JP2001214162A - Phosphor comprising oxynitride glass as matrix material - Google Patents

Phosphor comprising oxynitride glass as matrix material

Info

Publication number
JP2001214162A
JP2001214162A JP2000030280A JP2000030280A JP2001214162A JP 2001214162 A JP2001214162 A JP 2001214162A JP 2000030280 A JP2000030280 A JP 2000030280A JP 2000030280 A JP2000030280 A JP 2000030280A JP 2001214162 A JP2001214162 A JP 2001214162A
Authority
JP
Japan
Prior art keywords
mol
phosphor
glass
excitation
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000030280A
Other languages
Japanese (ja)
Other versions
JP3763719B2 (en
Inventor
Kyota Ueda
恭太 上田
Tadashi Endo
忠 遠藤
Masakazu Komatsu
正和 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2000030280A priority Critical patent/JP3763719B2/en
Publication of JP2001214162A publication Critical patent/JP2001214162A/en
Application granted granted Critical
Publication of JP3763719B2 publication Critical patent/JP3763719B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)
  • Glass Compositions (AREA)
  • Luminescent Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a phosphor suitable for a visible illuminant, including a white LED phosphor which uses blue LED as an illuminant, and conventionally, an oxide series phosphor has generally over 400 nm and greatly decreases excitation spectrum intensity, and in white LED coated an InGaN series blue LED(light emission diode) ship with a YAG series fluophor, an excitation peak of the fluophor does not effectively lap on a light emission peak of the blue LED and locates in a short wavelength side, resultingly, in a white LED manufacture with high luminance, the phosphor has not good excitation efficiency. SOLUTION: The phosphor comprising an oxynitride glass matrix comprises CaCO3 of 20-50 mol% (in terms of CaO), Al2O3 of 0-30 mol%, SiO of 25-60 mol%, AlN of 5-50 mol%, and a rare earth oxide or a transition metallic oxide of 0.1-20 mol% (the sum of the five components is 100 mol%). A content of nitrogen is <=15%. Another rare earth element ion of 0.1-10 mol% (in terms of an oxide) may be contained on fluorescent glass as a coactivating agent.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、蛍光体、特に青色
発光ダイオード(青色LED)を光源とする白色発光ダ
イオード(白色LED)の蛍光体として有用な蛍光体に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a phosphor, particularly a phosphor useful as a phosphor of a white light emitting diode (white LED) using a blue light emitting diode (blue LED) as a light source.

【0002】[0002]

【従来の技術】希土類元素を使用した粉末や薄膜状の酸
化物発光体は従来から広く知られてきたが、一方で、非
酸化物に希土類元素を賦活した発光体の研究例は少な
く、例えば、窒化物やオキシ窒化物については、βサイ
アロン構造などのSi−O−N系のオキシ窒化物結晶
(特開昭60−206889号公報、J.W.H.van Krevel
etal「Long wavelength Ce3+ emission in Y-Si-0-N ma
terials」,Journal of Alloys and Compounds 268 (199
8)272-277)などが開示されているにすぎない。
2. Description of the Related Art Oxide light emitters in the form of powders and thin films using rare earth elements have been widely known, but on the other hand, there have been few studies on light emitters in which a non-oxide is activated with a rare earth element. For nitrides and oxynitrides, Si-ON-based oxynitride crystals having a β-sialon structure or the like (JP-A-60-206889, JWHvan Krevel)
etal `` Long wavelength Ce 3+ emission in Y-Si-0-Nma
terials '', Journal of Alloys and Compounds 268 (199
8) 272-277) are merely disclosed.

【0003】また、結晶性の粉末や薄膜ではなく、ガラ
ス状態にある発光体としては発光中心であるEu2 3
やTb2 3 を比較的多量に含有するフッ燐酸塩蛍光ガ
ラス(特開平8−133780号公報)や酸化物蛍光ガ
ラス(特開平10−167755号公報)が知られてい
る。
[0003] Further, as a luminous body in a glassy state, not a crystalline powder or a thin film, Eu 2 O 3 which is a luminescent center is used.
Fluorescent glass (Japanese Patent Application Laid-Open No. 8-133780) and oxide fluorescent glass (Japanese Patent Application Laid-Open No. H10-167755) containing a relatively large amount of Tb 2 O 3 or Tb 2 O 3 are known.

【0004】従来、照明機器産業・ディスプレイ産業の
防災照明など信頼性を要求される分野、車載照明や
液晶バックライトなど小型・軽量が好まれる分野、駅
の行き先案内板など視認性を必要とする分野で白色LE
Dが使用されている。白色LEDの発光色は光の混色に
関する原理によって得られるものであり、蛍光体に吸収
された青色光は励起源としても働き、黄色の蛍光を発す
る。この黄色光と青色光が混ぜ合わされて人間の目には
白色として見える。
Conventionally, fields requiring reliability such as disaster prevention lighting in the lighting equipment industry and display industry, fields where small size and light weight are preferred such as in-vehicle lighting and liquid crystal backlight, and visibility guides such as destination guide boards at stations are required. White LE in the field
D is used. The emission color of the white LED is obtained based on the principle of light color mixing, and the blue light absorbed by the phosphor also functions as an excitation source and emits yellow fluorescence. The yellow light and the blue light are mixed and appear to human eyes as white.

【0005】白色LEDに適する蛍光体として、特に、
(Y,Gd)3 (Al,Ga)5 12の組成式で表され
るYAG系酸化物母体格子中にCeをドープした蛍光体
が知られている。この蛍光体は従来から発光源のInG
aN系青色LEDチップ表面に薄くコーティングして用
いられている。
[0005] As a phosphor suitable for a white LED,
(Y, Gd)Three(Al, Ga)FiveO 12Represented by the composition formula
Phosphor doped with Ce in YAG-based oxide matrix
It has been known. This phosphor has been conventionally used as a light-emitting source InG.
For thin coating on the aN blue LED chip surface
It has been.

【0006】しかし、白色LEDの光源として利用され
るlnGaN系青色LEDの示す発光ピークは465〜
520nmで、YAG系蛍光体を励起することができる
波長範囲より長波長側に位置する。
However, the emission peak of an lnGaN blue LED used as a light source for a white LED shows 465 to 465.
At 520 nm, it is located on the longer wavelength side than the wavelength range in which the YAG-based phosphor can be excited.

【0007】[0007]

【発明が解決しようとする課題】従来の酸化物系蛍光体
は、波長400nmを超えると励起スペクトル強度が著
しく減少するものが一般的である。このため、InGa
N系青色LEDチップにYAG系蛍光体を塗布して作ら
れる白色LED(白色発光ダイオード)では、蛍光体の
励起ピークが青色LEDの発光ピークと効率よく重なら
ず、より短波長側に位置することから、高輝度の白色L
EDを作製するのに必ずしも励起効率がよい蛍光体では
なかった。
Generally, conventional oxide-based phosphors have a remarkable decrease in excitation spectrum intensity when the wavelength exceeds 400 nm. Therefore, InGa
In a white LED (white light emitting diode) made by applying a YAG-based phosphor to an N-based blue LED chip, the excitation peak of the phosphor does not efficiently overlap the emission peak of the blue LED and is located on the shorter wavelength side. Therefore, the high brightness white L
It was not necessarily a phosphor with high excitation efficiency for producing ED.

【0008】[0008]

【課題を解決するための手段】そこで、本発明者は、酸
素(−2価)の一部を窒素(−3価)に置き換え、結合
のイオン性や共有性の割合が変われば励起・発光波長が
自在に変化するとの着想に至り、全体の電荷を中性にバ
ランスさせたガラス系においてアルカリ土類(+2価)
と発光中心イオンとを加えて本発明を完成させた。こう
した発想は新規であり、可視・紫外光領域の広い波長範
囲(≦550nm)に励起スペクトルをもったオキシ窒
化物ガラスの作製は例がない。すなわち、本発明の蛍光
体は、オキシ窒化物ガラスを母体材料として用い、母体
材料のCa2+イオンの一部を発光中心となるEu2+、E
3+、Ce3+、Tb 3+などの希土類イオンまたはC
3+、Mn2+などの遷移金属イオンで置換して合成した
ものである。
Means for Solving the Problems Accordingly, the present inventor has proposed an acid
Part of element (2) is replaced with nitrogen (3)
If the ratio of ionicity or covalentness changes, the excitation / emission wavelength
The idea was that it would change freely, and the overall charge was neutralized.
Alkaline earth (+ divalent) in lanced glass system
And the emission center ion were added to complete the present invention. like this
The new idea is a new one, with a wide wavelength range of visible and ultraviolet light.
Oxynitride with an excitation spectrum around (≤550 nm)
There is no example of producing a fluoride glass. That is, the fluorescence of the present invention
The body uses oxynitride glass as the base material,
Material Ca2+Eu that makes a part of ions a luminescence center2+, E
u3+, Ce3+, Tb 3+Rare earth ion such as C or C
r3+, Mn2+Synthesized by replacing with transition metal ions such as
Things.

【0009】本発明は、モル%表示で、CaCO3 をC
aOに換算して:20〜50モル%、Al2 3 :0〜
30モル%、SiO:25〜60モル%、AlN:5〜
50モル%、希土類酸化物または遷移金属酸化物:0.
1〜20モル%で、5成分の合計が100モル%となる
オキシ窒化物ガラスを母体材料とした蛍光体である。
According to the present invention, CaCO 3 is converted to C
in terms of aO-: 20 to 50 mol%, Al 2 O 3: 0~
30 mol%, SiO: 25-60 mol%, AlN: 5-
50 mol%, rare earth oxide or transition metal oxide: 0.
It is a phosphor whose base material is oxynitride glass in which the total of the five components is 1 to 20 mol% and the total of the five components is 100 mol%.

【0010】また、本発明は、窒素含有量が15wt%
以下であることを特徴とする上記のオキシ窒化物ガラス
を母体材料とした蛍光体である。
Further, according to the present invention, the nitrogen content is 15 wt%.
A phosphor using the above oxynitride glass as a base material, characterized in that:

【0011】また、本発明は、前記の希土類酸化物イオ
ンの他に増感剤となる他の希土類元素イオンを希土類酸
化物として蛍光ガラス中に0.1〜10モル%の範囲の
含有量で共賦活剤として含むことを特徴とする上記のオ
キシ窒化物ガラスを母体材料とした蛍光体である。
Further, the present invention provides a fluorescent glass having a rare earth oxide ion as a rare earth oxide in addition to the rare earth oxide ion in a content of 0.1 to 10 mol% in the fluorescent glass. A phosphor using the above oxynitride glass as a base material, characterized in that the phosphor is contained as a co-activator.

【0012】さらに、本発明は、InGaN系青色LE
Dを光源とする上記の蛍光体を用いた白色LEDであ
る。
Further, the present invention provides an InGaN-based blue LE
It is a white LED using the above-mentioned phosphor using D as a light source.

【0013】本発明の蛍光体の成分のCaCO3 は、C
aOの原料であり、ガラス化範囲を広げるだけでなく、
蛍光ガラス中に発光中心となる希土類イオンまたは遷移
金属イオンを多量に、かつ、安定に含有させることがで
きる。20〜30モル%の範囲がより好ましい。なお、
Ca2+サイトにあるCa2+イオンをSr2+やBa2+イオ
ンに容易に置き換えることによって発光中心イオンとな
る希土類酸化物または遷移金属酸化物の含有量を上記の
とおり0.1〜20モル%の範囲内で自在に制御するこ
とが可能になる。
The CaCO 3 component of the phosphor of the present invention is C
It is a raw material of aO and not only expands vitrification range,
A large amount of rare earth ions or transition metal ions serving as luminescent centers can be stably contained in the fluorescent glass. The range of 20 to 30 mol% is more preferable. In addition,
As described above, the content of the rare earth oxide or transition metal oxide serving as the luminescence center ion by easily replacing the Ca 2+ ion at the Ca 2+ site with Sr 2+ or Ba 2+ ion is as described above. It is possible to control freely within the range of mol%.

【0014】AlNとAl2 3 は、窒素含有量を変化
させるために用いる。AlNが40〜10モル%、Al
2 3 が0〜20モル%の範囲がより好ましい。SiO
2 は、ガラス形成成分の一つであり、CaO と組み合
わせることによりガラス融液の溶融温度を低下させる。
30〜40モル%の範囲がより好ましい。
AlN and Al 2 O 3 are used to change the nitrogen content. AlN 40 to 10 mol%, Al
More preferably, 2 O 3 is in the range of 0 to 20 mol%. SiO
2 is one of the glass forming components, and CaO In combination, the melting temperature of the glass melt is lowered.
A range of 30 to 40 mol% is more preferable.

【0015】希土類酸化物または遷移金属酸化物は、E
2+、Eu3+、Ce3+、Tb3+などの希土類イオンまた
はCr3+、Mn2+などの遷移金属イオンをガラス中にド
ープする原料であり、ガラス組成限界である20モル%
以下の範囲において賦活し、発光中心の濃度消光が認め
られない0.5〜10モル%の賦活量において強い発光
強度を有する。
The rare earth oxide or transition metal oxide is E
Raw material for doping rare earth ions such as u 2+ , Eu 3+ , Ce 3+ , Tb 3+ or transition metal ions such as Cr 3+ , Mn 2+ into glass. The glass composition limit of 20 mol%
It is activated in the following range, and has a strong luminescence intensity at an activation amount of 0.5 to 10 mol% where no concentration quenching of the luminescence center is observed.

【0016】オキシ窒化物ガラスは、酸素の一部を窒素
に置換したものであり、窒素の導入によってガラス網目
構造の化学結合が強化され、ガラス転移温度、軟化温度
などの熱的性質の他、機械的な性質や化学的な性質が著
しく向上する(例えば、特公平7−37333号公報)
ことが知られている。
The oxynitride glass is obtained by substituting a part of oxygen with nitrogen. By introducing nitrogen, the chemical bond of the glass network structure is strengthened, and in addition to thermal properties such as glass transition temperature and softening temperature, Mechanical properties and chemical properties are significantly improved (for example, Japanese Patent Publication No. 7-33733).
It is known.

【0017】本発明の蛍光体は、ガラス中の窒素含有量
は、15wt%以下のガラス組成範囲において窒素含有
量を制御して発光スペクトルのピーク位置を移動させる
ことができ、さらにオキシ窒化物ガラス蛍光体の励起ス
ペクトル中のピーク波長を紫外から緑の範囲で調整でき
る。この発光ピーク波長の移動はゆるやかに黄から赤に
変化するため、窒素含有量を変化させることにより蛍光
体の多色化が容易に図れる。より好ましい窒素含有量
は、4〜7wt%である。
In the phosphor of the present invention, the nitrogen content in the glass can be controlled to shift the peak position of the emission spectrum in the glass composition range of 15 wt% or less. The peak wavelength in the excitation spectrum of the phosphor can be adjusted in a range from ultraviolet to green. Since the shift of the emission peak wavelength gradually changes from yellow to red, by changing the nitrogen content, multicoloring of the phosphor can be easily achieved. A more preferred nitrogen content is 4-7 wt%.

【0018】オキシ窒化物ガラスを製造する代表的な方
法としては二つの方法があり、一つは窒素源に窒化物を
用いて溶融する方法であり、他の方法としてはゾル−ゲ
ル法などで作製した多孔質ガラスをアンモニアガスで窒
化させる方法がある。
There are two typical methods for producing oxynitride glass. One is a method using a nitride as a nitrogen source and the other is a sol-gel method. There is a method of nitriding the produced porous glass with ammonia gas.

【0019】前者の方法は溶融時の高温で窒化物が分解
するので、窒素含有量を10wt%以上にすることは非
常に難しいが、例えば、10気圧の窒素加圧下でこれら
のガラスを合成することにより、比較的多量の窒素を含
むオキシ窒化物ガラスが得られる。このようなオキシ窒
化物ガラスは、機械的強度や化学的安定性にさらに優れ
In the former method, the nitride is decomposed at a high temperature during melting, so that it is very difficult to increase the nitrogen content to 10% by weight or more. For example, these glasses are synthesized under a nitrogen pressure of 10 atm. As a result, an oxynitride glass containing a relatively large amount of nitrogen can be obtained. Such oxynitride glasses are more excellent in mechanical strength and chemical stability

【0020】蛍光ガラス中には、基本的に一種類の発光
中心しか含まない。ただし、二種類の希土類元素が蛍光
ガラス中に含まれる場合は有り得る。この二種類を同時
に蛍光ガラスにドープする効果として二つ挙げることが
できる。一つは、増感作用、もう一つは、キャリアーの
トラップ準位を新たに形成し、長残光性の発現および改
善やサーモルミネッセンスを改善させるというものであ
る。増感作用が観察される組み合わせとして、一般的
に、Eu3+イオンに対してTb3+イオン、Tb3+イオン
に対してCe3+イオンが挙げられる。
The fluorescent glass basically contains only one kind of emission center. However, it is possible that two kinds of rare earth elements are contained in the fluorescent glass. The two effects of doping the fluorescent glass at the same time can be cited as two effects. One is a sensitizing effect, and the other is to newly form a trap level of a carrier and to develop and improve long afterglow and to improve thermoluminescence. In general, combinations in which a sensitizing effect is observed include Tb 3+ ions for Eu 3+ ions and Ce 3+ ions for Tb 3+ ions.

【0021】Eu2+(あるいはCe3+)イオンのほかに
他の希土類元素イオン(Gd3+、Tb3+、Dy3+、また
はSm3+イオンなど)を増感剤とするために、これら希
土類酸化物を蛍光ガラス中に0.1〜10モル%の含有
量で共賦活剤として含ませることができる。
In order to use other rare earth element ions (such as Gd 3+ , Tb 3+ , Dy 3+ , or Sm 3+ ) as sensitizers in addition to Eu 2+ (or Ce 3+ ) ions, These rare earth oxides can be contained as a coactivator in the fluorescent glass at a content of 0.1 to 10 mol%.

【0022】オキシ窒化物ガラスとしては、Si−O−
N,Mg−Si−O−N,Al−Si−O−N,Nd−
Al−Si−O−N,Y−Al−Si−O−N,Ca−
Al−Si−O−N,Mg−Al−Si−O−N,Na
−−Si−O−N,Na−Ca−Si−O−N,Li−
Ca−Al−Si−O−N,Na−B−Si−O−N,
Na−Ba−B−Al−Si−O−N,Ba−Al−S
i−O−N,Na−B−O−N,Li−P−O−N,N
a−P−O−Nなどの系が知られている
As the oxynitride glass, Si—O—
N, Mg-Si-ON, Al-Si-ON, Nd-
Al-Si-ON, Y-Al-Si-ON, Ca-
Al-Si-ON, Mg-Al-Si-ON, Na
--- Si-ON, Na-Ca-Si-ON, Li-
Ca-Al-Si-ON, Na-B-Si-ON,
Na-Ba-B-Al-Si-ON, Ba-Al-S
i-ON, Na-B-ON, Li-PON, N
Systems such as a-P-O-N are known

【0023】これらの系の中で、本発明の母材となる系
は、Ca−Al−Si−O−N系オキシ窒化物ガラス
(作花らが1983年に作製したもの。「Journal of No
n-Crystalline Solids 56(1983)147-152 )に相当する
組成を有する。
Among these systems, the base material of the present invention is a Ca-Al-Si-ON-based oxynitride glass (manufactured by Sakuhana et al. In 1983. "Journal of No.
n-Crystalline Solids 56 (1983) 147-152).

【0024】このCa−Al−Si−O−N系オキシ窒
化物ガラスの窒素含有量は、約5.5wt%と報告され
ており、本発明の蛍光体の母材ガラスとしてこのオキシ
窒化物ガラスの組成を用いることができる。
It is reported that the Ca-Al-Si-ON-based oxynitride glass has a nitrogen content of about 5.5 wt%, and this oxynitride glass is used as a base glass for the phosphor of the present invention. Can be used.

【0025】本発明のCa−Al−Si−O−N系オキ
シ窒化物ガラス蛍光体の製造方法は上述の従来公知の方
法を用いることができるが、その場合、希土類酸化物を
原料として用い、他の原料と混合し、これを出発原料と
して窒素雰囲気において加熱溶融して蛍光ガラスを合成
する。
The method of producing the Ca-Al-Si-ON-based oxynitride glass phosphor of the present invention can use the above-mentioned conventionally known method. In this case, a rare earth oxide is used as a raw material. The raw material is mixed with other raw materials, and heated and melted in a nitrogen atmosphere as a starting raw material to synthesize fluorescent glass.

【0026】例えば、希土類酸化物、金属酸化物CaO
(←CaCO3 、Al2 3 、SiO2 )にAlNを加
え、高温、例えば1700℃程度で融解して合成するこ
とができる。この際に、Al2 3 とAlNの割合を変
えることによって、ガラスにおける窒素含有量を変化さ
せることができる。
For example, rare earth oxides and metal oxides CaO
(← CaCO 3 , Al 2 O 3 , SiO 2 ) can be synthesized by adding AlN and melting at a high temperature, for example, about 1700 ° C. At this time, the nitrogen content in the glass can be changed by changing the ratio between Al 2 O 3 and AlN.

【0027】以下に、Eu2+イオンをドープしたCa−
Al−Si−O−N系オキシ窒化物ガラスにおける窒素
含有量と励起・蛍光スペクトルとの関係を詳しく説明す
る。試料の調製は下記の原料組成を用いて行った。原料
粉末を以下の試料A、B、Cの各組成で混合し、この混
合試料粉末を炉材との反応を避けるためにモリブデン箔
に包み、高周波炉を用いて、窒素雰囲気下、1700℃
において2時間、加熱溶融し、さらに急冷して蛍光ガラ
スを得た。
The following is a description of Ca − doped with Eu 2+ ions.
The relationship between the nitrogen content and the excitation / fluorescence spectrum of the Al-Si-ON-based oxynitride glass will be described in detail. The sample was prepared using the following raw material composition. The raw material powder was mixed with the following compositions of Samples A, B and C, and the mixed sample powder was wrapped in molybdenum foil in order to avoid a reaction with the furnace material.
For 2 hours, and then rapidly cooled to obtain a fluorescent glass.

【0028】(試料A) CaCO3 :Al2 3 :SiO2 :AlN:Eu2
3 =24.0:3.3:33.4:33.3:6.0
(N:5wt%) (試料B) CaCO3 :Al2 3 :SiO2 :AlN:Eu2
3 =26.2:9.1:36.4:21.8:6.5
(N:3wt%) (試料C) CaCO3 :Al2 3 :SiO2 :AlN:Eu2
3 =27.7:15.4:38.5:11.5:6.9
(N:2wt%)
(Sample A) CaCO 3 : Al 2 O 3 : SiO 2 : AlN: Eu 2 O
3 = 24.0: 3.3: 33.4: 33.3: 6.0
(N: 5 wt%) (Sample B) CaCO 3 : Al 2 O 3 : SiO 2 : AlN: Eu 2 O
3 = 26.2: 9.1: 36.4: 21.8: 6.5
(N: 3 wt%) (Sample C) CaCO 3 : Al 2 O 3 : SiO 2 : AlN: Eu 2 O
3 = 27.7: 15.4: 38.5: 11.5: 6.9
(N: 2 wt%)

【0029】図1に、Eu2+イオンをドープしたCa−
Al−Si−O−N系オキシ窒化物ガラスの励起・蛍光
スペクトルを示す。蛍光ガラスの窒素含有量は、試料A
から試料Cになるにしたがい減少する。これらの蛍光体
の励起スペクトル強度は、400nmから急に増加し、
500nm辺りに最大値を持つ。一方、発光スペクトル
のピークは、600nm辺り(赤色)となった。発光ス
ペクトルの位置は、ガラス中の窒素含有量が減少すると
短波長側にシフトした。このように、窒素含有量をコン
トロールすることにより、蛍光体の多色化が可能であ
る。試料Aは、約5wt%の窒素含有量を有し、試料B
は、約3wt%の窒素含有量を有し、試料Cは、約2w
t%の窒素含有量を有する。
FIG. 1 shows a graph of Ca− doped with Eu 2+ ions.
1 shows an excitation / fluorescence spectrum of an Al-Si-ON-based oxynitride glass. The nitrogen content of the fluorescent glass
From sample No. to sample C. The excitation spectrum intensity of these phosphors increases sharply from 400 nm,
It has a maximum value around 500 nm. On the other hand, the peak of the emission spectrum was around 600 nm (red). The position of the emission spectrum shifted to the shorter wavelength side as the nitrogen content in the glass decreased. Thus, by controlling the nitrogen content, it is possible to make the phosphor polychromatic. Sample A has a nitrogen content of about 5 wt% and sample B
Has a nitrogen content of about 3 wt% and sample C contains about 2 w
It has a nitrogen content of t%.

【0030】図1の励起スペクトルには二つのピークを
有する。250〜350nmのピークはEu−Oの電荷
移動吸収帯に、一方、450〜550nmのピークはE
u−Nの電荷移動吸収帯にそれぞれ帰属される。したが
って、蛍光ガラス中の窒素含有量が減少すれば450〜
550nmのEu−Oの電荷移動吸収帯ピークが減少す
る。
The excitation spectrum of FIG. 1 has two peaks. The peak at 250 to 350 nm is in the charge transfer absorption band of Eu—O, while the peak at 450 to 550 nm is
It is assigned to the u-N charge transfer absorption band. Therefore, if the nitrogen content in the fluorescent glass decreases, 450-
The peak of the charge transfer absorption band of Eu-O at 550 nm decreases.

【0031】本発明のオキシ窒化物ガラス蛍光体は、I
nGaN系青色LEDを励起光(450〜550nm)
とする場合、窒素含有量が大きいほどよいと言える。試
料Aと試料Bとを比較すると、窒素含有量の増加に伴い
Eu−Nの電荷移動吸収帯のピークは長波長側に移動す
ることが分かる。よって、窒素含有量を僅かに変化させ
ることにより、各種の青色LEDの励起光の波長に一致
させることができる。
The oxynitride glass phosphor of the present invention comprises
Excitation light (450-550nm) for nGaN blue LED
In this case, it can be said that the larger the nitrogen content, the better. Comparing Sample A and Sample B, it can be seen that the peak of the Eu-N charge transfer absorption band shifts to the longer wavelength side as the nitrogen content increases. Therefore, by slightly changing the nitrogen content, it is possible to match the wavelength of the excitation light of various blue LEDs.

【0032】試料Aから試料Cに窒素含有量を減少させ
ると、680nmから580nmへと発光ピークが連続
的に移動する。励起スペクトルのピーク位置を材料設計
に取り入れないとすると、窒素含有量をコントロールす
ることで580〜680nmまでの発光を有する蛍光ガ
ラスを得ることができる。
When the nitrogen content is reduced from sample A to sample C, the emission peak continuously moves from 680 nm to 580 nm. If the peak position of the excitation spectrum is not taken into the material design, a fluorescent glass having emission from 580 to 680 nm can be obtained by controlling the nitrogen content.

【0033】以上の結果より、窒素含有量は、4〜7w
t%がよく、この範囲において窒素含有量を変化させる
ことにより必要に応じた励起・発光スペクトルを持つ蛍
光ガラスを合成することができる。
From the above results, the nitrogen content is 4 to 7 watts.
t% is good, and by changing the nitrogen content in this range, a fluorescent glass having an excitation / emission spectrum as required can be synthesized.

【0034】[0034]

【実施例】実施例1 Eu2+イオンをドープした実施例 原料粉末を以下の組成で混合し、この混合試料粉末をモ
リブデン箔に包み、高周波加熱炉を用いて、窒素雰囲気
下、1700℃において2時間、加熱溶融し、さらに急
冷して蛍光ガラスを得た。
Example 1 Example doped with Eu 2+ ions Raw material powder was mixed with the following composition, this mixed sample powder was wrapped in molybdenum foil, and was heated at 1700 ° C. in a nitrogen atmosphere using a high-frequency heating furnace. The mixture was heated and melted for 2 hours, and then rapidly cooled to obtain a fluorescent glass.

【0035】(試料A) CaCO3 :Al2 3 :SiO2 :AlN:Eu2
3 =28.2:3.1:31.4:31.3:6.0
(N:5wt%)(Eu:12.0%) (試料B) CaCO3 :Al2 3 :SiO2 :AlN:Eu2
3 =28.6:3.1:31.9:31.8:4.6
(N:5wt%)(Eu:9.2%) (試料C) CaCO3 :Al2 3 :SiO2 :AlN:Eu2
3 =29.1:3.2:32.3:32.3:3.1
(N:5wt%)(Eu:6.2%) (試料D) CaCO3 :Al2 3 :SiO2 :AlN:Eu2
3 2 =29.4:3.2:32.7:32.6:2.1
(N:5wt%)(Eu:4.2%)
(Sample A) CaCO 3 : Al 2 O 3 : SiO 2 : AlN: Eu 2 O
3 = 28.2: 3.1: 31.4: 31.3: 6.0
(N: 5 wt%) (Eu: 12.0%) (Sample B) CaCO 3 : Al 2 O 3 : SiO 2 : AlN: Eu 2 O
3 = 28.6: 3.1: 31.9: 31.8: 4.6
(N: 5 wt%) (Eu: 9.2%) (Sample C) CaCO 3 : Al 2 O 3 : SiO 2 : AlN: Eu 2 O
3 = 29.1: 3.2: 32.3: 32.3: 3.1
(N: 5 wt%) (Eu: 6.2%) (Sample D) CaCO 3 : Al 2 O 3 : SiO 2 : AlN: Eu 2 O
3 2 = 29.4: 3.2: 32.7: 32.6: 2.1
(N: 5 wt%) (Eu: 4.2%)

【0036】図2に、Eu2+イオンのドープ量の異なる
Ca−Al−Si−O−N系オキシ窒化物ガラスの励起
・発光スペクトルを示す。励起・発光スペクトルの形状
は,Eu2+イオンのドープ量に関係なく同じである。た
だし、励起・発光ピークがDからAへと蛍光ガラス中の
Eu2+イオンの量が増加するとともに長波長側に移動す
る。
FIG. 2 shows excitation / emission spectra of Ca-Al-Si-ON-based oxynitride glasses having different doping amounts of Eu 2+ ions. The shape of the excitation / emission spectrum is the same regardless of the doping amount of Eu 2+ ions. However, the excitation / emission peak shifts from D to A and moves to the longer wavelength side as the amount of Eu 2+ ions in the fluorescent glass increases.

【0037】実施例2 Ce3+イオンをドープした実施例 原料粉末を以下の組成で混合し、この混合試料粉末をモ
リブデン箔に包み、高周波炉を用いて、窒素雰囲気下、
1700℃において2時間、加熱溶融し、さらに急冷し
て蛍光ガラスを得た。
Example 2 Example in which Ce 3+ ions were doped Raw material powders were mixed with the following composition, and the mixed sample powder was wrapped in molybdenum foil.
The mixture was heated and melted at 1700 ° C. for 2 hours, and then rapidly cooled to obtain a fluorescent glass.

【0038】(試料A) CaCO3 :Al2 3 :SiO2 :AlN:CeO2
=28.3:3.3:33.8:33.6:1.0
(N:5wt%)(Ce:1.0%) (試料B) CaCO3 :Al2 3 :SiO2 :AlN:CeO2
=29.5:3.3:33.4:33.3:0.5
(N:5wt%)(Ce:0.5%)
(Sample A) CaCO 3 : Al 2 O 3 : SiO 2 : AlN: CeO 2
= 28.3: 3.3: 33.8: 33.6: 1.0
(N: 5 wt%) (Ce: 1.0%) (Sample B) CaCO 3 : Al 2 O 3 : SiO 2 : AlN: CeO 2
= 29.5: 3.3: 33.4: 33.3: 0.5
(N: 5 wt%) (Ce: 0.5%)

【0039】図3に、Ce3+イオンをドープしたCa−
Al−Si−O−N系オキシ窒化物の励起・発光スペク
トルを示す。励起スペクトルは,Ce3+イオンのドープ
量の変化に伴いその形状を大きく変化させたが、発光ス
ペクトルはあまり変わりなく、400〜450nmの範
囲に最大値を持つブロードなピークを示している。Ce
3+イオンのドープ量が少ない試料Bの励起スペクトル
は、二つのピークを有し、200〜330nmのピーク
がCe3+ O、330〜400nmのピークがCe3+
−Nの電荷移動吸収帯にそれぞれ帰属される。この蛍光
ガラスは、いずれも励起光である紫外線照射を止めた後
でも発光し続ける長残光性を有している。
FIG. 3 shows that Ca − doped with Ce 3+ ions.
1 shows an excitation / emission spectrum of an Al-Si-ON-based oxynitride. Although the shape of the excitation spectrum greatly changed with the change of the doping amount of Ce 3+ ions, the emission spectrum did not change much and showed a broad peak having a maximum value in the range of 400 to 450 nm. Ce
The excitation spectrum of Sample B having a small doping amount of 3+ ions has two peaks, and the peak at 200 to 330 nm is Ce 3+ O, the peak at 330 to 400 nm is Ce 3+
-N is assigned to the charge transfer absorption band. Each of these fluorescent glasses has a long afterglow that continues to emit light even after the irradiation of the ultraviolet light as the excitation light is stopped.

【0040】実施例3 Cr3+をドープした実施例 原料粉末を以下の組成で混合し、この混合試料粉末をモ
リブデン箔に包み、高周波炉を用いて、窒素雰囲気下、
1700℃において2時間、加熱溶融し、さらに急冷し
て蛍光ガラスを得た。なお、Cr3+を賦活した蛍光ガラ
スについて、得られた試料の均一性をそれぞれ検討する
ためにそれぞれ二種類作製した。
Example 3 Example in which Cr 3+ was doped Raw material powders were mixed with the following composition, and the mixed sample powder was wrapped in molybdenum foil.
The mixture was heated and melted at 1700 ° C. for 2 hours, and then rapidly cooled to obtain a fluorescent glass. Two types of fluorescent glasses activated with Cr 3+ were prepared in order to examine the uniformity of the obtained samples.

【0041】(試料A) CaCO3 :Al2 3 :SiO2 :AlN:Cr2
3 =28.3:3.3:33.8:33.6:1.0
(N:5wt%)(Cr:2.0%) (試料B) CaCO3 :Al2 3 :SiO2 :AlN:Cr2
3 =28.3:3.3:33.8:33.6:1.0
(N:5wt%)(Cr:2.0%)
(Sample A) CaCO 3 : Al 2 O 3 : SiO 2 : AlN: Cr 2 O
3 = 28.3: 3.3: 33.8: 33.6: 1.0
(N: 5 wt%) (Cr: 2.0%) (Sample B) CaCO 3 : Al 2 O 3 : SiO 2 : AlN: Cr 2 O
3 = 28.3: 3.3: 33.8: 33.6: 1.0
(N: 5 wt%) (Cr: 2.0%)

【0042】図4に、Cr3+イオンをドープしたCa−
Al−Si−O−N系オキシ窒化物ガラスの励起・発光
スペクトルを示す。図4において、同じバッチから採取
したCr3+をドープしたオキシ窒化物ガラスは、二種類
の試料(AとB)が確認された。試料Aの励起スペクト
ルは470nmの発光をモニターしながら測定した結果
である。その発光スペクトルは、270nmを励起光と
して測定したものである。
FIG. 4 shows that Ca− doped with Cr 3+ ions.
1 shows an excitation / emission spectrum of an Al-Si-ON-based oxynitride glass. In FIG. 4, two types of samples (A and B) were confirmed as Cr 3+ -doped oxynitride glasses collected from the same batch. The excitation spectrum of Sample A is the result of measurement while monitoring emission at 470 nm. The emission spectrum was measured using 270 nm as excitation light.

【0043】一方、試料Bの励起スペクトル1は、44
0nmの発光をモニターしながら測定したものである。
また、Bの発光スペクトル1は、255nmを励起光と
して測定したもので、また、Bの発光スペクトル2は、
335nmを励起光として測定したものである。
On the other hand, the excitation spectrum 1 of sample B is 44
It was measured while monitoring the emission at 0 nm.
The emission spectrum 1 of B was measured using 255 nm as excitation light, and the emission spectrum 2 of B was
It was measured using 335 nm as excitation light.

【0044】試料Aの励起・発光スペクトルは試料Bの
両スペクトルと異なっているが、よく観察すると、それ
ぞれの励起スペクトルには2つのピークがある。また、
発光スペクトルのブロードなピークは350〜600n
mに同様に存在することを考慮すれば両試料は類似して
いる。なお、励起スペクトルの255nmのピークは、
蛍光ガラスが有する母体材料の吸収、335nmのピー
クは、Cr3+イオン自身の吸収としてそれぞれ帰属され
る。
Although the excitation and emission spectra of sample A are different from those of sample B, a close observation shows that each excitation spectrum has two peaks. Also,
Broad peak of emission spectrum is 350-600n
Both samples are similar, considering that they are also present in m. Note that the peak at 255 nm of the excitation spectrum is
The absorption of the base material of the fluorescent glass and the peak at 335 nm are respectively attributed to the absorption of Cr 3+ ions themselves.

【0045】実施例4 Mn2+をドープした実施例 原料粉末を以下の組成で混合し、この混合試料粉末をモ
リブデン箔に包み、高周波加熱炉を用いて、窒素雰囲気
下、1700℃において2時間、加熱溶融し、さらに急
冷して蛍光ガラスを得た。なお、Mn2+を賦活した蛍光
ガラスについて、得られた試料の均一性をそれぞれ検討
するためにそれぞれ二種類作製した。
Example 4 Example doped with Mn 2+ The raw material powder was mixed with the following composition, the mixed sample powder was wrapped in molybdenum foil, and was heated at 1700 ° C. for 2 hours in a nitrogen atmosphere using a high-frequency heating furnace. The mixture was heated and melted, and then rapidly cooled to obtain a fluorescent glass. In addition, two types of fluorescent glasses in which Mn 2+ was activated were prepared in order to examine the uniformity of the obtained samples.

【0046】(試料A) CaCO3 :Al2 3 :SiO2 :AlN:MnCO
3 =29.9:2.8:33.2:33.1:1.0
(N:5wt%)(Mn:1.0%) (試料B) CaCO3 :Al2 3 :SiO2 :AlN:MnCO
3 =29.9:2.8:33.2:33.1:1.0
(N:5wt%)(Mn:1.0%)
(Sample A) CaCO 3 : Al 2 O 3 : SiO 2 : AlN: MnCO
3 = 29.9: 2.8: 33.2: 33.1: 1.0
(N: 5 wt%) (Mn: 1.0%) (Sample B) CaCO 3 : Al 2 O 3 : SiO 2 : AlN: MnCO
3 = 29.9: 2.8: 33.2: 33.1: 1.0
(N: 5 wt%) (Mn: 1.0%)

【0047】図5に,Mn2+イオンをドープしたCa一
Al−Si−O−N系オキシ窒化物ガラスの励起・発光
スペクトルを示す。図5における試料Aと試料Bの励起
・発光スペクトルの比較から、Mn2+をドープしたオキ
シ窒化物ガラスは、均一である。
FIG. 5 shows an excitation / emission spectrum of a Ca-Al-Si-ON-based oxynitride glass doped with Mn 2+ ions. From the comparison of the excitation and emission spectra of Sample A and Sample B in FIG. 5, the oxynitride glass doped with Mn 2+ is uniform.

【0048】[0048]

【発明の効果】本発明の蛍光体は、励起スペクトルの位
置が酸化物ガラスと比較して長波長側に著しく移動し、
吸収ピークが青色LEDの発光ピーク近辺(450〜5
20nm)で最大となり、さらに、ピーク幅も大きくな
るため、lnGaN系青色LEDを励起光源にした場
合、この蛍光体と組み合わせると効率よく励起され、よ
り明るい白色LEDが実現できる。また、ガラスはオキ
シ窒化物のような結晶とは異なり、構造がルーズな分、
反応条件さえ満たすことができれば、オキシ窒化物ガラ
ス中のOとNの比を自由に変えることができ、N含有量
の変化による蛍光体の多色化が容易に図れる。
According to the phosphor of the present invention, the position of the excitation spectrum remarkably shifts to the longer wavelength side as compared with the oxide glass,
The absorption peak is around the emission peak of the blue LED (450 to 5
20 nm), and the peak width also increases. Therefore, when an InGaN-based blue LED is used as an excitation light source, it is efficiently excited when combined with this phosphor, and a brighter white LED can be realized. Also, unlike crystals like oxynitride, glass has a loose structure,
As long as the reaction conditions can be satisfied, the ratio of O to N in the oxynitride glass can be freely changed, and the multicoloring of the phosphor can be easily achieved by changing the N content.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明のEuをドープしたオキシ窒化
物ガラスのN含有量依存性を示す励起・蛍光スペクトル
のグラフである。
FIG. 1 is a graph of an excitation / fluorescence spectrum showing the N content dependency of the Eu-doped oxynitride glass of the present invention.

【図2】図2は、本発明のEuをドープしたオキシ窒化
物ガラスのEu量依存性を示す励起・蛍光スペクトルの
グラフである。
FIG. 2 is a graph of an excitation / fluorescence spectrum showing the Eu content dependence of the Eu-doped oxynitride glass of the present invention.

【図3】図3は、本発明のCeをドープしたオキシ窒化
物ガラスの励起・蛍光スペクトルのグラフである。
FIG. 3 is a graph of an excitation / fluorescence spectrum of the Ce-doped oxynitride glass of the present invention.

【図4】図4は、本発明のCrをドープしたオキシ窒化
物ガラスの励起・蛍光スペクトルのグラフである。
FIG. 4 is a graph of an excitation / fluorescence spectrum of the Cr-doped oxynitride glass of the present invention.

【図5】図5は、本発明のMnをドープしたオキシ窒化
物ガラスの励起・蛍光スペクトルのグラフである。
FIG. 5 is a graph of an excitation / fluorescence spectrum of the Mn-doped oxynitride glass of the present invention.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G062 AA04 BB01 BB20 CC04 CC10 DA04 DA05 DA06 DB01 DB02 DB03 DB04 DC01 DD01 DE01 DF01 EA01 EB01 EC01 ED01 EE04 EE05 EF01 EG01 FA01 FA10 FB01 FC01 FD01 FE01 FF01 FG01 FH01 FJ01 FK01 FL02 FL03 FL04 GA01 GB01 GC01 GD01 GE01 HH01 HH03 HH05 HH07 HH08 HH09 HH10 HH11 HH13 HH15 HH17 HH20 JJ01 JJ02 JJ03 JJ05 JJ07 JJ10 KK01 KK03 KK04 KK05 KK07 KK10 MM12 NN21 4H001 XA07 XA08 XA13 XA14 XA20 XA31 XA49 YA00 YA21 YA24 YA39 YA58 YA63 5F041 AA11 CA40 EE25  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G062 AA04 BB01 BB20 CC04 CC10 DA04 DA05 DA06 DB01 DB02 DB03 DB04 DC01 DD01 DE01 DF01 EA01 EB01 EC01 ED01 EE04 EE05 EF01 EG01 FA01 FA10 FB01 FC01 FD01 FF01 F01 F01 F01 F01 F01 FL04 GA01 GB01 GC01 GD01 GE01 HH01 HH03 HH05 HH07 HH08 HH09 HH10 HH11 HH13 HH15 HH17 HH20 JJ01 JJ02 JJ03 JJ05 JJ07 JJ10 KK01 KK03 KA04 KK11 KK10 MM12 NN21 XA14 XA XA13 XA XA XA XA XA XA XA XA

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 モル%表示で、CaCO3をCaOに換
算して:20〜50モル%、Al2 3 :0〜30モル
%、SiO:25〜60モル%、AlN:5〜50モル
%、希土類酸化物または遷移金属酸化物:0.1〜20
モル%で、5成分の合計が100モル%となるオキシ窒
化物ガラスを母体材料とした蛍光体。
1. In terms of mol%, CaCO 3 is converted to CaO: 20 to 50 mol%, Al 2 O 3 : 0 to 30 mol%, SiO: 25 to 60 mol%, AlN: 5 to 50 mol. %, Rare earth oxide or transition metal oxide: 0.1 to 20
A phosphor whose base material is oxynitride glass whose mol% is 100 mol% in total of five components.
【請求項2】 窒素含有量が15wt%以下であること
を特徴とする請求項1記載のオキシ窒化物ガラスを母体
材料とした蛍光体。
2. The phosphor according to claim 1, wherein the nitrogen content is 15 wt% or less.
【請求項3】 請求項1記載の希土類酸化物イオンの他
に増感剤となる他の希土類元素イオンを希土類酸化物と
して蛍光ガラス中に0.1〜10モル%の含有量で共賦
活剤として含むことを特徴とする請求項1記載のオキシ
窒化物ガラスを母体材料とした蛍光体。
3. A co-activator having a content of 0.1 to 10 mol% in the fluorescent glass as a rare earth oxide other rare earth element ions serving as a sensitizer in addition to the rare earth oxide ion according to claim 1. A phosphor comprising the oxynitride glass according to claim 1 as a base material.
【請求項4】 InGaN系青色発光ダイオードを光源
とし、請求項1乃至3のいずれか一つに記載された蛍光
体を用いたことを特徴とする白色発光ダイオード。
4. A white light-emitting diode using an InGaN-based blue light-emitting diode as a light source and using the phosphor according to any one of claims 1 to 3.
JP2000030280A 2000-02-02 2000-02-02 Phosphors based on oxynitride glass Expired - Fee Related JP3763719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000030280A JP3763719B2 (en) 2000-02-02 2000-02-02 Phosphors based on oxynitride glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000030280A JP3763719B2 (en) 2000-02-02 2000-02-02 Phosphors based on oxynitride glass

Publications (2)

Publication Number Publication Date
JP2001214162A true JP2001214162A (en) 2001-08-07
JP3763719B2 JP3763719B2 (en) 2006-04-05

Family

ID=18555318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000030280A Expired - Fee Related JP3763719B2 (en) 2000-02-02 2000-02-02 Phosphors based on oxynitride glass

Country Status (1)

Country Link
JP (1) JP3763719B2 (en)

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1264873A2 (en) 2001-06-07 2002-12-11 National Institute for Materials Science Oxynitride phosphor activated by a rare earth element, and sialon type phosphor
JP2003142737A (en) * 2001-08-22 2003-05-16 Nichia Chem Ind Ltd Light emitting device
JP2003336059A (en) * 2002-05-23 2003-11-28 National Institute For Materials Science Sialon phosphor
US6717355B2 (en) * 2000-08-28 2004-04-06 Toyoda Gosei Co., Ltd. Light-emitting unit
EP1411558A2 (en) * 2002-10-14 2004-04-21 LumiLeds Lighting U.S., LLC Phosphor converted light emitting device
WO2004039915A1 (en) * 2002-10-16 2004-05-13 Nichia Corporation Oxonitride phosphor and method for production thereof, and luminescent device using the oxonitride phosphor
JP2004186278A (en) * 2002-11-29 2004-07-02 Toyoda Gosei Co Ltd Light emitting device and method therefor
JP2004210921A (en) * 2002-12-27 2004-07-29 Nichia Chem Ind Ltd Oxynitride fluorophor and method for producing the same and light-emitting device using the same
DE10311820A1 (en) * 2003-03-13 2004-09-30 Schott Glas Semiconductor light source used in lighting comprises a semiconductor emitter, especially an LED, and a luminescent glass body
JP2004277547A (en) * 2003-03-14 2004-10-07 Nichia Chem Ind Ltd Oxynitride fluorophor and light-emiiting device using the same
JP2005093913A (en) * 2003-09-19 2005-04-07 Nichia Chem Ind Ltd Light-emitting device
JP2005093912A (en) * 2003-09-19 2005-04-07 Nichia Chem Ind Ltd Light-emitting device
JP2005259825A (en) * 2004-03-09 2005-09-22 Mitsubishi Chemicals Corp Light emitting device, illuminating apparatus using the same and display
WO2005103198A1 (en) * 2004-04-23 2005-11-03 Sumitomo Chemical Company, Limited Phosphor
EP1630219A2 (en) 2004-08-27 2006-03-01 Dowa Mining Co., Ltd. Phosphor and manufacturing mehod for the same, and light source using the same
EP1642869A1 (en) 2004-09-29 2006-04-05 Schott AG Y2O3-containing aluminosilicate glass or glass ceramic
JP2006097034A (en) * 2005-12-26 2006-04-13 Nichia Chem Ind Ltd Oxynitride phosphor and light-emitting device using the same
WO2006057357A1 (en) * 2004-11-25 2006-06-01 Mitsubishi Chemical Corporation Light-emitting device
US7138756B2 (en) 2004-08-02 2006-11-21 Dowa Mining Co., Ltd. Phosphor for electron beam excitation and color display device using the same
JP2007016171A (en) * 2005-07-08 2007-01-25 Sharp Corp Wavelength-transforming material, light-emitting device and method for producing the wavelength-transforming material
WO2007040107A1 (en) * 2005-09-30 2007-04-12 Nitto Denko Corporation Resin composition for optical semiconductor device encapsulation and optical semiconductor device produced by using same
US7229571B2 (en) 2002-04-15 2007-06-12 Sumitomo Chemical Company, Limited Phosphor for white LED and a white LED
US7252788B2 (en) 2004-02-27 2007-08-07 Dowa Mining Co., Ltd. Phosphor, light source and LED
US7258816B2 (en) 2002-03-22 2007-08-21 Nichia Corporation Nitride phosphor and method for preparation thereof, and light emitting device
US7273568B2 (en) 2004-06-25 2007-09-25 Dowa Mining Co., Ltd. Phosphor and production method of the same, method of shifting emission wavelength of phosphor, and light source and LED
KR100771570B1 (en) 2006-06-30 2007-10-30 서울반도체 주식회사 Phosphor, method for manufacturing the same and light emitting diode
US7291289B2 (en) 2004-05-14 2007-11-06 Dowa Electronics Materials Co., Ltd. Phosphor and production method of the same and light source and LED using the phosphor
US7319195B2 (en) 2003-11-28 2008-01-15 Dowa Electronics Materials Co., Ltd. Composite conductor, superconductive apparatus system, and composite conductor manufacturing method
JPWO2005093860A1 (en) * 2004-03-26 2008-02-14 シャープ株式会社 Light emitting device
JP2008050462A (en) * 2006-08-24 2008-03-06 Stanley Electric Co Ltd Fluorescent substance, method for producing the same, and light emitting device using the fluorescent substance
US7345418B2 (en) 2004-08-27 2008-03-18 Dowa Mining Co., Ltd. Phosphor mixture and light emitting device using the same
WO2008041452A1 (en) 2006-09-29 2008-04-10 Dowa Electronics Materials Co., Ltd. Process for producing nitride phosphor or oxonitride phosphor
JPWO2006016711A1 (en) * 2004-08-11 2008-05-01 独立行政法人物質・材料研究機構 Phosphor, method for producing the same, and light emitting device
JP2008208380A (en) * 2008-05-26 2008-09-11 Nippon Electric Glass Co Ltd Luminescent color-converting member
US7432647B2 (en) 2004-07-09 2008-10-07 Dowa Electronics Materials Co., Ltd. Light source having phosphor including divalent trivalent and tetravalent elements
US7434981B2 (en) 2004-05-28 2008-10-14 Dowa Electronics Materials Co., Ltd. Manufacturing method of metal paste
JP2008255362A (en) * 2008-05-26 2008-10-23 Nippon Electric Glass Co Ltd Emitting color conversion member
US7443094B2 (en) 2005-03-31 2008-10-28 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method of the same, and light emitting device using the phosphor
US7445730B2 (en) 2005-03-31 2008-11-04 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method of the same, and light emitting device using the phosphor
US7476336B2 (en) 2005-04-28 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light emitting device using the phosphor
US7477009B2 (en) 2005-03-01 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor mixture and light emitting device
US7476337B2 (en) 2004-07-28 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light source
US7476335B2 (en) 2004-08-20 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method therefore, and light source using the phosphor
US7498284B2 (en) * 2003-01-14 2009-03-03 Diamorph Ab Glass material and method of preparing said glass
US7514860B2 (en) 2004-10-28 2009-04-07 Dowa Electronics Materials Co., Ltd. Phosphor mixture and light emitting device
US7524437B2 (en) 2005-03-04 2009-04-28 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method of the same, and light emitting device using the phosphor
US7527748B2 (en) 2004-08-02 2009-05-05 Dowa Electronics Materials Co., Ltd. Phosphor and phosphor film for electron beam excitation and color display apparatus using the same
US7629620B2 (en) 2001-09-03 2009-12-08 Panasonic Corporation Light-emitting semiconductor device, light-emitting system and method for fabricating light-emitting semiconductor device
WO2010055831A1 (en) * 2008-11-13 2010-05-20 国立大学法人名古屋大学 Semiconductor light-emitting device
US7723740B2 (en) * 2003-09-18 2010-05-25 Nichia Corporation Light emitting device
WO2010074391A1 (en) 2008-12-22 2010-07-01 금호전기주식회사 Oxynitride phosphor, method for preparing the same, and light-emitting device
US7795798B2 (en) 2005-08-08 2010-09-14 National Institute Of Advanced Industrial Science And Technology Transparent fluorescent glass
CN101089119B (en) * 2002-10-16 2011-01-26 日亚化学工业株式会社 Oxynitride fluorescent material and method for producing the same
JP2014502368A (en) * 2010-11-09 2014-01-30 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Luminescence conversion element, method of manufacturing the same, and optoelectronic component having the luminescence conversion element
CN104327853A (en) * 2014-09-26 2015-02-04 西南科技大学 Trichromatic phosphor and color-modulation preparation method thereof
CN112174647A (en) * 2019-07-04 2021-01-05 上海航空电器有限公司 Low-temperature co-fired fluorescent ceramic composite for white light illumination, preparation method and light source device
CN113651531A (en) * 2021-09-22 2021-11-16 烟台希尔德材料科技有限公司 Second phase glass reinforced phosphor compound and preparation method and composition thereof
CN114590831A (en) * 2022-03-12 2022-06-07 陕西师范大学 LaSi2N3O crystal, fluorescent powder and preparation method
CN114920455A (en) * 2022-06-06 2022-08-19 温州大学 LED (BaSr) 2 SiO 4 :Eu 2+ Preparation and application of fluorescent glass and composite fluorescent glass

Cited By (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6717355B2 (en) * 2000-08-28 2004-04-06 Toyoda Gosei Co., Ltd. Light-emitting unit
USRE41234E1 (en) * 2000-08-28 2010-04-20 Toyoda Gosei Co., Ltd. Light-emitting unit having specific fluorescent material
US6776927B2 (en) 2001-06-07 2004-08-17 National Institute For Materials Science Oxynitride phosphor activated by a rare earth element, and sialon type phosphor
US6632379B2 (en) 2001-06-07 2003-10-14 National Institute For Materials Science Oxynitride phosphor activated by a rare earth element, and sialon type phosphor
EP2017323A2 (en) 2001-06-07 2009-01-21 National Institute for Materials Science Oxynitride phosphor activated by a rare earth element, and sialon type phosphor
EP1264873A2 (en) 2001-06-07 2002-12-11 National Institute for Materials Science Oxynitride phosphor activated by a rare earth element, and sialon type phosphor
JP2003142737A (en) * 2001-08-22 2003-05-16 Nichia Chem Ind Ltd Light emitting device
US7629620B2 (en) 2001-09-03 2009-12-08 Panasonic Corporation Light-emitting semiconductor device, light-emitting system and method for fabricating light-emitting semiconductor device
US7964113B2 (en) 2002-03-22 2011-06-21 Nichia Corporation Nitride phosphor and production process thereof, and light emitting device
US8058793B2 (en) 2002-03-22 2011-11-15 Nichia Corporation Nitride phosphor and production process thereof, and light emitting device
US8076847B2 (en) 2002-03-22 2011-12-13 Nichia Corporation Nitride phosphor and production process thereof, and light emitting device
US7597823B2 (en) 2002-03-22 2009-10-06 Nichia Corporation Nitride phosphor and production process thereof, and light emitting device
US7556744B2 (en) 2002-03-22 2009-07-07 Nichia Corporation Nitride phosphor and production process thereof, and light emitting device
US7297293B2 (en) 2002-03-22 2007-11-20 Nichia Corporation Nitride phosphor and production process thereof, and light emitting device
US7258816B2 (en) 2002-03-22 2007-08-21 Nichia Corporation Nitride phosphor and method for preparation thereof, and light emitting device
US7229571B2 (en) 2002-04-15 2007-06-12 Sumitomo Chemical Company, Limited Phosphor for white LED and a white LED
JP2003336059A (en) * 2002-05-23 2003-11-28 National Institute For Materials Science Sialon phosphor
EP1411558A2 (en) * 2002-10-14 2004-04-21 LumiLeds Lighting U.S., LLC Phosphor converted light emitting device
EP1411558A3 (en) * 2002-10-14 2008-12-24 LumiLeds Lighting U.S., LLC Phosphor converted light emitting device
US7951308B2 (en) 2002-10-16 2011-05-31 Nichia Corporation Oxynitride phosphor and production process thereof, and light-emitting device using oxynitride phosphor
US7951307B2 (en) 2002-10-16 2011-05-31 Nichia Corporation Oxynitride phosphor and production process thereof, and light-emitting device using oxynitride phosphor
EP1571194A1 (en) * 2002-10-16 2005-09-07 Nichia Corporation Oxonitride phosphor and method for production thereof, and luminescent device using the oxonitride phosphor
CN101089119B (en) * 2002-10-16 2011-01-26 日亚化学工业株式会社 Oxynitride fluorescent material and method for producing the same
KR100993692B1 (en) 2002-10-16 2010-11-10 니치아 카가쿠 고교 가부시키가이샤 Oxynitride phosphor and method for production thereof, and luminescent device using the oxynitride phosphor
WO2004039915A1 (en) * 2002-10-16 2004-05-13 Nichia Corporation Oxonitride phosphor and method for production thereof, and luminescent device using the oxonitride phosphor
EP2241608A2 (en) 2002-10-16 2010-10-20 Nichia Corporation Oxynitride phosphor and light-emitting device using oxynitride phosphor
EP2241607A2 (en) 2002-10-16 2010-10-20 Nichia Corporation Light-emitting device using oxynitride phosphor
EP1571194A4 (en) * 2002-10-16 2010-07-07 Nichia Corp Oxonitride phosphor and method for production thereof, and luminescent device using the oxonitride phosphor
US7951306B2 (en) 2002-10-16 2011-05-31 Nichia Corporation Oxynitride phosphor and production process thereof, and light-emitting device using oxynitride phosphor
US7794624B2 (en) 2002-10-16 2010-09-14 Nichia Corporation Oxynitride phosphor and production process thereof, and light-emitting device using oxynitride phosphor
US7858997B2 (en) 2002-11-29 2010-12-28 Toyoda Gosei Co., Ltd. Light emitting apparatus and light emitting method
JP2004186278A (en) * 2002-11-29 2004-07-02 Toyoda Gosei Co Ltd Light emitting device and method therefor
JP2004210921A (en) * 2002-12-27 2004-07-29 Nichia Chem Ind Ltd Oxynitride fluorophor and method for producing the same and light-emitting device using the same
US7498284B2 (en) * 2003-01-14 2009-03-03 Diamorph Ab Glass material and method of preparing said glass
DE10311820A1 (en) * 2003-03-13 2004-09-30 Schott Glas Semiconductor light source used in lighting comprises a semiconductor emitter, especially an LED, and a luminescent glass body
JP2004277547A (en) * 2003-03-14 2004-10-07 Nichia Chem Ind Ltd Oxynitride fluorophor and light-emiiting device using the same
US7723740B2 (en) * 2003-09-18 2010-05-25 Nichia Corporation Light emitting device
JP2005093912A (en) * 2003-09-19 2005-04-07 Nichia Chem Ind Ltd Light-emitting device
JP2005093913A (en) * 2003-09-19 2005-04-07 Nichia Chem Ind Ltd Light-emitting device
US7319195B2 (en) 2003-11-28 2008-01-15 Dowa Electronics Materials Co., Ltd. Composite conductor, superconductive apparatus system, and composite conductor manufacturing method
US7252788B2 (en) 2004-02-27 2007-08-07 Dowa Mining Co., Ltd. Phosphor, light source and LED
JP4604516B2 (en) * 2004-03-09 2011-01-05 三菱化学株式会社 LIGHT EMITTING DEVICE, LIGHTING DEVICE USING SAME, AND DISPLAY
JP2005259825A (en) * 2004-03-09 2005-09-22 Mitsubishi Chemicals Corp Light emitting device, illuminating apparatus using the same and display
JPWO2005093860A1 (en) * 2004-03-26 2008-02-14 シャープ株式会社 Light emitting device
US7892451B2 (en) 2004-04-23 2011-02-22 Sumitomo Chemical Company, Limited Phosphor
WO2005103198A1 (en) * 2004-04-23 2005-11-03 Sumitomo Chemical Company, Limited Phosphor
US7291289B2 (en) 2004-05-14 2007-11-06 Dowa Electronics Materials Co., Ltd. Phosphor and production method of the same and light source and LED using the phosphor
US7434981B2 (en) 2004-05-28 2008-10-14 Dowa Electronics Materials Co., Ltd. Manufacturing method of metal paste
EP2036968A1 (en) 2004-06-25 2009-03-18 DOWA Electronics Materials Co., Ltd. Phosphor, light source and led
EP2360227A1 (en) 2004-06-25 2011-08-24 DOWA Electronics Materials Co., Ltd. Phosphor and production method of the same, method of shifting emission wavelength of phosphor, and light source and LED
US7273568B2 (en) 2004-06-25 2007-09-25 Dowa Mining Co., Ltd. Phosphor and production method of the same, method of shifting emission wavelength of phosphor, and light source and LED
EP2360226A1 (en) 2004-06-25 2011-08-24 DOWA Electronics Materials Co., Ltd. Phosphor and production method of the same, method of shifting emission wavelength of phosphor, and light source and LED
USRE44996E1 (en) * 2004-06-25 2014-07-08 Nichia Corporation Phosphor and production method of the same, method of shifting emission wavelength of phosphor, and light source and LED
US7884539B2 (en) 2004-07-09 2011-02-08 Dowa Electronics Materials Co., Ltd. Light source having phosphor including divalent, trivalent and tetravalent elements
US7432647B2 (en) 2004-07-09 2008-10-07 Dowa Electronics Materials Co., Ltd. Light source having phosphor including divalent trivalent and tetravalent elements
EP2275511A2 (en) 2004-07-09 2011-01-19 DOWA Electronics Materials Co., Ltd. Phosphor, LED and light source
US8441180B2 (en) 2004-07-09 2013-05-14 Dowa Electronics Materials Co., Ltd. Light source having phosphor including divalent, trivalent and tetravalent elements
EP2853579A2 (en) 2004-07-09 2015-04-01 DOWA Electronics Materials Co., Ltd. Phosphor, LED and Light Source
EP2857478A2 (en) 2004-07-09 2015-04-08 DOWA Electronics Materials Co., Ltd. Phosphor, LED and light source
US8066910B2 (en) 2004-07-28 2011-11-29 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light source
US7476337B2 (en) 2004-07-28 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light source
USRE44162E1 (en) * 2004-08-02 2013-04-23 Dowa Electronics Materials Co., Ltd. Phosphor and phosphor film for electron beam excitation and color display apparatus using the same
US7138756B2 (en) 2004-08-02 2006-11-21 Dowa Mining Co., Ltd. Phosphor for electron beam excitation and color display device using the same
USRE45640E1 (en) 2004-08-02 2015-08-04 Dowa Electronics Materials Co., Ltd. Phosphor for electron beam excitation and color display device using the same
US7527748B2 (en) 2004-08-02 2009-05-05 Dowa Electronics Materials Co., Ltd. Phosphor and phosphor film for electron beam excitation and color display apparatus using the same
US20120032579A1 (en) * 2004-08-11 2012-02-09 National Institute For Materials Science Phosphor, production method thereof and light emitting instrument
JPWO2006016711A1 (en) * 2004-08-11 2008-05-01 独立行政法人物質・材料研究機構 Phosphor, method for producing the same, and light emitting device
US8436525B2 (en) * 2004-08-11 2013-05-07 National Institute For Materials Science Phosphor, production method thereof and light emitting instrument
US7476335B2 (en) 2004-08-20 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method therefore, and light source using the phosphor
USRE45502E1 (en) 2004-08-20 2015-05-05 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method therefore, and light source using the phosphor
US7476338B2 (en) 2004-08-27 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light source
US7803286B2 (en) 2004-08-27 2010-09-28 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light source
US8308981B2 (en) 2004-08-27 2012-11-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light source
US7345418B2 (en) 2004-08-27 2008-03-18 Dowa Mining Co., Ltd. Phosphor mixture and light emitting device using the same
EP2022836A1 (en) 2004-08-27 2009-02-11 DOWA Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light source using the same
EP1630219A2 (en) 2004-08-27 2006-03-01 Dowa Mining Co., Ltd. Phosphor and manufacturing mehod for the same, and light source using the same
DE102004048041A1 (en) * 2004-09-29 2006-04-06 Schott Ag Glass or glass ceramic
EP1642869A1 (en) 2004-09-29 2006-04-05 Schott AG Y2O3-containing aluminosilicate glass or glass ceramic
DE102004048041B4 (en) * 2004-09-29 2013-03-07 Schott Ag Use of a glass or a glass ceramic for light wave conversion
US7514860B2 (en) 2004-10-28 2009-04-07 Dowa Electronics Materials Co., Ltd. Phosphor mixture and light emitting device
WO2006057357A1 (en) * 2004-11-25 2006-06-01 Mitsubishi Chemical Corporation Light-emitting device
US7477009B2 (en) 2005-03-01 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor mixture and light emitting device
US7524437B2 (en) 2005-03-04 2009-04-28 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method of the same, and light emitting device using the phosphor
US7445730B2 (en) 2005-03-31 2008-11-04 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method of the same, and light emitting device using the phosphor
US7443094B2 (en) 2005-03-31 2008-10-28 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method of the same, and light emitting device using the phosphor
US7476336B2 (en) 2005-04-28 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light emitting device using the phosphor
JP2007016171A (en) * 2005-07-08 2007-01-25 Sharp Corp Wavelength-transforming material, light-emitting device and method for producing the wavelength-transforming material
US7795798B2 (en) 2005-08-08 2010-09-14 National Institute Of Advanced Industrial Science And Technology Transparent fluorescent glass
JP2007091960A (en) * 2005-09-30 2007-04-12 Nitto Denko Corp Resin composition for sealing optical semiconductor element and optical semiconductor device obtained by using the same
WO2007040107A1 (en) * 2005-09-30 2007-04-12 Nitto Denko Corporation Resin composition for optical semiconductor device encapsulation and optical semiconductor device produced by using same
JP2006097034A (en) * 2005-12-26 2006-04-13 Nichia Chem Ind Ltd Oxynitride phosphor and light-emitting device using the same
KR100771570B1 (en) 2006-06-30 2007-10-30 서울반도체 주식회사 Phosphor, method for manufacturing the same and light emitting diode
JP2008050462A (en) * 2006-08-24 2008-03-06 Stanley Electric Co Ltd Fluorescent substance, method for producing the same, and light emitting device using the fluorescent substance
US9683168B2 (en) 2006-09-29 2017-06-20 Nichia Corporation Manufacturing method of nitride phosphor or oxynitride phosphor
WO2008041452A1 (en) 2006-09-29 2008-04-10 Dowa Electronics Materials Co., Ltd. Process for producing nitride phosphor or oxonitride phosphor
JP2008255362A (en) * 2008-05-26 2008-10-23 Nippon Electric Glass Co Ltd Emitting color conversion member
JP2008208380A (en) * 2008-05-26 2008-09-11 Nippon Electric Glass Co Ltd Luminescent color-converting member
US8405111B2 (en) 2008-11-13 2013-03-26 National University Corporation Nagoya University Semiconductor light-emitting device with sealing material including a phosphor
WO2010055831A1 (en) * 2008-11-13 2010-05-20 国立大学法人名古屋大学 Semiconductor light-emitting device
WO2010074391A1 (en) 2008-12-22 2010-07-01 금호전기주식회사 Oxynitride phosphor, method for preparing the same, and light-emitting device
JP2014502368A (en) * 2010-11-09 2014-01-30 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Luminescence conversion element, method of manufacturing the same, and optoelectronic component having the luminescence conversion element
US9299878B2 (en) 2010-11-09 2016-03-29 Osram Opto Semiconductors Gmbh Luminescence conversion element, method for the manufacture thereof and optoelectronic component having a luminescence conversion element
CN104327853A (en) * 2014-09-26 2015-02-04 西南科技大学 Trichromatic phosphor and color-modulation preparation method thereof
CN104327853B (en) * 2014-09-26 2016-06-15 西南科技大学 A kind of three primary colors fluorescent powder and toning preparation method thereof
CN112174647A (en) * 2019-07-04 2021-01-05 上海航空电器有限公司 Low-temperature co-fired fluorescent ceramic composite for white light illumination, preparation method and light source device
CN113651531A (en) * 2021-09-22 2021-11-16 烟台希尔德材料科技有限公司 Second phase glass reinforced phosphor compound and preparation method and composition thereof
CN113651531B (en) * 2021-09-22 2022-11-22 烟台希尔德材料科技有限公司 Second phase glass reinforced phosphor compound and preparation method and composition thereof
CN114590831A (en) * 2022-03-12 2022-06-07 陕西师范大学 LaSi2N3O crystal, fluorescent powder and preparation method
CN114920455A (en) * 2022-06-06 2022-08-19 温州大学 LED (BaSr) 2 SiO 4 :Eu 2+ Preparation and application of fluorescent glass and composite fluorescent glass
CN114920455B (en) * 2022-06-06 2023-08-01 温州大学 LED for (BaSr) 2 SiO 4 :Eu 2+ Fluorescent glass and preparation and application of composite fluorescent glass

Also Published As

Publication number Publication date
JP3763719B2 (en) 2006-04-05

Similar Documents

Publication Publication Date Title
JP2001214162A (en) Phosphor comprising oxynitride glass as matrix material
JP3668770B2 (en) Oxynitride phosphor activated with rare earth elements
JP4799549B2 (en) White light emitting diode
EP2172983B1 (en) Light emitting device
JP4524468B2 (en) Phosphor, method for producing the same, light source using the phosphor, and LED
JP4207489B2 (en) α-sialon phosphor
KR100798054B1 (en) Light emitting devices having silicate fluorescent phosphors
KR100666211B1 (en) Composition of silicates phosphor for uv and long-wavelength excitation
JP3396443B2 (en) Luminescent fluorescent glass ceramics
CA2620558C (en) Carbidonitridosilicate luminescent substances
EP1889892B1 (en) Green light emitting phosphor
CN103400926A (en) Red line emitting phosphors for use in LED applications
JP4415547B2 (en) Oxynitride phosphor and method for producing the same
JPH08170076A (en) Long-lasting afterglow fluorescent substance
JP4269880B2 (en) Fluorescent lamp and phosphor for fluorescent lamp
JP2006070088A (en) Oxynitride fluorescent substance, method for producing oxynitride fluorescent substance and white light-emitting element
WO2016199406A1 (en) Phosphor and method for producing same, and led lamp
CN106634997A (en) Composite phosphate fluorophor and application thereof
JP2000109826A (en) Fluorescent substance of alkaline earth aluminate and fluorescent lamp
JPH11255536A (en) Glass having afterglow
US20080239206A1 (en) Ba-Sr-Ca CONTAINING COMPOUND AND WHITE LIGHT EMITTING DEVICE INCLUDING THE SAME
JP2006137902A (en) Nitride phosphor, process for producing nitride phosphor and white light-emitting element
EP1999232B1 (en) Fluorescent material and light emitting diode using the same
JP2008024852A (en) Method for producing phosphor
CN102399554A (en) Nitride red luminescence material, and luminescent part and luminescent device containing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees