JP5514731B2 - 高周波導波路およびそれを用いた移相器、放射器、この移相器および放射器を用いた電子機器、アンテナ装置およびこれを備えた電子機器 - Google Patents

高周波導波路およびそれを用いた移相器、放射器、この移相器および放射器を用いた電子機器、アンテナ装置およびこれを備えた電子機器 Download PDF

Info

Publication number
JP5514731B2
JP5514731B2 JP2010535633A JP2010535633A JP5514731B2 JP 5514731 B2 JP5514731 B2 JP 5514731B2 JP 2010535633 A JP2010535633 A JP 2010535633A JP 2010535633 A JP2010535633 A JP 2010535633A JP 5514731 B2 JP5514731 B2 JP 5514731B2
Authority
JP
Japan
Prior art keywords
waveguide
ridge
conductors
lambda
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010535633A
Other languages
English (en)
Other versions
JPWO2010050122A1 (ja
Inventor
秀樹 桐野
功 山本
昌史 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2010535633A priority Critical patent/JP5514731B2/ja
Publication of JPWO2010050122A1 publication Critical patent/JPWO2010050122A1/ja
Application granted granted Critical
Publication of JP5514731B2 publication Critical patent/JP5514731B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/182Waveguide phase-shifters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • G01S7/032Constructional details for solid-state radar subsystems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • H01P3/123Hollow waveguides with a complex or stepped cross-section, e.g. ridged or grooved waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/3208Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
    • H01Q1/3233Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used particular used as part of a sensor or in a security system, e.g. for automotive radar, navigation systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/325Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle
    • H01Q1/3291Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle mounted in or on other locations inside the vehicle or vehicle body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/32Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by mechanical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93271Sensor installation details in the front of the vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Security & Cryptography (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Waveguides (AREA)

Description

本発明は、高周波導波路およびそれを用いた移相器、放射器、この移相器および放射器を用いた電子機器、アンテナ装置およびこれを備えた電子機器に関するものである。
高周波エネルギーの伝送路として用いられている高周波導波路は、第1・第2の導波路構成体を組み合わせて構成されている。
具体的には、それぞれ溝を設けた第1・第2の導波路構成体を、その溝の開口を合わせた状態で一体化し、これによって高周波導波路を構成している。なお、これに類似する先行文献には、特許文献1(特開2004−48486号公報)が存在する。
特開2004−48486号公報 特開2002−223113号公報
前記従来例における課題は、高周波導波路から高周波エネルギーが漏洩してしまうということであった。すなわち、上記第1・第2の導波路構成体は、その溝の外周に設けたフランジをネジ止めや溶接により一体化するようにしている。その際に、作業ミスなどにより隙間が形成されると、その部分から高周波エネルギーが漏洩してしまう。
そこで本発明は、高周波導波路からの高周波エネルギー漏れを抑制することを目的とするものである。
上記目的を達成するために、本発明は、第1・第2の導体と、柱状突起と、を備えた、所謂、ワッフルアイアン構造中にリッジ(Ridge)を有する構造を採用している。第1・第2の導体は、高周波信号の動作周波数の自由空間波長をλ0としたときに、λ0/2未満の間隔で互いに対向配置されている。リッジ(Ridge)は、第1・第2の導体間に形成された導波路形成部分において、第1・第2の導体の一方から他方に向けて突出すると共に、導波路形成部分に沿って延長形成されている。柱状突起は、リッジの外方において、導波路形成部分の外側の第1・第2の導体の少なくとも一方に、高さがλ0/4で、λ0/2未満の間隔で複数個配置されている。リッジは、その長手方向において高さ方向に対して直交する幅方向の寸法が変化している。
また、第1・第2の導体は、高周波信号の動作周波数の自由空間波長をλ0としたときに、λ0/2未満の間隔で互いに対向配置されている。リッジ(Ridge)は、第1・第2の導体間に形成された導波路形成部分において、第1・第2の導体の一方から他方に向けて突出すると共に、導波路形成部分に沿って延長形成されている。柱状突起は、リッジの外方において、導波路形成部分の外側の第1・第2の導体の少なくとも一方に、高さがλ0/4で、λ0/2未満の間隔で複数個配置されている。リッジの高周波信号伝送方向の端部には連結路が設けられる。連結路のリッジの端部とは反対側には長さがλR/4のチョーク機能を持たせた先端が開放された導波路が設けられる。ただし、λRは、導波路形成部分において伝送される高周波エネルギーの波長である。
また、第1・第2の導体は、高周波信号の動作周波数の自由空間波長をλ0としたときに、λ0/2未満の間隔で互いに対向配置されている。リッジ(Ridge)は、第1・第2の導体間に形成された導波路形成部分において、第1・第2の導体の一方から他方に向けて突出すると共に、導波路形成部分に沿って延長形成されている。柱状突起は、リッジの外方において、導波路形成部分の外側の第1・第2の導体の少なくとも一方に、高さがλ0/4で、λ0/2未満の間隔で複数個配置されている。また、高周波信号の動作周波数における高周波導波路上の波長をλRとしたときに、リッジの長手方向において、このリッジの高さをλR/4未満の周期で変化させている。
すなわち、本発明においては、第1・第2の導体間の導波路形成部分には、第1・第2の導体の一方から他方に向けて突出すると共に、導波路形成部分に沿って延長形成されたリッジ(Ridge)を設けている。これにより、このリッジとそれに対向する導体間に電界が集中し、この電界に直交する方向、つまりリッジの長手方向に高周波エネルギーが進行する。この結果、まずは、この点で導波路形成部分外に高周波エネルギーの漏洩が発生しにくくなる。
また、本発明においては、このリッジの外方で導波路形成部分の外側の第1・第2の少なくとも一方には、高さがλ0/4の柱状突起を、λ0/2未満の間隔で複数個配置している。これにより、このリッジ外方の導波路形成部分には、上述したように、複数の柱状突起を設けているので、リッジ外方への高周波エネルギーの進行が発生した場合でも、導波路形成部分外への高周波エネルギーの進行を阻止することができる。この結果、高周波エネルギーの漏洩の発生を効果的に抑制することができる。
また、近年衝突回避、車間距離制御などに用いられるレーダ装置が自動車に装着されるようになってきた。このようなレーダ装置は、自動車がカーブを走行しているときにおいても測定可能にするため、左右15度(計30度)程度の検知角が求められる。
この検知角を得るための一つの方法として、送受信体の前に導波路体を介してアンテナ体を配置するとともに、アンテナ体を導波路体に対して左右に可動する構成が採用されていた。
これに類似する特許文献としては、特許文献2(特開2002−223113号公報)が存在する。
また、上記従来例における課題は、アンテナ装置が大型化してしまうということであった。すなわち、アンテナ装置において上記左右15度程度の大きな検知角を得るためには、上記アンテナ体が非常に大きなものとなる。そして、この大きなアンテナ体を左右に駆動する構成を含むアンテナ装置は、その可動空間まで含めると、結果として大型化してしまう。
近年の自動車は、例えば、省エネ対策等からコンパクト化が図られてきている。このような流れの中で、安全対策のためのアンテナ装置であっても、装置が大きくなってしまうのは好ましくない。つまり、アンテナ装置自体の小型化も求められている。
そこで、本発明は、アンテナ装置の小型化を図るとともに、構成の簡素化を図ることを目的とするものである。
上記目的を達成するために、本発明は、アンテナ体と、固定導波路体と、可動導波路体と、送受信体と、を備えている。アンテナ体は、所定間隔で配置された複数の放射素子を含む放射素子列を有する第1・第2の放射素子群を有している。可動導波路体は、固定導波路との間に導波路体を形成するとともに、固定導波路体に対して相対移動する。送受信体は、アンテナ体の後方に、導波路体を介して設けられている。導波路体は、高周波信号の動作周波数の自由空間波長をλ0としたときに、λ0/2未満の間隔で互いに対向配置された第1・第2の導体と、第1・第2の導体間に形成された導波路形成部分において、第1・第2の導体の一方から他方に向けて突出すると共に、導波路形成部分に沿って延長形成されたリッジ(Ridge)と、リッジの外方において、導波路形成部分の外側の第1・第2の導体の少なくとも一方に、高さがλ0/4で、λ0/2未満の間隔で複数個配置された柱状突起とを備える。可動導波路体に設けられた複数の導波路は、第1の導波路と、第2の導波路と、第3の導波路と、を有している。第1の導波路は、第1の放射素子群に対応した複数の導波路によって構成されている。第2の導波路は、第2の放射素子群に対応した複数の導波路によって構成されている。第3の導波路は、第1・第2の放射素子群において、互いに隣接する第1の放射素子群の放射素子列と第2の放射素子群の放射素子列との間の位相差を、第1・第2の放射素子群に含まれる互いに隣接する他の放射素子列間の位相差と同じ値に合わせる。
すなわち、本発明では、アンテナ体を固定式とし、その後方に配置された導波路体を可動式とすることにより、広い検知角を得ることができる。このため、従来のようにアンテナ体自体を装置内において可動させるものと比べると、大幅な小型化が図れる。
さらには、本発明においては、上述した第1・第2・第3の導波路の構成によって、隣接する送受信開口の距離と同程度に、第1・第2の放射素子群の間の距離を短くすることができる。よって、第1・第2の放射素子群の間の距離が長くなるに従って増加する不要な方向への電波の散逸を防止することができる。
本発明の一実施形態を適用した自動車の斜視図。 本発明の一実施形態にかかるアンテナ装置の斜視図。 本発明の一実施形態にかかるアンテナ装置の分解斜視図。 本発明の一実施形態にかかる基本導波路の断面図。 本発明の一実施形態にかかる基本導波路の斜視図。 本発明の一実施形態にかかる貫通孔を有する導波路の斜視図。 本発明の一実施形態の移相器の斜視図。 本発明の一実施形態にかかる積層型可変移相器の断面図。 本発明の一実施形態にかかる積層型固定移相器の断面図。 第六の板体を後方から見た斜視図。 第五の板体を後方から見た斜視図。 第五の板体を前方から見た斜視図。 第四の板体を後方から見た斜視図。 第四の板体を前方から見た斜視図。 第三の板体を後方から見た斜視図。 第三の板体を前方から見た斜視図。 第二の板体を後方から見た斜視図。 第二の板体を前方から見た斜視図。 第一の板体を前方から見た斜視図。 第四の板体の分解斜視図。 本発明の一実施形態にかかるビーム可変アンテナの移相器配置図。 本発明の一実施形態にかかるビーム可変アンテナの位相関係図。 周期的にリッジ高さを可変とした高周波導波路の斜視図。 周期的にリッジ高さを可変とした高周波導波路の波長特性図。 周期的にリッジ高さを可変とした高周波導波路を使用した放射器の斜視図。 放射素子間の距離を変えた場合の指向特性図。 本発明の一実施形態にかかるビーム可変アンテナの移相器配置図。 (a),(b)は、本発明の他の実施形態に係るリッジの長手方向における寸法(高さ、幅)を変化させた構成を示す板体の側断面図と平面図。
以下、本発明の一実施形態について、例えば、電子機器として自動車を用いて説明する。
(実施の形態1)
図1において、1は自動車本体で、この自動車本体1の下方には4本のタイヤ2が設けられている。
これらのタイヤ2は、自動車本体1のボンネット3下方に収納したエンジン(図示せず)によって回転駆動される。
また、車内4内には、タイヤ2を運転操作するためのハンドル(図示せず)が設けられている。また、自動車本体1の前面側のバンパー5の上方には、図2に示すアンテナ装置6が設けられている。
このアンテナ装置6は、後で詳しく説明するが、これら図1、図2に示すように、自動車本体1の前面側において、前方(例えば、150メートル)の範囲に対し、中心から水平方向に左右(例えば、15度(計30度))の範囲で、76.5GHzの電波をその角度を順次走査しながら発射する。また、アンテナ装置6は、その照射された角度における前方150メートル以内からの反射波を受信することにより、前方150メートル範囲内における対象物(先行する他の自動車あるいは落下物等の障害物)などを検出し、自動車本体1の各種制御に活用する。
この各種制御には、例えば、先行する他の自動車との距離を測定することにより自車のスピードをコントロールし、先行する自動車との距離を保とうとする制御等がある。あるいは、前方における落下物の有無を検出し車内4内において警報を発する制御等がある。
さて、この図2に示すアンテナ装置6は、具体的には、図3に示す各種構成部品により構成されている。ここで、図3に示す方位表示は、図1および図2に示す方位表示に対応している。
すなわち、図3において、7はアンテナ体であり、このアンテナ体7の後方には導波路体8を介して送受信体9が配置されている。また、アンテナ体7の前方にはカバー(電波透過性のカバー)10が、送受信体9の後方にはケース11が配置されている。
また、図3に示すように、アンテナ体7は、板体12および板体13の2つの板状部材から構成されている。また、導波路体8は、板体13と板体14と板体15と板体16と板体17との5つの板状部材から構成されている。さらに、送受信体9は、基板ベース18と制御部19とRF回路部20とから構成されている。
なお、板体13がアンテナ体7と導波路体8との両方に含まれているのは、板体13の前方側をアンテナ体7として用い、後方側を導波路体8として用いているためである。
また、図3には図示されていないが、板体12,13,14,15,16,17には、後述する柱状突起やリッジ、層間接続用の貫通孔が設けられている(図10から図19参照)。
さらに、図3には図示していないが、組立てた状態において、アンテナ体7の板体12,13間、さらに導波路体8の板体14,15,16,17間は一定の間隔で離れた状態に保たれている。特に、導波路体8の板体15は、円盤状の形状を有しているとともに、円盤の中心を軸として板体14と板体16とが一定の間隔を空けて回動するように構成されている。これにより、円盤状の板体15を回転駆動するだけで、左右方向における所望の検知角を確保することができる。そして、従来のようにアンテナ体を可動させる必要がないため、構成を簡素化することができる。
そして、アンテナ体7と導波路体8との内部には、上述した各板体12〜17間が一定の間隔で離れた状態でも、送受信体9から供給される高周波エネルギーを周囲に放散することなく、アンテナプレート12に位相制御して分配させるための高周波導波路と移相器とが構成されている。
ここで、本実施形態に用いられる高周波導波路と移相器の構造について説明するが、まずは、その基本動作原理について説明する。
図4は、高周波導波路と移相器の元となる基本動作原理を説明するための断面図であり、図5は、その斜視図である。
図4および図5に示すように、本実施形態の高周波導波路は、高周波信号の動作周波数の自由空間波長をλ0とすると、λ0/2未満の間隔で平行に配置した2枚の導体、すなわち下側導体(第1の導体、第2の導体)22と上側導体(第2の導体、第1の導体)23とによって形成される。また、高周波導波路は、一方の導体である下側導体22の表面に、高さが略λ0/4の柱状突起(電磁波漏洩阻止用突起)24を互いの隙間がλ0/2未満となる間隔で2次元的に配置した、所謂、ワッフルアイアン構造を有している。さらに、そのワッフルアイアン構造の内部には、高周波エネルギーの伝送経路に沿って連続して形成されたリッジ25が設けられている。
つまり、下側導体22と上側導体23との間の導波路形成部分には、前記リッジ25が設けられている。そして、このリッジ25の外方であって、かつ導波路形成部分の外方には、前記柱状突起24が複数個設けられている。
ここで、図4および図5の構造が有する高周波エネルギーの伝送特性について説明する。
まず、λ0/2未満の間隔で平行に配置された二枚の導体22,23は、導体に垂直な電界のみを有する基本モードだけが伝送する平行平板導波路として動作することは良く知られている。一方、柱状突起24の隙間は、下側導体22によって先端が短絡された伝送線路と等価となる。このため、図4に示す高さが略λ0/4の柱状突起24の先端を繋いだ面26上であって柱状突起24の隙間の領域は、その面に垂直な方向に電界が存在できない磁気壁と等価となっている。つまり、図4および図5の構造は、本来は2枚の導体22,23に垂直な電界による高周波エネルギー(電波)を伝送できる平行平板導波路である。しかしながら、リッジ25外方の導波路形成部分外には、高さが略λ0/4の柱状突起24を2次元的に配置したワッフルアイアン構造が存在するため、高周波エネルギーが伝送できない特性を有している。
なお、柱状突起24の隙間をλ0/2未満としているのは、柱状突起24の隙間に高次の伝送モードが発生するのを防止し、高周波エネルギーが伝送できない特性を確実に実現するためである。
ここで、図4および図5に示したように、ワッフルアイアン構造の内部に連続したリッジ25を設けると、リッジ25の表面は電気壁であることから、平行平板導波路と同じように、リッジ25の表面に垂直な方向の電界がリッジ25に沿って連続的な経路として存在できる。つまり、リッジ25に沿って高周波エネルギーの伝送路が形成される。
すなわち、図4、図5に示した構造は、高周波エネルギーを周囲に放散せず、且つリッジに沿って効率良く伝送できる基本導波路として機能することとなる。
そして、上記の高周波導波路は、リッジ25の長手方向において、高さを変化させたり(図23参照)、長手方向に直交する方向の幅を変化させたり(図28参照)することで、伝送する高周波エネルギーの電流と電圧の比率を変化させることができる。よって、異なる特性インピーダンスの線路を作製することができる。つまり、リッジ25の長手方向において、高さを変化させたり、幅を変化させたりすると、それに対向する導体23との間に形成される容量成分(C)の大きさを変化させることができる。この結果、異なる特性インピーダンスの線路を容易に作製することができる。
さらに、リッジ25を、その延伸方向において複数に分岐(具体的には、例えばT型)させる(図11参照)ことで、容易に分岐線路も作製することができる。よって、アンテナ給電線路として利用することが可能となる。
さらに、下側導体22と上側導体23とを接触させなくても、周囲に高周波エネルギーを放散しない。これにより、隣接する線路間との境界に特別な遮蔽構造を設けなくても結合も低く抑えられるので製作が容易になる。さらに、導波路の誘電体として、損失の極めて少ない空気を使用しているため、低損失が必要とされるミリ波への応用に特に適している。
つまり、本実施形態による高周波導波路を、ミリ波車載レーダ等の分岐や結合の多いアンテナ給電回路に用いれば、製作と組立が簡単で、経時劣化による接触不良の心配がなく、低損失なアンテナ装置を実現することができる。
また、図6には、上記の高周波導波路を積層して用いるために、導波路形成部分に垂直な方向に貫通孔27a,27bを設けた構造を示している。図6において、27a,27bは上下層への高周波エネルギーの出入口である貫通孔、28はリッジ25の延長方向への高周波エネルギー伝送を遮断するとともに貫通孔27a,27bへ高周波エネルギーを効率良く伝送するためのチョーク構造である。そして、この構造は、貫通孔27a,27bの端から導波路形成部分を伝送する電波の波長をλRとしてλR/4の先端が開放された導波路と、該先端が開放された導波路の外側に配置された高さが略λ0/4の複数の柱状突起24と、を備えている。
つまり、チョーク構造28においては、先端が開放された導波路のλR/4の長さ移動した位置では、短絡した状態と等価となる。このため、リッジ25と貫通孔27の導波管壁とが短絡される。よって、リッジ25から貫通孔27へ高周波エネルギーが効率良く伝送される。なお、先端が開放された導波路の外側に配置された高さが略λ0/4の柱状突起24は、導波路の先端からの漏れを抑えて、より理想的な開放状態を実現するために設けられている。
さらに、上記の高周波導波路では、上述したように、下側導体22と上側導体23とを互いに接触させなくても高周波エネルギーの漏れ出しを防止することができる。ここでは、このような特徴に注目し、下側導体22と上側導体23とを平行に相互にスライドさせても導波路が構成されるように、リッジ25の一方の側に上層への貫通孔の形状を工夫した構造を図7に示す。
図7において、27a,27bは上下層への高周波エネルギーの出入口である貫通孔、29はリッジ25の延長方向への高周波エネルギー伝送を遮断するとともに上層への貫通孔27bへ高周波エネルギーを効率良く伝送するために上側導体23に設けたチョーク構造である。このチョーク構造29は、上層への貫通孔27bの端から導波路上の波長をλRとしてλR/4の位置を先頭に、深さが略λW/4の先端が短絡された導波管状の溝を複数配置した構造となっている。なお、λWは、導波路形成部分の溝の管内波長である。
つまり、チョーク構造29においては、上側導体23に設けられた深さが略λW/4の先端が短絡された導波管状の溝の入口が、開放状態と等価である。このため、この位置でリッジ25上を流れる電流とペアをなす上側導体23の下面のリターン電流が遮断され、この位置でインピーダンスは開放となる。よって、この位置からλR/4の位置に設けた貫通孔27bでは、貫通孔27bの導波管壁とリッジが短絡と等価となる。この結果、リッジ25から貫通孔27bへ高周波エネルギーが効率良く伝送される。なお、深さが略λW/4の先端が短絡された導波管状の溝を複数配置したのは、導波管状の溝を飛び越えて流れる電流漏れを抑えて、より理想的な開放状態を実現するためである。
つまり、図7に示した構造において、下側導体22と上側導体23とを互いに平行に図中の示した座標軸のZ方向にスライドさせると、下側導体22および上側導体23の2つの貫通孔27a,27b間の距離が変化する。よって、2つの貫通孔27a,27b間を通過する高周波エネルギーの位相が変化する移相器として動作させることが可能となる。
すなわち、本実施形態の移相器によれば、図6に示した高周波導波路の特長が継承される。これにより、周囲に高周波エネルギーを放散せず、また隣接する移相器間の結合も低く抑えられる。さらに、製作と組立が簡単で、経時劣化による接触不良の心配がない。特に、車載レーダ等のミリ波帯において、低損失な移相器を実現することができる。
次に、後述の実体図を用いた説明と対応させるために、移相器の具体例について説明する。
図8は、図7に示した移相器を2つ使用し、2つの移相器の下側導体22a,22bを背中合わせに積層した構造をリッジ25a,25bに沿って切断した断面図を示している。図8に示した構造は、上下の導体23a,23bを互いに固定し、導体22a,22bが一体化された中間導体を、図中の矢印30の方向にスライドさせる。これにより、貫通孔27aa,27ab(連結路)を介する貫通孔27ba,27bb間(A−A間)の導波路長が変化する。よって、A−A間を通過する高周波エネルギーの位相が変化する可変移相器として動作する。つまり、図8の移相器は、図7の移相器と比較して、移相器の動作中に図8中にAで示した移相器の2つの入出力端子(貫通孔27ba,27bb)の位置が変化しないことと、中間導体の相対的なスライド量に対して2倍の移相量が得られることと、を特長としている。
さらに、図9は、図7に示した移相器を2つ使用し、2つの移相器の下側導体22a,22bを背中合わせに積層した構造をリッジ25a,25bに沿って切断した断面図を示している。図9に示した構造は、図8と比べて、2つの移相器の左右の向きを反対としている。これにより、図中の矢印30の方向に中間導体をスライドさせても、貫通孔27aa,27ab(連結路)を介する貫通孔27ba,27bb間(B−B間)の導波路長が変化しない。よって、B−B間を通過する高周波エネルギーの位相が変化しない固定移相器として動作させることができる。この結果、上下の導体23a,23b間において、高周波エネルギーは通過させたいが位相は変化させたくない場合の用途に用いることができる。
図2および図3に戻って説明を続けると、本実施形態のアンテナ装置6のアンテナ体7と導波路体8の内部には、以上に説明した高周波導波路と移相器とが用いられている。
なお、図7、図8に示した構造の移相器を、車載レーダ等の複数の移相器を有し、且つ複数の移相器間の移相量の比を一定に保ちながら同時に変化させるフェーズドアレーアンテナに応用する場合には、以下のような構成となる。
すなわち、下側導体22と上側導体23とを直線的にスライドさせるのではなく、後述する各板体12〜17の詳細図に示すように、図7のリッジ25を円弧状とした複数本の移相器を半径比が同じ同心円状に配置する。そして、図7の上側導体22と下側導体23とに対応する可動導体板(板体15)と固定導体板(板体14,16)とを、互いに平行に、且つ同心円状の中心を回転軸として回動させる構造とする。つまり、各リッジの半径比が一定であることから、同じ回動角度に対して一定の移相量の比を保って変化する移相器群が得られる。
すなわち、本実施形態のアンテナ装置6では、図2および図3に示すように、高さが略λ/4の柱状突起によるワッフルアイアン構造と高周波エネルギーの伝送経路に沿って設けたリッジによる導波路とを用いている。このため、板体12、板体13、板体14、板体15、板体16、板体17を物理的に接触させなくても、一定の間隔で離れた状態に保ったままで、周囲に高周波エネルギーを漏洩させることはない。また、隣接する線路や移相器間の結合度合いを低く抑えられる。よって、製作と組立が簡単で、経時劣化による接触不良の心配がない。特に、車載レーダ等のミリ波帯において、低損失なアンテナを実現することが可能となる。さらに、本実施形態のアンテナ装置6においては、各板体12〜17が物理的に接触しないという特徴を活かして、特に、導波路体8の板体15を、板体14と板体16に対して一定の間隔を介して回動させるように構成されている。これにより、簡素な構成の移相器を含むビーム可変アンテナを実現することが可能となる。
次に、アンテナ装置6を構成する各板状部材の詳細図を用いて、高周波エネルギーの流れを説明する。
なお、本実施形態のアンテナ装置6においては、高周波エネルギーを板体16から板体14まで、一度、各板体12〜17間を通過して到達させる。その後、再び板体14,15を通過させて板体16にまで戻す。そして、さらにもう一度、板体16,15を通過させて板体14に到達させる経路を採用している。これにより、多くの移相器を小さな面積内に収納することができる。よって、アンテナ装置6全体の大きさを小さくすることができる。
以下、各詳細図を用いて、特に、送受信体9から導波路体8およびアンテナ体7を通ってアンテナ装置6の前方に放射される送信時の高周波エネルギーの流れを説明する。なお、受信時の高周波エネルギーの流れは、送信時とは逆方向になるだけで、経路は全て同じである。
図10は、導波路体8の板体17を後方から見た斜視図である。なお、図中の方位表示は、全て図1および図2に示す方位表示に対応しており、後述する他の板体の斜視図においても同様である。
図10において、送受信体9から出力された高周波エネルギーは、貫通孔31から導波路体8の内部に入力される。入力された高周波エネルギーは、図11の板体16のリッジ端32aに入り、リッジ32に沿って伝送される。そして、2つに分岐された後、前方の層への貫通孔33へ入る。ここで貫通孔31から貫通孔33までの経路は、図6に示した構造が用いられている。
以降、2つの貫通孔33のうち一方に入った高周波エネルギーのみに注目して説明を続ける。
貫通孔33に入った高周波エネルギーは、図12の板体16の貫通孔34から出る。なお、貫通孔33,34を含め、後述する各層間の貫通孔の形状は、すべて、上下層のリッジへ効率良く高周波エネルギーを伝送できるように、図6と図7に示した矩形導波管ではなく、矩形導波管の2つの長辺にリッジを有するダブルリッジ矩形導波管となっている。さらに、貫通孔34を含め移相器入出力部の貫通孔については、リッジとの整合を取るために矩形導波管の短辺の一部を外側へ膨らませた形状になっている。また、リッジの一部には、整合のための盛上げや切欠きが設けられている。
再び図12に戻って説明を続けると、図12の貫通孔34から出た高周波エネルギーは、図13の板体15のリッジ35に入る。そして、リッジ35に沿って伝送され、前方の層への貫通孔36に入る。また、貫通孔36に入った高周波エネルギーは、図14の板体15の貫通孔37に出る。貫通孔37に出た高周波エネルギーはリッジに沿って伝送されて、図15の板体14の前方の層へ貫通する貫通孔38に入る。ここで、貫通孔34,36,37,38を繋ぐ経路は、図9に示した構造が用いられている。これにより、板体15が板体13,16に対して回動しても、貫通孔34から38間の高周波エネルギーの位相は変化しない。
再び図15に戻って説明を続けると、図15の貫通孔38に入った高周波エネルギーは、図16の板体14の貫通孔39に出た後、リッジに沿って伝送される。そして、2つに分岐された後、後方の層へつながる貫通孔40,41へ入る。
つまり、前述したように、送受信体9から板体17の貫通孔31に入力された高周波エネルギーは、板体17,16,15間を前方へ向かって通過して板体14の貫通孔39に到達する。その後、再度、板体14,15間を後方へ向かって通過して板体16まで戻るために、板体14において高周波エネルギーの進行方向が逆向きとなる。
ここで、まず貫通孔40に入った方の高周波エネルギーに注目して説明を続ける。貫通孔40に入った高周波エネルギーは、図15の板体14の貫通孔42から出る。そして、貫通孔42から出た高周波エネルギーは、図14の板体15のリッジ44に入り、リッジ44に沿って伝送されて後方の層への貫通孔45に入る。また、貫通孔45に入った高周波エネルギーは、図13の板体15の貫通孔46に出る。貫通孔46から出た高周波エネルギーは、リッジ47に沿って伝送され、リッジ47から図12の板体16の後方の層への貫通孔48に入る。ここで、貫通孔42,45,46,48を繋ぐ経路についても、図9に示す構造が用いられている。よって、板体15が板体14,16に対して回動しても、貫通孔42から貫通孔48までの間の高周波エネルギーの位相は変化しない。
再び図16に戻って説明を続けると、貫通孔41に入った高周波エネルギーは、図15の板体14の貫通孔43から出る。そして、貫通孔43から出た高周波エネルギーは、図14の板体15のリッジ49に入り、リッジ49に沿って伝送されて後方の層への貫通孔50に入る。貫通孔50に入った高周波エネルギーは、図13の板体15の貫通孔51に出て、リッジ52に沿って伝送されてリッジ52から図12の板体16の後方の層への貫通孔53に入る。ここで、貫通孔43,50,51,53を繋ぐ経路には、図8に示した構造が用いられている。よって、板体15が板体14,16に対して回動すると、貫通孔43から貫通孔53までの間の高周波エネルギーの位相が変化する。
ここまでは、図16の2つの貫通孔40,41に入った高周波エネルギーが、それぞれ図12の2つの貫通孔48,53に入るまでの2つの経路を別々に説明したが、ここからは2つの経路を一緒に説明する。
図12に示す2つの貫通孔48,53に入った高周波エネルギーは、図11の板体16の貫通孔54,55からそれぞれ出る。その後、リッジ32b,32cに沿って伝送され、それぞれ4つに分岐されて前方への貫通孔56,57に入る。
つまり、前述のように、送受信体9から出力され、板体17,16,15間を前方へ向かって通過して板体14に到達した後、再び板体15,16,17間を後方へ向かって通過して板体16まで戻った高周波エネルギーは、もう一度、板体16,15,14間を通過して板体14に到達させるために、板体16において進行方向が逆向きとなる。
貫通孔56,57に入った高周波エネルギーは、図12の板体16の貫通孔58,59から出る。その後、高周波エネルギーは、図13の板体15のリッジ60,61上の位置60a,61aに入り、それぞれ4本のリッジ60,61上を伝送されて前方への貫通孔62,63へ入る。
貫通孔62,63に入った高周波エネルギーは、図14の板体15の貫通孔64,65に出る。その後、高周波エネルギーは、それぞれ4本のリッジ66,67を介して伝送され、リッジ66,67上の位置66a,67aから図15の板体14の前方の層への貫通孔68,69に入る。ここで、貫通孔58,62,64,68、および貫通孔59,63,65,69を繋ぐ経路には、図8に示す構造が用いられている。よって、板体15が板体14,16に対して回動すると貫通孔58から貫通孔68までの間、および貫通孔59から貫通孔69までの間の高周波エネルギーの位相が変化する。
さらに、貫通孔68,69に入った高周波エネルギーは、図16の板体14の貫通孔70,71から出る。その後、それぞれ4本のリッジ72,73上を伝送され、リッジ72,73上の位置72a,73aから、図17の板体13の貫通孔74,75に入る。さらに、高周波エネルギーは、図18の板体13の貫通孔76,77から出る。
そして、貫通孔76,77から出た高周波エネルギーは、放射素子の励振用導波路であるそれぞれ4本のリッジ78,79上で共振する。さらに、リッジ78,79上の共振電流が、図19の板体12に形成された放射素子群12a,12bを共振させる。最終的には、放射素子群12a,12bの共振磁流が放射源となって、アンテナ装置6の前方空間に向かって高周波エネルギーが放射される。
以上の説明では、図11の貫通孔33,33の一方に入った高周波エネルギーの流れについて説明したが、他方の貫通孔33に入った高周波エネルギーについても、同様の経路を通過して、図19の放射素子群12c,12dから前方空間に向かって放射される。但し、各詳細図に示したように、放射素子群12aと放射素子群12b、および放射素子群12cと放射素子群12dとでは、通過する移相器の形状が左右対称に構成されている。このため、板体15が回動した場合には、可変移相器の移相符号は互いに逆極性となっている。
以上のように、本実施形態のアンテナ装置6では、板体15を板体14,16に対して回動させたとき、高周波エネルギーの位相が変化する伝送路と変化しない伝送路を複数組合せた構成となっている。
ここで、ビーム可変アンテナの動作原理は、隣接する放射素子間に一定の位相差を与え、その位相差を変化させることで得られることがよく知られている。また、不要な方向への電波の散逸を抑えてアンテナの利得を高めるためには、放射素子の密度を高める必要があることも良く知られている。
よって、本実施形態のアンテナ装置6においても、板体15上に、円弧状をした複数本の移相器を、半径比が同じな同心円状に配置している。これにより、板体15が板体14,16に対して回動したとき、各移相器の半径比に比例した位相差を発生させることができる。さらに、図19に示すように、左右方向に放射素子列12aa〜12ad,12ba〜12bd,12ca〜12cd,12da〜12ddの密度を高めた配置を採用することができる。なお、この放射素子列12aa〜12ad,12ba〜12bd,12ca〜12cd,12da〜12ddは、それぞれ上下方向に複数の放射素子を配置して構成される放射素子の一群である。
しかしながら、板体15を回動させる手段は、図20に示すように、円盤状の板体80、位置検出板81、クランプ板82、ネジ83、モーター84によって構成されている。そして、板体15の中心部の穴85には、モーター84を組込む必要がある。このため、円盤状の板体80の中心部には、移相器を配置できないという制約がある。
この制約は、板体15の中心部に置かれるべき移相器に対応する放射素子列12bdおよび放射素子列12cd(図19参照)の間の位相差を、他の隣接する放射素子列間の位相差と同じにすることができないという不具合となる。
よって、本実施形態のアンテナでは、上述した高周波エネルギーの流れの説明のように、板体15を回動させたときに位相の変化する伝送路による可変移相器と、位相の変化しない伝送路による固定移相器とを設けて組み合わせることにより、この課題を解決している。
ここで、本実施形態における移相器配置について、以下で説明する。
図21は、本実施形態に係るアンテナ装置6(ビーム可変アンテナ)の移相器配置図であり、図22は、本実施形態に係るアンテナ装置6の位相関係図である。
本実施形態のアンテナ装置6は、図21および図22に示すように、入力端子32xと放射素子群12a〜12dを有している。ここで、放射素子群12a〜12dは、図19に示すように、上下方向に複数並べられたスロット型放射素子列12aa〜12ad,12ba〜12bd,12ca〜12cd,12da〜12ddに対応している。
また、図21と図22には、上述した板体12〜17間を接続する貫通孔33,34,38,39,40,41,42,43,48,53,55,56,57,58,59,68,69,70,71に対応する点を○印で示している。また、各板体12〜17上に設けた高周波導波路に対応する線を、2つの実線87,88と、2つの破線89,90とで示している。
なお、破線89は、板体16の後方に設けたリッジによる高周波導波路を、破線90は、板体15の前方に設けたリッジによる高周波導波路を、それぞれ示している。実線87は、板体15の後方に設けたリッジによる高周波導波路を、実線88は、板体15の前方に設けたリッジによる高周波導波路を、それぞれ示している。さらに、図21の吹出し内に示したように、内側に示した円弧状実線が高周波導波路87を、外側に示した円弧状実線が高周波導波路88を、それぞれ示している。
また、図22の91,92,93,94は、図21に記された移相器を示している。そして、各移相器上に記した式は、板体15が図21中の矢印方向にΔφ/2回動したときの各移相器の移相量に相当する導波路長の変化量を示している。さらに、図21と図22とでは、放射素子列12aa〜12ad,12ba〜12bd,12ca〜12cd,12da〜12ddの並び順を一致させて示している。よって、図22の入力端子32xから放射素子列12aa〜12ddの各移相器91〜94上に記した導波路長の変化量を総和することで、図21の板体15が矢印方向にΔφ/2回転したときの給電される高周波エネルギーの総移相量が得られるようになっている。
ここで、図22の移相器93,94は、図8に示した板体15が回動したときに位相量が変化する可変移相器である。移相器91,92は、図9に示した板体15が回動しても位相量が変化しない固定移相器である。なお、図21では、これら2種類の移相器の高周波導波路87,88の接続形状が、図8と図9における高周波エネルギーの経路A−AとB−Bの形状に対応するように示されている。
そして、移相器93の高周波導波路の板体15の回動中心からの半径は、図21、図22に示すように、4Δrとなっている。また、移相器94の高周波導波路の板体15の回動中心からの半径は、内側から順にそれぞれ、4.5Δr、5.5Δr、6.5Δr、7.5Δrとなっている。
よって、板体15がΔφ/2回動したときの、各移相器91〜94の配置とΔφの回動方向との組合せが寄与する符号を考慮しながら、図22の入力端子32xから各放射素子列12aa〜12ddまでの移相器の導波路長の変化量を総和すると、
放射素子列12aaについて:±0±0−7.5ΔrΔφ=−7.5ΔrΔφ
放射素子列12abについて:±0±0−6.5ΔrΔφ=−6.5ΔrΔφ
放射素子列12acについて:±0±0−5.5ΔrΔφ=−5.5ΔrΔφ
放射素子列12adについて:±0±0−4.5ΔrΔφ=−4.5ΔrΔφ
放射素子列12baについて:±0+4ΔrΔφ−7.5ΔrΔφ=−3.5ΔrΔφ
放射素子列12bbについて:±0+4ΔrΔφ−6.5ΔrΔφ=−2.5ΔrΔφ
放射素子列12bcについて:±0+4ΔrΔφ−5.5ΔrΔφ=−1.5ΔrΔφ
放射素子列12bdについて:±0+4ΔrΔφ−4.5ΔrΔφ=−0.5ΔrΔφ
放射素子列12caについて:±0−4ΔrΔφ+4.5ΔrΔφ=0.5ΔrΔφ
放射素子列12cbについて:±0−4ΔrΔφ+5.5ΔrΔφ=1.5ΔrΔφ
放射素子列12ccについて:±0−4ΔrΔφ+6.5ΔrΔφ=2.5ΔrΔφ
放射素子列12cdについて:±0−4ΔrΔφ+7.5ΔrΔφ=3.5ΔrΔφ
放射素子列12daについて:±0±0+4.5ΔrΔφ=4.5ΔrΔφ
放射素子列12dbについて:±0±0+5.5ΔrΔφ=5.5ΔrΔφ
放射素子列12dcについて:±0±0+6.5ΔrΔφ=6.5ΔrΔφ
放射素子列12ddについて:±0±0+7.5ΔrΔφ=7.5ΔrΔφ
というように、互いに隣接する放射素子列12aa,12ab、放射素子列12ab,12ac、・・・・・・・放射素子列12db,12dc、放射素子列12dc,12dd間の導波路長の変化量の差は、すべてΔrΔφとなっている。
これにより、図19の放射素子群12bと放射素子群12cとに含まれる放射素子列12ba〜12bdと放射素子列12ca〜12cdとのうち、互いに隣接する放射素子列12bd,12ca間にも、他の各放射素子列間と同量の位相差を与えることが可能となる。そして、これは、図21および図22に示すように、板体15を回動させたときに位相の変化する可変移相器と、位相の変化しない固定移相器と、を設けて組合せることにより実現される。
すなわち、導波路体8に形成された複数の導波路は、可動導波路体としての板体15が、固定導波路体としての板体14と板体16および板体13に対して、回転(もしくは回動)して相対的に動くことで、伝送する電波の位相が変化する可変移相器と、板体15の動きに関係なく、固定された伝送線路長により固定的な位相量を与える固定移相器とを形成している。
また、放射素子群12a,12b,12c,12dとの関係においては、導波路体8の複数の導波路は、第1の導波路(図27の95)と、第2の導波路(図27の96)と、第3の導波路(図27の97)とを形成している。
第1の導波路は、第1の放射素子群12a,12bに対応した複数の導波路によって構成されている。第2の導波路は、第2の放射素子群12c,12dに対応した複数の導波路によって構成されている。第3の導波路は、第1の放射素子群の放射素子列12bdと、第2の放射素子群の放射素子列12caとの間の導波路長差を、他の隣接する放射素子列間の導波路長差であるΔr*Δθ(すなわち、ΔrとΔθとの積となる値)に合わせる。
これにより、全ての放射素子列12aa〜12ad,12ba〜12bd,12ca〜12cd,12da〜12ddの互いに隣り合う放射素子列間の位相差を全て等しくすることができるため、不要な方向への電波の散逸を抑制することができる。
つまり、同じ開口面積を有するアンテナの、その開口面積に対する電波の入射/放射効率を向上させることができるので、同じ効率を持ったアンテナを、より小型化することが可能になる。
つまり、本実施形態によるアンテナ装置6によれば、移相器を構成する板体15の中心部にモーター84を組込む必要がある。このため、中心部に移相器を配置できないという制約がある場合において、板体15を回動させたときに位相の変化する可変移相器と位相の変化しない固定移相器を設けて組み合わせている。これにより、板体15の中心部に置かれるべき移相器に対応する、図19の放射素子群12b,12cに含まれる放射素子列12ba〜12cd中にある隣接する放射素子列12bd,12ca間に、他の隣接する放射素子列間と同じ位相差を与えることができる。よって、アンテナ装置6の利得を高めることが可能となる。
[他の実施形態]
(A)
以上では、図1の左右方向における不要な方向への電波の散逸を抑えたアンテナ装置について説明した。しかし、本発明はこれに限定されるものではない。例えば、図1の上下方向における不要な方向への電波の散逸を抑えたアンテナ装置であってもよい。
ここでは、本実施形態のアンテナ装置6を車載レーダに適用した場合における車載レーダの認識精度を向上させる手段について以下で説明する。
図23は、周期的にリッジ95の高さを変化させた高周波導波路の斜視図である。図24は、周期的にリッジ高さを変化させた高周波導波路の波長特性図である。図25は、周期的にリッジ高さを変化させた高周波導波路を使用した放射器の斜視図である。図26は、放射素子間の距離を変えた場合の指向特性図である。
図23に示した高周波導波路は、図5に示した高周波導波路と比べて、長手方向において高さが変化するリッジ95以外は同じ構造と形状を有している。なお、図23では、説明の便宜上、上側導体は図示していないが、図5と同様に上側導体23と下側導体22の2つの導体によって高周波導波路が構成されているものとする。
ここで、図23に示した高周波導波路は、動作周波数において図5に示した高周波導波路上の波長をλRとするとき、リッジ95上にλR/4未満の周期で切込(凹部)96を設けている。これにより、リッジ95の長手方向における高さを周期的に変化させることができる。
図24は、切込96の深さと高周波導波路上の波長との関係を示すグラフである。
つまり、図24に示すように、動作周波数の自由空間波長をλ0とし、深さが0からλ0/8の範囲で、且つリッジ95の長手方向においてλR/4未満の周期で切込96を設けて高さを変化させることにより、自由空間波長λ0に対する高周波導波路上の波長λgとの比率λg/λ0を、約1.15から0.85の範囲で変化させることができる。
なお、高周波導波路上の波長を変化させることができる原理は、周期がλR/4未満の範囲であれば、高周波導波路上を伝搬する高周波エネルギーにとって、切込96は切込の底面を短絡先端、対向する切込内側の両側面を伝送路とする先端短絡線路として作用することから、切込96の深さに応じた先端短絡線路の等価インピーダンスが、分布定数成分として高周波導波路に直列に挿入されることである。
図25は、リッジ95の長手方向において、λR/4未満の周期で高さを変化させた高周波導波路を使用した放射器を示している。これは、図18の板体13上の一本の高周波導波路と、それに対向する図19の板体12上の一列の放射素子列とを抜き出したものに相当する。
図25において、リッジ95により構成される高周波導波路は、両端が開放される。そして、その長さが高周波導波路上の波長λgの整数倍に作られている。よって、高周波導波路は共振状態にあって、リッジ95上には共振電流が流れている。
そして、放射素子列112aa〜112ajは、リッジ95上で共振電流が最大で、且つ共振電流が同じ向きである場所に対向する位置(板体12上)に配置されている。よって、全ての放射素子列112aa〜112ajから同相同振幅の高周波エネルギーが空間に放射される。この結果、図25の放射器では、正面方向に主ビームを有するアレーアンテナとして動作する。
なお、図25は、高周波導波路の長さが10λg、放射素子列が10個の場合を示しているが、高周波導波路長をK・λgとすると、Kが放射素子数と同じもしくはそれ以上であれば、同様に正面方向に主ビームを有するアレーアンテナが得られる。
つまり、図25に示す両端が開放されて共振する高周波導波路を用いる放射器では、互いに隣接する放射素子列112aa〜112ajの間隔97は、高周波導波路上の波長と一致させて用いられる。
また、図26は、図25の放射器のzx面での指向特性を示しており、98は放射素子間の距離97が1.15λ0の時の指向特性を、99は放射素子間の距離97が0.85λ0の時の指向特性をそれぞれ示している。
ここで、各放射素子列112aa〜112ajが同相同振幅で励振されたアレーアンテナでは、主ビームは、正面方向、つまり角度0°方向に存在する。一方、放射素子列112aa〜112aj間の距離が自由空間波長λ0以上である場合には、各放射素子列112aa〜112ajから空間に放射された高周波エネルギーが同相となる方向が角度±90°以内に存在し、不要な方向へ電波を散逸させる、所謂、グレーティングローブが発生してしまう。
つまり、図26の指向特性98がそれに対応し、放射素子列112aa〜112aj間の距離が1.15λ0のとき、角度±60°方向に主ビームと同レベルの利得を有するグレーティングローブが発生している。
しかし、車載レーダでは、グレーティングローブが発生すると、その角度方向からの反射波を強く受信してしまい、認識精度が劣化してしまうという不具合が生じる。
これに対し、放射素子列112aa〜112aj間の距離を自由空間波長λ0より短くすれば、主ビームと同レベルのグレーティングローブの発生は抑えられる。よって、車載レーダにおいて、認識精度の劣化を防ぐことが可能となる。
そして、図26の指向特性99がそれに対応し、放射素子列112aa〜112aj間の距離を0.85λ0としたとき、主ビームと同レベルのグレーティングローブの発生が抑えられている。
つまり、本実施の形態によるアンテナ装置によれば、動作周波数において切込96を設けないときの高周波導波路上の波長をλRとしたときに、リッジ95の長手方向において、λR/4未満の周期で高さを変化させることで高周波導波路上の波長を変化させている。そして、さらに波長を変化させた高周波導波路を放射器の給電線路に用いることで、車載レーダにおいて、認識精度を劣化させる主ビームと同レベルのグレーティングローブの発生を抑えた放射器を実現することができる。
さらに、本実施形態によれば、高周波導波路上の波長を変化させることにより単位長さの高周波導波路を通過する高周波エネルギーの位相変化量を変化させることができる。これにより、位相調整線路として用いることでアンテナ給電線路の配置の自由度が向上できるという効果がある。なお、その効果が本発明の及ぼす範囲であることは言うまでもない。
(B)
上記実施形態では、本発明に係る高周波導波路を用いた電子機器として、自動車の前方監視用のレーダを用いた例を説明した。その他の実施形態としては、工事現場などに使われている重機等に用いられても良い。
近年、自動車の分野では、環境対策として、従来のエンジンと電気モーターを併用した、所謂、ハイブリッド式が市場に受け入れられている。そして、重機の分野でも、自動車業界と同様に、電気モーターを組み合わせたハイブリッド式が検討されている。このようなハイブリッド式の重機では、自動車と同様に、電気モーターの初期起動トルクが大きいことを利用し、その分エンジン出力を抑えることができる。よって、省エネ化が図れるという効果がある。さらに、特に、騒音を抑えることができるので、騒音対策にも効果がある。
しかしながら、重機において騒音が抑えられることは、騒音対策の一手段となる反面、周囲に対して音によって重機が近づいている等の注意を促すということができなくなる。このため、重機周辺における安全性を向上させる必要がある。
このような場合に、重機自体に本発明の高周波導波路を用いた電子機器を周囲監視用レーダとして用いることが好ましい。これにより、例えば、重機の周辺に人がいる場合には、重機の操作者に注意喚起を促して重機の動作を停止させることができる。よって、騒音が抑制された重機の安全性を向上させることが可能になる。
(C)
上記実施形態では、リッジ95の高さ方向における寸法を、リッジ95の長手方向において変化させて高周波導波路を形成した例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
例えば、図28(a)の側断面図に示すように、異なる2つの高さZ1,Z2を有するリッジ195を用いて高周波導波路を形成してもよい。
あるいは、図28(b)の平面図に示すように、隣接する柱状突起(電磁波漏洩阻止用突起)224との間の隙間がλ0/2未満であって、長手方向において幅寸法が変化するリッジ295を含む下側導体(板体213)を用いて高周波導波路を形成してもよい。
本発明は、以上のように、アンテナ体自体を動かさずに小型化、構成の簡素化を図ることができるため、省エネルギーの観点から小型軽量化を推進している自動車などへの展開も大いに期待できる。
1 自動車本体
2 タイヤ
3 ボンネット
4 車内
5 バンパー
6 アンテナ装置
7 アンテナ体
8 導波路体
9 送受信体
10 カバー(電波透過性のカバー)
11 ケース
12 板体
12a,12b,12c,12d 放射素子群
12aa〜12ad,12ba〜12bd,12ca〜12cd,12da〜12dd 放射素子列
13 板体
14 板体
15 板体
16 板体
17 板体
18 基板ベース
19 制御部
20 RF回路部
21 光受発光素子
22,22a,22b 下側導体(第1の導体、第2の導体)
23,23a,23b 上側導体(第2の導体、第1の導体)
24 柱状突起(電磁波漏洩阻止用突起)
25 リッジ
26 柱状突起の先端を繋いだ面
27a,27b,31,33,34,36,37,38,39,40,41,42,45,46,48,50,51,53,54,55,56,57,58,59,62,63,64,65,68,69,70,71,74,75,76,77 貫通孔
27aa,27ab 貫通孔(連結路)
27ba,27bb 貫通孔
28,29 チョーク構造
30 中間導体のスライド方向
32 リッジ
32a リッジ端
32x 入力端子
35,44,47,49,52,60,61,66,67,72,73,78,79 リッジ
60a,61a,66a,67a,72a,73a リッジ上の位置
80 円盤状の板体
81 位置検出板
82 クランプ板
83 ネジ
84 モーター
85 穴
87 高周波導波路
88 高周波導波路
89 高周波導波路
90 高周波導波路
91,92 (固定)移相器
93,94 (可変)移相器
95 周期的に高さを変化させたリッジ
96 切込
97 放射素子間の距離
98 放射素子間が1.15λ0のときの指向特性
99 放射素子間が0.85λ0のときの指向特性
112aa〜112aj 放射素子列
195 リッジ
213 板体
224 柱状突起(電磁波漏洩阻止用突起)
295 リッジ

Claims (25)

  1. 高周波信号の動作周波数の自由空間波長をλ0としたときに、λ0/2未満の間隔で互いに対向配置された第1・第2の導体と、
    前記第1・第2の導体間に形成された導波路形成部分において、前記第1・第2の導体の一方から他方に向けて突出すると共に、前記導波路形成部分に沿って延長形成されたリッジ(Ridge)と、
    前記リッジの外方において、前記導波路形成部分の外側の前記第1・第2の導体の少なくとも一方に、高さがλ0/4で、λ0/2未満の間隔で複数個配置された柱状突起と、
    を備え
    前記リッジは、その長手方向において高さ方向に対して直交する幅方向の寸法が変化している、
    高周波導波路。
  2. 高周波信号の動作周波数の自由空間波長をλ 0 としたときに、λ 0 /2未満の間隔で互いに対向配置された第1・第2の導体と、
    前記第1・第2の導体間に形成された導波路形成部分において、前記第1・第2の導体の一方から他方に向けて突出すると共に、前記導波路形成部分に沿って延長形成されたリッジ(Ridge)と、
    前記リッジの外方において、前記導波路形成部分の外側の前記第1・第2の導体の少なくとも一方に、高さがλ 0 /4で、λ 0 /2未満の間隔で複数個配置された柱状突起と、
    前記リッジの高周波信号伝送方向の端部に設けられた連結路と、
    前記連結路の前記リッジの端部とは反対側に設けられた長さがλ R /4のチョーク機能を持たせた先端が開放された導波路と、
    を備えている高周波導波路。
    (ただし、λ R は、導波路形成部分において伝送される高周波エネルギーの波長)
  3. 高周波信号の動作周波数の自由空間波長をλ 0 としたときに、λ 0 /2未満の間隔で互いに対向配置された第1・第2の導体と、
    前記第1・第2の導体間に形成された導波路形成部分において、前記第1・第2の導体の一方から他方に向けて突出すると共に、前記導波路形成部分に沿って延長形成されたリッジ(Ridge)と、
    前記リッジの外方において、前記導波路形成部分の外側の前記第1・第2の導体の少なくとも一方に、高さがλ 0 /4で、λ 0 /2未満の間隔で複数個配置された柱状突起と、
    を備え、
    高周波信号の動作周波数における前記高周波導波路上の波長をλ R としたときに、前記リッジの長手方向において、このリッジの高さをλ R /4未満の周期で変化させている、
    高周波導波路。
  4. 請求項に記載の高周波導波路を給電路に用いた放射器。
  5. 請求項1からのいずれか一つに記載の高周波導波路と、
    前記第1・第2の導体を相対的に移動させて、前記導波路の長さを変化させる可動機構と、
    を備えた移相器。
  6. 前記第1の導体の面同士を2枚合わせにして構成される中間導体と、
    前記中間導体の表面側と裏面側とにそれぞれ配置された前記第2の導体と、
    前記中間導体を構成する2枚の前記第1の導体を貫通する連結路と、
    を備えており、
    前記中間導体は、表裏面側にそれぞれ配置された2枚の前記第2の導体に対して相対的に移動可能である、
    請求項に記載の移相器。
  7. 請求項に記載の移相器を、その高周波伝送路に配置した、
    電子機器。
  8. アンテナ体と、
    前記アンテナ体の背面側に設けた導波路体と、
    前記導波路体に連結した送受信体と、
    を備え、
    前記導波路体は、請求項に記載の移相器を有する、
    電子機器。
  9. 請求項に記載の放射器を、備えており、
    前記放射器には、前記アンテナ体が連結されている、
    請求項に記載の電子機器。
  10. アンテナ体と、
    前記アンテナ体の背面側に設けられた導波路体と、
    前記導波路体に連結された送受信体と、
    を備え、
    前記導波路体は、対向して配置された可動導波路用の第1の導体と、固定導波路用の第2の導体とを有し、
    高周波信号の動作周波数の自由空間波長をλ0としたときに、λ0/2未満の間隔で第1・第2の導体を対向して配置し、
    これら第1・第2の導体間の導波路形成部分には、前記第1・第2の導体の一方から他方に向けて突出すると共に、前記導波路形成部分に沿って延長形成されたリッジ(Ridge)を設け、
    このリッジの外方で前記導波路形成部分の外側の前記第1・第2の導体の少なくとも一方には、高さがλ0/4の柱状突起を、λ0/2未満の間隔で複数個配置した、
    電子機器。
  11. 所定間隔で配置された複数の放射素子を含む放射素子列を有する第1・第2の放射素子群を備えたアンテナ体と、
    固定導波路体と、
    前記固定導波路との間に導波路体を形成するとともに、前記固定導波路体に対して相対移動する可動導波路体と、
    前記アンテナ体の後方に、前記導波路体を介して設けられた送受信体と、
    を備え、
    前記導波路体は、
    高周波信号の動作周波数の自由空間波長をλ 0 としたときに、λ 0 /2未満の間隔で互いに対向配置された第1・第2の導体と、
    前記第1・第2の導体間に形成された導波路形成部分において、前記第1・第2の導体の一方から他方に向けて突出すると共に、前記導波路形成部分に沿って延長形成されたリッジ(Ridge)と、
    前記リッジの外方において、前記導波路形成部分の外側の前記第1・第2の導体の少なくとも一方に、高さがλ 0 /4で、λ 0 /2未満の間隔で複数個配置された柱状突起と、を備え、
    前記可動導波路体は、前記第1の放射素子群に対応した複数の導波路によって構成された第1の導波路と、
    前記第2の放射素子群に対応した複数の導波路によって構成された第2の導波路と、
    前記第1・第2の放射素子群において、互いに隣接する第1の放射素子群の放射素子列と前記第2の放射素子群の放射素子列との間の位相差を、前記第1・第2の放射素子群に含まれる互いに隣接する放射素子列の位相差に合わせる第3の導波路と、
    を有しているアンテナ装置。
  12. 前記リッジは、複数に分岐している、
    請求項1に記載のアンテナ装置
  13. 前記リッジは、その長手方向において高さ寸法が変化している、
    請求項1に記載のアンテナ装置
  14. 前記可動導波路体は、円盤状である、
    請求項1に記載のアンテナ装置。
  15. 前記可動導波路体は、回転可能である、
    請求項1に記載のアンテナ装置。
  16. 前記可動導波路体は、回動可能である、
    請求項1に記載のアンテナ装置。
  17. 前記可動導波路体は、円周方向および径方向の少なくとも一方において分割された複数の導波路を有している、
    請求項1に記載のアンテナ装置。
  18. 前記可動導波路体は、前記導波路の内周側および外周側の少なくとも一方に設けられた電波漏洩阻止用突起を、さらに有している、
    請求項1に記載のアンテナ装置。
  19. 前記可動導波路体は、前記導波路に対向する前記固定導波路体における前記可動導波路体の導波路の内周側および外周側の少なくとも一方に設けられた電波漏洩阻止用突起を、さらに有している、
    請求項1に記載のアンテナ装置。
  20. 前記可動導波路体に形成された導波路と、
    前記可動導波路体の導波路に対向する前記固定導波路体における、前記導波路およびこの導波路の内周側と外周側の少なくとも一方に設けられた電波漏洩阻止用突起と、
    をさらに備えている、
    請求項1に記載のアンテナ装置。
  21. 前記固定導波路体に形成された導波路に対向する前記可動導波路体における、前記固定導波路体の導波路およびこの導波路の内周側および外周側の少なくとも一方に設けられた電波漏洩阻止用突起と、
    前記複数の電波漏洩阻止用突起群内に設けられた前記可動導波路体を前後に貫通する貫通口と、
    をさらに備えている、
    請求項1に記載のアンテナ装置。
  22. 前記導波路体は、前記可動導波路体の前後に所定間隔を介して前記固定導波路体を対向させて構成されている、
    請求項1に記載のアンテナ装置。
  23. 前記アンテナ体の前面側に設けられた電波透過性のカバーを、さらに備えている、
    請求項1に記載のアンテナ装置。
  24. 請求項11に記載のアンテナ装置と、
    前記アンテナ装置の送受信体に電気的に接続された送受信機と、
    を備えている電子機器。
  25. 前記アンテナ体は、自動車本体の前面側に装着される、
    請求項2に記載の電子機器。
JP2010535633A 2008-10-29 2009-10-01 高周波導波路およびそれを用いた移相器、放射器、この移相器および放射器を用いた電子機器、アンテナ装置およびこれを備えた電子機器 Expired - Fee Related JP5514731B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010535633A JP5514731B2 (ja) 2008-10-29 2009-10-01 高周波導波路およびそれを用いた移相器、放射器、この移相器および放射器を用いた電子機器、アンテナ装置およびこれを備えた電子機器

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2008277969 2008-10-29
JP2008277970 2008-10-29
JP2008277969 2008-10-29
JP2008277970 2008-10-29
JP2009097845 2009-04-14
JP2009097845 2009-04-14
PCT/JP2009/005087 WO2010050122A1 (ja) 2008-10-29 2009-10-01 高周波導波路およびそれを用いた移相器、放射器、この移相器および放射器を用いた電子機器、アンテナ装置およびこれを備えた電子機器
JP2010535633A JP5514731B2 (ja) 2008-10-29 2009-10-01 高周波導波路およびそれを用いた移相器、放射器、この移相器および放射器を用いた電子機器、アンテナ装置およびこれを備えた電子機器

Publications (2)

Publication Number Publication Date
JPWO2010050122A1 JPWO2010050122A1 (ja) 2012-03-29
JP5514731B2 true JP5514731B2 (ja) 2014-06-04

Family

ID=42128495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010535633A Expired - Fee Related JP5514731B2 (ja) 2008-10-29 2009-10-01 高周波導波路およびそれを用いた移相器、放射器、この移相器および放射器を用いた電子機器、アンテナ装置およびこれを備えた電子機器

Country Status (5)

Country Link
US (1) US8779995B2 (ja)
EP (1) EP2343774A4 (ja)
JP (1) JP5514731B2 (ja)
CN (1) CN102160236B (ja)
WO (1) WO2010050122A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8780518B2 (en) 2011-02-04 2014-07-15 Denso Corporation Electronic control device including interrupt wire
JP6238505B1 (ja) * 2015-11-05 2017-11-29 日本電産株式会社 スロットアレーアンテナ

Families Citing this family (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008054624A1 (de) * 2008-12-15 2010-06-17 Robert Bosch Gmbh FMCW-Radarsensor für Kraftfahrzeuge
US9450659B2 (en) * 2011-11-04 2016-09-20 Alcatel Lucent Method and apparatus to generate virtual sector wide static beams using phase shift transmit diversity
US9568619B2 (en) * 2013-12-13 2017-02-14 The Trustees of Princeton University Office of Technology and Trademark Licensing Passive waveguide structures and integrated detection and/or imaging systems incorporating the same
CN103825089B (zh) * 2014-02-28 2016-06-22 电子科技大学 近场聚焦平面阵列天线
US9472853B1 (en) * 2014-03-28 2016-10-18 Google Inc. Dual open-ended waveguide antenna for automotive radar
WO2015170717A1 (ja) 2014-05-07 2015-11-12 桐野秀樹 導波路およびそれを用いた装置
CN106537682B (zh) * 2014-05-14 2020-04-21 加普韦夫斯公司 在平行导电平面之间的间隙中的波导和传输线
WO2016058627A1 (en) * 2014-10-13 2016-04-21 Gapwaves Ab A microwave or millimeter wave rf part assembled with pick-and-place technology
EP3248243B1 (en) * 2015-01-19 2019-11-13 Gapwaves AB A microwave or millimeter wave rf part realized by die-forming
US9876282B1 (en) * 2015-04-02 2018-01-23 Waymo Llc Integrated lens for power and phase setting of DOEWG antenna arrays
EP3147994B1 (en) 2015-09-24 2019-04-03 Gapwaves AB Waveguides and transmission lines in gaps between parallel conducting surfaces
JP6365494B2 (ja) * 2015-10-07 2018-08-01 株式会社デンソー アンテナ装置及び物標検出装置
DE102016119473B4 (de) 2015-10-15 2022-10-20 Nidec Elesys Corporation Wellenleitervorrichtung und Antennenvorrichtung mit der Wellenleitervorrichtung
JP6256776B2 (ja) * 2015-10-15 2018-01-10 日本電産株式会社 導波路装置および当該導波路装置を備えるアンテナ装置
CN207542369U (zh) * 2015-11-05 2018-06-26 日本电产株式会社 雷达系统以及无线通信系统
WO2017086524A1 (ko) * 2015-11-17 2017-05-26 한국과학기술원 광 위상 배열 안테나에 적용을 위한 격자 구조를 이용한 나노포토닉 발산기
KR101872077B1 (ko) 2015-11-17 2018-06-28 한국과학기술원 광 위상 배열 안테나에 적용을 위한 격자 구조를 이용한 나노포토닉 발산기
KR101709076B1 (ko) 2015-11-24 2017-02-22 현대자동차주식회사 안테나 장치 및 이를 포함하는 차량
US10276944B1 (en) * 2015-12-22 2019-04-30 Waymo Llc 3D folded compact beam forming network using short wall couplers for automotive radars
US9979094B1 (en) * 2015-12-22 2018-05-22 Waymo Llc Fed duel open ended waveguide (DOEWG) antenna arrays for automotive radars
US10164344B2 (en) 2015-12-24 2018-12-25 Nidec Corporation Waveguide device, slot antenna, and radar, radar system, and wireless communication system including the slot antenna
JP6879729B2 (ja) 2015-12-24 2021-06-02 日本電産株式会社 スロットアレーアンテナ、ならびに当該スロットアレーアンテナを備えるレーダ、レーダシステム、および無線通信システム
CN206774650U (zh) * 2016-01-15 2017-12-19 日本电产艾莱希斯株式会社 波导装置、天线装置以及雷达
WO2017131099A1 (en) 2016-01-29 2017-08-03 Nidec Elesys Corporation Waveguide device, and antenna device including the waveguide device
DE102017102284A1 (de) 2016-02-08 2017-08-10 Nidec Elesys Corporation Wellenleitervorrichtung und Antennenvorrichtung mit der Wellenleitervorrichtung
DE102017102559A1 (de) 2016-02-12 2017-08-17 Nidec Elesys Corporation Wellenleitervorrichtung und Antennenvorrichtung mit der Wellenleitervorrichtung
US10811784B2 (en) * 2016-03-01 2020-10-20 Kymeta Corporation Broadband RF radial waveguide feed with integrated glass transition
JP2019047141A (ja) * 2016-03-29 2019-03-22 日本電産エレシス株式会社 マイクロ波ic導波路装置モジュール、レーダ装置およびレーダシステム
CN208093767U (zh) 2016-04-05 2018-11-13 日本电产株式会社 无线通信系统
JP2019054315A (ja) 2016-04-28 2019-04-04 日本電産エレシス株式会社 実装基板、導波路モジュール、集積回路実装基板、マイクロ波モジュール、レーダ装置およびレーダシステム
JP2019075597A (ja) * 2016-05-20 2019-05-16 日本電産エレシス株式会社 アンテナ装置、アンテナアレイ、レーダ装置、およびレーダシステム
CN106526572A (zh) * 2016-11-07 2017-03-22 深圳市速腾聚创科技有限公司 一维相控阵雷达及一维相控阵雷达控制方法
CN106785433A (zh) * 2017-01-13 2017-05-31 中国科学院国家空间科学中心 一种基于脊隙波导技术的无隙扫描漏波天线
JP2018164252A (ja) 2017-03-24 2018-10-18 日本電産株式会社 スロットアレーアンテナ、および当該スロットアレーアンテナを備えるレーダ
CN108695585B (zh) 2017-04-12 2021-03-16 日本电产株式会社 高频构件的制造方法
JP7020677B2 (ja) 2017-04-13 2022-02-16 日本電産エレシス株式会社 スロットアンテナ装置
US10608345B2 (en) * 2017-04-13 2020-03-31 Nidec Corporation Slot array antenna
JP2018182742A (ja) * 2017-04-14 2018-11-15 日本電産株式会社 スロットアンテナアレイ
CN108736166B (zh) 2017-04-14 2020-11-13 日本电产株式会社 缝隙天线装置以及雷达装置
JP2018182743A (ja) * 2017-04-18 2018-11-15 日本電産株式会社 スロットアレイアンテナ
WO2018207838A1 (en) * 2017-05-11 2018-11-15 Nidec Corporation Waveguide device, and antenna device including the waveguide device
DE112018001974T5 (de) 2017-05-11 2020-01-09 Nidec Corporation Wellenleitervorrichtung und antennenvorrichtung mit derwellenleitervorrichtung
US10547122B2 (en) 2017-06-26 2020-01-28 Nidec Corporation Method of producing a horn antenna array and antenna array
JP2019009779A (ja) 2017-06-26 2019-01-17 株式会社Wgr 伝送線路装置
JP7103860B2 (ja) 2017-06-26 2022-07-20 日本電産エレシス株式会社 ホーンアンテナアレイ
JP7294608B2 (ja) 2017-08-18 2023-06-20 ニデックエレシス株式会社 アンテナアレイ
JP2019050568A (ja) 2017-09-07 2019-03-28 日本電産株式会社 方向性結合器
FR3071363B1 (fr) 2017-09-19 2019-09-06 Thales Joint tournant pour une antenne rotative et antenne rotative comportant un tel joint
US20190109361A1 (en) 2017-10-10 2019-04-11 Nidec Corporation Waveguiding device
US11199611B2 (en) * 2018-02-20 2021-12-14 Magna Electronics Inc. Vehicle radar system with T-shaped slot antennas
GB2572763B (en) 2018-04-09 2022-03-16 Univ Heriot Watt Waveguide and antenna
US10594032B2 (en) 2018-06-07 2020-03-17 King Abdulaziz University Beam scanning antenna and method of beam scanning
JP7298808B2 (ja) 2018-06-14 2023-06-27 ニデックエレシス株式会社 スロットアレイアンテナ
EP3588673B1 (en) * 2018-06-29 2024-04-03 Advanced Automotive Antennas, S.L. Under-roof antenna modules for vehicles
FR3086104B1 (fr) * 2018-09-13 2021-12-10 Thales Sa Ensemble de guidage d'ondes radioelectriques et antenne comprenant un tel ensemble
JP7375408B2 (ja) 2018-09-28 2023-11-08 ニデック株式会社 高周波部材の製造方法および高周波部材
US11056757B2 (en) 2018-09-28 2021-07-06 Nidec Corporation Manufacturing method of a radio-frequency member
FR3089696B1 (fr) * 2018-12-11 2020-11-13 Thales Sa Dispositif de déphasage mécanique large bande en onde guidée
CN111342185A (zh) 2018-12-18 2020-06-26 日本电产株式会社 波导装置、天线装置以及通信装置
US11201414B2 (en) 2018-12-18 2021-12-14 Veoneer Us, Inc. Waveguide sensor assemblies and related methods
FR3090216B1 (fr) * 2018-12-18 2020-12-18 Thales Sa Joint tournant radiofrequence rf pour dispositif rotatif de guidage d’ondes rf et dispositif rotatif rf incluant un tel joint
JP7379176B2 (ja) 2019-01-16 2023-11-14 太陽誘電株式会社 導波路装置、電磁波閉じ込め装置、アンテナ装置、マイクロ波化学反応装置、およびレーダ装置
JP2021007209A (ja) 2019-02-05 2021-01-21 日本電産株式会社 スロットアレイアンテナ
EP3918664B1 (en) * 2019-03-14 2023-10-11 Huawei Technologies Co., Ltd. Redirecting structure for electromagnetic waves
ES2729211B2 (es) * 2019-05-09 2020-03-04 Univ Valencia Politecnica Desfasador mecanico
US11171399B2 (en) 2019-07-23 2021-11-09 Veoneer Us, Inc. Meandering waveguide ridges and related sensor assemblies
US11196171B2 (en) 2019-07-23 2021-12-07 Veoneer Us, Inc. Combined waveguide and antenna structures and related sensor assemblies
US11114733B2 (en) 2019-07-23 2021-09-07 Veoneer Us, Inc. Waveguide interconnect transitions and related sensor assemblies
US10957971B2 (en) 2019-07-23 2021-03-23 Veoneer Us, Inc. Feed to waveguide transition structures and related sensor assemblies
US11283162B2 (en) 2019-07-23 2022-03-22 Veoneer Us, Inc. Transitional waveguide structures and related sensor assemblies
TWI704535B (zh) * 2019-11-11 2020-09-11 財團法人工業技術研究院 天線陣列及包含此天線陣列的汽車防撞雷達
CN110931929A (zh) * 2020-01-15 2020-03-27 盛纬伦(深圳)通信技术有限公司 一种毫米波脊波导传输线
US11378683B2 (en) * 2020-02-12 2022-07-05 Veoneer Us, Inc. Vehicle radar sensor assemblies
US11349220B2 (en) 2020-02-12 2022-05-31 Veoneer Us, Inc. Oscillating waveguides and related sensor assemblies
US11563259B2 (en) 2020-02-12 2023-01-24 Veoneer Us, Llc Waveguide signal confinement structures and related sensor assemblies
US11914067B2 (en) 2021-04-29 2024-02-27 Veoneer Us, Llc Platformed post arrays for waveguides and related sensor assemblies
US11668788B2 (en) 2021-07-08 2023-06-06 Veoneer Us, Llc Phase-compensated waveguides and related sensor assemblies
US20230144495A1 (en) * 2021-11-05 2023-05-11 Veoneer Us, Inc. Waveguides and waveguide sensors with signal-improving grooves and/or slots

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02156707A (ja) * 1988-12-08 1990-06-15 Yagi Antenna Co Ltd 平面アンテナ
JPH0465902A (ja) * 1990-07-02 1992-03-02 Toshiba Corp リッジ導波管―マイクロストリップ線路変換器
JP2003304106A (ja) * 2002-04-08 2003-10-24 Mitsubishi Electric Corp 導波路構造体
WO2008081807A1 (ja) * 2006-12-28 2008-07-10 Panasonic Corporation 移相器およびアンテナ

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2711517A (en) 1945-09-14 1955-06-21 Krutter Harry Corrugated wave guide
GB785856A (en) 1956-01-04 1957-11-06 Sperry Rand Corp Wave-guide lens
US3118118A (en) 1960-05-27 1964-01-14 Scanwell Lab Inc Variable waveguide
US3108237A (en) 1961-09-29 1963-10-22 Hughes Aircraft Co Variable microwave phase shifter having moveable reactive stubs
DE3209906A1 (de) * 1982-03-18 1984-02-02 ANT Nachrichtentechnik GmbH, 7150 Backnang Hohlleiter-drehkupplung
JPS6378601A (ja) 1986-09-22 1988-04-08 Matsushita Electric Ind Co Ltd コルゲ−ト形フイルタ
JP3220966B2 (ja) 1994-08-30 2001-10-22 株式会社村田製作所 非放射性誘電体線路部品
JP3055467B2 (ja) 1996-07-02 2000-06-26 株式会社村田製作所 アンテナ
JP3218996B2 (ja) * 1996-11-28 2001-10-15 松下電器産業株式会社 ミリ波導波路
JP4209497B2 (ja) 1998-06-05 2009-01-14 富士通テン株式会社 回動部材用回動位置検出装置
JP3731354B2 (ja) 1998-07-03 2006-01-05 株式会社村田製作所 アンテナ装置および送受信装置
JP2001274608A (ja) 2000-03-28 2001-10-05 Matsushita Electric Ind Co Ltd ミリ波回路及びその製造方法と送受信装置及びレーダ装置
US6927653B2 (en) * 2000-11-29 2005-08-09 Kyocera Corporation Dielectric waveguide type filter and branching filter
JP2002185221A (ja) 2000-12-14 2002-06-28 Matsushita Electric Ind Co Ltd Nrdガイド回路
JP4373616B2 (ja) 2001-01-29 2009-11-25 京セラ株式会社 一次放射器および移相器ならびにビーム走査アンテナ
JP3958970B2 (ja) * 2002-01-08 2007-08-15 本田技研工業株式会社 移動体用レーダー装置
EP1331688A1 (en) 2002-01-29 2003-07-30 Era Patents Limited Waveguide
JP3750856B2 (ja) 2002-07-12 2006-03-01 三菱電機株式会社 導波管
JP2004186755A (ja) 2002-11-29 2004-07-02 Murata Mfg Co Ltd 導波路、高周波回路および高周波回路装置
US7187342B2 (en) * 2003-12-23 2007-03-06 The Boeing Company Antenna apparatus and method
RU2296397C2 (ru) * 2005-05-31 2007-03-27 Джи-хо Ан Антенно-фидерное устройство и антенна, входящая в состав этого устройства

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02156707A (ja) * 1988-12-08 1990-06-15 Yagi Antenna Co Ltd 平面アンテナ
JPH0465902A (ja) * 1990-07-02 1992-03-02 Toshiba Corp リッジ導波管―マイクロストリップ線路変換器
JP2003304106A (ja) * 2002-04-08 2003-10-24 Mitsubishi Electric Corp 導波路構造体
WO2008081807A1 (ja) * 2006-12-28 2008-07-10 Panasonic Corporation 移相器およびアンテナ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8780518B2 (en) 2011-02-04 2014-07-15 Denso Corporation Electronic control device including interrupt wire
JP6238505B1 (ja) * 2015-11-05 2017-11-29 日本電産株式会社 スロットアレーアンテナ
JP2018061261A (ja) * 2015-11-05 2018-04-12 日本電産株式会社 スロットアレーアンテナ
JP2018511187A (ja) * 2015-11-05 2018-04-19 日本電産株式会社 スロットアレーアンテナ

Also Published As

Publication number Publication date
US8779995B2 (en) 2014-07-15
JPWO2010050122A1 (ja) 2012-03-29
CN102160236A (zh) 2011-08-17
US20110187614A1 (en) 2011-08-04
EP2343774A1 (en) 2011-07-13
CN102160236B (zh) 2014-08-06
WO2010050122A1 (ja) 2010-05-06
EP2343774A4 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
JP5514731B2 (ja) 高周波導波路およびそれを用いた移相器、放射器、この移相器および放射器を用いた電子機器、アンテナ装置およびこれを備えた電子機器
KR100533849B1 (ko) 섹터 안테나 장치 및 차재용 송수신 장치
KR100294612B1 (ko) 안테나장치및이를사용한송수신장치
CA2276879C (en) Antenna device, and transmitting/receiving unit
JP3473576B2 (ja) アンテナ装置および送受信装置
JP5638827B2 (ja) 内蔵型レーダ用送受一体アンテナ
KR20200086753A (ko) 다수의 편광 레이더 유닛
JP3163981B2 (ja) 送受信装置
KR20190020172A (ko) 편광-회전층을 포함하는 안테나 및 레이더 시스템
JPH08114667A (ja) レーダーモジュール
JP6481020B2 (ja) モジュール式平面マルチセクタ90度fovレーダアンテナアーキテクチャ
EP2211423A2 (en) Radar antenna
JP2007017294A (ja) レーダ装置およびその指向性制御方法
US20220283264A1 (en) Corrugated Radomes
JP2017181480A (ja) 車載レーダを備えたウィンドシールド
CN114976616A (zh) 天线、天线组件、雷达射频前端及电子设备
JPH09162626A (ja) 平面アレーアンテナ及びモノパルスレーダ装置
WO2006075437A1 (ja) アンテナ装置,無線通信装置及びレーダ装置
JP3498434B2 (ja) 開口面アンテナ、アンテナ駆動回路、及びレーダ装置
JP3401284B2 (ja) レーダ・通信兼用装置
KR102653840B1 (ko) 도파관 안테나 및 이를 포함하는 레이더 장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140331

R151 Written notification of patent or utility model registration

Ref document number: 5514731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees