JP6934316B2 - Wavelength conversion member - Google Patents

Wavelength conversion member Download PDF

Info

Publication number
JP6934316B2
JP6934316B2 JP2017085445A JP2017085445A JP6934316B2 JP 6934316 B2 JP6934316 B2 JP 6934316B2 JP 2017085445 A JP2017085445 A JP 2017085445A JP 2017085445 A JP2017085445 A JP 2017085445A JP 6934316 B2 JP6934316 B2 JP 6934316B2
Authority
JP
Japan
Prior art keywords
phosphor particles
light
red
particle size
yellow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017085445A
Other languages
Japanese (ja)
Other versions
JP2018185367A (en
Inventor
愛 早坂
愛 早坂
誉史 阿部
誉史 阿部
美史 傳井
美史 傳井
俊光 菊地
俊光 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2017085445A priority Critical patent/JP6934316B2/en
Publication of JP2018185367A publication Critical patent/JP2018185367A/en
Application granted granted Critical
Publication of JP6934316B2 publication Critical patent/JP6934316B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Filters (AREA)

Description

本発明は、蛍光体粒子を含む波長変換部材に関する。 The present invention relates to a wavelength conversion member containing phosphor particles.

発光装置用波長変換部材に用いられる蛍光体として、一般的に輝度が高いYAG蛍光体が用いられている。しかし、YAG蛍光体はその波長成分として赤色成分が少なく、LED(Light Emitting Diode)の青色可視光とYAG蛍光体の黄色可視光とを混色して得られた白色光は、赤色成分の不足により演色性に劣るという欠点を有していた。 As a phosphor used for a wavelength conversion member for a light emitting device, a YAG phosphor having high brightness is generally used. However, the YAG phosphor has a small amount of red component as its wavelength component, and the white light obtained by mixing the blue visible light of the LED (Light Emitting Diode) and the yellow visible light of the YAG phosphor is due to the lack of the red component. It had the drawback of being inferior in color playability.

これに対し、YAG蛍光体と赤色蛍光体を混合することで可視光を混色し、これにより得られた白色光は、赤色成分の不足を補うことのできる演色性が良好なLEDを実現することができる(特許文献1)。 On the other hand, visible light is mixed by mixing a YAG phosphor and a red phosphor, and the white light obtained by this is to realize an LED having good color rendering properties that can compensate for the lack of the red component. (Patent Document 1).

特開2004−152993号公報Japanese Unexamined Patent Publication No. 2004-152993

赤色蛍光体は、YAG蛍光体が発した黄色も吸収して赤色を発するため、一般的に照明に使用する場合、YAG蛍光体よりも赤色蛍光体の配合量を少なくする必要がある。また、YAG蛍光体よりも赤色蛍光体の配合量を少なくしたときに、赤色蛍光体の粒子径が黄色のYAG蛍光体と同等または大きい場合は、発光させた際に黄色と赤色の色ムラがそのまま投影されるため、均質な光が得られない。 Since the red phosphor also absorbs the yellow color emitted by the YAG phosphor and emits red color, it is necessary to use a smaller amount of the red phosphor than the YAG phosphor when it is generally used for lighting. Further, when the amount of the red phosphor compounded is smaller than that of the YAG phosphor, if the particle size of the red phosphor is equal to or larger than that of the yellow YAG phosphor, the yellow and red color unevenness occurs when the light is emitted. Since it is projected as it is, uniform light cannot be obtained.

特許文献1においては、YAG蛍光体と赤色蛍光体とガラス材料からなる固形体を、ボールミル粉砕を用いて所定の粒子径としている。このため、YAG蛍光体と赤色蛍光体は同等の粒子径となる。このとき、粒子径が大きい場合は単位面積および単位体積あたりの粒子の存在確率に差が生じ、局所的な色ムラが発生する可能性がある。また、粒子径を小さくすると、局所的な色ムラを抑制できる可能性は増えるが、発光強度は小さくなる。 In Patent Document 1, a solid body composed of a YAG phosphor, a red phosphor, and a glass material is set to a predetermined particle size by using ball mill pulverization. Therefore, the YAG phosphor and the red phosphor have the same particle size. At this time, if the particle size is large, there is a difference in the existence probability of the particles per unit area and unit volume, and there is a possibility that local color unevenness may occur. Further, when the particle size is reduced, the possibility of suppressing local color unevenness increases, but the emission intensity decreases.

本発明は、このような事情に鑑みてなされたものであり、大粒径のYAG蛍光体と小粒径の赤色蛍光体を混合することで、発光強度を保ちつつ、赤の発光が偏らずに色ムラを防止することができる波長変換部材を提供することを目的とする。 The present invention has been made in view of such circumstances. By mixing a YAG phosphor having a large particle size and a red phosphor having a small particle size, the emission intensity of red is maintained and the emission of red is not biased. It is an object of the present invention to provide a wavelength conversion member capable of preventing color unevenness.

(1)上記の目的を達成するため、本発明の波長変換部材は、基材と、前記基材上に設けられた蛍光体層と、を備え、前記蛍光体層は、透光性の無機材料と前記無機材料中に分散された蛍光体粒子とで形成され、前記蛍光体粒子は、平均粒子径が5μm以上30μm以下の黄色蛍光体粒子および前記黄色蛍光体粒子の平均粒子径の1/2以下の平均粒子径を有し、前記黄色蛍光体粒子と混合された赤色蛍光体粒子を含み、前記蛍光体層に存在する前記黄色蛍光体粒子と前記赤色蛍光体粒子との重量比は、1.2以上50以下であることを特徴としている。 (1) In order to achieve the above object, the wavelength conversion member of the present invention includes a base material and a phosphor layer provided on the base material, and the phosphor layer is a translucent inorganic particle. The phosphor particles are formed of a material and phosphor particles dispersed in the inorganic material, and the phosphor particles are yellow phosphor particles having an average particle diameter of 5 μm or more and 30 μm or less, and 1 / of the average particle diameter of the yellow phosphor particles. The weight ratio of the yellow phosphor particles having an average particle diameter of 2 or less, containing the red phosphor particles mixed with the yellow phosphor particles, and existing in the phosphor layer is the weight ratio of the yellow phosphor particles to the red phosphor particles. It is characterized by being 1.2 or more and 50 or less.

このようにして、黄色蛍光体粒子より小さい赤色蛍光体粒子を用いることで、黄色蛍光体粒子よりも赤色蛍光体粒子の方が少ない重量であっても、赤色蛍光体粒子が蛍光体層全体に均一に分散する。その結果、赤の発光が偏らずに色ムラを防止することができる。特にビーム径の小さいレーザを波長変換部材に当てる場合には有効である。また、黄色蛍光体粒子の平均粒子径が小さくなり過ぎないため、発光強度を保つことができる。 In this way, by using the red phosphor particles smaller than the yellow phosphor particles, the red phosphor particles are spread over the entire phosphor layer even if the weight of the red phosphor particles is smaller than that of the yellow phosphor particles. Disperse evenly. As a result, it is possible to prevent color unevenness without biasing the light emission of red. This is particularly effective when a laser with a small beam diameter is applied to the wavelength conversion member. Moreover, since the average particle size of the yellow phosphor particles does not become too small, the emission intensity can be maintained.

(2)また、本発明の波長変換部材は、レーザ励起による色温度および色度を測定したとき、前記測定された色温度の平均値に対する変動係数が1%以下であり、色度の平均値に対する変動係数が0.5%以下であることを特徴としている。これにより、波長変換部材は赤の発光が偏らず均質な色の光を照射できる。 (2) Further, in the wavelength conversion member of the present invention, when the color temperature and chromaticity by laser excitation are measured, the fluctuation coefficient with respect to the measured average value of the color temperature is 1% or less, and the average value of the chromaticity. It is characterized in that the fluctuation coefficient with respect to is 0.5% or less. As a result, the wavelength conversion member can irradiate light of a uniform color without biasing the emission of red.

(3)また、本発明の波長変換部材は、前記赤色蛍光体粒子の平均粒子径が、2.5μm以上11μm以下であることを特徴としている。これにより、局所的な範囲でも両粒子の偏りが生じ難くできるので、均質な光を照射できる。 (3) Further, the wavelength conversion member of the present invention is characterized in that the average particle size of the red phosphor particles is 2.5 μm or more and 11 μm or less. As a result, it is possible to prevent the bias of both particles from occurring even in a local range, so that uniform light can be irradiated.

本発明によれば、波長変換部材の発光強度を保ちつつ、赤の発光が偏らずに色ムラを防止することができる。 According to the present invention, it is possible to prevent color unevenness without biasing red emission while maintaining the emission intensity of the wavelength conversion member.

本発明の波長変換部材を表す模式図である。It is a schematic diagram which shows the wavelength conversion member of this invention. 本発明の波長変換部材の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the wavelength conversion member of this invention. 実施例および比較例の条件および色温度の平均値と変動係数、色度の平均値と変動係数、照度試験の結果を表す表である。It is a table showing the conditions of Examples and Comparative Examples, the average value and the coefficient of variation of the color temperature, the average value and the coefficient of variation of the chromaticity, and the result of the illuminance test. (a1)〜(c2)それぞれ、実施例の波長変換部材の蛍光体層の光学顕微鏡による表面写真および画像処理後の写真である。(A1) to (c2) are a surface photograph of the phosphor layer of the wavelength conversion member of the example by an optical microscope and a photograph after image processing, respectively. (d1)〜(f2)それぞれ、比較例の波長変換部材の蛍光体層の光学顕微鏡による表面写真および画像処理後の写真である。(D1) to (f2) are a surface photograph of the phosphor layer of the wavelength conversion member of the comparative example by an optical microscope and a photograph after image processing, respectively.

次に、本発明の実施の形態について、図面を参照しながら説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては同一の参照番号を付し、重複する説明は省略する。なお、構成図において、各構成要素の大きさは概念的に表したものであり、必ずしも実際の寸法比率を表すものではない。 Next, an embodiment of the present invention will be described with reference to the drawings. In order to facilitate understanding of the description, the same reference number is assigned to the same component in each drawing, and duplicate description is omitted. In the configuration diagram, the size of each component is conceptually represented, and does not necessarily represent the actual dimensional ratio.

[波長変換部材の構成]
図1は、波長変換部材10を表す模式図である。波長変換部材10は、基板12上に蛍光体層14が形成されている。波長変換部材10は、光源から照射された吸収光を透過または反射させつつ、吸収光により励起して波長の異なる光を発生させる。例えば、青色光の吸収光を透過または反射させつつ、蛍光体層14で変換された緑と赤や黄色の変換光を放射させて、変換光と吸収光を合わせて、または、変換光のみを利用し、様々な色の光に変換できる。波長変換部材10は、特に、光源の青色光と蛍光体層14で変換された黄色光および赤色光を合わせて、演色性が良好な白色光を放射できる。
[Structure of wavelength conversion member]
FIG. 1 is a schematic view showing a wavelength conversion member 10. The wavelength conversion member 10 has a phosphor layer 14 formed on the substrate 12. The wavelength conversion member 10 transmits or reflects the absorbed light emitted from the light source, and is excited by the absorbed light to generate light having a different wavelength. For example, while transmitting or reflecting the absorbed light of blue light, the converted light of green and red or yellow converted by the phosphor layer 14 is emitted, and the converted light and the absorbed light are combined, or only the converted light is emitted. It can be used and converted into various colors of light. In particular, the wavelength conversion member 10 can emit white light having good color rendering properties by combining the blue light of the light source and the yellow light and red light converted by the phosphor layer 14.

基板12の材料は、サファイア、アルミニウム、ガラス等を用いることができる。透過型の基板は、透光性を有する材料で製造する。反射型の基板は、基板のすべてを、光を反射する材料で製造することもできるが、透光性を有する材料の一面に光を反射する材料をメッキなどで設けてもよい。発光強度の観点から、光が透過する部分は少なくとも吸収光を吸収しにくい材料とする。また、高エネルギーの光が照射されて温度が高くなるので、熱伝導性が高い方がよい。 As the material of the substrate 12, sapphire, aluminum, glass or the like can be used. The transmissive substrate is manufactured of a translucent material. The reflective substrate may be made entirely of a light-reflecting material, but a light-reflecting material may be provided on one surface of the translucent material by plating or the like. From the viewpoint of light emission intensity, at least the portion through which light is transmitted is made of a material that does not easily absorb absorbed light. In addition, since high-energy light is irradiated and the temperature rises, it is better to have high thermal conductivity.

蛍光体層14は、基板12上に膜として設けられ、黄色蛍光体粒子16、赤色蛍光体粒子18および結合材20により形成されている。結合材20は、黄色蛍光体粒子16、赤色蛍光体粒子18および基板12を結合している。これにより、高エネルギー密度の光の照射に対して、放熱材として機能する基板12と接合しているため効率よく放熱でき、蛍光体の温度消光を抑制できる。蛍光体層14の厚さは、5μm以上400μm以下であればよく、10μm以上200μm以下であることが好ましい。 The phosphor layer 14 is provided on the substrate 12 as a film, and is formed of the yellow phosphor particles 16, the red phosphor particles 18, and the binder 20. The binder 20 binds the yellow phosphor particles 16, the red phosphor particles 18, and the substrate 12. As a result, it is possible to efficiently dissipate heat to the irradiation of light having a high energy density because it is bonded to the substrate 12 that functions as a heat radiating material, and it is possible to suppress the temperature quenching of the phosphor. The thickness of the phosphor layer 14 may be 5 μm or more and 400 μm or less, and preferably 10 μm or more and 200 μm or less.

黄色蛍光体粒子16は、例えばイットリウム・アルミニウム・ガーネット系蛍光体(YAG系蛍光体)およびルテチウム・アルミニウム・ガーネット系蛍光体(LAG系蛍光体)を用いることができる。赤色蛍光体粒子18は、例えばS−CASNと称される窒化物蛍光体((Sr,Ca)AlSiN:Eu)を用いることができる。その他、黄色蛍光体粒子16または赤色蛍光体粒子18は、以下のような材料から選択できる。例えば、BaMgAl1017:Eu、ZnS:Ag,Cl、BaAl:EuあるいはCaMgSi:Eu、ZnSiO:Mn、(Y,Gd)BO:Tb、ZnS:Cu,Al、(M1)SiO:Eu、(M1)(M2)S:Eu、(M3)Al12:Ce、SiAlON:Eu、CaSiAlON:Eu、(M1)SiN:Euあるいは(Ba,Sr,Mg)SiO:Eu,Mn、(M1)SiO:Euあるいは(M1)S:Eu、(Y,Gd)BO:Eu,YS:Eu、(M1)Si:Eu、あるいはYPVO:Euが挙げられる。なお、上記化学式において、M1は、Ba,Ca,SrおよびMgからなる群のうちの少なくとも1つが含まれ、M2は、GaおよびAlのうちの少なくとも1つが含まれ、M3は、Y,Gd,LuおよびTeからなる群のうち少なくとも1つが含まれる。なお、上記の蛍光体粒子は一例であり、波長変換部材10に用いられる蛍光体粒子が必ずしも上記に限られるわけではない。 As the yellow phosphor particles 16, for example, yttrium aluminum garnet phosphor (YAG phosphor) and lutetium aluminum garnet phosphor (LAG phosphor) can be used. As the red phosphor particles 18, for example, a nitride phosphor ((Sr, Ca) AlSiN 3 : Eu) called S-CASN can be used. In addition, the yellow fluorescent particle 16 or the red fluorescent particle 18 can be selected from the following materials. For example, BaMgAl 10 O 17 : Eu, ZnS: Ag, Cl, BaAl 2 S 4 : Eu or CaMgSi 2 O 6 : Eu, Zn 2 SiO 4 : Mn, (Y, Gd) BO 3 : Tb, ZnS: Cu, Al, (M1) 2 SiO 4 : Eu, (M1) (M2) 2 S: Eu, (M3) 3 Al 5 O 12 : Ce, SiAlON: Eu, CaSiAlON: Eu, (M1) Si 2 O 2 N: Eu or (Ba, Sr, Mg) 2 SiO 4 : Eu, Mn, (M1) 3 SiO 5 : Eu or (M1) S: Eu, (Y, Gd) BO 3 : Eu, Y 2 O 2 S: Eu , (M1) 2 Si 5 N 8 : Eu, or YPVO 4 : Eu. In the above chemical formula, M1 contains at least one of the group consisting of Ba, Ca, Sr and Mg, M2 contains at least one of Ga and Al, and M3 contains Y, Gd, At least one of the group consisting of Lu and Te is included. The above-mentioned phosphor particles are an example, and the phosphor particles used in the wavelength conversion member 10 are not necessarily limited to the above.

黄色蛍光体粒子16は、光源の吸収光(励起光)を吸収して、黄色の変換光を放射する。また、赤色蛍光体粒子18は、光源の吸収光(励起光)を吸収して、赤色の変換光を放射すると共に、黄色蛍光体粒子16が放射した黄色の変換光の一部を吸収して、赤色の変換光を放射する。蛍光体層14に含まれる黄色蛍光体粒子16と赤色蛍光体粒子18との重量比は1.2以上50以下である。赤色蛍光体粒子18が黄色蛍光体粒子16より重量比で少ないため、変換光が赤色の発光に偏らない。また、赤色蛍光体粒子18が黄色蛍光体粒子16より少なすぎないので、演色性を維持できる。 The yellow phosphor particles 16 absorb the absorbed light (excitation light) of the light source and emit the yellow conversion light. Further, the red phosphor particles 18 absorb the absorbed light (excitation light) of the light source and emit the red conversion light, and also absorb a part of the yellow conversion light emitted by the yellow phosphor particles 16. , Emits red conversion light. The weight ratio of the yellow phosphor particles 16 and the red phosphor particles 18 contained in the phosphor layer 14 is 1.2 or more and 50 or less. Since the red phosphor particles 18 have a smaller weight ratio than the yellow phosphor particles 16, the converted light is not biased toward red emission. Further, since the red phosphor particles 18 are not too small as the yellow phosphor particles 16, the color rendering property can be maintained.

黄色蛍光体粒子16の平均粒子径は、5μm以上30μm以下であり、10μm以上20μm以下であることが好ましい。5μmより小さいと、黄色光の発光強度が小さくなり、ひいては波長変換部材10の発光強度が小さくなるからである。また、30μmより大きいと、蛍光体層14の局所的な範囲での両粒子の偏りが生じやすくなり、色ムラが生じるからである。なお、本明細書において平均粒子径とは、メジアン径(D50)である。平均粒子径は、レーザ回折/散乱式粒子径分布測定装置の乾式測定または湿式測定を用いて計測することができる。また、色ムラの判定基準は後述する。 The average particle size of the yellow phosphor particles 16 is 5 μm or more and 30 μm or less, and preferably 10 μm or more and 20 μm or less. This is because if it is smaller than 5 μm, the emission intensity of yellow light becomes small, and eventually the emission intensity of the wavelength conversion member 10 becomes small. On the other hand, if it is larger than 30 μm, the two particles are likely to be biased in the local range of the phosphor layer 14, and color unevenness occurs. In the present specification, the average particle size is the median diameter (D50). The average particle size can be measured by using a dry measurement or a wet measurement of a laser diffraction / scattering type particle size distribution measuring device. The criteria for determining color unevenness will be described later.

赤色蛍光体粒子18の平均粒子径は、黄色蛍光体粒子16の平均粒子径の1/2以下である。赤色蛍光体粒子18が黄色蛍光体粒子16より重量比で少ないときに、赤色蛍光体粒子18の平均粒子径が黄色蛍光体粒子16の平均粒子径の1/2より大きいと、赤色蛍光体粒子18が局所的に偏る部分ができ、色ムラが生じるからである。 The average particle size of the red phosphor particles 18 is ½ or less of the average particle size of the yellow phosphor particles 16. When the red phosphor particles 18 are smaller in weight ratio than the yellow phosphor particles 16, and the average particle size of the red phosphor particles 18 is larger than 1/2 of the average particle size of the yellow phosphor particles 16, the red phosphor particles This is because a portion where 18 is locally biased is formed and color unevenness occurs.

また、赤色蛍光体粒子18の平均粒子径は、2.5μm以上11μm以下であることが好ましい。小さすぎると赤色光の発光強度が小さくなり、大きすぎると局所的な範囲での両粒子の偏りが生じやすくなり、色ムラが生じるからである。また、このような平均粒子径の赤色蛍光体粒子18を用いることで、赤色蛍光体粒子18が黄色蛍光体粒子16より重量比で少ないときでも、蛍光体層14の全体に亘って赤色蛍光体粒子18が均一に分散し、色ムラを防止することができる。また、局所的な範囲でも両粒子の偏りが生じ難くなるので、特にビーム径の小さいレーザを波長変換部材10に当てる場合には有効である。 The average particle size of the red phosphor particles 18 is preferably 2.5 μm or more and 11 μm or less. This is because if it is too small, the emission intensity of red light becomes small, and if it is too large, the two particles tend to be biased in a local range, resulting in color unevenness. Further, by using the red phosphor particles 18 having such an average particle size, even when the red phosphor particles 18 are smaller in weight ratio than the yellow phosphor particles 16, the red phosphor is covered over the entire phosphor layer 14. The particles 18 are uniformly dispersed, and color unevenness can be prevented. Further, since the bias of both particles is less likely to occur even in a local range, it is particularly effective when a laser having a small beam diameter is applied to the wavelength conversion member 10.

結合材20は、無機バインダが加水分解または酸化されて形成されたものであり、透光性を有する無機材料により構成されている。結合材20は、例えばシリカ(SiO)、リン酸アルミニウムで構成される。結合材20は無機材料からなるので、レーザダイオード等の高エネルギーの光が照射されても変質しない。また、結合材20は透光性を有するので、吸収光や変換光を透過させることができる。無機バインダとしては、エチルシリケート、リン酸アルミニウム水溶液等を用いることができる。 The binder 20 is formed by hydrolyzing or oxidizing an inorganic binder, and is made of a translucent inorganic material. The binder 20 is composed of, for example, silica (SiO 2 ) and aluminum phosphate. Since the binder 20 is made of an inorganic material, it does not deteriorate even when irradiated with high-energy light such as a laser diode. Further, since the binder 20 has a translucent property, it can transmit absorbed light and converted light. As the inorganic binder, ethyl silicate, an aqueous solution of aluminum phosphate, or the like can be used.

なお、透光性を有する物質とは、0.5mmの対象物質に対して、可視光の波長領域(λ=380〜780nm)で光を垂直に入射したとき、反対側から抜けた光の放射束が入射光の80%を超える特性を有する物質をいう。 The translucent substance is the radiation of light emitted from the opposite side when light is vertically incident on a target substance of 0.5 mm in the wavelength region of visible light (λ = 380 to 780 nm). A substance whose bundle has a property of exceeding 80% of the incident light.

波長変換部材10は、光源と組み合わせることで、発光装置を構成できる。特に、本発明の波長変換部材10は、青色の光源と組み合わせることで、発光強度を保ちつつ、演色性が良好で色ムラのない白色光を放射する発光装置を構成できる。また、波長変換部材10は、蛍光体層14が無機材料からなるので、光源として高出力のレーザダイオードを用いることができ、高出力の発光装置を構成できる。 The wavelength conversion member 10 can form a light emitting device by combining with a light source. In particular, the wavelength conversion member 10 of the present invention can be combined with a blue light source to form a light emitting device that emits white light having good color rendering properties and no color unevenness while maintaining light emission intensity. Further, since the phosphor layer 14 of the wavelength conversion member 10 is made of an inorganic material, a high-power laser diode can be used as a light source, and a high-power light emitting device can be configured.

[波長変換部材の製造方法]
波長変換部材の製造方法の一例を説明する。図2は、本発明の波長変換部材の製造方法を示すフローチャートである。最初に印刷用ペーストを作製する。まず、所定の平均粒子径を有する、黄色蛍光体粒子および赤色蛍光体粒子を準備する(ステップS1)。黄色蛍光体粒子には、例えばYAG等の粒子を用いることができ、赤色蛍光体粒子には、S−CASNと称される窒化物蛍光体等の粒子を用いることができる。黄色蛍光体粒子の平均粒子径は、5μm以上30μmであり、赤色蛍光体粒子の平均粒子径は、黄色蛍光体粒子の平均粒子径の1/2以下である。
[Manufacturing method of wavelength conversion member]
An example of a method for manufacturing a wavelength conversion member will be described. FIG. 2 is a flowchart showing a method for manufacturing the wavelength conversion member of the present invention. First, a printing paste is prepared. First, yellow phosphor particles and red phosphor particles having a predetermined average particle size are prepared (step S1). For the yellow phosphor particles, for example, particles such as YAG can be used, and for the red phosphor particles, particles such as a nitride phosphor called S-CASN can be used. The average particle size of the yellow phosphor particles is 5 μm or more and 30 μm, and the average particle size of the red phosphor particles is 1/2 or less of the average particle size of the yellow phosphor particles.

次に、準備した黄色蛍光体粒子および赤色蛍光体粒子を特定の重量比となるように秤量する(ステップS2)。特定の重量比は、1.2以上50以下である。そして、秤量した黄色蛍光体粒子および赤色蛍光体粒子を溶剤に分散させ、無機バインダと混合し、印刷用ペーストを作製する(ステップS3)。混合にはボールミル等を用いることができる。溶剤は、α−テルピネオール、ブタノール、イソホロン、グリセリン等の高沸点溶剤を用いることができる。 Next, the prepared yellow phosphor particles and red phosphor particles are weighed so as to have a specific weight ratio (step S2). The specific weight ratio is 1.2 or more and 50 or less. Then, the weighed yellow phosphor particles and red phosphor particles are dispersed in a solvent and mixed with an inorganic binder to prepare a printing paste (step S3). A ball mill or the like can be used for mixing. As the solvent, a high boiling point solvent such as α-terpineol, butanol, isophorone, and glycerin can be used.

また、無機バインダは、エチルシリケート等の有機シリケートであることが好ましい。有機シリケートを用いることで黄色蛍光体粒子および赤色蛍光体粒子が印刷用ペースト全体に分散し、適切な粘度の印刷用ペーストを作製することができる。例えば、無機バインダとしてエチルシリケートを用いるときは、水および触媒の質量に対して、エチルシリケートを70wt%以上100wt%以下、好ましくは80wt%以上90wt%以下の質量とする。その他、無機バインダは、加水分解あるいは酸化により酸化ケイ素となる酸化ケイ素前駆体、ケイ酸化合物、シリカ、およびアモルファスシリカからなる群のうちの少なくとも1種を含む原料を、常温で反応させるか、または、500℃以下の温度で熱処理することにより得られたものであってもよい。酸化ケイ素前駆体としては、例えば、ペルヒドロポリシラザン、エチルシリケート、メチルシリケートを主成分としたものが挙げられる。 Further, the inorganic binder is preferably an organic silicate such as ethyl silicate. By using the organic silicate, the yellow phosphor particles and the red phosphor particles are dispersed in the entire printing paste, and a printing paste having an appropriate viscosity can be prepared. For example, when ethyl silicate is used as the inorganic binder, the mass of ethyl silicate is 70 wt% or more and 100 wt% or less, preferably 80 wt% or more and 90 wt% or less, based on the mass of water and the catalyst. In addition, the inorganic binder is prepared by reacting a raw material containing at least one of a group consisting of a silicon oxide precursor, a silicic acid compound, silica, and amorphous silica, which becomes silicon oxide by hydrolysis or oxidation, at room temperature. , It may be obtained by heat treatment at a temperature of 500 ° C. or lower. Examples of the silicon oxide precursor include those containing perhydropolysilazane, ethyl silicate, and methyl silicate as main components.

印刷用ペーストの作製後、基板上に印刷用ペーストを塗布してペースト層を形成する(ステップS4)。印刷用ペーストの塗布は、スクリーン印刷法、スプレー法、ディスペンサーによる描画法、インクジェット法を用いることができる。スクリーン印刷法を用いると、厚さの薄いペースト層を安定的に形成できるので好ましい。ペースト層の厚さは、10μm以上200μm以下であることが好ましい。 After producing the printing paste, the printing paste is applied onto the substrate to form a paste layer (step S4). The printing paste can be applied by a screen printing method, a spray method, a drawing method using a dispenser, or an inkjet method. The screen printing method is preferable because a thin paste layer can be stably formed. The thickness of the paste layer is preferably 10 μm or more and 200 μm or less.

そして、ペースト層を形成した基板をN雰囲気炉を用いて焼成し、蛍光体層を作製する(ステップS5)。焼成温度は、150℃以上500℃以下であることが好ましく、焼成時間は、0.5時間以上2.0時間以下であることが好ましい。また、昇温速度は、50℃/h以上200℃/h以下であることが好ましい。また、焼成前に乾燥工程を設けてもよい。 Then, the substrate formed with the paste layer was fired by using the N 2 atmosphere furnace to produce a phosphor layer (step S5). The firing temperature is preferably 150 ° C. or higher and 500 ° C. or lower, and the firing time is preferably 0.5 hours or longer and 2.0 hours or lower. The rate of temperature rise is preferably 50 ° C./h or more and 200 ° C./h or less. Further, a drying step may be provided before firing.

このような製造工程により、蛍光体層全体に黄色蛍光体粒子および赤色蛍光体粒子が均一に分散した波長変換部材を容易に製造できる。得られた波長変換部材は、発光強度を保ちつつ、赤の発光が偏らずに色ムラを防止することができる。また、波長変換部材は、蛍光体層が無機材料からなるので、高出力のレーザダイオードを励起源として用いた発光装置に好適に使用できる。また、局所的な範囲でも両粒子の偏りが生じ難くなるので、特にビーム径の小さいレーザを用いた発光装置を構成できる。 By such a manufacturing step, a wavelength conversion member in which the yellow phosphor particles and the red phosphor particles are uniformly dispersed in the entire phosphor layer can be easily manufactured. The obtained wavelength conversion member can prevent color unevenness without biasing red emission while maintaining emission intensity. Further, since the phosphor layer of the wavelength conversion member is made of an inorganic material, it can be suitably used for a light emitting device using a high-power laser diode as an excitation source. Further, since the bias of both particles is less likely to occur even in a local range, a light emitting device using a laser having a particularly small beam diameter can be configured.

[実施例および比較例]
(試料の作製方法)
3μm〜35μmの平均粒子径を有する黄色蛍光体粒子(YAG粒子)、および、1.5μm〜11μmの平均粒子径を有する赤色蛍光体粒子(S−CASN粒子)を準備した。これらの蛍光体粒子を所定の質量割合となるように秤量し、α−テルピネオール(溶剤)を混合して分散材を作製し、エチルシリケート(無機バインダ)と混合して印刷用ペーストを作製した。
[Examples and Comparative Examples]
(Sample preparation method)
Yellow phosphor particles (YAG particles) having an average particle size of 3 μm to 35 μm and red phosphor particles (S-CASN particles) having an average particle size of 1.5 μm to 11 μm were prepared. These phosphor particles were weighed so as to have a predetermined mass ratio, α-terpineol (solvent) was mixed to prepare a dispersant, and ethyl silicate (inorganic binder) was mixed to prepare a printing paste.

次に、スクリーン印刷法を用いてサファイア基板に印刷用ペーストを30μmの厚さになるよう塗布した。塗布後に100℃で20分乾燥させた後、無機バインダで封孔処理をした。最後にN雰囲気炉を用いて還元雰囲気中で150℃/hで350℃まで昇温し、30分焼成して試料が完成した。 Next, a printing paste was applied to the sapphire substrate using a screen printing method to a thickness of 30 μm. After coating, it was dried at 100 ° C. for 20 minutes and then sealed with an inorganic binder. Finally the temperature was raised to 350 ° C. at 0.99 ° C. / h in a reducing atmosphere with N 2 atmosphere furnace, the sample was completed by baking 30 minutes.

(試料の評価方法)
図3は、実施例および比較例の各種条件と、色温度、色度および照度の試験結果を表す表である。色温度、色度および照度は、色彩照度計を用いて1000mWでレーザ励起したときの試料の光学特性を測定した。色温度のバラツキ(変動係数)は、同一サンプル内の5点で測定し、5点の標準偏差を5点の平均値で割ることにより算出した。また、色度のバラツキ(変動係数)は、同一サンプル内の5点で測定し、色度図(後述)の数値の組に対して、各数値毎に5点の標準偏差を5点の平均値で割ることにより算出した。
(Sample evaluation method)
FIG. 3 is a table showing various conditions of Examples and Comparative Examples and test results of color temperature, chromaticity and illuminance. For the color temperature, chromaticity and illuminance, the optical characteristics of the sample when laser-excited at 1000 mW were measured using a color illuminometer. The color temperature variation (coefficient of variation) was measured at 5 points in the same sample and calculated by dividing the standard deviation of the 5 points by the average value of the 5 points. The variation in chromaticity (coefficient of variation) is measured at 5 points in the same sample, and the standard deviation of 5 points for each numerical value is averaged by 5 points with respect to the set of numerical values in the chromaticity diagram (described later). Calculated by dividing by the value.

なお、色温度とは、以下のように定義される。すなわち、理想的な物体として黒体を想定する。この黒体を熱すると光を放射し、放射する光の波長/スペクトル(光の色)は黒体の温度毎に定まり、温度が変化すると光の色も変化する。この黒体の温度と放射する光の色を対応させると、ある「光の色」に対して「黒体の温度」が決まる。一般的には、これを色温度という。単位はケルビン(K)である。光源から光を受けて発せられた白色光は必ずしも黒体の放射軌跡上に分布するわけではない。そこで、光源と最も近い色に見える黒体放射の色温度で表示することが実用的に行われる。これを相関色温度という。本発明中の色温度は、この「相関色温度」を指す。 The color temperature is defined as follows. That is, a blackbody is assumed as an ideal object. When this blackbody is heated, it emits light, and the wavelength / spectrum (color of light) of the emitted light is determined for each temperature of the blackbody, and when the temperature changes, the color of the light also changes. By associating the temperature of the blackbody with the color of the emitted light, the "temperature of the blackbody" is determined for a certain "color of light". Generally, this is called color temperature. The unit is Kelvin (K). White light emitted by receiving light from a light source is not always distributed on the radiation trajectory of a blackbody. Therefore, it is practically performed to display at the color temperature of blackbody radiation that appears to be the closest color to the light source. This is called the correlated color temperature. The color temperature in the present invention refers to this "correlated color temperature".

また、色度とは、色の性質の色相、彩度、明度のうち、明度を除いたものを数値を用いて表したものである。本明細書では、国際照明委員会(CIE)が策定したCIE−XYZ表色系のxy色度図に対応した数値の組(x、y)を用いて表す。xy色度図では、x軸は数値が大きくなるほど「赤み」の比率が増し、数値が小さくなるほど「青み」の比率が増す。y軸は数値が大きくなるほど「緑み」の比率が増し、数値が小さくなるほど「青み」の比率が増す。また、x=y=1/3(=約0.33)の点を白色点と呼ぶ。 Further, the chromaticity is a numerical value representing the hue, saturation, and lightness of the color properties excluding the lightness. In this specification, it is expressed using a set of numerical values (x, y) corresponding to the xy chromaticity diagram of the CIE-XYZ color system formulated by the International Commission on Illumination (CIE). In the xy chromaticity diagram, the proportion of "redness" increases as the numerical value increases on the x-axis, and the proportion of "blueness" increases as the numerical value decreases. On the y-axis, the larger the value, the higher the ratio of "greenness", and the smaller the value, the higher the ratio of "blueness". Further, a point of x = y = 1/3 (= about 0.33) is called a white point.

実施例および比較例の評価において、色ムラの判定基準は上記色温度のバラツキと色度のバラツキを用いた。色温度の基準は、色温度のバラツキが1%以下であることとした。色度の基準は、色度のバラツキがx、yいずれも0.5%以下であることとした。そして、色温度および色度が基準を満たした試料は、色ムラがないと判断し、いずれか一つでも基準を満たさなかった試料は、色ムラがあると判断した。また、発光強度の基準は、照度が1000lx以上であるとした。照度が1000lx未満の試料は、発光強度の基準を満たさないため、波長変換部材としての性能が低いと判断した。 In the evaluation of Examples and Comparative Examples, the above-mentioned variation in color temperature and variation in chromaticity were used as criteria for determining color unevenness. The standard of color temperature was that the variation of color temperature was 1% or less. The standard of chromaticity was that the variation in chromaticity was 0.5% or less for both x and y. Then, it was judged that the sample having the color temperature and the chromaticity satisfying the standard had no color unevenness, and the sample not satisfying any one of the standards was judged to have the color unevenness. Further, the standard of emission intensity was that the illuminance was 1000 lpx or more. Since the sample having an illuminance of less than 1000 lx does not satisfy the standard of emission intensity, it was judged that the performance as a wavelength conversion member was low.

比較例1〜3は、赤色蛍光体粒子の平均粒子径が黄色蛍光体粒子の平均粒子径の1/2より大きい場合の試料である。このときは、いずれも色温度および色度が基準を満たさなかった。比較例1と実施例5、比較例2と実施例6、比較例3と実施例1を比べると、各比較例と同じ重量比と黄色蛍光体粒子の平均粒子径で、赤色蛍光体粒子の平均粒子径を黄色蛍光体粒子の平均粒子径の1/2以下とした実施例は、いずれも色温度および色度の基準を満たした。よって、赤色蛍光体粒子の平均粒子径は黄色蛍光体粒子の平均粒子径の1/2以下とする必要があることがわかる。 Comparative Examples 1 to 3 are samples in which the average particle size of the red phosphor particles is larger than 1/2 of the average particle size of the yellow phosphor particles. At this time, neither the color temperature nor the chromaticity met the criteria. Comparing Comparative Example 1 and Example 5, Comparative Example 2 and Example 6, and Comparative Example 3 and Example 1, the red phosphor particles have the same weight ratio and the average particle size of the yellow phosphor particles as in each comparative example. All the examples in which the average particle size was 1/2 or less of the average particle size of the yellow phosphor particles satisfied the criteria of color temperature and chromaticity. Therefore, it can be seen that the average particle size of the red phosphor particles needs to be 1/2 or less of the average particle size of the yellow phosphor particles.

比較例4、実施例2〜4、比較例5は、黄色蛍光体粒子と赤色蛍光体粒子との重量比を一定にし、赤色蛍光体粒子の平均粒子径を黄色蛍光体粒子の平均粒子径の1/2以下として、黄色蛍光体粒子の平均粒子径を変化させて作製した試料である。実施例2〜4については、色温度、色度、照度いずれも基準を満たしていることがわかる。比較例4は黄色蛍光体粒子の平均粒子径が5μm未満であったため、照度が低下して波長変換部材としての性能低下が著しい。比較例5は黄色蛍光体粒子の平均粒子径が30μmを超過したため、骨格粒子が粗大となり、色温度および色度の基準を満たさなかった。 In Comparative Example 4, Examples 2 to 4, and Comparative Example 5, the weight ratio of the yellow phosphor particles to the red phosphor particles was made constant, and the average particle size of the red phosphor particles was set to the average particle size of the yellow phosphor particles. It is a sample prepared by changing the average particle size of the yellow phosphor particles to 1/2 or less. It can be seen that the color temperature, chromaticity, and illuminance of Examples 2 to 4 all satisfy the criteria. In Comparative Example 4, since the average particle size of the yellow phosphor particles was less than 5 μm, the illuminance was lowered and the performance as a wavelength conversion member was significantly deteriorated. In Comparative Example 5, since the average particle size of the yellow phosphor particles exceeded 30 μm, the skeleton particles became coarse and did not meet the criteria of color temperature and chromaticity.

比較例7、実施例7、4、5、8、比較例6は、黄色蛍光体粒子および赤色蛍光体粒子の平均粒子径を一定にして、黄色蛍光体粒子と赤色蛍光体粒子との重量比を変化させて作製した試料である。実施例7、4、5、8については、色温度、色度、照度いずれも基準を満たしていることがわかる。比較例7は、黄色蛍光体粒子と赤色蛍光体粒子との重量比が1未満(赤色蛍光体粒子の添加量が多い)であったため、黄色蛍光体が発した黄色を赤色蛍光体が吸収したため、照度が低下した。比較例6は、黄色蛍光体粒子と赤色蛍光体粒子との重量比が50を超過(赤色蛍光体粒子の添加量が少ない)したため、赤色蛍光体粒子が分散不良となり、色温度および色度の基準を満たさなかった。 In Comparative Example 7, Examples 7, 4, 5, 8 and Comparative Example 6, the average particle diameters of the yellow phosphor particles and the red phosphor particles were kept constant, and the weight ratio of the yellow phosphor particles to the red phosphor particles was fixed. It is a sample prepared by changing. It can be seen that the color temperature, chromaticity, and illuminance of Examples 7, 4, 5, and 8 all satisfy the criteria. In Comparative Example 7, since the weight ratio of the yellow phosphor particles to the red phosphor particles was less than 1 (the amount of the red phosphor particles added was large), the red phosphor absorbed the yellow emitted by the yellow phosphor. , The illuminance has decreased. In Comparative Example 6, since the weight ratio of the yellow phosphor particles to the red phosphor particles exceeded 50 (the amount of the red phosphor particles added was small), the red phosphor particles were poorly dispersed, and the color temperature and chromaticity were increased. Did not meet the criteria.

図4(a1)〜(c2)は、それぞれ、実施例の波長変換部材の蛍光体層の光学顕微鏡による表面写真および画像処理後の写真である。また、図5(d1)〜(f2)は、それぞれ、比較例の波長変換部材の蛍光体層の光学顕微鏡による表面写真および画像処理後の写真である。 4 (a1) to 4 (c2) are a surface photograph of the phosphor layer of the wavelength conversion member of the example by an optical microscope and a photograph after image processing, respectively. Further, FIGS. 5 (d1) to 5 (f2) are a surface photograph of the phosphor layer of the wavelength conversion member of the comparative example by an optical microscope and a photograph after image processing, respectively.

(d1)および(d2)は、比較例1の表面写真および画像処理後の写真である。これによると、YAG蛍光体に対し、赤色蛍光体もさほど変わらない大きさであるため、赤色蛍光体の分散性が悪く、色ムラが生じている。(e1)および(e2)は、比較例2の表面写真および画像処理後の写真である。これによると、YAG蛍光体に対し、赤色蛍光体の方が大きいため、赤色蛍光体の偏りも大きくなり、色ムラが生じている。(f1)および(f2)は、比較例3の表面写真および画像処理後の写真である。これによると、YAG蛍光体に対し、赤色蛍光体の方が大きいだけでなく、赤色蛍光体の添加量が比較例2より多いため、赤色蛍光体が比較例2よりも更に凝集し、色ムラが生じている。 (D1) and (d2) are a surface photograph of Comparative Example 1 and a photograph after image processing. According to this, since the size of the red phosphor is not so different from that of the YAG phosphor, the dispersibility of the red phosphor is poor and color unevenness occurs. (E1) and (e2) are a surface photograph of Comparative Example 2 and a photograph after image processing. According to this, since the red phosphor is larger than the YAG phosphor, the bias of the red phosphor is also large, and color unevenness occurs. (F1) and (f2) are a surface photograph of Comparative Example 3 and a photograph after image processing. According to this, not only the red phosphor is larger than the YAG phosphor, but also the amount of the red phosphor added is larger than that of Comparative Example 2, so that the red phosphor is further aggregated as compared with Comparative Example 2 and the color unevenness is observed. Is occurring.

以上の結果によって、実施例の波長変換部材は、発光強度を保ちつつ、赤の発光が偏らずに色ムラを防止できていることがわかった。 From the above results, it was found that the wavelength conversion member of the example was able to prevent color unevenness without biasing the red emission while maintaining the emission intensity.

10 波長変換部材
12 基板
14 蛍光体層
16 黄色蛍光体粒子
18 赤色蛍光体粒子
20 結合材
10 Wavelength conversion member 12 Substrate 14 Fluorescent layer 16 Yellow fluorescent particles 18 Red fluorescent particles 20 Binding material

Claims (2)

基材と、
前記基材上に設けられた蛍光体層と、を備え、
前記蛍光体層は、透光性の無機材料と前記無機材料中に分散された蛍光体粒子とで形成され、
前記蛍光体粒子は、平均粒子径が5μm以上30μm以下の黄色蛍光体粒子および前記黄色蛍光体粒子の平均粒子径の1/2以下の平均粒子径を有し、前記黄色蛍光体粒子と混合された赤色蛍光体粒子を含み、
前記赤色蛍光体粒子の平均粒子径は、2.5μm以上9μm以下であり、
前記蛍光体層に存在する前記黄色蛍光体粒子と前記赤色蛍光体粒子との重量比は、1.2以上50以下であり、
前記透光性の無機材料は、シリカ又はリン酸アルミニウムにより構成される結合材であることを特徴とする波長変換部材。
With the base material
A phosphor layer provided on the base material is provided.
The phosphor layer is formed of a translucent inorganic material and phosphor particles dispersed in the inorganic material.
The phosphor particles have an average particle size of 5 μm or more and 30 μm or less, and an average particle size of 1/2 or less of the average particle size of the yellow phosphor particles, and are mixed with the yellow phosphor particles. Contains red phosphor particles
The average particle size of the red phosphor particles is 2.5 μm or more and 9 μm or less.
The weight ratio of the yellow phosphor particles present in the phosphor layer to the red phosphor particles is 1.2 or more and 50 or less.
A wavelength conversion member characterized in that the translucent inorganic material is a binder composed of silica or aluminum phosphate.
レーザ励起による色温度および色度を測定したとき、前記測定された色温度の平均値に対する変動係数が1%以下であり、色度の平均値に対する変動係数が0.5%以下であることを特徴とする請求項1記載の波長変換部材。 When the color temperature and chromaticity by laser excitation are measured, the coefficient of variation with respect to the average value of the measured color temperature is 1% or less, and the coefficient of variation with respect to the average value of chromaticity is 0.5% or less. The wavelength conversion member according to claim 1, which is characterized.
JP2017085445A 2017-04-24 2017-04-24 Wavelength conversion member Active JP6934316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017085445A JP6934316B2 (en) 2017-04-24 2017-04-24 Wavelength conversion member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017085445A JP6934316B2 (en) 2017-04-24 2017-04-24 Wavelength conversion member

Publications (2)

Publication Number Publication Date
JP2018185367A JP2018185367A (en) 2018-11-22
JP6934316B2 true JP6934316B2 (en) 2021-09-15

Family

ID=64355808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017085445A Active JP6934316B2 (en) 2017-04-24 2017-04-24 Wavelength conversion member

Country Status (1)

Country Link
JP (1) JP6934316B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210380684A1 (en) 2018-09-28 2021-12-09 Kyowa Kirin Co., Ltd. Antibody composition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4128564B2 (en) * 2004-04-27 2008-07-30 松下電器産業株式会社 Light emitting device
US7854859B2 (en) * 2004-12-28 2010-12-21 Nichia Corporation Nitride phosphor, method for producing this nitride phosphor, and light emitting device that uses this nitride phosphor
JP2015065425A (en) * 2013-08-29 2015-04-09 株式会社日本セラテック Light emitting device and manufacturing method of the same

Also Published As

Publication number Publication date
JP2018185367A (en) 2018-11-22

Similar Documents

Publication Publication Date Title
CN109798457B (en) Transmission-type blue laser lighting assembly
EP3451031B1 (en) Wavelength conversion member, production method therefor, and light emitting device
CN108474881B (en) Wavelength conversion member and light emitting device
CN108474543B (en) Wavelength conversion member and light emitting device
WO2015141711A1 (en) Ceramic composite material for optical conversion, production method therefor, and light-emitting device provided with same
JP6002772B2 (en) Nitride red light emitting material, light emitting element and light emitting device including the same
KR20150055578A (en) Light emitting element, light emitting device and those manufacturing methods
JP2018178111A (en) Wavelength conversion member and manufacturing method therefor
JP6934316B2 (en) Wavelength conversion member
US11060020B2 (en) Wavelength conversion member
JP6489543B2 (en) Wavelength conversion member, light emitting device, and method of manufacturing wavelength conversion member
JP6902373B2 (en) Wavelength conversion member and its manufacturing method
JP6775429B2 (en) Manufacturing method of wavelength conversion member
TW201921042A (en) Wavelength conversion member and light-emitting device
JP2007314657A (en) Wavelength converting material using fluorescent substance
WO2023162445A1 (en) Wavelength conversion member and light emitting device
JP2021103247A (en) Wavelength conversion member and light-emitting device
JP2024083805A (en) Wavelength conversion member, its manufacturing method, and light emitting device
JP2022150528A (en) Wavelength conversion member and manufacturing method thereof, and light emitting device
WO2014203482A1 (en) Red phosphor material and light emitting device
KR20140135638A (en) Luminescent device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210823

R150 Certificate of patent or registration of utility model

Ref document number: 6934316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350