JP5552363B2 - 吸収ヒートポンプ - Google Patents

吸収ヒートポンプ Download PDF

Info

Publication number
JP5552363B2
JP5552363B2 JP2010112593A JP2010112593A JP5552363B2 JP 5552363 B2 JP5552363 B2 JP 5552363B2 JP 2010112593 A JP2010112593 A JP 2010112593A JP 2010112593 A JP2010112593 A JP 2010112593A JP 5552363 B2 JP5552363 B2 JP 5552363B2
Authority
JP
Japan
Prior art keywords
regenerator
evaporator
heat
refrigerant
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010112593A
Other languages
English (en)
Other versions
JP2011242014A5 (ja
JP2011242014A (ja
Inventor
修行 井上
Original Assignee
荏原冷熱システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荏原冷熱システム株式会社 filed Critical 荏原冷熱システム株式会社
Priority to JP2010112593A priority Critical patent/JP5552363B2/ja
Priority to CN201110124518.2A priority patent/CN102242982B/zh
Publication of JP2011242014A publication Critical patent/JP2011242014A/ja
Publication of JP2011242014A5 publication Critical patent/JP2011242014A5/ja
Application granted granted Critical
Publication of JP5552363B2 publication Critical patent/JP5552363B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

本発明は吸収ヒートポンプに関する。特に、排ガスのような熱源ガスから熱を回収して被加熱媒体を加熱する吸収ヒートポンプに関する。また、高温水などで、入口温度からなるべく大きな温度差を利用する吸収ヒートポンプに関する。
図6に示すように、従来の昇温型吸収ヒートポンプは、熱源に排温水WHを用いていた。例えば、85℃の温水を吸収ヒートポンプに投入し、再生器GGと蒸発器EEで80℃〜75℃程度まで利用し、吸収器AAで120℃以上の高温水あるいは水蒸気SSを製造していた。再生器GGで発生した蒸気は、凝縮器CCで冷却水WCにより冷却、凝縮し、蒸発器EEに戻される。一方、排ガスなど熱容量の小さな排熱源は、熱回収により急激に温度が低下してしまって、昇温型吸収ヒートポンプによる直接熱回収はしにくい。そのため排ガスから温水WHに熱を回収し、その温水WHをヒートポンプの熱源にすることが行われていた。この場合、排ガスから温水WHへの熱交換により、利用できる温度が低下し、被加熱流体の温度上昇が小さくなるので、昇温型吸収ヒートポンプに排ガスを直接導いて利用する検討もされだしている。このようにすれば、温水WHに変換する場合よりも、多くの熱回収ができる。
特開2006−207883号公報
しかしながら、排ガスは熱容量が小さいので、できるだけ低温まで熱回収しようとすると、熱回収装置における出入り口温度差が非常に大きくなる。例えば、排ガスを吸収ヒートポンプに200℃で供給し、100℃まで利用し、180℃の蒸気を得るなどの場合は、排ガスの温度変化が100℃と大きくなる。大きな出入り口温度差を有効に利用できれば、回収熱量の増大を図ることができる。ところが、出入り口温度差が大きいがゆえに、これを直接吸収ヒートポンプで利用しようとすると、特に排ガスの高温側で吸収液の過剰濃縮や結晶の恐れがあるため、排ガスを熱源として吸収ヒートポンプに有効に利用することが難しかった。特に、できるだけ低温まで熱回収して生成蒸気量を増やそうとする場合に困難性があった。
上記課題を解決するために、本発明の第1の態様に係る吸収ヒートポンプは、例えば図1(a)、図3、図4に示すように、熱源流体GH1により冷媒を加熱して蒸発させる第一の蒸発器E1と;第一の蒸発器E1で蒸発した冷媒を吸収して吸収熱で被加熱媒体W1を加熱する第一の吸収器A1と;第一の吸収器A1で冷媒を吸収して濃度の低下した吸収液ALiを熱源流体GH202により加熱して再生する第一の再生器G1と;熱源流体GH102により冷媒を加熱して蒸発させる第二の蒸発器E2と;第二の蒸発器E2で蒸発した冷媒を吸収して吸収熱で被加熱媒体を加熱する第二の吸収器A2と;第二の吸収器A2で冷媒を吸収して濃度の低下した吸収液を熱源流体GH5により加熱して再生する第二の再生器G2とを備え;第一の蒸発器E1、第二の蒸発器E2、第二の再生器G2及び第一の再生器G1は、熱源流体GHを流す流路60中に、熱源流体GHの上流側から下流側に向けて、この順に配置されている。
以下、蒸発器E1に先ず供給される熱源流体(例えば排ガス)をGH1と称し、蒸発器E1を通過して蒸発器E2に供給される熱源流体をGH102と称し、蒸発器E2を通過して再生器G2に供給される熱源流体をGH5と称し、再生器G2を通過して再生器G1に流入する熱源流体をGH202と称する。さらに再生器G1を通過して排出される熱源流体をGH4と称する。また熱源流体(例えば排ガス)を各部を流れる熱源流体として区別する必要がないとき、あるいは包括的に扱うときは、単にGHの符合で呼ぶ。
本態様のように構成すると、第二の蒸発器では、第一の蒸発器よりも低い温度で冷媒が蒸発し、前記第二の再生器では、第一の再生器よりも高い温度で冷媒が再生される。第一の吸収器と第二の吸収器の吸収液は、ほぼ同一の温度で作動する。また第二と第一の再生器は、熱源ガスのような熱源流体の流れに対して、第一と第二の蒸発器の下流側に配置されるので、熱源流体は第一と第二の蒸発器で温度がある程度低下した後で第二と第一の再生器に供給される。したがって、高温の熱源流体による吸収液の過剰濃縮、結晶の危険を抑えることができる。熱源流体の投入順序を前記のようにすることにより、高温側で蒸発する蒸発器と低温側で再生する再生器とを組合せ、低温側で蒸発する蒸発器と高温側で再生する再生器とを組合せるので、熱源流体を可能な限り低温まで利用することができる。
さらに、第一の再生器と第二の再生器で蒸発した冷媒ガスをそれぞれ凝縮する第一の凝縮器と第二の凝縮器を備えてもよい。第一の凝縮器と第二の凝縮器は、別個に備えてもよいが、共通の1基の凝縮器としてもよい。共通とすると、全体構成をコンパクトにまとめることができる。
吸収ヒートポンプは典型的には、熱源流体GHの保有する熱を第一の蒸発器E1から第一の吸収器A1に、第二の蒸発器E2から第二の吸収器A2に汲み上げて被加熱媒体を加熱するヒートポンプである。
本発明の第2の態様に係る吸収ヒートポンプは、第1の態様に係る吸収ヒートポンプにおいて、例えば、図3に示すように、熱源流体GHが熱源ガスであり、第一の蒸発器E1及び第二の蒸発器E2は、それぞれ、蒸発器上部管板152、252と、蒸発器下部管板153,253と、蒸発器上部管板152、252と蒸発器下部管板153,253との間に設けられた、内側を液状の前記冷媒が流れる複数本の垂直伝熱管151、251とを有し;第一の再生器G1及び第二の再生器G2は、それぞれ、再生器上部管板172、272と、再生器下部管板173、273と、再生器上部管板172、272と再生器下部管板173、273との間に設けられた内側を吸収液ALiが流れる複数本の垂直伝熱管171、271とを有し;複数本の垂直伝熱管151、251、171、271の外側を垂直伝熱管151、251、171、271と交差して熱源ガスGHが流れるように構成され;複数本の垂直伝熱管151、251、271、171は、第一の蒸発器E1と、第二の蒸発器E2と、第二の再生器G2と、第一の再生器G1で、それぞれ第一の蒸発器管群150と、第二の蒸発器管群250と、第二の再生器管群270と、第一の再生器管群170とを構成し、第一の蒸発器管群150と、第二の蒸発器管群250と、第二の再生器管群270と第一の再生器管群170とは、熱源ガスGHの流れに対して直線的に配列されている。
本態様のように構成すると、複数本の垂直伝熱管の外側を垂直伝熱管と交差して熱源ガスGHが流れるように構成されており、さらに複数本の垂直伝熱管は、第一の蒸発器と、第二の蒸発器と、第二の再生器と、第一の再生器で、それぞれ第一の蒸発器管群と、第二の蒸発器管群と、第二の再生器管群と、第一の再生器管群とを構成し、第一の蒸発器管群と、第二の蒸発器管群と、第二の再生器管群と第一の再生器管群とは、熱源ガスGHの流れに対して直線的に配列されているので、体積流量の大きい排ガスのような熱源ガスを蒸発器及び再生器の熱源として利用するに当たって、流動抵抗による圧力損失を低く抑えることができる。そのためこれを流動させるための動力を小さく抑えることができ、省エネルギー効果を高めることができる。
本発明の第3の態様に係る吸収ヒートポンプは、第1の態様又は第2の態様に係る吸収ヒートポンプにおいて、例えば、図5に示すように、熱源ガスGHの流路中、第二の蒸発器E2の下流側の端部から第二の再生器G2をバイパスして、熱源ガスGHを第二の再生器G2の下流側に流すバイパス流路91と、バイパス流路91中の熱源ガスGHの流れを制限する流れ制限手段92を備える。 ここで、「制限」は「遮断」を含まない「制限」であってもよいが、典型的には「遮断」を含む概念である。
このように構成すると、吸収液の過剰濃縮あるいは結晶が起こりやすい第二の再生器での加熱量を制限することができる。したがって、吸収液の過剰濃縮あるいは結晶化を抑えることができる。
本発明の第4の態様に係る吸収ヒートポンプは、第1の態様乃至第3の態様のいずれか1の態様に係る吸収ヒートポンプにおいて、例えば、図1(a)に示すように、第一の吸収器A1及び第二の吸収器A2は、被加熱媒体としての水W1を加熱し大気圧以上の圧力の水蒸気Sを発生するように構成され、生成された水蒸気Sを、随伴する水から分離する気液分離器11を備える。
このように構成すると、第一の吸収器及び第二の吸収器は、被加熱媒体としての水を加熱し大気圧以上の圧力の水蒸気を発生するように構成され、生成された水蒸気を、随伴する水から分離する気液分離器を備えるので、比較的低温の熱源流体をできるだけ低温まで利用しながら、これから熱を汲みあげて水蒸気を生成し、さらに随伴する水分を分離した水蒸気を得ることができる。
本発明の第5の態様に係る吸収ヒートポンプは、第1の態様乃至第4の態様のいずれか1の態様に係る吸収ヒートポンプにおいて、例えば、図1(b)に示すように、熱源流体GHの流路60中、第一の蒸発器E1の上流側に、熱源流体GHの熱で直接水蒸気を発生する熱交換器Bを備える。
このように構成すると、熱源流体GHの投入経路は、熱交換器B、第一の蒸発器E1、第二の蒸発器E2、第二の再生器G2及び第一の再生器G1の順番となる。熱源流体GHの流路60中、第一の蒸発器E1の上流側に、熱源流体GHの熱で直接水蒸気を発生する熱交換器Bを備えるので、熱源流体GHの供給温度が、蒸気Sを直接生成できる温度以上であるとき、熱源流体GHで補給水W1を直接加熱し、蒸気を直接生成することが可能となる。
本発明によれば、熱源流体の熱量をできるだけ多く回収することのできる吸収ヒートポンプを提供することが可能となる。
本発明の第一の実施の形態に係る吸収ヒートポンプの構成を示すフローシートである。(a)は全体フローシート、(b)は第一の実施の形態の変形例において第一の蒸発器E1と熱交換器Bを取りだして示した部分フローシートである。 図1(a)のフローシート上の吸収液の状態を示すデューリング線図である。 本発明の第一の実施の形態に係る吸収ヒートポンプで用いる蒸発器と再生器を、上部ヘッダを一部切り欠いて斜め上方から見た斜視図である。 本発明の第一の実施の形態に係る吸収ヒートポンプで用いる蒸発器と再生器を、ヘッダをはずして垂直伝熱管の軸方向の上方から見た平面図である。 本発明の第二の実施の形態に係る吸収ヒートポンプで用いる蒸発器と再生器を、ヘッダをはずして垂直伝熱管の軸方向の上方から見た平面図である。 従来の吸収ヒートポンプの構成を示すフローシートである。
以下、図面を参照して、本発明の実施の形態について説明する。なお、各図において、互いに同一又は相当する部分には同一又は類似の符号を付し,重複した説明は省略する。
図1のフローシートを参照して、本発明の第一の実施の形態に係る吸収ヒートポンプの構成を説明する。(a)は吸収ヒートポンプ100の全体を示すフローシート、(b)は第一の実施の形態の変形例であり、第一の蒸発器E1の上流側に熱源流体で補給水を直接加熱する熱交換器Bを備える場合を示す。吸収ヒートポンプ100は、第一の吸収ヒートポンプ部100−1と第二の吸収ヒートポンプ部100−2とを備える。第一の吸収ヒートポンプ部100−1は、吸収液ALi(例えば、臭化リチウム水溶液)による冷媒蒸気CS(冷媒は例えば水)の吸収が行われる吸収器A1と、吸収液ALiから冷媒蒸気CSを蒸発させ吸収液ALiの再生が行われる再生器G1と、冷媒液CLから冷媒蒸気CSを発生させる蒸発器E1と、冷媒蒸気CSを凝縮させ冷媒液CLとする凝縮器Cとを備える。蒸発器E1の圧力と吸収器A1の圧力は実用上等しく、再生器G1の圧力と凝縮器Cの圧力は実用上等しい。
第二の吸収ヒートポンプ部100−2は、第一の吸収ヒートポンプ部100−1と全く同様に、吸収器A2と、再生器G2と、蒸発器E2とを備え、凝縮器は第一の吸収ヒートポンプ部100−1と共通の凝縮器Cを用いる。以上の各構成機器は第一と第二の吸収ヒートポンプ部で基本的に同一の機能を有する。なお凝縮器は第一の吸収ヒートポンプ部100−1と第二の吸収ヒートポンプ部100−2で別個独立に備えてもよいが、共通とすれば装置の単純化を図ることができる。
以下各構成機器を第一の吸収ヒートポンプ部100−1について詳細に説明する。第一と第二の吸収ヒートポンプ部で対応する構成機器については説明を適宜省略する。各構成機器の符合は原則として、第一の吸収ヒートポンプ部100−1では、100番台、第二の吸収ヒートポンプ部100−2では、200番台として区別する。吸収器A1,A2と、再生器G1,G2と、蒸発器E1、E2では、単にアルファベットの後ろに1または2を付して区別する。
吸収器A1は、(1)濃溶液である吸収液ALiが移送(供給)され、移送された吸収液ALiを吸収器A1の内部に散布する吸収液スプレイ122と、(2)補給水W1が移送され、冷媒蒸気CSを吸収した希溶液である吸収液ALiによって、移送された補給水W1が加熱される被加熱管123とを備える。吸収器A1の底部は、吸収液ALiを蓄積するに十分な吸収液溜め部となっている。
蒸発器E1は、冷媒液移送管5により凝縮器Cから移送される冷媒液CLを内部に流し、外部を流れる熱源ガスとしての排ガスGH1により加熱し蒸発させる垂直伝熱管151を備える。また蒸発器E1の上部ヘッダ155中に設置され、蒸発器E1内の冷媒液CLの液面レベルを検出する液面レベルセンサL101を備える。液面レベルセンサL101は制御装置21(第一、第二のヒートポンプ部で共通)を介して、冷媒供給弁V103を調節することにより、蒸発器E1内の冷媒の液面レベルを一定に維持する。なお、冷媒供給弁V103を設けないで冷媒ポンプP4(第一、第二のヒートポンプ部で共通)をインバータモータ駆動として冷媒ポンプの回転速度を調節してもよい。図中冷媒ポンプは第一と第二の吸収ヒートポンプで共通としているが、冷媒ポンプの回転速度を調節して蒸発器E1、E2の液面を別個に維持する場合は、冷媒ポンプも別個に設けるとよい。蒸発器E1と蒸発器E2で、液面の上下は独立して生じ得るからである。吸収ヒートポンプ100では、蒸発器E1で蒸発した冷媒蒸気CSは、冷媒蒸気移送管116を通して吸収器A1に送られる。蒸発器E1の構造については、図3〜図5を参照して詳細に説明する。ここで排ガスは、典型的には工場において、各種プロセスで高温部分を利用した後の200℃程度以下のガスである。ボイラからの排ガスであって、高温部分を利用した後、煙突から排出する前のガスであってもよい。
再生器G1は、吸収液移送管路103を通して吸収器A1から移送される吸収液ALiを内部に流し、外部を流れる熱源ガスとしての排ガスGH202により加熱して冷媒蒸気を発生させ、これを濃縮する垂直伝熱管171を備える。ここで、排ガスGH202は、蒸発器E1、E2及び再生器G2を通過して熱量が利用され、ある程度温度が下がった排ガスである。また、この吸収液ALiは、吸収器A1で冷媒を吸収して濃度の低下した吸収液すなわち希溶液である。また再生器G1の上部ヘッダ175中に設置され、再生器G1内の吸収液ALiの液面レベルを検出する液面レベルセンサL102を備える。液面レベルセンサL102は制御装置21を介して、溶液ポンプP101を調節することにより、再生器G1内の吸収液の液面レベルを維持する(なお、溶液ポンプP101の調節の代わりに調節弁を設けてもよい)。第一の吸収ヒートポンプ部100−1では、再生器G1で濃縮された吸収液ALiは、吸収液移送管102を通して吸収器A1に送られる。また再生器G1で発生した冷媒蒸気CSは、冷媒蒸気移送管117及び冷媒蒸気移送管17を通して凝縮器Cに送られる。ここで、冷媒蒸気移送管17は、再生器G2からの冷媒蒸気移送管217と合流した後、凝縮器Cに冷媒蒸気CSを移送する管である。
さらに図1(a)を参照して、第二の吸収ヒートポンプ部100−2の構成機器について説明する。前記したように、第一と第二の吸収ヒートポンプ部で共通、或いは相当する構成機器については説明を適宜省略する。
吸収器A2は、濃溶液である吸収液ALiを吸収器A2の内部に散布する吸収液スプレイ222と、補給水W1を加熱する被加熱管223とを備える。吸収器A2の底部は、吸収液ALiを蓄積するに十分な吸収液溜め部となっている。
蒸発器E2は、排ガス流路60において蒸発器E1の下流側に配置される。排ガス流路60は、蒸発器E1、蒸発器E2、再生器G2及び再生器G1がこの順に配列された排ガスの流路である。なお、排ガス流路60及び各機器の配置については、図3を参照して後で詳細に説明する。蒸発器E2は、冷媒液CLを内部に流し、外部を流れる排ガスGH102により加熱し蒸発させる垂直伝熱管251を備える。ここで、排ガスGH102は、排ガスG1が蒸発器E1で利用され、ある程度温度が低下した排ガスである。また蒸発器E2の上部ヘッダ255中に設置され、蒸発器E2内の冷媒液CLの液面レベルを検出する液面レベルセンサL201を備える。液面レベルセンサL201は制御装置21を介して、冷媒供給弁V203を調節することにより、蒸発器E2内の冷媒の液面レベルを維持する。蒸発器E1で説明したように、冷媒供給弁V203を設けないで冷媒ポンプP4をインバータモータ駆動として冷媒ポンプを調節してもよい。このときは、冷媒ポンプは蒸発器E1用とは別に設けるのが好ましい。吸収ヒートポンプ100では、蒸発器E2で蒸発した冷媒蒸気CSは、冷媒蒸気移送管216を通して吸収器A2に送られる。蒸発器E2の構造については、蒸発器E1と併せて、図3〜図5を参照して詳細に説明する。
再生器G2は排ガス流路60において、蒸発器E2の下流側、且つ再生器G1の上流側に配置される。再生器G2は、吸収液移送管路203を通して吸収器A2から移送される吸収液ALiを内部に流し、外部を流れる熱源ガスとしての排ガスGH5により加熱して冷媒蒸気を発生させ、これを濃縮する垂直伝熱管271を備える。ここで、排ガスGH5は、蒸発器E1及び蒸発器E2を通過して熱量が利用され、ある程度温度が下がった排ガスである。また、この吸収液ALiは、吸収器A2で冷媒を吸収して濃度の低下した吸収液すなわち希溶液である。また再生器G2の上部ヘッダ275中に設置され、再生器G2内の吸収液ALiの液面レベルを検出する液面レベルセンサL202を備える。液面レベルセンサL202は制御装置21を介して、溶液ポンプP201を調節することにより、再生器G2内の吸収液の液面レベルを維持する(なお、溶液ポンプP201の調節の代わりに調節弁を設けてもよい)。第二の吸収ヒートポンプ部100−2では、再生器G2で濃縮された吸収液ALiは、吸収液移送管202を通して吸収器A2に送られる。また再生器G2で発生した冷媒蒸気CSは、冷媒蒸気移送管217及び冷媒蒸気移送管17を通して凝縮器Cに送られる。
凝縮器Cは、冷却水WCが流され、再生器G1及び再生器G2から凝縮器Cに送られた冷媒蒸気CSを冷却する冷却管30を備える。冷却水WCの温度は、例えば冷却管30の入口で32℃、出口で37℃である。
吸収ヒートポンプ100は、(1)気液分離器11と、(2)気液分離器11に接続され気液分離器11に補給水W1を移送する補給水移送管路7と、(3)気液分離器11から吸収器A1、A2の被加熱管123、223に補給水W1を移送する補給水移送管路6と、(4)被加熱管123、223から気液分離器11に補給水W1を移送して戻す補給水移送管路110、210と、(5)蒸気ヘッダ(不図示)に接続され、気液分離器11で発生した蒸気S(例えば、180℃)を蒸気ヘッダに供給する蒸気供給管路8とを備える。
吸収ヒートポンプ100は、さらに、(6)再生器G1と吸収器A1とを繋ぎ、再生器G1で再生された濃溶液である吸収液ALiを吸収器A1の吸収液スプレイ122に移送する吸収液移送管路102と、(6b)再生器G2と吸収器A2とを繋ぎ、再生器G2で再生された濃溶液である吸収液ALiを吸収器A2の吸収液スプレイ222に移送する吸収液移送管路202と、(7)吸収器A1と再生器G1とを繋ぎ、吸収器A1に蓄積された希溶液である吸収液ALiを再生器G1の再生器下部ヘッダ176に移送する吸収液移送管路103と、(7b)吸収器A2と再生器G2とを繋ぎ、吸収器A2に蓄積された希溶液である吸収液ALiを再生器G2の再生器下部ヘッダ276に移送する吸収液移送管路203と、(8)凝縮器Cと蒸発器E1及び蒸発器E2とを繋ぎ、凝縮器Cで凝縮した冷媒液CLを蒸発器E1及び蒸発器E2に移送する冷媒液移送管路5とを備える。
吸収ヒートポンプ100は、さらに、(9)吸収液移送管路102を通って被加熱側に移送される濃溶液である吸収液ALiと、吸収液移送管路103を通って再生器下部ヘッダ176に移送される希溶液である吸収液ALiとの間で熱交換を行う溶液(吸収液)熱交換器X101及び(9b)吸収液移送管路202を通って被加熱側に移送される濃溶液である吸収液ALiと、吸収液移送管路203を通って再生器下部ヘッダ276に移送される希溶液である吸収液ALiとの間で熱交換を行う溶液(吸収液)熱交換器X201を備える。
吸収ヒートポンプ100は、さらに加熱側に排熱源GH3が流れ、被加熱側に補給水移送管路7を通って補給水W1が移送され、熱交換が行われる熱交換器X2を備える。熱交換器X2は図中独立した熱交換器で示しているが、熱交換器X2の伝熱部は、蒸発器E1入口部あるいは蒸発器E2と再生器G2の中間の排ガスの流れ中に設けるのが好ましい。
吸収液移送管路102と吸収液移送管路202には、溶液ポンプP101と溶液ポンプP202がそれぞれ設置され、溶液ポンプP101と溶液ポンプP202はそれぞれ再生器G1と再生器G2で再生された吸収液ALiをそれぞれ吸収器A1と吸収器A2に移送する。溶液ポンプP101は、溶液熱交換器X101の上流側に、溶液ポンプP201は、溶液熱交換器X201の上流側に、それぞれ設置されている。冷媒液移送管路5には、冷媒昇圧手段としての冷媒ポンプP4が設置され、冷媒ポンプP4は凝縮器Cで凝縮された冷媒液CLを蒸発器E1と蒸発器E2に移送する。
補給水移送管路7には、給水ポンプP12が設置され、給水ポンプP12は補給水W1を気液分離器11に移送する。補給水移送管路7の給水ポンプP12の直下流側には、逆止弁37が設置され、補給水W1が逆流するのを防止している。補給水移送管路6には、給水ポンプP13が設置され、給水ポンプP13は補給水W1を気液分離器11から被加熱管123、223に移送し、さらに補給水移送管路110、210を通って被加熱管123、223から気液分離器11に移送して戻し、補給水W1を循環させる。
冷媒液移送管路5で冷媒ポンプP4の下流側には、蒸発器下部ヘッダ156、256に移送する冷媒液CLの流量を調整する冷媒供給弁V103、V203がそれぞれ設置されている。
気液分離器11には、その圧力を検出する圧力センサPが設置され、下部に蓄積された補給水W1の液面レベルを検出する液面レベルセンサL3が設置されている。蒸気供給管路8には、供給する蒸気Sの圧力を調節する蒸気弁V1が設置されている。蒸気供給管路8に、図に示すように、蒸気ヘッダ(不図示)からの蒸気の逆流を防止する逆止弁38を設置してもよい。逆止弁38を設置すると、蒸気弁V1の作動に関係なく、確実に蒸気ヘッダからの蒸気の逆流を防止することができる。
熱源ガスとしての排ガスGH1の供給温度は、例えば200℃である。蒸発器E1に供給された排ガスGH1は、蒸発器E1で熱を奪われ排ガスGH102となって蒸発器E2に流入し、蒸発器E2で熱を奪われ温度が約150℃の排ガスGH5となり、さらに再生器G2に流入し、そこで熱を奪われ排ガスGH202となって再生器G1に流入し、再生器G1で熱を奪われ約100℃の排ガスGH4となって排出される。
既に説明したように、蒸発器E1に供給される排ガスをGH1と、蒸発器E1を通過して蒸発器E2に供給される排ガスをGH102と、蒸発器E2を通過して再生器G2に供給される排ガスをGH5と、再生器G2を通過して再生器G1に流入する排ガスをGH202と、再生器G1を通過して排出される排ガスをGH4と、それぞれ称する。また排ガスを各機器を流れるガスとして区別する必要がないとき、あるいは包括的に扱うときは、単にGHの符合で呼ぶ。
補給水W1の予熱は、排ガスのような熱源ガスの供給側から蒸発器E2と再生器G2の中間部のガスGH5までの高温ガスで行うのがよい。あるいは、図示しないが、再生器G2に供給される入口の吸収液で加熱する熱交換器で行ってもよいし、蒸発器E1又は蒸発器E2で発生した冷媒蒸気で加熱する熱交換器で行ってもよい。
吸収ヒートポンプ100は、制御装置21を備える。液面レベルセンサL101からの、液面レベルを表す液面信号(不図示)は制御装置21に送られ、制御装置21から冷媒液CLの流量を制御する制御弁である冷媒供給弁V103に信号を送る。そのようにして、冷媒供給弁V103の開度を蒸発器E1の液面レベルが一定になるよう調節する(但し、図中、簡略化し制御信号が液面レベルセンサL101から冷媒供給弁V103に直接送られるよう示されている)。液面レベルセンサL201と冷媒供給弁V203との関係も同様である。
液面レベルセンサL102からの、液面レベルを表す液面信号(不図示)は制御装置21に送られ、制御装置21から液面レベルを一定のレベルに保つよう吸収液ALiの流量を制御する制御信号(不図示)が、溶液ポンプP101を駆動するインバータモータINVに送られ、インバータモータINVの回転速度を調節して、再生器G1の液面レベルが一定になるように制御する(図中、簡略化して、液面レベルセンサL102からインバータモータINVに信号が直接送られるように示されている)。液面レベルセンサL202と溶液ポンプP201との関係も同様である。
気液分離器11の液面レベルセンサL3からの、液面レベルを表す液面信号(不図示)は制御装置21に送られ、制御装置21から液面レベルをほぼ一定のレベルに保つように給水ポンプP12をオン/オフさせる(図中、簡略化して、液面レベルセンサL3から給水ポンプP12に信号が直接送られるように示されている)。なお、制御装置21から液面レベルを一定のレベルに保つよう補給水W1の流量を制御する制御信号(不図示)を給水ポンプP12に送り(実際には前述のように不図示のインバータモータ)、給水ポンプP12の回転数を気液分離器11の液面レベルが一定になるよう調節してもよい。
圧力センサPからの、圧力を表す圧力信号(図中、破線)は制御装置21に送られ、制御装置21から気液分離器11の圧力が所定の値P1になるよう蒸気Sの供給量を制御する制御信号(図中、破線)が蒸気弁V1に送られ、蒸気弁V1の開度を気液分離器11の圧力が所定の値P1になるよう調節する。所定の値P1は、例えば、蒸気ヘッダ圧よりわずかに(0.05MPa程度)高めに設定するとよい。排ガスGH1と排ガスGH3は、並列に供給されるように図示されているが、直列、あるいは一部並列、一部直列に供給してもよい。
次に、図1(a)と図2を参照して、第1の実施の形態の作用を説明する。図2は、吸収液および冷媒の状態を示すデューリング線図であり、縦軸が冷媒温度、横軸が溶液(吸収液)温度である。
先ず、第一の吸収ヒートポンプ部100−1を説明する。吸収器A1を出た希溶液である吸収液ALi(状態は、図2中、B12の位置)は、吸収液移送管路103により移送され、溶液熱交換器X101を通過する。この吸収液ALiは熱交換器X101を通過することにより、吸収液移送配管102を通って再生器G1から吸収器A1に移送される濃溶液である吸収液ALiにより冷却される(冷却後の吸収液ALiの状態は、図2中、B18の位置)。溶液熱交換器X101により冷却された吸収液ALiは、再生器下部ヘッダ176に移送される。
吸収液ALiは、再生器G1の再生器下部ヘッダ176(吸収液ALiの状態は、図2中、B15の位置)から垂直管171内を流れる間に排ガスGH202によって加熱され、吸収液ALiに吸収されていた冷媒は冷媒蒸気CSとして蒸発する。このようにして、濃縮され、再生された濃溶液である吸収液ALiは再生器上部ヘッダ175部に設けられた吸収液出口102aから流出する。図1に示す再生器G1の上部ヘッダ175に実線で表わされている角穴が出口102aである。またそれにつながる破線は、出口ヘッダを示している。
濃溶液となった吸収液ALi(状態は、図2中、B14の位置)は、吸収液移送管路102を通り吸収器A1の吸収液スプレイ122に移送される。吸収液移送管路102を通る間、溶液ポンプP101により昇圧され、その後溶液熱交換器X101で、吸収器A1から再生器G1に移送される希溶液である吸収液ALiにより加熱され(吸収液移送管路102を通る吸収液ALiの状態は、図2中、B17の位置)、吸収器A1の吸収液スプレイ122に移送される。
吸収器A1で、吸収液スプレイ122から吸収器A1内に散布された濃溶液である吸収液ALi(吸収液ALiの状態は、図2中、B16の位置)は、蒸発器E1で蒸発した冷媒蒸気CSを吸収し、被加熱管123を通る被加熱媒体としての補給水W1を吸収熱で加熱し、吸収器A1の底部に蓄積する(吸収液ALiの状態は、図2中、B12の位置)。
前述のように、溶液ポンプP101は、再生器G1内の吸収液ALiの液面レベルが一定となるような流量の吸収液ALiを再生器G1から吸収器A1に移送する。移送量は制御装置21によって制御される。再生器G1の液面を一定に保つことにより、冷媒蒸気圧の差が大きい吸収器A1と再生器G1の間の液シールを確保する。再生器G1内に滞留する吸収液を除く、系内の吸収液は、主として吸収器A1の底部に蓄積される。したがって吸収器A1の底部は、その蓄積に十分な容量を有するように構成する。吸収液移送管路102のポンプP101の出口側には逆止弁139が設けられている。ヒートポンプ100の運転中は、吸収器A1の方が再生器G1よりも圧力が高い。したがって、ヒートポンプ100を停止した際、すなわちポンプP101を停止すると、吸収液は黙っていれば吸収器A1から再生器G1に流入する。逆止弁139により、ポンプP101の逆回転が防止される。またヒートポンプ100を停止すると、吸収器A1、A2に溜まっていた吸収液ALiは、それぞれ吸収液移送管路103、203を流れて、それぞれ再生器G1、G2に溜まる。したがって、再生器上部ヘッダ175、275は、それぞれ系内の吸収液を収容するに十分な容量とする。停止時に再生器上部ヘッダ175、275に溜まっていた吸収液ALiは、ヒートポンプ100の起動時に、液面制御により吸収器A1、A2に送られる。または、排ガスGHを投入する前に、あらかじめ吸収器A1、A2に送ってもよい。
再生器G1で蒸発した冷媒蒸気CSは冷媒蒸気移送管117、17を通して凝縮器Cに送られる。凝縮器Cに送られた冷媒蒸気CSは凝縮器Cで冷却管30を通る冷却水WCにより冷却され凝縮して冷媒液CL(状態は、図2中、D1の位置)となる。凝縮器Cの冷媒液CLは、冷媒液移送管路5を通り、冷媒ポンプP4により昇圧され、冷媒供給弁V103により流量を制御されて、蒸発器E1に送られる。
蒸発器E1に送られた冷媒液CLは、蒸発器下部ヘッダ156から垂直伝熱管151の内側を流れる間に排ガスGH1により加熱されて蒸発する (冷媒の状態は、図2中、D2の位置)。蒸発した冷媒蒸気CSは冷媒蒸気移送管116を通して吸収器A1に送られ、吸収器A1で吸収液ALiに吸収される。
冷媒供給弁V103は、制御装置21によって開度が調節され、凝縮器Cから蒸発器E1に移送される冷媒液CLの量を加減する。すなわち、移送される冷媒液CLの量を、蒸発器E1に蓄積する冷媒液CLの液面レベルが一定になるような量に加減する。このような制御が行われるのは、冷媒液の蒸発した量を補給するためであり、冷媒ポンプP4が気体を吸い込まないようにするためである。蒸発器E1及び蒸発器E2に滞留する冷媒液を除く、系全体の冷媒液は、凝縮器Cの底部に蓄積する。したがって、凝縮器Cの底部は、その蓄積に十分な容量を有するように構成する。ヒートポンプ100を停止すると、圧力の高い蒸発器E1、E2側から、冷媒液移送管路5を通って蒸発器E1、E2よりも低圧の凝縮器Cに冷媒液CLが逆流する恐れがある。そのような停止直後の冷媒ポンプP4の逆転を避けるために、冷媒ポンプP4の出口側に逆止弁40を設けるとよい。その代わりに冷媒供給弁V103、V203(液面制御にまかせるとヒートポンプ停止時には開となり逆流を防げない)を、ヒートポンプ停止時には全閉とするように制御装置21を構成してもよい。
第二の吸収ヒートポンプ部100−2の作用も、第一の吸収ヒートポンプ部100−1と全く同様である。各機器の符合の100番台を200番台に読み替えればよい。ここでは、異なる部分を中心として説明する。吸収器A2を出た希溶液である吸収液ALiの状態は、図2中、B22の位置である。溶液熱交換器X201で冷却後の吸収液ALiの状態は、図2中、B28の位置である。
この吸収液ALiは、再生器G2の再生器下部ヘッダ276(吸収液ALiの状態は、図2中、B25の位置)から垂直管271内を流れる間に排ガスGH5によって加熱され、吸収液ALiに吸収されていた冷媒は冷媒蒸気CSとして蒸発する。排ガスGH5の温度は再生器G1で利用される排ガスG202の温度よりも高い。このようにして、濃縮され、再生された濃溶液である吸収液ALiは再生器上部ヘッダ275部に設けられた吸収液出口202aから流出する。
濃溶液となった吸収液ALi(状態は、図2中、B24の位置)は、吸収器A2の吸収液スプレイ222に移送される。この間、吸収器A2から再生器G2に移送される希溶液である吸収液ALiに加熱され、吸収液ALiの状態は、図2中、B27の位置となる。
吸収器A2内に散布された濃溶液である吸収液ALi(吸収液ALiの状態は、図2中、B26の位置)は、蒸発器E2で蒸発した冷媒蒸気CSを吸収し、被加熱管223を通る被加熱媒体としての補給水W1を吸収熱で加熱し、吸収器A2の底部に蓄積する(吸収液ALiの状態は、図2中、B22の位置)。
溶液ポンプP201、制御装置21、逆止弁239の作用は、第一の吸収ヒートポンプ部100−1と同様であるので説明を省略する。
再生器G2で蒸発した冷媒蒸気CSは、再生器1で蒸発した冷媒蒸気CSと合流して凝縮器Cに送られる。冷媒蒸気CSは凝縮器Cで冷却され凝縮して冷媒液CLとなる。本実施の形態では、凝縮器Cは第一の吸収ヒートポンプ部100−1と共通であるから、図2のデューリング線図上の状態は、第一の吸収ヒートポンプ部100−1で説明したD1の位置と同じである。(凝縮器が共通でない場合は、同一の位置にはならないが、同じ条件の冷却水WCが使用される場合は、D1とほぼ同一の位置となる。)凝縮器Cの冷媒液CLは、冷媒供給弁V203により流量を制御されて、蒸発器E2に送られる。
蒸発器E2に送られた冷媒液CLは、蒸発器下部ヘッダ256から垂直伝熱管251の内側を流れる間に排ガスGH102により加熱されて蒸発する (冷媒の状態は、図2中、D3の位置)。蒸発した冷媒蒸気CSは吸収器A2に送られ、吸収器A2で吸収液ALiに吸収される。前述のように、蒸発器E2は、排ガス流路60において蒸発器E1の下流側に配置されているので、蒸発器E2の冷媒蒸発温度は、蒸発器E1のそれよりも低い。
冷媒供給弁V203と制御装置21の作用は、第一の吸収ヒートポンプ部100−1の場合と同様であるので説明を省略する。
以上説明したように本実施の形態では、吸収サイクルが2サイクル(3以上であってもよい)設けられている。この2サイクルが、第一の吸収ヒートポンプ部100−1と第二の吸収ヒートポンプ部100−2に対応する。第一の吸収ヒートポンプ部100−1は、吸収器A1、蒸発器E1、再生器G1そして凝縮器C1を含んで構成され、第二の吸収ヒートポンプ部100−2は、吸収器A2、蒸発器E2、再生器G2そして凝縮器C2(第一の実施の形態では凝縮器C1と共通)を含んで構成され、一つの排ガス流路60に、排ガスの流れの上流側すなわち高温側から、各サイクルの構成機器、蒸発器E1、蒸発器E2、再生器G2及び再生器G1がこの順に配列されている。
第三以上の、すなわち第n(n≧3)の吸収ヒートポンプ部100−nまでを備える場合は、排ガスGHの流れの上流側から、蒸発器E1、蒸発器E2、・・・蒸発器En、再生器Gn・・・再生器G2及び再生器G1の順に配列される。
図1(b)に示すように、本実施の形態の変形例として、蒸気を直接生成する熱交換器Bを設けてもよい。これは、排ガスGHが入口側において、蒸気を直接生成できる温度以上の排ガスGH0であるときに有用である。熱交換器Bで、排ガスGH0により補給水W1を直接加熱し、蒸気を直接生成する。その場合図示のように、排ガスの投入経路をB、E1、E2、G2及びG1の順番にする。
このように本実施の形態の吸収ヒートポンプ100は、蒸発温度の高い蒸発器E1と再生温度の低い再生器G1を組合せた第一の吸収ヒートポンプ部100−1と、蒸発温度が(蒸発器E1よりも)低い蒸発器E2と再生温度が(再生器G1よりも)高い再生器G2を組み合わせた第二の吸収ヒートポンプ部100−2を備え、両吸収ヒートポンプ部が共通の凝縮温度の凝縮器Cを備える。言い換えれば、高温側の排ガスを使って高温の冷媒蒸気を生成する蒸発器と、排ガスの流れの下流側で低温側の排ガスを使って吸収液を再生する(沸点があまり高くないので濃縮度が低い)再生器とを組み合わせる。これは第一の吸収ヒートポンプ部100−1である。したがって、図2に示すデューリング線図上の低濃度側のサイクルが可能となり、200℃の排ガスから180℃の水蒸気を得ることができる。
同様に、ある程度温度が低下した低温側の排ガスを使って比較的低温の冷媒蒸気を生成する蒸発器と、排ガスの流れの上流側で比較的温度の高い(第一の蒸発器E1で使う排ガスの温度よりも低いが第一の再生器G1よりも高い)側の排ガスを使って吸収液を再生する(沸点が比較的高く濃縮度が比較的高い)再生器とを組み合わせる。これは第二の吸収ヒートポンプ部100−2である。したがって、図2に示すデューリング線図上の高濃度側のサイクルが可能となり、第一の吸収ヒートポンプ部100−1と同様に、200℃の排ガスから180℃の水蒸気を得ることができる。
補給水移送管路7に供給された補給水W1は、給水ポンプP12により昇圧され、気液分離器11に移送される。給水ポンプP12を出た補給水W1は、熱交換器X2で排ガスGH3により加熱され、気液分離器11に移送される。
気液分離器11に供給される補給水W1の流量は、気液分離器11内に蓄積される補給水W1の液面レベルが一定になるように、制御装置21により給水ポンプP12の回転速度を制御することにより調節される。気液分離器11の補給水W1の液面レベルを一定に調節するのは、蒸気Sとして供給され失われた補給水W1に見合う分を気液分離器11に補給するためである。
気液分離器11に移送された補給水W1は、補給水移送管路6を通り、給水ポンプP13により昇圧され吸収器A1、A2の被加熱管123、223に送られ、吸収器A1、A2で冷媒蒸気CSを吸収する吸収液ALiの吸収熱により加熱され、蒸気Sを発生させ、補給水移送管路110、210を通り、気液分離器11に戻り、蒸気と液を分離する。発生した蒸気Sは、蒸気供給管路8を通り、制御装置21により制御される蒸気弁V1により気液分離器11の圧力が第1の所定の圧力P1になるように流量調節されて、蒸気ヘッダ(不図示)に供給される。
気液分離器11の圧力が所定の圧力P1になるように制御されるのは、気液分離器11の圧力が蒸気ヘッダ(不図示)の圧力より高い圧力に制御し、気液分離器11の圧力を常に蒸気ヘッダの圧力より一定の圧力だけ高い圧力とし、吸収ヒートポンプ100で発生した蒸気Sが常に蒸気ヘッダに供給されるようにし、負荷(不図示)側に安定して蒸気Sが供給されるようにするためである。
以上のような構成により、本実施の形態の吸収ヒートポンプ100は、排ガスGHの保有する熱を蒸発器E1から吸収器A1に、また蒸発器E2から吸収器A2に汲み上げて被加熱媒体である補給水W1を加熱する。本実施の形態では、補給水W1は加熱されて水蒸気となって外部へ供給される。
図3の斜視図及び図4の平面図を参照して、本発明の第一の実施の形態の吸収ヒートポンプ100を構成する、蒸発器E1、E2と再生器G2、G1の構造を説明する。図3は、蒸発器E1、E2と再生器G2、G1を、それぞれの上部ヘッダを一部切り欠いて斜め上方から見た斜視図である。図4は、蒸発器E1、E2と再生器G2、G1を、それぞれの上部ヘッダを取り除いて上方から見た平面図である。本図において、蒸発器E1、E2の冷媒液入口、冷媒蒸気出口、再生器G2、G1の吸収液入口、吸収液出口は、図示を省略している。
本実施の形態の吸収ヒートポンプ100の備える蒸発器E1は、水平に配置される上部管板152とこれに平行に配置される下部管板153を備える。上部管板152と下部管板153との間には複数本の垂直伝熱管151が垂直に配置されている。各垂直伝熱管151は、上部と下部の管板152、153にそれぞれ穿設された孔に挿入され拡管された後にシール溶接されて気密性を確保している。複数本の垂直伝熱管151は、管の軸線方向から見て矩形の領域に格子状あるいは千鳥状に配列され、一群の管群を形成している。このような複数の垂直伝熱管151の内側を液状の冷媒液CLが流れる。すなわち、蒸発器E1は水管ボイラの構造を備える。
蒸発器E2の構造は、蒸発器E1の排ガスGHの流れの下流側にある点を除き、蒸発器E1と同様である。すなわち、上部管板252と下部管板253を備え、両管板の間に複数本の垂直伝熱管251が配置されている。蒸発器E2は蒸発器E1と全く同様に水管ボイラの構造を備える。
同様に、本実施の形態の吸収ヒートポンプ100の備える再生器G1は、水平に配置される上部管板172とこれに平行に配置される下部管板173を備える。上部管板172と下部管板173との間には複数本の垂直伝熱管171が垂直に配置されている。各垂直伝熱管171は、上部と下部の管板172、173にそれぞれ穿設された孔に挿入され拡管された後にシール溶接されて気密性を確保している。複数本の垂直伝熱管171は、管の軸線方向から見て矩形の領域に格子状あるいは千鳥状に配列され、一群の管群を形成している。このような複数の垂直伝熱管171の内側を吸収液ALiが流れる。すなわち、再生器Gは水管ボイラの構造を備える。
再生器G2の構造は、再生器G1よりも排ガスGHの流れの上流側で、蒸発器E2の下流側にある点を除き、再生器G1と同様である。すなわち、上部管板272と下部管板273を備え、両管板の間に複数本の垂直伝熱管271が配置されている。再生器G2は再生器G1と全く同様に水管ボイラの構造を備える。
本実施の形態の吸収ヒートポンプ100では、蒸発器E1、E2の上部管板152、252と再生器G1、G2の上部管板172、272、また蒸発器E1、E2の下部管板153、253と再生器G1、G2の下部管板173、273は、それぞれ一体の管板で形成されている。蒸発器E1、E2と再生器G2、G1は、共通の熱源である排ガスGHで加熱されるので隣接して設けることができ、一体の一枚の板で形成することにより効率的な製造が可能となる。蒸発器管群150、250と再生器管群270、170との間は、蒸発器E1、E2と再生器G2、G1のヘッダの構成が可能である限り、できるだけ近接して配置するのが好ましい。あるいは以下で説明する流れ制限手段としてのダンパを挿入配置が可能である限り、できるだけ近接して配置するのが好ましい。近接して配置することによって、排ガスGHの流路が徒に長くなることを防ぎ、排ガスGHの流れ損失を抑えることができる。
なお、以上の管板は各蒸発器、再生器で、個別に形成してもよい。またそれぞれ蒸発器E1と蒸発器E2とで共通とし、再生器G2と再生器G1とで共通としてもよい。装置サイズが大きいときは、分割した方がむしろ製造や運搬の観点から好ましい場合があるからである。
本実施の形態の吸収ヒートポンプ100では、蒸発器E1、E2と再生器G2、G1それぞれの複数本の垂直伝熱管151、251、271、171の外側をこの垂直伝熱管151等と交差して排ガスGH1、GH102、GH5、GH202が流れ、排ガスGH4として排出されるように構成されている。蒸発器E1、E2の上部管板152、252、下部管板153、253との間、再生器G2、G1の上部管板272、172と下部管板273、173との間に排ガスGHの流路60が形成されている。本実施の形態では、排ガスGHは流路60を通って垂直伝熱管151等に直角に交差して流れる。垂直伝熱管151等に関し、排ガスGHを管外側に、冷媒液CLや吸収液ALiを管内側に流すので、排ガスGHの流路60を大きく確保し、流速の高速化を避けることができる。
また、複数本の垂直伝熱管151、251、271、171は、蒸発器E1、E2と、再生器G2、G1とで、それぞれ蒸発器管群150、250と再生器管群270、170を構成し、蒸発器管群150、250と再生器管群270、170は、排ガスGHの流れに対して直線的に配列される。直線的に配列されるとは、排ガスGHの流路60がいわゆる2パスや3パスのように複数パスではなく、1パスに配置されていることをいう。言い換えれば、蒸発器管群150、250と再生器管群270、170を取り除いて、排ガスGHの供給側から排出側を見たとき、排ガスGHの流路60を通して供給側から排出側が見通せることをいう。
直線的に配列されるので、熱源が単位体積あたりの熱容量が小さい排ガスのようなガスであり、必要な熱量を得るためには非常に大きな体積流量の熱源ガスを流す必要があるとき、流動抵抗による圧力損失を低く抑えることができる。すなわち、曲がり損失あるいはターンによる損失を低減することができる。排ガスのような熱源ガスを流動させるための動力は大きくなりがちであるが、これを小さく抑えることができ、省エネルギー効果を削ぐことがない。
先に説明したように、蒸発器E1、E2と再生器G2、G1とで、上部管板同士、下部管板同士は、それぞれ一体の管板で形成せず、それぞれ別体としてもよい。別体とすれば、蒸発器E1、E2と再生器G2、G1の配置をそれぞれの独自の都合により定めることができる。各機器を別体とする場合も、蒸発器管群150、250と再生器管群270、170は、排ガスGH1、GH102、GH5、GH202、GH4の流れに対して直線的に配列される点は変わらない。また別体とする場合も、これら機器は極力近接して配置するのが好ましい。排ガスの流路損失を低く抑えるためである。
本実施の形態では、再生器管群270、170は、排ガスGHの流れに対して、蒸発器管群150、250の下流側に配置される。
熱源が排ガスのようなガスであるときは、利用すべき温度幅が大きい。例えば200℃で供給されて、100℃で排出される。この場合、100℃の温度差を利用することになる。したがって、排ガスを熱源として利用するような場合は、比較的高温のガスによる吸収液の過剰濃縮、結晶の危険があった。しかしながら、再生器管群270、170を、蒸発器管群150、250の下流側に配置するので、排ガスGHは蒸発器E1、E2で温度がある程度低下した後で再生器G2、G1に供給される。したがって、排ガスGHが供給された上流側の部分、言い換えれば比較的高温の部分による吸収液の過剰濃縮、結晶の危険を抑えることができる。
さらに、本実施の形態では、蒸発器管群150、250と再生器管群270、170を外気から遮断し、各管板152、153、252、253、272、273、172、173と協働して排ガスGHの流路を構成する側板154a、154b、254a、254b、274a、274b、174a、174b(図4参照)を備える。側板154a等の代わりに水冷壁としてもよいが、排ガスのように250℃程度あるいはそれ以下、典型的には200℃程度であれば、単なる平板(鉄板)で構成することができ、簡易な構造となる。すなわち、水冷壁のように複層構造で層間に圧力をもった流体を収容する構造ではなく、単層構造乃至は単板構造とすることができる。本実施の形態の吸収ヒートポンプ100では、蒸発器E1、E2と再生器G2、G1は、大気圧以上の圧力の圧力容器となることが多い。その場合、各上部ヘッダ155、255、275、175と下部ヘッダ156、256、276、176(吸収ヒートポンプでは特に蒸発器のヘッダ)は圧力を受けるが、側板が水冷壁ではなく単なる単層の平板であるので、強度的な対応が容易となる。なお本実施の形態では、再生器のヘッダの内側は、負圧となり得るが、側板が水冷壁ではなく単なる単層の平板であるので外圧への対応が容易となる。
また既に説明したように、蒸発器E1、E2と、再生器G2、G1とが、あるいは蒸発器管群150、250と再生器管群270、170とが、排ガスGHの流れに対して直線的に配列されている。これは典型的には、側板154a、254aと側板274a、174aとが一枚の平面状に形成され、側板154b、254bと側板274b、174bが同様に一枚の平面状に形成され、それぞれ好ましくは単一の平板で形成され、さらに、蒸発器上部管板152、252と再生器上部管板272、172とが一枚の平面状に形成され、蒸発器下部管板153、253と再生器下部管板273、173とが同様に一枚の平面状に形成され、それぞれ好ましくは単一の平板で形成されていることにより実現できると言ってもよい。
側板154a、154b、254a、254b、274a、274b、174a、174bの外気側は断熱材を施すのが好ましい。あまり温度が高くないとはいいながら、利用できる熱を外に逃がさないためである。また人体に対する安全のためである。
さらに、本実施の形態では、蒸発器E1、E2と再生器G2、G1は、それぞれの管群150、250、270、170の上部の開口部を覆うように蒸発器上部ヘッダ155、255と再生器上部ヘッダ275、175を設け、下部の開口を覆うように蒸発器下部ヘッダ156、256(冷媒液供給室)と再生器下部ヘッダ276、176(溶液供給室)を設ける。蒸発器上部ヘッダ155、255は、気液分離室を兼ねてもよい。このように構成すると、構造の簡易化を図ることができる。
図5の平面図を参照して、本発明の第二の実施の形態で用いる蒸発器E1、E2と再生器G2、G1の組合せを説明する。図5は、蒸発器E1、E2と発生器G2、G1の各上部ヘッダをはずして、垂直伝熱管151、251、271、171を軸線方向から、すなわち上方から見た平面図である。本実施の形態では、熱源ガスとしての排ガスGHの流路60中、蒸発器管群250の下流側の端部から再生器管群270をバイパスして、排ガスGHを前記再生器管群270の下流側に流すバイパス流路91を備える。
バイパス流路91は、排ガスGH102あるいは蒸発器管群250を通過した後の排ガスGH5の全てあるいは一部を、再生器管群270を避けて、その下流側に導く流路である。
ここで、蒸発器管群250の下流側の端部とは、排ガスGHの流れ方向最下流の垂直伝熱管251の下流側の部分、すなわち排ガスGH102が蒸発器管群250の全てを通過して排ガスGH5となった部分、さらに言い換えれば蒸発器管群250と再生器管群270との間の空間部分が好ましいが、図示のように、排ガスGH102が蒸発器管群250の上流側の複数の垂直伝熱管を通過した後の部分であってもよい。すなわち、蒸発器管群250と再生器管群270との間の空間部分を含む部分、あるいはそれよりも多少上流部分であってもよい。このとき、バイパス流路91の始まる部分は、再生器管群270にかからないようにするのが好ましい。バイパス流路91を設ける目的は、再生器G2中での吸収液の過剰濃縮、ひいては結晶化を防止することだからである。
バイパス流路91の始点を、排ガスGH102が蒸発器管群250の全てを通過して排ガスGH5となった部分とすれば、蒸発器E2で排ガスGH102の高温部分をできるだけ利用することができ熱利用の観点から好ましい。しかしながら、バイパス流路91の始点を、排ガスGH102が蒸発器管群250の上流側のある程度の本数の垂直伝熱管251を通過した後の部分としても、排ガスGH102の熱量は蒸発器E2でかなり利用できている上に、装置構成の柔軟性を高めることができる。すなわち、蒸発器管群250と再生器管群270との間の空間部分を短く構成することができ、装置のコンパクト化、流路抵抗の低減を図ることができる。
バイパス流路91には、バイパス流量を制限するダンパ92を備える。バイパス流路91は、再生器G2中での吸収液ALiの過剰濃縮、ひいては結晶化を防止するに十分な排ガスGH5をバイパスするものだからである。必要以上にバイパスする必要はない。ダンパ92は、排ガスGH5の流量を制限するだけでなく、遮断できるものが好ましい。再生器G2中の吸収液の濃度が危険領域にないときは、完全に遮断した方が熱回収の観点から好ましいからである。
なお図5では、バイパス91は、再生器G2と再生器G1の両方をバイパスするものとして図示しているが、少なくとも再生器G2をバイパスすればよい。吸収液の過剰濃縮、結晶の恐れが高いのは、排ガスの上流側にある再生器G2だからである。
この実施の形態では、再生器G2内の吸収液ALiの濃度を検出する濃度検出器DEN(図1参照)を備えるとよい。再生器G1と再生器G2を比較すると、デューリング線図(図2参照)に示されるように、再生器G2には、結晶、過剰濃縮の可能性がある。そこで、再生器G2の出口濃度上昇時には、再生器G2の濃縮能力を調節するとよい。そこで、濃度検出器DENを備えて、再生器G内の吸収液ALiの濃度に応じてダンパ92の開度を調節し、再生器G2への排ガスの流入量を加減する。濃度検出器DENは、再生器G2内の吸収液ALiの濃度が最も高くなる位置、典型的には上部ヘッダ275内に設置する。なお、図1に示すように上部ヘッダ275から吸収器A2に吸収液ALiを導く吸収液移送管路202に設置してもよい。その場合、できるだけ再生器G2に近い位置が好ましい。濃度検出器DENは、濃度を直接検出する検出器に限らず、間接的に検出するものであってもよい。すなわち濃度に相当する物理量、例えば吸収液の密度を検出するものであってもよい。ここでいう濃度は、濃度に関連する算出値であってもよい。すなわち濃度は、密度と温度から検出するものであってもよく、音速と温度から検出するものであってもよく、濃度の代わりに密度、比重を基にしてもよい。また、再生器出口の溶液温度と再生器G2の蒸気圧(あるいは露点)との関係から濃度を推定してもよい。すなわち、溶液の気液平衡関係から算出してもよい。再生器の蒸気圧あるいは露点は冷却水温度に強く影響されるので、溶液温度と冷却水温度から濃縮の危険性を判断してもよい。このように推定、或いは算出するものも濃度検出の一形態とする。
この実施の形態では、さらに蒸発器E2と再生器G2との間、さらに言えば蒸発器管群250と再生器管群270との間に、ダンパ93を設けるのが好ましい。バイパス流路91とダンパ92を備えれば、再生器管群270(及び再生器管群170)の流路抵抗により、かなりの量の排ガスGH5をパイパス91に流すことができるが、さらにダンパ93を設けることにより、調節の幅を広げることができる。ダンパ93は、多葉式、すなわち本体部分を縦または横に複数枚に分割した平板とし、それぞれの縦長あるいは横長の平板の長手方向中心軸回りを回動可能にしたものである。多葉式にすると、蒸発器E2と再生器G2との間の空間を大きく取る必要がなく、蒸発器E1、E2と再生器G2、G1の組合せをコンパクト化し易い。ダンパ92も多葉式としてもよい。
ダンパ93は、排ガスGH5の流量を制限するだけでなく、遮断できるものが好ましい。再生器G2中の吸収液の濃度によっては、一時的に完全に遮断したい場合もあり得るからである。ダンパ93を完全に遮断するときは、通常はダンパ92は全開とする。
なお、バイパス流路91を設けると、見掛け上、側板274b、174bが単層構造乃至は単板構造ではなく、複層構造であるかのように見える。しかしながら、バイパス流路91は、内圧のかかる複層構造の水冷壁の構造とは異なる。すなわち、排ガスGHは排ガス流路60を流れるときは、圧力は無視できる程度に低い。したがって、側版274b、174bは、単層構造乃至は単板構造とすることができる点で、バイパス流路91が設けられていない場合と同様である。単層構造の側版274b、174bの外側に、圧力容器として扱う必要のないバイパス流路91が設けられているだけである。
試算によれば、排ガスGH1の入口温度が200℃で、180℃の水蒸気Sを得ようとすると、排ガスボイラでは約12の熱量しか得られないのに対して、吸収ヒートポンプを用いると約43の熱量が得られる。また排ガスGH1の入口温度が180℃のときは、排ガスボイラでは当然のことながら、得られる熱量はゼロであるのに対して、吸収ヒートポンプを用いると約32の熱量が得られる。ここで発生蒸気熱量は、排ガスを温度200℃から100℃まで利用した場合の熱量を100として相対的な数字で示している。
蒸発器E1、E2と再生器G2、G1は、管板を共通とするだけでなく、缶胴を一体構造としてもよい。
本発明の吸収ヒートポンプは、熱源出口温度差を大きく利用する場合に利用され、特に排ガスのような熱源ガスから熱を回収して被加熱媒体を加熱するのに利用される。
5 冷媒液移送管路
7 補給水移送管路
8 蒸気供給管路
11 気液分離器
17、117、217 冷媒蒸気移送管
100 吸収ヒートポンプ
100−1 第一の吸収ヒートポンプ部
100−2 第二の吸収ヒートポンプ部
102、103、202、203 吸収液移送管路
116、216 冷媒蒸気移送管
122、222 吸収液スプレイ
123、223 被加熱管
21 制御装置
30 冷却管
37 逆止弁
38 逆止弁
40 逆止弁
60 排ガス流路
91 バイパス流路
92、93 ダンパ
139、239 逆止弁
150、250 蒸発器管群
151、251 垂直伝熱管
152、252 蒸発器上部管板
153、253 蒸発器下部管板
154a、154b、254a、254b 蒸発器側板
155、255 蒸発器上部ヘッダ
156、256 蒸発器下部ヘッダ
170、270 再生器管群
171、271 垂直伝熱管
172、272 再生器上部管板
173、273 再生器下部管板
174a、174b、274a、274b 再生器側板
175、275 再生器上部ヘッダ
176、276 再生器下部ヘッダ
A1、A2 吸収器(吸収部)
ALi 吸収液
B 熱交換器
C 凝縮器
CS 冷媒蒸気
CL 冷媒液
DEN 濃度センサ
E1、E2 蒸発器
G1、G2 再生器
GH、GH0、GH1、GH3、GH4、GH5、GH102、GH202 排ガス
L101、L201、L102、L202、L3 液面レベルセンサ
P 圧力センサ
P4 冷媒ポンプ
P12、P13 給水ポンプ
P101、P201 溶液ポンプ
S 蒸気
V1 蒸気弁
V103、V203 冷媒供給弁
W1 補給水
WC 冷却水
X2 熱交換器
X101、X201 溶液熱交換器

Claims (5)

  1. 熱源流体により冷媒を加熱して蒸発させる第一の蒸発器と;
    前記第一の蒸発器で蒸発した冷媒を吸収して吸収熱で被加熱媒体を加熱する第一の吸収器と;
    前記第一の吸収器で冷媒を吸収して濃度の低下した吸収液を前記熱源流体により加熱して再生する第一の再生器と;
    前記熱源流体により冷媒を加熱して蒸発させる第二の蒸発器と;
    前記第二の蒸発器で蒸発した冷媒を吸収して吸収熱で被加熱媒体を加熱する第二の吸収器と;
    前記第二の吸収器で冷媒を吸収して濃度の低下した吸収液を前記熱源流体により加熱して再生する第二の再生器とを備え;
    前記第一の蒸発器、第二の蒸発器、第二の再生器及び第一の再生器は、前記熱源流体を流す流路中に、前記熱源流体の上流側から下流側に向けて、この順に配置された;
    吸収ヒートポンプ。
  2. 前記熱源流体が100℃まで利用する熱源ガスであり、
    前記第一の蒸発器及び第二の蒸発器は、それぞれ、
    蒸発器上部管板と、
    蒸発器下部管板と、
    前記蒸発器上部管板と蒸発器下部管板との間に設けられた、内側を液状の前記冷媒が流れる複数本の垂直伝熱管とを有し;
    前記第一の再生器及び第二の再生器は、それぞれ、
    再生器上部管板と、
    再生器下部管板と、
    前記再生器上部管板と再生器下部管板との間に設けられた内側を前記吸収液が流れる複数本の垂直伝熱管とを有し;
    前記複数本の垂直伝熱管の外側を前記垂直伝熱管と交差して前記熱源ガスが流れるように構成され;
    前記複数本の垂直伝熱管は、前記第一の蒸発器と、前記第二の蒸発器と、前記第二の再生器と、前記第一の再生器で、それぞれ第一の蒸発器管群と、第二の蒸発器管群と、第二の再生器管群と、第一の再生器管群とを構成し、前記第一の蒸発器管群と、前記第二の蒸発器管群と、前記第二の再生器管群と前記第一の再生器管群とは、前記熱源ガスの流れに対して直線的に配列された;
    請求項1に記載の吸収ヒートポンプ。
  3. 前記熱源ガスの流路中、前記第二の蒸発器の下流側の端部から前記第二の再生器をバイパスして、前記熱源ガスを前記第二の再生器の下流側に流すバイパス流路と、前記バイパス流路中の前記熱源ガスの流れを制限する流れ制限手段を備える、請求項1又は請求項2に記載の吸収ヒートポンプ。
  4. 前記第一の吸収器及び第二の吸収器は、前記被加熱媒体としての水を加熱し大気圧以上の圧力の水蒸気を発生するように構成され、生成された水蒸気を、随伴する水から分離する気液分離器を備える、請求項1乃至請求項3のいずれか1項に記載の吸収ヒートポンプ。
  5. 前記熱源流体の流路中、前記第一の蒸発器の上流側に、前記熱源流体の熱で直接水蒸気を発生する熱交換器を備える、請求項1乃至請求項4のいずれか1項に記載の吸収ヒートポンプ。
JP2010112593A 2010-05-14 2010-05-14 吸収ヒートポンプ Active JP5552363B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010112593A JP5552363B2 (ja) 2010-05-14 2010-05-14 吸収ヒートポンプ
CN201110124518.2A CN102242982B (zh) 2010-05-14 2011-05-13 吸收热泵

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010112593A JP5552363B2 (ja) 2010-05-14 2010-05-14 吸収ヒートポンプ

Publications (3)

Publication Number Publication Date
JP2011242014A JP2011242014A (ja) 2011-12-01
JP2011242014A5 JP2011242014A5 (ja) 2013-02-07
JP5552363B2 true JP5552363B2 (ja) 2014-07-16

Family

ID=45408862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010112593A Active JP5552363B2 (ja) 2010-05-14 2010-05-14 吸収ヒートポンプ

Country Status (1)

Country Link
JP (1) JP5552363B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109458753B (zh) * 2018-12-27 2024-04-02 双良节能系统股份有限公司 一种在线检测密度烟气型溴化锂吸收式低温冷水机组
CN113102546B (zh) * 2021-04-12 2022-12-16 北京钢研高纳科技股份有限公司 Gh4202镍基高温合金管材及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934956B2 (ja) * 1977-04-25 1984-08-25 日立造船株式会社 温水の熱回収システム等において使用せられる蒸発器
JPS61211668A (ja) * 1985-03-15 1986-09-19 松下電工株式会社 除湿機
JPH08261600A (ja) * 1995-03-22 1996-10-11 Asahi Eng Co Ltd 排熱の回収方法
JP4274619B2 (ja) * 1998-04-09 2009-06-10 大阪瓦斯株式会社 排熱回収システム
JP2002098435A (ja) * 2000-09-22 2002-04-05 Kawasaki Thermal Engineering Co Ltd 吸収冷凍機
JP2003222434A (ja) * 2002-01-30 2003-08-08 Ebara Corp 排ガス駆動吸収冷温水機用再生器
JP2004239558A (ja) * 2003-02-07 2004-08-26 Yazaki Corp 吸収式冷温水機
JP2006177569A (ja) * 2004-12-21 2006-07-06 Ebara Corp 吸収ヒートポンプシステム
JP5250340B2 (ja) * 2008-08-25 2013-07-31 荏原冷熱システム株式会社 吸収ヒートポンプ

Also Published As

Publication number Publication date
JP2011242014A (ja) 2011-12-01

Similar Documents

Publication Publication Date Title
KR101954965B1 (ko) 가스를 건조 및/또는 냉각하기 위한 장치
JP2010247022A (ja) 液体デシカント再生装置及びデシカント除湿空調装置
US7882809B2 (en) Heat exchanger having a counterflow evaporator
CN103906978A (zh) 调湿装置
JP2006322692A (ja) 蒸気発生器、及び排熱発電装置
JP5552363B2 (ja) 吸収ヒートポンプ
JP5514003B2 (ja) 吸収ヒートポンプ
JP5676914B2 (ja) 吸収ヒートポンプ
KR20160145242A (ko) 배가스 전단 열교환기와 흡수액 유동층 열교환기를 이용한 배가스 응축열 회수 시스템 및 회수 방법
CN102242982B (zh) 吸收热泵
JP2012202589A (ja) 吸収式ヒートポンプ装置
KR20150007131A (ko) 흡수식 칠러
JP2019074271A (ja) 吸収式熱交換システム
JP2006207883A (ja) 吸収ヒートポンプ
JP4148830B2 (ja) 一重二重効用吸収冷凍機
JP2007232271A (ja) 三重効用吸収冷凍機
JP5513981B2 (ja) 吸収ヒートポンプ
JP6672847B2 (ja) 吸収式ヒートポンプ装置
JP2018096673A (ja) 吸収式熱交換システム
JP6570965B2 (ja) 吸収ヒートポンプ
JP2019020111A (ja) 吸収ヒートポンプ
CN108375238A (zh) 吸收式制冷机
JP2008304082A (ja) 吸収式冷凍装置
JP4278609B2 (ja) 吸収式冷凍機
JP2007263461A (ja) 吸収冷凍機

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140526

R150 Certificate of patent or registration of utility model

Ref document number: 5552363

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250