JP5481475B2 - マイクロリソグラフィのための投影露光システムおよび側方結像安定性監視方法 - Google Patents

マイクロリソグラフィのための投影露光システムおよび側方結像安定性監視方法 Download PDF

Info

Publication number
JP5481475B2
JP5481475B2 JP2011515182A JP2011515182A JP5481475B2 JP 5481475 B2 JP5481475 B2 JP 5481475B2 JP 2011515182 A JP2011515182 A JP 2011515182A JP 2011515182 A JP2011515182 A JP 2011515182A JP 5481475 B2 JP5481475 B2 JP 5481475B2
Authority
JP
Japan
Prior art keywords
projection exposure
exposure system
projection
radiation
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011515182A
Other languages
English (en)
Other versions
JP2011525711A (ja
Inventor
マンジェ マティアス
ショッハ アルミン
ミュラー ウルリヒ
Original Assignee
カール・ツァイス・エスエムティー・ゲーエムベーハー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カール・ツァイス・エスエムティー・ゲーエムベーハー filed Critical カール・ツァイス・エスエムティー・ゲーエムベーハー
Publication of JP2011525711A publication Critical patent/JP2011525711A/ja
Application granted granted Critical
Publication of JP5481475B2 publication Critical patent/JP5481475B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70191Optical correction elements, filters or phase plates for controlling intensity, wavelength, polarisation, phase or the like
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70258Projection system adjustments, e.g. adjustments during exposure or alignment during assembly of projection system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

[関連出願の相互参照]
本出願は、独国特許出願公開第102008029970.7および米国仮特許出願第61/133,197号からの優先権を主張するものであり、それらの出願は引用により本明細書に援用される。
本発明はマイクロリソグラフィのための投影露光システムに関する。このような投影露光システムは、一般に、マスクテーブルまたはいわゆる「レチクルステージ」として構成した、マスクまたはいわゆる「レチクル」を保持するためのマスク保持デバイスを備える。この「レチクル」上にはマスク構造を配置する。さらに、このような投影露光システムは、一般に、いわゆる「ウエハステージ」として構成した基板保持デバイス、およびその基板上にマスク構造を結像する投影光学系を備え、基板保持デバイスにより、ウエハとして構成した基板を保持する。
従来の投影露光システムにおいては、多くの場合、ぼけ(blurring)により画質が低下する。ウエハにおける視野を露光中にそのウエハ上で画像位置がドリフトすると、その潜像がフォトレジスト内でぼけてしまう。この潜像のぼけは、結果として、プリント構造における重なりエラー(overlay errors:オーバーレイ・エラー)となって現れる。これらのぼけの問題は、極紫外線(EUV:extreme ultraviolet)投影露光システムにおいて特に顕著に発生する。EUV投影露光システムは、極紫外線波長域の波長、例えば、13.5nmの波長光で構造を露光する。半導体業界のロードマップでは、EUVにおける光リソグラフィは重要な役割を果たす。ここでは、ミラーのみを光学部品と考える。ミラー光学系では、ミラー位置および/またはミラー傾斜位置の変更は、像の変位に直結する。光学部品の機械的安定性に対する要件は、屈折光学系と比較して明らかに厳しいものとなっている。
従来の投影露光システムでは、適宜の調整およびいわゆる「整列(アラインメント)」センサによりウエハ露光中の視野位置を複数回制御し、適切な補正措置を講じる。このため、本来のフォトレジストの露光プロセスが中断される。制御測定と制御測定の間は、投影システムの短時間の安定性が頼りとなる。EUVシステムと比べ、従来システムの短時間安定性のレベルは比較的高い。像位置安定性に対する要件に関しては、従来の概念による像位置制御を継続した場合、従来システムにおける像位置の機械的安定性に対する要求値は5分間に1nmであるのに対し、EUVシステムにおいては5分間に0.2nmと厳しくなる。対物レンズの機械的基本構造の熱膨張が、ミラー位置の安定性におけるエラーの主な原因である。像安定性に課される高い要件を満たすため、極端に低い熱膨張係数を持つ材料を用いて投影対物レンズを構成する方法がとられている。しかしながら、このような材料は極めて高価で、扱いにくく、加工が難しい。
本発明の目的は上記課題を解決することであり、特に、フォトレジスト内の潜像のぼけ(blurring)を広範囲に防止できる投影露光システムを得ることである。
上記目的を達成するため、本発明によるマイクロリソグラフィのための投影露光システムは、マスク構造を基板平面内に結像する投影光学系、および投影光学系の側方結像安定性を、0.5nmよりも良好な分解能および少なくとも10Hzの測定速度で測定するように構成した測定デバイス、を備える。
この場合、投影光学系の側方結像安定性により、投影光学系を用いて基板平面内に結像したマスク構造の側方位置が、投影露光システムの露光動作中、経時的にどの程度安定性を維持できるか、を特定する。像の側方位置とは、基板平面内の像の位置を意味することが理解されよう。ここで、測定デバイスにより測定した投影光学系の側方結像安定性は、露光動作中に投影光学系によってのみ生じるマスク構造像の側方移動に関連する。
しかしながら、側方結像安定性の測定は投影露光システムの露光動作からは独立して行われ、また、露光と露光の合間に測定を行うこともできる。したがって、投影光学系の側方結像安定性により投影光学系の性能を規定し、マスク構造像の側方移動に対しマスク構造を基板平面内に安定して結像する。言い換えれば、測定デバイスを、いわゆる「視線」センサと称することもでき、このセンサにより投影光学系を通過した測定ビームの「視線」の安定性を測定する。
結像安定性測定の際の特定分解能は0.5nmよりも良好なものとする。この特定分解能により、基板平面内の結像安定性を本発明の測定デバイスにより測定することができる。この特定分解能および少なくとも10Hzの測定速度で結像安定性を測定することにより、投影露光システムの露光動作中におけるマスク構造の像の側方位置の変化を高い局所分解能および時間分解能で測定することができる。これにより、マスク構造を結像しつつ像の側方位置をリアルタイムで修正することができる。この目的のため、有利には、測定デバイスを投影露光システムの露光動作制御装置に接続する。したがって、露光プロセス中、マスク構造像の側方位置をほぼ一定に維持することができ、フォトレジスト内での潜像のぼけも広範囲に防止することができる。
本発明の一実施形態において、測定デバイスの分解能は0.1nmをよりも良好なものとし、特には、30pmよりも良好なものとする。測定速度は少なくとも50Hzとし、特には、少なくとも500Hzとし、有利には、少なくとも2kHzとする。
さらに、上記目的を達成するため、本発明によるマイクロリソグラフィのための投影露光システムは、マスク構造を基板平面に結像する投影光学系と、照射された測定放射線を投影光学系上に向かって異なる方向に伝播する少なくとも2つのテスト波に変換するように構成した入射回折素子と、投影光学系通過後のテスト波の光路内に配置され、このテスト波からテスト波の両方の放射部分の混合を有する検出ビームを生成するように構成した検出回折素子とを備える。投影露光システムは、さらに、検出ビームの光路内に配置され、該検出ビームの時間分解した照射強度を記録するように構成した光検出器、および記録した照射強度に基づき、投影光学系の側方結像安定性を測定するように構成した評価ユニットを備える。
さらに、本発明によれば、マイクロリソグラフィ用の投影露光システムの投影光学系の側方結像安定性を監視する方法を提供する。本発明方法において、測定放射線を入射回折素子上に照射して該測定放射線を伝播方向の異なる少なくとも2つのテスト波に変換し、テスト波は投影光学系を通過し、投影光学系を通過したテスト波は検出回折素子に到達し、その結果、回折により検出ビームが生成され、検出ビームは両方のテスト波の放射部分の混合を有する。さらに、検出ビームの放射強度は光検出器を用いて記録し、記録した放射強度により、投影光学系の側方結像安定性を確定する。
入射回折素子により生成されたテスト波は、投影光学系(ピューピル)の少なくとも1つの平面内において、互いに空間的に分離される。このことは、テスト波が、端から端まで連続した波の中の個々の部分ではないことを意味する。テスト波は、むしろ、それぞれ独立した波である。テスト波をこのように構成することで、各テスト波はそれぞれ異なる方向に伝播し、投影光学系のシステムピューピルを部分ごとに照射する。特に、テスト波により照射されるピューピル平面の1つの部分は複数の領域を含み、その領域は局所的に互いに離れている。すなわち、それぞれの領域は連続した一領域を構成しない。
言い換えれば、本発明によれば、投影光学系は異なる経路を経由して放射された複数のテスト波を有する。投影光学系を通過したテスト波は、回折検出素子により、両方のテスト波の放射部分を有する少なくとも1つの検出ビームに変換される。そして、この検出ビームを光検出器に照射して、その光検出器により、検出部分ビームの時間分解した全放射強度を記録する。記録した放射強度により、投影光学系の側方結像安定性を確定する。したがって、投影光学系の側方結像特性における変化を、リアルタイムに高精度で観測することができる。
光検出器の強度は、回折素子の側方移動、すなわち、入射回折素子および/または検出回折素子の測定放射線の光路に対する側方への移動に対して周期性を持つ。これに対応して、検出強度も検出回折素子上でのテスト波の側方移動、すなわち「像」の側方移動に対して周期的となる。したがって、光検出器からの信号は周期性についてのみ互いに異なる。したがって、回折素子の周期性は、有利には、目的とする所望の測定範囲よりも確実に広くなるように構成する。例えば、約10nmの測定範囲に対して望ましい格子間隔である数百nm〜数μmを用いる。
この測定方法およびこのように構成した投影露光システムによれば、投影光学系の側方結像安定性を上記の分解能および特定の測定速度で測定することができる。したがって、前述のように、露光プロセス中、マスク構造像の側方位置をほぼ安定して維持することができる。
本発明の一実施形態において、照射した測定放射線を入射回折素子により、投影光学系への伝播方向が異なる多くとも20のテスト波に、特に、2つ、3つ、または4つのテスト波に変換する。
本発明のさらなる実施形態において、各テスト波の波面は非球面である。一つの変形例によれば、テスト波をガウスビームまたはガウスビームに類似のものとして構成する。ある実施形態によれば、各テスト波の波面を平面または実質的に平面とする。
いくつかの実施形態によれば、各テスト波は照射した測定放射線の放射部分をそれぞれ含む。この放射部分は、入射回折素子における少なくとも第1回折次数の回折、すなわち、第1の回折次数またはそれ以上の回折次数により生成される。
入射回折素子および/または検出回折素子は、それぞれ格子構造として構成することができる。格子構造とした実施形態では、有利には、測定プロセスを2回行い、2回目の測定の際に格子構造の向きを約90°回転して、側方結像安定性を基板内で二次元的に測定するようにする。代案として、入射回折素子および/または検出回折素子を、それぞれホログラム構造として構成することができる。このようなホログラム構造は、それにより生成された回折ビームにより側方結像安定性を基板平面の二次元で測定可能とするように構成する。光検出器は強度センサとして機能し、例えば、フォトダイオードとして構成することができる。
本発明のさらなる実施形態において、投影光学系に対し、入射回折素子をマスク側または対物側に配置し、検出回折素子を基板側または像側に配置する。したがって、本実施形態において、入射回折素子および検出回折素子は2つの別々の回折素子として構成する。回折素子を上記のように配置することにより、投影露光システムの露光動作中は、測定放射線と照射線は投影光学系をと同じ方向に通過する。さらなる実施形態においては、入射回折素子を基板側に配置し、検出回折素子をマスク側に配置し、それにより光路を逆行させる。
本発明のさらなる実施形態において、さらに、照射回折素子を設ける。照射回折素子は、入射回折素子の手前で、測定放射線の光路内に配置され、測定放射線を少なくとも2本の伝播方向の異なる測定放射線部分ビームに変換する。特に、測定放射線を、照射回折素子の−1次、零次、+1次の回折次数により形成した少なくとも3本の測定放射線部分ビームに変換する。測定放射線を分割してから入射回折素子に入射させることにより、入射回折素子において多数のテスト波を生成することができる。入射回折素子および検出回折素子同様、照射回折素子を、例えば、格子構造またはホログラム構造として設計することができる。
本発明によるさらなる実施形態において、さらに、結像光学素子を設ける。結像光学素子は、照射回折素子と入射回折素子との間に配置し、測定放射線部分ビームを入射回折素子上に向ける。したがって、測定放射線部分ビームを入射回折素子上の共通する点に全て向けることが可能となり、続いて生成されるテスト波の起点をすべて同じとすることができる。
本発明のさらなる実施形態において、照射回折素子および入射回折素子は、照射回折素子から発生した少なくとも2本の測定放射線部分ビームのそれぞれが入射回折素子における回折により少なくとも2本の個別ビームに変換されるように構成する。その回折個別ビームの少なくとも一つは第1の測定放射線部分ビームを回折して生成したものであり、第2の測定放射線部分ビームを回折して生成した回折個別ビームの一つと重ね合わせることにより、その2本の重なり合った個別ビームが1つのテスト波を形成するようにする。個別測定放射線部分ビームのそれぞれの回折個別ビームは、特に、その個別測定放射線部分ビームを入射回折素子で少なくとも2次の回折次数により回折することにより形成する。ここで、少なくとも2次の回折次数は、−1次、零次、および+1次の次数を含む。この重ね合わせにより、検出部分ビームの計測、またはむしろ記録した検出部分ビームの数を最適化できるように、特定のテスト波の強度および測定位相位置を設定することができる。
本発明のさらなる実施形態において、第1検出ビームに加え、さらに少なくとも第2検出ビームおよび第3検出ビームをテスト波から生成できるように、検出回折素子を構成する。第2検出ビームは2つのテスト波のうち第1のテスト波の少なくとも1つの放射部分を有し、第3検出ビームは2つのテスト波のうち第2のテスト波の少なくとも1つの放射部分を有するものであり、投影露光システムはその第2検出ビームおよび第3検出ビームのそれぞれの放射強度を検出する少なくともさらに2つの検出器を備える。検出部分ビームとも称するさらなる検出ビームについてその強度を測定することにより、第1検出ビームについての測定強度を標準化することができる。前述のように、第1光検出器からの信号は周期性についてのみ一定である。さらなる検出ビームを用いることにより、周期内の補完を容易にする。それぞれの光検出器からの信号は、検出回折素子上の格子およびテスト波の側方位置の平行移動に対してはなお周期性を有するが、互いに対してはそれぞれ検出回折素子の間隔に対する一定の比率で相殺しあう。側方移動の間の検出器信号の形状が異なる(例えば、調波とする)ように、回折素子を構成することもできる。
本発明のさらなる実施形態において、さらに、マスク構造を基板平面内に結像するための照射線を生成する照射線源、および、この照射線源からは独立した、測定放射線を生成するための測定放射線源を設ける。特に、測定放射線源の波長は赤外線波長域内、可視波長域内、または近紫外線波長域内とするが、照射線源の波長は、例えば、EUV波長域内とすることができる。
本発明のさらなる実施形態において、投影露光システムは、マスク構造を基板平面に結像する露光光路、および、測定放射線をマスク側において露光光路に連結するカップリングミラーを備える。
本発明のさらなる実施形態において、マスク構造を基板平面に結像する露光光路およびテスト波を露光光路から分離するアンカップリングミラーを備える。基板側に少なくとも1つの光検出器を配置することにより、アンカップリングミラーを、有利には、基板側に設ける。
本発明のさらなる実施形態において、入射回折素子および検出回折素子を同じ回折素子で構成し、投影露光システムは逆反射体を有する。逆反射体により、投影光学系を通過したテスト波を自身に逆反射させ、それによりテスト波が投影光学系を再度通過して検出回折素子に到達するようにする。したがって、投影光学系に測定放射線を二重に通過させて検査することになる。この二重通過により、安定性測定の分解能を向上することができる。さらに、測定技術用の設置スペースは投影光学系の片側にのみ必要である。したがって、もう投影露光システムの一方の側の測定デバイスの構成は何ら変更する必要がない。リトロー回折格子、球面ミラー、またはいわゆる「コーナーキューブ」とし構成したプリズムを、例えば、逆反射体として用いることができる。
本発明のさらなる実施形態において、投影光学系をミラーおよび各ミラー表面の独立した領域で構成し、側方結像安定性を計測する際は、ミラーおよび各ミラー表面の独立した各領域にテスト波を照射し、ミラーおよび各ミラー表面の独立した各領域には測定放射線の波長に応じて設計した反射コーティングを施す。これにより、投影光学系におけるテスト波の強度低下を抑制し、測定信号の品質を向上することができる。測定放射線のミラー表面上の断面、すなわち、いわゆる「フットプリント」は、特に、部分的に、照射線の「フットプリント」の範囲を超える。
本発明のさらなる実施形態において、本発明による投影露光システムは、極紫外線(EUV)波長域および/またはより高周波長域の光によりマスク構造を基板平面内に結像するように構成される。EUV波長域の光の波長は、例えば、13.5nmである。本発明の一実施形態において、投影光学系の各ミラーにはEUV波長および測定放射線の波長の両方を良好に反射するコーティングを施す。
本発明による投影露光システムの上記実施形態およびその変形に関して述べた特徴は、本発明による方法にも適用される。本発明による方法から得られた実施形態は、本発明の開示内容に明示的に含まれるべきものである。さらに、本発明による投影露光システムの実施形態に関して挙げた上記利点は、したがって、本発明による方法に対応した実施形態にも関連している。
以下に例示する実施形態において、本発明によるマイクロリソグラフィのための投影露光システムおよび方法を、添付の概略的な図面に基づき、より詳細に説明する。それら図面については次のとおりである。
本発明の第1実施形態による、投影光学系およびその投影光学系の側方結像安定性を測定する測定デバイスを有する投影露光システムの概略断面図である。 図1に示す投影露光システム内の測定光路を示す図である。 本発明による投影露光システムのさらなる実施形態のマスク側断面図である。 本発明による投影露光システムのさらなる実施形態のマスク側断面図である。 本発明による投影露光システムのさらなる実施形態の基板側断面図である。 本発明による投影露光システムのさらなる実施形態の基板側断面図である。 本発明の第2実施形態による、逆反射体を有する投影露光システムの概略断面図である。 図7に示す本発明による投影露光システムのさらなる実施形態を示す概略側面図である。 図7および図8に示す逆反射体の動作モードを示す図である。 図7および図8に示す逆反射体の動作モードを示す図である。 図7に示す本発明による投影露光システムのさらなる実施形態を示す図である。 図7に示す本発明による投影露光システムのさらなる実施形態を示す図である。
以下に説明する実施形態において、機能的または構造的に相互に類似する要素には可能な限り同一または類似の符号を付している。したがって、特定の実施形態における各要素の特徴を理解するためには、その他の実施形態の説明または本発明の全体的な説明を参照されたい。
図1は、本発明によるマイクロリソグラフィのための投影露光システム10の第1実施形態を示す図である。投影露光システム10は、例えば、いわゆる「スキャナ」として設計したEUV(extreme ultraviolet)投影露光システムとして構成したものである。投影露光システム10は、投影光学系12を用いて、マスク上の、図1には図示しないマスク構造を、基板平面16内に設けたいわゆる「ウエハ」として構成した基板上に結像するように構成される。そのため、投影露光システム10は、いわゆる「レチクルステージ」として構成したマスク移動テーブル、およびいわゆる「ウエハステージ」として構成した基板移動テーブルを備える。
そのため、投影露光システム10は、例えば図3に示す照射線源46および照射光学系52を備える。照射線源は、例えば、波長13.5nmの極紫外照射線48を生成するEUV照射源として構成され、照射光学系により照射線48をマスクに照射する。
照射光学系12は多数の光学素子を備える。EUV波長領域内の照射線48により投影露光システム10が動作する場合、照射光学系12は反射光学系として設計され、ミラーとして構成した反射光学素子のみを備える。
投影露光システム10は、さらに、照射光学系12の側方結像安定性を測定する測定デバイス18を備える。この場合、前述のように、照射光学系12の側方結像安定性に基づき、照射光学系12を用いてマスク平面14から基板平面16内に結像した構造像の側方位置が、投影露光システム12の露光動作中、経時的に安定性をどの程度維持できるか、を特定する。したがって、この側方結像安定性により、投影光学系12の性能が規定される。投影光学系の性能とは、基板平面16内のマスク構造像の側方移動に対してマスク構造を基板平面16内に安定して結像する性能のことである。
言い換えれば、測定デバイス18により、投影光学系12内の収差に起因して発生する投影露光システム10の像の側方移動を測定する。波面誤差として、波面の傾斜を検出する。この目的のため、測定光路を設けるが、この測定光路は、露光光路または結像光路と一時的に置き換わり、または結像光路に対し連結または分離し、あるいは露光光路において利用されていない投影光学系12の一部を、投影光学系12全体を代表する特徴として、サンプリングする。
測定デバイス18は、測定放射線21を生成する測定放射線源20を備える。測定放射線21は赤外線波長域、可視波長域、または紫外線波長域の電磁放射線を含むことができ、その波長は、例えば、1064nm、780nm、632nm、532nm、365nm、248nm、または193nmである。投影露光システム10をEUV露光システムとして構成した場合、本発明による一実施形態において、投影光学系12の各ミラーに、EUV波長および測定放射線21の波長の両方を良好に反射するコーティングを施す。
本発明による一実施形態において、測定放射線21の波長と、マスク構造を結像するための照射線の波長とを等しくすることができる。この場合、測定放射線源20は照射線源46に相当するものとすることができる。
図1の測定デバイス18は、さらに、コリメータ22、照射回折格子24として構成した任意選択の回折素子、任意選択の結像光学素子26、および入射回折格子28として構成した入射回折素子を備える。コリメータ22により、測定放射線21を照射回折格子24上に集光し、そこから測定放射線21を回折により、異なる方向に伝播する3本の測定放射部分ビーム25に変換する。測定放射線を、零次、−1次、および+1次の回折次数で回折して、各測定放射部分ビーム25を形成する。測定放射部分ビーム25は、その後、マスク平面14上に設けた入射回折格子28に到達する。入射回折格子28において、各測定放射部分ビーム25の放射線は再度回折され、入射回折格子での回折により、5本のいわゆるテスト波30が形成される。テスト波30はテスト部分ビームとも称する。
図2に示すように、各テスト波30は、それぞれ、多数の回折個別ビーム31から形成される。例えば、「0」で識別されるテスト波30は、以下の3本の回折個別ビーム31、すなわち、(+1、−1)、(−1、+1)、および(0、0)を含む。ここで、個々の回折個別ビーム31をそれぞれ表すカッコ内の数字のうち、第1の数字は対応する測定放射部分ビーム25の回折次数を示し、第2の数字は、各回折個別ビーム31を生成するために、この測定放射部分ビーム25を入射回折格子28上で回折するときの回折次数を示す。「+1」で識別されるテスト波30は、以下の回折個別ビーム31、すなわち、(+1、0)および(0、+1)を含む。さらに、回折個別ビーム(−1、+2)は、例えば、このテスト波30の形成にも資することができる。
本発明による方法の基本機能を実現するためには、異なる方向に伝播する少なくとも2つのテスト波30を投影光学系12に通過させることが必要不可欠である。投影光学系12を通過した後、テスト波30は検出回折格子34として構成した検出回折素子に到達し、そこでテスト波30は、回折により、「−3」〜「+3」により識別される検出部分ビーム36に変換される。
テスト波30と同様に、検出部分ビーム36は回折個別ビーム37から形成される。したがって、例えば、「−2」で識別される検出部分ビーム36は、以下の3つの回折個別ビーム37、すなわち、(−1、−1、0)、(0、−1、−1)、および(−1、0、−1)を含む。ここで、各回折個別ビーム36をそれぞれ表すカッコ内の数字のうち、第1の数字は対応する測定放射部分ビーム25の回折次数を示し、第2の数字は、対応するテスト波30の回折次数を示し、そして、第3の数字は、このテスト波30を検出回折格子34上で回折して生成した回折個別ビーム37の回折次数を示す。さらに、(−1、−2、+1)、(−1、+1、−2)等の回折個別ビームは、例えば、「−2」で識別されるテスト部分ビーム30の形成にも資することができる。
測定デバイス18は、さらに、検出部分ビーム36のそれぞれについて、フォトダイオード38として構成した光検出器を備える。フォトダイオード38により、各検出部分ビーム36のそれぞれの強度の経時推移を記録する。各フォトダイオード38により記録した強度信号は、照射回折格子24の側方移動、入射回折格子28の側方移動、検出回折格子34の側方移動、および、投影光学系12の波面傾斜32に起因する基板平面16内の側方像移動と相関する。
照射回折格子24、入射回折格子28、および検出回折格子34を十分に固定して保持すれば、投影光学系12に起因する側方像移動および投影光学系12の側方像安定性を、記録した強度信号に基づいて測定することができる。
この側方像移動および側方像安定性の測定は、読み出しユニット40を用いてフォトダイオード38から強度信号を読み出し、評価ユニット42を用いてその強度信号を対応評価することにより行う。側方結像安定性を測定するためには、少なくとも2つのテスト波30の放射部分が混在する少なくとも第1部分ビーム36の強度を読み出す必要がある。このような第1部分ビーム36として、例えば、「−1」により示される検出部分ビーム36であって、少なくとも2つのテスト波30から発生した回折個別回線37を有する検出部分ビーム36、例えば、(−1、−1、+1)および(−1、+1、−1)がある。
さらに、有利な一実施形態において、少なくともさらにもう2つの検出部分ビーム36のそれぞれの強度を記録する。これらの検出部分ビーム36のうち、1つは上記2つのテスト波の第1のテスト波30の少なくとも1つの放射部分を含み、もう一方の検出部分ビーム30は上記2つのテスト波の第2のテスト波の少なくとも1つの放射部分を含む。したがって、第1の検出部分ビーム36の測定強度を標準化することができる。前述のように、光検出器38が検出する信号は、格子間隔に関する限り一定である。さらなる検出ビームを利用して、格子間隔の補間を容易にする。各光検出器38の信号は、格子の平行移動および検出回折格子34上のテスト波30の側方位置に対しては周期性を維持するが、検出回折格子34の格子間隔に対する一定の比率でそれぞれ互いに相殺される。
格子24、28、および34は、光路内での格子間隔、格子形状、ブレーズ角、位相範囲、および位置に関して、フォトダイオード信号を生成しさらに電気的処理を施すことができるように、設計する。フォトダイオード信号を電子的に評価することにより、検出回折格子34の格子間隔より少なくとも3桁から4桁高い測定精度を達成する。測定放射線源20が動作中は、常に測定信号を取得可能である。測定信号の取得は、例えば、ウエハステージのスキャン動作等の結像システム内の動作、または投影露光システム10の照射線源46による照射線48の発生とは独立して行われる。
入射回折格子28および検出回折格子34は、マスク平面14内または基板平面16内に必ずしも図1に示すように正確に配置されている必要はない。格子28および格子34はまた、必ずしも互いに正確に共役である必要はない。デフォーカスは、フォトダイオード38からの信号を最適化するのに有効であるといえる。本発明の図示しない一実施形態においては、測定光路を逆転させる、すなわち、入射回折格子28を基板側に設け、検出回折格子34をフォトダイオード38と共に基板側に設ける。
評価ユニット42により、測定した投影光学系42の側方結像安定性を制御信号に変換し、その制御信号は投影露光システム10の制御装置に伝達される。制御信号に基づいて、制御装置により、露光処理中に像の側方位置をリアルタイムで補正して、基板上に結像したマスク構造の側方位置がほぼ一定になるようにする。
本発明の測定デバイス18によれば、特に、投影光学系12の側方結像安定性を、30pmよりも良好な分解能および少なくとも2kHzの測定速度で測定することができる。したがって、露光中に、マスク構造像の側方位置を非常に高い繰り返し率と精度で補正することができる。
図3は、図1に示した本発明の第1実施形態による投影露光システム10のマスク側断面図である。本実施形態によれば、テスト波30として構成した測定放射線21を、カップリングミラー4を介して投影露光システム10の露光光路50に連結する。露光光路50は照射線源46により生成された照射線48を案内する。投影露光システム10の露光中、照射光学系52を介して照射線48をマスク平面14上に配置した製品としてのマスクに照射し、マスク平面上に配置したマスク構造を基板平面16内に結像する。図3に示した実施形態において、マスク平面14と投影光学系12との間のある1点において、カップリングミラー44を介して投測定放射線21を影露光システム10の露光光路50に連結し、露光光路50に干渉しないようにする。格子24および格子26は、測定放射線源20同様、露光光路50の外側に設ける。
図4は、投影露光システム10のさらなる実施形態のマスク側断面図である。ここで、コリメータ22を通過した測定放射線21は、照射線48の光路内における、マスク平面14より手前のある1点において、露光光路50に連結する。この場合も、露光光路50に干渉しないようにして、測定放射線12を露光光路50に連結する。ここでは、格子24および格子28を露光光路50上に設け、格子24と格子28との間には、結像光学素子126を投影露光システム10の一部として配置する。
図5は、本発明による投影露光システム10のさらなる実施形態の基板側断面図である。本実施形態においては、検出回折格子34の下流に格子54を付加的に設け、テスト波30をコヒーレント重畳させる。マスク側において、照射回折格子24を省略することができる。この場合、投影光学系12を通過するテスト波30は3つだけである。検出回折格子34上では、図2において説明した手順と同様にして、この3つのテスト波30を5つの検出部分ビーム36に分割し、付加的な格子上において7つの加工済み検出部分ビーム56に分割する。
図6は本発明による投影露光システム10の構成のさらなる実施形態の基板側断面図である。本実施形態によれば、テスト波30として構成した測定放射線21を、アンカップリングミラー58を介して基板平面16の手前で投影露光システム10の露光光路50から分離する。これにより、基板テーブル上の領域、すなわち、いわゆる「ウエハステージ」上の領域における構成に何ら悪影響を及ぼすことなく、測定デバイス18を投影露光システム10と一体化して構成することができる。
図7は、本発明による投影露光システム10のさらなる実施形態を示す図であり、本実施形態において、テスト30を投影光学系12に二重に通過させる。この目的のため、基板平面16内に逆反射体60を設け、それにより、投影光学系12を通過したテスト波30は自身に逆反射する。以下、投影光学系12を通過したテスト波30を入射テスト波30aと称する。したがって、テスト波30は、入射テスト波30aと同じ経路に沿って逆行するテスト波30bとして、投影光学系12を通過する。図7に示した実施形態のさらなる変形例として、図6の変形例と同様、アンカップリングミラーおよびカップリングミラーを基板側に設け、投影露光システムの露光光路から入射テスト波30aを分離し、逆行テスト波30bを露光光路に連結する。図6の検出回折格子34と同様に、本実施形態では、逆反射体60を露光光路の側方に配置する。
測定放射線21を、部分透過型カップリングミラー144を介して露光光路に連結する。逆行テスト波30bから生成した検出部分ビーム36がカップリングミラー144を部分的に透過することにより、テスト波30bをフォトダイオード38で記録することができる。逆路では、入射回折格子28を検出回折格子としても用いる。
図10aは、逆反射体60に向かう測定放射線21の光路を示す図であり、光路は測定放射線源20から逆反射体60へ伸びている。図10bは、逆行する測定放射線21の光路を示す図であり、光路は逆反射体60から検出器38へ伸びている。ここでは、一実施形態として、テスト波30の数を最小、すなわち、テスト波30の数を2とした実施形態を示す。
逆反射体60をリトロ(Littrow)格子として構成し、スケール修正により、そのリトロ格子の格子間隔を対物側の回折格子28の格子間隔の半分とする。さらに、検出部分ビーム36の強度を記録する検出器38は3つしか設けない。本実施形態は、測定デバイス18の光路用スペースがほとんどない場合に用いることができる。これは、特に、EUVシステムの場合に当てはまる。
EUV放射線を反射するために投影光学系12のミラー上に施した複数の層、いわゆる、「多層」層の反射率は約0.6で、測定放射線21の波長と比べ非常に小さいため、4つのミラーを二重に通過して戻ってくる測定放射線21の強度はごくわずかである。本発明においては、テスト波30の数を最小として実施することで、この問題を解決することができる。各ミラー上の部分ビームの断面、すなわち、いわゆる「フットプリント」は比較的小さく、断面には測定放射線21の波長用に最適化した反射コーティング70を施す。
基板平面16における反射には、平面ミラーを用いない。平面ミラーを用いると、センサの効果がなくなってしまうからである。逆反射体60を用いて、波面傾斜により像オフセットを確実に2回生じさせ、単純ミラーリングを用いたときとは異なり、相殺されないようにする。前述のように、また、例えば図7に示すように、逆反射体60をリトロ格子として構成することができる。代案として、キャッツアイ位置にある球面ミラー、いわゆる「コーナーキューブ」として構成したプリズムに基づく逆反射体を用いることができる。
リトロ回折格子は、図8の実施形態に示すように、ウエハ上に直接書き込むことができる。本実施形態は、図7の実施形態とは異なり、照射線用の照射光学系52をカップリングミラー144と回折格子28との間に配置する。回折格子28を製品マスク62の周辺領域に配置する。
図9aおよび図9bは、リトロ格子として構成した図7の逆反射体60の動作モードを示す図である。この目的のため、図9aにおいて透過格子60aを示し、図9bにおいて反射格子60bを示す。リトロ格子により、格子間隔、波長、回折次数を補正する。非垂直入射の回折式は次のとおりである。
Figure 0005481475
上記式よれば、格子法線に対する入射ビーム66の角度αと、波長λ、格子間隔p、および回折次数mの格子法線に対し第1次数にて回折された出射ビーム68の角度βとの間に相関が現れる。図9bに示す反射格子を用いると、出射ビーム68は上方に折り返される。したがって、すべての入射テスト波30aについて、各回折ビーム30bはそれぞれに対応する入射ビーム30aに正確に戻っていくことができる。
そのためには、式α=βを満たさなければならない。すなわち、以下の式を満たさなければならない。
Figure 0005481475
ここで、
Figure 0005481475
である。
角度スペクトルが、対物側またはマスク側の格子28の回折パターンに相当する場合、垂直入射に対するその格子間隔をpとすれば、以下の式が成り立つ。
Figure 0005481475
したがって、回折リトロ格子60の格子間隔は、対物側の同等の格子の格子間隔の半分になるはずである。
Figure 0005481475
そして、光路の逆反射は全ての次数に対して自動的に保証される。
図7の実施形態において、測定光路が対物側の格子28を2回通過し、それにより、測定精度を向上することができる。さらに、マスク平面14内において、入射ビームおよび出射ビームを相互に関連してわずかにオフセットさせることができる。入射ビームおよび出射ビームのオフセットは、リトロ格子16をデフォーカスおよび傾斜させることにより、またはプリズム反射体またはミラー逆反射体を用いることにより、行うことができる。また、格子28は、入射測定放射線21および逆行テスト波30bに対して異なるように書き込むことができる。
図1から図10に示した回折素子24,28,24、および54は、格子形状ではなく、ホログラム構造とすることもできる。
10 投影露光システム
12 投影光学系
14 マスク平面
16 基板平面
18 測定デバイス
20 測定放射線源
21 測定放射線
22 コリメータ
24 照射回折格子
25 測定放射線部分ビーム
26 結像光学素子
28 入射回折格子
30 テスト波
30a 入射テスト波
30b 逆行テスト波
31 回折個別ビーム
32 波面傾斜
34 検出回折格子
36 検出部分ビーム
37 回折個別ビーム
38 フォトダイオード
40 読み出しユニット
42 評価ユニット
44 カップリングミラー
46 照射線源
48 照射線
50 露光光路
52 照射光学系
54 付加的格子
56 加工済み検出部分ビーム
58 アンカップリングミラー
60 逆反射体
60a 透過格子
60b 反射格子
62 マスク
64 基板
66 入射ビーム
68 出射ビーム
70 反射コーティング
126 結像光学素子
144 部分透過型カップリングミラー

Claims (17)

  1. マイクロリソグラフィ用の投影露光システムであって、
    マスク構造を基板平面に結像する投影光学系
    照射された測定放射線を前記投影光学系上に向かって異なる方向に伝播する少なくとも2つのテスト波に変換するように構成した入射回折素子
    記測定放射線の光路内における、前記測定放射線が前記入射回折素子に入射する前の位置に配置した照射回折素子であって、前記測定放射線を伝播方向の異なる少なくとも2つの測定放射線部分ビームに変換するように構成した照射回折素子
    前記投影光学系通過後の前記テスト波の光路内に配置され、該テスト波から該テスト波の両方の放射部分の混合を有する検出ビームを生成するように構成した検出回折素子、
    前記検出ビームの光路内に配置され、該検出ビームの時間分解した照射強度を記録するように構成した光検出器と、
    記録した前記照射強度に基づき、前記投影光学系の側方結像安定性を測定するように構成した評価ユニット
    を備える投影露光システム。
  2. 請求項1に記載の投影露光システムにおいて、
    前記評価ユニットは、少なくとも10Hzの時間分解能で記録された時間分解した放射強度に基づき、前記投影光学系の側方結像安定性を測定するように構成される、投影露光システム。
  3. 請求項1または2に記載の投影露光システムにおいて、
    前記少なくとも2つのテスト波は、前記投影光学系の少なくとも1つの平面内で互いに空間的に分離する、投影露光システム。
  4. 請求項1〜3のいずれか一項に記載のマイクロリソグラフィ用の投影露光システムであって、
    前記投影光学系の側方結像安定性を、0.5nmよりも良好な分解能および少なくとも10Hzの測定速度で、測定するように構成した、投影露光システム。
  5. 請求項1〜4のいずれか一項に記載の投影露光システムにおいて、
    前記分解能は0.1nmよりも良好なものであり、特には、30pmよりも良好なものであり、および/または前記測定速度は少なくとも50Hzであり、特には、少なくとも2kHzである、投影露光システム。
  6. 請求項1〜5のいずれか一項に記載の投影露光システムにおいて、
    前記投影光学系に対し、
    前記入射回折素子を前記マスク側に配置し、
    前記検出回折素子を前記基板側に配置した、投影露光システム。
  7. 請求項1〜6のいずれか一項に記載の投影露光システムであって、さらに、
    前記測定放射線部分ビームを前記入射回折素子上に向けるために前記照射回折素子と前記入射回折素子との間に配置した光学素子、を有する投影露光システム。
  8. 請求項1〜7のいずれか一項に記載の投影露光システムにおいて、
    前記照射回折素子および前記入射回折素子は、該照射回折素子から出射する少なくとも2つの前記測定放射線部分ビームが該入射回折素子上での回折により少なくとも2つの回折個別ビームに変換されるように構成され、第1の前記測定放射線部分ビームを回折して生成した前記回折個別ビームの少なくとも一つは、第2の前記測定放射線ビームを回折して生成した前記回折個別ビームの一つと重ね合わされて、その2本の重なり合った個別ビームが1つのテスト波を形成する、投影露光システム。
  9. 請求項1〜8のいずれか一項に記載の投影露光システムにおいて、
    前記検出回折素子は、前記第1の検出ビームに加え、少なくとも第2の検出ビームおよび第3の検出ビームが前記テスト波から生成されるように構成され、
    該第2の検出ビームは前記2つのテスト波のうちの第1のテスト波の放射部分を少なくとも有し、該第3の検出ビームは前記2つのテスト波のうちの第2のテスト波の放射部分を少なくとも有し、
    投影露光システムは、少なくともさらにもう2つの光検出器を有し、前記第2の検出ビームおよび前記第3の検出ビームのそれぞれの放射強度を検出する、投影露光システム。
  10. 請求項1〜9のいずれか一項に記載の投影露光システムであって、さらに、
    前記マスク構造を前記基板平面内に結像する放射線を生成する照射線源、および
    前記照射線源から独立した、測定放射線を生成する測定放射線源、を有する投影露光シ
    ステム。
  11. 請求項1〜10のいずれか一項に記載の投影露光システムであって、
    前記マスク構造を前記基板平面内に結像する露光光路、および、
    前記測定放射線を、前記マスク側において、前記露光光路内に結合するカップリングミラー、を有する投影露光システム。
  12. 請求項1〜11のいずれか一項に記載の投影露光システムであって、
    前記マスク構造を前記基板平面内に結像する露光光路、および、
    前記テスト波を前記露光光路から分離するアンカップリングミラー、を有する、投影露光システム。
  13. 請求項1〜12のいずれか一項に記載の投影露光システムにおいて、
    前記入射回折素子および前記検出回折素子は同じ回折素子にて構成され、
    投影露光システムは逆反射体を有し、該逆反射体により、前記投影光学系を通過した前記テスト波を自身に逆反射させ、それにより該テスト波が前記投影光学系を再度通過して前記検出回折素子に到達するようにする、投影露光システム。
  14. 請求項1〜13のいずれか一項に記載の投影露光システムにおいて、
    投影光学系はミラーおよび該ミラーの独立した各領域から構成され、
    側方結像安定性を計測するときは、前記ミラーおよび前記ミラーの独立した各領域にテスト波を照射し、前記ミラーおよび前記ミラーの独立した各領域には測定放射線の波長に応じて設計した反射コーティングを施した、投影露光システム。
  15. 請求項1〜14のいずれか一項に記載の投影露光システムであって、
    EUV波長域および/またはより高波長域の光により前記マスク構造を前記基板内に結像するように構成される、投影露光システム。
  16. マイクロリソグラフィ用の投影露光システムの投影光学系の側方結像安定性を監視する方法において、
    測定放射線は照射回折素子によって伝播方向の異なる少なくとも2つの測定放射部分ビームに変換され、その後、入射回折素子上に照射されて、該測定放射線が該入射回折素子により伝播方向の異なる少なくとも2つのテスト波に変換され、該テスト波はその後前記投影光学系を通過し、
    前記投影光学系を通過した前記テスト波は検出回折素子に到達し、その結果、回折により検出ビームが生成され、該検出ビームは両方の前記テスト波の放射部分の混合を有し、
    前記検出ビームの放射強度は光検出器を用いて記録し、記録した該放射強度により、前記投影光学系の前記側方結像安定性を確定する、方法。
  17. 請求項16に記載の方法であって、
    請求項1〜15のいずれか一項に記載の投影露光システムを用いて実施される、方法。
JP2011515182A 2008-06-26 2009-06-23 マイクロリソグラフィのための投影露光システムおよび側方結像安定性監視方法 Active JP5481475B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US13319708P 2008-06-26 2008-06-26
US61/133,197 2008-06-26
DE102008029970A DE102008029970A1 (de) 2008-06-26 2008-06-26 Projektionsbelichtungsanlage für die Mikrolithographie sowie Verfahren zum Überwachen einer lateralen Abbildungsstabilität
DE102008029970.7 2008-06-26
PCT/EP2009/004493 WO2009156111A1 (en) 2008-06-26 2009-06-23 Projection exposure system for microlithography and method of monitoring a lateral imaging stability

Publications (2)

Publication Number Publication Date
JP2011525711A JP2011525711A (ja) 2011-09-22
JP5481475B2 true JP5481475B2 (ja) 2014-04-23

Family

ID=41360533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011515182A Active JP5481475B2 (ja) 2008-06-26 2009-06-23 マイクロリソグラフィのための投影露光システムおよび側方結像安定性監視方法

Country Status (4)

Country Link
US (3) US9235142B2 (ja)
JP (1) JP5481475B2 (ja)
DE (1) DE102008029970A1 (ja)
WO (1) WO2009156111A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012217800A1 (de) * 2012-09-28 2014-04-03 Carl Zeiss Smt Gmbh Diffraktives optisches Element sowie Messverfahren
TWI706235B (zh) * 2016-06-20 2020-10-01 日商尼康股份有限公司 用於密集的線路圖案化的極短紫外光微影系統
JP6788547B2 (ja) * 2017-05-09 2020-11-25 キヤノン株式会社 放射線撮像装置、その制御方法、制御装置、及び、放射線撮像システム
DE102018208644A1 (de) 2018-05-30 2019-06-19 Carl Zeiss Smt Gmbh Projektionsbelichtungsanlage mit einer Messvorrichtung zur Überwachung einer lateralen Abbildungsstabilität

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4596467A (en) * 1984-03-16 1986-06-24 Hughes Aircraft Company Dissimilar superimposed grating precision alignment and gap measurement systems
NL8601278A (nl) * 1986-05-21 1987-12-16 Philips Nv Inrichting voor het detekteren van een vergrotingsfout in een optisch afbeeldingssysteem.
US4728193A (en) * 1986-12-11 1988-03-01 Hughes Aircraft Company Precision automatic mask-wafer alignment system
US4991962A (en) * 1989-01-04 1991-02-12 Kantilal Jain High precision alignment system for microlithography
US5689339A (en) * 1991-10-23 1997-11-18 Nikon Corporation Alignment apparatus
US5414514A (en) * 1993-06-01 1995-05-09 Massachusetts Institute Of Technology On-axis interferometric alignment of plates using the spatial phase of interference patterns
DE69535516T2 (de) * 1994-01-24 2007-10-04 Asml Holding, N.V. Gitter-Gitter interferometrisches Ausrichtungssystem
US5808742A (en) * 1995-05-31 1998-09-15 Massachusetts Institute Of Technology Optical alignment apparatus having multiple parallel alignment marks
US6417922B1 (en) * 1997-12-29 2002-07-09 Asml Netherlands B.V. Alignment device and lithographic apparatus comprising such a device
US6160622A (en) * 1997-12-29 2000-12-12 Asm Lithography, B.V. Alignment device and lithographic apparatus comprising such a device
US6312373B1 (en) * 1998-09-22 2001-11-06 Nikon Corporation Method of manufacturing an optical system
TW569083B (en) * 1999-02-04 2004-01-01 Asml Netherlands Bv Lithographic projection apparatus
US6469793B1 (en) * 1999-08-10 2002-10-22 Svg Lithography Systems, Inc. Multi-channel grating interference alignment sensor
TW550377B (en) * 2000-02-23 2003-09-01 Zeiss Stiftung Apparatus for wave-front detection
US6628406B1 (en) * 2000-04-20 2003-09-30 Justin L. Kreuzer Self referencing mark independent alignment sensor
JP2002110540A (ja) * 2000-09-01 2002-04-12 Asm Lithography Bv リソグラフィ装置を操作する方法、リソグラフィ装置、デバイス製造方法、およびそれによって製造されるデバイス
EP1383007A1 (en) * 2002-07-16 2004-01-21 ASML Netherlands B.V. Lithographic apparatus, and device manufacturing method
US6972843B2 (en) * 2003-08-25 2005-12-06 Intel Corporation Lithography alignment
JP4095566B2 (ja) * 2003-09-05 2008-06-04 キヤノン株式会社 光学素子を評価する方法
JP4408040B2 (ja) * 2003-11-28 2010-02-03 キヤノン株式会社 干渉を利用した測定方法及び装置、それを利用した露光方法及び装置、並びに、デバイス製造方法
JP2005159213A (ja) * 2003-11-28 2005-06-16 Canon Inc シアリング干渉を利用した測定方法及び装置、それを利用した露光方法及び装置、並びに、デバイス製造方法
WO2005069079A1 (de) * 2004-01-16 2005-07-28 Carl Zeiss Smt Ag Vorrichtung und verfahren zur wellenfrontvermessung eines optischen abbildungssystems und mikrolithographie-projektionsbelichtungsanlage
US7301646B2 (en) * 2004-01-21 2007-11-27 Carl Zeiss Smt Ag Device and method for the determination of imaging errors and microlithography projection exposure system
JP4387834B2 (ja) * 2004-02-27 2009-12-24 キヤノン株式会社 点回折干渉計、並びに、それを利用した露光装置及び方法
JP4464166B2 (ja) * 2004-02-27 2010-05-19 キヤノン株式会社 測定装置を搭載した露光装置
US20050259269A1 (en) * 2004-05-19 2005-11-24 Asml Holding N.V. Shearing interferometer with dynamic pupil fill
US7307262B2 (en) * 2004-12-23 2007-12-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20060147820A1 (en) * 2005-01-04 2006-07-06 International Business Machines Corporation Phase contrast alignment method and apparatus for nano imprint lithography
JP2006228930A (ja) * 2005-02-17 2006-08-31 Canon Inc 測定装置及びそれを搭載した露光装置
DE102005056914A1 (de) * 2005-11-29 2007-05-31 Carl Zeiss Smt Ag Projektionsbelichtungsystem
DE102005062618B4 (de) 2005-12-23 2008-05-08 Carl Zeiss Smt Ag Optische Abbildungseinrichtung und Abbildungsverfahren mit Bestimmung von Abbildungsfehlern
DE102007043635A1 (de) * 2006-09-15 2008-03-27 Carl Zeiss Smt Ag Mikrolithographie-Projektionsbelichtungsanlage mit einem Strahlungsdetektor zum ortaufgelösten Erfassen von elektromagnetischer Strahlung
DE102008004762A1 (de) * 2008-01-16 2009-07-30 Carl Zeiss Smt Ag Projektionsbelichtungsanlage für die Mikrolithographie mit einer Messeinrichtung

Also Published As

Publication number Publication date
US20160266501A1 (en) 2016-09-15
US9235142B2 (en) 2016-01-12
DE102008029970A1 (de) 2009-12-31
US9720328B2 (en) 2017-08-01
JP2011525711A (ja) 2011-09-22
US20110157571A1 (en) 2011-06-30
US20180039184A1 (en) 2018-02-08
WO2009156111A1 (en) 2009-12-30

Similar Documents

Publication Publication Date Title
JP4482487B2 (ja) ダイナミックピューピルフィルシアリング干渉計
US6961116B2 (en) Lithographic apparatus, device manufacturing method, and device manufactured thereby
US10247940B2 (en) Objective lens system
EP1372040B1 (en) Lithographic apparatus and device manufacturing method
US8228485B2 (en) Projection illumination system
JP5787483B2 (ja) 計測装置及び露光装置
JP3209645B2 (ja) 位相シフトマスクの検査方法およびその方法に用いる検査装置
JP2009068922A (ja) 測定装置、露光装置及びデバイス製造方法
KR20090095505A (ko) 위치 측정 장치, 위치 측정 방법 및 노광 장치
US20180039184A1 (en) Projection exposure system for microlithography and method of monitoring a lateral imaging stability
JP2016538576A (ja) 光学結像系の光学特性を測定する方法及び装置
JP4600047B2 (ja) 波面収差測定方法、波面収差測定装置、投影露光装置、投影光学系の製造方法
JP4904708B2 (ja) 波面収差測定方法、波面収差測定装置、投影露光装置、投影光学系の製造方法
TWI279643B (en) Lithographic apparatus, and device manufacturing method
JP2007057297A (ja) 光学特性測定装置、光学特性測定方法、露光装置、および露光方法
CN111324006B (zh) 检测光刻掩模的区域部分上的结构的检测装置及设备
JP2004045043A (ja) 位相測定装置及びそれを用いた光学素子、露光装置、デバイスの製造方法
US8422027B2 (en) Imaging optical system for producing control information regarding lateral movement of an image plane or an object plane
JPH0732116B2 (ja) 露光装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130611

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140217

R150 Certificate of patent or registration of utility model

Ref document number: 5481475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250