JP2006137902A - Nitride phosphor, process for producing nitride phosphor and white light-emitting element - Google Patents

Nitride phosphor, process for producing nitride phosphor and white light-emitting element Download PDF

Info

Publication number
JP2006137902A
JP2006137902A JP2004330429A JP2004330429A JP2006137902A JP 2006137902 A JP2006137902 A JP 2006137902A JP 2004330429 A JP2004330429 A JP 2004330429A JP 2004330429 A JP2004330429 A JP 2004330429A JP 2006137902 A JP2006137902 A JP 2006137902A
Authority
JP
Japan
Prior art keywords
nitride
phosphor
nitride phosphor
light
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004330429A
Other languages
Japanese (ja)
Inventor
Yoshikazu Touno
義和 投野
Tadashi Endo
忠 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shoei Chemical Inc
Original Assignee
Shoei Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shoei Chemical Inc filed Critical Shoei Chemical Inc
Priority to JP2004330429A priority Critical patent/JP2006137902A/en
Publication of JP2006137902A publication Critical patent/JP2006137902A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nitride phosphor that has an emission peak wavelength in a range of 600 nm or more, more specifically in a range of 620-650 nm and a high luminous intensity, to provide a process for producing the nitride phosphor and to provide a white light-emitting element. <P>SOLUTION: The nitride phosphor has a chemical composition represented by the formula (1) as shown below and has a peak emission wavelength in a range of 600-650 nm. Formula (1) is (Ca<SB>x</SB>Sr<SB>y</SB>Eu<SB>z</SB>)<SB>m/2</SB>Si<SB>12-(m+n)</SB>Al<SB>m+n</SB>O<SB>n</SB>N<SB>16-n</SB>wherein x+y+z=1; 0<y/(x+y)≤1; 0<z≤0.3; 0.6<m<3.0; and 0≤n≤1.5. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、600〜650nm以上の長波長域に発光ピークを有し、かつ発光強度の高い窒化物蛍光体、窒化物蛍光体の製造方法及び白色発光素子に関する。   The present invention relates to a nitride phosphor having a light emission peak in a long wavelength region of 600 to 650 nm or more and high emission intensity, a method for producing the nitride phosphor, and a white light emitting device.

現在、紫外線〜青色の光を吸収して、比較的長波長の黄色〜橙色の蛍光色を示す窒化物系の蛍光体は、白色発光素子に適した蛍光体として注目されている。白色発光素子は、GaN系などの青色系の半導体発光素子(青色LED)の発光の一部をフォトルミネセンス蛍光体により波長変換し、青色LEDの光と波長変換された光(主として黄色系の光)との混色により、LEDの光と異なる発光色、特に白色系の光を発する発光素子である。このような発光素子は、小型で電力効率が高いため、信号灯、車載照明や液晶のバックライト、駅の行き先案内板等の表示板等、各種の光源として利用されている。
青色LEDと組み合わせて白色発光素子に用いられるフォトルミネセンス蛍光体としては、現在、セリウム(Ce)で付活されたイットリウム・アルミニウム・ガーネット系蛍光体(以下「YAG系蛍光体」と言う。)が主流とされているが、このYAG系蛍光体に代わる白色発光素子用フォトルミネセンス蛍光体として黄色〜橙色に発光する窒化物蛍光体も期待されている。
一方、YAG系蛍光体が放射する光は、黄緑色〜黄色であり、YAG系蛍光体をフォトルミネセンス蛍光体として使用した場合、白色発光素子の発光色がやや青白い白色になるため、簡単な照明には良いが、高い演色性が要求される照明用途や、カラー液晶ディスプレイ(LCD)のバックライトとして使用する場合には、出力光が赤色成分不足となる。このため、600nm以上、特に620nm以上の発光ピーク波長を有する赤色発光蛍光体を用いて赤色成分を補い、発光色を補正することが要望されている。
そこで、YAG系蛍光体にさらに前記窒化物系の蛍光体を併用することが提案されている。このような窒化物系赤色蛍光体としては、カルシウム(Ca)−α−サイアロン系の蛍光体(特許文献1〜3参照)が知られている。
特開2002−363554号公報 特開2003−124527号公報 特開2003−203504号公報
Currently, a nitride-based phosphor that absorbs ultraviolet to blue light and exhibits a relatively long-wavelength yellow-orange fluorescent color is attracting attention as a phosphor suitable for a white light-emitting element. The white light emitting element converts a part of light emitted from a blue semiconductor light emitting element (blue LED) such as a GaN system with a photoluminescence phosphor, and converts the wavelength of the blue LED light into the wavelength converted light (mainly a yellow light emitting element). It is a light emitting element that emits a light emission color different from that of LED light, particularly white light, by mixing with light. Since such a light emitting element is small and has high power efficiency, it is used as various light sources such as a signal lamp, an in-vehicle illumination, a liquid crystal backlight, and a display board such as a station destination guide plate.
As a photoluminescence phosphor used in a white light emitting element in combination with a blue LED, an yttrium / aluminum / garnet phosphor activated with cerium (Ce) (hereinafter referred to as “YAG phosphor”). However, nitride phosphors that emit yellow to orange light are also expected as photoluminescent phosphors for white light-emitting elements that replace YAG phosphors.
On the other hand, the light emitted from the YAG phosphor is yellow-green to yellow, and when the YAG phosphor is used as a photoluminescence phosphor, the emission color of the white light emitting element becomes slightly bluish white. Although it is good for illumination, when it is used for illumination applications that require high color rendering properties, or when used as a backlight for a color liquid crystal display (LCD), the output light is insufficient for the red component. For this reason, it is desired to correct the emission color by supplementing the red component using a red light emitting phosphor having an emission peak wavelength of 600 nm or more, particularly 620 nm or more.
Therefore, it has been proposed to use the nitride phosphor together with the YAG phosphor. As such a nitride-based red phosphor, calcium (Ca) -α-sialon-based phosphors (see Patent Documents 1 to 3) are known.
JP 2002-363554 A JP 2003-124527 A JP 2003-203504 A

しかしながら、上記特許文献1〜3に記載のCa−α−サイアロン系の蛍光体は、発光ピーク波長は殆どが500〜600nmであり、発光ピーク波長が600nmより長波長である実用的な窒化物蛍光体は殆どない。
本発明は、上記事情に鑑みてなされたもので、600nm以上、特に620〜650nmに発光ピーク波長を有し、発光強度の高い窒化物蛍光体、窒化物蛍光体の製造方法及び白色発光素子を提供することを目的としている。
However, the Ca-α-sialon-based phosphors described in the above Patent Documents 1 to 3 are practical nitride fluorescent light whose emission peak wavelength is almost 500 to 600 nm and whose emission peak wavelength is longer than 600 nm. There is almost no body.
The present invention has been made in view of the above circumstances. A nitride phosphor having an emission peak wavelength at 600 nm or more, particularly 620 to 650 nm, and having high emission intensity, a method for producing the nitride phosphor, and a white light emitting element are provided. It is intended to provide.

上記課題を解決するため、本発明者等は鋭意研究を重ねた結果、600〜650nmの範囲に発光ピーク波長を有し、発光強度の高い新規な窒化物蛍光体を見いだした。
すなわち、請求項1に記載の発明の窒化物蛍光体は、下記一般式(1)で表される化学組成を有することを特徴とする。
(CaxSryEuzm/2Si12-(m+n)Alm+nn16-n…(1)
(ただし、上記一般式(1)中、x+y+z=1、0<y/(x+y)≦1、0<z≦0.3、0.6<m<3.0、0≦n≦1.5である。
In order to solve the above-mentioned problems, the present inventors have made extensive studies and found a novel nitride phosphor having an emission peak wavelength in the range of 600 to 650 nm and high emission intensity.
That is, the nitride phosphor of the invention described in claim 1 has a chemical composition represented by the following general formula (1).
(Ca x Sr y Eu z) m / 2 Si 12- (m + n) Al m + n O n N 16-n ... (1)
(However, in the general formula (1), x + y + z = 1, 0 <y / (x + y) ≦ 1, 0 <z ≦ 0.3, 0.6 <m <3.0, 0 ≦ n ≦ 1.5. It is.

請求項2に記載の発明は、請求項1に記載の窒化物蛍光体において、
主結晶相が、α−サイアロン構造又はα−サイアロン構造と斜方晶系の結晶構造の混合相であることを特徴とする。
The invention according to claim 2 is the nitride phosphor according to claim 1,
The main crystal phase is an α-sialon structure or a mixed phase of an α-sialon structure and an orthorhombic crystal structure.

請求項3に記載の発明は、請求項1又は2に記載の窒化物蛍光体を製造する方法であって、
窒化物を構成する珪素以外の金属元素の化合物と、窒化珪素とを、溶融した尿素及び/又は溶融した尿素誘導体に溶解又は分散させて窒化物前駆体を形成し、該窒化物前駆体を、不活性又は還元性の雰囲気中で加熱することにより窒化物蛍光体を生成することを特徴とする。
The invention according to claim 3 is a method for producing the nitride phosphor according to claim 1 or 2,
A compound of a metal element other than silicon constituting the nitride and silicon nitride are dissolved or dispersed in molten urea and / or a molten urea derivative to form a nitride precursor, and the nitride precursor is A nitride phosphor is produced by heating in an inert or reducing atmosphere.

請求項4に記載の発明の白色発光素子は、青色光を放射する半導体発光素子と、前記半導体発光素子からの光の一部を吸収して緑色〜黄色の波長領域の蛍光を発光する蛍光体と、請求項1又は2に記載の窒化物蛍光体とを備えていることを特徴とする。   The white light emitting device according to claim 4 is a semiconductor light emitting device that emits blue light, and a phosphor that emits fluorescence in the green to yellow wavelength region by absorbing part of the light from the semiconductor light emitting device. And the nitride phosphor according to claim 1 or 2.

請求項5に記載の発明の白色発光素子は、紫外線〜青紫色の領域の光を放射する半導体発光素子と、前記半導体発光素子からの光を吸収して青色の蛍光を発光する蛍光体、もしくは緑色の蛍光を発光する蛍光体の少なくとも一方と、請求項1又は2に記載の窒化物蛍光体とを備えていることを特徴とする。   The white light-emitting device according to claim 5 is a semiconductor light-emitting device that emits light in the ultraviolet to blue-violet region, and a phosphor that absorbs light from the semiconductor light-emitting device and emits blue fluorescence, or It comprises at least one of phosphors emitting green fluorescence, and the nitride phosphor according to claim 1 or 2.

本発明に係る窒化物蛍光体は、特に従来あまり実用的なものがなかった600〜650nmの長波長域に発光ピーク波長を有し、かつ、高い発光強度を示すものである。また、紫外線域から黄緑色光域までの広い波長領域の光、及び電子線や電場によっても励起されて発光する。したがって、通常の照明、各種の表示管や、白色LED等に使用する蛍光体として有用である。特に、発光ピーク波長が620〜650nmのものはYAGと組み合わせて用いることにより、白色LEDの赤色補正用に適している。
また、母体材料がα−サイアロン又はα−サイアロンと斜方晶の混合相であるので、化学的、機械的及び熱的特性に優れ、蛍光体材料としても安定で長寿命を期待することができる。その結果、白色LEDの樹脂封着工程時の赤色蛍光体の熱劣化を防ぐことが可能である。
さらに、本発明に係る窒化物蛍光体の製造方法によれば、各原料を溶融した尿素及び/又は溶融した尿素誘導体に溶解又は分散させることにより、均一組成の窒化物前駆体を形成することができる。そして、このような窒化物前駆体を不活性又は還元性の雰囲気中で加熱することにより、優れた特性で、粒子径の揃った結晶性の良好な窒化物蛍光体を得ることができる。さらに、原料の窒化、結晶成長を同一反応容器中で行うことができるため、簡単なプロセスで効率良く製造することができ、しかも常圧で比較的低温で製造できる。
The nitride phosphor according to the present invention has an emission peak wavelength in a long wavelength region of 600 to 650 nm, which has not been particularly practical, and exhibits high emission intensity. Further, it emits light by being excited by light in a wide wavelength region from the ultraviolet region to the yellow-green light region, and also by an electron beam or an electric field. Therefore, it is useful as a phosphor used for ordinary illumination, various display tubes, white LEDs, and the like. Particularly, those having an emission peak wavelength of 620 to 650 nm are suitable for red correction of white LEDs when used in combination with YAG.
Further, since the base material is α-sialon or a mixed phase of α-sialon and orthorhombic crystal, it is excellent in chemical, mechanical and thermal characteristics, and can be expected to be stable and long-life as a phosphor material. . As a result, it is possible to prevent thermal degradation of the red phosphor during the resin sealing process of the white LED.
Furthermore, according to the method for producing a nitride phosphor according to the present invention, a nitride precursor having a uniform composition can be formed by dissolving or dispersing each raw material in molten urea and / or a molten urea derivative. it can. Then, by heating such a nitride precursor in an inert or reducing atmosphere, a nitride phosphor having excellent characteristics and crystallinity with a uniform particle diameter can be obtained. Further, since nitriding and crystal growth of the raw material can be performed in the same reaction vessel, it can be efficiently produced by a simple process, and can be produced at normal pressure and at a relatively low temperature.

以下、本発明に係る窒化物蛍光体、用途としての白色発光素子や窒化物蛍光体の製造方法について詳細に説明する。
(窒化物蛍光体)
本発明に係る窒化物蛍光体は、下記一般式(1)で表される化学組成を有している。
(CaxSryEuzm/2Si12-(m+n)Alm+nn16-n…(1)
(ただし、上記一般式(1)中、x+y+z=1、0<y/(x+y)≦1、0<z≦0.3、0.6<m<3.0、0≦n≦1.5である。
Hereinafter, the nitride phosphor according to the present invention, a white light emitting device as an application, and a method for producing the nitride phosphor will be described in detail.
(Nitride phosphor)
The nitride phosphor according to the present invention has a chemical composition represented by the following general formula (1).
(Ca x Sr y Eu z) m / 2 Si 12- (m + n) Al m + n O n N 16-n ... (1)
(However, in the general formula (1), x + y + z = 1, 0 <y / (x + y) ≦ 1, 0 <z ≦ 0.3, 0.6 <m <3.0, 0 ≦ n ≦ 1.5. It is.

本発明は、従来のCa−α−サイアロンにおいて、Caの少なくとも一部をSrで置換したものである。
本発明では、Caに対するSrの置換量を増加させることによって発光ピーク波長が長波長域にシフトするので好ましい。
一方、Srを含まないCa−α−サイアロンは、600nmより短波長の発光ピーク波長を有するため本発明の範囲外とする。
このようにして従来のα−サイアロンの組成比、特にCaとSrの添加量をコントロールすることにより600〜650nmの発光ピーク波長を有する窒化物蛍光体とすることができる。特にSrのCaに対する置換量を表すy/(x+y)の値が0.3より大、ことに0.4以上では、発光波長が620nm以上となるため好ましい。
The present invention is a conventional Ca-α-sialon in which at least a part of Ca is substituted with Sr.
In the present invention, the emission peak wavelength is shifted to the long wavelength region by increasing the substitution amount of Sr for Ca, which is preferable.
On the other hand, Ca-α-sialon containing no Sr has an emission peak wavelength shorter than 600 nm, and thus is out of the scope of the present invention.
Thus, by controlling the composition ratio of the conventional α-sialon, particularly the addition amount of Ca and Sr, a nitride phosphor having an emission peak wavelength of 600 to 650 nm can be obtained. Particularly, the value of y / (x + y) representing the substitution amount of Sr with respect to Ca is preferably larger than 0.3, particularly 0.4 or more, because the emission wavelength is 620 nm or more.

さらに、本発明ではAlは構造を安定化させると考えられるが、Alの添加量が多くなると逆に発光強度が低下する。特に後述する実施例の結果よりm=3.0では発光強度が低くなるのでm<3とする必要がある。   Furthermore, although it is considered that Al stabilizes the structure in the present invention, the emission intensity decreases conversely as the amount of Al added increases. In particular, it is necessary to satisfy m <3 since the emission intensity is low at m = 3.0 from the results of Examples described later.

また、この窒化物蛍光体は、Srと(Ca+Sr)の割合であるy/(x+y)によって結晶構造が変化し、Srの添加量が少ない場合には主結晶相がα−サイアロン結晶構造となり、Srの添加量が増加するにつれて斜方晶系の割合が増えて、α−サイアロン結晶構造と斜方晶系の結晶構造とが混在したものとなる。
本発明に係る窒化物蛍光体は、その主結晶相が斜方晶系の割合の多いものほど、発光波長が長く、強度も大きい傾向があり、したがって主結晶相がα−サイアロン結晶構造と斜方晶系の結晶構造とが混在したものが好ましい。
The nitride phosphor has a crystal structure that changes depending on y / (x + y), which is the ratio of Sr and (Ca + Sr). When the amount of Sr added is small, the main crystal phase has an α-sialon crystal structure. As the amount of Sr added increases, the proportion of orthorhombic system increases, and the α-sialon crystal structure and the orthorhombic crystal structure coexist.
The nitride phosphor according to the present invention tends to have a longer emission wavelength and higher intensity as the main crystal phase has a higher orthorhombic ratio, and therefore the main crystal phase has an α-sialon crystal structure and an oblique structure. What mixed with the tetragonal crystal structure is preferable.

本発明の窒化物蛍光体には、発光強度や残光性、その他の蛍光特性を調整するために、希土類金属元素等の共付活剤として作用する元素、例えばセリウム(Ce)、テルビウム(Tb)、ジスプロジウム(Dy)、サマリウム(Sm)、プラセオジウム(Pr)、ネオジム(Nd)、エルビウム(Er)、ホルミウム(Ho)、ツリウム(Tm)、マンガン(Mn)などを適宜ドープしても良い。   The nitride phosphor of the present invention includes an element that acts as a coactivator such as a rare earth metal element, such as cerium (Ce), terbium (Tb), in order to adjust emission intensity, afterglow, and other fluorescence characteristics. ), Dysprodium (Dy), samarium (Sm), praseodymium (Pr), neodymium (Nd), erbium (Er), holmium (Ho), thulium (Tm), manganese (Mn), etc. may be appropriately doped. .

本発明に係る窒化物蛍光体は、紫外線〜黄緑色光領域の光、電子線、電場による励起により600nm以上、特に従来殆どなかった620nm〜650nmの範囲に発光ピーク波長を有する蛍光を発光する新規な長波長赤色発光蛍光体である。   The nitride phosphor according to the present invention emits fluorescence having an emission peak wavelength in the range of 600 nm or more, particularly 620 nm to 650 nm, which has never existed in the past, when excited by light in the ultraviolet to yellow-green light region, electron beam, or electric field. Long-wavelength red light emitting phosphor.

このような窒化物蛍光体の用途としては、長波長赤色蛍光体として、ランプ等の照明用蛍光体として使用したり、冷陰極管、CRT、PDP、FED、無機EL等の表示管用赤色蛍光体として使用することができる。   Such nitride phosphors can be used as long-wavelength red phosphors, illumination phosphors such as lamps, and red phosphors for display tubes such as cold cathode tubes, CRTs, PDPs, FEDs, and inorganic ELs. Can be used as

また、紫外線、及び紫色〜黄緑色の波長領域の可視光で励起され、これらの光をより長波長の光に変換することが可能なため、白色発光素子の作成に非常に有効である。
具体的には、青色LEDに、このLEDからの青色光の一部を吸収し、波長変換して緑色〜黄色に発光する第1の蛍光体と、第2の蛍光体として本発明の窒化物蛍光体とを組み合わせることにより、色バランスの優れた白色発光素子を得ることができる。
例えば、発光ピーク波長が400nm〜460nmであるGaN系やInGaN系などの青色LEDと、青色光により励起されて黄緑〜黄色に発光するYAG系蛍光体とを備えた白色発光素子に、発光色の赤色成分補色用として、本発明の窒化物蛍光体を添加することにより、演色性、色感度を向上させることができる。
また、青色LEDと、その青色光により緑色に発光する第1の蛍光体と、本発明の赤色発光窒化物蛍光体とを組み合わせることにより、青、緑、赤の光の三原色の混色による白色発光素子を得ることもできる。
また、青色LEDの代わりに、例えばピーク波長が360nm〜400nmの紫外〜青紫色の領域の光を発光する半導体素子(紫外線LED)を用い、その発光を吸収して赤、緑、又は青の蛍光を発するフォトルミネセンス蛍光体を組み合わせて、これら三原色の混色により白色系の光を発する発光素子も知られているが、本発明の窒化物蛍光体はこのような白色発光素子の赤色成分として用いることもできる。いずれの場合においても、本発明の窒化物蛍光体は、紫外光〜黄緑色光の広い波長領域の光で励起可能であるため、青色LEDからの光だけでなく他の蛍光体が放射する光によっても発光するので、効率が高い。
さらに、紫外線LEDや青色LED、又は青緑〜緑色に発光するLEDに組み合わせる蛍光体として、本発明の窒化物蛍光体を単独で用い、白色光や、紫、赤紫、ピンク、赤など様々な色の光を発する発光素子を得ることもできる。
Further, it is excited by ultraviolet light and visible light in a purple to yellow-green wavelength region, and these light can be converted into light having a longer wavelength, so that it is very effective for producing a white light emitting element.
Specifically, the blue LED absorbs part of the blue light from the LED, converts the wavelength and emits green to yellow light, and the nitride of the present invention as the second phosphor. By combining with a phosphor, a white light emitting device with excellent color balance can be obtained.
For example, a white light emitting device including a GaN-based or InGaN-based blue LED having a light emission peak wavelength of 400 nm to 460 nm and a YAG phosphor that emits yellow-green to yellow light when excited by blue light is used. The color rendering property and color sensitivity can be improved by adding the nitride phosphor of the present invention for the red component complementary color.
In addition, by combining the blue LED, the first phosphor that emits green light with the blue light, and the red light emitting nitride phosphor of the present invention, white light emission by mixing three primary colors of blue, green, and red light. An element can also be obtained.
Moreover, instead of blue LED, for example, a semiconductor element (ultraviolet LED) that emits light in an ultraviolet to blue-violet region having a peak wavelength of 360 to 400 nm is used, and the emitted light is absorbed to emit red, green, or blue fluorescence. A light emitting device that emits white light by mixing these three primary colors in combination with a photoluminescent phosphor that emits light is also known, but the nitride phosphor of the present invention is used as a red component of such a white light emitting device. You can also. In any case, since the nitride phosphor of the present invention can be excited by light in a wide wavelength region from ultraviolet light to yellow-green light, not only light from the blue LED but also light emitted by other phosphors. Because it also emits light, efficiency is high.
Furthermore, as a phosphor combined with an ultraviolet LED, a blue LED, or an LED emitting blue-green to green, the nitride phosphor of the present invention is used alone, and various light sources such as white light, purple, magenta, pink, and red are used. A light-emitting element that emits colored light can also be obtained.

(窒化物蛍光体の製造方法)
次に、本発明に係る窒化物蛍光体の製造方法について説明する。
本発明に係る窒化物蛍光体の製造方法は、公知の固相反応法、噴霧熱分解法、液相反応法、その他の方法を適用することができるが、以下に示す尿素−前駆体を用いた方法が均一組成で、また、粒子径の揃った結晶性の良好な窒化物を得やすい点で最も好ましい。さらに、この方法は原料の窒化や結晶成長を同一反応容器中で行うことができ、しかも常圧で比較的低温で製造できる点で好適である。
以下、本発明で好適に用いられる尿素−前駆体を用いた方法の一例について説明する。まず、尿素及び/又は尿素誘導体(以下、「尿素等」と称すこともある)をこれらの融点以上の温度まで加熱して溶融状態にする。ただし、加熱温度が高すぎると別の生成物が生ずる場合があるので、尿素等が溶解し、かつ、後述するCa化合物やSr化合物、Eu化合物、Al化合物、窒化珪素を加えた後も溶融状態を所定時間保持することができる程度の温度とすることが好ましい。例えば、尿素を用いる場合、その融点は132℃であるので、それより若干高めの温度まで加熱すれば十分である。
(Nitride phosphor manufacturing method)
Next, a method for producing a nitride phosphor according to the present invention will be described.
As the method for producing a nitride phosphor according to the present invention, a known solid phase reaction method, spray pyrolysis method, liquid phase reaction method, and other methods can be applied, but the urea precursor shown below is used. This method is most preferable in that it has a uniform composition and is easy to obtain a nitride having a uniform particle size and good crystallinity. Furthermore, this method is preferable in that the raw material can be nitrided and grown in the same reaction vessel, and can be produced at normal pressure and at a relatively low temperature.
Hereinafter, an example of the method using the urea precursor suitably used in the present invention will be described. First, urea and / or a urea derivative (hereinafter sometimes referred to as “urea or the like”) is heated to a temperature equal to or higher than these melting points to be in a molten state. However, if the heating temperature is too high, another product may be formed. Therefore, urea or the like is dissolved, and a molten state is added even after adding a Ca compound, Sr compound, Eu compound, Al compound, or silicon nitride described later. It is preferable to set the temperature to such a level that can be maintained for a predetermined time. For example, when urea is used, its melting point is 132 ° C., so it is sufficient to heat it to a slightly higher temperature.

尿素誘導体としては、尿素中の窒素原子への各種有機基の置換体としての尿素化合物、あるいはカーバメイト化合物、尿素錯化合物、尿素付加体化合物等の各種のものを使用することができる。尿素等としては、入手のしやすさや取り扱いの容易さ等の点から尿素が好適なものとして用いられる。   As the urea derivative, various compounds such as urea compounds as carbamate compounds, urea complex compounds, and urea adduct compounds can be used as substitutes of various organic groups for nitrogen atoms in urea. As urea or the like, urea is preferably used from the viewpoints of availability, ease of handling, and the like.

次に、最終生成物の構成成分となる、Ca化合物、Sr化合物、Eu化合物、Al化合物を溶融した尿素等に溶解し、さらに窒化珪素を分散させて窒化物前駆体を形成する。なお、Ca化合物は生成する窒化物蛍光体に応じて加えれば良く、必ずしも必須ではない。また、共付活剤をドープする場合は、共付活剤として作用する金属元素の化合物を、所定量添加、溶解する。   Next, a Ca compound, an Sr compound, an Eu compound, and an Al compound, which are constituent components of the final product, are dissolved in molten urea or the like, and silicon nitride is dispersed to form a nitride precursor. The Ca compound may be added according to the nitride phosphor to be produced, and is not necessarily essential. When the coactivator is doped, a predetermined amount of a metal element compound that acts as a coactivator is added and dissolved.

窒化物を構成する珪素以外の金属元素の化合物、すなわちCa化合物、Sr化合物、Eu化合物、Al化合物、共付活剤元素の化合物としては、特に限定されるものではないが、例えば塩化物、硝酸塩など溶融尿素等に溶解するものを用いると生成物がより均一になるので好ましい。窒化物中に酸素を導入する場合は、酸化アルミニウムや酸化珪素などの酸化物も使用することができる。また、窒化珪素としては、結晶質のものでも非晶質のものでも、適宜用いることができる。例えば、反応性の点では非晶質の窒化珪素の方が好ましいと考えられるが、入手が容易であること、取り扱いがし易いこと、及び収率の点からは結晶質の窒化珪素が有利である。   A compound of a metal element other than silicon constituting the nitride, that is, a Ca compound, a Sr compound, an Eu compound, an Al compound, or a compound of a coactivator element is not particularly limited. For example, chloride, nitrate It is preferable to use a material that dissolves in molten urea or the like because the product becomes more uniform. When oxygen is introduced into the nitride, an oxide such as aluminum oxide or silicon oxide can also be used. As silicon nitride, either crystalline or amorphous silicon can be used as appropriate. For example, amorphous silicon nitride is considered preferable in terms of reactivity, but crystalline silicon nitride is advantageous in terms of easy availability, easy handling, and yield. is there.

このようにして得られた窒化物前駆体を、例えば放冷し乾燥させて固体状にする。この固体状のものを、必要に応じて機械的に粉砕し、加熱炉を用いて加熱し、窒化物を生成する。加熱炉としては、バッチ炉、ベルト炉、管状炉、ロータリーキルン等、公知のものを使用することができる。
ただし、加熱は不活性雰囲気又は還元性雰囲気のもとで行う必要がある。
また、不活性雰囲気あるいは還元性雰囲気中、一段の加熱(焼成)で目的の生成物を形成しても良いし、複数段に分けて加熱(焼成)することにより目的とする窒化物を得ても良い。加熱温度、加熱時間等の諸条件は目的とする生成物の種類及び要求されている特性に応じて適宜設定すれば良いが、例えば、1段加熱の場合には、1200〜1700℃の範囲内の温度で0.5〜24時間の範囲から条件を設定すれば良い。また、2段加熱の場合には、第2段目の加熱温度を第1段目の加熱温度よりも高く設定することが望ましく、例えば、第1段目の加熱を、約200〜900℃の範囲内の温度で0.5〜6時間行い、第2段目の加熱を、約1200〜1700℃の範囲内の温度で約0.5〜24時間行うことが望ましい。複数段の加熱は、より均一な組成の生成物を再現性良く得ることができる点で有利である。
The nitride precursor thus obtained is allowed to cool, for example, and dried to form a solid. This solid material is mechanically pulverized as necessary, and heated using a heating furnace to produce a nitride. As a heating furnace, well-known things, such as a batch furnace, a belt furnace, a tubular furnace, a rotary kiln, can be used.
However, it is necessary to perform heating under an inert atmosphere or a reducing atmosphere.
Further, the target product may be formed by one-step heating (firing) in an inert atmosphere or a reducing atmosphere, or the target nitride is obtained by heating (firing) in multiple stages. Also good. Various conditions such as the heating temperature and the heating time may be appropriately set according to the type of the desired product and the required characteristics. For example, in the case of one-stage heating, the temperature is in the range of 1200 to 1700 ° C. The conditions may be set from a range of 0.5 to 24 hours at a temperature of. In the case of two-stage heating, it is desirable to set the second stage heating temperature higher than the first stage heating temperature. For example, the first stage heating is performed at about 200 to 900 ° C. It is desirable that the temperature be within the range of 0.5 to 6 hours, and the second stage heating be performed at a temperature within the range of about 1200 to 1700 ° C. for about 0.5 to 24 hours. Multi-stage heating is advantageous in that a product with a more uniform composition can be obtained with good reproducibility.

また、その他の加熱手段として、機械的に粉砕した前駆体粉末を、望ましくは粒度調整した後、気相中に分散させた状態で加熱することにより、微細かつ粒子径の揃った結晶性の高い窒化物粉末を得ることができる。   Also, as other heating means, the finely powdered and highly uniform crystallinity is obtained by heating the mechanically pulverized precursor powder desirably after adjusting the particle size and then dispersing in the gas phase. A nitride powder can be obtained.

さらに、他の加熱手段として、噴霧熱分解法を利用しても良い。この噴霧熱分解法は、液体状の前駆体を超音波式、二流体ノズル方式等の噴霧器や他の霧化手段を用いて、微細な液滴とし、これを不活性雰囲気又は還元性雰囲気条件下で加熱し、前駆体を分解、反応させて、微細かつ粒径の揃った窒化物粉末を得ることができる。
また、上述の製造例においては、溶融状態にした尿素等に各化合物等を溶解又は分散させる方法を述べたが、予め尿素等と化合物等とを混合してから加熱して尿素等を溶融しても構わない。
Furthermore, a spray pyrolysis method may be used as another heating means. In this spray pyrolysis method, the liquid precursor is made into fine droplets using an atomizer such as an ultrasonic type or a two-fluid nozzle type or other atomizing means, and this is subjected to an inert atmosphere or a reducing atmosphere condition. Under heating, the precursor can be decomposed and reacted to obtain fine and uniform nitride powder.
In the above production example, the method of dissolving or dispersing each compound etc. in the molten urea etc. has been described, but the urea etc. and the compound etc. are mixed in advance and then heated to melt the urea etc. It doesn't matter.

以下、実施例を挙げて本発明を具体的に説明するが、本発明の実施態様はこれに限定されるものではない。
下記の方法にしたがって、試料1〜14を作製した後、各試料1〜14について以下に示す測定を行い評価した。
[試料1の作製]
尿素を134℃で溶融し、溶融尿素を得た。この溶融尿素30g中に、EuCl3・6H2O0.235g、AlCl3・6H2O3.098g及びCaCl20.512gを添加し、溶解させた。更に、Si3N4粉末3g(宇部興産製SN−E10)を添加、攪拌し、均一に分散させた。これを攪拌しながら空冷して、元素のモル比がCa:Eu:Si:Al=0.9:0.1:10:2の固体の窒化物前駆体を生成した。得られた前駆体を、カーボン容器に入れ、4%のH2を含むN2雰囲気中600℃で1時間、焼成を行った後粉砕した。これをMo容器に入れ、4%のH2を含むN2雰囲気中1200℃で6時間保持し、引き続き1550℃で6時間保持しトータル24時間加熱を行い、窒化物蛍光体を作製した。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, the embodiment of this invention is not limited to this.
Samples 1-14 were prepared according to the following method, and then the following measurements were performed for each sample 1-14 and evaluated.
[Preparation of Sample 1]
Urea was melted at 134 ° C. to obtain molten urea. In 30 g of this molten urea, 0.235 g of EuCl3 · 6H2O, 3.098 g of AlCl3 · 6H2O and 0.512 g of CaCl2 were added and dissolved. Further, 3 g of Si3N4 powder (Ube Industries SN-E10) was added, stirred, and uniformly dispersed. This was air-cooled while stirring to produce a solid nitride precursor having an element molar ratio of Ca: Eu: Si: Al = 0.9: 0.1: 10: 2. The obtained precursor was put in a carbon container, fired at 600 ° C. for 1 hour in an N 2 atmosphere containing 4% of H 2, and then pulverized. This was put in a Mo container, held at 1200 ° C. for 6 hours in an N 2 atmosphere containing 4% H 2, and then kept at 1550 ° C. for 6 hours and heated for a total of 24 hours to produce a nitride phosphor.

[試料2〜14の作製]
上記試料1の作製において原料のCa、Sr、Eu、Alのモル比を適宜変えて、試料1と同様の方法で試料2〜14を得た。なお、Sr源としてはSrCl・6HOを用いた。各試料1〜14の化学組成とを表1に示す。
なお、試料1〜7は、上記一般式(1)中、Srと(Ca+Sr)の割合であるy/(x+y)を変化させており、試料8〜10は、試料4の組成でEuの割合であるzを0.03≦z≦0.1の範囲内で変化させている。また、試料11、12は試料1〜10と異なりAlの添加量を変化させてm=3とした場合であり、さらにSrを含有しない。また、試料13、14も同様にAlの添加量を変化させてm=2.8とした場合であり、さらにCaを含有しない。なお、試料1、11及び12は本発明外のものである。
[Preparation of Samples 2 to 14]
Samples 2 to 14 were obtained in the same manner as Sample 1 by appropriately changing the molar ratio of the raw materials Ca, Sr, Eu, and Al in the preparation of Sample 1. SrCl 2 .6H 2 O was used as the Sr source. Table 1 shows the chemical composition of each sample 1-14.
Samples 1 to 7 have y / (x + y) that is a ratio of Sr and (Ca + Sr) in the general formula (1) changed, and samples 8 to 10 have the composition of sample 4 and the ratio of Eu. Z is changed within a range of 0.03 ≦ z ≦ 0.1. Samples 11 and 12 are different from Samples 1 to 10 in that the amount of Al added is changed to m = 3 and does not contain Sr. Similarly, Samples 13 and 14 are cases in which the amount of Al added is changed to m = 2.8, and Ca is not further contained. Samples 1, 11, and 12 are outside the scope of the present invention.

《X線回折パターン》
上記得られた蛍光体粉末(試料1〜14)について、(株)リガク製粉末X線回折計を用い、Cu−Kα線をX線源としてX線回折パターンを測定した。図1に代表的なものとして試料2、6のX線回折パターンを示す。図1に示すように、Srが少ないとα−サイアロン構造が主相であるが、Srの比率が増加するにつれて斜方晶系の割合の多い結晶構造となることが確認できる。また、その他の各試料についても同様にX線回折パターンから結晶構造の確認を行い、表1に併せて示した。
<< X-ray diffraction pattern >>
About the obtained phosphor powder (samples 1 to 14), an X-ray diffraction pattern was measured using a X-ray source of Cu-Kα rays using a powder X-ray diffractometer manufactured by Rigaku Corporation. FIG. 1 shows X-ray diffraction patterns of Samples 2 and 6 as representative ones. As shown in FIG. 1, it can be confirmed that when the amount of Sr is small, the α-sialon structure is the main phase, but as the Sr ratio increases, the crystal structure has a higher orthorhombic ratio. In addition, the crystal structures of other samples were similarly confirmed from the X-ray diffraction patterns, and are also shown in Table 1.

《蛍光特性》
各試料1〜14について、日本分光(株)製分光蛍光光度計(FP−6600型)を用いて400nmの単色光を励起光源とし、500nmから800nmの範囲で蛍光スペクトルを測定した。各試料1〜14の発光ピーク波長と発光強度についての測定結果(測定値)を表1に示す。表1中の発光強度は、試料1の発光ピーク波長594nmにおける発光強度を100としたときの相対強度である。また、図2に代表的な試料1、2、6の蛍光スペクトルを示す。さらに、これら試料1、2、6についてそれぞれの発光ピーク波長における励起スペクトルを250nmから580nmの範囲で測定した結果を図3に示す。
なお、励起スペクトルの補正にはローダミンBを、蛍光スペクトルの補正にはキセノンランプとタングステンランプを用いた。
<Fluorescence characteristics>
About each sample 1-14, the fluorescence spectrum was measured in the range of 500 nm to 800 nm using 400 nm monochromatic light as an excitation light source using a spectrofluorometer (FP-6600 type) manufactured by JASCO Corporation. Table 1 shows the measurement results (measurement values) of the emission peak wavelength and emission intensity of each sample 1-14. The emission intensity in Table 1 is the relative intensity when the emission intensity at the emission peak wavelength of 594 nm of Sample 1 is taken as 100. FIG. 2 shows the fluorescence spectra of representative samples 1, 2, and 6. Further, FIG. 3 shows the results of measuring the excitation spectra at the respective emission peak wavelengths for these samples 1, 2, and 6 in the range of 250 nm to 580 nm.
Rhodamine B was used for correcting the excitation spectrum, and a xenon lamp and a tungsten lamp were used for correcting the fluorescence spectrum.

Figure 2006137902
表1の結果から明らかなように、上記一般式(1)で表される窒化物蛍光体において、x、y、z、m、nの各パラメータが本発明の範囲内にある試料2〜10、13、14は、600〜650nmの長波長域に発光ピークが見られ、発光強度も比較的高いものであった。一方、本発明の範囲外である試料1、11、12は、発光ピーク波長が600nmより短波長域に見られた。
また、試料1〜7から明らかなように、CaとSrの組成比においてCaに対するSrの添加量を増加させることにより発光ピーク波長が長波長にシフトする傾向があった。この結果から、Srの添加量によって発光ピーク波長をコントロールできることがわかる。
Figure 2006137902
As is apparent from the results in Table 1, in the nitride phosphor represented by the general formula (1), samples 2 to 10 in which the parameters x, y, z, m, and n are within the scope of the present invention. , 13 and 14 had a light emission peak in the long wavelength region of 600 to 650 nm and a relatively high light emission intensity. On the other hand, Samples 1, 11, and 12, which are outside the scope of the present invention, had an emission peak wavelength in the shorter wavelength region than 600 nm.
Further, as is clear from Samples 1 to 7, the emission peak wavelength tends to shift to a longer wavelength by increasing the amount of Sr added to Ca in the composition ratio of Ca and Sr. From this result, it is understood that the emission peak wavelength can be controlled by the addition amount of Sr.

試料2、6のX線回折パターンである。It is an X-ray diffraction pattern of Samples 2 and 6. 試料1、2、6の蛍光スペクトルである。It is a fluorescence spectrum of samples 1, 2, and 6. 試料1、2、6の励起スペクトルである。It is an excitation spectrum of samples 1, 2, and 6.

Claims (5)

下記一般式(1)で表される化学組成を有し、かつ、600〜650nmの範囲にピーク発光波長を有することを特徴とする窒化物蛍光体。
(CaxSryEuzm/2Si12-(m+n)Alm+nn16-n…(1)
(ただし、上記一般式(1)中、x+y+z=1、0<y/(x+y)≦1、0<z≦0.3、0.6<m<3.0、0≦n≦1.5である。
A nitride phosphor having a chemical composition represented by the following general formula (1) and having a peak emission wavelength in the range of 600 to 650 nm.
(Ca x Sr y Eu z) m / 2 Si 12- (m + n) Al m + n O n N 16-n ... (1)
(However, in the general formula (1), x + y + z = 1, 0 <y / (x + y) ≦ 1, 0 <z ≦ 0.3, 0.6 <m <3.0, 0 ≦ n ≦ 1.5. It is.
請求項1に記載の窒化物蛍光体において、
主結晶相が、α−サイアロン構造又はα−サイアロン構造と斜方晶系の結晶構造の混合相であることを特徴とする窒化物蛍光体。
The nitride phosphor according to claim 1, wherein
A nitride phosphor, wherein the main crystal phase is an α-sialon structure or a mixed phase of an α-sialon structure and an orthorhombic crystal structure.
請求項1又は2に記載の窒化物蛍光体を製造する方法であって、
窒化物を構成する珪素以外の金属元素の化合物と、窒化珪素とを、溶融した尿素及び/又は溶融した尿素誘導体に溶解又は分散させて窒化物前駆体を形成し、該窒化物前駆体を、不活性又は還元性の雰囲気中で加熱することにより窒化物蛍光体を生成することを特徴とする窒化物蛍光体の製造方法。
A method for producing the nitride phosphor according to claim 1, comprising:
A compound of a metal element other than silicon constituting the nitride and silicon nitride are dissolved or dispersed in molten urea and / or a molten urea derivative to form a nitride precursor, and the nitride precursor is A method for producing a nitride phosphor, comprising producing a nitride phosphor by heating in an inert or reducing atmosphere.
青色光を放射する半導体発光素子と、前記半導体発光素子からの光の一部を吸収して緑色〜黄色の波長領域の蛍光を発光する蛍光体と、請求項1又は2に記載の窒化物蛍光体とを備えていることを特徴とする白色発光素子。   3. A semiconductor light emitting device that emits blue light, a phosphor that absorbs part of light from the semiconductor light emitting device and emits fluorescence in a green to yellow wavelength region, and the nitride fluorescence according to claim 1. A white light emitting element comprising: a body. 紫外線〜青紫色の領域の光を放射する半導体発光素子と、前記半導体発光素子からの光を吸収して青色の蛍光を発光する蛍光体、もしくは緑色の蛍光を発光する蛍光体の少なくとも一方と、請求項1又は2に記載の窒化物蛍光体とを備えていることを特徴とする白色発光素子。   A semiconductor light emitting device that emits light in the ultraviolet to blue-violet region, and at least one of a phosphor that emits blue fluorescence by absorbing light from the semiconductor light emitting device, or a phosphor that emits green fluorescence, A white light-emitting element comprising the nitride phosphor according to claim 1.
JP2004330429A 2004-11-15 2004-11-15 Nitride phosphor, process for producing nitride phosphor and white light-emitting element Pending JP2006137902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004330429A JP2006137902A (en) 2004-11-15 2004-11-15 Nitride phosphor, process for producing nitride phosphor and white light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004330429A JP2006137902A (en) 2004-11-15 2004-11-15 Nitride phosphor, process for producing nitride phosphor and white light-emitting element

Publications (1)

Publication Number Publication Date
JP2006137902A true JP2006137902A (en) 2006-06-01

Family

ID=36618915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004330429A Pending JP2006137902A (en) 2004-11-15 2004-11-15 Nitride phosphor, process for producing nitride phosphor and white light-emitting element

Country Status (1)

Country Link
JP (1) JP2006137902A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7262439B2 (en) 2005-11-22 2007-08-28 Lumination Llc Charge compensated nitride phosphors for use in lighting applications
WO2008010498A1 (en) * 2006-07-18 2008-01-24 Showa Denko K.K. Phosphor, method for production thereof, and light-emitting apparatus
JP2008053691A (en) * 2006-08-25 2008-03-06 Samsung Electro-Mechanics Co Ltd White led module
WO2008041501A1 (en) * 2006-09-29 2008-04-10 Dowa Electronics Materials Co., Ltd. Fluorescent substance, fluorescent sheets, process for production of the fluorescent substance, and light-emitting devices made by using the substance
JPWO2006106883A1 (en) * 2005-03-31 2008-09-11 Dowaエレクトロニクス株式会社 Phosphor, phosphor sheet and method for producing the same, and light emitting device using the phosphor
WO2008146571A1 (en) 2007-05-22 2008-12-04 Showa Denko K.K. Fluorescent substance, method for production of the same, and light-emitting device using the same
US7859182B2 (en) 2005-08-31 2010-12-28 Lumination Llc Warm white LED-based lamp incoporating divalent EU-activated silicate yellow emitting phosphor
KR101103735B1 (en) 2009-09-21 2012-01-11 금호전기주식회사 Oxynitride phosphor, method for manufacturing the same and light-emitting device comprising the same
JP2012046626A (en) * 2010-08-26 2012-03-08 Mitsubishi Chemicals Corp Phosphor and light-emitting device using the same
WO2012098932A1 (en) * 2011-01-18 2012-07-26 シャープ株式会社 Semiconductor light-emitting device
US10011768B2 (en) 2014-10-23 2018-07-03 Mitsubishi Chemical Corporation Phosphor, light-emitting device, illumination device and image display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003124527A (en) * 2001-07-16 2003-04-25 Patent Treuhand Ges Elektr Gluehlamp Mbh Illumination unit equipped with at least one led as light source
JP2003203504A (en) * 2001-09-20 2003-07-18 Patent Treuhand Ges Elektr Gluehlamp Mbh Illumination unit having at least one led as light source
JP2003336059A (en) * 2002-05-23 2003-11-28 National Institute For Materials Science Sialon phosphor
JP2003336050A (en) * 2002-05-23 2003-11-28 Nichia Chem Ind Ltd Phosphor
JP2004067837A (en) * 2002-08-06 2004-03-04 Toyota Central Res & Dev Lab Inc alpha-SIALON FLUORESCENT SUBSTANCE
JP2006089547A (en) * 2004-09-22 2006-04-06 National Institute For Materials Science Phosphor, method for producing the same, and luminescent device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003124527A (en) * 2001-07-16 2003-04-25 Patent Treuhand Ges Elektr Gluehlamp Mbh Illumination unit equipped with at least one led as light source
JP2003203504A (en) * 2001-09-20 2003-07-18 Patent Treuhand Ges Elektr Gluehlamp Mbh Illumination unit having at least one led as light source
JP2003336059A (en) * 2002-05-23 2003-11-28 National Institute For Materials Science Sialon phosphor
JP2003336050A (en) * 2002-05-23 2003-11-28 Nichia Chem Ind Ltd Phosphor
JP2004067837A (en) * 2002-08-06 2004-03-04 Toyota Central Res & Dev Lab Inc alpha-SIALON FLUORESCENT SUBSTANCE
JP2006089547A (en) * 2004-09-22 2006-04-06 National Institute For Materials Science Phosphor, method for producing the same, and luminescent device

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006106883A1 (en) * 2005-03-31 2008-09-11 Dowaエレクトロニクス株式会社 Phosphor, phosphor sheet and method for producing the same, and light emitting device using the phosphor
US7859182B2 (en) 2005-08-31 2010-12-28 Lumination Llc Warm white LED-based lamp incoporating divalent EU-activated silicate yellow emitting phosphor
US7262439B2 (en) 2005-11-22 2007-08-28 Lumination Llc Charge compensated nitride phosphors for use in lighting applications
KR101080215B1 (en) 2006-07-18 2011-11-07 쇼와 덴코 가부시키가이샤 Phosphor, method for production thereof, and light-emitting apparatus
WO2008010498A1 (en) * 2006-07-18 2008-01-24 Showa Denko K.K. Phosphor, method for production thereof, and light-emitting apparatus
JP2008024741A (en) * 2006-07-18 2008-02-07 Showa Denko Kk Phosphor, its manufacturing method and light emitting device
US8153023B2 (en) 2006-07-18 2012-04-10 Showa Denko K.K. Phosphor, method for production thereof, and light-emitting apparatus
JP2008053691A (en) * 2006-08-25 2008-03-06 Samsung Electro-Mechanics Co Ltd White led module
WO2008041501A1 (en) * 2006-09-29 2008-04-10 Dowa Electronics Materials Co., Ltd. Fluorescent substance, fluorescent sheets, process for production of the fluorescent substance, and light-emitting devices made by using the substance
US8303847B2 (en) 2006-09-29 2012-11-06 Dowa Electronics Materials Co., Ltd. Phosphor, manufacturing method of phosphor sheet and phosphor, and light emitting device using the phosphor
CN101755030B (en) * 2007-05-22 2014-05-14 独立行政法人物质·材料研究机构 Fluorescent substance, method for production of same, and light-emitting device using same
US8513876B2 (en) 2007-05-22 2013-08-20 National Institute For Materials Science Fluorescent substance, method for producing the same, and light-emitting device using the same
WO2008146571A1 (en) 2007-05-22 2008-12-04 Showa Denko K.K. Fluorescent substance, method for production of the same, and light-emitting device using the same
KR101109988B1 (en) * 2007-05-22 2012-03-14 도쿠리츠교세이호징 붓시쯔 자이료 겐큐키코 Fluorescent substance, method for producing the same, and light-emitting device using the same
CN101755030A (en) * 2007-05-22 2010-06-23 昭和电工株式会社 The light-emitting device of fluor and manufacture method thereof and this fluor of use
JP2009256558A (en) * 2007-05-22 2009-11-05 Showa Denko Kk Fluorescent substance, method for producing the same, and light emitting device using the same
KR101103735B1 (en) 2009-09-21 2012-01-11 금호전기주식회사 Oxynitride phosphor, method for manufacturing the same and light-emitting device comprising the same
JP2012046626A (en) * 2010-08-26 2012-03-08 Mitsubishi Chemicals Corp Phosphor and light-emitting device using the same
WO2012098932A1 (en) * 2011-01-18 2012-07-26 シャープ株式会社 Semiconductor light-emitting device
JPWO2012098932A1 (en) * 2011-01-18 2014-06-09 シャープ株式会社 Semiconductor light emitting device
JP5676653B2 (en) * 2011-01-18 2015-02-25 シャープ株式会社 Semiconductor light emitting device
US9570655B2 (en) 2011-01-18 2017-02-14 Sharp Kabushiki Kaisha Semiconductor light-emitting device
US9711686B2 (en) 2011-01-18 2017-07-18 Sharp Kabushiki Kaisha Lighting device with plural fluorescent materials
US10011768B2 (en) 2014-10-23 2018-07-03 Mitsubishi Chemical Corporation Phosphor, light-emitting device, illumination device and image display device

Similar Documents

Publication Publication Date Title
JP3763719B2 (en) Phosphors based on oxynitride glass
JP3668770B2 (en) Oxynitride phosphor activated with rare earth elements
KR101147560B1 (en) Fluorescent substance and light-emitting equipment
JP4834827B2 (en) Oxynitride phosphor
US7655156B2 (en) Silicate-based orange phosphors
JP4975269B2 (en) Phosphor and method for producing the same, and light emitting device using the phosphor
KR101168177B1 (en) Phospher, process for producing the same and luminescence apparatus
JP4207489B2 (en) α-sialon phosphor
JP4799549B2 (en) White light emitting diode
JP4873183B2 (en) Phosphor and light emitting device
JP5092667B2 (en) Light emitting device
WO2006126567A1 (en) Phosphor and use thereof
JP2012193390A (en) Phosphor, process for producing the same, and light emission device using the phosphor
JP2006063214A (en) Fluorophor and method for producing the same and light source
JP2006282872A (en) Nitride phosphor or oxynitride phosphor and manufacturing method for the same, and light-emitting device using the same
JP2005307012A (en) Sialon phosphor and manufacturing method therefor
JP4356563B2 (en) Oxynitride phosphor, method for producing oxynitride phosphor, and white light emitting device
JP2005008793A (en) Oxynitride phosphor
JP2004189996A (en) Oxynitride fluorescent material and method for producing the same
JP4165412B2 (en) Nitride phosphor, method for producing nitride phosphor, white light emitting device and pigment
WO2010041195A1 (en) Blue emitting sion phosphor
JP2015228419A (en) Semiconductor light-emitting device
US9080105B1 (en) Phosphors, fabricating method thereof, and light emitting device employing the same
JP2006137902A (en) Nitride phosphor, process for producing nitride phosphor and white light-emitting element
JP4466447B2 (en) Oxynitride phosphor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100413