JP5537347B2 - 粒子分析装置 - Google Patents

粒子分析装置 Download PDF

Info

Publication number
JP5537347B2
JP5537347B2 JP2010198593A JP2010198593A JP5537347B2 JP 5537347 B2 JP5537347 B2 JP 5537347B2 JP 2010198593 A JP2010198593 A JP 2010198593A JP 2010198593 A JP2010198593 A JP 2010198593A JP 5537347 B2 JP5537347 B2 JP 5537347B2
Authority
JP
Japan
Prior art keywords
light
optical system
light source
particles
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010198593A
Other languages
English (en)
Other versions
JP2011133460A5 (ja
JP2011133460A (ja
Inventor
正継 小篠
寛征 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sysmex Corp
Original Assignee
Sysmex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sysmex Corp filed Critical Sysmex Corp
Priority to JP2010198593A priority Critical patent/JP5537347B2/ja
Priority to US12/951,779 priority patent/US8772738B2/en
Priority to CN201010565424.4A priority patent/CN102156088B/zh
Priority to EP10193092.3A priority patent/EP2327977A3/en
Publication of JP2011133460A publication Critical patent/JP2011133460A/ja
Publication of JP2011133460A5 publication Critical patent/JP2011133460A5/ja
Application granted granted Critical
Publication of JP5537347B2 publication Critical patent/JP5537347B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1429Signal processing
    • G01N15/1433Signal processing using image recognition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1468Optical investigation techniques, e.g. flow cytometry with spatial resolution of the texture or inner structure of the particle
    • G01N15/147Optical investigation techniques, e.g. flow cytometry with spatial resolution of the texture or inner structure of the particle the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/30Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
    • G01N1/31Apparatus therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0092Monitoring flocculation or agglomeration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1434Optical arrangements
    • G01N2015/1438Using two lasers in succession

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Computer Vision & Pattern Recognition (AREA)

Description

本発明は、フローセルを流れる粒子を含む測定試料に光を照射し、その測定試料中の粒子から生じる光を利用して当該粒子を分析する粒子分析装置に関する。
特許文献1には、粒子を含む試料液をシース液で包むことで試料流を形成するシースフローセルと、試料流に光を照射する連続光源及びパルス光源と、連続光源により光を照射されることで粒子から生じる前方散乱光や蛍光を検出する検出器と、パルス光源により照明された粒子の画像を撮像するビデオカメラとを備え、検出器によって検出した前方散乱光や蛍光の信号に基づき粒子の特徴パラメータを取得する粒子測定装置が開示されている。
この粒子測定装置において、連続光源からの光及びパルス光源からの光は、シースフローセルに対して互いに直交するように照射されている。また、この粒子測定装置において、連続光源からの光がフローセルの上流側において粒子に照射され、パルス光源からの光がフローセルの下流側において粒子に照射される。
特開平11−30580号
上記粒子測定装置においては、撮像対象の粒子が、光を透過する粒子、例えば細胞の場合には画像のコントラストが低くなってしまうことがあった。
本発明は、光を透過する粒子であってもコントラストが高い画像の取得と、少なくとも前方散乱光に基づく粒子の特徴パラメータの取得が可能な粒子分析装置を提供することを技術的課題とするものである。
本発明の第一の観点にかかる粒子分析装置は、粒子を含む試料流を形成するフローセルと、試料流に光を照射するための第一及び第二光源と、第一及び第二光源からの光を試料流に導く照射光学系と、フローセルを介して照射光学系とは反対側に配置され、かつ照射光学系から出射する光の光路上に配置される遮光部材と、遮光部材によって第一光源からの直接光が遮光され位置に配置され、第一光源からの光によって試料流中の粒子からの前方散乱光を検出する検出部と、検出部からの信号に基づき粒子の特徴パラメータを取得する制御部と、遮光部材によって第二光源からの直接光の少なくとも一部が遮光された位置に配置され、第二光源からの光によって試料流中の粒子を撮像する撮像部と、を備える。
上記構成によれば、粒子からの前方散乱光を検出するための第一光源及び粒子画像を撮像するための第二光源からの光が、単一の照射光学系によって試料流に照射される。さらに、上記構成によれば、照射光学系により試料流に照射された第一光源からの直接光が遮光部材によって遮られるため、検出部に直接光が入り込まない。そのため、少なくとも前方散乱光に基づく粒子の特徴パラメータを取得することができる。さらに、照射光学系により試料流に照射された第二光源からの直接光の少なくとも一部は遮光部材によって遮られる。直接光がカットアウトされた状態(暗視野照明)において粒子の画像を撮像するため、直接光を遮光しない状態(明視野照明)において撮像された画像に比べてバックグラウンドが黒くなり、光を透過する粒子であってもコントラストの高い画像を撮像することができる。したがって、上記構成によれば、光を透過する粒子であっても、コントラストが高い画像の取得と、少なくとも前方散乱光に基づく粒子の特徴パラメータの取得が可能である。さらに、上記構成によれば、粒子の特徴パラメータを取得するための系と粒子の画像を撮像するための系で、光学系のほとんどの部分を共通化することができ、光学系の小型化が可能である。
上記構成において、照射光学系は、遮光部材によって第二光源からの直接光が部分的に遮光されるように構成されていてもよい。
上記構成において、第一光源からの光を照射光学系に入射させる第一光学系と、第二光源からの光を照射光学系に入射させる第二光学系と、を備えていてもよい。
また、上記構成において、第一光学系は、第一光源からの光を、試料流に垂直及び平行な方向において平行光として照射光学系に入射させ、第二光学系は、第二光源からの光を、試料流に垂直な方向において平行光として、試料流に平行な方向において収束光として照射光学系に入射させてもよい。なお、ここで、第一光源からの光を、試料流に垂直及び平行な方向において平行光として照射光学系に入射させるとは、第一光源からの光を、試料流に垂直な方向から見ても、試料流に平行な方向から見ても、平行に照射光学系に入射させることである。また、第二光源からの光を、試料流に垂直な方向において平行光として、試料流に平行な方向において収束光として照射光学系に入射させるとは、第二光源からの光を、試料流に垂直な方向から見て平行に、試料流に平行な方向から見て収束させて照射光学系に入射させることである。
また、上記構成において、照射光学系は、第一光学系からの光を、試料流に垂直な方向において遮光部材が配置される位置に、試料流に平行な方向において試料流にそれぞれ集光し、第二光学系からの光を、試料流に垂直な方向及び平行な方向において遮光部材が配置される位置にそれぞれ集光してもよい。
また、上記構成において、第二光学系及び照射光学系は、それぞれ少なくとも1つのシリンドリカルレンズを含んでいてもよい。
また、上記構成において、試料流中の粒子からの側方散乱光を検出する第二検出部と、
試料流中の粒子からの側方蛍光を検出する第三検出部と、をさらに備え、制御部は、検出部、第二検出部、及び第三検出部からの信号に基づき粒子の特徴パラメータを取得してもよい。
また、上記構成において、制御部は、特徴パラメータを取得した粒子が対象粒子である場合に当該粒子を照明するよう第二光源を制御してもよい。
また、上記構成において、記憶部をさらに備え、制御部は、粒子の特徴パラメータと当該粒子の画像を対応付けて記憶部に記憶してもよい。
また、上記構成において、表示部をさらに備え、制御部は、粒子の特徴パラメータと当該粒子の画像のうち少なくとも一方を表示するよう表示部を制御してもよい。
また、上記構成において、試料流中の粒子が細胞であってもよい。
本発明の粒子分析装置によれば、光を透過する粒子であってもコントラストが高い画像の取得と、少なくとも前方散乱光に基づく粒子の特徴パラメータの取得が可能である。
本発明の一実施の形態にかかる細胞分析装置の斜視図である。 本発明の一実施の形態にかかる細胞分析装置の構成を示すブロック図である。 本発明の一実施の形態にかかるシステム制御部を構成するパソコンのブロック図である。 本発明の一実施の形態にかかる光学検出部の構成を示す平面図である。 本発明の一実施の形態にかかる光学検出部の構成を示す側面図である。 本発明の一実施の形態にかかる第一光源にかかる光学系の側面図である。 本発明の一実施の形態にかかる第一光源にかかる光学系の平面図である。 本発明の一実施の形態にかかる第二光源にかかる光学系の側面図である。 本発明の一実施の形態にかかる第二光源にかかる光学系の平面図である。 本発明の一実施の形態にかかる撮像部及び検出部にかかる光学系の平面図である。 本発明の一実施の形態にかかる遮光板の構成を示す図である。 本発明の一実施の形態にかかるシステム制御部のCPUによる処理の流れを示すフローチャートである。 本発明の一実施の形態にかかるシステム制御部のCPUによる細胞分析処理を示すフローチャートである。 本発明の一実施の形態にかかる表示部の画面構成の一例を示す概略図である。 本発明の第一及び第二実施形態にかかる光学系の構成を示した図である。 細胞を撮像して得られた画像である。 細胞を撮像して得られた画像である。 細胞を撮像して得られた画像である。
以下、添付図面を参照しつつ、本発明の一実施の形態にかかる粒子分析装置について説明する。上記粒子分析装置は、患者から採取した細胞を含む測定試料をフローセルに流し、このフローセルを流れる測定試料にレーザ光を照射し、測定試料からの光(前方散乱光、側方蛍光等)を検出・分析することで、上記細胞に癌細胞や異型細胞(以下、これらを「異常細胞」ともいう)が含まれているか否かを判断する細胞分析装置である。具体的には、子宮頸部の上皮細胞を用いて子宮頸癌をスクリーニングするのに用いられる。
[細胞分析装置の全体構成]
図1は、細胞分析装置10の斜視図である。細胞分析装置10は、試料の測定等を行う装置本体12と、この装置本体12に接続され、測定結果の分析等を行うシステム制御部13とを備えている。
図2は、細胞分析装置10の構成を示すブロック図である。図2に示すように、細胞分析装置10の装置本体12は、測定試料から細胞や核のサイズ等の情報を検出し、細胞の画像を撮像するための光学検出部3と、信号処理回路4と、画像処理回路5と、測定制御部16と、モータ、アクチュエータ、バルブ等の駆動部17と、各種センサ18と、を備えている。信号処理回路4は、光学検出部3の出力をプリアンプ(図示せず)により増幅したものに対して増幅処理やフィルタ処理等を行うアナログ信号処理回路と、アナログ信号処理回路の出力をデジタル信号に変換するA/Dコンバータと、デジタル信号に対して所定の波形処理を行うデジタル信号処理回路とを備えている。
また、測定制御部16がセンサ18の信号を処理しつつ駆動部17の動作を制御することにより、測定試料の吸引や測定が行われる。子宮頸癌をスクリーニングする場合、測定試料としては、患者(被検者)の子宮頸部から採取した細胞(上皮細胞)に遠心(濃縮)、希釈(洗浄)、攪拌(タッピング)、PI染色等の公知の処理を施して調製されたものを用いることができる。調製された測定試料は試験管に収容され、装置本体12のピペット(図示せず)下方位置に設置され、ピペットにより吸引されてシース液とともにフローセルに供給され、フローセルにおいて試料流が形成される。上記PI染色は、色素を含んでいる蛍光染色液であるヨウ化プロピジウム(PI)により行われる。PI染色では核に選択的に染色が施されるため、核からの蛍光が検出可能となる。
[測定制御部の構成]
測定制御部16は、マイクロプロセッサ20、記憶部21、I/Oコントローラ22、センサ信号処理部23、駆動部制御ドライバ24、及び外部通信コントローラ25等を備えている。記憶部21は、ROM、RAM等からなり、ROMには、駆動部17を制御するための制御プログラム、及び、制御プログラムの実行に必要なデータが格納されている。マイクロプロセッサ20は、制御プログラムをRAMにロードし、又はROMから直接実行することが可能である。
マイクロプロセッサ20には、センサ18からの信号がセンサ信号処理部23及びI/Oコントローラ22を通じて伝達される。マイクロプロセッサ20は、制御プログラムを実行することにより、センサ18からの信号に応じて、I/Oコントローラ22及び駆動部制御ドライバ24を介して駆動部17を制御することができる。
マイクロプロセッサ20が処理したデータや、マイクロプロセッサ20の処理に必要なデータは、外部通信コントローラ25を介してシステム制御部13等の外部の装置との間で送受信される。
[システム制御部の構成]
図3は、システム制御部13のブロック図である。システム制御部13は、パーソナルコンピュータ等からなり、本体27と、表示部28と、入力部29とから主に構成されている。本体27は、CPU27aと、ROM27bと、RAM27cと、ハードディスク27dと、読出装置27eと、入出力インターフェース27fと、画像出力インターフェース27gと、から主に構成されている。これらの間は、バス27hによって通信可能に接続されている。
CPU27aは、ROM27bに記憶されているコンピュータプログラム及びRAM27cにロードされたコンピュータプログラムを実行することが可能である。ROM27bは、マスクROM、PROM、EPROM、EEPROM等によって構成されており、CPU27aに実行されるコンピュータプログラム及びこれに用いるデータ等が格納されている。RAM27cは、SRAM又はDRAM等によって構成されている。RAM27cは、ROM27b及びハードディスク27dに記録されているコンピュータプログラムの読み出しに用いられる。また、これらのコンピュータプログラムを実行するときに、CPU27aの作業領域として利用される。
ハードディスク27dは、オペレーティングシステム及びアプリケーションプログラム等、CPU27aに実行させるための種々のコンピュータプログラム及びそのコンピュータプログラムの実行に用いるデータがインストールされている。例えば、ハードディスク27dには、米マイクロソフト社が製造販売するWindows(登録商標)等のグラフィカルユーザーインターフェース環境を提供するオペレーティングシステムがインストールされている。また、凝集粒子と非凝集粒子とを判別するためのコンピュータプログラム及びそのコンピュータプログラムの実行に用いるデータが、ハードディスク27dにインストールされている。
また、ハードディスク27dには、細胞分析装置10の測定制御部16への測定オーダ(動作命令)の送信、装置本体12で測定した測定結果の受信及び処理、処理した分析結果の表示等を行う操作プログラムがインストールされている。この操作プログラムは、上記オペレーティングシステム上で動作するものとしている。
読出装置27eは、フレキシブルディスクドライブ、CD−ROMドライブ、又はDVD−ROMドライブ等によって構成されており、可搬型記録媒体に記録されたコンピュータプログラム又はデータを読み出すことができる。入出力インターフェース27fは、例えば、USB、IEEE1394、RS−232C等のシリアルインタフェース、SCSI、IDE、IEEE1284等のパラレルインタフェース、及びD/A変換器、A/D変換器等からなるアナログインタフェース等から構成されている。入出力インターフェース27fには、キーボード及びマウスからなる入力部29が接続されており、ユーザーが入力部29を使用することにより、パーソナルコンピュータにデータを入力することが可能である。また、入出力インターフェース27fは、装置本体12と接続されており、装置本体12との間でデータ等の送受信を行うことが可能である。
画像出力インターフェース27gは、LCD又はCRT等で構成された表示部28に接続されており、CPU27aから与えられた画像データに応じた映像信号を表示部28に出力するようになっている。表示部28は、入力された映像信号にしたがって、画像(画面)を表示する。
ここで、信号処理回路4でフィルタ処理やA/D変換処理等の信号処理が施されて得られた前方散乱光データ(FSC)、側方散乱光データ(SSC)及び側方蛍光データ(SFL)や、これらデータを用いて求められた後述の特徴パラメータは、マイクロプロセッサ20によって、外部通信コントローラ25を介して前述したシステム制御部13へ送られ、ハードディスク27dに記憶される。システム制御部13では、前方散乱光データ(FSC)、側方散乱光データ(SSC)、側方蛍光データ(SFL)及び特徴パラメータに基づいて、細胞や核を分析するためのスキャッタグラムやヒストグラムが作成され、所定の分析が行われる。また、粒子の特徴パラメータが所定の値域の場合、後述する第二光源67が発光し、後述するCCDカメラ70によって粒子の画像が撮像される。
[光学検出部及び撮像部の構成]
図4は、光学検出部3の構成を示す上面図(y方向から見た図)である。また、図5は、光学検出部3の構成を示す側面図(x方向から見た図)である。図4及び図5に示すように、この光学検出部3は、半導体レーザからなる第一光源51を備え、この第一光源51からy方向に放射されたレーザ光は、第一レンズ系52を経て、ダイクロイックミラー53によって反射され、照射レンズ系54を経てフローセル55を流れる測定試料に集光する。ここで、測定試料は、図4の紙面に直行する方向(y方向)に流れている。第一光源51放射されたレーザ光によって測定試料中の細胞から生じた前方散乱光は、レンズ57a、ダイクロイックミラー58、フィルタ59及びピンホール60を介してフォトダイオード(検出器)61に検出される。なお、第一レンズ系52は、コリメータレンズを含むレンズ群から構成されている。また、第二レンズ系69は、シリンドリカルレンズを含むレンズ群から構成されている。また、遮光板56は、第一光源51から放射された直接光を遮るために配置されている。
さらに、細胞から生じた側方散乱光は、フローセル55の側方(x方向)に配置されたレンズ57bを介し、ダイクロイックミラー62により反射され、フィルタ63を介してフォトマルチプライヤ64に入射する。これにより、細胞から生じた側方散乱光がフォトマルチプライヤ64により検出される。また、細胞から生じた側方蛍光は、フローセル55の側方(x方向)に配置されたレンズ57bを介し、ダイクロイックミラー62を透過し、フィルタ65を介してフォトマルチプライヤ66に入射する。これにより、細胞から生じた側方蛍光がフォトマルチプライヤ66により検出される。
フォトダイオード61、フォトマルチプライヤ64,66は、検出した光を電気信号に変換し、それぞれ、前方散乱光信号(FSC)、側方散乱光信号(SSC)及び側方蛍光信号(SFL)を出力する。これらの信号は、図示しないプリアンプにより増幅された後、上述した信号処理回路4(図2参照)に送られる。
なお、第一光源51として、上記半導体レーザに代えてガスレーザを用いることもできるが、低コスト、小型、かつ低消費電力である点で半導体レーザを採用するのが好ましく、半導体レーザの採用により製品コストを低減させるとともに、装置の小型化及び省電力化を図ることができる。本実施の形態では、ビームを狭く絞ることに有利な波長の短い青色半導体レーザを用いている。青色半導体レーザは、PI等の蛍光励起波長に対しても有効である。
光学検出部3は、さらに、半導体レーザからなりパルスレーザ光を出射する第二光源67とCCDカメラ70とを備えており、パルスレーザ67からのレーザ光は、光ファイバ束68、第二レンズ系69、ダイクロイックミラー53、照明レンズ系54を経てフローセル55に入射し、さらにレンズ57aを透過し、ダイクロイックミラー58によって反射されてカメラ70に結像する。なお、第二光源67からz方向に放射される直接光は、遮光板56によって遮られる。第二光源67は、後述するように前方散乱光データ(FSC)、側方散乱光データ(SSC)及び側方蛍光データ(SFL)から求められた特徴パラメータに基づき弁別された異常細胞をカメラ70によって撮像するタイミングで発光する。
ここで、上記半導体レーザに代えてガスレーザを用いることもできるが、低コスト、小型、かつ低消費電力である点で半導体レーザを採用するのが好ましく、半導体レーザの採用により製品コストを低減させるとともに、装置の小型化及び省電力化を図ることができる。また、本実施の形態では、第二光源67として赤色半導体レーザを用いている。
ここで、第一光源51から出射される光と第二光源67から出射される光とが同一波長のレーザ光である場合、例えば、細胞の画像を撮像するときだけ第一光源51からの連続光の出射を止めるなどの制御が必要となる。そのため、第二光源67から出射される光の波長は、第一光源51から出射される光の波長と異なることが好ましい。また、第二光源67から出射される光の波長は、試料流中の粒子から生じる蛍光の波長とも異なることが好ましい。
図2に示すように、カメラ70によって撮像された異常細胞の画像は、画像処理回路5と、マイクロプロセッサ20によって、外部通信コントローラ25を介してシステム制御部13へ送られる。そして、異常細胞の画像は、システム制御部13において、前方散乱光データ(FSC)、側方散乱光データ(SSC)及び側方蛍光データ(SFL)に基づいて求められた特徴パラメータに対応づけてハードディスク27d(記憶部)に記憶される。
[光学系の説明]
次に、第一光源にかかる光学系Aについて詳細に説明する。図6は、第一光源51にかかる光学系Aの側面図(x方向から見た図)であり、図7は、第一光源51にかかる光学系Aの平面図(y方向から見た図)である。図6及び図7に示すように、第一光源51にかかる光学系Aは、ウインドウ52a及び両凸単レンズ(コリメータレンズ)52bを備える第一レンズ系52と、両Rシリンドリカルレンズ54a、両R球面レンズ54b、両R球面シリンドリカルレンズ54cを備える照明レンズ系54と、を含む。
図6に示すように、第一光源51から出射されたレーザ光を側面(x方向)から見ると、第一光源51から出射されて拡散するレーザ光は、両Rシリンドリカルレンズ54a及び両R球面レンズ54bによってフローセル55を流れる試料流で集光する。
一方、図7に示すように、第一光源51から出射されたレーザ光を上面(y方向)から見ると、第一光源51から出射されて拡散するパルスレーザ光は、ウインドウ52aによってコリメートされ、両凸単レンズ52bに入射して平行光に変化され、ダイクロイックミラー53によって反射され、両Rシリンドリカルレンズ54a、両R球面レンズ54b、及び両R球面シリンドリカルレンズ54cにより、フローセル55よりも後方の遮光板56で集光する。
次に、第二光源67にかかる光学系Bについて詳細に説明する。図8は、第二光源67にかかる光学系Bの側面図(x方向から見た図)であり、図9は、第二光源67にかかる光学系Bの平面図(y方向から見た図)である。図8及び図9に示すように、第二光源67にかかる光学系Bは、両凸単レンズ69a及び平凸シリンドリカルレンズ69bを備える第二レンズ系69と、両Rシリンドリカルレンズ54a、両R球面レンズ54b、両R球面シリンドリカルレンズ54cを備える照明レンズ系54と、を含む。
図8に示すように、光ファイバ束68から出射されたパルスレーザ光を側面(x方向)から見ると、光ファイバ束68から出射されて拡散するパルスレーザ光は、両凸単レンズ69aで平行光に変換され、平凸シリンドリカルレンズ69bで測定試料の流れ方向Fに収束された後に拡散し、両Rシリンドリカルレンズ60cを通過した後、両R球面レンズ54a及び両R球面シリンドリカルレンズ54bによってフローセル51よりも後方の遮光板56で集光する。
一方、図9に示すように、光ファイバ束68から出射されたパルスレーザ光を上方(y方向)から見ると、光ファイバ束68から出射されて拡散するパルスレーザ光は、両凸単レンズ(コリメータレンズ)69aに入射して平行光に変化され、平凸シリンドリカルレンズ69bを通過し、両Rシリンドリカルレンズ54a、両R球面レンズ54b、及び両R球面シリンドリカルレンズ54cにより、フローセル55よりも後方の遮光板56で集光する。
次に、フォトダイオード61及びカメラ70にかかる光学系Cについて説明する。図10は、フォトダイオード61及びカメラ70にかかる光学系Cの上面図(y方向から見た図)である。まず、第一光源51から出射された光が照射されることで試料流中の細胞から生じる前方散乱光は、レンズ57aによって集光され、ダイクロイックミラー58及びフィルタ59を透過し、ピンホール60を通過してフォトダイオード61に入射する。これにより、フォトダイオード61によって細胞から生じる前方散乱光信号が検出される。
また、第二光源67から出射された光が試料流中の細胞に照射されることで生じる散乱光は、レンズ57aによって集光され、ダイクロイックミラー58によって反射され、カメラ70で集光(結像)する。ここで、第一光源51及び第二光源67から出射される直接光は、上述したように遮光板56によって遮られる。そのため、カメラ70は、第二光源67からからの直接光がカットアウトされた状態(暗視野照明)において、細胞画像を撮像することができる。この場合、背景が黒色であり、細胞が白色である画像が得られる。
図11は、遮光板56の構成を示す図である。図11に示すように、遮光板56は、その中央部に円形開口562が形成され、円形開口562中央に遮光部561が設けられている。遮光部561は試料流に対して平行方向(y方向)に延びて円形開口562を縦断し、試料流に対して垂直方向(x方向)に狭い幅を有している。このため、第一光源52及び第二光源67からの直接光は、遮光部561に遮られる。また、試料流中の粒子から生じた散乱光は、遮光板56の円形開口562を介してレンズ57aに入射する。このような遮光板56は黒色塗装した金属板等を加工することで容易に形成できる。
[特徴パラメータの内容]
(分析対象細胞の分類に使用する特徴パラメータ)
測定試料中には、分析対象細胞以外に、粘液、血液の残りカス、細胞の破片等のデブリスや白血球等(以下、これらを「デブリス等」ともいう)が含まれることがある。このデブリス等が測定試料中に多量に含まれていると、そのデブリス等からの蛍光がノイズとして検出され、測定精度を低下させることになる。そのため、本実施の形態では、信号処理回路4が、フォトダイオード55から出力された前方散乱光信号から分析対象細胞を含む粒子の大きさを反映した複数の特徴パラメータとして、前方散乱光の信号波形のパルス幅(FSCW)と、前方散乱光の信号波形のピーク値(FSCP)とを取得する。
前方散乱光の信号波形のピーク値(FSCP)は、検出された前方散乱光の最大強度を表す。また、前方散乱光の信号波形のパルス幅(FSCW)は、ベースラインより大きい強度を有する前方散乱光の信号波形の幅を表す。システム制御部13は、前方散乱光の信号波形のパルス幅(FSCW)と前方散乱光の信号波形のピーク値(FSCP)とを含む前方散乱光データを、外部通信コントローラ25を介して装置本体12から受信する。そして、システム制御部13は、前方散乱光の信号波形のパルス幅(FSCW)と前方散乱光の信号波形のピーク値(FSCP)とを用いたスキャッタグラムを作成し、そのスキャッタグラムに基づいて、分析対象細胞と、分析対象細胞以外の粒子等(デブリス等)とを分類する。
デブリス等は分析対象細胞に比べてサイズが小さいことから、粒子の大きさを反映する、前方散乱光の信号波形のピーク値(FSCP)及び前方散乱光の信号波形のパルス幅(FSCW)のそれぞれは分析対象細胞よりも小さくなる。したがって、FSCPG及びFSCWの値が、それぞれ所定の範囲内の細胞を以降の分析対象とすることにより、異常細胞であるか否かの弁別精度を向上させることができる。
(非凝集細胞と凝集細胞の分類に使用する特徴パラメータ)
本実施の形態では、フローセル55を流れる測定試料からの蛍光をフォトマルチプライヤ66が検出し、信号処理回路4は、フォトマルチプライヤ66から出力された蛍光信号から複数の特徴パラメータとして、信号の波形の高さを反映した値である蛍光信号波形のピーク値(PEAK)を取得するとともに、信号の波形の稜線の長さを反映した値である信号波形の差分積分値(DIV)を取得する。蛍光信号波形のピーク値(PEAK)は、検出された蛍光の最大強度を表し、蛍光信号波形の差分積分値(DIV)は、基準となる値より大きい強度を有する蛍光信号波形の長さを表す。
システム制御部13は、蛍光信号波形の差分積分値(DIV)と蛍光信号波形のピーク値(PEAK)とを含む側方蛍光データを、外部通信コントローラ25を介して受信し、蛍光信号波形の差分積分値(DIV)を蛍光信号波形のピーク値(PEAK)で除した値(DIV/PEAK)を所定の閾値と比較することにより、その細胞が凝集細胞であるか、非凝集細胞であるかを判別する。
差分積分値は、信号波形を微分し、その絶対値を足し合わせた値であり、波形に谷のない信号の差分積分値は、その信号のピーク値を2倍した値とほぼ同じになる。一方、波形に谷のある信号の差分積分値は、その信号のピーク値を2倍した値よりも大きくなり、波形に谷が多いほど、また谷が深いほどピーク値を2倍した値との差も大きくなる。
そこで、システム制御部13は、信号に重畳されるノイズ等を考慮して、「2」よりも若干大きめの値である「2.6」を、分析対象細胞が凝集細胞であるか非凝集細胞であるかを判別する基準値となる上記「所定の閾値」としている。なお、所定の閾値は2.6に限られないが、2.0に近い値であることが好ましい。蛍光信号波形の差分積分値(DIV)を蛍光信号波形のピーク値(PEAK)で除した値(DIV/PEAK)が所定の閾値よりも大きいということは、蛍光信号の波形に少なくとも1つの谷が存在するということであり、これにより分析対象細胞を、複数の細胞が凝集した凝集細胞として分類することができる。ここで、前方散乱光の信号波形や側方散乱光の信号波形に比べて、蛍光信号の波形の方が、そのピークや谷の部分が明瞭であることから、凝集細胞と非凝集細胞とを高精度に分類することができる。
(DNA量異常細胞の分類に使用する特徴パラメータ)
細胞が癌化すると、細胞分裂が活発化する結果、DNA量が正常細胞に比べて多くなる。そこで、このDNA量を癌化・異型化の指標とすることができる。核中のDNA量を反映する値としては、レーザ光が照射される分析対象細胞からの蛍光信号のパルスの面積(蛍光量)(SFLI)とすることができる。蛍光信号のパルスの面積(蛍光量)(SFLI)は、基準値と蛍光信号波形とで囲まれた部分の面積を表す。信号処理回路4は、フォトマルチプライヤ66から出力された蛍光信号から、特徴パラメータとして分析対象細胞の核のDNA量を反映した値である蛍光信号のパルスの面積(蛍光量)(SFLI)を取得する。そして、システム制御部13は、この蛍光量が所定の閾値以上であるか否かを判断し、閾値以上である場合には、対象の細胞を異常なDNA量を有するDNA異常細胞として分類する。
本実施形態では、DNA量異常細胞を分類する際に、標準試料から得られる蛍光信号のピークとなる蛍光量の2.5倍以上の蛍光量を示す細胞をDNA量異常細胞として分類することとしている。
(異常細胞の弁別)
2個以上の細胞が互いに凝集した状態でレーザ光のビームスポットを通過すると、複数の核からの蛍光がフォトマルチプライヤ66で検出され、全体として大きな面積のパルスが出力されると考えられる。しかしながら、前述したように、本実施の形態によれば、蛍光信号波形の差分積分値をピーク値で除した値(DIV/PEAK)を利用して、凝集細胞によるデータを高精度に除外することができる。したがって、本実施の形態では、DNA量異常細胞に分類された細胞のうち、凝集細胞にも分類されたものを除外することによって、真に異常細胞である癌・異型細胞を弁別する。これにより、凝集細胞であるが故に大きなDNA量を有するものとして測定された細胞を、異常細胞として誤って分類するのを防止することができる。
[細胞分析方法]
次に、細胞分析装置10(図1参照)による細胞の分析について説明する。まず、フローセルに流す測定試料の調製が使用者の手動により行われる。具体的には、患者の子宮頸部から採取した細胞(上皮細胞)に遠心(濃縮)、希釈(洗浄)、攪拌(タッピング)、PI染色等の公知の処理を施すことで測定試料が調製される。次いで、使用者により、調製された測定試料が試験管(図示せず)に収容され、試験管が装置本体のピペット(図示せず)下方位置に設置される。
次に、図12及び図13を参照して、システム制御部13及び装置本体12の処理の流れについて説明する。まず、システム制御部13の電源が入れられると、システム制御部13のCPU27aは、システム制御部13に格納されているコンピュータプログラムの初期化を行う(ステップS101)。次に、CPU27aは、使用者からの測定指示を受け付けたか否かを判断し(ステップS102)、測定指示を受け付けた場合には(ステップS102においてYES)、I/Oインターフェース27fを介して、測定開始信号を装置本体12に送信する(ステップS103)。
システム制御部13から送信された測定開始信号が装置本体12の測定制御部16によって受信されると(ステップS201)、装置本体12において、試験管に収容された測定試料がピペットにより吸引されてフローセル55に供給され、試料流が形成される(ステップS202)。そして、フローセル55を流れる測定試料中の細胞にレーザ光が照射され、当該細胞からの前方散乱光がフォトダイオード61により検出され、側方散乱光がフォトマルチプライヤ64で検出され、側方蛍光がフォトマルチプライヤ66により検出される(ステップS203)。
ついで、光学検出部3から出力された前方散乱光信号、側方散乱光信号、蛍光信号が信号処理回路4に送られ、信号処理回路4で所定の処理を施すことによって前方散乱光データ(FSC)、側方散乱光データ(SSC)及び側方蛍光データ(SFL)が取得されるとともに、前述したこれらの特徴パラメータが取得される(ステップS204)。取得された各特徴パラメータは、記憶部21に記憶される。そして、測定制御部16は、取得された各特徴パラメータを、測定データとしてシステム制御部12に送信する処理を実行する(ステップS205)。
次いで、測定制御部16は、当該細胞が撮像対象細胞であるか否かを判定する処理を実行する(ステップS206)。ここで、当該細胞のFSCWとFSCPとが所定の範囲内にある場合に当該細胞が撮像対象細胞であると判定される。当該細胞が撮像対象細胞でないと判定した場合(ステップS206においてNO)、処理をステップS209に進める。
測定制御部16は、当該細胞が撮像対象細胞であると判定した場合(ステップS206においてYES)、撮像処理を実行する(ステップS207)。撮像処理は、光源67を発光させ、この発光による照明を利用してフローセル55中の当該細胞の画像をカメラ70によって取り込むことにより行う。次いで、測定制御部16は、外部通信コントローラ25を介して当該細胞の画像データをシステム制御部13に送信する処理を行う(ステップS208)。
次いで、測定制御部16は、フローセル51を流れる試料流が終了したか否かを判断し(ステップS209)、終了した場合にはその旨の情報(終了信号)をシステム制御部13に送信する(ステップS210)。試料流が終了していない場合にはステップS203に処理を戻す。
一方、システム制御部12のCPU27aは、測定制御部16から送信された測定データを受信し、ハードディスク27dなどに記憶する処理を実行する(ステップS105)。次いで、システム制御部12のCPU27aは、受信した粒子の特徴パラメータに基づき異常細胞の弁別処理を実行する。
まず、CPU27aは、装置本体12から受信した当該細胞の前方散乱光データの特徴パラメータうち、前方散乱光の信号波形のパルス幅(FSCW)と、前方散乱光の信号波形のピーク値(FSCP)とをハードディスク27dからRAM27cに読み出す(ステップS1051)。次いで、CPU27aは、当該細胞が分析対象の細胞であるかを分類する(ステップS1052)。ここで、CPU27aは、当該細胞の前方散乱光の信号波形のパルス幅(FSCW)と、前方散乱光の信号波形のピーク値(FSCP)とが所定の範囲内にあれば分析対象の細胞として分類し、所定の範囲外にあれば分析対象細胞以外のデブリス等として除去する。
次に、CPU27aは、分析対象とされた当該細胞の側方蛍光データの特徴パラメータのうち、蛍光信号波形の差分積分値(DIV)と蛍光信号波形のピーク値(PEAK)とをハードディスク27dからRAM27cに読み出し、蛍光信号波形の差分積分値(DIV)を蛍光信号波形のピーク値(PEAK)で除した値(DIV/PEAK)を取得するとともに、分析対象細胞の側方散乱光データのうち、側方散乱光の信号波形のパルス幅(SSCW)をハードディスク27dからRAM27cに読み出す(ステップS1053)。なお、側方散乱光の信号波形のパルス幅(SSCW)は、ベースラインより大きい強度
を有する側方散乱光の信号波形の幅を表す。
次いで、CPU27aは、蛍光信号波形の差分積分値(DIV)を蛍光信号波形のピーク値(PEAK)で除した値(DIV/PEAK)を、閾値の2.6と比較することにより、当該細胞を凝集細胞と非凝集細胞のいずれかに分類する(ステップS1054)。ここで、次の式(1)が成立している場合は、その細胞は非凝集細胞であり、式(1)が成立していない場合は、その細胞は凝集細胞である。
DIV/PEAK≦2.6・・・(1)
次に、CPU27aは、ステップS1054において非凝集細胞であると分類された細胞の、側方蛍光データの特徴パラメータとしての、細胞の核のDNA量を反映した値である蛍光信号のパルスの面積を示す蛍光量(SFLI)をハードディスク27dからRAM27cに読み出す(ステップS1055)。また、ハードディスク27dには、標準試料の蛍光信号の蛍光量が記憶されており、この蛍光量についてもRAM27cに読み出す。
次いで、CPU27aは、非凝集細胞であると分類された細胞の蛍光量(SFLI)が、標準試料の蛍光量(SFLIP)の2.5倍以上であるか否か、すなわち、次の式(2)が成立しているか否かを判断する。
SFLI≧SFLIP・2.5・・・(2)
ここで、CPU27aは、式(2)が成立している場合には、当該細胞を核のDNA量が異常なDNA量異常細胞として分類し、計数する(ステップS1056)。そして、CPU27aは、ステップS126においてDNA異常細胞と分類された細胞を異常細胞として弁別する(ステップS1057)。
図12に戻って、システム制御部13のCPU27aは、装置本体12から送信された画像データを受信し、当該画像が、ステップS105において異常細胞であると判定された細胞の画像である場合、当該細胞の特徴パラメータと画像とを対応付けてハードディスク27dに記憶する(ステップS106)。
次いで、システム制御部13は、終了信号を受信したか否かを判断し(ステップS107)、終了信号を受信していない場合(ステップS107においてNO)、処理をステップS102に戻す。終了信号を受信した場合(ステップS107においてYES)、異常細胞比率を計算する処理を行う(ステップS108)。
この異常細胞比率は、ステップ105における異常細胞の弁別処理において取得した異常細胞の総数Xと、非凝集細胞の総数Yとの比率である。また、非凝集細胞の総数Yは、異常細胞の総数Xと正常細胞の総数Zとを加算した数となる。したがって、異常細胞比率Wは次の式(3)により求めることができる。
W=X/Y×100(%)=X/(X+Z)×100(%)・・・(3)
なお、この異常細胞比率とは、細胞分析装置10で分析された測定試料中に所定数以上の癌・異型細胞が存在するか否かを判断する指標となる数値である。例えば、異常細胞比率が0.1%以上である場合には、測定試料中に所定数以上の癌・異型細胞があることにより、患者が癌に侵されている可能性が高いと判断することができる。
また、異常細胞比率Wは、次の式(4)によるものであってもよい。
W=W/Z×100(%)・・・(4)
次いで、システム制御部13は、ステップS108において求めた異常細胞比率、異常細胞の画像、及びその他の情報を表示部28に表示する処理を行う(ステップS109)。また、このとき、システム制御部13は、異常細胞の弁別処理における特徴パラメータを用いてスキャッタグラムを作成する。ここで、システム制御部13は、横軸がパルス幅(FSCW)、縦軸がピーク値(FSCP)のFSCW−FSCPスキャッタグラム及び縦軸が蛍光信号波形の差分積分値(DIV)をピーク値(PEAK)で除した値(DIV/PEAK)、横軸が側方散乱光の信号波形のパルス幅(SSCW)の(DIV/PEAK)−SSCWスキャッタグラムなどを作成する。
図14は、表示部28の画面構成の一例を示す概略図である。表示部28の画面の上段には、ツールバーやメニューバー等を表示する表示部71が設けられ、その下方には、患者(被験者)の氏名や患者ID等、患者の属性に関する情報を表示する患者属性情報表示部72が設けられている。患者属性情報表示部72の下側には、上述したスキャッタグラムやその他のグラフ等Dを表示する図表表示部73、異常細胞の数や異常細胞比率等分析結果を表示する分析結果表示部74、異常細胞の画像P等を表示する画像表示部75が設けられている。
使用者は、分析結果表示部74に表示された分析結果を確認することによって、その患者が、癌等に侵されている可能性があるか否かを判断することができる。
画像表示部75には、複数枚(図示例では6枚)の画像Pを同時に表示可能であり、細胞検査士等の使用者は、画像表示部75に表示された細胞の画像Pを直接目で見ることによって、細胞の形態を把握することができる。そして、その細胞の画像から、当該細胞が真に異常細胞であるか否かを確認することができる。
また、画像表示部75には、「正常」選択ボタン76、「削除」選択ボタン77が設けられている。使用者は、画像表示部75に表示された細胞の画像Pを見て、当該細胞が異常細胞ではなく正常細胞の画像であると判断した場合には、その画像Pをクリックして選択した状態で「正常」選択ボタン76を押すことによって、当該画像Pにかかる細胞を異常細胞から除外し、正常細胞として弁別し直すことが可能となっている。
また、画像表示部75に表示された画像Pが、異常細胞でも正常細胞でもなく、凝集細胞やデブリス等の画像(すなわち、分析対象外の画像)であった場合には、その画像Pを選択した状態で「削除」選択ボタン77を押すことによって、その画像Pにかかる細胞を異常細胞からも正常細胞からも除外(削除)することが可能となっている。
なお、画像表示部75には頁送りボタン78が設けられており、この頁送りボタン78を押すと、画像表示部75内で細胞の画像Pが前頁又は後頁に頁送りされ、全ての異常細胞の画像を画像表示部75内に順次表示させることが可能となっている。
上記実施の形態によれば、粒子からの光信号を検出するための第一光源51及び粒子画像を撮像するための第二光源67からの光が、照射光学系54によって試料流に照射される。これにより、照射光学系54によって試料流に照射された第一光源51及び第二光源67からの直接光が遮光部材によって遮られるため、フォトダイオード61及びCCDカメラ70に直接光が入り込まない。すなわち、直接光がカットアウトされた状態(暗視野照明)において粒子の画像を撮像するため、バックグラウンドが黒くなり、光を透過する粒子であってもコントラストの高い画像を撮像することができる。これにより、上記実施の形態によれば、光を透過する粒子であっても、コントラストが高い画像の取得と、少なくとも前方散乱光に基づく粒子の特徴パラメータの取得が可能である。また、粒子の特徴パラメータを取得するための系と粒子の画像を撮像するための系で、光学系のほとんどの部分を共通化することができるため、光学系の小型化が可能である。
なお、上記実施形態では、撮像部を、遮光部材によって第2光源からの直接光が完全に遮断される位置に配置することにより、完全暗視野の状態で粒子の画像を撮像する形態を示したが、本発明はこれに限られるものではない。例えば、撮像部を、遮光部材によって第2光源からの直接光の少なくとも一部が遮断される位置に配置した形態としてもよい。このような形態について、図15を参照して説明する。
図15は、第1実施形態における第2光源にかかる光学系と、第2実施形態における第2光源にかかる光学系の構成を比較して示した図である。(a−1)は第1実施形態における光学系の平面図、(a−2)は第1実施形態における光学系の側面図、(b−1)は第2実施形態における光学系の平面図、(b−2)は第2実施形態における光学系の側面図を示している。
第1の実施形態では、図15に矢印で示したように、光ファイバ束68から出射した直接光が全て遮光板56の遮光部561に収束し、直接光は開口部562を透過しないように光ファイバ束68の光出射端68aを配置した。このときの光ファイバ束68の光出射端68aと両凸単レンズ69aとの距離aとする。この状態でカメラ70によって粒子像を撮像すると、光ファイバ束68からの直接光は入射せず、粒子によって散乱した光のみがカメラ70に入射するため、バックグラウンドが暗い完全暗視野の粒子画像が得られる。
このときの遮光部561のx方向の幅をbとし、遮光板56に到達した直接光のx方向の光の幅(遮光板56の位置において光が投影されたときの投影像のx方向の長さ)をcとすると、b≧cの関係が成り立つ。なお、第1の実施形態では遮光部561に集光するようにしているため、c=0である。
一方、第2実施形態では、光ファイバ束68の光出射端68aと両凸単レンズ69aとを距離a´(a<a´)を隔てて配置している。一般的に、レンズと光源との距離が長くなると、レンズと結像位置(光が収束する位置)との距離は短くなる。そのため、第2実施形態では、図15に矢印で示すように、光ファイバ68から出射した直接光は遮光部561より手前の位置で一度収束し再び拡散する。そして、拡散した直接光の一部は遮光部561により遮光され、遮光部561によって遮光されなかった他の一部は開口部562を透過する。この状態でカメラ70によって粒子像を撮像すると、完全暗視野の状態で撮像された画像に比べてバックグラウンドが明るい画像が得られる。
このときの遮光部561のx方向の幅をbとし、遮光板56に到達した直接光のx方向の光の幅をcとすると、b<cの関係が成り立つ。
このように、直接光の一部が遮光部561によって遮光されるようにすることで、画像のバックグラウンドの明るさを調節することができる。バックグラウンドの明るさは、上記bとcの比率を変更することで定量的に調整することができる。具体的には、c/bを0≦c/b≦1とすることで完全暗視野の状態とすることができ、c/bを1≦c/bとすることで完全暗視野よりバックグラウンドが明るい画像を得ることができる。c/bを1よりさらに大きくすることにより、バックグラウンドをさらに明るくすることができる。ただし、遮光部561を取り除いたり(b=0)、遮光部561の幅を狭めすぎると、第1光源51からの直接光がフォトダイオード71に入射して前方散乱光の検出が困難になるため、バックグラウンドの明るい画像を得るためのc/bの比率としては、1<c/b<17の範囲とすることが好ましい。さらに、暗視野に近い状態を作り出す場合には、例えばc/b=2であることが好ましい。さらに、明視野に近い状態を作り出す場合には、例えばc/b=4であることが好ましい。
bとcの比率は、図15を参照して説明したように、光ファイバ束68の光出射端68aと両凸単レンズ69aとの距離を任意に変更することにより調整できる。
図16〜18は粒子分析装置によって上皮細胞を撮像して得られた撮像画像を示す図である。図16は、第1実施形態に示した完全暗視野の状態(c/b=0)で撮像した画像である。図17は、第2実施形態の一例として暗視野に近い状態(c/b=2)で
撮像した画像である。図18は、第2実施形態の一例として明視野に近い状態(c/b=4)で撮像した画像である。
図16に示すように、完全暗視野で撮像した画像では、光を透過する上皮細胞であっても、核が明るく、バックグラウンドが暗く写るため、コントラストが高い画像が得られる。
図17に示すように、暗視野に近い状態で撮像した画像では、完全暗視野で撮像した画像に比べてバックグラウンドが明るい画像が得られる。
図18に示すように、明視野に近い状態で撮像した画像では、暗視野に近い状態で撮像した画像に比べてさらにバックグラウンドが明るい画像が得られる。
図17及び図18に示すように、暗視野に近い状態または明視野に近い状態で画像を撮像すると、完全暗視野の画像に比べて核の明るさが低下してコントラストが僅かに低下するものの、バックグラウンドが明るくなるため核以外の細胞の内部が目視し易い画像が得られる。
なお、第2実施形態では、光ファイバ束68からの直接光の一部を円形開口562を介してカメラ70に入射させるために、光ファイバ束68の光出射端68aと両凸単レンズ69aとの距離を第1実施形態に比べて長くする形態を示したが、これに限られるものではない。例えば、遮光部561の幅bを狭める形態でもよいし、遮光板56を第1実施形態における位置よりも光ファイバ束68から遠ざける(図15におけるz方向下流側に移動させる)形態でもよいし、あるいは、両Rシリンドリカルレンズ54aを第1実施形態における位置よりも光ファイバ束68に近づける(図15におけるz方向上流側に移動させる)形態でもよい。このように構成すると、光ファイバ束68から出射された直接光は遮光部561に至る手前で収束し、遮光板561に到達する光の幅が大きくなるため、直接光の一部が円形開口562を介してカメラ70に入射するようになる。
なお、今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれる。
例えば、上記した実施の形態では、被検者から採取された測定試料中に所定数以上の子宮頸部の癌・異型細胞が存在するか否かを判定しているが、本発明の細胞分析装置は、これに限定されるものではなく、血球細胞、尿中有形成分、口腔細胞、膀胱や咽頭等他の上皮細胞の癌・異型細胞、さらには臓器の癌・異型細胞が、被検者から採取された測定試料中に所定数以上存在するか否か判定するために用いることができる。
また、上記した実施の形態の異常細胞の弁別処理では、非凝集細胞及び凝集細胞の分類を行った後に、DNA量異常細胞の分類を行っているが、逆の順番でもよい。また、異常細胞の弁別に使用する特徴パラメータについても、上記実施の形態に限定されるものではない。
また、上記した実施の形態では、装置本体12の測定制御部16が、光信号から粒子の特徴パラメータを取得し、取得した粒子の特長パラメータをシステム制御部13に送信し、システム制御部のCPU27が粒子の特徴パラメータに基づき異常細胞を弁別している。しかし、本発明はこれに限らない。例えば、装置本体12の測定制御部16が、粒子の特徴パラメータを取得し、粒子の特徴パラメータに基づき異常細胞を弁別してもよい。
また、上記した実施の形態では、装置本体12の測定制御部16が、ステップS206において、当該細胞のFSCWとFSCPとが所定の範囲内にある場合に当該細胞が撮像対象細胞であると判定している。しかし、本発明はこれに限らない。例えば、上記式(1)が成立する場合や上記式(2)が成立する場合に当該細胞が撮像対象細胞であると判定されてもよい。このとき、標準試料の蛍光信号の蛍光量については記憶部21にも記憶されている。
また、上記した実施の形態では、異常細胞の画像だけでなく、数値情報(分析結果)やスキャッタグラムを表示しているが、これらは表示部に表示せず、印刷によって紙等に出力してもよい。
また、上記した実施の形態では、本発明の実施形態として、細胞分析装置によって、被験者のから採取された子宮頸部細胞を含む測定試料の分析を行う例を示している。しかし、本発明はこれに限らず、尿中有形成分分析装置によって、被験者から採取された尿中有形成分を含む測定試料の分析を行ってもよい。
また、上記した実施の形態では、第二光源67として、パルス光を出射するパルスレーザ光源を用いている。しかし、本発明はこれに限らない。例えば、第二光源67として、連続光を出射するレーザ光源を用いてもよい。
また、上記した実施の形態では、第一レンズ系52にシリンドリカルレンズが含まれていない。しかし、本発明はこれに限らない。例えば、第一レンズ系52にシリンドリカルレンズが含まれていてもよい。
3 光学検出部
10 細胞分析装置
12 装置本体
13 システム制御部
16 測定制御部
28 表示部

Claims (11)

  1. 粒子を含む試料流を形成するフローセルと、
    前記試料流に光を照射するための第一および第二光源と、
    前記第一および第二光源からの光を前記試料流に導く照射光学系と、
    前記フローセルを介して前記照射光学系とは反対側に配置され、かつ前記照射光学系から出射する光の光路上に配置される遮光部材と、
    前記遮光部材によって前記第一光源からの直接光が遮光された位置に配置され、前記第一光源からの光によって前記試料流中の粒子からの前方散乱光を検出する検出部と、
    前記検出部からの信号に基づき粒子の特徴パラメータを取得する制御部と、
    前記遮光部材によって前記第二光源からの直接光の少なくとも一部が遮光された位置に配置され、前記第二光源からの光によって前記試料流中の粒子を撮像する撮像部と、を備えた粒子分析装置。
  2. 前記照射光学系は、前記遮光部材によって前記第二光源からの直接光が部分的に遮光されるように構成されている、請求項1に記載の粒子分析装置。
  3. 前記第一光源からの光を前記照射光学系に入射させる第一光学系と、
    前記第二光源からの光を前記照射光学系に入射させる第二光学系と、を備える請求項1または2に記載の粒子分析装置。
  4. 前記第一光学系は、前記第一光源からの光を、前記試料流に垂直及び平行な方向において平行光として前記照射光学系に入射させ、
    前記第二光学系は、前記第二光源からの光を、前記試料流に垂直な方向において平行光として、前記試料流に平行な方向において収束光として前記照射光学系に入射させる請求項3に記載の粒子分析装置。
  5. 前記照射光学系は、前記第一光学系からの光を、前記試料流に垂直な方向において前記遮光部材が配置される位置に、前記試料流に平行な方向において前記試料流にそれぞれ集光し、前記第二光学系からの光を、前記試料流に垂直な方向及び平行な方向において前記遮光部材が配置される位置にそれぞれ集光する請求項3又は4に記載の粒子分析装置。
  6. 前記第二光学系及び前記照射光学系は、それぞれ少なくとも1つのシリンドリカルレンズを含む請求項3から5のいずれか一項に記載の粒子分析装置。
  7. 前記試料流中の粒子からの側方散乱光を検出する第二検出部と、
    前記試料流中の粒子からの蛍光を検出する第三検出部と、をさらに備え、
    前記制御部は、前記検出部前記第二検出部、及び前記第三検出部からの信号に基づき粒子の特徴パラメータを取得する請求項1から6のいずれか一項に記載の粒子分析装置。
  8. 前記制御部は、特徴パラメータを取得した粒子が対象粒子である場合に当該粒子を照明するよう前記第二光源を制御する請求項1から7のいずれか一項に記載の粒子分析装置。
  9. 記憶部をさらに備え、
    前記制御部は、粒子の特徴パラメータと当該粒子の画像を対応付けて前記記憶部に記憶する請求項1から8のいずれか一項に記載の粒子分析装置。
  10. 表示部をさらに備え、
    前記制御部は、粒子の特徴パラメータと当該粒子の画像のうち少なくとも一方を表示するよう前記表示部を制御する請求項1から9のいずれか一項に記載の粒子分析装置。
  11. 前記試料流中の粒子が細胞である請求項1から10のいずれか一項に記載の粒子分析装置。
JP2010198593A 2009-11-30 2010-09-06 粒子分析装置 Expired - Fee Related JP5537347B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010198593A JP5537347B2 (ja) 2009-11-30 2010-09-06 粒子分析装置
US12/951,779 US8772738B2 (en) 2009-11-30 2010-11-22 Particle analyzing apparatus and particle imaging method
CN201010565424.4A CN102156088B (zh) 2009-11-30 2010-11-30 粒子分析仪及粒子拍摄方法
EP10193092.3A EP2327977A3 (en) 2009-11-30 2010-11-30 Particle analyzing apparatus and particle imaging method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009272974 2009-11-30
JP2009272974 2009-11-30
JP2010198593A JP5537347B2 (ja) 2009-11-30 2010-09-06 粒子分析装置

Publications (3)

Publication Number Publication Date
JP2011133460A JP2011133460A (ja) 2011-07-07
JP2011133460A5 JP2011133460A5 (ja) 2013-07-18
JP5537347B2 true JP5537347B2 (ja) 2014-07-02

Family

ID=43557071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010198593A Expired - Fee Related JP5537347B2 (ja) 2009-11-30 2010-09-06 粒子分析装置

Country Status (4)

Country Link
US (1) US8772738B2 (ja)
EP (1) EP2327977A3 (ja)
JP (1) JP5537347B2 (ja)
CN (1) CN102156088B (ja)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9423348B2 (en) 2011-06-24 2016-08-23 Becton, Dickinson And Company Absorbance spectrum scanning flow cytometry
JP6014590B2 (ja) 2011-06-27 2016-10-25 シスメックス株式会社 細胞分析装置および細胞分析方法
TWI708052B (zh) 2011-08-29 2020-10-21 美商安美基公司 用於非破壞性檢測-流體中未溶解粒子之方法及裝置
EP2786117B1 (en) * 2011-12-01 2022-12-21 Particle Measuring Systems, Inc. Detection scheme for particle size and concentration measurement
JP5876359B2 (ja) 2012-03-30 2016-03-02 シスメックス株式会社 癌化情報提供方法および癌化情報提供装置
JP5959988B2 (ja) * 2012-08-16 2016-08-02 シスメックス株式会社 癌化情報取得装置、細胞分析装置、および細胞採取適否判定装置、ならびに、癌化情報取得方法および細胞採取適否判定方法。
US9140648B2 (en) 2013-03-12 2015-09-22 Ecolab Usa Inc. Fluorometer with multiple detection channels
US9591268B2 (en) * 2013-03-15 2017-03-07 Qiagen Waltham, Inc. Flow cell alignment methods and systems
WO2015150392A1 (en) * 2014-04-03 2015-10-08 Koninklijke Philips N.V. Examining device for processing and analyzing an image
DE102014007355B3 (de) * 2014-05-19 2015-08-20 Particle Metrix Gmbh Verfahren der Partikel Tracking Aalyse mit Hilfe von Streulicht (PTA) und eine Vorrichtung zur Erfassung und Charakterisierung von Partikeln in Flüssigkeiten aller Art in der Größenordnung von Nanometern
JP6313123B2 (ja) * 2014-05-28 2018-04-18 東京エレクトロン株式会社 測定装置及び測定方法
JP6328493B2 (ja) * 2014-05-28 2018-05-23 東京エレクトロン株式会社 測定装置及び測定方法
FR3022998B1 (fr) * 2014-06-30 2016-07-15 Alain Rousseau Techniques & Innovations Arteion Systeme et ensemble de cytometrie en flux, dispositif d’analyse comprenant un tel ensemble de cytometrie et ensemble comprenant un tel systeme de cytometrie
US9261459B1 (en) * 2014-08-12 2016-02-16 Ecolab Usa Inc. Handheld fluorometer
JP6238856B2 (ja) * 2014-08-25 2017-11-29 シスメックス株式会社 尿中異型細胞の分析方法、尿分析装置および体液中異型細胞の分析方法
CN106662572B (zh) 2015-02-12 2019-07-05 深圳迈瑞生物医疗电子股份有限公司 细胞分析仪、粒子分类方法及装置
JP6557022B2 (ja) * 2015-02-18 2019-08-07 アズビル株式会社 粒子検出装置
JP6438319B2 (ja) * 2015-02-18 2018-12-12 アズビル株式会社 粒子検出装置
CN112326538A (zh) 2015-03-31 2021-02-05 希森美康株式会社 尿分析系统、拍摄装置、细胞拍摄装置、尿分析方法、管理装置及信息处理方法
USD812244S1 (en) 2015-12-18 2018-03-06 Abbott Laboratories Tube rack
USD799057S1 (en) 2015-12-18 2017-10-03 Abbott Laboratories Slide rack
USD782695S1 (en) 2015-12-18 2017-03-28 Abbott Laboratories Slide carrier
USD802787S1 (en) 2015-12-18 2017-11-14 Abbott Laboratories Slide carrier
USD811616S1 (en) 2015-12-18 2018-02-27 Abbott Laboratories Tube rack
USD782064S1 (en) 2015-12-18 2017-03-21 Abbott Laboratories Tube rack
USD793473S1 (en) 2015-12-18 2017-08-01 Abbott Laboratories Print tape cartridge
USD799055S1 (en) 2015-12-18 2017-10-03 Abbott Laboratories Smear tape cartridge
CN109154551B (zh) * 2015-12-30 2021-05-14 生物辐射实验室股份有限公司 用于颗粒测定的检测和信号处理系统
JP6286455B2 (ja) * 2016-01-20 2018-02-28 シスメックス株式会社 細胞分析方法、癌化情報提供方法、細胞分析装置および癌化情報提供装置
KR101766838B1 (ko) * 2016-01-26 2017-08-23 윈포시스(주) 입자 분석 장치
USD799058S1 (en) 2016-02-18 2017-10-03 Abbott Laboratories Slide caddy
US10607316B2 (en) * 2016-07-22 2020-03-31 Panasonic Intellectual Property Management Co., Ltd. Image generating apparatus and image generating method
DE102016013236B4 (de) * 2016-11-07 2020-07-16 Particle Metrix Gmbh Vorrichtung und Verfahren zum Messen der Konzentration, der Größe und des Zetapotentials von Nanopartikeln in Flüssigkeiten im Streulichtmodus und im Fluoreszenzmodus
US10088660B2 (en) 2017-02-10 2018-10-02 Amgen Inc. Imaging system for counting and sizing particles in fluid-filled vessels
CN110945403A (zh) * 2017-07-26 2020-03-31 浜松光子学株式会社 试样观察装置和试样观察方法
JP7326256B2 (ja) 2017-10-26 2023-08-15 パーティクル・メージャーリング・システムズ・インコーポレーテッド 粒子計測システム及び方法
KR102333898B1 (ko) * 2019-04-09 2021-12-01 가부시끼가이샤 히다치 세이사꾸쇼 입자 사이즈 측정 장치 및 측정 방법
US11237095B2 (en) 2019-04-25 2022-02-01 Particle Measuring Systems, Inc. Particle detection systems and methods for on-axis particle detection and/or differential detection
JP2021056125A (ja) * 2019-09-30 2021-04-08 ソニー株式会社 生体粒子分析装置及び微小粒子分析装置
CN114729868A (zh) 2019-11-22 2022-07-08 粒子监测系统有限公司 先进的用于干涉测量颗粒检测和具有小大小尺寸的颗粒的检测的系统和方法
US11885743B2 (en) * 2020-07-22 2024-01-30 Agar Corporation, Inc. Fluorescence and scatter and absorption spectroscopic apparatus with a sapphire tube and method for analyzing inline low level hydrocarbon in a flow medium
LU102108B1 (de) * 2020-10-06 2022-04-06 Cytena Gmbh Verfahren zum automatischen Untersuchen einer flüssigen Probe

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375640A (ja) * 1986-09-19 1988-04-06 Shimadzu Corp 血球計数装置
JP3049254B2 (ja) * 1990-02-08 2000-06-05 シスメックス株式会社 2種類の光源を備えた光学式粒子分析装置
JPH0734012B2 (ja) * 1991-02-27 1995-04-12 東亜医用電子株式会社 フローイメージサイトメータ
US5548395A (en) 1991-09-20 1996-08-20 Toa Medical Electronics Co., Ltd. Particle analyzer
US5422712A (en) * 1992-04-01 1995-06-06 Toa Medical Electronics Co., Ltd. Apparatus for measuring fluorescent spectra of particles in a flow
JP3260469B2 (ja) * 1992-04-01 2002-02-25 シスメックス株式会社 粒子分析装置
US5578395A (en) * 1994-03-08 1996-11-26 Sanyo Electric Co., Ltd. Lithium secondary battery
JP3375203B2 (ja) * 1994-08-08 2003-02-10 シスメックス株式会社 細胞分析装置
JP3127111B2 (ja) * 1996-02-22 2001-01-22 株式会社日立製作所 フロー式粒子画像解析方法および装置
JP3640461B2 (ja) * 1996-04-03 2005-04-20 シスメックス株式会社 粒子分析装置
JPH1073528A (ja) * 1996-08-30 1998-03-17 Toa Medical Electronics Co Ltd 撮像機能付きフローサイトメータ
US6133995A (en) 1997-05-09 2000-10-17 Sysmex Corporation Particle measuring apparatus
CA2331897C (en) * 1998-05-14 2008-11-18 Luminex Corporation Multi-analyte diagnostic system and computer implemented process for same
US8005314B2 (en) * 2005-12-09 2011-08-23 Amnis Corporation Extended depth of field imaging for high speed object analysis
WO2001094908A2 (en) * 2000-06-07 2001-12-13 Lockheed Martin Naval Electronics And Surveillance Systems System and method to detect the presence of a target organism within an air sample using flow cytometry
JP4763159B2 (ja) * 2001-06-15 2011-08-31 シスメックス株式会社 フローサイトメータ
JP4659252B2 (ja) * 2001-03-29 2011-03-30 シスメックス株式会社 フローサイトメータ
JP4304120B2 (ja) * 2004-04-30 2009-07-29 ベイバイオサイエンス株式会社 生物学的粒子をソーティングする装置及び方法
WO2006103920A1 (ja) * 2005-03-29 2006-10-05 Sysmex Corporation 癌・異型細胞および凝集粒子を弁別する方法および細胞分析装置
JP2007304044A (ja) * 2006-05-15 2007-11-22 Sysmex Corp 粒子画像分析装置
JP2007304059A (ja) * 2006-05-15 2007-11-22 Sysmex Corp 粒子画像分析装置
JP4817442B2 (ja) 2006-07-31 2011-11-16 シスメックス株式会社 粒子分析装置用光学系、及びそれを用いた粒子分析装置
CN101236150B (zh) * 2007-02-02 2012-09-05 深圳迈瑞生物医疗电子股份有限公司 用于基于流式细胞术的仪器的光电传感器及其照射单元
JP2009244253A (ja) * 2008-03-10 2009-10-22 Sysmex Corp 粒子分析装置、粒子分析方法およびコンピュータプログラム

Also Published As

Publication number Publication date
EP2327977A3 (en) 2017-08-23
JP2011133460A (ja) 2011-07-07
US20110127444A1 (en) 2011-06-02
CN102156088B (zh) 2014-03-12
US8772738B2 (en) 2014-07-08
CN102156088A (zh) 2011-08-17
EP2327977A2 (en) 2011-06-01

Similar Documents

Publication Publication Date Title
JP5537347B2 (ja) 粒子分析装置
JP5859613B2 (ja) 細胞分析装置
JP2011095182A (ja) 細胞分析装置及び細胞分析方法
JP5259305B2 (ja) 細胞分析装置及び細胞分析方法
EP2317302B1 (en) Analyzer and particle imaging method
US20180017480A1 (en) Urine analysis system, image capturing apparatus, urine analysis method
JP2010085194A (ja) 試料分析装置
JP6014590B2 (ja) 細胞分析装置および細胞分析方法
US9354161B2 (en) Sample analyzing method and sample analyzer
JP3815838B2 (ja) 粒子測定装置
JP6196502B2 (ja) 検体分析方法および検体分析装置
JP2826448B2 (ja) フロー式粒子画像解析方法およびフロー式粒子画像解析装置
JPH0961339A (ja) フロ−式粒子画像解析方法および装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130603

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140425

R150 Certificate of patent or registration of utility model

Ref document number: 5537347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees