JP3763719B2 - Phosphors based on oxynitride glass - Google Patents

Phosphors based on oxynitride glass Download PDF

Info

Publication number
JP3763719B2
JP3763719B2 JP2000030280A JP2000030280A JP3763719B2 JP 3763719 B2 JP3763719 B2 JP 3763719B2 JP 2000030280 A JP2000030280 A JP 2000030280A JP 2000030280 A JP2000030280 A JP 2000030280A JP 3763719 B2 JP3763719 B2 JP 3763719B2
Authority
JP
Japan
Prior art keywords
glass
mol
phosphor
excitation
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000030280A
Other languages
Japanese (ja)
Other versions
JP2001214162A (en
Inventor
恭太 上田
忠 遠藤
正和 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2000030280A priority Critical patent/JP3763719B2/en
Publication of JP2001214162A publication Critical patent/JP2001214162A/en
Application granted granted Critical
Publication of JP3763719B2 publication Critical patent/JP3763719B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)
  • Glass Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、蛍光体、特に青色発光ダイオード(青色LED)を光源とする白色発光ダイオード(白色LED)の蛍光体として有用な蛍光体に関する。
【0002】
【従来の技術】
希土類元素を使用した粉末や薄膜状の酸化物発光体は従来から広く知られてきたが、一方で、非酸化物に希土類元素を賦活した発光体の研究例は少なく、例えば、窒化物やオキシ窒化物については、βサイアロン構造などのSi−O−N系のオキシ窒化物結晶(特開昭60−206889号公報、J.W.H.van Krevel et al「Long wavelength Ce3+ emission in Y-Si-0-N materials」,Journal of Alloys and Compounds 268 (1998)272-277)などが開示されているにすぎない。
【0003】
また、結晶性の粉末や薄膜ではなく、ガラス状態にある発光体としては発光中心であるEu2 3 やTb2 3 を比較的多量に含有するフッ燐酸塩蛍光ガラス(特開平8−133780号公報)や酸化物蛍光ガラス(特開平10−167755号公報)が知られている。
【0004】
従来、照明機器産業・ディスプレイ産業の▲1▼防災照明など信頼性を要求される分野、▲2▼車載照明や液晶バックライトなど小型・軽量が好まれる分野、▲3▼駅の行き先案内板など視認性を必要とする分野で白色LEDが使用されている。白色LEDの発光色は光の混色に関する原理によって得られるものであり、蛍光体に吸収された青色光は励起源としても働き、黄色の蛍光を発する。この黄色光と青色光が混ぜ合わされて人間の目には白色として見える。
【0005】
白色LEDに適する蛍光体として、特に、(Y,Gd)3 (Al,Ga)5 12の組成式で表されるYAG系酸化物母体格子中にCeをドープした蛍光体が知られている。この蛍光体は従来から発光源のInGaN系青色LEDチップ表面に薄くコーティングして用いられている。
【0006】
しかし、白色LEDの光源として利用されるlnGaN系青色LEDの示す発光ピークは465〜520nmで、YAG系蛍光体を励起することができる波長範囲より長波長側に位置する。
【0007】
【発明が解決しようとする課題】
従来の酸化物系蛍光体は、波長400nmを超えると励起スペクトル強度が著しく減少するものが一般的である。このため、InGaN系青色LEDチップにYAG系蛍光体を塗布して作られる白色LED(白色発光ダイオード)では、蛍光体の励起ピークが青色LEDの発光ピークと効率よく重ならず、より短波長側に位置することから、高輝度の白色LEDを作製するのに必ずしも励起効率がよい蛍光体ではなかった。
【0008】
【課題を解決するための手段】
そこで、本発明者は、酸素(−2価)の一部を窒素(−3価)に置き換え、結合のイオン性や共有性の割合が変われば励起・発光波長が自在に変化するとの着想に至り、全体の電荷を中性にバランスさせたガラス系においてアルカリ土類(+2価)と発光中心イオンとを加えて本発明を完成させた。こうした発想は新規であり、可視・紫外光領域の広い波長範囲(≦550nm)に励起スペクトルをもったオキシ窒化物ガラスの作製は例がない。
すなわち、本発明の蛍光体は、オキシ窒化物ガラスを母体材料として用い、母体材料のCa2+イオンの一部を発光中心となるEu2+、Eu3+、Ce3+、Tb3+などの希土類イオンまたはCr3+、Mn2+などの遷移金属イオンで置換して合成したものである。
【0009】
本発明は、オキシ窒化物ガラスを発光中心イオンの母体材料としたガラスからなる蛍光体であって、モル%表示で、母体材料の組成が、CaCO3をCaOに換算して:20〜50モル%、Al2 3 :0〜30モル%、SiO:25〜60モル%、AlN:5〜50モル%であり発光中心イオンとなる希土類酸化物または遷移金属酸化物の含有量が0.1〜20モル%であり、5成分の合計が100モル%であることを特徴とする蛍光体である。
【0010】
また、本発明は、窒素含有量が15wt%以下であることを特徴とする上記の蛍光体である。
【0011】
また、本発明は、希土類酸化物を含有する上記の蛍光体において、該希土類酸化物の他に増感剤となる他の希土類元素イオンを希土類酸化物として蛍光ガラス中に0.1〜10モル%の含有量で共賦活剤として含むことを特徴とする上記の蛍光体である。
【0012】
さらに、本発明は、InGaN系青色LEDを光源とする上記の蛍光体を用いた白色LEDである。
【0013】
本発明の蛍光体の成分のCaCO3 は、CaOの原料であり、ガラス化範囲を広げるだけでなく、蛍光ガラス中に発光中心となる希土類イオンまたは遷移金属イオンを多量に、かつ、安定に含有させることができる。20〜30モル%の範囲がより好ましい。なお、Ca2+サイトにあるCa2+イオンをSr2+やBa2+イオンに容易に置き換えることによって発光中心イオンとなる希土類酸化物または遷移金属酸化物の含有量を上記のとおり0.1〜20モル%の範囲内で自在に制御することが可能になる。
【0014】
AlNとAl2 3 は、窒素含有量を変化させるために用いる。AlNが40〜10モル%、Al2 3 が0〜20モル%の範囲がより好ましい。
SiO2 は、ガラス形成成分の一つであり、CaO と組み合わせることによりガラス融液の溶融温度を低下させる。30〜40モル%の範囲がより好ましい。
【0015】
希土類酸化物または遷移金属酸化物は、Eu2+、Eu3+、Ce3+、Tb3+などの希土類イオンまたはCr3+、Mn2+などの遷移金属イオンをガラス中にドープする原料であり、ガラス組成限界である20モル%以下の範囲において賦活し、発光中心の濃度消光が認められない0.5〜10モル%の賦活量において強い発光強度を有する。
【0016】
オキシ窒化物ガラスは、酸素の一部を窒素に置換したものであり、窒素の導入によってガラス網目構造の化学結合が強化され、ガラス転移温度、軟化温度などの熱的性質の他、機械的な性質や化学的な性質が著しく向上する(例えば、特公平7−37333号公報)ことが知られている。
【0017】
本発明の蛍光体は、ガラス中の窒素含有量は、15wt%以下のガラス組成範囲において窒素含有量を制御して発光スペクトルのピーク位置を移動させることができ、さらにオキシ窒化物ガラス蛍光体の励起スペクトル中のピーク波長を紫外から緑の範囲で調整できる。この発光ピーク波長の移動はゆるやかに黄から赤に変化するため、窒素含有量を変化させることにより蛍光体の多色化が容易に図れる。より好ましい窒素含有量は、4〜7wt%である。
【0018】
オキシ窒化物ガラスを製造する代表的な方法としては二つの方法があり、一つは窒素源に窒化物を用いて溶融する方法であり、他の方法としてはゾル−ゲル法などで作製した多孔質ガラスをアンモニアガスで窒化させる方法がある。
【0019】
前者の方法は溶融時の高温で窒化物が分解するので、窒素含有量を10wt%以上にすることは非常に難しいが、例えば、10気圧の窒素加圧下でこれらのガラスを合成することにより、比較的多量の窒素を含むオキシ窒化物ガラスが得られる。このようなオキシ窒化物ガラスは、機械的強度や化学的安定性にさらに優れる
【0020】
蛍光ガラス中には、基本的に一種類の発光中心しか含まない。ただし、二種類の希土類元素が蛍光ガラス中に含まれる場合は有り得る。この二種類を同時に蛍光ガラスにドープする効果として二つ挙げることができる。一つは、増感作用、もう一つは、キャリアーのトラップ準位を新たに形成し、長残光性の発現および改善やサーモルミネッセンスを改善させるというものである。増感作用が観察される組み合わせとして、一般的に、Eu3+イオンに対してTb3+イオン、Tb3+イオンに対してCe3+イオンが挙げられる。
【0021】
Eu2+(あるいはCe3+)イオンのほかに他の希土類元素イオン(Gd3+、Tb3+、Dy3+、またはSm3+イオンなど)を増感剤とするために、これら希土類酸化物を蛍光ガラス中に0.1〜10モル%の含有量で共賦活剤として含ませることができる。
【0022】
オキシ窒化物ガラスとしては、Si−O−N,Mg−Si−O−N,Al−Si−O−N,Nd−Al−Si−O−N,Y−Al−Si−O−N,Ca−Al−Si−O−N,Mg−Al−Si−O−N,Na−−Si−O−N,Na−Ca−Si−O−N,Li−Ca−Al−Si−O−N,Na−B−Si−O−N,Na−Ba−B−Al−Si−O−N,Ba−Al−Si−O−N,Na−B−O−N,Li−P−O−N,Na−P−O−Nなどの系が知られている
【0023】
これらの系の中で、本発明の母材となる系は、Ca−Al−Si−O−N系オキシ窒化物ガラス(作花らが1983年に作製したもの。「Journal of Non-Crystalline Solids 56(1983)147-152 )に相当する組成を有する。
【0024】
このCa−Al−Si−O−N系オキシ窒化物ガラスの窒素含有量は、約5.5wt%と報告されており、本発明の蛍光体の母材ガラスとしてこのオキシ窒化物ガラスの組成を用いることができる。
【0025】
本発明のCa−Al−Si−O−N系オキシ窒化物ガラス蛍光体の製造方法は上述の従来公知の方法を用いることができるが、その場合、希土類酸化物を原料として用い、他の原料と混合し、これを出発原料として窒素雰囲気において加熱溶融して蛍光ガラスを合成する。
【0026】
例えば、希土類酸化物、金属酸化物CaO(←CaCO3 、Al2 3 、SiO2 )にAlNを加え、高温、例えば1700℃程度で融解して合成することができる。この際に、Al2 3 とAlNの割合を変えることによって、ガラスにおける窒素含有量を変化させることができる。
【0027】
以下に、Eu2+イオンをドープしたCa−Al−Si−O−N系オキシ窒化物ガラスにおける窒素含有量と励起・蛍光スペクトルとの関係を詳しく説明する。試料の調製は下記の原料組成を用いて行った。原料粉末を以下の試料A、B、Cの各組成で混合し、この混合試料粉末を炉材との反応を避けるためにモリブデン箔に包み、高周波炉を用いて、窒素雰囲気下、1700℃において2時間、加熱溶融し、さらに急冷して蛍光ガラスを得た。
【0028】
(試料A)
CaCO3 :Al2 3 :SiO2 :AlN:Eu2 3 =24.0:3.3:33.4:33.3:6.0(N:5wt%)
(試料B)
CaCO3 :Al2 3 :SiO2 :AlN:Eu2 3 =26.2:9.1:36.4:21.8:6.5(N:3wt%)
(試料C)
CaCO3 :Al2 3 :SiO2 :AlN:Eu2 3 =27.7:15.4:38.5:11.5:6.9(N:2wt%)
【0029】
図1に、Eu2+イオンをドープしたCa−Al−Si−O−N系オキシ窒化物ガラスの励起・蛍光スペクトルを示す。蛍光ガラスの窒素含有量は、試料Aから試料Cになるにしたがい減少する。これらの蛍光体の励起スペクトル強度は、400nmから急に増加し、500nm辺りに最大値を持つ。一方、発光スペクトルのピークは、600nm辺り(赤色)となった。発光スペクトルの位置は、ガラス中の窒素含有量が減少すると短波長側にシフトした。このように、窒素含有量をコントロールすることにより、蛍光体の多色化が可能である。試料Aは、約5wt%の窒素含有量を有し、試料Bは、約3wt%の窒素含有量を有し、試料Cは、約2wt%の窒素含有量を有する。
【0030】
図1の励起スペクトルには二つのピークを有する。250〜350nmのピークはEu−Oの電荷移動吸収帯に、一方、450〜550nmのピークはEu−Nの電荷移動吸収帯にそれぞれ帰属される。したがって、蛍光ガラス中の窒素含有量が減少すれば450〜550nmのEu−Oの電荷移動吸収帯ピークが減少する。
【0031】
本発明のオキシ窒化物ガラス蛍光体は、InGaN系青色LEDを励起光(450〜550nm)とする場合、窒素含有量が大きいほどよいと言える。
試料Aと試料Bとを比較すると、窒素含有量の増加に伴いEu−Nの電荷移動吸収帯のピークは長波長側に移動することが分かる。よって、窒素含有量を僅かに変化させることにより、各種の青色LEDの励起光の波長に一致させることができる。
【0032】
試料Aから試料Cに窒素含有量を減少させると、680nmから580nmへと発光ピークが連続的に移動する。励起スペクトルのピーク位置を材料設計に取り入れないとすると、窒素含有量をコントロールすることで580〜680nmまでの発光を有する蛍光ガラスを得ることができる。
【0033】
以上の結果より、窒素含有量は、4〜7wt%がよく、この範囲において窒素含有量を変化させることにより必要に応じた励起・発光スペクトルを持つ蛍光ガラスを合成することができる。
【0034】
【実施例】
実施例1
Eu2+イオンをドープした実施例
原料粉末を以下の組成で混合し、この混合試料粉末をモリブデン箔に包み、高周波加熱炉を用いて、窒素雰囲気下、1700℃において2時間、加熱溶融し、さらに急冷して蛍光ガラスを得た。
【0035】
(試料A)
CaCO3 :Al2 3 :SiO2 :AlN:Eu2 3 =28.2:3.1:31.4:31.3:6.0(N:5wt%)(Eu:12.0%)
(試料B)
CaCO3 :Al2 3 :SiO2 :AlN:Eu2 3 =28.6:3.1:31.9:31.8:4.6(N:5wt%)(Eu:9.2%)
(試料C)
CaCO3 :Al2 3 :SiO2 :AlN:Eu2 3 =29.1:3.2:32.3:32.3:3.1(N:5wt%)(Eu:6.2%)
(試料D)
CaCO3 :Al2 3 :SiO2 :AlN:Eu2 3 2 =29.4:3.2:32.7:32.6:2.1(N:5wt%)(Eu:4.2%)
【0036】
図2に、Eu2+イオンのドープ量の異なるCa−Al−Si−O−N系オキシ窒化物ガラスの励起・発光スペクトルを示す。励起・発光スペクトルの形状は,Eu2+イオンのドープ量に関係なく同じである。ただし、励起・発光ピークがDからAへと蛍光ガラス中のEu2+イオンの量が増加するとともに長波長側に移動する。
【0037】
実施例2
Ce3+イオンをドープした実施例
原料粉末を以下の組成で混合し、この混合試料粉末をモリブデン箔に包み、高周波炉を用いて、窒素雰囲気下、1700℃において2時間、加熱溶融し、さらに急冷して蛍光ガラスを得た。
【0038】
(試料A)
CaCO3 :Al2 3 :SiO2 :AlN:CeO2 =28.3:3.3:33.8:33.6:1.0(N:5wt%)(Ce:1.0%)
(試料B)
CaCO3 :Al2 3 :SiO2 :AlN:CeO2 =29.5:3.3:33.4:33.3:0.5(N:5wt%)(Ce:0.5%)
【0039】
図3に、Ce3+イオンをドープしたCa−Al−Si−O−N系オキシ窒化物の励起・発光スペクトルを示す。励起スペクトルは,Ce3+イオンのドープ量の変化に伴いその形状を大きく変化させたが、発光スペクトルはあまり変わりなく、400〜450nmの範囲に最大値を持つブロードなピークを示している。Ce3+イオンのドープ量が少ない試料Bの励起スペクトルは、二つのピークを有し、200〜330nmのピークがCe3+ O、330〜400nmのピークがCe3+−Nの電荷移動吸収帯にそれぞれ帰属される。この蛍光ガラスは、いずれも励起光である紫外線照射を止めた後でも発光し続ける長残光性を有している。
【0040】
実施例3
Cr3+をドープした実施例
原料粉末を以下の組成で混合し、この混合試料粉末をモリブデン箔に包み、高周波炉を用いて、窒素雰囲気下、1700℃において2時間、加熱溶融し、さらに急冷して蛍光ガラスを得た。なお、Cr3+を賦活した蛍光ガラスについて、得られた試料の均一性をそれぞれ検討するためにそれぞれ二種類作製した。
【0041】
(試料A)
CaCO3 :Al2 3 :SiO2 :AlN:Cr2 3 =28.3:3.3:33.8:33.6:1.0(N:5wt%)(Cr:2.0%)
(試料B)
CaCO3 :Al2 3 :SiO2 :AlN:Cr2 3 =28.3:3.3:33.8:33.6:1.0(N:5wt%)(Cr:2.0%)
【0042】
図4に、Cr3+イオンをドープしたCa−Al−Si−O−N系オキシ窒化物ガラスの励起・発光スペクトルを示す。図4において、同じバッチから採取したCr3+をドープしたオキシ窒化物ガラスは、二種類の試料(AとB)が確認された。試料Aの励起スペクトルは470nmの発光をモニターしながら測定した結果である。その発光スペクトルは、270nmを励起光として測定したものである。
【0043】
一方、試料Bの励起スペクトル1は、440nmの発光をモニターしながら測定したものである。また、Bの発光スペクトル1は、255nmを励起光として測定したもので、また、Bの発光スペクトル2は、335nmを励起光として測定したものである。
【0044】
試料Aの励起・発光スペクトルは試料Bの両スペクトルと異なっているが、よく観察すると、それぞれの励起スペクトルには2つのピークがある。また、発光スペクトルのブロードなピークは350〜600nmに同様に存在することを考慮すれば両試料は類似している。なお、励起スペクトルの255nmのピークは、蛍光ガラスが有する母体材料の吸収、335nmのピークは、Cr3+イオン自身の吸収としてそれぞれ帰属される。
【0045】
実施例4
Mn2+をドープした実施例
原料粉末を以下の組成で混合し、この混合試料粉末をモリブデン箔に包み、高周波加熱炉を用いて、窒素雰囲気下、1700℃において2時間、加熱溶融し、さらに急冷して蛍光ガラスを得た。なお、Mn2+を賦活した蛍光ガラスについて、得られた試料の均一性をそれぞれ検討するためにそれぞれ二種類作製した。
【0046】
(試料A)
CaCO3 :Al2 3 :SiO2 :AlN:MnCO3 =29.9:2.8:33.2:33.1:1.0(N:5wt%)(Mn:1.0%)
(試料B)
CaCO3 :Al2 3 :SiO2 :AlN:MnCO3 =29.9:2.8:33.2:33.1:1.0(N:5wt%)(Mn:1.0%)
【0047】
図5に,Mn2+イオンをドープしたCa一Al−Si−O−N系オキシ窒化物ガラスの励起・発光スペクトルを示す。図5における試料Aと試料Bの励起・発光スペクトルの比較から、Mn2+をドープしたオキシ窒化物ガラスは、均一である。
【0048】
【発明の効果】
本発明の蛍光体は、励起スペクトルの位置が酸化物ガラスと比較して長波長側に著しく移動し、吸収ピークが青色LEDの発光ピーク近辺(450〜520nm)で最大となり、さらに、ピーク幅も大きくなるため、lnGaN系青色LEDを励起光源にした場合、この蛍光体と組み合わせると効率よく励起され、より明るい白色LEDが実現できる。また、ガラスはオキシ窒化物のような結晶とは異なり、構造がルーズな分、反応条件さえ満たすことができれば、オキシ窒化物ガラス中のOとNの比を自由に変えることができ、N含有量の変化による蛍光体の多色化が容易に図れる。
【図面の簡単な説明】
【図1】図1は、本発明のEuをドープしたオキシ窒化物ガラスのN含有量依存性を示す励起・蛍光スペクトルのグラフである。
【図2】図2は、本発明のEuをドープしたオキシ窒化物ガラスのEu量依存性を示す励起・蛍光スペクトルのグラフである。
【図3】図3は、本発明のCeをドープしたオキシ窒化物ガラスの励起・蛍光スペクトルのグラフである。
【図4】図4は、本発明のCrをドープしたオキシ窒化物ガラスの励起・蛍光スペクトルのグラフである。
【図5】図5は、本発明のMnをドープしたオキシ窒化物ガラスの励起・蛍光スペクトルのグラフである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a phosphor useful as a phosphor of a white light emitting diode (white LED) using a blue light emitting diode (blue LED) as a light source.
[0002]
[Prior art]
Powders and thin film oxide emitters using rare earth elements have been widely known, but on the other hand, there are few research examples of emitters that activate rare earth elements in non-oxides. As for nitrides, Si—O—N-based oxynitride crystals such as β sialon structure (Japanese Patent Laid-Open No. 60-206889, JWHvan Krevel et al “Long wavelength Ce 3+ emission in Y-Si-0-N materials ", Journal of Alloys and Compounds 268 (1998) 272-277).
[0003]
In addition, a phosphorescent fluorescent glass containing a relatively large amount of Eu 2 O 3 or Tb 2 O 3 which is a luminescent center as a light-emitting body in a glass state rather than a crystalline powder or thin film (Japanese Patent Laid-Open No. 8-133780). And oxide fluorescent glass (Japanese Patent Laid-Open No. 10-167755) are known.
[0004]
Conventionally, in the lighting equipment and display industries, (1) Fields that require reliability, such as disaster prevention lighting, (2) Fields that prefer small and light weight, such as in-vehicle lighting and LCD backlights, (3) Station destination information boards, etc. White LEDs are used in fields that require visibility. The emission color of the white LED is obtained by the principle of light color mixing, and the blue light absorbed by the phosphor also acts as an excitation source and emits yellow fluorescence. This yellow light and blue light are mixed and appear as white to the human eye.
[0005]
As a phosphor suitable for a white LED, a phosphor in which Ce is doped in a YAG-based oxide matrix lattice represented by a composition formula of (Y, Gd) 3 (Al, Ga) 5 O 12 is known. . This phosphor is conventionally used by being thinly coated on the surface of an InGaN blue LED chip as a light emitting source.
[0006]
However, the emission peak of the lnGaN blue LED used as the light source of the white LED is 465 to 520 nm, which is located on the longer wavelength side than the wavelength range in which the YAG phosphor can be excited.
[0007]
[Problems to be solved by the invention]
Conventional oxide phosphors generally have a significantly reduced excitation spectrum intensity when the wavelength exceeds 400 nm. For this reason, in a white LED (white light emitting diode) made by applying a YAG phosphor to an InGaN blue LED chip, the excitation peak of the phosphor does not efficiently overlap with the emission peak of the blue LED, and the shorter wavelength side Therefore, it was not necessarily a phosphor with good excitation efficiency for producing a high-intensity white LED.
[0008]
[Means for Solving the Problems]
Therefore, the inventor of the present invention has an idea that the excitation / emission wavelength can be freely changed if a part of oxygen (-2 valence) is replaced with nitrogen (-3 valence) and the ionicity or covalent ratio of the bond is changed. The present invention was completed by adding alkaline earth (+2) and luminescent center ions in a glass system in which the overall charge was neutrally balanced. Such an idea is novel, and there is no example of producing an oxynitride glass having an excitation spectrum in a wide wavelength range (≦ 550 nm) in the visible / ultraviolet light region.
That is, the phosphor of the present invention uses oxynitride glass as a base material, and Eu 2+ , Eu 3+ , Ce 3+ , Tb 3+, etc. having a part of Ca 2+ ions of the base material as the emission center. The rare earth ions or transition metal ions such as Cr 3+ and Mn 2+ are substituted.
[0009]
The present invention is a phosphor made of glass using oxynitride glass as a base material of luminescent center ions, and the composition of the base material is expressed in mol% , and CaCO 3 is converted to CaO: 20 to 50 mol. %, Al 2 O 3: 0~30 mol%, SiO: 25 to 60 mol%, AlN: from 5 to 50 mol%, the content of rare earth oxides or transition metal oxides to be a luminescent center ion is 0. It is 1-20 mol%, and is a fluorescent substance characterized by the sum total of five components being 100 mol%.
[0010]
Further, the present invention is the above-described fluorescent bodies nitrogen content is equal to or less than 15 wt%.
[0011]
The present invention also provides the phosphor containing a rare earth oxide, wherein the rare earth oxide other than the rare earth oxide is used as a rare earth oxide in the fluorescent glass in an amount of 0.1 to 10 mol. % is above fluorescent body characterized in that in a content containing as a co-activator of.
[0012]
Furthermore, the present invention is a white LED using the phosphor described above using an InGaN-based blue LED as a light source.
[0013]
CaCO 3 which is a component of the phosphor of the present invention is a raw material of CaO, and not only widens the vitrification range, but also contains a large amount and a stable amount of rare earth ions or transition metal ions serving as emission centers in the fluorescent glass. Can be made. The range of 20-30 mol% is more preferable. As described above, the content of the rare earth oxide or transition metal oxide that becomes the luminescence center ion by easily replacing the Ca 2+ ion at the Ca 2+ site with Sr 2+ or Ba 2+ ion is 0.1 as described above. It can be freely controlled within a range of ˜20 mol%.
[0014]
AlN and Al 2 O 3 are used to change the nitrogen content. AlN is 40 to 10 mol%, Al 2 O 3 is more preferably a range of 0 to 20 mol%.
SiO 2 is one of the glass forming components, and CaO In combination, the melting temperature of the glass melt is lowered. The range of 30-40 mol% is more preferable.
[0015]
Rare earth oxides or transition metal oxides are raw materials for doping rare earth ions such as Eu 2+ , Eu 3+ , Ce 3+ and Tb 3+ or transition metal ions such as Cr 3+ and Mn 2+ into glass. Yes, it is activated in the range of 20 mol% or less, which is the glass composition limit, and has a strong emission intensity at an activation amount of 0.5 to 10 mol% in which concentration quenching of the emission center is not observed.
[0016]
Oxynitride glass is obtained by substituting part of oxygen with nitrogen. By introducing nitrogen, chemical bonds in the glass network structure are strengthened, and in addition to thermal properties such as glass transition temperature and softening temperature, mechanical properties are also observed. It is known that properties and chemical properties are remarkably improved (for example, Japanese Patent Publication No. 7-37333).
[0017]
In the phosphor of the present invention, the nitrogen content in the glass can move the peak position of the emission spectrum by controlling the nitrogen content in a glass composition range of 15 wt% or less. Further, the phosphor of the oxynitride glass phosphor The peak wavelength in the excitation spectrum can be adjusted in the range from ultraviolet to green. Since the shift of the emission peak wavelength gradually changes from yellow to red, the phosphor can be easily multicolored by changing the nitrogen content. A more preferable nitrogen content is 4 to 7 wt%.
[0018]
There are two typical methods for producing oxynitride glass, one is a method of melting using nitride as a nitrogen source, and the other method is a porous material produced by a sol-gel method or the like. There is a method of nitriding glass with ammonia gas.
[0019]
Since the former method decomposes nitrides at a high temperature at the time of melting, it is very difficult to increase the nitrogen content to 10 wt% or more. For example, by synthesizing these glasses under a nitrogen pressure of 10 atm, An oxynitride glass containing a relatively large amount of nitrogen is obtained. Such an oxynitride glass is further excellent in mechanical strength and chemical stability.
Fluorescent glass basically contains only one type of emission center. However, two kinds of rare earth elements may be included in the fluorescent glass. Two effects can be listed as the effect of simultaneously doping these two types into the fluorescent glass. One is a sensitizing action, and the other is to newly form a trap level of carriers to improve the expression and improvement of long afterglow and the thermoluminescence. As a combination sensitizing action is observed, in general, Tb 3+ ions with respect to Eu 3+ ions, Ce 3+ ions and the like with respect to Tb 3+ ions.
[0021]
In order to use other rare earth element ions (Gd 3+ , Tb 3+ , Dy 3+ or Sm 3+ ions) in addition to Eu 2+ (or Ce 3+ ) ions, these rare earth oxidations are used. The product can be included in the fluorescent glass as a co-activator at a content of 0.1 to 10 mol%.
[0022]
Examples of the oxynitride glass include Si—O—N, Mg—Si—O—N, Al—Si—O—N, Nd—Al—Si—O—N, Y—Al—Si—O—N, and Ca. -Al-Si-O-N, Mg-Al-Si-ON, Na--Si-ON, Na-Ca-Si-ON, Li-Ca-Al-Si-ON, Na—B—Si—O—N, Na—Ba—B—Al—Si—O—N, Ba—Al—Si—O—N, Na—B—O—N, Li—P—O—N, Systems such as Na—P—O—N are known. [0023]
Among these systems, the base material of the present invention is a Ca—Al—Si—O—N oxynitride glass (produced by Sakuhana et al. In 1983. “Journal of Non-Crystalline Solids 56 (1983) 147-152).
[0024]
The nitrogen content of this Ca—Al—Si—O—N-based oxynitride glass is reported to be about 5.5 wt%, and the composition of this oxynitride glass is used as the base glass of the phosphor of the present invention. Can be used.
[0025]
As the method for producing the Ca—Al—Si—O—N-based oxynitride glass phosphor of the present invention, the above-described conventionally known methods can be used. In that case, rare earth oxide is used as a raw material, and other raw materials are used. And is heated and melted in a nitrogen atmosphere as a starting material to synthesize fluorescent glass.
[0026]
For example, it can be synthesized by adding AlN to rare earth oxide or metal oxide CaO (← CaCO 3 , Al 2 O 3 , SiO 2 ) and melting at high temperature, for example, about 1700 ° C. At this time, the nitrogen content in the glass can be changed by changing the ratio of Al 2 O 3 and AlN.
[0027]
Hereinafter, the relationship between the nitrogen content and the excitation / fluorescence spectrum in the Ca—Al—Si—O—N-based oxynitride glass doped with Eu 2+ ions will be described in detail. The sample was prepared using the following raw material composition. The raw material powder was mixed with each composition of the following samples A, B, and C, this mixed sample powder was wrapped in molybdenum foil to avoid reaction with the furnace material, and using a high frequency furnace at 1700 ° C. in a nitrogen atmosphere. It was heated and melted for 2 hours, and further rapidly cooled to obtain fluorescent glass.
[0028]
(Sample A)
CaCO 3 : Al 2 O 3 : SiO 2 : AlN: Eu 2 O 3 = 24.0: 3.3: 33.4: 33.3: 6.0 (N: 5 wt%)
(Sample B)
CaCO 3 : Al 2 O 3 : SiO 2 : AlN: Eu 2 O 3 = 26.2: 9.1: 36.4: 21.8: 6.5 (N: 3 wt%)
(Sample C)
CaCO 3 : Al 2 O 3 : SiO 2 : AlN: Eu 2 O 3 = 27.7: 15.4: 38.5: 11.5: 6.9 (N: 2 wt%)
[0029]
FIG. 1 shows excitation / fluorescence spectra of Ca—Al—Si—O—N-based oxynitride glass doped with Eu 2+ ions. The nitrogen content of the fluorescent glass decreases as sample A changes to sample C. The excitation spectrum intensity of these phosphors suddenly increases from 400 nm and has a maximum value around 500 nm. On the other hand, the peak of the emission spectrum was around 600 nm (red). The position of the emission spectrum shifted to the short wavelength side as the nitrogen content in the glass decreased. As described above, the phosphor can be multicolored by controlling the nitrogen content. Sample A has a nitrogen content of about 5 wt%, Sample B has a nitrogen content of about 3 wt%, and Sample C has a nitrogen content of about 2 wt%.
[0030]
The excitation spectrum of FIG. 1 has two peaks. The 250-350 nm peak is attributed to the Eu-O charge transfer absorption band, while the 450-550 nm peak is attributed to the Eu-N charge transfer absorption band. Therefore, if the nitrogen content in the fluorescent glass decreases, the charge transfer absorption band peak of Eu-O at 450 to 550 nm decreases.
[0031]
The oxynitride glass phosphor of the present invention can be said to have a better nitrogen content when an InGaN blue LED is used as excitation light (450 to 550 nm).
Comparing sample A and sample B, it can be seen that the peak of the Eu-N charge transfer absorption band shifts to the longer wavelength side as the nitrogen content increases. Therefore, it is possible to match the wavelength of the excitation light of various blue LEDs by slightly changing the nitrogen content.
[0032]
When the nitrogen content is decreased from sample A to sample C, the emission peak moves continuously from 680 nm to 580 nm. If the peak position of the excitation spectrum is not taken into the material design, a fluorescent glass having an emission of 580 to 680 nm can be obtained by controlling the nitrogen content.
[0033]
From the above results, the nitrogen content is preferably 4 to 7 wt%, and by changing the nitrogen content in this range, a fluorescent glass having excitation and emission spectra as required can be synthesized.
[0034]
【Example】
Example 1
Example raw material powder doped with Eu 2+ ions was mixed with the following composition, this mixed sample powder was wrapped in molybdenum foil, and heated and melted at 1700 ° C. for 2 hours in a nitrogen atmosphere using a high-frequency heating furnace. Further, it was rapidly cooled to obtain fluorescent glass.
[0035]
(Sample A)
CaCO 3 : Al 2 O 3 : SiO 2 : AlN: Eu 2 O 3 = 28.2: 3.1: 31.4: 31.3: 6.0 (N: 5 wt%) (Eu: 12.0% )
(Sample B)
CaCO 3 : Al 2 O 3 : SiO 2 : AlN: Eu 2 O 3 = 28.6: 3.1: 31.9: 31.8: 4.6 (N: 5 wt%) (Eu: 9.2% )
(Sample C)
CaCO 3 : Al 2 O 3 : SiO 2 : AlN: Eu 2 O 3 = 29.1: 3.2: 32.3: 32.3: 3.1 (N: 5 wt%) (Eu: 6.2% )
(Sample D)
CaCO 3 : Al 2 O 3 : SiO 2 : AlN: Eu 2 O 3 2 = 29.4: 3.2: 32.7: 32.6: 2.1 (N: 5 wt%) (Eu: 4.2 %)
[0036]
FIG. 2 shows excitation / emission spectra of Ca—Al—Si—O—N-based oxynitride glasses having different doping amounts of Eu 2+ ions. The shape of the excitation / emission spectrum is the same regardless of the doping amount of Eu 2+ ions. However, the excitation / emission peak moves from D to A toward the longer wavelength side as the amount of Eu 2+ ions in the fluorescent glass increases.
[0037]
Example 2
Example raw material powder doped with Ce 3+ ions was mixed in the following composition, this mixed sample powder was wrapped in molybdenum foil, heated and melted at 1700 ° C. for 2 hours in a nitrogen atmosphere using a high frequency furnace, Quenching was performed to obtain fluorescent glass.
[0038]
(Sample A)
CaCO 3 : Al 2 O 3 : SiO 2 : AlN: CeO 2 = 28.3: 3.3: 33.8: 33.6: 1.0 (N: 5 wt%) (Ce: 1.0%)
(Sample B)
CaCO 3 : Al 2 O 3 : SiO 2 : AlN: CeO 2 = 29.5: 3.3: 33.4: 33.3: 0.5 (N: 5 wt%) (Ce: 0.5%)
[0039]
FIG. 3 shows an excitation / emission spectrum of a Ca—Al—Si—O—N-based oxynitride doped with Ce 3+ ions. The shape of the excitation spectrum changed greatly with the change of the doping amount of Ce 3+ ions, but the emission spectrum did not change so much and showed a broad peak having a maximum value in the range of 400 to 450 nm. The excitation spectrum of sample B with a small doping amount of Ce 3+ ions has two peaks, and the peak at 200 to 330 nm is Ce 3+ −. O and a peak at 330 to 400 nm are attributed to the charge transfer absorption band of Ce 3+ —N, respectively. Each of these fluorescent glasses has a long persistence that continues to emit light even after irradiation with ultraviolet light, which is excitation light, is stopped.
[0040]
Example 3
Example raw material powder doped with Cr 3+ was mixed with the following composition, this mixed sample powder was wrapped in molybdenum foil, heated and melted at 1700 ° C. for 2 hours in a nitrogen atmosphere using a high frequency furnace, and further rapidly cooled. As a result, fluorescent glass was obtained. Two types of fluorescent glasses activated with Cr 3+ were prepared in order to examine the uniformity of the obtained samples.
[0041]
(Sample A)
CaCO 3 : Al 2 O 3 : SiO 2 : AlN: Cr 2 O 3 = 28.3: 3.3: 33.8: 33.6: 1.0 (N: 5 wt%) (Cr: 2.0% )
(Sample B)
CaCO 3 : Al 2 O 3 : SiO 2 : AlN: Cr 2 O 3 = 28.3: 3.3: 33.8: 33.6: 1.0 (N: 5 wt%) (Cr: 2.0% )
[0042]
FIG. 4 shows excitation / emission spectra of Ca—Al—Si—O—N-based oxynitride glass doped with Cr 3+ ions. In FIG. 4, two types of samples (A and B) were confirmed for the oxynitride glass doped with Cr 3+ taken from the same batch. The excitation spectrum of sample A is the result of measurement while monitoring the emission at 470 nm. The emission spectrum is measured using 270 nm as excitation light.
[0043]
On the other hand, excitation spectrum 1 of sample B is measured while monitoring 440 nm emission. The emission spectrum 1 of B is measured using 255 nm as excitation light, and the emission spectrum 2 of B is measured using 335 nm as excitation light.
[0044]
The excitation / emission spectrum of sample A is different from both spectra of sample B, but if observed carefully, each excitation spectrum has two peaks. Moreover, both samples are similar considering that the broad peak of the emission spectrum is similarly present at 350 to 600 nm. Note that the 255 nm peak of the excitation spectrum is attributed to the absorption of the base material of the fluorescent glass, and the 335 nm peak is attributed to the absorption of Cr 3+ ions themselves.
[0045]
Example 4
Example raw material powder doped with Mn 2+ was mixed with the following composition, this mixed sample powder was wrapped in molybdenum foil, and heated and melted at 1700 ° C. for 2 hours in a nitrogen atmosphere using a high-frequency heating furnace. Quenching was performed to obtain fluorescent glass. Two types of fluorescent glasses activated with Mn 2+ were prepared in order to examine the uniformity of the obtained samples.
[0046]
(Sample A)
CaCO 3 : Al 2 O 3 : SiO 2 : AlN: MnCO 3 = 29.9: 2.8: 33.2: 33.1: 1.0 (N: 5 wt%) (Mn: 1.0%)
(Sample B)
CaCO 3 : Al 2 O 3 : SiO 2 : AlN: MnCO 3 = 29.9: 2.8: 33.2: 33.1: 1.0 (N: 5 wt%) (Mn: 1.0%)
[0047]
FIG. 5 shows an excitation / emission spectrum of Ca 1 Al—Si—O—N oxynitride glass doped with Mn 2+ ions. From the comparison of the excitation and emission spectra of Sample A and Sample B in FIG. 5, the oxynitride glass doped with Mn 2+ is uniform.
[0048]
【The invention's effect】
In the phosphor of the present invention, the position of the excitation spectrum moves significantly to the longer wavelength side compared to the oxide glass, the absorption peak becomes the maximum near the emission peak of the blue LED (450 to 520 nm), and the peak width also increases. Therefore, when an lnGaN blue LED is used as an excitation light source, it is excited efficiently when combined with this phosphor, and a brighter white LED can be realized. Also, unlike crystals such as oxynitride, glass can freely change the ratio of O and N in the oxynitride glass as long as the reaction conditions can be satisfied due to its loose structure. It is possible to easily increase the number of colors of the phosphor by changing the amount.
[Brief description of the drawings]
FIG. 1 is a graph of excitation / fluorescence spectra showing the N content dependency of Eu-doped oxynitride glass of the present invention.
FIG. 2 is a graph of excitation / fluorescence spectra showing the Eu amount dependence of the Eu-doped oxynitride glass of the present invention.
FIG. 3 is a graph of excitation and fluorescence spectra of Ce-doped oxynitride glass of the present invention.
FIG. 4 is a graph of excitation / fluorescence spectra of Cr-doped oxynitride glass of the present invention.
FIG. 5 is a graph of excitation / fluorescence spectra of Mn-doped oxynitride glass of the present invention.

Claims (4)

オキシ窒化物ガラスを発光中心イオンの母体材料としたガラスからなる蛍光体であって、モル%表示で、母体材料の組成が、CaCO3をCaOに換算して:20〜50モル%、Al2 3 :0〜30モル%、SiO:25〜60モル%、AlN:5〜50モル%であり発光中心イオンとなる希土類酸化物または遷移金属酸化物の含有量が0.1〜20モル%であり、5成分の合計が100モル%であることを特徴とする蛍光体。 A phosphor made of glass using oxynitride glass as a base material of luminescent center ions, and the composition of the base material in terms of mol%, when CaCO 3 is converted to CaO: 20 to 50 mol%, Al 2 O 3 : 0 to 30 mol%, SiO: 25 to 60 mol%, AlN: 5 to 50 mol% , and the content of rare earth oxide or transition metal oxide to be the emission center ion is 0.1 to 20 mol % and is, phosphor total 5 component is characterized in that 100 mol%. 窒素含有量が15wt%以下であることを特徴とする請求項1記載の蛍光体。 The phosphor according to claim 1, wherein the nitrogen content is 15 wt% or less. 希土類酸化物を含有する請求項1記載の蛍光体において、該希土類酸化物の他に増感剤となる他の希土類元素イオンを希土類酸化物として蛍光ガラス中に0.1〜10モル%の含有量で共賦活剤として含むことを特徴とする請求項1記載の蛍光体。The phosphor according to claim 1 , which contains a rare earth oxide, and contains other rare earth element ions serving as a sensitizer in addition to the rare earth oxide in the fluorescent glass in an amount of 0.1 to 10 mol%. The phosphor according to claim 1, wherein the phosphor is contained as a co-activator in an amount. InGaN系青色発光ダイオードを光源とし、請求項1乃至3のいずれか一つに記載された蛍光体を用いたことを特徴とする白色発光ダイオード。 A white light-emitting diode using an InGaN-based blue light-emitting diode as a light source and using the phosphor according to any one of claims 1 to 3.
JP2000030280A 2000-02-02 2000-02-02 Phosphors based on oxynitride glass Expired - Fee Related JP3763719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000030280A JP3763719B2 (en) 2000-02-02 2000-02-02 Phosphors based on oxynitride glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000030280A JP3763719B2 (en) 2000-02-02 2000-02-02 Phosphors based on oxynitride glass

Publications (2)

Publication Number Publication Date
JP2001214162A JP2001214162A (en) 2001-08-07
JP3763719B2 true JP3763719B2 (en) 2006-04-05

Family

ID=18555318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000030280A Expired - Fee Related JP3763719B2 (en) 2000-02-02 2000-02-02 Phosphors based on oxynitride glass

Country Status (1)

Country Link
JP (1) JP3763719B2 (en)

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076434A (en) * 2000-08-28 2002-03-15 Toyoda Gosei Co Ltd Light emitting device
US6632379B2 (en) 2001-06-07 2003-10-14 National Institute For Materials Science Oxynitride phosphor activated by a rare earth element, and sialon type phosphor
JP3726131B2 (en) * 2002-05-23 2005-12-14 独立行政法人物質・材料研究機構 Sialon phosphor
JP4193446B2 (en) * 2001-08-22 2008-12-10 日亜化学工業株式会社 Light emitting device
CN100423296C (en) 2001-09-03 2008-10-01 松下电器产业株式会社 Semiconductor light-emitting device, light-emitting apparatus and manufacturing method of semiconductor light-emitting device
SG185827A1 (en) 2002-03-22 2012-12-28 Nichia Corp Nitride phosphor and production process thereof, and light emitting device
JP2003306674A (en) 2002-04-15 2003-10-31 Sumitomo Chem Co Ltd Fluorescent material for white led, and white led using the same
US6717353B1 (en) * 2002-10-14 2004-04-06 Lumileds Lighting U.S., Llc Phosphor converted light emitting device
JP2004210921A (en) * 2002-12-27 2004-07-29 Nichia Chem Ind Ltd Oxynitride fluorophor and method for producing the same and light-emitting device using the same
JP4442101B2 (en) * 2003-03-14 2010-03-31 日亜化学工業株式会社 Oxynitride phosphor and light emitting device using the same
MY149573A (en) * 2002-10-16 2013-09-13 Nichia Corp Oxynitride phosphor and production process thereof, and light-emitting device using oxynitride phosphor
CN101089119B (en) * 2002-10-16 2011-01-26 日亚化学工业株式会社 Oxynitride fluorescent material and method for producing the same
JP4072632B2 (en) 2002-11-29 2008-04-09 豊田合成株式会社 Light emitting device and light emitting method
SE0300056D0 (en) * 2003-01-14 2003-01-14 Morph A New glass material
DE10311820A1 (en) * 2003-03-13 2004-09-30 Schott Glas Semiconductor light source used in lighting comprises a semiconductor emitter, especially an LED, and a luminescent glass body
US7723740B2 (en) * 2003-09-18 2010-05-25 Nichia Corporation Light emitting device
JP2005093912A (en) * 2003-09-19 2005-04-07 Nichia Chem Ind Ltd Light-emitting device
JP2005093913A (en) * 2003-09-19 2005-04-07 Nichia Chem Ind Ltd Light-emitting device
JP4568894B2 (en) 2003-11-28 2010-10-27 Dowaエレクトロニクス株式会社 Composite conductor and superconducting equipment system
JP4511849B2 (en) 2004-02-27 2010-07-28 Dowaエレクトロニクス株式会社 Phosphor and its manufacturing method, light source, and LED
JP4604516B2 (en) * 2004-03-09 2011-01-05 三菱化学株式会社 LIGHT EMITTING DEVICE, LIGHTING DEVICE USING SAME, AND DISPLAY
US20070194693A1 (en) * 2004-03-26 2007-08-23 Hajime Saito Light-Emitting Device
JP4374474B2 (en) * 2004-04-23 2009-12-02 独立行政法人物質・材料研究機構 Phosphor
JP4524468B2 (en) 2004-05-14 2010-08-18 Dowaエレクトロニクス株式会社 Phosphor, method for producing the same, light source using the phosphor, and LED
JP4491585B2 (en) 2004-05-28 2010-06-30 Dowaエレクトロニクス株式会社 Method for producing metal paste
JP4414821B2 (en) 2004-06-25 2010-02-10 Dowaエレクトロニクス株式会社 Phosphor, light source and LED
JP4511885B2 (en) 2004-07-09 2010-07-28 Dowaエレクトロニクス株式会社 Phosphor, LED and light source
JP4422653B2 (en) 2004-07-28 2010-02-24 Dowaエレクトロニクス株式会社 Phosphor, production method thereof, and light source
US7138756B2 (en) 2004-08-02 2006-11-21 Dowa Mining Co., Ltd. Phosphor for electron beam excitation and color display device using the same
JP4933739B2 (en) 2004-08-02 2012-05-16 Dowaホールディングス株式会社 Phosphor and phosphor film for electron beam excitation, and color display device using them
JP4953065B2 (en) * 2004-08-11 2012-06-13 独立行政法人物質・材料研究機構 Phosphor and production method thereof
JP4524470B2 (en) 2004-08-20 2010-08-18 Dowaエレクトロニクス株式会社 Phosphor, method for producing the same, and light source using the phosphor
US7476338B2 (en) 2004-08-27 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light source
JP4543250B2 (en) 2004-08-27 2010-09-15 Dowaエレクトロニクス株式会社 Phosphor mixture and light emitting device
DE102004048041B4 (en) 2004-09-29 2013-03-07 Schott Ag Use of a glass or a glass ceramic for light wave conversion
JP4543253B2 (en) 2004-10-28 2010-09-15 Dowaエレクトロニクス株式会社 Phosphor mixture and light emitting device
WO2006057357A1 (en) * 2004-11-25 2006-06-01 Mitsubishi Chemical Corporation Light-emitting device
JP4892193B2 (en) 2005-03-01 2012-03-07 Dowaホールディングス株式会社 Phosphor mixture and light emitting device
US7524437B2 (en) 2005-03-04 2009-04-28 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method of the same, and light emitting device using the phosphor
US7443094B2 (en) 2005-03-31 2008-10-28 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method of the same, and light emitting device using the phosphor
US7445730B2 (en) 2005-03-31 2008-11-04 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method of the same, and light emitting device using the phosphor
JP4975269B2 (en) 2005-04-28 2012-07-11 Dowaホールディングス株式会社 Phosphor and method for producing the same, and light emitting device using the phosphor
JP4895541B2 (en) * 2005-07-08 2012-03-14 シャープ株式会社 Wavelength conversion member, light emitting device, and method of manufacturing wavelength conversion member
JPWO2007017928A1 (en) 2005-08-08 2009-02-19 独立行政法人産業技術総合研究所 Transparent white fluorescent glass
JP2007091960A (en) * 2005-09-30 2007-04-12 Nitto Denko Corp Resin composition for sealing optical semiconductor element and optical semiconductor device obtained by using the same
JP4991027B2 (en) * 2005-12-26 2012-08-01 日亜化学工業株式会社 Oxynitride phosphor and light emitting device using the same
KR100771570B1 (en) 2006-06-30 2007-10-30 서울반도체 주식회사 Phosphor, method for manufacturing the same and light emitting diode
JP5100059B2 (en) * 2006-08-24 2012-12-19 スタンレー電気株式会社 Phosphor, method for producing the same, and light emitting device using the same
JP5378644B2 (en) 2006-09-29 2013-12-25 Dowaホールディングス株式会社 Method for producing nitride phosphor or oxynitride phosphor
JP2008208380A (en) * 2008-05-26 2008-09-11 Nippon Electric Glass Co Ltd Luminescent color-converting member
JP5190680B2 (en) * 2008-05-26 2013-04-24 日本電気硝子株式会社 Luminescent color conversion member
WO2010055831A1 (en) * 2008-11-13 2010-05-20 国立大学法人名古屋大学 Semiconductor light-emitting device
JP2012513520A (en) 2008-12-22 2012-06-14 クムホ・エレクトリック・インコーポレーテッド Oxynitride phosphor, method for producing the same, and light emitting device
DE102010050832A1 (en) * 2010-11-09 2012-05-10 Osram Opto Semiconductors Gmbh Luminescence conversion element, method for its production and optoelectronic component with luminescence conversion element
CN104327853B (en) * 2014-09-26 2016-06-15 西南科技大学 A kind of three primary colors fluorescent powder and toning preparation method thereof
CN112174647B (en) * 2019-07-04 2023-06-09 上海航空电器有限公司 Low-temperature cofiring fluorescent ceramic composite for white light illumination, preparation method and light source device
CN113651531B (en) * 2021-09-22 2022-11-22 烟台希尔德材料科技有限公司 Second phase glass reinforced phosphor compound and preparation method and composition thereof
CN114590831B (en) * 2022-03-12 2023-06-13 陕西师范大学 LaSi 2 N 3 O crystal and fluorescent powder and preparation method thereof
CN114920455B (en) * 2022-06-06 2023-08-01 温州大学 LED for (BaSr) 2 SiO 4 :Eu 2+ Fluorescent glass and preparation and application of composite fluorescent glass

Also Published As

Publication number Publication date
JP2001214162A (en) 2001-08-07

Similar Documents

Publication Publication Date Title
JP3763719B2 (en) Phosphors based on oxynitride glass
JP3668770B2 (en) Oxynitride phosphor activated with rare earth elements
JP4207489B2 (en) α-sialon phosphor
KR100798054B1 (en) Light emitting devices having silicate fluorescent phosphors
JP4873183B2 (en) Phosphor and light emitting device
EP1573826B1 (en) Illumination system comprising a radiation source and a fluorescent material
JP4524468B2 (en) Phosphor, method for producing the same, light source using the phosphor, and LED
JP4799549B2 (en) White light emitting diode
CN100530708C (en) Phosphor and blends thereof for use in LED
JP4511885B2 (en) Phosphor, LED and light source
KR100666211B1 (en) Composition of silicates phosphor for uv and long-wavelength excitation
CN1180052C (en) Wavelength-converting luminous material of white light for LED
US20060049414A1 (en) Novel oxynitride phosphors
JP2008533233A (en) Illumination system including a radiation source and a luminescent material
WO2006095285A1 (en) Illumination system comprising a radiation source and a fluorescent material
CN101124293A (en) Illumination system comprising a radiation source and a luminescent material
CN101496136A (en) Two-phase silicate-based yellow phosphor
JP2004189996A (en) Oxynitride fluorescent material and method for producing the same
JP4356563B2 (en) Oxynitride phosphor, method for producing oxynitride phosphor, and white light emitting device
JP4165412B2 (en) Nitride phosphor, method for producing nitride phosphor, white light emitting device and pigment
WO2016199406A1 (en) Phosphor and method for producing same, and led lamp
JP4770319B2 (en) Phosphor and light emitting device
JP2006137902A (en) Nitride phosphor, process for producing nitride phosphor and white light-emitting element
US20080239206A1 (en) Ba-Sr-Ca CONTAINING COMPOUND AND WHITE LIGHT EMITTING DEVICE INCLUDING THE SAME
CN114574206A (en) Fluorescent powder for white light-emitting diode and synthetic method and application thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees