JP5682359B2 - トロイダル型無段変速機及び無段変速装置 - Google Patents

トロイダル型無段変速機及び無段変速装置 Download PDF

Info

Publication number
JP5682359B2
JP5682359B2 JP2011030891A JP2011030891A JP5682359B2 JP 5682359 B2 JP5682359 B2 JP 5682359B2 JP 2011030891 A JP2011030891 A JP 2011030891A JP 2011030891 A JP2011030891 A JP 2011030891A JP 5682359 B2 JP5682359 B2 JP 5682359B2
Authority
JP
Japan
Prior art keywords
continuously variable
variable transmission
pressing force
gear ratio
toroidal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011030891A
Other languages
English (en)
Other versions
JP2012167776A (ja
Inventor
巧 篠島
巧 篠島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2011030891A priority Critical patent/JP5682359B2/ja
Publication of JP2012167776A publication Critical patent/JP2012167776A/ja
Application granted granted Critical
Publication of JP5682359B2 publication Critical patent/JP5682359B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Transmission Device (AREA)

Description

この発明は、自動車用自動変速機として利用するトロイダル型無段変速機、及び、このトロイダル型無段変速機を組み込んだ無段変速装置の改良に関する。具体的には、手動による変速比切換スイッチの操作に基づいて変速比を、予め設定した値に調節できる機能を備えた構造で、伝達効率の確保と耐久性の確保との両立を図るものである。
自動車用自動変速機として使用されるトロイダル型無段変速機が、特許文献1〜6等の多くの刊行物に記載され、且つ、一部で実施されていて周知である。この様なトロイダル型無段変速機は、互いに対向する軸方向側面をトロイド曲面とした第一のディスク(例えば入力側ディスク)と第二のディスク(例えば出力側ディスク)との間に、複数個のパワーローラを挟持して成る。運転時には、前記入力側ディスクの回転が、これら各パワーローラを介して前記出力側ディスクに伝達される。これら各パワーローラは、それぞれトラニオン等の支持部材に回転自在に支持されており、これら各支持部材は、それぞれ前記各ディスクの中心軸に対し捩れの位置にある枢軸を中心とする揺動変位を自在に支持されている。前記各ディスク同士の間の変速比を変える場合は、油圧式のアクチュエータにより前記各支持部材を前記枢軸の軸方向に変位させる。この様なアクチュエータへの圧油の給排は、制御弁により制御すると共に、前記各支持部材の動きをこの制御弁にフィードバックする様に構成している。
前記アクチュエータへの圧油の給排に基づき、前記各支持部材を前記枢軸の軸方向に変位させると、前記各パワーローラの周面と前記入力側、出力側各ディスクの側面との転がり接触部(トラクション部)に作用する、接線方向の力の向きが変化(転がり接触部にサイドスリップが発生)する。そして、この力の向きの変化に伴って前記各支持部材が前記枢軸を中心に揺動(傾斜)し、前記各パワーローラの周面と前記入力側、出力側各ディスクの側面との接触位置が変化する。前記各パワーローラの周面を、前記入力側ディスクの側面の径方向外寄り部分と、前記出力側ディスクの側面の径方向内寄り部分とに転がり接触させれば、前記各ディスク同士の間の変速比が増速側になる。これに対して、前記各パワーローラの周面を、前記入力側ディスクの側面の径方向内寄り部分と、前記出力側ディスクの側面の径方向外寄り部分とに転がり接触させれば、前記各ディスク同士の間の変速比が減速側になる。
又、上述の様なトロイダル型無段変速機を実際の自動車用自動変速機に組み込む場合、遊星歯車機構等の歯車式の差動ユニットと組み合わせて無段変速装置を構成する事が、従来から提案されている。図8〜9は、特許文献3に記載された無段変速装置のブロック図(図8)及び油圧に関する制御回路(図9)を示している。先ず、図8のブロック図により、本発明の対象となる、トロイダル型無段変速機を組み込んだ無段変速装置に就いて説明する。この図8中、太矢印は動力の伝達経路を、実線は油圧回路を、破線は電気回路を、それぞれ示している。エンジン1の出力は、ダンパ2を介して、入力軸3に入力される。この入力軸3に伝達された動力は、トロイダル型無段変速機4を構成する押圧装置5から入力側ディスク6に伝達され、更に複数個のパワーローラ7を介して出力側ディスク8に伝達される。これら各ディスク6、8のうち、入力側ディスク6の回転速度は入力側回転センサ9により、出力側ディスク8の回転速度は出力側回転センサ10により、それぞれ測定して、制御器11に入力し、前記各ディスク6、8間の(トロイダル型無段変速機4の)変速比を算出する。前記押圧装置5は、後述する図9に示す様に、油圧の送り込みに伴ってこの油圧に比例した押圧力(ローディング圧)を発生させる油圧式のものとしている。
又、前記入力軸3に伝達された動力は、直接又は前記トロイダル型無段変速機4を介して、差動ユニットである遊星歯車装置12に伝達される。そして、この遊星歯車装置12の構成部材の差動成分が、クラッチ装置13を介して出力軸14に取り出される。尚、このクラッチ装置13は、後述する図9に示す低速用クラッチ15及び高速用クラッチ16を表すものである。又、図示の例では、出力軸回転センサ17により前記出力軸14の回転速度を検出して、前記入力側回転センサ9及び出力側回転センサ10の故障の有無を判定する為のフェールセーフを可能としている。
一方、前記ダンパ2部分から取り出した動力によりオイルポンプ18(図9の18a、18b)を駆動し、このオイルポンプ18から吐出した圧油を、前記押圧装置5と、前記パワーローラ7を支持した支持部材であるトラニオンを枢軸(図示省略)の軸方向に変位させるアクチュエータ19(図9参照)の変位量を制御する為の制御弁装置20とに、送り込み自在としている。尚、この制御弁装置20とは、後述する図9に示す制御弁21と、差圧シリンダ22と、補正用制御弁23a、23bと、高速用切換弁24及び低速用切換弁25とを合わせたものである。このうちの制御弁21は、前記アクチュエータ19への油圧の給排を制御するものである。又、このアクチュエータ19に設けた1対の油圧室26a、26b(図9参照)内の油圧を油圧センサ27(実際には図9に示す様に1対の油圧センサ27a、27b)により検出して、その検出信号を、前記制御器11に入力している。
前記制御器11は、前記油圧センサ27からの信号(前記両油圧室26a、26b内の油圧の差)に基づいて、前記トロイダル型無段変速機4を通過するトルク(通過トルク、トロイダル型無段変速機の技術分野で周知の、所謂2Ft)を算出する。そして、この様に算出される通過トルクに応じてこのトロイダル型無段変速機4の変速比を補正すべく、前記制御弁21の構成部材であるスリーブ28(図9参照)を、前記差圧シリンダ22により変位させる。この様な差圧シリンダ22への圧油の給排は、前記補正用制御弁23a、23bにより制御される。又、前記制御弁装置20は、駆動部材であるステッピングモータ29と、後述する押圧力調整弁30の調整圧を切り換える為のライン圧制御用電磁開閉弁31と、前記補正用制御弁23a、23bを切り換える為の電磁弁32と、前記高速用切換弁24及び低速用切換弁25を切り換える為のシフト用電磁弁33とにより、その作動状態を切り換えられる。そして、これらステッピングモータ29と、ライン圧制御用電磁開閉弁31と、電磁弁32と、シフト用電磁弁33とは、何れも前記制御器11からの制御信号に基づいて切り換えられる。
又、前記制御器11には、前記各回転センサ9、10、17及び前記油圧センサ27からの信号の他、油温センサ34の検出信号と、ポジションスイッチ35の位置信号と、アクセルセンサ36の検出信号と、ブレーキスイッチ37の信号とを入力している。このうちの油温センサ34は、無段変速装置を納めたケーシング内の潤滑油(トラクションオイル)の温度を検出するものである。又、前記ポジションスイッチ35は、後述する図9に記載した手動油圧切換弁38を切り換える為の、運転席に設けられたシフトレバー(操作レバー)の操作位置(選択位置)を表す信号を発するものである。又、前記アクセルセンサ36は、アクセルペダルの開度を検出する為のものである。更に、前記ブレーキスイッチ37は、ブレーキペダルが踏まれた事、或いはパーキングブレーキが操作された事を検出して、その事を表す信号を発するものである。
又、前記制御器11は、前記各スイッチ35、37及び各センサ9、10、17、27、34、36からの信号に基づいて、前記ステッピングモータ29と、ライン圧制御用電磁開閉弁31と、電磁弁32と、シフト用電磁弁33とに前記制御信号を送る他、前記エンジン1を制御する為のエンジンコントローラ39に制御信号を送る。そして、前記エンジン1を制御しつつ、前記入力軸3と前記出力軸14との間の速度比を変えたり、或いは停止時若しくは極低速走行時に前記トロイダル型無段変速機4を通過して前記出力軸14に加えられるトルク(通過トルク)を制御する。
図9は、上述の様な無段変速装置を制御する油圧回路を示している。この油圧回路では、油溜40から吸引されてオイルポンプ18a、18bにより吐出された圧油を、低圧側調整弁41並びに押圧力調整弁30により所定圧に調整自在としている。このうちの押圧装置5側に送る油圧を調整する前記押圧力調整弁30は、リリーフ弁としての機能を備えたもので、第一〜第三のパイロット部42〜44を備える。このうちの第一、第二のパイロット部42、43は、前記トロイダル型無段変速機4を通過するトルクの大きさに応じて、前記押圧力調整弁30の開弁圧を調節する為のものである。これに対して、第三のパイロット部44は、前記トロイダル型無段変速機4の変速比、このトロイダル型無段変速機4の内部に存在する潤滑油(トラクションオイル)の温度、駆動源であるエンジン1の回転速度等、前記伝達トルク以外の運転条件に応じて前記押圧力調整弁30の開弁圧を調節する為のものである。図示の例の場合、前記第一〜第三のパイロット部42〜44に導入する油圧を適切に調節する事で、前記押圧装置5が発生する押圧力を、前記トロイダル型無段変速機4の運転状況に応じ、適正に規制する様に構成している。
この為に、図示の例の場合は、前記第一、第二のパイロット部42、43のうちの何れかのパイロット部に導入する油圧が高くなる程、前記押圧力調整弁30の開弁圧が高くなり、前記押圧装置5を構成する油圧室45内に導入する油圧を高くする様に構成している。又、これと共に、パワーローラ7を支持する支持部材(トラニオン)を枢軸の軸方向に変位させる為のアクチュエータ19にピストン46を挟んで設けた1対の油圧室26a、26b同士の間の差圧を、差圧取り出し弁47を介して、何れかのパイロット部42、43に導入する様にしている。この差圧取り出し弁47は、前記アクチュエータ19の油圧室26a、26b内の油圧の差、即ち、トロイダル型無段変速機4を通過する力が大きくなる程、前記押圧力調整弁30の何れかのパイロット部42、43に導入される油圧が高くなる様に切り換えられる。従って、前記押圧装置5の油圧室45内に導入される油圧、延いてはこの押圧装置5が発生する押圧力は、前記トロイダル型無段変速機4を通過する力が大きくなる程大きくなる。
又、図示の例の場合、前記制御器11からの指令により制御されるライン圧制御用電磁開閉弁31の切り換えに基づき、前記第三のパイロット部44に圧油を導入自在としている。即ち、前記制御器11は、前記トロイダル型無段変速機4の変速比、内部に存在する潤滑油の温度、駆動源であるエンジン1の回転速度等を勘案して、前記押圧装置5に発生させるべき押圧力の最適値に応じた油圧の必要値を算出する。そして、この必要値と、前記目標値との差である補正値に対応する油圧を、前記ライン圧制御用電磁開閉弁31の切り換えに基づき、前記第三のパイロット部44に導入する。この様にしてこの第三のパイロット部44に導入された油圧は、前記押圧力調整弁30のスプール48を、図9の左方に押し、前記押圧装置5に導入される油圧を低下させる(減圧する)。
この結果、前記押圧装置5に導入される油圧が、前記差圧取り出し弁47が設定した目標値から、前記第三のパイロット部44に導入された油圧に基づく補正値を減じた値に比例する必要値に補正(減圧)される。尚、前記第三のパイロット部44に導入する油圧は、前記変速比が所定値(最も大きな油圧を必要とする値で、例えば1.32)からのずれが大きくなる程、前記油温が低い程、それぞれ高くする。以上に述べた様に、特許文献3に記載された構造を含めて、各トラクション部の面圧を確保する為の押圧装置として油圧式のものを使用するトロイダル型無断変速機4の場合には、この押圧装置が発生すべき押圧力を、このトロイダル型無段変速機4の通過トルクや変速比、油温等から求め、この押圧力に見合う油圧を前記押圧装置5の油圧室45内に導入する様にしている。
この油圧室45内に導入する油圧が、常に前記通過トルクに見合う値以上であり、前記各トラクション部の面圧が必要値以上であれば、これら各トラクション部で有害な(不可避的に生じる、スピン滑りを含む、動力伝達の為に必要な微小な滑り以外の)滑りが発生する事はない。この有害な滑りの発生を防止する為には、前記油圧室45内に導入する油圧に関する安全率を高く(「実際に導入する油圧」−「必要油圧」を大きく)する事が考えられる。但し、前記安全率を高くし過ぎて、前記各トラクション部の面圧が過大になると、これら各トラクション部で発生する、スピンロスを初めとする伝達ロスが大きくなり、前記トロイダル型無段変速機の伝達効率が低下する。この為、前記安全率を余り大きくする事は好ましくない。
但し、前記安全率を低く抑える(「1」を超える値であるが「1」に近い値にする)と、前記トロイダル型無段変速機4の通過トルクが急変動した場合に、前記油圧室45内に導入する油圧の調整が間に合わず、前記押圧装置5が発生する押圧力が不足する可能性がある。遊星歯車装置12と組み合わせて無段変速装置を構成するトロイダル型無段変速機4の場合、クラッチ装置13の切り換え時(低速モードと高速モードとの変換時)に、このトロイダル型無段変速機4の通過トルクが急変動する為、前記クラッチ装置13の切り換えの前後に、前記油圧室45内に導入する油圧を一時的に高める事が、従来から提案されている。
又、マニュアル式に変速比を段階的に変化させる無段変速装置で、この変速比を変化させる前後に必要となる押圧力を確保する事も、特許文献6に記載される等により、従来から提案されている。この特許文献6に記載された従来技術は、無段変速機の変速比を増速側に変更する際に、エンジンの回転速度を低下させると、そのままではこのエンジンの出力低下に伴って前記押圧力も低下し、動力伝達部に過大な滑りが発生する可能性を生じるので、この押圧力を低下させずに、そのままの値に維持するものである。更に、ベルト式の無段変速機を主眼としたものであるが、特許文献7、8にも、変速比変更時に押圧力を高める発明が記載されている。
但し、無段変速機の技術分野で一般的に行われている、当該無段変速機の運転状況に応じて前記押圧装置の押圧力を高める様な制御を行った場合でも、この押圧力が一時的に不足する可能性がある事が、本発明者の研究により分かった。この押圧力が一時的に不足するのは、前記制御器11が前記押圧装置5の油圧室45内に導入する油圧を調整しようとした場合でも、次の(1)〜(3)の様な理由により、実際にこの油圧室45内の油圧が上昇し、前記押圧装置5が発生する押圧力が上昇するまでに時間を要する(応答遅れを生じる)可能性がある為である。
(1) 前記トロイダル型無段変速機4の通過トルクの算出遅れ
この通過トルクは、前述した様に、前記アクチュエータ19に設けた1対の油圧室26a、26b同士の間に存在する差圧に基づいて求める。但し、前記エンジン1の出力トルクが変動(増減)してから、この変動が前記トロイダル型無段変速機4に伝達されて前記両油圧室26a、26b同士の間に差圧が発生し、この差圧を前記両油圧センサ27a、27bにより検出し、これら両油圧センサ27a、27bの検出信号に基づいて前記制御器11が前記トロイダル型無段変速機4の通過トルクを算出するまでには遅れが生じる。
(2) 前記トロイダル型無段変速機4の変速比の算出遅れ
このトロイダル型無段変速機4の変速比は、前記入力側回転センサ9が検出する前記入力側ディスク6の回転速度と、前記出力側回転センサ10が検出する前記出力側ディスク8の回転速度との比として算出する。但し、これら両回転センサ9、10によりこれら各ディスク6、8の回転速度を、必要な精度で検出する為には、これら各ディスク6、8を所定角度以上回転させる必要がある。この為、これら各ディスク6、8の回転速度を検出し、更に前記トロイダル型無断変速機4の変速比を算出するまでに遅れが生じる。
(3) 前記押圧装置5が目標とする押圧力を発生させるまでの油圧応答遅れ
前記制御器11等が前記押圧装置5に発生させるべき押圧力を算出し、この押圧力を得られる油圧を算出して、前記押圧力調整弁30の開弁圧を調整しようとしても、図9に示した油圧回路中に存在する抵抗により、この開弁圧が所望値になるまでに応答遅れが生じる。更に、前記押圧力調整弁30の開弁圧が所望値に調整されてから、実際に前記押圧装置5の油圧室45内に所定の油圧が導入されるまでの間にも、応答遅れが発生する。
上述した(1)〜(3)の様な理由による応答遅れは、前記トロイダル型無段変速機4を搭載した自動車が定速走行している場合や、このトロイダル型無段変速機4の変速比を変更する場合でもこの変更の程度が緩徐であり、前記トロイダル型無段変速機4の通過トルクの変動が緩徐に行われる場合には、特に問題とはならない。即ち、前記油圧室45内に導入する油圧に関しては、前述した様な安全率を設定している為、前記通過トルクの変動が緩徐であり、その結果、「実際に導入する油圧」−「必要油圧」の値が前記安全率で補償できる範囲内(正の値)であれば、前記各トラクション部で過大な滑りが発生する事はない。
これに対して、トロイダル型無段変速機の変速機を、手動による変速比切換スイッチの操作に基づいて、予め設定した値に調節できる機能を備えさせた場合、この変速比切換スイッチの操作時に、前記通過トルクが急変動する。即ち、トロイダル型無段変速機に変速比切換スイッチを設けて、このトロイダル型無段変速機の変速比を、予め設定した値に調節可能とする手動変速モード(所謂マニュアルモード)を設けた場合、この手動変速モード選択時に於ける変速比の調節は、通常の自動変速モード(所謂オートモード)の場合に比べて、極短時間で行われる。即ち、自動変速モードの場合には、アクセルペダルを大きく踏み込む事によるキックダウン加速時や、ブレーキペダルを強く踏み込む事による急減速時にしか生じない様な、最速での変速動作が、手動変速モードの場合には常に行われる。そして、変速動作が高速で(最速で)行われると、エンジンに関する、フライホイール等の慣性質量を加減速する為に必要なトルクが、前記トロイダル型無段変速機の通過トルクに付加される。この様な事情により、前記手動変速モードでの変速時には、前記トロイダル型無段変速機の通過トルクが急変(急増又は急減)する。この様に通過トルクが急変(急増)する状態では、前記エンジンが発生するトルクに応じて設定される押圧力だけでは不足し、前記トラクション部の滑りを誘発し易い。特に、アクセルペダルを踏み込みながら前記変速比切換スイッチを操作して、前記トロイダル型無段変速機の変速比を減速側に変更すると、前記通過トルクが急増する為、前記トラクション部の滑りを誘発し易い程度が著しくなる。
一方、特許文献2には、エンジンの出力トルクが小さい状態での走行中は、前記「実際に導入する油圧」−「必要油圧」である余裕代を大きくしておく発明が記載されている。この様な特許文献2に記載された発明によれば、前記エンジンの出力トルクが小さい状態、即ち、アクセルペダルの急激な踏み込みに伴ってこの出力トルクが大きく急上昇する余地がある状態では前記余裕代が大きい状態となっている為、この状態で、前記手動変速モードに基づく変速比切換を行って、その結果前記通過トルクが急変しても、前記押圧装置の押圧力が不足する状態になりにくく、前記各トラクション部で、有害な滑りが発生しにくくできる。但し、前記特許文献2に記載された発明を適用して、手動変速モードによる変速操作時に有害な滑りの発生を抑える事を意図した場合には、前記エンジンの出力トルクが小さい状態での通常走行中は、常に過押付け状態になる。そして、何時行われるか分からない、前記手動変速モードに基づく変速比切換の為に、前記押圧力を常に高めに保持しておく事は、伝達効率の確保の面からは不利である。
又、特許文献9には、ベルト式無段変速装置に関する発明ではあるが、変速比を急変動する場合に、プーリによるベルトの押し付け圧を上昇する程度を著しくする発明が記載されている。但し、この様な従来技術では、この程度を算出するのに要する時間が必要になる等、ベルト式無段変速機に比べて変速動作が遥かに速い、トロイダル型無段変速機のマニュアル変速時のグロススリップを防止する面からは不十分である。
特開2004−169719号公報 特開2005−221018号公報 特開2006−250255号公報 特開2007−46661号公報 特開2009−121530号公報 特開2010−190362号公報 特公平5−31025号公報 特開2005−69345号公報 特開昭59−99148号公報
本発明は、上述の様な事情に鑑みて、手動による変速比切換スイッチの操作に基づいて変速比を、予め設定した値に調節できる機能を備えた構造で、この変速比切換スイッチの操作に基づいてトロイダル型無段変速機の変速比を急に変化させた場合でも、このトロイダル型無段変速機のトラクション部で有害な滑りが発生しない構造を、このトロイダル型無段変速機の伝達効率の悪化を抑えつつ実現すべく、発明したものである。
本発明のトロイダル型無段変速機及び無段変速装置のうち、請求項1に記載したトロイダル型無段変速機の発明は、従来から知られている無段変速装置と同様に、第一、第二のディスクと、複数のパワーローラと、複数個の支持部材と、油圧式のアクチュエータと、変速比制御ユニットと、押圧装置とを備え、自動車用の自動変速機として利用される。
このうちの第一、第二のディスクは、それぞれがトロイド曲面である軸方向側面同士を互いに対向させた状態で、相対回転を可能として互いに同心に配置されている。
又、前記各パワーローラは、前記第一、第二のディスクの軸方向側面同士の間に挟持されて、これら第一、第二のディスク同士の間で動力を伝達する。
又、前記各支持部材は、前記各パワーローラを回転自在に支持している。
又、前記アクチュエータは、油圧式で、前記各支持部材を、それぞれの端部に設けた枢軸の軸方向に変位させて、前記第一のディスクと前記第二のディスクとの間の変速比を変える。
又、前記変速比制御ユニットは、前記変速比を所望値にする為に、前記アクチュエータの変位方向及び変位量を制御する。
又、前記押圧装置は、前記第一のディスクと前記第二のディスクとを互いに近付く方向に押圧するもので、油圧の導入に伴ってこの油圧に比例した押圧力を発生させる油圧式のものである。
そして、前記押圧装置に導入する油圧を調整する為の油圧調整手段は、この押圧装置に導入する油圧を、前記第一のディスクと前記第二のディスクとの間で伝達する力の大きさ及び前記変速比に応じて調節する。
更に、手動による変速比切換スイッチの操作に基づいて前記変速比を、予め設定した値に調節できる手動変速機能を備える。
特に、本発明のトロイダル型無段変速機に於いては、前記手動変速機能が選択されている状態で、前記変速比切換スイッチが操作されてから、実際に前記変速比がこの変速比切換スイッチの操作に基づいて選択された値に変化するまでの間、その時点での変速比である実変速比に応じて定まる必要押圧力と、前記変速比切換スイッチの操作に基づいて選択された変速比に応じて定まる目標押圧力とのうちの大きな押圧力を発生させられる油圧を、前記押圧装置の油圧室に導入する。
具体的には、前述の図8〜9に示した様に、トロイダル型無段変速機4と遊星歯車変速機12とを組み合わせて、入力軸3を一方向に回転させた状態のまま出力軸14を、停止状態を挟んで両方向に回転させられる、所謂無限大の変速比を有する無段変速装置の場合、低速用クラッチ15の接続を断って高速用クラッチ16を接続した高速モード状態で、手動による変速比切換スイッチの操作に基づいて変速比を調節可能とする。そして、前記高速モード状態では、図7に示す様に、トロイダル型無段変速機4の変速比を高速側にする程、必要とする押圧力が低くなる。低速用クラッチ15を接続して高速用クラッチ16の接続を断った低速モード状態では逆になるが、この低速モード状態では、一般的に手動による変速を行える様にはしない。尚、遊星歯車変速機と組み合わせず、トロイダル型無段変速機単体で使用する場合も、前記無段変速装置を高速モード状態で運転する場合と同様である。
そこで、本発明を実施する場合、トロイダル型無段変速機を遊星歯車変速機と組み合わせるか否かに拘らず、シフトアップ(高速段への切換)時は押付圧を減らす方向となる。シフトアップ時には、「目標変速比に対応する押圧力<実変速比に対応する押圧力」となるので、前記変速比切換スイッチが操作されてから実際に前記変速比が変化するまでの間、前記押圧装置の油圧室に、実変速比に対応する押圧力を発生させる為の油圧を導入する。これに対して、シフトダウン(低速段への切換)時は押付圧を増やす方向となる。シフトダウン時には、「目標変速比に対応する押圧力>実変速比に対応する押圧力」となるので、前記変速比切換スイッチが操作されてから実際に前記変速比が変化するまでの間、前記押圧装置の油圧室に、目標変速比に対応する押圧力を発生させる為の油圧を導入する。何れの場合でも、前記変速比が変化した後は、この変化後の変速比に対応して、前記押圧力を制御する。
この様な本発明を実施する場合に好ましくは、請求項2に記載した発明の様に、前記押圧装置に発生させるべく選択した押圧力が、設計的に算出される最大押圧力を越えている場合に、この最大押圧力を発生させられる油圧を前記押圧装置の油圧室に導入する。
又、請求項3に記載した無段変速装置の発明は、トロイダル型無段変速機と、複数の歯車を組み合わせて成る歯車式の差動ユニットとを備える。
このうちの差動ユニットは、トロイダル型無段変速機を構成する第一のディスクと共に入力軸により回転駆動される第一の入力部と、同じく第二のディスクに接続される第二の入力部とを有し、これら第一、第二の入力部同士の間の速度差に応じた回転を取り出して出力軸に伝達するものである。
特に、前記請求項3に記載した無段変速装置に於いては、前記トロイダル型無段変速機が、上述した様なトロイダル型無段変速機である。
上述の様に構成する本発明のトロイダル型無段変速機及び無段変速装置によれば、変速比切換スイッチが操作されてトロイダル型無段変速機の変速比が急変し、その結果、このトロイダル型無断変速機の通過トルクが急変した場合でも、このトロイダル型無段変速機のトラクション部で有害な滑りが発生する事を防止できる。
即ち、本発明の場合には、変速比切換スイッチを操作されてから実際に前記変速比が変化するまでの間、押圧装置が発生する押圧力を、前記変速比切換スイッチが操作された瞬間の(未だ変速比が切り換えられる以前の)実変速比に応じて定まる必要押圧力と、選択された目標変速比に応じて定まる目標押圧力とうちの大きな方の値にする。この際、押圧力を調節する為の指令信号として、前記変速比切換スイッチが操作された事を表す信号を利用するので、前述の(1)〜(3)の理由により生じる応答遅れのうち、(1)(2)の理由による応答遅れが殆ど発生しない。一方、トロイダル型無段変速機の場合であっても、前記変速比切換スイッチが操作されてから実際に変速比が変化するまでには、短時間とは言え、時間を要する。この為、前述の(3)の理由による応答遅れは残るにしても、実際に変速比が変化する過程で、前記押圧力が不足する事はない。そして、押圧力不足(押圧力の上昇遅れ)により、トロイダル型無段変速機のトラクション部に有害な滑りが発生する事を防止して、押圧力不足に伴う過大な滑りに基づく伝達効率の低下や、グロススリップに基づく耐久性の低下を防止できる。
又、前記変速比切換スイッチを操作した直後から実際に変速比が変化するまでの、短時間のみ、一時的に前記押圧力を増大させる様に構成した(場合によっては、この短時間の間も、押圧力は適正値になる)ので、それ以外の場合には、前記各トラクション部の面圧が過大になる事はない。この為、前記変速比切換スイッチを操作していない状態では、前記押圧装置が発生している押圧力は適正値(必要最低値に、一般的な、1より少しだけ大きい安全率を乗じた値=後述する必要押圧力)に調節される。即ち、前記変速比切換スイッチにより選択した固定変速比で走行(定常運転)中は、実変速比=目標変速比となり、適正な押圧力で運転される状態となる。この為、トロイダル型無段変速機を搭載した自動車の運転時間中の大部分では、前記各トラクション部の面圧は適正値に維持される。この結果、この面圧が過大になる事に伴う伝達効率の低下(燃費悪化)や走行フィーリングの悪化を防止できる。即ち、本発明によれば、前記変速比切換スイッチの操作に基づく有害な滑りの発生を防止しつつ、しかも、運転時の大部分で、前記各トラクション部の面圧を適正に維持し、この面圧が過大になる事に伴う伝達効率の低下(燃費悪化)を防止できる。
尚、上述の様に、変速比を変化させる過程で、押圧力を変化の前後の変速比に対応する押圧力のうちの大きな方の値にするのは、手動変速機能が選択されていて、且つ、前記変速比切換スイッチが操作された場合に限る事が好ましい。自動変速モードが選択されている場合には、アクセル開度や車速が変化すると、それに追従して敏感に目標変速比が変動する。この結果、その時点での変速比である実変速比に見合う押圧力と、前記アクセル開度や車速等により求められる目標変速比に見合う押圧力との比較により、必要とする押圧力を制御すると、この押圧力を不必要な程頻繁に制御し、この押圧力の値が、ハンチングの如く細かく変動する可能性がある。この様な変動は、異常振動の発生や走行フィーリングの悪化に結び付く可能性がある。これに対して、手動変速時には、この様な問題は発生しない。
本発明を適用可能な無段変速装置の1例を示すブロック図。 同じく油圧制御回路の1例を示す図。 本発明の実施の形態の1例を示すフローチャート。 本発明を実施した場合に於ける、変速比切換スイッチの操作に基づく各部の作動状況の第1例を示す線図。 同第2例を示す線図。 本発明を実施しない場合に於ける、変速比切換スイッチの操作に基づく各部の作動状況の1例を示す線図。 遊星歯車装置と組み合わされて無段変速装置を構成したトロイダル型無段変速機の押圧装置の油圧室内に導入すべき油圧と、このトロイダル型無段変速機の変速比との関係の1例を示す線図。 従来から知られている無段変速装置の1例を示すブロック図。 同じく油圧制御回路の1例を示す図。
図1〜6により、本発明の実施の形態の1例に就いて説明する。尚、図1は本発明を適用可能な無段変速装置の1例を、図2は同じく油圧制御回路を、それぞれ示しているが、この無段変速装置の構成に関しては、基本的には、前述の図8〜9に示した従来構造の場合と同様である。図1で、変速比を手動により変更する為の、特許請求の範囲に記載した変速比切換スイッチに相当するパドルシフトレバーの操作状況を表す信号を得る為のパドルシフトセンサ49と、パーキングブレーキが操作されているか否かの信号を得る為のパーキングブレーキセンサ50と、車体に加わる加速度を求める為の加速度センサ51と、クラッチ装置13の切り換えに基づく、高速、低速モードの切り換え状態を判定する為のモード検出手段52との信号を制御器11に入力し、この制御器11と演算器53とを繋いでいるが、これらの点に関しては、パドルシフトセンサ49を除き、本発明の本質とは関係しない。
又、図2に示した油圧回路は、差圧シリンダ22や差圧取り出し弁47(図9参照)を省略する等、前述の従来構造に比べて簡略化しているが、これらの点に関しても、本発明の本質とは関係しない。即ち、本発明は、前述の図8〜9に示した構造でも実施できる。但し、前記パドルシフトセンサ49に関しては重要である。このパドルシフトセンサ49が送り出す信号に基づいて、手動変速モード選択時に於ける、運転者によるパドルシフトレバー(変速比切換スイッチ)の操作状況を把握する。
次に、本発明の特徴である、運転者が前記パドルシフトレバーを操作する事に基づいてトロイダル型無段変速機4の変速比が切り換えられた場合の制御に就いて、図3を参照しつつ説明する。尚、この図3に示した制御の為の判定は、イグニッションスイッチをONしてからOFFするまでの間、繰り返し行う。又、以下の説明は、変速機のセレクトレバーが走行モードに切り換えられている(Pレンジ、Nレンジ等の非走行モードではない)事を前提として行う。
運転者がパドルシフトレバーを操作すると、パドルシフトセンサ49からの信号(操作された事実及び操作方向)に基づいて、先ず、図3のステップ1で、必要押圧力1(P_TRGT_EV)を算出する。この必要押圧力1(P_TRGT_EV)は、前記パドルシフトレバーの操作に基づいて選択された変速比(目標変速比)と、現在の油温及び入力トルク等、トラクション部でグロススリップを発生させない様にする為に必要な押圧力を求める為に必要な各種要素を勘案して算出する。この様にして、前記目標変速比に対応する必要押圧力1を算出したならば、次いで、ステップ2で、現在の変速比(実変速比)に見合う必要押圧力2(P_REAL_EV)を算出する。この必要押圧力2(P_REAL_EV)は、前記パドルシフトレバーが操作された瞬間、未だこの操作に基づいて変速比が変化する以前の変速比である実変速比と、油温、入力トルク等に応じて算出する。尚、ステップ1、2の順序は逆でも良いし、好ましくは、マルチプロセッサを利用する等により、同時に実施する。
上述の様にして、前記パドルシフトレバーの操作に基づく変速の前後で採用すべき2種類の押圧力(必要押圧力1、2)を算出したならば、続くステップ3で、セレクトレバーがMレンジ(手動変速モード)であるか否かを判定する。
この結果、現在のレバー位置がMレンジでない(自動変速モードを選択する、Dレンジ又はLレンジ)であると判定した場合には、本発明の制御は行なわなず、ステップ4で、通常の押圧力制御を行う。即ち、自動変速モードの場合には、実変速比から算出した必要押圧力2(P_REAL_EV)を発生させるべく、押圧装置5の油圧室45内に導入する油圧を制御する。この理由は、レバー位置がMレンジでない限り、前記パドルシフトレバーを操作しても、変速比の変更は行われない為である。
これに対して、現在のレバー位置が手動変速モードを選択するMレンジであった場合には、ステップ5に移り、前記ステップ1で求めた必要押圧力1(P_TRGT_EV)と、前記ステップ2で求めた必要押圧力2(P_REAL_EV)とを比較して、その大小を判定する。
そして、「必要押圧力1(P_TRGT_EV)>必要押圧力2(P_REAL_EV)」であった場合には、ステップ6に移り、前記押圧装置5が発生すべき押圧力(TRGT_PLOAD)として、前記必要押圧力1(P_TRGT_EV)を選択する。
一方、「必要押圧力1(P_TRGT_EV)≦必要押圧力2(P_REAL_EV)」であった場合には、前記ステップ4に移り、前記押圧装置5が発生すべき押圧力(TRGT_PLOAD)として、前記必要押圧力2(P_REAL_EV)を選択する。
更に、続くステップ7で、前記ステップ4又は前記ステップ6で選択した、必要押圧力1(P_TRGT_EV)又は必要押圧力2(P_REAL_EV)を、目標押圧力(TRGT_PLOAD)として設定する。そして、前記押圧装置5の油圧室45(図2参照)内に、この目標押圧力(TRGT_PLOAD)に見合う{この押圧装置5にこの目標押圧力(TRGT_PLOAD)を発生させられる}油圧を導入する。以下、前記パドルシフトレバーが操作される毎に、上述したステップ1〜7の判定乃至実行を繰り返す。
以上の構成により、前記パドルシフトレバーが操作されて、前記トロイダル型無段変速機4の変速比が急変し、その結果、このトロイダル型無断変速機4の通過トルクが急変した場合でも、このトロイダル型無段変速機4のトラクション部で有害な滑りが発生する事を防止できる。この点に就いて、図4〜6により簡単に説明する。
先ず、図4は、前記パドルシフトレバーの操作に基づき、前記トロイダル型無段変速機4(を組み込んだ無段変速装置)の変速段を、5速→4速→3速の順番にシフトダウンした場合に於ける、各部の作動状態を示している。
図4の上段は、トロイダル型無段変速機4の変速比を示しており、このうちの実線aは目標とする変速比を、同じく破線bは実際の変速比の変化状況を、それぞれ表している。この破線bから分かる様に、前記パドルシフトレバーを操作してから実際に前記トロイダル型無段変速機4の変速比が変化するまでには、或る程度の時間を要する。
次に、図4の中段は、前記トロイダル型無段変速機4の変速比の変化に伴って、押圧装置5に発生させるべき押圧力の目標値が変化する状況を示している。このうちの破線cは必要押圧力1(P_TRGT_EV)を、破線dは必要押圧力2(P_REAL_EV)を、それぞれ示している。
更に、図4の下段は、前記トロイダル型無段変速機4の変速比の変化に伴って、押圧装置5が発生する押圧力が変化する状況を示している。このうちの実線eはこの押圧装置5が実際に発生する押圧力を、破線fはグロススリップを防止する為に必要な押圧力を、鎖線gは、前記中段の破線dと同じく、必要押圧力2(P_REAL_EV)を、それぞれ示している。
図4の下段の実線eと破線fとを比較すれば明らかな通り、本例によれば、定常運転時に前記押圧装置5が発生する押圧力に過剰な余裕を持たせずに、手動変速によるシフトダウン時に各トラクション部でグロススリップが発生する事を防止できる。
次に、図5は、前記パドルシフトレバーの操作に基づき、前記トロイダル型無段変速機4(を組み込んだ無段変速装置)の変速段を、3速→4速→5速の順番にシフトアップした場合に於ける、各部の作動状態を示している。上段がトロイダル型無段変速機4の変速比を、中段が押圧力の目標値が変化する状況を、下段が実際に押圧装置5が発生する押圧力が変化する状況を、それぞれ示している点、並びに、各曲線a〜fの意味は、上述した図4の場合と同様である。尚、図5の下段の鎖線gは、必要押圧力1(P_TRGT_EV)を目標押圧力(TRGT_PLOAD)として設定し、制御した場合に、前記押圧装置5が発生する押圧力を示している。
この様な図5の下段の実線eと破線fとを比較すれば明らかな通り、本例によれば、定常運転時に前記押圧装置5が発生する押圧力に過剰な余裕を持たせずに、手動変速によるシフトアップ時にも、各トラクション部でグロススリップが発生する事を防止できる。
これに対して、従来の様に、パドルシフトレバーの操作に基づく実変速比の変化に対応して(この変化を追う状態で)押圧装置5が発生する押圧力を変化させると、シフトアップの場合は兎も角、シフトダウン時にこの押圧力が不足し、各トラクション部でグロススリップが発生し易くなる。又、このグロススリップを防止する為に、前記押圧力の余裕代を大きくすると、トロイダル型無段変速機の伝達効率が悪化する。この点に就いて、図6により説明する。
図6の上段は、前述の図4と同様、トロイダル型無段変速機4の変速比を示しており、実線aは目標とする変速比を、破線bは実際の変速比の変化状況を、それぞれ表している。又、図6の中段は、前記トロイダル型無段変速機4の変速比の変化に伴って、押圧装置5に発生させるべき押圧力の目標値が変化する状況を示しており、破線cはグロススリップの発生を防止する為に必要な押圧力を、実線dは前記押圧装置5が実際に発生する押圧力を、それぞれ示している。
この様な、図6の中段の曲線c、dを比較すれば明らかな通り、パドルシフトレバーの操作に基づく、実変速比の減速側への変化に対応して押圧装置5が発生する押圧力を変化させると、この押圧力が(図6の中段の斜格子部分に相当するだけ)不足し、各トラクション部でグロススリップが発生し易くなる。
図6の下段は、この様な原因でのグロススリップの発生を防止すべく、前記押圧力の余裕代を十分に設定した状態を示している。この下段の曲線c、dは、前記中段の破線c、dと同じであり、この下段の曲線c´、d´は、この曲線c、dに対して、前記変速時のグロススリップの発生を防止できるだけの余裕代を設定した状況を示している。この様な下段の曲線c、dと曲線c´、d´との、水平部分(変速動作を行わずに定常運行している部分)を見れば明らかな通り、余裕代の設定により前記グロススリップの発生防止を図ると、定常運行時の押圧力、延いては各トラクション部の面圧が過大になる。そして、これら各トラクション部の転がり抵抗が増大して、前記トロイダル型無段変速機4の伝達効率が悪化する。前述の図4、5の実線e及び破線fの水平部分から分かる様に、本発明によれば、上述の様な原因での伝達効率の悪化を防止できる。
本発明の対象となるトロイダル型無段変速機は、ハーフトロイダル型に限らず、フルトロイダル型も含まれる。
又、本発明の如く、押圧力を変化の前後の変速比に対応する押圧力のうちの大きな方の値にする技術は、自動変速モード状態でも、特定の場合に適用できる。即ち、自動変速モード状態であっても、前述した様な、ハンチングの如き細かな制御が行われにくい状況、例えばキックダウン加速時やアクセル戻しによる急シフトアップ変速時の如く、手動変速モードの場合と同様に、最速での変速動作が必要となる状況に限定して上述の様に、押圧力を変速の前後での大きな値に合わせる制御を行う事はできる。この場合には、例えば、アクセルペダルの操作量が大きい事を前提とする(アクセルペダルの操作量を判定して、上述した制御を行うか否かを決定する)。
1 エンジン
2 ダンパ
3 入力軸
4 トロイダル型無段変速機
5 押圧装置
6 入力側ディスク
7 パワーローラ
8 出力側ディスク
9 入力側回転センサ
10 出力側回転センサ
11 制御器
12 遊星歯車装置
13 クラッチ装置
14 出力軸
15 低速用クラッチ
16 高速用クラッチ
17 出力軸回転センサ
18、18a、18b オイルポンプ
19 アクチュエータ
20 制御弁装置
21 制御弁
22 差圧シリンダ
23a、23b 補正用制御弁
24 高速用切換弁
25 低速用切換弁
26a、26b 油圧室
27、27a、27b 油圧センサ
28 スリーブ
29 ステッピングモータ
30 押圧力調整弁
31 ライン圧制御用電磁開閉弁
32 電磁弁
33 シフト用電磁弁
34 油温センサ
35 ポジションスイッチ
36 アクセルセンサ
37 ブレーキスイッチ
38 手動油圧切換弁
39 エンジンコントローラ
40 油溜
41 低圧側調整弁
42 第一のパイロット部
43 第二のパイロット部
44 第三のパイロット部
45 油圧室
46 ピストン
47 差圧取り出し弁
48 スプール
49 パドルシフトセンサ
50 パーキングブレーキセンサ
51 加速度センサ
52 モード検出手段
53 演算器

Claims (3)

  1. それぞれがトロイド曲面である軸方向側面同士を互いに対向させた状態で、相対回転を可能として互いに同心に配置された第一、第二のディスクと、これら第一、第二のディスクの軸方向側面同士の間に挟持されてこれら第一、第二のディスク同士の間で動力を伝達する複数のパワーローラと、これら各パワーローラを回転自在に支持した複数個の支持部材と、これら各支持部材を、それぞれの端部に設けた枢軸の軸方向に変位させて前記第一のディスクと前記第二のディスクとの間の変速比を変える油圧式のアクチュエータと、この変速比を所望値にする為にこのアクチュエータの変位方向及び変位量を制御する為の変速比制御ユニットと、前記第一のディスクと前記第二のディスクとを互いに近付く方向に押圧する押圧装置とを備え、この押圧装置は、油圧の導入に伴ってこの油圧に比例した押圧力を発生させる油圧式のものであり、この押圧装置に導入する油圧を調整する為の油圧調整手段は、この押圧装置に導入する油圧を、前記第一のディスクと前記第二のディスクとの間で伝達する力の大きさ及び前記変速比に応じて調節するものであり、手動による変速比切換スイッチの操作に基づいて前記変速比を、予め設定した値に調節できる手動変速機能を備え、自動車用の自動変速機として使用されるトロイダル型無段変速機に於いて、この手動変速機能が選択されている状態で、前記変速比切換スイッチが操作されてから、実際に前記変速比がこの変速比切換スイッチの操作に基づいて選択された値に変化するまでの間、その時点での変速比である実変速比に応じて定まる必要押圧力と、前記変速比切換スイッチの操作に基づいて選択された変速比に応じて定まる目標押圧力とのうちの大きな押圧力を発生させられる油圧を前記押圧装置の油圧室に導入する事を特徴とするトロイダル型無段変速機。
  2. 前記押圧装置に発生させるべく選択した押圧力が、設計的に算出される最大押圧力を越えている場合に、この最大押圧力を発生させられる油圧を前記押圧装置の油圧室に導入する、請求項1に記載したトロイダル型無段変速機。
  3. トロイダル型無段変速機と、複数の歯車を組み合わせて成る歯車式の差動ユニットとを備え、このうちの差動ユニットは、トロイダル型無段変速機を構成する第一のディスクと共に入力軸により回転駆動される第一の入力部と、同じく第二のディスクに接続される第二の入力部とを有し、これら第一、第二の入力部同士の間の速度差に応じた回転を取り出して出力軸に伝達するものである無段変速装置に於いて、前記トロイダル型無段変速機が、請求項1〜2のうちの何れか1項に記載したトロイダル型無段変速機である事を特徴とする無段変速装置。
JP2011030891A 2011-02-16 2011-02-16 トロイダル型無段変速機及び無段変速装置 Expired - Fee Related JP5682359B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011030891A JP5682359B2 (ja) 2011-02-16 2011-02-16 トロイダル型無段変速機及び無段変速装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011030891A JP5682359B2 (ja) 2011-02-16 2011-02-16 トロイダル型無段変速機及び無段変速装置

Publications (2)

Publication Number Publication Date
JP2012167776A JP2012167776A (ja) 2012-09-06
JP5682359B2 true JP5682359B2 (ja) 2015-03-11

Family

ID=46972120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011030891A Expired - Fee Related JP5682359B2 (ja) 2011-02-16 2011-02-16 トロイダル型無段変速機及び無段変速装置

Country Status (1)

Country Link
JP (1) JP5682359B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL4127514T3 (pl) 2020-03-30 2024-08-12 Mazaro Nv Sposób sterowania przekładnią bezstopniową i przekładnia wyposażona w układ sterowania do realizacji wspomnianego sposobu

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001330120A (ja) * 2000-05-23 2001-11-30 Toyota Motor Corp 車両用無段変速機の制御装置
JP4548024B2 (ja) * 2004-07-13 2010-09-22 日本精工株式会社 トロイダル型無段変速機及び無段変速装置
JP4710360B2 (ja) * 2005-03-11 2011-06-29 日本精工株式会社 トロイダル型無段変速機及び無段変速装置
JP5600878B2 (ja) * 2009-02-19 2014-10-08 トヨタ自動車株式会社 駆動システム
JP2010270791A (ja) * 2009-05-19 2010-12-02 Fuji Heavy Ind Ltd 無段変速機の制御装置

Also Published As

Publication number Publication date
JP2012167776A (ja) 2012-09-06

Similar Documents

Publication Publication Date Title
JP2007046661A (ja) トロイダル型無段変速機及び無段変速装置
JP4710360B2 (ja) トロイダル型無段変速機及び無段変速装置
JP2011174486A (ja) 無段変速装置
JP4548024B2 (ja) トロイダル型無段変速機及び無段変速装置
JP5682359B2 (ja) トロイダル型無段変速機及び無段変速装置
JP5176496B2 (ja) トロイダル型無段変速機
JP5087788B2 (ja) 車両用無段変速装置
JP2007309383A (ja) 無段変速装置
JP5732847B2 (ja) トロイダル型無段変速機及び無段変速装置
JP4924449B2 (ja) 無段変速装置
JP4978131B2 (ja) 無段変速装置
JP5045426B2 (ja) 車両用無段変速装置
JP4735343B2 (ja) 車両用無段変速装置の変速制御装置
JP5447609B2 (ja) トロイダル型無段変速機及び無段変速装置
JP5310596B2 (ja) トロイダル型無段変速機
JP4534726B2 (ja) トロイダル型無段変速機及び無段変速装置
JP4590984B2 (ja) 燃料供給装置
JP6149694B2 (ja) 無段変速装置
JP4534596B2 (ja) 無段変速装置
JP2014152794A (ja) トロイダル型無段変速機
JP2012132514A (ja) トロイダル型無段変速機及び無段変速装置
JP5263037B2 (ja) 無段変速装置
JP4474880B2 (ja) 変速機の制御装置
JP2012225512A (ja) トロイダル型無段変速機及び無段変速装置
JP2014152818A (ja) 無段変速装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141229

R150 Certificate of patent or registration of utility model

Ref document number: 5682359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees