JP5560350B2 - 無段変速装置 - Google Patents

無段変速装置 Download PDF

Info

Publication number
JP5560350B2
JP5560350B2 JP2012552755A JP2012552755A JP5560350B2 JP 5560350 B2 JP5560350 B2 JP 5560350B2 JP 2012552755 A JP2012552755 A JP 2012552755A JP 2012552755 A JP2012552755 A JP 2012552755A JP 5560350 B2 JP5560350 B2 JP 5560350B2
Authority
JP
Japan
Prior art keywords
input
continuously variable
variable transmission
speed
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012552755A
Other languages
English (en)
Other versions
JPWO2012096341A1 (ja
Inventor
巧 篠島
博政 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
NSK Ltd
Original Assignee
Honda Motor Co Ltd
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, NSK Ltd filed Critical Honda Motor Co Ltd
Priority to JP2012552755A priority Critical patent/JP5560350B2/ja
Publication of JPWO2012096341A1 publication Critical patent/JPWO2012096341A1/ja
Application granted granted Critical
Publication of JP5560350B2 publication Critical patent/JP5560350B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H15/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members
    • F16H15/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members without members having orbital motion
    • F16H15/04Gearings providing a continuous range of gear ratios
    • F16H15/40Gearings providing a continuous range of gear ratios in which two members co-operative by means of balls, or rollers of uniform effective diameter, not mounted on shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/664Friction gearings
    • F16H61/6648Friction gearings controlling of shifting being influenced by a signal derived from the engine and the main coupling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/74Inputs being a function of engine parameters
    • F16H2059/746Engine running state, e.g. on-off of ignition switch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H2061/0056Powering down of the controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H2061/0075Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by a particular control method
    • F16H2061/0087Adaptive control, e.g. the control parameters adapted by learning

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Description

この発明は、車両用自動変速装置、建設機械用自動変速装置、航空機などで使用される発電機用の自動変速装置として利用される、トロイダル型無段変速機を組み込んだ無段変速装置の改良に関する。
自動車用自動変速機として使用されるトロイダル型無段変速機が、特許文献1非特許文献1などの多くの刊行物に記載され、かつ、一部で実施されていて周知である。このようなトロイダル型無段変速機は、互いに対向する軸方向側面をトロイド曲面とした入力側ディスクと出力側ディスクと、これらのディスクの間に挟持された複数個のパワーローラとにより構成される。運転時には、この入力側ディスクの回転が、これらのパワーローラを介して前記出力側ディスクに伝達される。これらのパワーローラは、それぞれトラニオンなどの支持部材に回転自在に支持されており、これらの支持部材は、それぞれ前記入力側および出力側ディスクの中心軸に対し捩れの位置にある枢軸を中心とする揺動変位を自在に支持されている。前記入力側および出力側ディスクの間の変速比を変える場合は、油圧式のアクチュエータにより前記支持部材を前記枢軸の軸方向に変位させる。このアクチュエータへの圧油の給排は制御弁により制御されるが、同時に、この制御弁には前記支持部材の動きがフィードバックされるようになっている。
前記アクチュエータへの圧油の給排に基づき前記各支持部材を前記枢軸の軸方向に変位させると、前記パワーローラのそれぞれの周面と前記入力側および出力側ディスクのそれぞれの側面との転がり接触部(トラクション部)に作用する接線方向の力の向きが変化して、前記転がり接触部にサイドスリップが発生する。そして、この力の向きの変化に伴って、前記各支持部材のそれぞれが前記枢軸を中心に揺動(傾斜)し、前記パワーローラのそれぞれの周面と前記入力側および出力側ディスクのそれぞれの側面との接触位置が変化する。これらのパワーローラの周面を、前記入力側ディスクの側面の径方向外寄り部分と、前記出力側ディスクの側面の径方向内寄り部分とに転がり接触させれば、前記入力側および出力側ディスクの間の変速比が増速側になる。これに対して、前記パワーローラの周面を、前記入力側ディスクの側面の径方向内寄り部分と、前記出力側ディスクの側面の径方向外寄り部分とに転がり接触させれば、前記入力側および出力側ディスクの間の変速比が減速側になる。
このようなトロイダル型無段変速機を実際の自動車用自動変速機に組み込む場合、遊星歯車機構などの歯車式の差動ユニットと組み合わせて無段変速装置を構成することが、従来から提案されている。特許文献2には、入力軸を一方向に回転させたまま、出力軸の回転状態を、停止状態(いわゆるギヤードニュートラル状態)を挟んで正転、逆転に切り換えられる無段変速装置が記載されている。このような無段変速装置の場合、いわゆる低速モード状態では、無段変速装置全体としての変速比が、無限大に変化する。すなわち、トロイダル型無段変速機の変速比を調節することにより、入力軸を一方向に回転させた状態のまま出力軸の回転状態を、停止状態を挟んで、正転、逆転に変換させることが可能となる。無限大の変速比を実現できる無段変速装置の場合、トロイダル型無段変速機の変速比に関して、前記出力軸の停止状態を実現できる値(ギヤードニュートラルポイント、GN値)の近傍では、この変速比が僅かに変化しただけでも、この出力軸に伝わる動力の状態が大きく変化する。このため、トロイダル型無段変速機の変速比制御を高精度で行う必要がある。
たとえば車両を停止させた状態で、シフトレバーをPレンジ(パーキング位置)やNレンジ(ニュートラル位置)などの非走行状態から、Dレンジ(通常前進位置)、Lレンジ(高駆動前進位置)やRレンジ(後退位置)などの走行状態に切り換える場合、素早く前方あるいは後方への適切な駆動力を生じさせつつ、ブレーキペダルの操作に基づく制動力により車両の停止状態を維持する必要がある。このため、シフトレバーが非走行状態に選択されている状態で、トロイダル型無段変速機の変速比を、変速比無限大の状態を実現できる値(範囲)に厳密に制御しておく必要がある。仮に、トロイダル型無段変速機の変速比が、変速比無限大の状態を実現できる値から大きくずれている場合には、シフトレバーが走行状態に選択された場合に、予想以上の駆動力(クリープ力)が伝達され、車両が動き出したり、運転者の意図とは逆方向の駆動力が伝達されたりする可能性がある。
一方、トロイダル型無段変速機に組み込まれる部品数は多く、しかも、そのうちの多くの部品の寸法精度および組み付け精度が、トロイダル型無段変速機の変速比に影響を及ぼす。このため、設計計算により求められる変速比無限大の状態を実現できるトロイダル型無段変速機の変速比に、個体差が生じることが考えられる。また、変速比無限大の状態を実現できるトロイダル型無段変速機の変速比は、長期間にわたる使用による構成部品の経時変化(僅かな塑性変形)などにより、その特性が変化することも考えられる。
これに対して、特許文献3には、シフトレバーが非走行状態に選択されていることを条件に、入力軸を回転させたまま出力軸を停止させられる、ステッピングモータのステップ位置を学習する機能を制御器に持たせることが記載されている。具体的には、シフトレバーが非走行状態に選択されていることを条件に、トロイダル型無段変速機を構成する入力側ディスクの回転速度と、出力側ディスクの回転速度とを、それぞれ回転センサにより検出する。制御器は、前記入力側および出力側ディスクの回転速度から求められる実際の変速比(入力側ディスクの回転速度/出力側ディスクの回転速度)と、遊星歯車式変速機の変速比とに基づいて、非走行状態時の出力軸の回転速度を求める。そして、この出力軸の回転速度を0にすべく、ステッピングモータのステップ位置(駆動量)を調整し、トロイダル型無段変速機の変速比を調節する。そして、前記出力軸の回転速度が0になった状態でのステップ位置を学習し、制御器のメモリに記憶させて、学習制御を完了する。そして、調整されたステップ位置(学習値)を基準に、トロイダル型無段変速機の変速比制御を行う。これにより、トロイダル型無段変速機の構成部品の個体差や経時変化などの影響を受けることなく、変速比制御を高精度に行うことが可能になる。
ただし、従来から考えられているステップ位置の学習に関する制御方法の場合には、ステップ位置に関する学習中に、運転者がイグニッションスイッチ(イグニッションキー)をオフに操作した場合に、制御器がステップ位置を正しく学習できなくなる可能性がある。すなわち、エンジンの稼動(運転)を停止させるために、運転者がイグニッションスイッチをオフに操作した場合、エンジンの回転数は、短時間ではあるが、ある程度の時間をかけて低下する。この低下速度は急であるため、この状態では、入力側ディスクと出力側ディスクとの回転速度の低下が、互いに同期しなくなる可能性がある。このため、入力側および出力側ディスクの回転速度から算出されるトロイダル型無段変速機の変速比が、実際の変速比の値からずれてしまう可能性がある。このようにトロイダル型無段変速機の変速比を正確に算出できない状態のまま、ステップ位置に関する学習を継続してしまうと、得られた学習値が出力軸を停止させるのに適正な位置から外れてしまい、ステップ位置についての誤った学習がなされてしまうという問題が生じる。
また、エンジン(クランクシャフト)の回転がそのまま入力側ディスクに伝達される場合には、コスト低減を目的として、入力側ディスクの回転速度を検出するための入力側回転センサを省略し、エンジンコントローラからのエンジン回転数を表す信号を利用することで、トロイダル型無段変速機の変速比を算出することも考えられている。ただし、この場合、運転者がイグニッションスイッチをオフに操作すると同時に、エンジン回転数を表す信号を得られなくなることが考えられるため、トロイダル型無段変速機の変速比を正確に算出することは難しくなる。このため、得られた学習値が出力軸を停止させるのに適正な位置から外れる可能性がある。
このように、ステップ位置に関する学習中に、イグニッションスイッチがオフに操作された場合には、トロイダル型無段変速機の変速比の算出方法に拘わらず、トロイダル型無段変速機の変速比を正確に算出できなくなる可能性がある。この結果、ステッピングモータのステップ位置が、出力軸を停止させるのに適正な位置から外れた状態で、変速比制御が開始される可能性があり、変速フィーリングが損なわれるばかりか、最悪の場合には、シフトレバーの選択位置とは逆方向に車両が動き出す可能性もある。
一方、ステップ位置に関する学習は、エンジンの稼動状態でなければ実行できないのであるから、単純に、エンジンの回転数が0(ゼロ)でないという条件や、エンジン回転数が所定の回転数よりも高いという条件を、ステップ位置に関する学習を許可するための学習許可条件に加えることも考えられる。ただし、この場合でも、上述したような問題の発生頻度を低減できる可能性はあるものの、エンジンの回転数がアイドル回転数(たとえば800min-1)から0になるまでの間や、所定の回転数以下になるまでの間(たとえば所定の回転数として500min-1を設定した場合には、図4中のDの範囲)は、ステップ位置に関する学習が実行されてしまうため、上述したような問題を根本的に解決することはできない。
さらに、前記所定の回転数を、たとえばアイドル回転数の90%程度の近い値に設定することで、イグニッションスイッチがオフに操作されてからエンジン回転数が低下している間の、学習許可条件が成立する時間を短縮して、誤学習に結びつく学習時間を短縮することも考えられる。この場合には、上述したような問題の発生頻度をより低減できるが、アイドル回転数は、エンジンの冷却水の温度などにより変動するため、イグニッションスイッチがオンの状態でエンジン回転数が低下していない、本来は学習制御の対象にできる場合であるにも拘わらず、学習許可条件が満たされなくなる可能性があり、学習機会を必要以上に失って、学習制御の実行頻度が必要以上に減少するという新たな問題を生じる可能性がある。
特開2001−317601号公報 特開2003−307266号公報 特開2004−308853号公報
田中裕久著「トロイダルCVT」株式会社コロナ社(2000年7月13日)
本発明は、上述のような事情に鑑み、トロイダル型無段変速機を組み込んだ無段変速装置において、トロイダル型無段変速機の変速比制御の基準となる調整部材の位置に関する学習中にイグニッションスイッチがオフに操作された場合であっても、学習機会を必要以上に失うことなく、学習値の信頼性を確保できる構造を実現することを目的としている。
本発明の無段変速装置は、入力軸と、出力軸と、トロイダル型無段変速機と、歯車式の差動ユニットと、制御器とを備える。前記入力軸には、エンジンの出力が入力される。この入力軸に伝達された動力は、前記トロイダル型無段変速機と前記歯車式の差動ユニットを介して、前記出力軸に伝達される。
前記トロイダル型無段変速機は、前記入力軸により回転駆動される入力側ディスクと、この入力側ディスクと同心に、かつ、この入力側ディスクに対する相対回転を自在として支持された出力側ディスクと、これらの入力側および出力側ディスクの間に挟持された複数個のパワーローラと、これらのパワーローラを回転自在に支持した複数個の支持部材と、これらの支持部材を変位させて前記入力側ディスクと前記出力側ディスクとの間の変速比を変えるアクチュエータと、この変速比を所望値にするために、このアクチュエータの変位方向および変位量を制御する調整部材を有する制御ユニットと、前記入力側ディスクの回転速度を検出するための入力側回転センサと、前記出力側ディスクの回転速度を検出するための出力側回転センサとを備える。
前記歯車式の差動ユニットは、複数の歯車により構成され、前記入力側ディスクとともに前記入力軸により回転駆動される第一の入力部と、前記出力側ディスクに接続された第二の入力部とを備え、これらの第一および第二の入力部の間の速度差に応じた回転を取り出して、前記出力軸に伝達するものである。
前記制御器は、前記トロイダル型無段変速機の変速比の変更を制御するためのものであって、エンジンコントロールユニット(ECU)などにより構成され、
前記トロイダル型無段変速機の変速比を調節して、前記複数の歯車の相対的変位速度を変化させることにより、前記入力軸を一方向に回転させた状態のまま、前記出力軸の回転状態を、停止状態を挟んで正転および逆転に変換する第一の機能と、
前記入力側回転センサにより求められる前記入力側ディスクの回転速度と、前記出力側回転センサにより求められる前記出力側ディスクの回転速度とにより、前記トロイダル型無段変速機の変速比を算出する第二の機能と、
所定の学習許可条件が満たされていることを条件に、前記出力軸の回転速度が0となる状態に、前記トロイダル型無段変速機の変速比を調節し、この状態での前記調整部材の位置を、前記入力軸を回転させたまま前記出力軸を停止させられる位置として学習し記憶する、学習制御を行う第三の機能とを有するものである。
特に、本発明の無段変速装置の場合には、前記第三の機能による学習制御を、イグニッションスイッチがオンの状態であることを条件に実行し、イグニッションスイッチがオフに操作された直後から実行を禁止するが、イグニッションスイッチがオンに操作された前記エンジンの始動直後は、このエンジンの回転数が前記制御器により設定される目標アイドル回転数よりも低い値に設定された設定下限回転数よりも高くなるまでは学習制御を実行しない。
また、本発明を実施する場合には、例えば請求項2に記載した発明のように、前記設定下限回転数を、前記目標アイドル回転数の50%以上の値に設定する。
本発明の無段変速装置によれば、学習機会を必要以上に失うことなく、トロイダル型無段変速機の変速比制御の基準となる調整部材の位置に関する学習中にイグニッションスイッチがオフに操作された場合にも、学習値の信頼性を確保できる。
すなわち、イグニッションスイッチをオフに操作した直後からエンジン回転数が0になるまでの、エンジン回転数が低下している状態(エンジン回転数が不安定で、入力側ディスクと出力側ディスクとの同期安定性も不十分な状態)で、前記調整部材の位置に関する学習が実行されてしまうことを防止している。このため、得られる学習値が出力軸を停止させるのに不適正なものとなってしまうことが有効に防止される。しかも、エンジンの回転数が低下し始める契機となるイグニッションスイッチのオフ操作に伴って学習を禁止するため、アイドリング時などのエンジン回転数の安定した状態が、学習制御の対象から除外されることもない。したがって、本発明によれば、学習機会を必要以上に失うことなく、前記調整部材の位置に関する学習値の信頼性を確保できる。
また、イグニッションスイッチをオンに操作した直後エンジン回転数が上昇している状態(エンジン回転数が不安定な状態)で、前記調整部材の位置に関する学習が実行されることを有効に防止できる。エンジン回転数が上昇している場合にも、入力側ディスクと出力側ディスクとの間で回転速度の上昇の程度が不一致になる(入力側および出力側ディスクの同期安定性が不十分になる)可能性があるが、このような誤学習の可能性のある状態を学習制御の対象から除外できる。このため、前記調整部材の位置に関する学習値の信頼性をより向上できる。
図1は、本発明の実施の形態の第1例を示す、無段変速装置のブロック図である。 図2は、第1例における無段変速装置に組み込むトロイダル型無段変速機の変速比を調節するための機構を示す油圧回路図である。 図3は、第1例の特徴となる動作を示すフローチャートである。 図4は、ステップ位置に関する学習状態を説明するため、エンジン回転数(回転速度)と、イグニッションスイッチのオン/オフ状態と、設定下限回転数(回転速度)との関係を示す図である。
図1〜図4は、本発明の実施の形態の1例を示している。なお、図1のブロック図において、太矢印は動力の伝達経路を、実線は油圧回路を、破線は電気回路を、それぞれ示している。本例の無段変速装置は、従来の装置と同様に、基本的には、入力軸3と、出力軸14と、トロイダル型無段変速機4と、歯車式の差動ユニット(遊星歯車式変速機)12と、トロイダル型無段変速機4の変速比を制御するための制御器11を備える。
このうち、トロイダル型無段変速機4は、基本的には、入力側ディスク6と、出力側ディスク8と、複数個のパワーローラ7と、複数個のトラニオンなどの支持部材(図示省略)と、アクチュエータ19と、制御ユニット(制御弁装置)20と、入力側回転センサ9と、出力側回転センサ10とを備える。なお、支持部材は、パワーローラ7のそれぞれを回転自在に支持可能で、かつ、この支持部材が支持される枢軸を中心として揺動変位が自在で、同時に、この枢軸の軸方向に変位可能なものであれば、キャリッジなどのその他の公知の部材も採用可能である。
このうちの入力側ディスク6は、遊星歯車式変速機12の第一の入力部とともに、入力軸3により回転駆動される。より具体的には、エンジン1の出力が、ダンパ2を介して、入力軸3に入力され、この入力軸3に伝達された動力が、トロイダル型無段変速機4を構成する油圧式の押圧装置5から入力側ディスク6に伝達される。一方、出力側ディスク8は、入力側ディスク6と同心に、かつ、この入力側ディスク6に対する相対回転を自在として支持されるとともに、遊星歯車式変速機12の第二の入力部に接続されている。また、パワーローラ7のそれぞれは、前記支持部材であるトラニオンにより回転自在に支持されるとともに、入力側ディスク6と出力側ディスク8の間に挟持されている。したがって、入力側ディスク6に伝達された動力は、パワーローラ7を介して出力側ディスク8に伝達される。なお、入力側ディスク6の回転速度は入力側回転センサ9により、出力側ディスク8の回転速度は出力側回転センサ10により、それぞれ測定され、制御器11に入力され、入力側ディスク6と出力側ディスク8の間の変速比が算出される。
さらに、アクチュエータ19は、一般的な油圧式の場合、圧油の給排状態に基づいて、前記トラニオン(図示省略)を枢軸(図示省略)の軸方向に変位させ、入力側ディスク6と出力側ディスク8との間の変速比を変えるものである。そして、制御ユニットである制御弁装置20は、入力側ディスク6と出力側ディスク8との間の変速比を所望値にするために、アクチュエータ19の変位方向および変位量を制御するものであり、調整部材(ステッピングモータ24)のほか、ローディング圧制御用電磁開閉弁25、モード切換制御用電磁開閉弁26、および、これらにより作動状態を切り換えられる制御弁装置(制御弁21)などにより構成される。なお、調整部材とは、制御器11の制御信号に基づいて駆動され、制御ユニットを構成する制御弁21の切換状態を変更する(調整する)部材を意味し、本例では調整部材としてステッピングモータ24を利用するが、サーボモータを調整部材として利用してもよい。
歯車式の差動ユニットである遊星歯車式変速機12は、複数の歯車を組み合わせて構成されており、入力軸3により回転駆動されることで、入力軸3に伝達された動力が直接伝達される第一の入力部と、トロイダル型無段変速機4の出力側ディスク8に接続され、入力軸3に伝達された動力がトロイダル型無段変速機4を介して伝達される第二の入力部を備える。そして、遊星歯車式変速機12の構成部材の差動成分(第一および第二の入力部の間の速度差に応じた回転)が、クラッチ装置13を介して出力軸14に取り出される。なお、本発明における差動ユニットとしては、シングルピニオン式か、ダブルピニオン式かを問わず、1つの遊星歯車式変速機を単体で用いることもできるし、複数の遊星歯車式変速機を組み合わせて用いることもできる。また、本例の場合には、出力軸回転センサ17により、出力軸14の回転速度を検出して、入力側回転センサ9および出力側回転センサ10の故障の有無を判定するためのフェールセーフを可能としている。
一方、ダンパ2から取り出した動力によりオイルポンプ18を駆動し、このオイルポンプ18から吐出した圧油を、押圧装置5と、アクチュエータ19(図2参照)の変位量を制御するための制御ユニットである制御弁装置20とに、送り込み自在としている。この制御弁装置20を構成する制御弁21(図2参照)は、アクチュエータ19への油圧の給排を制御する。また、アクチュエータ19に設けた1対の油圧室22a、22b(図2参照)内の油圧を、油圧センサ23(図2では、1対の油圧センサ23a、23bとして示される。)により検出して、その検出信号を制御器11に入力している。制御器11は、油圧センサ23(油圧センサ23a、23b)からの信号に基づいて、トロイダル型無段変速機4を通過するトルク(通過トルク)を算出する。
制御弁装置20は、より具体的には、制御弁21の駆動部材(調整部材)であるステッピングモータ24と、ローディング圧制御用電磁開閉弁25と、モード切換制御用電磁開閉弁26(図2に示す低速クラッチ用電磁弁27、高速クラッチ用電磁弁28)とにより、その作動状態を切り換えられる。そして、これらステッピングモータ24と、ローディング圧制御用電磁開閉弁25と、モード切換制御用電磁開閉弁26とは、いずれも制御器11からの制御信号に基づいてその作動状態を切り換えられる。
制御器11は、エンジンコントロールユニット(ECU)などのマイクロコンピュータにより構成され、入力側回転センサ9、出力側回転センサ10、出力軸回転センサ17および油圧センサ23からの信号のほか、油温センサ29の検出信号と、ポジションスイッチ30の位置信号と、アクセルセンサ31の検出信号と、ブレーキスイッチ32の信号と、イグニッションスイッチ33の信号などが入力される。このうちの油温センサ29は、無段変速装置を納めたケーシング内の潤滑油(トラクションオイル)の温度を検出するものである。また、ポジションスイッチ30は、手動油圧切換弁34(図2参照)を切り換えるための、運転席に設けられたシフトレバー(操作レバー)の操作位置(選択位置)を表す信号を発するものである。アクセルセンサ31は、アクセルペダルの開度を検出するためのものである。さらに、ブレーキスイッチ32は、ブレーキペダルが踏まれたことを検出して、そのことを表す信号を発するものである。さらに、イグニションスイッチ33は、エンジン1を始動および停止するためのもので、イグニッションキーの作動状態(選択位置)を検出し、そのことを表す信号(オン/オフ状態を表す信号)を発するものである。
制御器11は、上述したようなスイッチおよびセンサからの信号に基づいて、ステッピングモータ24と、ローディング圧制御用電磁開閉弁25と、モード切換制御用電磁開閉弁26とに、その制御信号を送るほか、エンジン1を制御するための制御信号を送る。そして、入力軸3と出力軸14との間の変速比を制御し、あるいは、停止時もしくは低速走行時にトロイダル型無段変速機4を通過して、出力軸14に加えられるトルク(通過トルク)を制御する。
図2は、このような無段変速装置を制御する油圧回路を示している。この油圧回路では、油溜35から吸引されてオイルポンプ18により吐出された圧油を、調圧弁36a、36bで所定圧に調整自在としている。また、これらの調圧弁36a、36bのうち、手動油圧切換弁34側に送る油圧を調整するための調圧弁36aによる調整圧を、ローディング圧制御用電磁開閉弁25の開閉に基づいて調節自在としている。そして、前記調圧弁36a、36bにより圧力を調整された圧油を、制御弁21を介してアクチュエータ19に送り込み自在としている。
この圧油は、手動油圧切換弁34と、低速クラッチ用電磁弁27または高速クラッチ用電磁弁28とを介して、クラッチ装置13を構成する低速用クラッチ15または高速用クラッチ16の油圧室内に送り込み自在としている。低速用クラッチ15は、減速比を大きくする(変速比無限大を含む)低速モードを実現する際に接続されるとともに、減速比を小さくする高速モードを実現する際に接続を断たれる。これに対して、高速用クラッチ16は、低速モードを実現する際に接続を断たれるとともに、高速モードを実現する際に接続される。また、低速用クラッチ15および高速用クラッチ16への圧油の給排状態は、油圧センサ23c、23dによりそれぞれ検出して、検出信号を制御器11に入力している。
この制御器11は、基本的に、
(1)トロイダル型無段変速機4の変速比を調節して、差動ユニットである歯車式変速機12を構成する複数の歯車の相対的変位速度を変化させることにより、入力軸3を一方向に回転させた状態のまま出力軸14の回転状態を、停止状態を挟んで、正転および逆転に変換する、第一の機能、
(2)入力側回転センサ9により求められる入力側ディスク6の回転速度と、出力側回転センサ10により求められる出力側ディスク8の回転速度とにより、トロイダル型無段変速機4の変速比(入力側ディスク6の回転速度/出力側ディスク8の回転速度)を算出する、第二の機能、および、
(3)所定の学習許可条件が満たされていることを条件に、出力軸14の回転速度が0(ゼロ)となる状態に、トロイダル型無段変速機4の変速比を調節し、この状態での制御ユニットを構成する調整部材の位置(たとえばステッピングモータ24のステップ位置)を、入力軸3を回転させたまま出力軸14を停止させられる位置として学習し記憶する、学習制御を行う、第三の機能、
を備える。
特に本例の場合は、制御器11により、イグニッションスイッチ33のオン/オフ状態を判定し、オフの状態であると判定した場合には、エンジン1が回転速度を低下させながら回転している場合にも、ステッピングモータ24のステップ位置に関する学習を禁止する。制御器11が備えるこのような機能について、図3のフローチャートを参照しつつ説明する。なお、このフローチャートに示した動作は、制御器11に通電されているか、この制御器11中の電圧が、コンデンサや二次電池の存在に基づいて、保持されている間、自動的に繰り返し(開始→各ステップ→終了→開始→・・・)行う。つまり、学習制御が一度も実行されていない場合(イグニッションスイッチ33をオンした直後)のほか、学習制御の実行中(ステップ位置を調節している状態)、さらには学習制御が完了した後(出力軸14を停止させられるステップ位置を一度学習した後)も、このフローチャートに示した動作を繰り返し行う。
まず、制御器11は、ステップ1で、車両の走行速度が0であるか否かを判定する。この判定は、出力軸回転センサ17、あるいは、図示しない速度センサからの信号に基づいて行う。そして、車両の走行速度が0でない限り、次のステップ2には進まずに、後述するステップ8に進む。
これに対して、車両の走行速度が0である場合には、続くステップ2に進み、非走行状態が選択されているか否かを判定する。この判定は、ポジションスイッチ30からの信号に基づいて行う。このポジションスイッチ30からの信号に基づき、運転席に設けられたシフトレバーの操作位置が、PレンジまたはNレンジである場合には、非走行状態が選択されていると判定し、それ以外の場合には非走行状態が選択されていないと判定する。そして、非走行状態が選択されていない限り、次のステップ3には進まずに、後述するステップ8に進む。
これに対して、非走行状態が選択されている場合には、続くステップ3に進み、アクセルペダルが全閉の状態にあるか否かを判定する。この判定は、アクセルセンサ31からの信号に基づいて行う。このアクセルセンサ31からの信号に基づき、アクセルペダルの開度が0%である場合には、アクセルペダルが全閉であると判定し、それ以外の場合には全閉でないと判定する。そして、アクセルペダルが全閉でない限り、次のステップ4には進まずに、後述するステップ8に進む。このようなステップ3は、単純にアクセル開度が0%ではない(アクセルペダルが踏み込まれている)場合のみを、ステップ位置に関する学習制御の対象から除外する。このため、アクセルペダルの踏み込み量を変化(増加あるいは減少)させるなどにより、エンジン1の回転数を変動させている場合のほか、アクセルペダルの踏み込み量を一定としてエンジン1の回転数に変動を生じさせない(生じにくい)場合も、ステップ位置に関する学習制御の対象から除外する。ただし、アクセルペダルを開放した直後のように、アクセル開度が0%であるにも拘らず、エンジン1の回転数が低下している状態は、学習制御の対象からは除外しない(できない)。
ステップ3で、アクセルペダルが全閉であると判定された場合には、続くステップ4に進み、エンジン1の回転数(回転速度)が、制御器11により設定される目標アイドル回転数よりも高い値に設定された、設定上限回転数{ENG_GN=目標アイドル回転数(TRGET_IDLE)+X}よりも低いか否かを判定する。ここで、「目標アイドル回転数」とは、エンジンの冷却水の温度、吸気温度、補機(たとえばカーエアコン用のコンプレッサ)の回転状態などに応じて制御器により、マップなどに基づいて設定されるエンジンの回転数であり、暖機運転時などには通常運転時に比べて高値に設定される。
また、設定上限回転数(ENG_GN)を目標アイドル回転数(TRGET IDLE)よりも高くする程度(Xの値)は、エンジンの特性(たとえばエンジンの型式)などに基づき適宜決定することができる、チューニング値である。このチューニング値であるXの値は、たとえばエンジン回転数が目標アイドル回転数に収束する過程で通過する、エンジンの始動直後の高回転状態から比較的短時間経過した状態で達する、目標アイドル回転数よりも少し高い程度の回転数に見合う値を設定できる。本例の場合には、X=400min-1に設定し、エンジン1の回転数が、目標アイドル回転数+400min-1よりも低いか否かを判定する。この判定は、入力側回転センサ9(エンジン1のクランクシャフトの回転がそのまま入力軸3並びに入力側ディスク6に伝達される場合)、あるいは、運転席のタコメータにエンジンの回転数(回転速度)を表示させるための信号に基づいて行う。そして、エンジン1の回転数が目標アイドル回転数+400min-1よりも低くない限り、次のステップ5には進まずに、後述するステップ8に進む。このような判定を行うステップ4では、ステップ3では学習制御の対象から除外することのできない、アクセル開度が0%であるにも拘らず、エンジン1の回転数が低下するような、アクセルペダルが開放された直後の状態などについても、学習制御の対象から除外することができる。
ステップ5では、エンジン1の回転数が、制御器11により設定される目標アイドル回転数よりも低い値に設定された、設定下限回転数(ENG_ON)よりも高いか否かを判定する。この設定下限回転数は、エンジンの特性(たとえばエンジンの型式)などに基づき適宜決定することができる、チューニング値であり、たとえば目標アイドル回転数の約50%〜70%程度の回転数を設定できる。具体的には、一般の普通乗用車の場合には、400〜600min-1程度の値を設定できる。この設定下限回転数を目標アイドル回転数の50%よりも低い値に設定すると、イグニッションスイッチをオンに操作した直後など、エンジン回転数が上昇しているような回転数の不安定な状態の多くが、学習制御の対象に含まれることとなり、トロイダル型無段変速機の変速比を正確に算出することが困難となり、誤学習の頻度が高くなる。これに対して、この設定下限回転数を目標アイドル回転数の70%よりも高い値に設定すると、イグニッションスイッチがオンの状態でエンジン回転数が低下していないにも拘わらず、冷却水の温度などにより変動するアイドル回転数が設定下限回転数を下回る可能性があり、学習機会を必要以上に失う可能性がある。したがって、この設定下限回転数に関しては、エンジンの回転状態が不安定となる低回転領域を学習制御の対象から除外しつつも、学習制御の実行頻度を十分に確保するという観点から決定する必要がある。
本例の場合には、前記設定下限回転数を500min-1に設定し、エンジン1の回転数が、500min-1よりも高いか否かを判定する。この判定に関しても、ステップ4の場合と同様に、入力側回転センサ9(エンジン1のクランクシャフトの回転がそのまま入力軸3並びに入力側ディスク6に伝達される場合)、あるいは、運転席のタコメータにエンジンの回転数(回転速度)を表示させるための信号に基づいて行う。そして、エンジン1の回転数が設定下限回転数である500min-1よりも高くない限り、次のステップ6には進まずに、後述するステップ8に進む。このようなステップ5では、単純にエンジン1の回転数が500min-1以下である場合を、ステップ位置に関する学習制御の対象から除外する。ただし、イグニッションスイッチ33がオフに操作された後は、後述するステップ6によって学習制御の対象から除外するため、ステップ5では、イグニッションスイッチ33がオンの状態で、エンジン1の回転数が500min-1以下である場合を学習制御の対象から除外する。
すなわち、エンジン回転数と設定下限回転数(ENG ON)との関係を示した図4から明らかなように、ステップ5では、イグニッションスイッチ33がオンに操作されスタータが稼動し始めてから、エンジン1の回転数が500min-1に達するまでの間(図4中の範囲A)を、ステップ位置に関する学習制御の対象から除外する。一方、イグニッションスイッチ33がオフに操作されてから所定時間経過後に、エンジン1の回転数が500min-1になってから0になるまでの間(図4中の範囲B)は、形式的にはステップ5によっても学習制御の対象から除外できるが、後述するステップ6により、イグニッションスイッチ33がオフされた直後に、すなわち回転数が500min-1にまで低下する以前の状態で、学習制御の対象から除外されるため、ステップ5によって除外する必要はない。
続くステップ6では、制御器11により、イグニッションスイッチ33がオンの状態にあるか否かを判定する。そして、オンの状態にある場合には、次のステップ7に進む。これに対して、オフの状態にある場合には、次のステップ7には進まずに、後述するステップ8に進む。このような判定を行うステップ6では、エンジン回転数とイグニッションスイッチ33のオン/オフ状態との関係を示した図4から明らかな通り、イグニッションスイッチ33がオフに操作された直後から、次にこのイグニッションスイッチ33がオンに操作されるまでの間(図4中の範囲C)を、学習制御の対象から除外する。なお、イグニッションスイッチ33のオン/オフ状態の判定は、このイグニッションスイッチ33からの信号を制御器11に直接入力して、この制御器11により直接判定してもよく、エンジンコントローラからの信号を利用して判定してもよい。
ステップ6で、イグニッションスイッチ33がオンの状態にあると判定された場合には、続くステップ7で、変速比無限大の状態を実現するためのステップ位置に関する学習制御を許可し、学習制御を実行する。具体的には、ステッピングモータ24を駆動することにより、トロイダル型無段変速機4の変速比を、出力軸14の回転速度を0にする変速比(ギヤードニュートラル変速比)±α(閾値)の範囲に調節する。このギヤードニュートラル変速比は、遊星歯車式変速機12を構成する各歯車の変速比により計算によって求められ、たとえば1.306前後の値になる。また、閾値として±0.01を設定し、トロイダル型無段変速機4の変速比を1.306±0.01の範囲内に調節する。
なお、本例の場合には、ステッピングモータ24を特定のステップ位置(決まった学習値)に駆動するのではなく、トロイダル型無段変速機4の変速比が1.306±0.01の範囲に入った状態での、ステッピングモータ24のステップ位置を、変速比制御の基準値とする。したがって、学習制御が実行されている間は、ステッピングモータ24の現在のステップ位置を表すREAL_SMPを、基準値を表す0に固定し(REAL_SMP=0)、現在のステップ位置(REAL_SMP)が変速比無限大の状態を得られる基準値であるとして取り扱う。また、ステッピングモータ24の出力ロッドのストローク位置を測定するための位置センサなどは設けない。
トロイダル型無段変速機4の変速比を実際に調節する作業は、入力側回転センサ9および出力側回転センサ10の検出信号(入力側ディスク6の回転速度NID、出力側ディスク8の回転速度NOD)を観察しつつ、すなわち、制御器11が有する第二の機能に基づき算出されるトロイダル型無段変速機4の変速比を観察しつつ、ステッピングモータ24の出力ロッドを変位させることで行う。そして、この出力ロッドを変位させるべく、このステッピングモータ24を駆動した方向と関連させつつ、このステッピングモータ24のステップ数をカウントする。たとえば、このステッピングモータ24をLow側に1ステップ分だけ駆動した場合には、学習中のステッピングモータ24のステップ位置(ステップ数)を表す値(GN_SMP、初期値0)を、1ステップ分だけカウントアップする(GN_SMP=GN_SMP+1)。これに対して、High側に1ステップ駆動した場合には、学習中のステッピングモータ24のステップ位置を表す値を、1ステップ分だけカウントダウンする(GN_SMP=GN_SMP−1)。
そして、トロイダル型無段変速機4の変速比が、1.306±0.01の範囲内に調節されているか否かを判定するとともに、この範囲内に所定時間(たとえば3秒間)収まっているか否かを判定する。そして、トロイダル型無段変速機4の変速比が、1.306±0.01の範囲内に調節されており、かつ、この範囲内に所定時間収まっていると判定された場合には、学習制御を完了し、そのことを表す学習完了フラグを立てる(F_GN_LEARN=0→1)。また、前記範囲内に調節した時点での、ステッピングモータ24のステップ位置(GN_SMP)を、変速比無限大の状態を得られる基準位置として学習し、制御器11中のメモリに記憶する(GN_SMP=REAL_SMP=0)。そして、終了に進み、再度開始に戻る。
これに対して、前述したような学習許可条件であるステップ1〜6が、運転者のシフトレバー操作あるいはアクセルペダル操作、イグニッションキー操作などに基づいて、何れか1つでも条件を満たさなくなった場合、たとえば、イグニッションスイッチ33がオフに操作された場合やシフトレバーがPレンジからDレンジに切り換えられた場合には、ステップ8に進み、変速比無限大の状態を実現するためのステップ位置に関する学習制御を禁止(中止)する。そして、学習制御が完了していないことを表す学習未完了フラグを立てて(F_GN_LEARN=0とし)、終了に進み、開始に戻る。
以上のような構成を有し、上述のように動作する本例の無段変速装置によれば、トロイダル型無段変速機4の変速比制御の基準となるステッピングモータ24のステップ位置に関する学習中に、イグニッションスイッチ33がオフに操作された場合にも、学習機会を必要以上に失うことなく、学習値の信頼性を確保できる。
すなわち、本例の場合には、ステップ6で、イグニッションスイッチ33をオフに操作した直後からエンジン1の回転数が0になるまでの回転数の低下している状態(回転数が不安定な状態)を、ステップ位置に関する学習制御の対象から除外できる。このため、得られる学習値が出力軸14を停止させるのに不適正となるような、誤学習がなされることを有効に防止できる。しかも、本例の場合には、エンジン1の回転数が低下し始める契機となるイグニッションスイッチ33のオフ操作に伴って学習を禁止するため、アイドリング時などのエンジン1の回転数が安定した状態を、学習制御の対象から除外することもない。したがって、本例によれば、学習機会を必要以上に失うことなく、ステッピングモータ24のステップ位置に関する学習値の信頼性を確保できる。
さらに、本例の場合には、ステップ5で、イグニッションスイッチ33がオンに操作されスタータが稼動し始めてから、エンジン1の回転数が設定下限回転数(500min-1)に達するまで上昇している間(図4中の範囲A)を、ステップ位置に関する学習制御の対象から除外できる。したがって、エンジン回転数が低下している場合と同様に、入力側ディスク6と出力側ディスク8との間で回転速度の変化(上昇)の程度が不一致になる可能性のある、エンジン1の回転数が上昇している場合を、学習制御の対象から除外できるため、ステップ位置に関する学習値の信頼性をより向上できる。
本発明のトロイダル型無段変速機を組み込んだ無段変速装置は、自動車用自動変速装置のみならず、その他の車両用自動変速装置、建設機械用自動変速装置、航空機(固定翼機、回転翼機、飛行船)などで使用される発電機用の自動変速装置などに広く適用可能である。
1 エンジン
2 ダンパ
3 入力軸
4 トロイダル型無段変速機
5 押圧装置
6 入力側ディスク
7 パワーローラ
8 出力側ディスク
9 入力側回転センサ
10 出力側回転センサ
11 制御器
12 遊星歯車式変速機
13 クラッチ装置
14 出力軸
15 低速用クラッチ
16 高速用クラッチ
17 出力軸回転センサ
18 オイルポンプ
19 アクチュエータ
20 制御弁装置
21 制御弁
22a、22b 油圧室
23、23a〜23d 油圧センサ
24 ステッピングモータ
25 ローディング圧制御用電磁開閉弁
26 モード切換制御用電磁開閉弁
27 低速用クラッチ用電磁弁
28 高速用クラッチ用電磁弁
29 油温センサ
30 ポジションスイッチ
31 アクセルセンサ
32 ブレーキスイッチ
33 イグニッションスイッチ
34 手動油圧切換弁
35 油溜
36a、36b 調整弁

Claims (2)

  1. 入力軸と、出力軸と、トロイダル型無段変速機と、歯車式の差動ユニットと、制御器とを備え、
    前記入力軸は、エンジンの出力が入力されるものであり、
    前記トロイダル型無段変速機は、前記入力軸により回転駆動される入力側ディスクと、この入力側ディスクと同心に、かつ、この入力側ディスクに対する相対回転を自在として支持された出力側ディスクと、これらの入力側および出力側ディスクの間に挟持された複数個のパワーローラと、これらのパワーローラを回転自在に支持した複数個の支持部材と、これらの支持部材を変位させて前記入力側ディスクと前記出力側ディスクとの間の変速比を変えるアクチュエータと、この変速比を所望値にするために、このアクチュエータの変位方向および変位量を制御する調整部材を有する制御ユニットと、前記入力側ディスクの回転速度を検出するための入力側回転センサと、前記出力側ディスクの回転速度を検出するための出力側回転センサとを備え、
    前記歯車式の差動ユニットは、複数の歯車により構成され、前記入力側ディスクとともに前記入力軸により回転駆動される第一の入力部と、前記出力側ディスクに接続された第二の入力部とを備え、これらの第一および第二の入力部の間の速度差に応じた回転を取り出して、前記出力軸に伝達するものであり、
    前記制御器は、前記トロイダル型無段変速機の変速比の変更を制御するためのものであって、
    前記トロイダル型無段変速機の変速比を調節して、前記複数の歯車の相対的変位速度を変化させることにより、前記入力軸を一方向に回転させた状態のまま、前記出力軸の回転状態を、停止状態を挟んで正転および逆転に変換する第一の機能と、
    前記入力側回転センサにより求められる前記入力側ディスクの回転速度と、前記出力側回転センサにより求められる前記出力側ディスクの回転速度とにより、前記トロイダル型無段変速機の変速比を算出する第二の機能と、
    所定の学習許可条件が満たされていることを条件に、前記出力軸の回転速度が0となる状態に、前記トロイダル型無段変速機の変速比を調節し、この状態での前記調整部材の位置を、前記入力軸を回転させたまま前記出力軸を停止させられる位置として学習し記憶する、学習制御を行う第三の機能とを有するものであり、
    この第三の機能による学習制御は、イグニッションスイッチがオンの状態であることを条件に実行され、イグニッションスイッチがオフに操作された直後から実行を禁止されるが、イグニッションスイッチがオンに操作された前記エンジンの始動直後は、このエンジンの回転数が前記制御器により設定される目標アイドル回転数よりも低い値に設定された設定下限回転数よりも高くなるまでは学習制御を実行しない
    無段変速装置。
  2. 前記設定下限回転数は、前記目標アイドル回転数の50%以上の値に設定される、請求項1に記載した無段変速装置。
JP2012552755A 2011-01-14 2012-01-12 無段変速装置 Expired - Fee Related JP5560350B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012552755A JP5560350B2 (ja) 2011-01-14 2012-01-12 無段変速装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011005622 2011-01-14
JP2011005622 2011-01-14
JP2012552755A JP5560350B2 (ja) 2011-01-14 2012-01-12 無段変速装置
PCT/JP2012/050476 WO2012096341A1 (ja) 2011-01-14 2012-01-12 無段変速装置

Publications (2)

Publication Number Publication Date
JPWO2012096341A1 JPWO2012096341A1 (ja) 2014-06-09
JP5560350B2 true JP5560350B2 (ja) 2014-07-23

Family

ID=46507233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012552755A Expired - Fee Related JP5560350B2 (ja) 2011-01-14 2012-01-12 無段変速装置

Country Status (6)

Country Link
US (1) US9188207B2 (ja)
EP (1) EP2664822A1 (ja)
JP (1) JP5560350B2 (ja)
CN (1) CN103261752B (ja)
BR (1) BR112013017593A2 (ja)
WO (1) WO2012096341A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9170374B2 (en) 2011-06-13 2015-10-27 Board Of Regents, The University Of Texas System Broadband, group index independent, and ultra-low loss coupling into slow light slotted photonic crystal waveguides
JP7205988B2 (ja) * 2018-10-24 2023-01-17 川崎重工業株式会社 航空機の発電制御装置
JP7334602B2 (ja) * 2019-12-06 2023-08-29 トヨタ自動車株式会社 車両の制御装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11230324A (ja) * 1998-02-19 1999-08-27 Honda Motor Co Ltd 自動変速機の制御装置
JP2004308853A (ja) * 2003-04-10 2004-11-04 Nsk Ltd 無段変速装置
JP2005233377A (ja) * 2004-02-23 2005-09-02 Nsk Ltd トロイダル型無段変速機及び無段変速装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001317601A (ja) 2000-05-09 2001-11-16 Nsk Ltd トロイダル型無段変速機
JP3657902B2 (ja) * 2001-10-16 2005-06-08 本田技研工業株式会社 車両用動力伝達装置
JP4151300B2 (ja) 2002-04-12 2008-09-17 日本精工株式会社 無段変速装置
JP4370842B2 (ja) * 2003-07-14 2009-11-25 日本精工株式会社 無段変速装置
JP5092772B2 (ja) * 2008-01-31 2012-12-05 いすゞ自動車株式会社 Pto制御装置
US9121501B2 (en) * 2011-01-14 2015-09-01 Honda Motor Co., Ltd. Continuously variable transmission device
US8926472B2 (en) * 2011-02-15 2015-01-06 Nsk Ltd. Continuously variable transmission for vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11230324A (ja) * 1998-02-19 1999-08-27 Honda Motor Co Ltd 自動変速機の制御装置
JP2004308853A (ja) * 2003-04-10 2004-11-04 Nsk Ltd 無段変速装置
JP2005233377A (ja) * 2004-02-23 2005-09-02 Nsk Ltd トロイダル型無段変速機及び無段変速装置

Also Published As

Publication number Publication date
WO2012096341A1 (ja) 2012-07-19
CN103261752A (zh) 2013-08-21
EP2664822A1 (en) 2013-11-20
US20130310208A1 (en) 2013-11-21
US9188207B2 (en) 2015-11-17
BR112013017593A2 (pt) 2016-10-18
CN103261752B (zh) 2015-05-27
JPWO2012096341A1 (ja) 2014-06-09

Similar Documents

Publication Publication Date Title
JP5560349B2 (ja) 無段変速装置
US8647234B2 (en) Vehicle driving apparatus
JP2011219087A (ja) 車両の作動方法
JP2000229526A (ja) 動力源と無段変速機を備えた車両の制御装置
JP5560350B2 (ja) 無段変速装置
JP2010065731A (ja) 自動クラッチの学習制御装置
JP4548024B2 (ja) トロイダル型無段変速機及び無段変速装置
JP6657818B2 (ja) 車両制御装置
JP5720268B2 (ja) 無段変速装置
JP5783021B2 (ja) 無段変速装置
FR3057522B1 (fr) Procede de controle du regime d'un moteur thermique pour un vehicule hybride comportant une boite de vitesses manuelle
JP5659026B2 (ja) 無段変速装置
JP2014231889A (ja) 変速機の制御装置
JP5290265B2 (ja) 無段変速装置
JP2007270629A (ja) 車両制御方法
JP3840079B2 (ja) トロイダル型無段変速機のスリップ防止装置
KR20130030009A (ko) 자동 변속기의 유압 제어 방법
JP5742280B2 (ja) トロイダル型無段変速機及び無段変速装置
JP2791341B2 (ja) 車両用自動クラッチ制御装置
JP2015064046A (ja) 無段変速装置
JP4534596B2 (ja) 無段変速装置
JP2016114197A (ja) 無段変速装置
JP5682359B2 (ja) トロイダル型無段変速機及び無段変速装置
JP2007100890A (ja) 変速機の制御装置
JP2003247635A (ja) 自動車用無段変速装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140609

R150 Certificate of patent or registration of utility model

Ref document number: 5560350

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees