JP5510339B2 - 負荷駆動回路 - Google Patents
負荷駆動回路 Download PDFInfo
- Publication number
- JP5510339B2 JP5510339B2 JP2011001165A JP2011001165A JP5510339B2 JP 5510339 B2 JP5510339 B2 JP 5510339B2 JP 2011001165 A JP2011001165 A JP 2011001165A JP 2011001165 A JP2011001165 A JP 2011001165A JP 5510339 B2 JP5510339 B2 JP 5510339B2
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- current
- gate
- switching element
- state
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000007704 transition Effects 0.000 claims description 55
- 230000001939 inductive effect Effects 0.000 claims description 16
- 238000001514 detection method Methods 0.000 claims description 10
- 230000007812 deficiency Effects 0.000 claims description 5
- 238000000034 method Methods 0.000 description 35
- 230000008569 process Effects 0.000 description 31
- 230000008859 change Effects 0.000 description 22
- 238000010586 diagram Methods 0.000 description 21
- 238000011084 recovery Methods 0.000 description 19
- 230000000694 effects Effects 0.000 description 13
- 101100457849 Caenorhabditis elegans mon-2 gene Proteins 0.000 description 12
- 238000012545 processing Methods 0.000 description 6
- 239000000969 carrier Substances 0.000 description 5
- 230000009467 reduction Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 102100031024 CCR4-NOT transcription complex subunit 1 Human genes 0.000 description 2
- 101000919674 Caenorhabditis elegans CCR4-NOT transcription complex subunit let-711 Proteins 0.000 description 2
- 101000919672 Homo sapiens CCR4-NOT transcription complex subunit 1 Proteins 0.000 description 2
- 239000008186 active pharmaceutical agent Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 102100031025 CCR4-NOT transcription complex subunit 2 Human genes 0.000 description 1
- 101001092183 Drosophila melanogaster Regulator of gene activity Proteins 0.000 description 1
- 101000919667 Homo sapiens CCR4-NOT transcription complex subunit 2 Proteins 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
Images
Landscapes
- Inverter Devices (AREA)
- Power Conversion In General (AREA)
Description
以下、本発明の第1の実施形態について図1〜図10を参照して説明する。
電気的構成の概略を示す図1(a)には、モータなどの誘導性負荷であるコイル1への交流通電をするための駆動回路2が示されている。駆動回路2(負荷駆動回路に相当)には、コイル1に対して正負の通電をするためのブリッジ回路3が設けられている。ブリッジ回路3は、上アーム側および下アーム側のそれぞれに対応してnチャンネル型のパワーMOSFET4、5が設けられている。ブリッジ回路3は駆動用の直流電源VDの端子間に接続されている。なお、図示はしていないが、コイル1の他端子は別のブリッジ回路に接続されている。
Zhenxue Xu, Bo Zhang and Alex Q.Huang,"Experimental Demonstration of the MOS Controlled Diode (MCD)",IEEE,2000
に内蔵ダイオードのオフ機能として説明されている。
D S Mon1 Mon2 Moff MOSFET4、5
「L」 「L」 OFF OFF ON ターンオフ(Roff)
「L」 「H」 OFF OFF ON ターンオフ(Roff)
「H」 「L」 ON OFF OFF ターンオン(Ron1)
「H」 「H」 OFF ON OFF ターンオン(Ron2)
図6(a)は、パターン1の制御が実行される移行期間におけるSW1、SW2の駆動状態を示している。なお、図6に示すSW1、SW2の駆動状態(ON駆動/OFF駆動)は、実際のSW1、SW2が駆動されている状態を直接的に示すものではなく、スイッチング制御回路6からゲート駆動回路7、8に対して与えられるゲート駆動信号の状態を示している。
図6(b)は、パターン2の制御が実行される際における図6(a)相当図である。動作状態Aにおいては、SW1、SW2の双方がOFF駆動されている。ただし、SW2の内蔵ダイオード5aを介して環流電流が流れている。このような動作状態Aから動作状態Bに移行する移行期間には、図7(b)のフローチャートに示すパターン2の制御が実行される。パターン2の制御が開始されると、SW2がゲート抵抗Ron1を通じてON駆動される(ステップD1)。
図6(c)は、パターン3の制御が実行される際における図6(a)相当図である。動作状態Dにおいては、SW1、SW2の双方がOFF駆動されている。ただし、SW1の内蔵ダイオード4aを介して環流電流が流れている。このような動作状態Dから動作状態Cに移行する移行期間には、図8(a)のフローチャートに示すパターン3の制御が実行される。パターン3の制御が開始されると、SW1がゲート抵抗Ron1を通じてON駆動される(ステップE1)。
図6(d)は、パターン4の制御が実行される移行期間における図6(a)相当図である。動作状態Bにおいては、SW1がON駆動されているとともにSW2がOFF駆動されている。このような動作状態Bから動作状態Aに移行する移行期間には、図8(b)のフローチャートに示すパターン4の制御が実行される。パターン4の制御が開始されると、SW1がゲート抵抗Roffを通じてOFF駆動され(ステップF1)、制御が終了する。これにより、ブリッジ回路3が動作状態Aに移行し、SW2(MOSFET5)のチャンネルではなく、その内蔵ダイオード5aを順方向に介して環流電流(電流IL)が流れる。このようなパターン4の制御は、SW1、SW2の双方がオフになるデッドタイムを設けるものであり、従来技術と同様の制御になる。
図9は、電流ILが「正」方向(図1(a)中の矢印方向)に流れる状態における各部の波形を示す図である。また、図10は、図9中、区間Tで示す期間(動作状態Dから動作状態Cへの移行期間の終盤)のMOSFET4、5の動作を詳細に示す各部の波形図である。なお、図9および図10において、MOSFET4のドレイン・ソース間電圧Vds1の図示は省略しているが、その波形は、MOSFET5のドレイン・ソース間電圧Vds2の波形を反転したものに相当する。
以下、本発明の第2の実施形態について、図11〜図13を参照して説明する。
第1の実施形態は、動作状態AにおいてMOSFET5をオフするとともに、動作状態DにおいてMOSFET4をオフすることにより、内蔵ダイオード4a、5aを介して環流電流を流す構成であった。このような第1の実施形態に対し、本実施形態は、動作状態AにおいてMOSFET5をオンするとともに、動作状態においてMOSFET4をオンすることにより、MOSFET4、5のチャンネルを介して環流電流を流す構成である。
図11(a)は、パターン1の制御が実行される移行期間におけるSW1、SW2の駆動状態を示している。動作状態Cから動作状態Dに移行する移行期間には、図12(a)のフローチャートに示すパターン1の制御が実行される。図12(a)のフローチャートは、図7(a)のフローチャートに対し、ステップC2、C3が追加されている。パターン1の制御が開始されると、SW2がゲート抵抗Roffを通じてOFF駆動される(ステップC1)。その後、所定の遅延時間が経過するまで待機し(ステップC2)、ステップC3に進む。ステップC3では、SW1がゲート抵抗Ron1を通じてON駆動され、制御が終了する。これにより、ブリッジ回路3が動作状態Dに移行し、SW1(MOSFET4)のチャンネルを逆方向に介して環流電流(電流IL)が流れる。このようなパターン1の制御は、SW1、SW2の双方がオフになるデッドタイムを設けるものであり、従来技術と同様の制御になる。
図11(b)は、パターン2の制御が実行される際における図11(a)相当図である。動作状態Aにおいては、SW1がOFF駆動されるとともに、SW2がON駆動されている。この場合、SW2(MOSFET5)のチャンネルを逆方向に介して環流電流が流れている。このような動作状態Aから動作状態Bに移行する移行期間には、図12(b)のフローチャートに示すパターン2の制御が実行される。図12(b)のフローチャートは、図7(b)のフローチャートに対し、ステップD1、D2が削除されている。パターン2の制御が実行されると、SW1がゲート抵抗Ron1を通じてON駆動される(ステップD3)。その後は、第1の実施形態と同様にステップD4〜D7が実行され、ブリッジ回路3が動作状態Bに移行する。
図11(c)は、パターン3の制御が実行される際における図11(a)相当図である。動作状態Dにおいては、SW1がON駆動されるとともに、SW2がOFF駆動されている。この場合、SW1(MOSFET4)のチャンネルを逆方向に介して環流電流が流れている。このような動作状態Dから動作状態Cに移行する移行期間には、図13(a)のフローチャートに示すパターン3の制御が実行される。図13(a)のフローチャートは、図8(a)のフローチャートに対し、ステップE1、E2が削除されている。パターン3の制御が実行されると、SW2がゲート抵抗Ron1を通じてON駆動される(ステップE3)。その後は、第1の実施形態と同様にステップE4〜E7が実行され、ブリッジ回路3が動作状態Cに移行する。
図11(d)は、パターン4の制御が実行される移行期間における図11(a)相当図である。動作状態Bから動作状態Aに移行する移行期間には、図13(b)のフローチャートに示すパターン4の制御が実行される。図13(b)に示すフローチャートは、図8(b)に示すフローチャートに対し、ステップF2、F3が追加されている。パターン4の制御が開始されると、SW1がゲート抵抗Roffを通じてOFF駆動される(ステップF1)。その後、所定の遅延時間が経過するまで待機し(ステップF2)、ステップF3に進む。ステップF3では、SW2がゲート抵抗Ron1を通じてON駆動され、制御が終了する。これにより、ブリッジ回路3が動作状態Aに移行し、SW2(MOSFET5)のチャンネルを逆方向に介して環流電流(電流IL)が流れる。このようなパターン4の制御は、SW1、SW2の双方がオフになるデッドタイムを設けるものであり、従来技術と同様の制御になる。
以下、本発明の第3の実施形態について、図14〜図18を参照して説明する。
図14は、MOSFET4、5における電流および損失の特性の一例を示している。一般に、MOSFETのチャンネルを導通状態にして所定の電流を流した場合、その電流および損失(ソース・ドレイン間電圧)は、図14に太字の破線で示すような関係となる。一方、MOSFETの内蔵ダイオードを導通状態にして所定の電流を流した場合、その電流および損失(順方向電圧)は、図14に太字の実線で示すような関係となる。
動作状態Cから動作状態Dに移行する移行期間には、図15のフローチャートに示すパターン1の制御が実行される。図15のフローチャートは、第2の実施形態における図12(a)のフローチャートに対し、ステップC4、C5が追加されている。パターン1の制御が開始されると、電流トランスCT1を通じて検出される負荷電流ILの検出値の絶対値|IL|が電流Ix以上であるか否かが判断される(ステップC4)。
動作状態Aから動作状態Bに移行する移行期間には、図16のフローチャートに示すパターン2の制御が実行される。図16のフローチャートは、第1の実施形態における図7(b)のフローチャートに対し、ステップD8が追加されている。パターン2の制御が実行されると、電流トランスCT1を通じて検出される負荷電流ILの検出値の絶対値|IL|が電流Ix以上であるか否かが判断される(ステップD8)。
動作状態Dから動作状態Cに移行する移行期間には、図17のフローチャートに示すパターン3の制御が実行される。図17のフローチャートは、第1の実施形態における図8(a)のフローチャートに対し、ステップE8が追加されている。パターン2の制御が実行されると、電流トランスCT1を通じて検出される負荷電流ILの検出値の絶対値|IL|が電流Ix以上であるか否かが判断される(ステップE8)。
動作状態Bから動作状態Aに移行する移行期間には、図18のフローチャートに示すパターン4の制御が実行される。図18のフローチャートは、第2の実施形態における図13(b)のフローチャートに対し、ステップF4、F5が追加されている。パターン4の制御が開始されると、電流トランスCT1を通じて検出される負荷電流ILの検出値の絶対値|IL|が電流Ix以上であるか否かが判断される(ステップF4)。
以下、第2の実施形態に対してゲート駆動回路の構成を変更した第4の実施形態について、図19および図20を参照して説明する。
図19は、本実施形態のゲート駆動回路の構成を示すものである。本実施形態は、第2の実施形態に対し、ゲート駆動回路7、8に代えてゲート駆動回路9を用いるという点が異なる。なお、このゲート駆動回路9は、第1の実施形態および第3の実施形態の構成に対しても適用可能である。
D S Mon Moff MOSFET4、5
「L」 「L」 OFF ON ターンオフ(Roff)
「L」 「H」 OFF ON ターンオフ(Roff)
「H」 「L」 ON OFF ターンオン(Ron)
「H」 「H」 OFF OFF ターンオン(オープン)
(1)パターン2の制御
動作状態Aから動作状態Bに移行する移行期間には、図20(a)のフローチャートに示すパターン2の制御が実行される。図20(a)のフローチャートは、第2の実施形態における図12(b)のフローチャートに対し、ステップD5に代えてステップD5aが設けられている点が異なる。ステップD5aでは、SW1のゲートがオープン状態に制御(クランプ状態に制御)されるとともに、SW2がゲート抵抗Roffを通じてOFF駆動される。
動作状態Dから動作状態Cに移行する移行期間には、図20(b)のフローチャートに示すパターン3の制御が実行される。図20(b)のフローチャートは、第2の実施形態における図13(a)のフローチャートに対し、ステップE5に代えてステップE5aが設けられている点が異なる。ステップE5aでは、SW2のゲートがオープン状態に制御(クランプ状態に制御)されるとともに、SW1がゲート抵抗Roffを通じてOFF駆動される。
以上説明した本実施形態の構成によっても、第2の実施形態と同様の作用および効果が得られる。
以下、第2の実施形態に対してゲート駆動回路の構成を変更した第5の実施形態について、図21および図22を参照して説明する。
図21は、本実施形態のゲート駆動回路の構成を示すものである。本実施形態は、第2の実施形態に対し、ゲート駆動回路7、8に代えてゲート駆動回路10を用いるという点が異なる。なお、このゲート駆動回路10は、第1の実施形態および第3の実施形態の構成に対しても適用可能である。
D S Mon1 Mon2 Moff MOSFET4、5
「L」 「L」 OFF OFF ON ターンオフ(Roff)
「L」 「H」 OFF OFF ON ターンオフ(Roff)
「H」 「L」 ON OFF OFF ターンオン(VC1)
「H」 「H」 OFF ON OFF ターンオン(VC2)
また、制御電源VC2は、スイッチング制御回路6から与える制御信号によって出力電圧Vxをダイナミックに変化させることができるので、制御信号を適宜設定することにより、MOSFET4または5の電流を制限した状態でのオン動作を適切に制御することができるようになる。
(1)パターン2の制御
動作状態Aから動作状態Bに移行する移行期間には、図22(a)のフローチャートに示すパターン2の制御が実行される。図22(a)のフローチャートは、第2の実施形態における図12(b)のフローチャートに対し、ステップD3、D5、D7に代えてステップD3b、D5b、D7bが設けられている点が異なる。ステップD3bでは、SW1がゲートに電圧V0が与えられる状態でON駆動される。ステップD5bでは、SW1がゲートに電圧Vxが与えられる状態でON駆動(クランプ状態で駆動)されるとともに、SW2がゲート抵抗Roffを通じてOFF駆動される。ステップD7bでは、SW1がゲートに電圧V0が与えられる状態でON駆動される。
動作状態Dから動作状態Cに移行する移行期間には、図22(b)のフローチャートに示すパターン3の制御が実行される。図22(b)のフローチャートは、第2の実施形態における図13(a)のフローチャートに対し、ステップE3、E5、E7に代えてステップE3b、E5b、E7bが設けられている点が異なる。ステップE3bでは、SW2がゲートに電圧V0が与えられる状態でON駆動される。ステップE5bでは、SW2がゲートに電圧Vxが与えられる状態でON駆動(クランプ状態で駆動)されるとともに、SW1がゲート抵抗Roffを通じてOFF駆動される。ステップE7bでは、SW2がゲートに電圧V0が与えられる状態でON駆動される。
以下、本発明の第6の実施形態について、図23を参照して説明する。
本実施形態は、パターン2、3の制御内容について第2の実施形態とは以下のように異なる。
動作状態Aから動作状態Bに移行する移行期間には、図23(a)のフローチャートに示すパターン2の制御が実行される。図23(a)のフローチャートは、第2の実施形態における図12(b)のフローチャートに対し、ステップD4に代えてステップD4cが設けられている点が異なる。ステップD4cでは、電流I2の検出値が電流値Iz以上であるか否かが判断される。このステップD4cは、電流I2が負の方向(図1、図3中、上方向)に流れる状態が解消されて、さらには電流I2が正の方向(図1、図3中、下方向)に電流値Iz以上だけ流れる状態になる(「YES」になる)まで繰り返される。なお、電流値Iz(判定電流値)は、MOSFETのチャンネルを逆方向に介して流れる環流電流とは反対向きに流れる電流の値である。
動作状態Dから動作状態Cに移行する移行期間には、図23(b)のフローチャートに示すパターン3の制御が実行される。図23(b)のフローチャートは、第2の実施形態における図13(a)のフローチャートに対し、ステップE4に代えてステップE4bが設けられている点が異なる。ステップE4bでは、電流I1の検出値が電流値Iz以上であるか否かが判断される。このステップE4bは、電流I1が負の方向(図1、図3中、上方向)に流れる状態が解消されて、さらには電流I1が正の方向(図1、図3中、下方向)に電流値Iz以上だけ流れる状態になる(「YES」になる)まで繰り返される。
なお、本発明は上記し且つ図面に記載した各実施形態に限定されるものではなく、次のような変形または拡張が可能である。
第1および第2のスイッチング素子は、実施形態で説明したパワーMOSFET以外に、SJ(super junction)MOSFETあるいは、RC(reverse conductive)IGBTなどの内蔵ダイオードを有する素子を用いることができる。
還流電流が流れていない側のMOSFET4または5をオンさせるときに、一定時間第2のオンゲート電圧を印加しているが、負荷として接続されるコイル1に応じた時間を設定するデータをマップとして記憶しておいて、これを読み出して設定するようにしても良い。また、ゲート電圧をモニタしたりソース・ドレイン間電圧をモニタしてこれに応じて切り換えるようにしても良い。
Claims (9)
- 誘導性負荷に交流通電するためのブリッジ回路を構成する一対の電圧駆動型のスイッチング素子であって、主端子間に逆並列に接続されるとともに順方向電流が流れる状態でゲート電圧が印加されるとオフする機能を有する内蔵ダイオードを備え、上アーム側および下アーム側に対応した第1のスイッチング素子および第2のスイッチング素子と、
前記各スイッチング素子のそれぞれのゲートに対してオン駆動するためのオン電圧、オフ駆動するためのオフ電圧またはゲートしきい値電圧より高く且つ前記オン電圧より低い電圧であるクランプ電圧を選択的に与えるように構成されたゲート駆動回路と、
外部から与えられる制御指令に基づいて、前記ゲート駆動回路を介して前記各スイッチング素子のスイッチング動作を制御するスイッチング制御回路と、
前記各スイッチング素子に流れる電流を検出する電流検出手段と、
を備え、
前記スイッチング制御回路は、
前記各スイッチング素子のうち一方のスイッチング素子を逆方向に介して前記誘導性負荷に流れる負荷電流に応じた環流電流が流れる第1の状態から、他方のスイッチング素子を順方向に介して前記負荷電流に応じた電流が流れる第2の状態への移行期間において、
前記一方のスイッチング素子のゲートに前記オン電圧を与えるとともに、その状態で前記他方のスイッチング素子に前記オン電圧を与え、その後、前記電流検出手段により検出される前記一方のスイッチング素子に流れる電流が所定の判定電流値以下になった時点で前記一方のスイッチング素子にオフゲート電圧を与えるとともに前記他方のスイッチング素子に前記クランプ電圧を与え、さらにその後、所定の遅延時間経過後に前記他方のスイッチング素子に前記オン電圧を与えるように前記ゲート駆動回路の動作を制御することを特徴とする負荷駆動回路。 - 前記スイッチング制御回路は、前記第1の状態にあっては、前記一方のスイッチング素子のゲートに前記オフ電圧を与えるように前記ゲート駆動回路の動作を制御することを特徴とする請求項1に記載の負荷駆動回路。
- 前記スイッチング制御回路は、前記第1の状態にあっては、前記一方のスイッチング素子のゲートに前記オン電圧を与えるように前記ゲート駆動回路の動作を制御することを特徴とする請求項1に記載の負荷駆動回路。
- 前記誘導性負荷に流れる負荷電流を検出する負荷電流検出手段を備え、
前記スイッチング制御回路は、
前記第1の状態にあっては、
前記負荷電流検出手段により検出される負荷電流がしきい値電流より大きい場合には、前記一方のスイッチング素子のゲートに前記オフ電圧を与えるように前記ゲート駆動回路の動作を制御し、
前記負荷電流検出手段により検出される負荷電流が前記しきい値電流より小さい場合には、前記一方のスイッチング素子のゲートに前記オン電圧を与えるように前記ゲート駆動回路の動作を制御し、
前記しきい値電流は、前記一方のスイッチング素子および前記内蔵ダイオードの導通時の損失が互いに等しくなる電流値に設定されていることを特徴とする請求項1に記載の負荷駆動回路。 - 前記スイッチング制御回路は、前記判定電流値としてゼロを用いることを特徴とする請求項1〜4のいずれか一項に記載の負荷駆動回路。
- 前記スイッチング制御回路は、前記判定電流値として前記環流電流とは反対向きの電流値を用いることを特徴とする請求項1〜4のいずれか一項に記載の負荷駆動回路。
- 前記ゲート駆動回路は、
所定の電圧を出力する電圧源と、
第1の抵抗および前記第1の抵抗よりも抵抗値の大きい第2の抵抗と、
を備え、
前記電圧源の出力を前記第1の抵抗を介して前記オン電圧として出力し、
前記電圧源の出力を前記第2の抵抗を介して前記クランプ電圧として出力することを特徴とする請求項1〜6のいずれか一項に記載の負荷駆動回路。 - 前記ゲート制御回路は、
所定の第1の電圧を出力する第1の電圧源と、
前記第1の電圧より低い第2の電圧を出力する第2の電圧源と、
を備え、
前記第1の電圧源の出力を前記オン電圧として出力し、
前記第2の電圧源の出力を前記クランプ電圧として出力することを特徴とする請求項1〜6のいずれか一項に記載の負荷駆動回路。 - 前記誘導性負荷に流れる負荷電流を検出する負荷電流検出手段を備え、
前記ゲート駆動回路は、
前記第1のスイッチング素子または前記第2のスイッチング素子が、前記負荷電流検出手段により検出される負荷電流の大きさに相当する電流を過不足なく流すことが可能な動作状態になるようなゲート電圧をクランプ電圧として出力することを特徴とする請求項1〜6のいずれか一項に記載の負荷駆動回路。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011001165A JP5510339B2 (ja) | 2011-01-06 | 2011-01-06 | 負荷駆動回路 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011001165A JP5510339B2 (ja) | 2011-01-06 | 2011-01-06 | 負荷駆動回路 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012143115A JP2012143115A (ja) | 2012-07-26 |
JP5510339B2 true JP5510339B2 (ja) | 2014-06-04 |
Family
ID=46678819
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011001165A Active JP5510339B2 (ja) | 2011-01-06 | 2011-01-06 | 負荷駆動回路 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5510339B2 (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105324939B (zh) * | 2013-04-05 | 2018-04-24 | Abb技术有限公司 | Rc-igbt开关脉冲控制 |
JP5974989B2 (ja) * | 2013-06-28 | 2016-08-23 | 株式会社豊田自動織機 | パワーmosfetのスイッチング制御方法及び装置 |
JP6471895B2 (ja) * | 2014-12-25 | 2019-02-20 | パナソニックIpマネジメント株式会社 | 駆動装置、電力変換装置 |
JP6575230B2 (ja) * | 2015-02-24 | 2019-09-18 | 富士電機株式会社 | 半導体素子の駆動装置 |
JP6840053B2 (ja) * | 2017-08-22 | 2021-03-10 | 株式会社 日立パワーデバイス | 半導体電力変換回路、並びにそれを用いた半導体装置及びモータ駆動装置 |
US11218085B2 (en) * | 2018-03-30 | 2022-01-04 | Omron Corporation | Power conversion device having an inverter circuit including current limitation circuits and a control circuit controlling same |
JP7099199B2 (ja) * | 2018-09-03 | 2022-07-12 | 株式会社デンソー | 駆動対象スイッチの駆動回路 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3339311B2 (ja) * | 1996-07-16 | 2002-10-28 | 富士電機株式会社 | 自己消弧形半導体素子の駆動回路 |
JP4113436B2 (ja) * | 2003-01-24 | 2008-07-09 | 三菱電機株式会社 | ゲートドライブ装置 |
JP4816198B2 (ja) * | 2006-03-30 | 2011-11-16 | 株式会社日立製作所 | 貫通電流制御装置を備えたインバータ |
JP2009071956A (ja) * | 2007-09-12 | 2009-04-02 | Mitsubishi Electric Corp | ゲート駆動回路 |
-
2011
- 2011-01-06 JP JP2011001165A patent/JP5510339B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012143115A (ja) | 2012-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5510339B2 (ja) | 負荷駆動回路 | |
CN109804539B (zh) | 晶体管驱动电路和电动机驱动控制装置 | |
US9735771B1 (en) | Hybrid switch including GaN HEMT and MOSFET | |
US9979292B2 (en) | Control method and control circuit for switch in switching power supply | |
US20160142048A1 (en) | System and method for driving a power switch | |
JP5934925B2 (ja) | ゲートドライバおよびこれを備えたパワーモジュール | |
KR102195552B1 (ko) | 최소 전력 손실의 바디 다이오드를 가지는 스위칭 컨버터를 위한 게이트 드라이버 | |
JP4496988B2 (ja) | ゲート駆動回路 | |
US10756722B2 (en) | Hybrid switch control | |
JP2008278552A (ja) | ブリッジ回路における縦型mosfet制御方法 | |
TW201509129A (zh) | 用於基於半導體裝置的電路之閘極驅動器 | |
CN111490665A (zh) | 用第一和第二下拉信号切换绝缘栅双极晶体管的驱动器 | |
WO2016103328A1 (ja) | スイッチング装置、モータ駆動装置、電力変換装置およびスイッチング方法 | |
CN113765341A (zh) | 一种驱动器、电机驱动电路及动力系统 | |
US9490800B2 (en) | Control circuit of semiconductor switching element | |
US8471606B2 (en) | Driver circuit for a semiconductor power switch | |
JP2006238547A (ja) | 電圧駆動素子の駆動回路 | |
JP6762268B2 (ja) | インバータ装置、および、それを用いた電動装置 | |
JP6969480B2 (ja) | 電力変換装置 | |
JP4888199B2 (ja) | 負荷駆動装置 | |
JP7571905B1 (ja) | 電源装置及び電源システム | |
JP7501760B1 (ja) | 電源システム | |
JP7540291B2 (ja) | パワースイッチング素子の駆動装置 | |
JP2013135524A (ja) | ゲート駆動回路及び駆動制御装置 | |
JP6354610B2 (ja) | モータ駆動装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130228 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140131 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140225 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140310 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5510339 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |