JP2007016171A - Wavelength-transforming material, light-emitting device and method for producing the wavelength-transforming material - Google Patents

Wavelength-transforming material, light-emitting device and method for producing the wavelength-transforming material Download PDF

Info

Publication number
JP2007016171A
JP2007016171A JP2005200609A JP2005200609A JP2007016171A JP 2007016171 A JP2007016171 A JP 2007016171A JP 2005200609 A JP2005200609 A JP 2005200609A JP 2005200609 A JP2005200609 A JP 2005200609A JP 2007016171 A JP2007016171 A JP 2007016171A
Authority
JP
Japan
Prior art keywords
glass
phosphor particles
oxynitride
nitride
wavelength conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005200609A
Other languages
Japanese (ja)
Other versions
JP4895541B2 (en
Inventor
Kousei Takahashi
向星 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2005200609A priority Critical patent/JP4895541B2/en
Publication of JP2007016171A publication Critical patent/JP2007016171A/en
Application granted granted Critical
Publication of JP4895541B2 publication Critical patent/JP4895541B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wavelength-transforming material presenting more efficient fluorescence than that of conventional ones by combining an oxynitride phosphor or a nitride phosphor with a material dispersing the same, a method for producing the wavelength-transforming material and a light emitting device using the same. <P>SOLUTION: In the wavelength-transforming material, oxynitride phosphor particles or nitride phosphor particles are dispersed in glass having ≥700°C softening point. By the aforesaid combination, rare earth elements in the phosphor do not dissolve in the glass even in a process for dispersing the phosphor particles in the glass, the wavelength-transforming efficiency is enhanced and is not deteriorated by excited lights ranging from violet to ultraviolet. The wavelength-transforming material has high light emission efficiency from the phosphor and stable without influenced by environmental atmosphere such as water and the like. The light-emitting device small and having long life is provided by combining the wavelength-transforming material with a nitride semiconductor light-emitting device or the like. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、蛍光体を用いた波長変換部材、及び半導体発光素子と蛍光体を用いた発光装置に関する。   The present invention relates to a wavelength conversion member using a phosphor, and a light emitting device using a semiconductor light emitting element and the phosphor.

発光ダイオード(LED)などの半導体発光素子の光を蛍光体によって波長変換する発光装置は、小型であり、消費電力が白熱電球よりも少ないという特徴を有しており、各種表示装置あるいは照明装置の光源として実用化を進めるために、さらなる効率・信頼性の向上に向けた開発が行われている。特許文献1には、青色発光ダイオード(LED)と、青色発光ダイオードの光によって励起され黄色の光を発する蛍光体とを組み合わせて擬似白色の光を得る発光装置が開示されている。蛍光体の粒子を分散する材料としては、エポキシ樹脂、アクリル樹脂、水ガラスの3種類が開示されている。特許文献2には、青色LEDと、青色LEDからの光によって励起され黄色の蛍光を発するYAl12系(ガーネット系)蛍光体を軟化点が500℃以上のガラスに分散した発光色変換部材とを組み合わせた白色照明光源が開示されている。 A light-emitting device that converts the wavelength of light from a semiconductor light-emitting element such as a light-emitting diode (LED) with a phosphor is small in size and consumes less power than an incandescent bulb. In order to promote practical use as a light source, developments are being made to further improve efficiency and reliability. Patent Document 1 discloses a light emitting device that obtains pseudo white light by combining a blue light emitting diode (LED) and a phosphor that is excited by light of the blue light emitting diode and emits yellow light. As materials for dispersing the phosphor particles, three types of materials such as epoxy resin, acrylic resin, and water glass are disclosed. Patent Document 2 discloses a luminescent color in which a blue LED and a Y 3 Al 5 O 12 (garnet) phosphor that emits yellow fluorescence when excited by light from the blue LED are dispersed in glass having a softening point of 500 ° C. or higher. A white illumination light source combined with a conversion member is disclosed.

今後、発光ダイオードや半導体レーザといった半導体発光素子と蛍光体を組み合わせた発光装置について、高効率化および色度の安定化を図るために、青色発光ダイオードよりも短波長の励起光源を用いることが考えられている。この際、蛍光体を分散する材料である樹脂が紫色から紫外の波長の光によって劣化することが大きな問題となっている。この問題を解決するために蛍光体を分散させる材料としてガラスを用いる技術が開示されている。   In the future, it is considered to use an excitation light source having a wavelength shorter than that of a blue light emitting diode in order to improve efficiency and stabilize chromaticity in a light emitting device in which a semiconductor light emitting element such as a light emitting diode or a semiconductor laser is combined with a phosphor. It has been. At this time, a major problem is that the resin, which is a material for dispersing the phosphor, is deteriorated by light having a wavelength from purple to ultraviolet. In order to solve this problem, a technique using glass as a material for dispersing a phosphor is disclosed.

特許文献3には、CaCO、Al、SiO、AlN、及び希土類酸化物若しくは遷移金属酸化物の各成分よりなるオキシ窒化物ガラス(オキシナイトライドガラス)蛍光体が開示されている。発光中心として働く希土類元素であるEu2+、Eu3+、Ce3+、Tb3+など、又は発光中心として働く遷移金属元素であるCr3+、Mn2+などを前記ガラス中にドープして、強い発光強度を有するオキシ窒化物ガラスが得られたとされている。その製造方法は、CaCO、Al、SiO、AlN、Euを24.0:3.3:33.4:33.3:6.0の比率で混合し、高周波炉を用いて、窒素雰囲気下で、1700℃において2時間、加熱溶融し、さらに急冷して蛍光ガラスを得るとされており、この蛍光ガラスは、波長500nm程度の励起波長で、赤色の蛍光を発したとされている。 Patent Document 3 discloses an oxynitride glass (oxynitride glass) phosphor composed of CaCO 3 , Al 2 O 3 , SiO 2 , AlN, and rare earth oxide or transition metal oxide components. . The glass is doped with rare earth elements Eu 2+ , Eu 3+ , Ce 3+ , Tb 3+ , or the like, or transition metal elements Cr 3+ , Mn 2+, etc., which act as the luminescence center, to give strong emission intensity. It is said that an oxynitride glass having the same was obtained. The production method is to mix CaCO 3 , Al 2 O 3 , SiO 2 , AlN, Eu 2 O 3 at a ratio of 24.0: 3.3: 33.4: 33.3: 6.0 Is heated and melted at 1700 ° C. for 2 hours in a nitrogen atmosphere, and further rapidly cooled to obtain fluorescent glass. This fluorescent glass emits red fluorescence at an excitation wavelength of about 500 nm. It is said that it was done.

この例では、オキシナイトライドガラス自体が蛍光体としての働きを有するが、ガラスは非晶質であって、一定の原子配置を有さない。従って、原料比率や処理温度などの製造条件の変化によって、発光中心である希土類原子の周囲のガラス成分の原子配置が変化するため、一定の波長変換効率が得られにくい。また発光色が製造条件によって変化するため再現性が悪く、希土類元素発光強度及び発光色の色度(発光スペクトル)が変化するという問題点がある。また、後述する酸窒化物蛍光体と比較すると、波長変換効率が低い。   In this example, the oxynitride glass itself functions as a phosphor, but the glass is amorphous and does not have a certain atomic arrangement. Therefore, since the atomic arrangement of the glass component around the rare earth atom that is the emission center changes due to changes in manufacturing conditions such as the raw material ratio and processing temperature, it is difficult to obtain a certain wavelength conversion efficiency. Further, since the emission color changes depending on the manufacturing conditions, the reproducibility is poor, and there is a problem that the rare earth element emission intensity and the chromaticity (emission spectrum) of the emission color change. Further, the wavelength conversion efficiency is low as compared with an oxynitride phosphor described later.

特許文献4には、波長変換効率が高く、耐熱性に優れている酸窒化物蛍光体であるαサイアロンを、融点が500℃の低融点ガラスに分散して評価した例が開示されている。発光ピーク波長が350〜380nmの紫外LEDを用い、αサイアロンを含有する低融点ガラス成形体に紫外LEDから発した光を入射して、蛍光体で波長変換を行う発光装置を得ている。
特開平10−163535号公報 特開2003−258308号公報 特開2001−214162号公報 特開2004−238506号公報
Patent Document 4 discloses an example in which α sialon, which is an oxynitride phosphor having high wavelength conversion efficiency and excellent heat resistance, is dispersed in a low melting glass having a melting point of 500 ° C. for evaluation. Using a UV LED having an emission peak wavelength of 350 to 380 nm, light emitted from the UV LED is incident on a low-melting glass molded body containing α sialon, and a light emitting device that performs wavelength conversion with a phosphor is obtained.
Japanese Patent Laid-Open No. 10-163535 JP 2003-258308 A JP 2001-214162 A JP 2004-238506 A

特許文献3のように非結晶体であるガラス自体の成分として、発光中心として働く希土類元素を加えた場合、希土類原子の周囲の原子配置が結晶構造の場合と異なり一定でない。そのため、良好な波長変換効率が得られにくく、また発光色が製造条件によって変化するため、発光装置の色度の再現性が十分でないという問題点があった。   When a rare earth element acting as a light emission center is added as a component of the amorphous glass itself as in Patent Document 3, the atomic arrangement around the rare earth atoms is not constant unlike the case of the crystal structure. For this reason, it is difficult to obtain good wavelength conversion efficiency, and the luminescent color varies depending on the manufacturing conditions, so that the chromaticity reproducibility of the light emitting device is not sufficient.

一方、特許文献4のように酸窒化物蛍光体の粒子を低融点ガラスに分散する場合、低融点ガラス中の融点を低下させるための成分(例えば鉛ガラスなど)によって、紫色から紫外の光の透過率が十分でないという問題を有していた。   On the other hand, when the oxynitride phosphor particles are dispersed in the low-melting glass as in Patent Document 4, a component for lowering the melting point in the low-melting glass (for example, lead glass) causes violet to ultraviolet light to be emitted. There was a problem that the transmittance was not sufficient.

本発明は、酸窒化物蛍光体又は窒化物蛍光体とそれらを分散させる材料の組み合わせによって、従来よりも高効率の蛍光が得られる波長変換部材とその製造方法、及びそれを用いた発光装置を得ることを目的とする。   The present invention relates to a wavelength conversion member capable of obtaining fluorescence with higher efficiency than before by a combination of an oxynitride phosphor or a nitride phosphor and a material in which they are dispersed, a manufacturing method thereof, and a light emitting device using the same. The purpose is to obtain.

(1)本発明は、軟化点が700℃以上のガラス中に、酸窒化物蛍光体の粒子又は窒化物蛍光体の粒子が分散されていることを特徴とする波長変換部材である。   (1) The present invention is a wavelength conversion member in which oxynitride phosphor particles or nitride phosphor particles are dispersed in a glass having a softening point of 700 ° C. or higher.

本発明者は、課題を解決するために蛍光体とガラスの組み合わせを種々検討した結果、単に酸窒化物蛍光体の粒子又は窒化物蛍光体の粒子をシリコーン樹脂又は低融点ガラスに分散させた場合に比べ、酸窒化物蛍光体の粒子又は窒化物蛍光体の粒子を軟化点が700℃以上のガラスに分散させることにより、波長変換効率が増大することを見出した。この理由として、これらの蛍光体が耐熱性に優れているため、ガラスを軟化点以上で溶融させてその中に分散させる工程においても、蛍光体の粒子がガラスと混じりあうことがなく粒子状態を保つことが考えられる。また、これらの蛍光体は窒化物又は窒化物ベースの酸窒化物であって酸化物でないため、特に結晶体についてはガラスとの反応が少ないと想定している。一方、その粒子の表面に存在する非結晶体については、溶融した高融点ガラス中に拡散し、除去されることがあると推定している。さらに、酸窒化物蛍光体の粒子又は窒化物蛍光体の粒子の組成比によっては、結晶構造を安定化させるアニール効果によって波長変換効率が増大する場合もある。   As a result of various studies on the combination of phosphor and glass in order to solve the problem, the present inventor has simply dispersed oxynitride phosphor particles or nitride phosphor particles in silicone resin or low-melting glass. In comparison with the above, it has been found that the wavelength conversion efficiency is increased by dispersing oxynitride phosphor particles or nitride phosphor particles in glass having a softening point of 700 ° C. or higher. The reason for this is that these phosphors have excellent heat resistance, so even in the step of melting the glass above the softening point and dispersing in the glass, the particles of the phosphor do not mix with the glass. It is possible to keep it. In addition, since these phosphors are nitrides or nitride-based oxynitrides and are not oxides, it is assumed that there is little reaction with glass, particularly with respect to crystals. On the other hand, it is estimated that the amorphous substance existing on the surface of the particles may be diffused and removed in the molten high melting point glass. Furthermore, depending on the composition ratio of the oxynitride phosphor particles or the nitride phosphor particles, the wavelength conversion efficiency may increase due to the annealing effect that stabilizes the crystal structure.

(2)本発明は、酸窒化物蛍光体の粒子又は窒化物蛍光体の粒子について、SiとNとを合わせた成分をモル比で50%以上含むことを特徴とする波長変換部材である。酸化ケイ素(SiO)の融点が1710℃であるのに対し、窒化ケイ素の融点が1900℃と高温であるとともに、窒化ケイ素は酸化ケイ素のように軟化しない。従って、SiとNとを合わせた成分をモル比で50%以上含む蛍光体の粒子は、高温の溶融工程においても蛍光体が粒子状態を保つことができるため、軟化点の高いガラスと組み合わせるのに適している。 (2) The present invention is a wavelength conversion member characterized in that the oxynitride phosphor particles or the nitride phosphor particles contain 50% or more by mole ratio of a combination of Si and N. While the melting point of silicon oxide (SiO 2 ) is 1710 ° C., the melting point of silicon nitride is as high as 1900 ° C., and silicon nitride does not soften like silicon oxide. Therefore, phosphor particles containing 50% or more of the combined components of Si and N can be combined with glass having a high softening point because the phosphor can maintain a particle state even in a high-temperature melting step. Suitable for

(3)本発明は、酸窒化物蛍光体の粒子又は窒化物蛍光体の粒子について、その50%以上が結晶体であることを特徴とする波長変換部材である。蛍光体粒子の原子配列構造としては、結晶体の場合とアモルファス体の場合があるが、波長変換効率は結晶体の方が一般に1桁以上大きい。従って、結晶体を多く含むことにより、より波長変換効率の高い波長変換部材が得られる。   (3) The wavelength conversion member according to the present invention is characterized in that 50% or more of oxynitride phosphor particles or nitride phosphor particles are crystalline. The atomic arrangement structure of the phosphor particles may be a crystalline body or an amorphous body, but the wavelength conversion efficiency of the crystalline body is generally larger by one digit or more. Therefore, the wavelength conversion member with higher wavelength conversion efficiency is obtained by containing many crystal bodies.

(4)本発明は、酸窒化物蛍光体の粒子が、SiとAlとOとNと一種又は二種以上のランタノイド系希土類元素からなる蛍光体の粒子であることを特徴とする波長変換部材である。SiとAlとOとNからなる材料系はサイアロン(Sialon)と呼ばれることもあり、耐熱性に優れた材料であるため、ガラスの軟化点以上の温度でガラス中に分散しても、蛍光体の粒子として存在し、溶融しない。この材料は、発光中心となるランタノイド系希土類(La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb)のうち一種又は二種以上を混ぜることによって、波長変換効率に優れ、安定な波長変換部材となる。   (4) The wavelength conversion member according to the present invention is characterized in that the oxynitride phosphor particles are phosphor particles made of Si, Al, O, N and one or more lanthanoid rare earth elements. It is. A material system composed of Si, Al, O, and N is sometimes called Sialon, and is a material having excellent heat resistance. Therefore, even when dispersed in glass at a temperature higher than the softening point of glass, the phosphor It exists as a particle and does not melt. This material is a mixture of one or more of the lanthanoid rare earths (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb) that become the emission center. Therefore, it becomes a stable wavelength conversion member having excellent wavelength conversion efficiency.

(5)本発明は、窒化物蛍光体の粒子が、CaとSiとAlとNと一種又は二種以上のランタノイド系希土類元素からなる蛍光体の粒子であることを特徴とする波長変換部材である。CaとSiとAlとNからなる材料系は耐熱性に優れた材料であるため、ガラスの軟化点以上の温度でガラス中に分散しても、蛍光体粒子として存在し、溶融しない。この材料は、発光中心となるランタノイド系希土類(La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb)のうち一種又は二種以上を混ぜることによって波長変換効率に優れ、安定な波長変換部材となる。   (5) The wavelength conversion member according to the present invention is characterized in that the nitride phosphor particles are phosphor particles composed of Ca, Si, Al, N, and one or more lanthanoid rare earth elements. is there. Since the material system composed of Ca, Si, Al, and N is a material excellent in heat resistance, even if dispersed in glass at a temperature equal to or higher than the softening point of glass, it exists as phosphor particles and does not melt. This material is a mixture of one or more of the lanthanoid rare earths (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb) that become the emission center. Therefore, the wavelength conversion efficiency is excellent and a stable wavelength conversion member is obtained.

(6)本発明は、軟化点が700℃以上のガラスが、オキシナイトライドガラスであることを特徴とする波長変換部材である。   (6) The wavelength conversion member according to the present invention is characterized in that the glass having a softening point of 700 ° C. or higher is oxynitride glass.

本発明者は、課題を解決するために蛍光体とガラスの組み合わせを種々検討した結果、酸窒化物蛍光体又は窒化物蛍光体とオキシナイトライドガラスの組み合わせが特に適していることを見出した。これらの蛍光体は耐熱性に優れているため、オキシナイトライドガラス中に分散させる工程においても蛍光体成分がオキシナイトライドガラスと混じりあうことがなく粒子状態を保つ。従って、製造条件によらず安定な色度及び波長変換効率が得られる。また、これらの蛍光体およびオキシナイトライドガラスを用いることによって、特に紫色から紫外の励起光の照射によっても劣化しない波長変換部材が得られる。さらに、オキシナイトライドガラスは、後述するように屈折率が酸化物ガラスに比べて高く、酸窒化物蛍光体及び窒化物蛍光体の屈折率に近いため、蛍光体の粒子からの光取り出し効率が向上する。   As a result of various studies on combinations of phosphors and glasses in order to solve the problems, the present inventor has found that oxynitride phosphors or combinations of nitride phosphors and oxynitride glasses are particularly suitable. Since these phosphors are excellent in heat resistance, the phosphor component does not mix with the oxynitride glass even in the step of dispersing in the oxynitride glass and maintains the particle state. Therefore, stable chromaticity and wavelength conversion efficiency can be obtained regardless of manufacturing conditions. In addition, by using these phosphors and oxynitride glass, a wavelength conversion member that is not deteriorated even by irradiation with excitation light particularly from purple to ultraviolet can be obtained. Furthermore, oxynitride glass has a higher refractive index than oxide glass, as will be described later, and is close to the refractive index of oxynitride phosphors and nitride phosphors, so that light extraction efficiency from phosphor particles is high. improves.

(7)本発明は、発光ピーク波長が460nm以上510nm以下の第1の酸窒化物蛍光体の粒子又は窒化物蛍光体の粒子と、発光ピーク波長が510nm以上550nm以下の第2の酸窒化物蛍光体の粒子又は窒化物蛍光体の粒子と、発光ピーク波長が600nm以上670nm以下の第3の酸窒化物蛍光体の粒子又は窒化物蛍光体の粒子を含むことを特徴とする波長変換部材である。これにより、青、緑、赤の3原色を混合した色が得られるため、演色性および色度の再現性に優れた波長変換部材が得られる。   (7) The present invention relates to a first oxynitride phosphor particle or nitride phosphor particle having an emission peak wavelength of 460 nm to 510 nm, and a second oxynitride having an emission peak wavelength of 510 nm to 550 nm. A wavelength conversion member comprising phosphor particles or nitride phosphor particles and third oxynitride phosphor particles or nitride phosphor particles having an emission peak wavelength of 600 nm to 670 nm. is there. Thereby, since the color which mixed three primary colors of blue, green, and red is obtained, the wavelength conversion member excellent in color rendition and the reproducibility of chromaticity is obtained.

(8)本発明の発光装置においては、蛍光体励起光源である半導体発光素子の発光ピーク波長が300nm以上500nm以下である。300nm以上であれば、オキシナイトライドガラスにおいて良好な透過率が得られ、また500nm以下の波長であれば、特に発光層がInGaNからなる窒化物半導体発光素子において高効率の発光が得られる。   (8) In the light emitting device of the present invention, the emission peak wavelength of the semiconductor light emitting element which is a phosphor excitation light source is 300 nm or more and 500 nm or less. If it is 300 nm or more, good transmittance can be obtained in the oxynitride glass, and if it is a wavelength of 500 nm or less, highly efficient light emission can be obtained particularly in a nitride semiconductor light emitting device in which the light emitting layer is made of InGaN.

(9)本発明の発光装置においては、蛍光体励起光源である半導体発光素子の発光ピーク波長が350nm以上420nm以下である。この波長域は、特に発光層がInGaNからなる窒化物半導体発光素子において特に効率の良い発光が得られるとともに、視感度が低いために、半導体発光素子の発光ピーク波長ばらつきによる色度(発光色)の変動がほとんど起こらないという利点を有している。   (9) In the light emitting device of the present invention, the emission peak wavelength of the semiconductor light emitting element which is a phosphor excitation light source is 350 nm or more and 420 nm or less. This wavelength range is particularly effective in a nitride semiconductor light emitting device having a light emitting layer made of InGaN. In addition, since the luminous sensitivity is low, chromaticity (light emission color) due to variation in emission peak wavelength of the semiconductor light emitting device. This has the advantage that almost no fluctuation occurs.

(10)本発明は、発光装置の発光色の色度座標xが0.22以上0.44以下かつ色
度座標yが0.22以上0.44以下であるか、又は前記発光装置の発光色の色度座標xが0.36以上0.5以下かつ色度座標yが0.33以上0.46以下であることを特徴とする発光装置である。この色度は、それぞれ白色および電球色(暖色系白色)であるため、照明用などとして広く用いるのに適している。
(10) In the present invention, the chromaticity coordinate x of the emission color of the light emitting device is 0.22 to 0.44 and the chromaticity coordinate y is 0.22 to 0.44, or the light emission of the light emitting device. The light emitting device is characterized in that the chromaticity coordinate x of the color is 0.36 or more and 0.5 or less and the chromaticity coordinate y is 0.33 or more and 0.46 or less. Since the chromaticity is white and light bulb color (warm white), it is suitable for wide use as illumination.

(11)本発明は、酸窒化物蛍光体の粒子又は窒化物蛍光体の粒子とガラス又はガラスの原料を、ガラスの軟化点以上1600℃以下に加熱することにより、酸窒化物蛍光体の粒子又は窒化物蛍光体の粒子をガラス中に分散させる工程を有することを特徴とする波長変換部材の製造方法である。酸窒化物蛍光体の粒子又は窒化物蛍光体の粒子は、1600℃以下であればガラス中に混じりあうことが少なく粒子状態を保つため、この工程の条件に依存せず安定な蛍光を得ることができる。   (11) The present invention provides an oxynitride phosphor particle by heating oxynitride phosphor particles or nitride phosphor particles and glass or a glass raw material to a softening point of glass or higher and 1600 ° C. or lower. Or it is the manufacturing method of the wavelength conversion member characterized by having the process of disperse | distributing the particle | grains of nitride fluorescent substance in glass. Oxynitride phosphor particles or nitride phosphor particles are less likely to mix in the glass at 1600 ° C. or lower and maintain a particle state, so that stable fluorescence can be obtained regardless of the conditions of this step. Can do.

(12)本発明は、酸窒化物蛍光体又は窒化物蛍光体の原料を1600℃以上の第1の温度で焼成して酸窒化物蛍光体の粒子又は窒化物蛍光体の粒子を作製する第1の工程と、第1の工程によって得られた酸窒化物蛍光体の粒子又は窒化物蛍光体の粒子と、ガラスの原料を混合して、第1の温度より50℃以上低い第2の温度で加熱することにより、前記酸窒化物蛍光体の粒子又は窒化物蛍光体の粒子を前記ガラス中に分散させる第2の工程を有することを特徴とする波長変換部材の製造方法である。この製造方法では、酸窒化物蛍光体の粒子又は窒化物蛍光体の粒子は、その焼成温度より50℃以上低温でガラス中に分散させることができ、その条件ではガラス中に混じりあうことがなく粒子状態を保つため、この工程の条件に依存せず安定な蛍光を得ることができる。   (12) In the present invention, the oxynitride phosphor or the nitride phosphor raw material is fired at a first temperature of 1600 ° C. or higher to produce oxynitride phosphor particles or nitride phosphor particles. A second temperature that is 50 ° C. or more lower than the first temperature by mixing the oxynitride phosphor particles or nitride phosphor particles obtained in the first step and the glass raw material; It is a manufacturing method of the wavelength conversion member characterized by having the 2nd process of disperse | distributing the particle | grains of the said oxynitride fluorescent substance or the particle | grains of nitride fluorescent substance in the said glass by heating by. In this manufacturing method, the oxynitride phosphor particles or the nitride phosphor particles can be dispersed in the glass at a temperature lower than the firing temperature by 50 ° C. or more, and under such conditions, the oxynitride phosphor particles do not mix with the glass. Since the particle state is maintained, stable fluorescence can be obtained regardless of the conditions of this step.

(13)本発明は、酸窒化物蛍光体又は窒化物蛍光体の原料を1600℃以上の第1の温度で焼成して酸窒化物蛍光体の粒子又は窒化物蛍光体の粒子を作製する第1の工程と、ガラスの原料を溶融・混合してガラスを作製する第2の工程と、第1の工程によって得られた酸窒化物蛍光体の粒子又は窒化物蛍光体の粒子と、第2の工程によって得られたガラスを混合して、第1の温度より50℃以上低い第2の温度で加熱することにより、前記酸窒化物蛍光体の粒子又は窒化物蛍光体の粒子を前記ガラス中に分散させる第3の工程を有することを特徴とする波長変換部材の製造方法である。この製造方法では、ガラス原料からガラスを作る際の温度について、酸窒化物蛍光体の粒子又は窒化物蛍光体の粒子への影響を考慮する必要がない。酸窒化物蛍光体の粒子又は窒化物蛍光体の粒子は、その焼成温度より50℃以上低温でガラス中に分散させることができ、その条件ではガラス中に混じりあうことがなく粒子状態を保つため、この工程の条件に依存せず安定な蛍光を得ることができる。   (13) In the present invention, the oxynitride phosphor or the nitride phosphor raw material is fired at a first temperature of 1600 ° C. or higher to produce oxynitride phosphor particles or nitride phosphor particles. A first step, a second step of melting and mixing glass raw materials to produce a glass, an oxynitride phosphor particle or a nitride phosphor particle obtained by the first step, and a second step The glass obtained by the step is mixed and heated at a second temperature that is 50 ° C. or more lower than the first temperature, whereby the oxynitride phosphor particles or the nitride phosphor particles are contained in the glass. It has the 3rd process made to disperse | distribute to a wavelength conversion member manufacturing method characterized by the above-mentioned. In this manufacturing method, it is not necessary to consider the influence of the oxynitride phosphor particles or the nitride phosphor particles on the temperature at which the glass is produced from the glass raw material. Oxynitride phosphor particles or nitride phosphor particles can be dispersed in glass at a temperature of 50 ° C. or more lower than the firing temperature, and under these conditions, the particles are not mixed and maintained in a particle state. Stable fluorescence can be obtained regardless of the conditions of this step.

(14)本発明は、ガラスがオキシナイトライドガラスであることを特徴とする波長変換部材の製造方法である。   (14) The present invention is a method for producing a wavelength conversion member, wherein the glass is oxynitride glass.

本発明者は、課題を解決するために蛍光体とガラスの組み合わせを種々検討した結果、酸窒化物蛍光体又は窒化物蛍光体とオキシナイトライドガラスの組み合わせが、本製造方法においても特に適していることを見出した。これらの蛍光体は耐熱性に優れているため、オキシナイトライドガラス中に分散させる工程においても蛍光体成分がオキシナイトライドガラスと混じりあうことがなく粒子状態を保つ。従って、製造条件によらず安定な色度及び波長変換効率が得られる。また、これらの蛍光体およびオキシナイトライドガラスを用いることによって、特に紫色から紫外の励起光の照射によっても劣化しない波長変換部材が得られる。さらに、オキシナイトライドガラスは、後述するように屈折率が酸化物ガラスに比べて高く、酸窒化物蛍光体及び窒化物蛍光体の屈折率に近いため、蛍光体の粒子からの光取り出し効率が向上する。   As a result of studying various combinations of phosphors and glasses in order to solve the problems, the present inventors have found that oxynitride phosphors or combinations of nitride phosphors and oxynitride glasses are particularly suitable for this production method. I found out. Since these phosphors are excellent in heat resistance, the phosphor component does not mix with the oxynitride glass even in the step of dispersing in the oxynitride glass and maintains the particle state. Therefore, stable chromaticity and wavelength conversion efficiency can be obtained regardless of manufacturing conditions. In addition, by using these phosphors and oxynitride glass, a wavelength conversion member that is not deteriorated even by irradiation with excitation light particularly from purple to ultraviolet can be obtained. Furthermore, oxynitride glass has a higher refractive index than oxide glass, as will be described later, and is close to the refractive index of oxynitride phosphors and nitride phosphors, so that light extraction efficiency from phosphor particles is high. improves.

本発明の波長変換部材は、酸窒化物蛍光体の粒子又は窒化物蛍光体の粒子を軟化点が700℃以上のガラスに分散しているため、紫色から紫外の波長で励起しても励起光が吸収されることがない。また軟化点が700℃以上のガラスの屈折率が酸窒化物蛍光体及び窒化物蛍光体の屈折率に近いために、蛍光体から外部への光取り出し効率が高い。従って、紫色から紫外の波長で励起しても劣化することなく、高い波長変換効率を得ることができる。   In the wavelength conversion member of the present invention, the oxynitride phosphor particles or the nitride phosphor particles are dispersed in glass having a softening point of 700 ° C. or higher. Is not absorbed. Further, since the refractive index of glass having a softening point of 700 ° C. or higher is close to the refractive indexes of oxynitride phosphors and nitride phosphors, the light extraction efficiency from the phosphors to the outside is high. Accordingly, high wavelength conversion efficiency can be obtained without deterioration even when excited at a wavelength from purple to ultraviolet.

また、本発明の波長変換部材の製造方法によれば、酸窒化物蛍光体又は窒化物蛍光体をその粒子状態を保ったままガラスに分散できるので、高い波長変換効率を保つことができる。   In addition, according to the method for manufacturing a wavelength conversion member of the present invention, the oxynitride phosphor or the nitride phosphor can be dispersed in the glass while maintaining its particle state, so that high wavelength conversion efficiency can be maintained.

本発明の発光装置は、紫色から紫外の波長で発光する半導体発光素子と上記波長変換部材とを組み合わせることによって、長寿命で高効率の発光装置となる。   The light-emitting device of the present invention is a long-life and high-efficiency light-emitting device by combining a semiconductor light-emitting element that emits light with a wavelength from violet to ultraviolet and the wavelength conversion member.

以下に、本発明の波長変換部材とその製造方法、および波長変換部材と半導体発光素子を組み合わせた発光装置の実施の形態を示す。   Below, the wavelength conversion member of this invention, its manufacturing method, and embodiment of the light-emitting device which combined the wavelength conversion member and the semiconductor light-emitting element are shown.

なお、ガラスに関しては、転移点、軟化点、融点という温度が定義されているが、本実施の形態ではガラス中に粒子を分散させる際の下限温度となる軟化点を主に用いることにする。軟化点は、ガラスの粘度がlE+7.6 dPa・sに相当する温度として定義される。   Regarding glass, temperatures such as a transition point, a softening point, and a melting point are defined, but in this embodiment, a softening point that is a lower limit temperature when particles are dispersed in glass is mainly used. The softening point is defined as the temperature at which the viscosity of the glass corresponds to 1E + 7.6 dPa · s.

(実施の形態1)
本発明の実施の形態1である波長変換部材を図1に示す。波長変換部材21は、オキシナイトライドガラス10に3種類の蛍光体粒子11、12、13を分散させたものである。蛍光体粒子11はCeを賦活したαサイアロン、蛍光体粒子12はEuを賦活したβサイアロン、蛍光体粒子13はEuを賦活したCaAlSiNを用いた。これらの蛍光体粒子はいずれもSiとNとを合わせた成分をモル比で50%以上含む、すなわち窒化ケイ素をベースとした酸窒化物蛍光体及び窒化物蛍光体の結晶体であり、非常に優れた耐熱性および水分など雰囲気ガスに対する安定性を有している。蛍光体粒子11、12、13に波長405nmの光を照射することにより、それぞれ発光ピーク波長480nm、540nmおよび660nmの非常に強い可視光の蛍光を発する。蛍光体粒子11、12、13の混合割合を調整することにより、全体としての発光色が変化するが、本実施の形態では、全体としての発光色が白色光に当たる色度となるように蛍光体粒子11、12、13の混合割合を4:4:2に調整した。
(Embodiment 1)
The wavelength conversion member which is Embodiment 1 of this invention is shown in FIG. The wavelength conversion member 21 is obtained by dispersing three types of phosphor particles 11, 12, and 13 in the oxynitride glass 10. Phosphor particles 11 were Ce-activated α sialon, phosphor particles 12 were Eu-activated β sialon, and phosphor particles 13 were Eu-activated CaAlSiN 3 . Each of these phosphor particles contains 50% or more of a combined ratio of Si and N in a molar ratio, that is, a crystal of oxynitride phosphor and nitride phosphor based on silicon nitride. Excellent heat resistance and stability against atmospheric gases such as moisture. By irradiating the phosphor particles 11, 12, and 13 with light having a wavelength of 405 nm, very strong visible light fluorescence having emission peak wavelengths of 480 nm, 540 nm, and 660 nm is emitted. By adjusting the mixing ratio of the phosphor particles 11, 12, and 13, the overall emission color changes. In this embodiment, the phosphor is set so that the entire emission color has chromaticity corresponding to white light. The mixing ratio of the particles 11, 12, and 13 was adjusted to 4: 4: 2.

実施の形態1における波長変換部材21の製造方法を以下に説明する。
(蛍光体粒子)
蛍光体粒子11は、組成式Ce0.5(Si、Al)12(O、N)16で表されるαサイアロンであり、以下のようにして作製される。原料として、窒化ケイ素、窒化アルミニウム、酸化セリウム粉末を、上記組成が得られるように秤量し、ボールミルにより粉砕・混合する。得られた混合物を、金型を用いて20MPaの圧力を加えて成形し、直径12mm、厚さ5mmの成形体11Aとした。図2に示すように、成形体11Aを電気炉50にセットする。焼成操作は、まず、ガス導入口53を閉にして排気口54から排気することによって電気炉50内を真空とし、成形体11Aを800℃まで加熱した後、排気口54を閉にしてガス導入口53から純度が99.9体積%の窒素を導入して圧力を30MPaとし、毎時500℃で2200℃まで昇温し、2200℃で2時間保持する。これにより、成形体11Aが焼成され、αサイアロンとなる。焼成された成形体11Aをボールミル中で粉砕することにより、青色に発光するαサイアロン蛍光体粒子11が作製される。
蛍光体粒子11について、結晶体の割合が50%以上であることを確認した。
A method for manufacturing the wavelength conversion member 21 in the first embodiment will be described below.
(Phosphor particles)
The phosphor particles 11 are α sialon represented by the composition formula Ce 0.5 (Si, Al) 12 (O, N) 16 and are produced as follows. As raw materials, silicon nitride, aluminum nitride, and cerium oxide powder are weighed so as to obtain the above composition, and pulverized and mixed by a ball mill. The obtained mixture was molded by applying a pressure of 20 MPa using a mold to obtain a molded body 11A having a diameter of 12 mm and a thickness of 5 mm. As shown in FIG. 2, the molded body 11 </ b> A is set in the electric furnace 50. In the firing operation, first, the gas introduction port 53 is closed and exhausted from the exhaust port 54 to evacuate the inside of the electric furnace 50, the molded body 11A is heated to 800 ° C., and then the exhaust port 54 is closed to introduce the gas. Nitrogen having a purity of 99.9% by volume is introduced from the port 53 to a pressure of 30 MPa, the temperature is raised to 2200 ° C. at 500 ° C. per hour, and held at 2200 ° C. for 2 hours. Thereby, the molded body 11A is fired to become α sialon. The sintered compact 11A is pulverized in a ball mill to produce α sialon phosphor particles 11 that emit blue light.
About the fluorescent substance particle 11, it confirmed that the ratio of the crystal body was 50% or more.

蛍光体粒子12は、以下のようにして作製されている。窒化ケイ素、窒化アルミニウム、酸化ユーロピウム粉末を混合させ、その後窒化ホウ素製のるつぼに入れて窒素中1MPa、1900℃で反応させて、その後粉砕することにより、緑色に発光するEuを賦活したβサイアロン蛍光体粒子12が作製される。   The phosphor particles 12 are produced as follows. Β sialon fluorescence in which Eu that emits green light is activated by mixing silicon nitride, aluminum nitride, and europium oxide powder, then putting it in a boron nitride crucible, reacting in nitrogen at 1 MPa and 1900 ° C., and then grinding. Body particles 12 are produced.

蛍光体粒子13は、以下のようにして作製される。窒化ケイ素、窒化アルミニウム、窒化カルシウム、窒化ユーロピウム粉末を、水分と空気を遮断したグローブボックス内で混合させ、その後窒化ホウ素製のるつぼに入れて窒素中1MPa、1800℃で反応させて、その後粉砕することにより、赤色に発光するEuを賦活したCaAlSiN蛍光体粒子13が作製される。 The phosphor particles 13 are produced as follows. Silicon nitride, aluminum nitride, calcium nitride, and europium nitride powder are mixed in a glove box where moisture and air are blocked, then placed in a boron nitride crucible, reacted at 1 MPa in nitrogen at 1800 ° C., and then pulverized As a result, CaAlSiN 3 phosphor particles 13 activated with Eu emitting red light are produced.

(波長変換部材)
オキシナイトライドガラスの原料であるCaCO、Al、SiO、AlNの微粉末を、各重量比=29:3:34:34で混合した混合粉末55を作製し、混合粉末55、蛍光体粒子11、12、13を混合して、ホットプレス法で成形し、成形体19とする。図3に示すように、成形体19を、電気炉50に入れ、乾燥窒素中・常圧で1500℃に昇温して2時間保持し、急冷することにより、図1に示すような、オキシナイトライドガラス10の中に蛍光体粒子11、12、13がほぼ均一に分散した波長変換部材21が形成された。
(Wavelength conversion member)
A mixed powder 55 is prepared by mixing fine powders of CaCO 3 , Al 2 O 3 , SiO 2 , and AlN, which are raw materials for oxynitride glass, in a weight ratio of 29: 3: 34: 34, and mixed powder 55, The phosphor particles 11, 12 and 13 are mixed and molded by a hot press method to obtain a molded body 19. As shown in FIG. 3, the compact 19 is placed in an electric furnace 50, heated to 1500 ° C. in dry nitrogen and normal pressure, held for 2 hours, and rapidly cooled to obtain an oxynitride as shown in FIG. The wavelength conversion member 21 in which the phosphor particles 11, 12, 13 were dispersed almost uniformly in the nitride glass 10 was formed.

波長変換部材21を形成する際の温度としては1500℃としたが、酸窒化物蛍光体の粒子又は窒化物蛍光体の粒子との反応を抑え溶融を防止する必要もあるため、蛍光体の焼成温度より50℃以上低い温度(この場合、一番低い蛍光体粒子13の焼成温度より50℃低い温度、すなわち1750℃以下)が望ましい。蛍光体の焼成温度より200℃以上低い温度が一層望ましい。   Although the temperature for forming the wavelength conversion member 21 is 1500 ° C., it is necessary to suppress the reaction with the oxynitride phosphor particles or the nitride phosphor particles to prevent melting. A temperature that is 50 ° C. or more lower than the temperature (in this case, a temperature that is 50 ° C. lower than the firing temperature of the lowest phosphor particle 13, that is, 1750 ° C. or less) is desirable. A temperature lower by 200 ° C. or more than the firing temperature of the phosphor is more desirable.

なお、オキシナイトライドガラス10として、上記組成のCa−Si−Al−O−N系オキシナイトライドガラスを使用したが、このほかにもCa−Mg−Si−Al−O−N、La−Si−O−N,Mg−Si−O−N,Y−Al−Si−O−N,Mg−Si−Al−O−N,Na−Si−O−N,Na−Ca−Si−O−N,Li−K−Al−Si−O−N,Na−B−Si−O−N,Ba−Al−Si−O−N,Na−B―O−N,Li−P−O−N,Na−P−O−N等の組成よりなるオキシナイトライドガラスを用いることができる。   In addition, although the Ca-Si-Al-ON-type oxynitride glass of the said composition was used as the oxynitride glass 10, in addition to this, Ca-Mg-Si-Al-ON, La-Si -O-N, Mg-Si-ON, Y-Al-Si-ON, Mg-Si-Al-ON, Na-Si-ON, Na-Ca-Si-ON , Li-K-Al-Si-ON, Na-B-Si-ON, Ba-Al-Si-ON, Na-BO-N, Li-P-O-N, Na An oxynitride glass having a composition such as —P—O—N can be used.

オキシナイトライドガラスの原料として、一般にはSiOなどの金属酸化物、及び窒素供給源として金属窒化物や金属酸窒化物を使用する。 Generally, a metal oxide such as SiO 2 is used as a raw material for oxynitride glass, and a metal nitride or metal oxynitride is used as a nitrogen supply source.

ここで、金属酸化物としては、SiOの他に、Al、BaO、Sb、SrO、NaO、Na、CaO、MgO、KO、La、CeO、Y、ZrO、ZnO、As、TiO、B、Cr、PbO、V、SnOなどが挙げられる。また、熱分解によってこれらの金属酸化物となる炭酸塩、水酸化物、シュウ酸塩を原料として配合してもよい。 Here, as the metal oxide, in addition to SiO 2, Al 2 O 3, BaO, Sb 2 O 3, SrO, Na 2 O, Na 2 O 3, CaO, MgO, K 2 O, La 2 O 3 , CeO 2 , Y 2 O 3 , ZrO 2 , ZnO 2 , As 2 O 3 , TiO 2 , B 2 O 3 , Cr 2 O 3 , PbO, V 2 O 5 , SnO 2 and the like. Further, carbonates, hydroxides, and oxalates that become these metal oxides by thermal decomposition may be blended as raw materials.

金属窒化物としては、Si、AlN、Al、Mg、LiNなどが挙げられる。 Examples of the metal nitride include Si 3 N 4 , AlN, Al 2 N 2 , Mg 2 N 2 , and Li 3 N.

金属酸窒化物としては、SiO、SiOなどが挙げられる。
また、オキシナイトライドガラスの軟化点は、組成にもよるが、一般に850〜100
0℃程度である。
Examples of the metal oxynitride include Si 2 N 2 O and Si 5 N 6 O.
Moreover, although the softening point of oxynitride glass is based also on a composition, generally it is 850-100.
It is about 0 ° C.

(比較例)
また、本実施の形態と比較するため、以下の比較用波長変換部材21Bも作製した。低融点ガラスの微粉末、蛍光体粒子11、12、13を混合してルツボに入れ、ルツボを電気炉50に入れ、乾燥窒素中・常圧で500℃に昇温して30分保持し、急冷することにより、低融点ガラスの中に蛍光体粒子11、12、13がほぼ均一に分散した波長変換部材21Bを形成した。
(Comparative example)
For comparison with the present embodiment, the following comparative wavelength conversion member 21B was also produced. Fine powder of low melting point glass and phosphor particles 11, 12, 13 are mixed and put in a crucible, the crucible is put in an electric furnace 50, heated to 500 ° C. in dry nitrogen at normal pressure and held for 30 minutes, By rapidly cooling, the wavelength conversion member 21B in which the phosphor particles 11, 12, and 13 were dispersed almost uniformly in the low melting point glass was formed.

(特性)
以上のように、本実施の形態の波長変換部材は製造工程において高温プロセスを経るが、耐熱性を有する酸窒化物蛍光体又は窒化物蛍光体を用いているため、ガラス溶融工程の後に高い波長変換効率を得ることができた。すなわち、比較例である波長変換部材21Bと比べ、発光スペクトルの強度が全体として増加しており、発光スペクトルを分析したところ、蛍光体粒子11の波長変換効率が1.3倍、蛍光体粒子12の波長変換効率が1.1倍、蛍光体粒子13の波長変換効率が1.15倍に増大していた。波長変換効率が増大した理由として、これらの蛍光体は窒化物又は窒化物ベースの酸窒化物であって酸化物でないため、特に結晶体についてはガラスとの反応が少ない一方、その粒子の表面に存在する発光効率の低い非結晶体については、溶融した高融点ガラス中に拡散し、除去されることがあるためと推定している。さらに、酸窒化物蛍光体の粒子又は窒化物蛍光体の粒子の組成比によっては、結晶構造を安定化させるアニール効果によって波長変換効率が増大する場合もある。
(Characteristic)
As described above, the wavelength conversion member according to the present embodiment undergoes a high-temperature process in the manufacturing process. However, since the heat-resistant oxynitride phosphor or nitride phosphor is used, the wavelength conversion member has a high wavelength after the glass melting step. Conversion efficiency could be obtained. That is, compared with the wavelength conversion member 21B as the comparative example, the intensity of the emission spectrum is increased as a whole, and when the emission spectrum is analyzed, the wavelength conversion efficiency of the phosphor particles 11 is 1.3 times that of the phosphor particles 12. The wavelength conversion efficiency of the phosphor particles 13 increased 1.1 times, and the wavelength conversion efficiency of the phosphor particles 13 increased 1.15 times. The reason for the increase in wavelength conversion efficiency is that these phosphors are nitrides or nitride-based oxynitrides and are not oxides, and therefore, especially for crystals, there is little reaction with glass, but on the surface of the particles. It is presumed that the non-crystalline substance having low luminous efficiency is diffused into the molten high melting point glass and may be removed. Furthermore, depending on the composition ratio of the oxynitride phosphor particles or the nitride phosphor particles, the wavelength conversion efficiency may increase due to the annealing effect that stabilizes the crystal structure.

本実施の形態では、酸窒化物蛍光体の粒子又は窒化物蛍光体の粒子の粒子状態を保ったままオキシナイトライドガラス中に分散したことにより、発光中心として働く希土類元素の電子状態が、結晶外部の状態によって影響を受けない。従って、発光中心として働く希土類元素を直接ガラスの成分となるように溶融・分散した場合に比べ、ガラスの分散工程や組成によらず、再現性の良い励起スペクトル(波長変換効率の励起波長依存性)及び発光色の色度(発光スペクトル)が得られる。   In this embodiment, since the oxynitride phosphor particles or the nitride phosphor particles are dispersed in the oxynitride glass while maintaining the particle state, the electronic state of the rare earth element serving as the luminescence center is Unaffected by external conditions. Therefore, the reproducible excitation spectrum (depending on the excitation wavelength dependence of the wavelength conversion efficiency), regardless of the dispersion process and composition of the glass, compared with the case where the rare earth element serving as the luminescent center is directly melted and dispersed so as to become a glass component. ) And the chromaticity (emission spectrum) of the emission color.

本実施の形態で用いているオキシナイトライドガラスは、通常の酸化物ガラスに比べ、硬度及び弾性率が高いため、薄層化や軽量化が容易である。また、オキシナイトライドガラスは、酸化物ガラスに比べガラス軟化点が100℃以上高い。このことは、ガラス形成後のプロセスの自由度を広げることに寄与する。また、本実施の形態では、蛍光体粒子として高温安定性に優れた酸窒化物蛍光体又は窒化物蛍光体を使用しているため、オキシナイトライドガラス中に分散しても粒子状態を保つことができる。水分遮断性に優れたオキシナイトライドガラスと高温安定性に優れた酸窒化物蛍光体又は窒化物蛍光体を組み合わせることにより、発光強度及び発光色が経時変化することのない、安定した波長変換部材が得られる。   Since the oxynitride glass used in the present embodiment has higher hardness and elastic modulus than ordinary oxide glass, it is easy to reduce the thickness and weight. Oxynitride glass has a glass softening point higher by 100 ° C. or more than oxide glass. This contributes to increasing the degree of freedom of the process after glass formation. In the present embodiment, since the oxynitride phosphor or nitride phosphor excellent in high-temperature stability is used as the phosphor particles, the particle state is maintained even when dispersed in the oxynitride glass. Can do. A stable wavelength conversion member that does not change with time in emission intensity and emission color by combining oxynitride glass excellent in moisture barrier properties and oxynitride phosphor or nitride phosphor excellent in high temperature stability Is obtained.

また、オキシナイトライドガラスの屈折率は1.6〜1.9であって、酸化物ガラスの屈折率(1.5〜1.8)に比べて高く、酸窒化物蛍光体又は窒化物蛍光体の屈折率(約2.0)に近いため、蛍光体からの光取り出し効率が高い。   Moreover, the refractive index of oxynitride glass is 1.6 to 1.9, which is higher than the refractive index (1.5 to 1.8) of oxide glass, and is an oxynitride phosphor or nitride fluorescence. Since it is close to the refractive index of the body (about 2.0), the light extraction efficiency from the phosphor is high.

(実施の形態2)
実施の形態2では、一旦オキシナイトライドガラスを作製して、その粉末と酸窒化物蛍光体の粒子又は窒化物蛍光体の粒子を混合して溶融することにより、波長変換部材を作製している。
(Embodiment 2)
In Embodiment 2, an oxynitride glass is once produced, and the wavelength conversion member is produced by mixing and melting the powder and oxynitride phosphor particles or nitride phosphor particles. .

オキシナイトライドガラスの原料であるSiO(35モル%)、Al(2モル
%)、Al(4モル%)、Si(13モル%)、CaO(43モル%)、MgO(5モル%)の粉末を混合した混合粉末65を、図4に示するつぼ66に入れた。乾燥窒素を満たした電気炉50内で1600℃まで温度を上げて2時間溶融し(ガラス溶融工程)、その後、冷却してオキシナイトライドガラス67を得た。
SiO 2 as a raw material for oxynitride glass (35 mol%), Al 2 O 3 ( 2 mol%), Al 2 N 2 ( 4 mol%), Si 3 N 4 ( 13 mol%), CaO (43 mol %) And MgO (5 mol%) powder were mixed in a crucible 66 shown in FIG. The temperature was raised to 1600 ° C. in an electric furnace 50 filled with dry nitrogen and melted for 2 hours (glass melting step), and then cooled to obtain oxynitride glass 67.

なお、オキシナイトライドガラス原料の溶融は、例えば、1400〜1900℃にて3〜100時間、窒素、アルゴンなどの酸素を含まない不活性ガス雰囲気下にて行うことが好ましい。   The melting of the oxynitride glass raw material is preferably performed, for example, at 1400 to 1900 ° C. for 3 to 100 hours in an inert gas atmosphere not containing oxygen such as nitrogen and argon.

次に、このオキシナイトライドガラス67を粉砕して微粉末にし、これと実施の形態1に用いたものと同じ蛍光体粒子11、12、13を混合して、ホットプレス法により成形し、成形体68とした。この成形体68を、図5に示す電気炉50で、乾燥大気中・常圧で1200℃に昇温して2時間保持し、急冷することにより、オキシナイトライドガラス67の中に蛍光体粒子11、12、13がほぼ均一に分散した波長変換部材69が形成された。   Next, the oxynitride glass 67 is pulverized into a fine powder, and the same phosphor particles 11, 12, and 13 as used in the first embodiment are mixed and molded by a hot press method. It was set as the body 68. This molded body 68 is heated in an electric furnace 50 shown in FIG. 5 at 1200 ° C. in a dry atmosphere and at normal pressure, held for 2 hours, and rapidly cooled, whereby phosphor particles are contained in the oxynitride glass 67. A wavelength conversion member 69 in which 11, 12, and 13 were dispersed almost uniformly was formed.

波長変換部材69を形成する際の温度としては1200℃としたが、ガラス軟化点以上の加熱であれば、ガラス中に蛍光体粒子を分散させることができる。ただし軟化点近くの温度で蛍光体粒子を分散させるには、900℃の場合24時間程度の焼成が必要であるので、作業時間を短縮するためには、900℃以上が良く、酸窒化物蛍光体の粒子又は窒化物蛍光体の粒子が粒子状態を保つ温度である1600℃以下が望ましい。また、実施の形態1と異なり、一旦オキシナイトライドガラスを形成しているため、波長変換部材製造工程の温度を低くすることができ、蛍光体粒子の溶融やガラスとの著しい反応を抑えるという点からは好都合である。従って、蛍光体粒子11、12、13の一部がオキシナイトライドガラス中に溶融することを抑制できる。   Although the temperature at which the wavelength conversion member 69 is formed is 1200 ° C., the phosphor particles can be dispersed in the glass if the heating is at or above the glass softening point. However, in order to disperse the phosphor particles at a temperature near the softening point, firing at about 900 ° C. requires about 24 hours. Therefore, in order to shorten the working time, 900 ° C. or higher is preferable, and oxynitride fluorescence 1600 ° C. or lower, which is the temperature at which the body particles or nitride phosphor particles maintain the particle state, is desirable. Further, unlike the first embodiment, since the oxynitride glass is once formed, the temperature of the wavelength conversion member manufacturing process can be lowered, and the phosphor particles can be melted and the significant reaction with the glass is suppressed. Is convenient. Therefore, it can suppress that a part of fluorescent substance particles 11, 12, and 13 melt in oxynitride glass.

(実施の形態3)
本実施の形態では、ガラスとして、市販されているショット社製無アルカリガラスAF45(主成分はSiO、BaO、Alなど、軟化点883℃)を用いている。このガラスは紫色から紫外の波長の透過率が良好である。
(Embodiment 3)
In the present embodiment, commercially available non-alkali glass AF45 (manufactured by SiO 2 , BaO, Al 2 O 3, etc., softening point 883 ° C.) is used as the glass. This glass has good transmittance from purple to ultraviolet wavelengths.

購入したAF45をミキサーで粉末状のガラス75にする。粉末状のガラス75と、実施の形態1で用いたのと同じ蛍光体粒子11、12、13を混合して白金るつぼ76に入れ、図6に示す電気炉50に入れて1100℃に昇温して2時間保持することにより溶融する。この溶融原料79を図7に示すようにカーボン板77上に流し出して波長変換部材シート80に成形した。なお、シート状に成形するためには、溶融Sn上にガラスを流し出して成形するフロート法や、細長いスリットから溶融ガラスを下に垂らして成形するフュージョン法を用いてもよい。   The purchased AF45 is made into powdery glass 75 with a mixer. Powdered glass 75 and the same phosphor particles 11, 12, and 13 as used in Embodiment 1 are mixed and placed in platinum crucible 76, placed in electric furnace 50 shown in FIG. 6, and heated to 1100 ° C. And melt by holding for 2 hours. As shown in FIG. 7, the molten raw material 79 was poured out on a carbon plate 77 and formed into a wavelength conversion member sheet 80. In addition, in order to shape | mold into a sheet form, you may use the float method which pours and casts glass on molten Sn, and the fusion method which hangs down molten glass from an elongate slit, and shape | molds.

波長変換部材シート80をダイシング法で切断して、縦・横とも10cm角、厚さ0.5mmの波長変換部材81とした。   The wavelength conversion member sheet 80 was cut by a dicing method to obtain a wavelength conversion member 81 having a 10 cm square both in length and width and a thickness of 0.5 mm.

本実施の形態では、オキシナイトライドガラスを用いる場合に比べてガラス溶融温度を下げたため、酸窒化物蛍光体の粒子又は窒化物蛍光体の粒子の溶融やガラスとの著しい反応を抑えるという点からは好都合である。また、オキシナイトライドガラスと異なり、酸素を含む雰囲気で作製することが可能であるため、作製が容易である。   In the present embodiment, since the glass melting temperature is lowered as compared with the case of using oxynitride glass, it is possible to suppress melting of oxynitride phosphor particles or nitride phosphor particles and significant reaction with glass. Is convenient. In addition, unlike oxynitride glass, it can be manufactured in an atmosphere containing oxygen, and thus is easy to manufacture.

(実施の形態4)
本実施の形態では、ガラスとして、ホウ珪酸ガラスを用いている。ホウ珪酸ガラスは紫色から紫外の波長の透過率が良好である。
(Embodiment 4)
In this embodiment, borosilicate glass is used as the glass. Borosilicate glass has good transmittance from purple to ultraviolet wavelengths.

代表的なホウ珪酸ガラスであるBK7ガラス(推定原料組成:SiO=70重量%、B=10重量%、BaO=3重量%、KO=8重量%、NaO=8重量%、軟化点718℃)を粉末にする。これらのガラス粉末と、実施の形態1で得られた蛍光体粒子11、12、13を混合して、実施の形態3で用いたのと同じ電気炉50を用いて1000℃に昇温して2時間保持することにより溶融する。この原料をフロート法により板ガラスに成形する。この板ガラスをダイシング法で縦・横とも10cm角、厚さ0.5mmに切断して、ガラス体10の中に酸窒化物蛍光体の粒子又は窒化物蛍光体の粒子11・12・13がほぼ均一に分散した波長変換部材82とした。 BK7 glass which is a typical borosilicate glass (estimated raw material composition: SiO 2 = 70 wt%, B 2 O 3 = 10 wt%, BaO = 3 wt%, K 2 O = 8 wt%, Na 2 O = 8 % By weight, softening point 718 ° C.). These glass powders and phosphor particles 11, 12, and 13 obtained in the first embodiment are mixed and heated to 1000 ° C. using the same electric furnace 50 used in the third embodiment. Melts by holding for 2 hours. This raw material is formed into a sheet glass by a float process. The plate glass is cut into a 10 cm square and a thickness of 0.5 mm both vertically and horizontally by a dicing method, and the oxynitride phosphor particles or the nitride phosphor particles 11, 12, and 13 are almost contained in the glass body 10. The wavelength conversion member 82 was uniformly dispersed.

本実施の形態では、オキシナイトライドガラスを用いる場合に比べてガラス溶融温度を下げたため、酸窒化物蛍光体の粒子又は窒化物蛍光体の粒子の溶融やガラスとの著しい反応を抑えるという点からは好都合である。また、オキシナイトライドガラスと異なり、酸素を含む雰囲気で作製することが可能であるため、作製が容易である。   In the present embodiment, since the glass melting temperature is lowered as compared with the case of using oxynitride glass, it is possible to suppress melting of oxynitride phosphor particles or nitride phosphor particles and significant reaction with glass. Is convenient. In addition, unlike oxynitride glass, it can be manufactured in an atmosphere containing oxygen, and thus is easy to manufacture.

(実施の形態5)
次に実施の形態1の波長変換部材を利用した発光装置20を、断面図である図8を用いて説明する。基体22の上に、InGaAlN系結晶からなる窒化物LED23が設置されている。窒化物LED23のn型電極23Aは基体22上の電極24と電気的に接続され、窒化物LED23のp型電極23Bは、基体22上の電極25と電気的に接続されている。基体22の一部である支持部22Bの上に、実施の形態1で作製された、蛍光体粒子11、12、13を分散させたオキシナイトライドガラス10よりなる波長変換部材21が接着されている。
(Embodiment 5)
Next, the light-emitting device 20 using the wavelength conversion member of Embodiment 1 is demonstrated using FIG. 8 which is sectional drawing. A nitride LED 23 made of InGaAlN-based crystal is installed on the base 22. The n-type electrode 23A of the nitride LED 23 is electrically connected to the electrode 24 on the base 22, and the p-type electrode 23B of the nitride LED 23 is electrically connected to the electrode 25 on the base 22. The wavelength conversion member 21 made of the oxynitride glass 10 in which the phosphor particles 11, 12, and 13 are dispersed is bonded onto the support portion 22 </ b> B that is a part of the substrate 22. Yes.

InGaAlN系結晶よりなる窒化物LED23は、発光層などの構成材料の組成を変化させることによって発光ピーク波長を300nmから500nmまで変化させることができるが、ここでは発光ピーク波長が390nmの励起光27を発する窒化物LED23を用いた。窒化物LED23を発した励起光27は、波長変換部材21に入射し、波長変換部材21内に分散された蛍光体粒子11、12、13を励起して、励起光よりも長波長の蛍光28に変換される。   The nitride LED 23 made of an InGaAlN-based crystal can change the emission peak wavelength from 300 nm to 500 nm by changing the composition of the constituent material such as the light emitting layer. Here, the excitation light 27 having the emission peak wavelength of 390 nm is changed. Emitting nitride LED 23 was used. Excitation light 27 emitted from the nitride LED 23 enters the wavelength conversion member 21, excites the phosphor particles 11, 12, and 13 dispersed in the wavelength conversion member 21, and fluorescence 28 having a wavelength longer than that of the excitation light. Is converted to

蛍光体粒子11、12、13の混合比を変化させることにより、さまざまな色度の発光装置が作製できる。特に各蛍光体から発する発光色を合成した色が白色の発光装置は、照明用発光装置として好適に使用できる。このような白色の発光装置に用いるために各蛍光体の分散組成を例えば4:4:2に調整して、発光色の色度座標xを0.22以上0.44以下、色度座標yを0.22以上0.44以下とした。また、例えば各蛍光体の分散組成を2:4:6にすることにより、色度座標xを0.36以上0.5以下、色度座標yを0.33以上0.46以下とすることもでき、電球の発光色に近い暖色系の照明用発光装置を作製することも可能である。なお、蛍光体の混合比は、各蛍光体の発光効率が製造ロット等によって変化することがあるため、適宜調整する必要がある。   By changing the mixing ratio of the phosphor particles 11, 12, 13, light emitting devices with various chromaticities can be manufactured. In particular, a light emitting device having a white color obtained by combining the emission colors emitted from the respective phosphors can be suitably used as an illumination light emitting device. For use in such a white light emitting device, the dispersion composition of each phosphor is adjusted to, for example, 4: 4: 2, and the chromaticity coordinate x of the emission color is 0.22 to 0.44, and the chromaticity coordinate y. Was set to 0.22 or more and 0.44 or less. For example, by setting the dispersion composition of each phosphor to 2: 4: 6, the chromaticity coordinate x is set to 0.36 or more and 0.5 or less, and the chromaticity coordinate y is set to 0.33 or more and 0.46 or less. It is also possible to produce a warm-colored light-emitting device for illumination that is close to the light-emitting color of a light bulb. The mixing ratio of the phosphors needs to be adjusted as appropriate because the luminous efficiency of each phosphor may vary depending on the production lot.

窒化物LED23の発光ピーク波長は、300nm以上500nmであればよいが、350nm以上420nm以下の波長であることがより好ましい。この波長領域は、ほぼ酸窒化物蛍光体又は窒化物蛍光体の励起スペクトル(波長変換効率の励起波長依存性)のピークに当たるため高効率が得られるとともに、視感度が低いため、半導体発光素子の発光ピーク波長ばらつきによる発光色の変動がほとんど起こらないからである。   The emission peak wavelength of the nitride LED 23 may be 300 nm or more and 500 nm, but is more preferably 350 nm or more and 420 nm or less. This wavelength region almost corresponds to the peak of the excitation spectrum (excitation wavelength dependence of wavelength conversion efficiency) of the oxynitride phosphor or nitride phosphor, so that high efficiency is obtained and the visibility is low. This is because there is almost no variation in emission color due to variations in emission peak wavelength.

従来、このような短波長の励起光を用いた場合、蛍光体自体や蛍光体を分散している樹脂などの紫外線劣化の問題が発生していたが、本実施の形態では、紫色から紫外の波長を吸収せず化学的に安定なオキシナイトライドガラスと、安定性に優れた酸窒化物蛍光体又
は窒化物蛍光体を用いているため、3000時間以上動作させても光度の変動が3%以内とほとんどない、従来にない長寿命の発光装置が得られた。
Conventionally, when such short-wavelength excitation light is used, there has been a problem of ultraviolet degradation of the phosphor itself or a resin in which the phosphor is dispersed. Uses chemically stable oxynitride glass that does not absorb wavelengths and oxynitride phosphors or nitride phosphors with excellent stability, resulting in a 3% change in luminous intensity even when operated for 3000 hours or more. An unprecedented long-life light-emitting device was obtained.

(実施の形態6)
本実施の形態は、平板状の波長変換部材を用いた発光装置である。
(Embodiment 6)
The present embodiment is a light emitting device using a plate-like wavelength conversion member.

実施の形態3で得られた波長変換部材81を用いた発光装置90の断面を示した斜視図である図9において、p電極用配線、n電極用配線(いずれも図示せず)が形成された基体92に、複数の窒化物LED93を設置する。その際、窒化物LED93の一方の面に形成されたp電極及びn電極が、それぞれ基体92上のp電極用配線、n電極用配線と接続されるように接続する。基体92には、スペーサ94を形成し、スペーサ94の上に板状の波長変換部材81を接着する。   In FIG. 9, which is a perspective view showing a cross section of a light emitting device 90 using the wavelength conversion member 81 obtained in the third embodiment, p electrode wiring and n electrode wiring (both not shown) are formed. A plurality of nitride LEDs 93 are installed on the base 92. At that time, the p-electrode and the n-electrode formed on one surface of the nitride LED 93 are connected so as to be connected to the p-electrode wiring and the n-electrode wiring on the base 92, respectively. A spacer 94 is formed on the base 92, and a plate-like wavelength conversion member 81 is bonded onto the spacer 94.

窒化物LED93は、電流を流すことにより発光ピーク波長410nmの励起光97を発し、これが波長変換部材81によって蛍光98に変換される。   The nitride LED 93 emits excitation light 97 having an emission peak wavelength of 410 nm by flowing current, and this is converted into fluorescence 98 by the wavelength conversion member 81.

(実施の形態7)
次に実施の形態1の波長変換部材を利用したもう一つの発光装置130を、図10を用いて説明する。蛍光体粒子11、12、13をオキシナイトライドガラス67に分散させた、実施の形態2で作製した直径0.5mm、長さ20mmの波長変換部材69を、基体131の上に固定してある。基体131の上に、サブマウント132を配置し、さらにサブマウント132の上に、InGaAlN系結晶からなる窒化物半導体レーザ133が実装されている。窒化物半導体レーザ133にはリード線136が接続され、電流が供給できるようになっている。窒化物半導体レーザ133は、構成材料の組成を変化させることによって発光ピーク波長を300nmから500nmまで変化させることができるが、ここでは発光ピーク波長が405nmの励起光137を発する窒化物半導体レーザ133を用いた。窒化物半導体レーザ133から発せられた励起光137は、レンズ134によって略平行光にされ、波長変換部材69に入射し、その中に分散している蛍光体粒子11、12、13を励起して、励起光137よりも長波長の蛍光138に変換される。窒化物半導体レーザ133はLEDに比べて電流・光変換効率に優れている。また窒化物半導体レーザ133から発する励起光137の指向性が強いため、励起光137の入射方向と蛍光138の出射方向を別方向とするような構成にすることが容易である。このため人体に対して悪影響を及ぼす短波長の励起光137を蛍光138と分離し遮蔽することが容易である。
(Embodiment 7)
Next, another light-emitting device 130 using the wavelength conversion member of Embodiment 1 will be described with reference to FIG. A wavelength conversion member 69 having a diameter of 0.5 mm and a length of 20 mm produced in the second embodiment in which the phosphor particles 11, 12, and 13 are dispersed in the oxynitride glass 67 is fixed on the substrate 131. . A submount 132 is disposed on the base 131, and a nitride semiconductor laser 133 made of InGaAlN-based crystal is mounted on the submount 132. A lead wire 136 is connected to the nitride semiconductor laser 133 so that a current can be supplied. The nitride semiconductor laser 133 can change the emission peak wavelength from 300 nm to 500 nm by changing the composition of the constituent materials. Here, the nitride semiconductor laser 133 that emits the excitation light 137 having the emission peak wavelength of 405 nm is used. Using. Excitation light 137 emitted from the nitride semiconductor laser 133 is converted into substantially parallel light by the lens 134, enters the wavelength conversion member 69, and excites the phosphor particles 11, 12, 13 dispersed therein. , Converted into fluorescence 138 having a longer wavelength than the excitation light 137. The nitride semiconductor laser 133 is superior in current / light conversion efficiency compared to the LED. In addition, since the directivity of the excitation light 137 emitted from the nitride semiconductor laser 133 is strong, it is easy to adopt a configuration in which the incident direction of the excitation light 137 and the emission direction of the fluorescence 138 are different directions. For this reason, it is easy to separate and shield the short-wavelength excitation light 137 that adversely affects the human body from the fluorescence 138.

窒化物半導体レーザ133の発光ピーク波長は、350nm以上420nm以下の波長であることがより好ましい。この波長領域は、ほぼ酸窒化物蛍光体又は窒化物蛍光体の励起スペクトル(波長変換効率の励起波長依存性)のピークに当たるため高効率が得られるとともに、視感度が低いため、半導体発光素子の発光ピーク波長ばらつきによる発光色の変動がほとんど起こらないからである。従来、このような短波長の励起光を用いた場合、蛍光体自体や蛍光体を分散している樹脂の紫外線劣化の問題が発生していたが、本実施の形態では、非常に結晶構造が安定な酸窒化物蛍光体の粒子又は窒化物蛍光体の粒子とオキシナイトライドガラスを用いているため、従来にない長寿命の発光装置が得られた。なお、波長変換部材69をロッド形状としたが、オキシナイトライドガラスの強度が非常に高くかつ弾性率も高いという特徴を生かし、波長変換部材69の直径をさらに細く、長さを長くした光ファイバ状とした発光装置とすることも可能である。   The emission peak wavelength of the nitride semiconductor laser 133 is more preferably 350 nm or more and 420 nm or less. This wavelength region almost corresponds to the peak of the excitation spectrum (excitation wavelength dependence of wavelength conversion efficiency) of the oxynitride phosphor or nitride phosphor, so that high efficiency is obtained and the visibility is low. This is because there is almost no variation in emission color due to variations in emission peak wavelength. Conventionally, when such short-wavelength excitation light is used, there has been a problem of ultraviolet degradation of the phosphor itself and the resin in which the phosphor is dispersed. In this embodiment, the crystal structure is very Since stable oxynitride phosphor particles or nitride phosphor particles and oxynitride glass are used, an unprecedented long-life light-emitting device was obtained. Although the wavelength conversion member 69 has a rod shape, an optical fiber in which the diameter of the wavelength conversion member 69 is further reduced and the length is increased by utilizing the characteristics that the strength of the oxynitride glass is very high and the elastic modulus is high. It is also possible to form a light emitting device in the form of a ring.

(その他の実施可能形態)
各実施の形態で用いた波長変換部材として、3種類の蛍光体粒子を分散したものを開示したが、1種類、2種類又は4種類以上の酸窒化物蛍光体又は窒化物蛍光体粒子をガラスに
分散したものでもよく、必要に応じて酸化物蛍光体や硫化物蛍光体などを加えてもよい。例えば1種類の蛍光体を用いた波長変換部材を用いることによって単色が得られるほか、それらを組み合わせることにより、白色又は擬似白色を得ることができる。
(Other possible embodiments)
As the wavelength conversion member used in each embodiment, a material in which three types of phosphor particles are dispersed is disclosed. However, one type, two types, or four types or more of oxynitride phosphors or nitride phosphor particles are made of glass. The oxide phosphor or sulfide phosphor may be added if necessary. For example, a single color can be obtained by using a wavelength conversion member using one type of phosphor, and white or pseudo white can be obtained by combining them.

本発明の波長変換部材を用いた発光装置は、小型で消費電力が少なく高輝度の発光を安定に行なうことができるので、液晶ディスプレイ、携帯電話もしくは携帯情報端末等のバックライト用光源、室内外広告等の表示装置、各種携帯機器のインジケータ、照明スイッチ又はOA(オフィスオートメーション)機器用における各種表示装置、あるいは照明装置の光源として広く用いることができる。   Since the light emitting device using the wavelength conversion member of the present invention is small and consumes less power and can stably emit light with high luminance, the light source for backlight of a liquid crystal display, a mobile phone or a personal digital assistant, It can be widely used as a display device for advertisements, indicators for various portable devices, lighting switches or various display devices for OA (office automation) devices, or a light source for lighting devices.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

実施の形態1の波長変換部材の構造図である。2 is a structural diagram of a wavelength conversion member according to Embodiment 1. FIG. 実施の形態1における蛍光体の焼成工程の説明図である。FIG. 3 is an explanatory diagram of a phosphor firing step in the first embodiment. 実施の形態1における波長変換部材の製造工程の説明図である。FIG. 5 is an explanatory diagram of a manufacturing process of the wavelength conversion member in the first embodiment. 実施の形態1におけるオキシナイトライドガラスの製造工程の説明図である。FIG. 5 is an explanatory diagram of a production process for the oxynitride glass in the first embodiment. 実施の形態2における波長変換部材の製造工程の説明図である。10 is an explanatory diagram of a manufacturing process of a wavelength conversion member in Embodiment 2. FIG. 実施の形態3における波長変換部材の製造工程の説明図である。FIG. 10 is an explanatory diagram of a manufacturing process of a wavelength conversion member in Embodiment 3. 実施の形態3における波長変換部材の製造工程の説明図である。FIG. 10 is an explanatory diagram of a manufacturing process of a wavelength conversion member in Embodiment 3. 実施の形態5の発光装置の断面図である。FIG. 6 is a cross-sectional view of a light emitting device according to a fifth embodiment. 実施の形態6の発光装置の断面を示した斜視図である。FIG. 10 is a perspective view showing a cross section of a light emitting device according to a sixth embodiment. 実施の形態7の発光装置の構造図である。FIG. 10 is a structural diagram of a light emitting device according to a seventh embodiment.

符号の説明Explanation of symbols

10、67 オキシナイトライドガラス
11、12、13 蛍光体粒子
11A 成形体
19 成形体
20、90、100、130 発光装置
21、21B、69、81 波長変換部材
22、92、131 基体
22B 支持部
23、93 窒化物LED
23A n型電極
23B p型電極
24、25 電極
27、97、137 励起光
28、98、138 蛍光
50 電気炉
53 ガス導入口
54 排気口
55 混合粉末
65 混合粉末
66 るつぼ
68 成形体
75 ガラス
76 白金るつぼ
77 カーボン板
79 溶融原料
80 波長変換部材シート
94 スペーサ
132 サブマウント
133 窒化物半導体レーザ
134 レンズ
136 リード線
10, 67 Oxynitride glass 11, 12, 13 Phosphor particle 11A Molded body 19 Molded body 20, 90, 100, 130 Light emitting device 21, 21B, 69, 81 Wavelength converting member 22, 92, 131 Base body 22B Support portion 23 , 93 Nitride LED
23A n-type electrode 23B p-type electrode 24, 25 electrode 27, 97, 137 excitation light 28, 98, 138 fluorescence 50 electric furnace 53 gas introduction port 54 exhaust port 55 mixed powder 65 mixed powder 66 crucible 68 compact 75 glass 76 platinum Crucible 77 Carbon plate 79 Molten raw material 80 Wavelength conversion member sheet 94 Spacer 132 Submount 133 Nitride semiconductor laser 134 Lens 136 Lead wire

Claims (14)

軟化点が700℃以上のガラスと、前記ガラス中に分散された酸窒化物蛍光体の粒子又は窒化物蛍光体の粒子とからなることを特徴とする波長変換部材。   A wavelength conversion member comprising a glass having a softening point of 700 ° C. or higher and oxynitride phosphor particles or nitride phosphor particles dispersed in the glass. 前記酸窒化物蛍光体の粒子又は前記窒化物蛍光体の粒子が、SiとNとを合わせた成分をモル比で50%以上含むことを特徴とする請求項1に記載の波長変換部材。   2. The wavelength conversion member according to claim 1, wherein the particles of the oxynitride phosphor or the particles of the nitride phosphor contain a component in which Si and N are combined in a molar ratio of 50% or more. 前記酸窒化物蛍光体の粒子又は前記窒化物蛍光体の粒子は、結晶体を50%以上含むことを特徴とする請求項1又は2に記載の波長変換部材。   3. The wavelength conversion member according to claim 1, wherein the oxynitride phosphor particles or the nitride phosphor particles contain 50% or more of a crystal. 前記酸窒化物蛍光体の粒子が、SiとAlとOとNと、一種又は二種以上のランタノイド系希土類元素からなることを特徴とする請求項1から3のいずれかに記載の波長変換部材。   The wavelength conversion member according to any one of claims 1 to 3, wherein the particles of the oxynitride phosphor are composed of Si, Al, O, and N, and one or more lanthanoid rare earth elements. . 前記窒化物蛍光体の粒子が、CaとSiとAlとNと、一種又は二種以上のランタノイド系希土類元素からなることを特徴とする請求項1から3のいずれかに記載の波長変換部材。   The wavelength conversion member according to any one of claims 1 to 3, wherein the nitride phosphor particles are made of Ca, Si, Al, and N, and one or more lanthanoid rare earth elements. 前記ガラスがオキシナイトライドガラスであることを特徴とする請求項1から5のいずれかに記載の波長変換部材。   The wavelength conversion member according to claim 1, wherein the glass is oxynitride glass. 発光ピーク波長が460nm以上510nm以下の第1の酸窒化物蛍光体の粒子又は窒化物蛍光体の粒子と、発光ピーク波長が510nm以上550nm以下の第2の酸窒化物蛍光体の粒子又は窒化物蛍光体の粒子と、発光ピーク波長が600nm以上670nm以下の第3の酸窒化物蛍光体の粒子又は窒化物蛍光体の粒子を含むことを特徴とする請求項1から6のいずれかに記載の波長変換部材。   First oxynitride phosphor particles or nitride phosphor particles having an emission peak wavelength of 460 nm to 510 nm, and second oxynitride phosphor particles or nitride of an emission peak wavelength of 510 nm to 550 nm 7. The phosphor according to claim 1, comprising phosphor particles and third oxynitride phosphor particles or nitride phosphor particles having an emission peak wavelength of 600 nm to 670 nm. Wavelength conversion member. 発光ピーク波長が300nm以上500nm以下の光を発する半導体発光素子と、前記半導体発光素子から発する光が入射するように配置された請求項1から7のいずれかに記載の波長変換部材からなることを特徴とする発光装置。   A semiconductor light emitting device that emits light having an emission peak wavelength of 300 nm or more and 500 nm or less, and a wavelength conversion member according to any one of claims 1 to 7 disposed so that light emitted from the semiconductor light emitting device is incident thereon. A light emitting device characterized. 前記発光ピーク波長が350nm以上420nm以下であることを特徴とする請求項8に記載の発光装置。   The light emitting device according to claim 8, wherein the emission peak wavelength is 350 nm or more and 420 nm or less. 前記発光装置の発光色の色度座標xが0.22以上0.44以下かつ色度座標yが0.22以上0.44以下であるか、又は前記発光装置の発光色の色度座標xが0.36以上0.5以下かつ色度座標yが0.33以上0.46以下であることを特徴とする請求項8又は9に記載の発光装置。   The chromaticity coordinate x of the luminescent color of the light emitting device is 0.22 to 0.44 and the chromaticity coordinate y is 0.22 to 0.44, or the chromaticity coordinate x of the luminescent color of the light emitting device. The light emitting device according to claim 8, wherein the chromaticity coordinate y is 0.33 or more and 0.46 or less. 前記酸窒化物蛍光体の粒子又は前記窒化物蛍光体の粒子と、前記ガラス又は前記ガラスの原料を、前記ガラスの軟化点以上1600℃以下に加熱することにより、前記酸窒化物蛍光体の粒子又は前記窒化物蛍光体の粒子を前記ガラス中に分散させる工程を有することを特徴とする請求項1に記載の波長変換部材の製造方法。   The oxynitride phosphor particles are heated by heating the oxynitride phosphor particles or the nitride phosphor particles and the glass or the glass raw material to a softening point of the glass or higher and 1600 ° C. or lower. The method for producing a wavelength conversion member according to claim 1, further comprising a step of dispersing particles of the nitride phosphor in the glass. 前記酸窒化物蛍光体の原料又は前記窒化物蛍光体の原料を1600℃以上の第1の温度で焼成して前記酸窒化物蛍光体の粒子又は前記窒化物蛍光体の粒子を作製する第1の工程と、
第1の工程によって得られた前記酸窒化物蛍光体の粒子又は前記窒化物蛍光体の粒子と、前記ガラスの原料を混合して、第1の温度より50℃以上低い第2の温度で加熱することにより、前記酸窒化物蛍光体の粒子又は前記窒化物蛍光体の粒子を前記ガラス中に分散させる第2の工程を有することを特徴とする請求項11に記載の波長変換部材の製造方法。
First, the oxynitride phosphor material or the nitride phosphor material is fired at a first temperature of 1600 ° C. or higher to produce the oxynitride phosphor particles or the nitride phosphor particles. And the process of
The oxynitride phosphor particles obtained by the first step or the nitride phosphor particles are mixed with the glass raw material and heated at a second temperature that is 50 ° C. or more lower than the first temperature. The method according to claim 11, further comprising a second step of dispersing the particles of the oxynitride phosphor or the particles of the nitride phosphor in the glass. .
前記酸窒化物蛍光体の原料又は前記窒化物蛍光体の原料を1600℃以上の第1の温度で焼成して前記酸窒化物蛍光体の粒子又は前記窒化物蛍光体の粒子を作製する第1の工程と、
前記ガラスの原料を溶融・混合して前記ガラスを作製する第2の工程と、
第1の工程によって得られた酸窒化物蛍光体の粒子又は窒化物蛍光体の粒子と、第2の工程によって得られたガラスを混合して、第1の温度より50℃以上低い第2の温度で加熱することにより、前記酸窒化物蛍光体の粒子又は前記窒化物蛍光体の粒子を前記ガラス中に分散させる第3の工程を有することを特徴とする請求項11に記載の波長変換部材の製造方法。
First, the oxynitride phosphor material or the nitride phosphor material is fired at a first temperature of 1600 ° C. or higher to produce the oxynitride phosphor particles or the nitride phosphor particles. And the process of
A second step of producing the glass by melting and mixing the raw materials of the glass;
Mixing the oxynitride phosphor particles or nitride phosphor particles obtained in the first step with the glass obtained in the second step, the second temperature lower than the first temperature by 50 ° C. or more. The wavelength conversion member according to claim 11, further comprising a third step of dispersing the oxynitride phosphor particles or the nitride phosphor particles in the glass by heating at a temperature. Manufacturing method.
前記ガラスがオキシナイトライドガラスであることを特徴とする請求項11から13のいずれかに記載の波長変換部材の製造方法。   The said glass is oxynitride glass, The manufacturing method of the wavelength conversion member in any one of Claim 11 to 13 characterized by the above-mentioned.
JP2005200609A 2005-07-08 2005-07-08 Wavelength conversion member, light emitting device, and method of manufacturing wavelength conversion member Expired - Fee Related JP4895541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005200609A JP4895541B2 (en) 2005-07-08 2005-07-08 Wavelength conversion member, light emitting device, and method of manufacturing wavelength conversion member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005200609A JP4895541B2 (en) 2005-07-08 2005-07-08 Wavelength conversion member, light emitting device, and method of manufacturing wavelength conversion member

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2010169208A Division JP2010248530A (en) 2010-07-28 2010-07-28 Manufacturing method for wavelength conversion member, light-emitting device, and wavelength conversion member
JP2010169209A Division JP2010261048A (en) 2010-07-28 2010-07-28 Light-emitting device and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2007016171A true JP2007016171A (en) 2007-01-25
JP4895541B2 JP4895541B2 (en) 2012-03-14

Family

ID=37753613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005200609A Expired - Fee Related JP4895541B2 (en) 2005-07-08 2005-07-08 Wavelength conversion member, light emitting device, and method of manufacturing wavelength conversion member

Country Status (1)

Country Link
JP (1) JP4895541B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008050462A (en) * 2006-08-24 2008-03-06 Stanley Electric Co Ltd Fluorescent substance, method for producing the same, and light emitting device using the fluorescent substance
DE102008021438A1 (en) 2008-04-29 2009-12-31 Schott Ag Conversion material in particular for a, a semiconductor light source comprising white or colored light source, method for its preparation and this conversion material comprising light source
JP2010157577A (en) * 2008-12-26 2010-07-15 Sony Corp Luminescent color conversion member
WO2012124587A1 (en) * 2011-03-16 2012-09-20 シャープ株式会社 Wavelength conversion member, production method for same, light-emitting device, illumination device, and headlight
JP2012193283A (en) * 2011-03-16 2012-10-11 Sharp Corp Light-emitting body, illuminating device, and headlight
WO2012152652A1 (en) * 2011-05-06 2012-11-15 Osram Opto Semiconductors Gmbh Conversion element for light-emitting diodes and production method
JP2013004480A (en) * 2011-06-21 2013-01-07 Sharp Corp Light emitting device, luminaire and vehicular headlamp
JP2013038187A (en) * 2011-08-05 2013-02-21 Stanley Electric Co Ltd Light-emitting device and method of manufacturing the same
CN103748696A (en) * 2011-08-26 2014-04-23 皇家飞利浦有限公司 Method of processing a semiconductor structure
JP2015199640A (en) * 2014-04-01 2015-11-12 日本電気硝子株式会社 Wavelength conversion member and light-emitting device using the same
JP2015213076A (en) * 2015-06-16 2015-11-26 シャープ株式会社 Light emitting device, and illuminating device
JP2015224299A (en) * 2014-05-28 2015-12-14 シャープ株式会社 Wavelength conversion member, light emitting device, and method of producing wavelength conversion member
US9366399B2 (en) 2011-03-03 2016-06-14 Sharp Kabushiki Kaisha Light emitting device, illumination device, and vehicle headlamp
US9625121B2 (en) 2010-12-01 2017-04-18 Sharp Kabushiki Kaisha Light emitting device, vehicle headlamp, illumination device, and vehicle
JP2018002492A (en) * 2016-06-27 2018-01-11 日本電気硝子株式会社 Wavelength conversion member and light-emitting device using the same
JP2020023438A (en) * 2014-04-01 2020-02-13 日本電気硝子株式会社 Wavelength conversion member and light-emitting device using the same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6222452B2 (en) 2013-12-17 2017-11-01 日本電気硝子株式会社 Wavelength conversion member and light emitting device
JP2016027613A (en) 2014-05-21 2016-02-18 日本電気硝子株式会社 Wavelength conversion member and light emitting device using the same
JP2017107071A (en) 2015-12-10 2017-06-15 日本電気硝子株式会社 Wavelength conversion member and wavelength conversion element, and light emitting device using the same
JP6906277B2 (en) 2016-06-27 2021-07-21 日本電気硝子株式会社 Wavelength conversion member and light emitting device using it
JP6880528B2 (en) 2016-06-27 2021-06-02 日本電気硝子株式会社 Wavelength conversion member and light emitting device using it
JP7022367B2 (en) 2017-09-27 2022-02-18 日本電気硝子株式会社 Glass used as wavelength conversion material, wavelength conversion material, wavelength conversion member and light emitting device
JP7268315B2 (en) 2017-12-12 2023-05-08 日本電気硝子株式会社 WAVELENGTH CONVERSION MEMBER, MANUFACTURING METHOD THEREOF, AND LIGHT EMITTING DEVICE
DE112020001953T5 (en) 2019-04-18 2021-12-30 Nippon Electric Glass Co., Ltd. WAVELENGTH CONVERSION ELEMENT, METHOD OF MANUFACTURING THEREOF, AND LIGHT EMISSIONING DEVICE
JPWO2020213455A1 (en) 2019-04-18 2020-10-22
WO2022107794A1 (en) 2020-11-19 2022-05-27 日本電気硝子株式会社 Wavelength conversion member and manufacturing method therefor
KR102576253B1 (en) 2021-05-11 2023-09-11 대주전자재료 주식회사 Wavelength conversion member and light emitting device comprising same
KR20230001983A (en) 2021-06-29 2023-01-05 대주전자재료 주식회사 Wavelength conversion member and light emitting device comprising same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07149539A (en) * 1993-11-25 1995-06-13 Sumitomo Electric Ind Ltd Glass-ceramic composite and its production
JP2001214162A (en) * 2000-02-02 2001-08-07 Japan Science & Technology Corp Phosphor comprising oxynitride glass as matrix material
JP2002363554A (en) * 2001-06-07 2002-12-18 National Institute For Materials Science Acid nitride phosphor activated with rare earth element
JP2003206481A (en) * 2001-09-25 2003-07-22 Patent Treuhand Ges Elektr Gluehlamp Mbh Illumination unit having at least one led as light source
JP2003258308A (en) * 2002-03-06 2003-09-12 Nippon Electric Glass Co Ltd Emission color converting member
JP2006202726A (en) * 2004-12-20 2006-08-03 Nippon Electric Glass Co Ltd Luminescent color conversion member

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07149539A (en) * 1993-11-25 1995-06-13 Sumitomo Electric Ind Ltd Glass-ceramic composite and its production
JP2001214162A (en) * 2000-02-02 2001-08-07 Japan Science & Technology Corp Phosphor comprising oxynitride glass as matrix material
JP2002363554A (en) * 2001-06-07 2002-12-18 National Institute For Materials Science Acid nitride phosphor activated with rare earth element
JP2003206481A (en) * 2001-09-25 2003-07-22 Patent Treuhand Ges Elektr Gluehlamp Mbh Illumination unit having at least one led as light source
JP2003258308A (en) * 2002-03-06 2003-09-12 Nippon Electric Glass Co Ltd Emission color converting member
JP2006202726A (en) * 2004-12-20 2006-08-03 Nippon Electric Glass Co Ltd Luminescent color conversion member

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008050462A (en) * 2006-08-24 2008-03-06 Stanley Electric Co Ltd Fluorescent substance, method for producing the same, and light emitting device using the fluorescent substance
DE102008021438A1 (en) 2008-04-29 2009-12-31 Schott Ag Conversion material in particular for a, a semiconductor light source comprising white or colored light source, method for its preparation and this conversion material comprising light source
JP2010157577A (en) * 2008-12-26 2010-07-15 Sony Corp Luminescent color conversion member
US9625121B2 (en) 2010-12-01 2017-04-18 Sharp Kabushiki Kaisha Light emitting device, vehicle headlamp, illumination device, and vehicle
US9366399B2 (en) 2011-03-03 2016-06-14 Sharp Kabushiki Kaisha Light emitting device, illumination device, and vehicle headlamp
WO2012124587A1 (en) * 2011-03-16 2012-09-20 シャープ株式会社 Wavelength conversion member, production method for same, light-emitting device, illumination device, and headlight
JP2012193283A (en) * 2011-03-16 2012-10-11 Sharp Corp Light-emitting body, illuminating device, and headlight
WO2012152652A1 (en) * 2011-05-06 2012-11-15 Osram Opto Semiconductors Gmbh Conversion element for light-emitting diodes and production method
US9590147B2 (en) 2011-05-06 2017-03-07 Osram Opto Semiconductors Gmbh Conversion element for light-emitting diodes and production method
JP2013004480A (en) * 2011-06-21 2013-01-07 Sharp Corp Light emitting device, luminaire and vehicular headlamp
JP2013038187A (en) * 2011-08-05 2013-02-21 Stanley Electric Co Ltd Light-emitting device and method of manufacturing the same
CN103748696A (en) * 2011-08-26 2014-04-23 皇家飞利浦有限公司 Method of processing a semiconductor structure
US20140179029A1 (en) * 2011-08-26 2014-06-26 Koninklijke Philips Electronics N.V. Method of processing a semiconductor structure
TWI583029B (en) * 2011-08-26 2017-05-11 皇家飛利浦電子股份有限公司 Method of processing a semiconductor structure
US10056531B2 (en) 2011-08-26 2018-08-21 Lumileds Llc Method of processing a semiconductor structure
JP2015199640A (en) * 2014-04-01 2015-11-12 日本電気硝子株式会社 Wavelength conversion member and light-emitting device using the same
JP2020023438A (en) * 2014-04-01 2020-02-13 日本電気硝子株式会社 Wavelength conversion member and light-emitting device using the same
JP2015224299A (en) * 2014-05-28 2015-12-14 シャープ株式会社 Wavelength conversion member, light emitting device, and method of producing wavelength conversion member
JP2015213076A (en) * 2015-06-16 2015-11-26 シャープ株式会社 Light emitting device, and illuminating device
JP2018002492A (en) * 2016-06-27 2018-01-11 日本電気硝子株式会社 Wavelength conversion member and light-emitting device using the same

Also Published As

Publication number Publication date
JP4895541B2 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
JP4895541B2 (en) Wavelength conversion member, light emitting device, and method of manufacturing wavelength conversion member
Chen et al. Advances in transparent glass–ceramic phosphors for white light-emitting diodes—A review
KR102271648B1 (en) Wavelength conversion member and light emitting device using same
JP5080723B2 (en) Semiconductor light emitting device
JP5347354B2 (en) Fluorescent material molded body, method for manufacturing the same, and light emitting device
JP2010261048A (en) Light-emitting device and its manufacturing method
US20110084235A1 (en) Phosphor and manufacturing method therefore, and light emission device using the phosphor
US20090002810A1 (en) Sheet Type Phosphors, Preparation Method Thereof, And Light Emitting Devices Using These Phosphors
TWI576410B (en) Silicate phosphors
US20140140071A1 (en) Light wavelength conversion member
TW201140891A (en) Warelength converting member, optical elemant and manufacturing method for wavelength converting member
JP2007204730A (en) Phosphor and light-emitting device
CN101314519A (en) Rare earth doping luminescent glass for white radiation LED and producing thereof
JP2007070445A (en) Light emitting device
CN103395997B (en) A kind of white light LEDs rare earth doping transparent glass-ceramic and preparation method thereof
CN104609848B (en) A kind of compound phase crystalline ceramics changed for white-light LED fluorescence and preparation method thereof
KR102108210B1 (en) Rare earth ion added glass-phosphor composite and light emitting diode comprising the same
Park et al. Development of β-SiAlON: Eu2+ phosphor in glass for high-power LED-and LD-based lighting systems using original BaO-B2O3-ZnO-SiO2 (BBZS) composition glass
CN110316963A (en) A kind of fluorescent glass ceramic material and the light emitting device containing the material
JP2014022412A (en) Fluorescent material dispersed inorganic glass plate
JP2010248530A (en) Manufacturing method for wavelength conversion member, light-emitting device, and wavelength conversion member
JP2009079069A (en) Carbonitride-based fluorophor and light-emitting device using the same and method for producing carbonitride-based fluorophor
KR101593582B1 (en) Quantum dot formed glass composite for color converter, preparation method thereof and white light emitting diode
CN110117160B (en) Microcrystalline glass and preparation method and application thereof
WO2011017831A1 (en) Green light emitting glass used for ultraviolet led and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100728

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110609

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4895541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees