LEDであることを特徴とする請求項10記載の発光装置。
The light emitting device according to claim 10, wherein the light emitting device is a white LED that obtains white light by light emission from only one kind of phosphor.
JP2006227914A 2006-08-24 2006-08-24 Phosphor, method for producing the same, and light emitting device using the same Expired - Fee Related JP5100059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006227914A JP5100059B2 (en) 2006-08-24 2006-08-24 Phosphor, method for producing the same, and light emitting device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006227914A JP5100059B2 (en) 2006-08-24 2006-08-24 Phosphor, method for producing the same, and light emitting device using the same

Publications (2)

Publication Number Publication Date
JP2008050462A JP2008050462A (en) 2008-03-06
JP5100059B2 true JP5100059B2 (en) 2012-12-19

Family

ID=39234806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006227914A Expired - Fee Related JP5100059B2 (en) 2006-08-24 2006-08-24 Phosphor, method for producing the same, and light emitting device using the same

Country Status (1)

Country Link
JP (1) JP5100059B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218422A (en) * 2008-03-11 2009-09-24 Sharp Corp Semiconductor light emitting device, and image display device
JP4978846B2 (en) * 2008-04-04 2012-07-18 昭栄化学工業株式会社 Light emitting device
JP2009289816A (en) * 2008-05-27 2009-12-10 Kyocera Corp Light emitting device, and lighting system
US9909058B2 (en) * 2009-09-02 2018-03-06 Lg Innotek Co., Ltd. Phosphor, phosphor manufacturing method, and white light emitting device
KR101163902B1 (en) 2010-08-10 2012-07-09 엘지이노텍 주식회사 Light emitting device
JP5508817B2 (en) * 2009-11-05 2014-06-04 電気化学工業株式会社 Method for producing β-sialon phosphor
JP2014055238A (en) * 2012-09-12 2014-03-27 Kaneka Corp Polysiloxane-based composition for led sealing

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW383508B (en) * 1996-07-29 2000-03-01 Nichia Kagaku Kogyo Kk Light emitting device and display
JP3763719B2 (en) * 2000-02-02 2006-04-05 独立行政法人科学技術振興機構 Phosphors based on oxynitride glass
JP3668770B2 (en) * 2001-06-07 2005-07-06 独立行政法人物質・材料研究機構 Oxynitride phosphor activated with rare earth elements
DE10147040A1 (en) * 2001-09-25 2003-04-24 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Lighting unit with at least one LED as a light source
JP4128564B2 (en) * 2004-04-27 2008-07-30 松下電器産業株式会社 Light emitting device
JP4674348B2 (en) * 2004-09-22 2011-04-20 独立行政法人物質・材料研究機構 Phosphor, method for producing the same, and light emitting device
JP4895541B2 (en) * 2005-07-08 2012-03-14 シャープ株式会社 Wavelength conversion member, light emitting device, and method of manufacturing wavelength conversion member
EP2308946B1 (en) * 2006-03-10 2013-07-24 Kabushiki Kaisha Toshiba Luminescent material and light-emitting device

Also Published As

Publication number Publication date
JP2008050462A (en) 2008-03-06

Similar Documents

Publication Publication Date Title
JP4963705B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE
JP5138145B2 (en) Phosphor laminate structure and light source using the same
JP4104013B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE
US7811472B2 (en) Phosphor composition and method for producing the same, and light-emitting device using the same
JP4911578B2 (en) Oxynitride phosphor and light emitting device
JP6054180B2 (en) Phosphor and manufacturing method thereof, white light emitting device, surface light source device, display device, and illumination device
JP5190475B2 (en) Phosphor and light emitting device using the same
EP1734096B1 (en) Light-emitting device and illuminating device
US8709838B2 (en) Method for preparing a β-SiAlON phosphor
KR101172143B1 (en) OXYNITRIDE-BASED PHOSPHORS COMPOSING OF SiON ELEMENT FOR WHITE LEDs, MANUFACTURING METHOD THEREOF AND LEDs USING THE SAME
JP5832713B2 (en) Phosphor, light emitting device using the same, and method for producing phosphor
JP5100059B2 (en) Phosphor, method for producing the same, and light emitting device using the same
JP2007088248A (en) Colored light emitting diode lamp, lighting apparatus for decoration, and color-display signing apparatus
JP2008163078A (en) Phosphor and light-emitting device using the same
JP4863794B2 (en) Wavelength converting material, method for producing the same, and light emitting device using the same
JP4492189B2 (en) Light emitting device
JP2009138070A (en) Phosphor, method for producing the same, and light-emitting device using phosphor
JP6036951B2 (en) Method for manufacturing phosphor
JP4948015B2 (en) Aluminate blue phosphor and light emitting device using the same
JP2011003786A (en) Light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5100059

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees