Patents
Search within the title, abstract, claims, or full patent document: You can restrict your search to a specific field using field names.
Use TI= to search in the title, AB= for the abstract, CL= for the claims, or TAC= for all three. For example, TI=(safety belt).
Search by Cooperative Patent Classifications (CPCs): These are commonly used to represent ideas in place of keywords, and can also be entered in a search term box. If you're searching forseat belts, you could also search for B60R22/00 to retrieve documents that mention safety belts or body harnesses. CPC=B60R22 will match documents with exactly this CPC, CPC=B60R22/low matches documents with this CPC or a child classification of this CPC.
Learn MoreKeywords and boolean syntax (USPTO or EPO format): seat belt searches these two words, or their plurals and close synonyms. "seat belt" searches this exact phrase, in order. -seat -belt searches for documents not containing either word.
For searches using boolean logic, the default operator is AND with left associativity. Note: this means safety OR seat belt is searched as (safety OR seat) AND belt. Each word automatically includes plurals and close synonyms. Adjacent words that are implicitly ANDed together, such as (safety belt), are treated as a phrase when generating synonyms.
Learn MoreChemistry searches match terms (trade names, IUPAC names, etc. extracted from the entire document, and processed from .MOL files.)
Substructure (use SSS=) and similarity (use ~) searches are limited to one per search at the top-level AND condition. Exact searches can be used multiple times throughout the search query.
Searching by SMILES or InChi key requires no special syntax. To search by SMARTS, use SMARTS=.
To search for multiple molecules, select "Batch" in the "Type" menu. Enter multiple molecules separated by whitespace or by comma.
Learn MoreSearch specific patents by importing a CSV or list of patent publication or application numbers.
Shearing interferometer with dynamic pupil fill
US20050259269A1
United States
- Inventor
Azat Latypov Sherman Poultney Yuli Vladimirsky - Current Assignee
- ASML Holding NV
Description
translated from
-
[0001] 1. Field of the Invention -
[0002] The present invention is generally related to photolithography systems, and more particularly, to measuring wavefront parameters in a photolithographic system. -
[0003] 2. Related Art -
[0004] Lithography is a process used to create features on the surface of substrates. Such substrates can include those used in the manufacture of flat panel displays, circuit boards, various integrated circuits, and the like. A frequently used substrate for such applications is a semiconductor wafer. One skilled in the relevant art would recognize that the description herein would also apply to other types of substrates. -
[0005] During lithography, a wafer, which is disposed on a wafer stage (WS), is exposed to an image projected onto the surface of the wafer by an exposure system located within a lithography system. The exposure system includes a reticle (also called a mask) for projecting the image onto the wafer. -
[0006] The reticle is usually mounted on a reticle stage (RS) and generally located between the wafer and a light source. In photolithography, the reticle is used as a photo mask for printing a circuit on the wafer, for example. Lithography light shines through the mask and then through a series of optical lenses that shrink the image. This small image is then projected onto the wafer. The process is similar to how a camera bends light to form an image on film. The light plays an integral role in the lithographic process. For example, in the manufacture of microprocessors (also known as computer chips), the key to creating more powerful microprocessors is the size of the light's wavelength. The shorter the wavelength, the more transistors can be formed on the wafer. A wafer with many transistors results in a more powerful, faster microprocessor. -
[0007] As chip manufacturers have been able to use shorter wavelengths of light, they have encountered a problem of the shorter wavelength light becoming absorbed by the glass lenses that are intended to focus the light. Due to the absorption of the shorter wavelength light, the light fails to reach the silicon wafer. As a result, no circuit pattern is created on the silicon wafer. In an attempt to overcome this problem, chip manufacturers developed a lithography process known as Extreme Ultraviolet Lithography (EUVL). In this process, a glass lens can be replaced by a mirror. -
[0008] The problem of measuring the undesirable perturbations of the wavefront (often referred to as wavefront aberrations) is a persistent one for the lithographic applications. These wavefront aberrations result from various physical causes, such as changes in refractive or reflective properties of the optical elements (lenses or mirrors) occurring as a result of mechanical displacements or deformations, or changes in the optical properties of the optical elements caused by heating, or light-induced compaction. In particular, it is desirable to be able to measure wavefront quality in the photolithographic tool during wafer production and exposure, rather than having to take the tool offline in order to do so, which increases cost of ownership, reduces through-put or introduces some other type of inefficiency. -
[0009] The present invention is directed to a scanning interferometer with dynamic pupil fill that substantially obviates one or more of the problems and disadvantages of the related art. -
[0010] An embodiment of the present invention includes a wavefront measurement system including a source of electromagnetic radiation. An illumination system delivers the electromagnetic radiation to an object plane. An object generates a diffraction pattern and is located in the object plane. A projection optical system projects an image of the object onto an image plane. A detector receives a fringe pattern from the image plane. The diffraction pattern is scanned across a pupil of the projection optical system. -
[0011] Another embodiment of the present invention includes a wavefront measurement system with an illumination system that delivers electromagnetic radiation at an object plane. A source of a beam of the electromagnetic radiation is in the object plane. A projection optical system focuses the beam onto an image plane. A detector receives a fringe pattern of the beam from the image plane. The beam is scanned across a pupil of the projection optical system. -
[0012] Another embodiment of the present invention includes a method of measuring a wavefront of an optical system including generating electromagnetic radiation at a source; delivering the electromagnetic radiation at an object plane of the optical system; generating a diffraction pattern at the object plane; scanning the diffraction pattern across a pupil of the optical system; receiving an image of the source while scanning the diffraction pattern; and determining wavefront parameters from the image. -
[0013] Additional features and advantages of the invention will be set forth in the description that follows, and in part will be apparent from the description, or may be learned by practice of the invention. The advantages of the invention will be realized and attained by the structure and particularly pointed out in the written description and claims hereof as well as the appended drawings. -
[0014] It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed. -
[0015] The accompanying drawings, which are included to illustrate exemplary embodiments of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention. In the drawings: -
[0016] FIG. 1 shows a portion of an exemplary photolithographic system of the present invention. -
[0017] FIGS. 2 and 3 illustrate the use of an interferometer to produce shear wavefronts. -
[0018] FIG. 4 illustrates an example of interference fringes as they appear at the focal plane with the use of the present invention. -
[0019] FIG. 5 illustrates the rationale for the present invention, showing the optical exposure system in a stylized, schematic form. -
[0020] FIG. 6 shows how magnitudes of the diffraction orders and change in an interferogram with an extended object in the object plane. -
[0021] FIG. 7 illustrates an effect of modulating the extended object by a Ronchi grating. -
[0022] FIG. 8 is another illustration of the arrangement of the optical elements that may be used in the present invention. -
[0023] FIG. 9 is an illustration of dynamic pupil fill using a tilting reflective Ronchi grating. -
[0024] Reference will now be made in detail to the embodiments of the present invention, examples of which are illustrated in the accompanying drawings. -
[0025] It is convenient to characterize field-dependent aberrations of a projections optics (PO) by an aberration of a wavefront of a spherical wave emitted from a corresponding field point in the object plane. Various interferometry techniques can be used to measure aberration of this spherical wave. Shearing interferometry based on an extended incoherent source in the object plane superimposed with an object-plane grating matching the shearing grating is described in J. Braat and A. J. E. M. Janssen, Improved Ronchi test with Extended Source, J. Opt. Soc. Am. A, Vol. 16, No. 1, pp. 131-140, January 1999, incorporated by reference herein. Also, the paper by Naulleau et al., Static Microfield Printing at the ALS with the ETS-2 Set Optic, Proc. SPIE 4688, 64-71 (2002) (http://goldberg.lbl.gov/papers/Naulleau_SPIE—4688(2002).pdf), incorporated by reference herein describes the dynamic pupil fill illumination system for EUV implemented in order to control partial coherence during printing at a synchrotron light source where illumination is coherent. -
[0026] FIG. 1 illustrates aphotolithographic system 100 according to the present invention. Thesystem 100 includes anillumination source 105, acondenser lens 102, an extended object 103 (located in the object plane),projection optics 104 with apupil 105, an image plane shearing grating 106, adetector lens 107 and aCCD detector 108, arranged as shown in the figure. These elements will be discussed further below. -
[0027] The grating 106 includes both transmissive and opaque regions. The opaque regions can be formed of materials that absorb the radiation (for example, for 13.5 nm exposure wavelength in the case of EUV lithography, or optical radiation in the case of lithographic systems using longer wavelengths), such as nickel, chromium or other metals. -
[0028] It will also be appreciated that although the present invention is applicable to lithographic systems that use refractive optical elements (such as theprojection optics 104, and the imaging optics), the invention is also applicable to systems using other wavelengths, with appropriate transmissive/refractive components used in place of reflective ones, as needed. -
[0029] The grating 106 also can include reflective (or opaque) regions. These reflective regions can be formed of materials that absorb the radiation (for example, for 13.5 nm EUV exposure wavelength), such as nickel, chromium or other metals. -
[0030] The pitch of the grating 106 is chosen to provide an appropriate shear ratio, where theCCD detector 108 is in the fringe plane (i.e., below the focal, or image, plane of the system), and “sees” a pattern of fringes (an interferogram) or a number of overlapping circles, as will be discussed further below. The shear ratio is a measure of the overlap of two circles, where a shear ratio of zero represents perfect overlap. Note also that it is desirable for theCCD detector 108 to “see” only the zeroth order and the + and −1st order diffraction images, and to eliminate the + and −2nd order diffraction images. Furthermore, theextended object 103 is constructed to aid in eliminating unwanted orders. It is important, however, that whichever pattern of transmission and reflection areas is used, that it be a regular pattern. -
[0031] The pitch of the source module grating 203 is also preferably chosen to match the pitch of the shearing grating so as to redistribute the light in the pupil to those locations that will mutually overlap as a result of shearing. -
[0032] FIGS. 2 and 3 illustrate reference wavefronts and shear in alateral shearing interferometer 210. Thelateral shearing interferometer 210 interferes a wavefront with itself, or, phrased another way, it interferes a shifted copy of the wavefront with itself. As shown inFIGS. 2 and 3 , thegrating 106, positioned in the image plane, acts as a shearing interferometer, and generates a transmitted waves 204 with awavefront 211A, and a diffractedreference wave 205 with awavefront 211B. Thus, thelateral shearing interferometer 210 creates one or more apparent sources, whosewavefronts 211A, 311B interfere to producefringes 212. -
[0033] FIG. 4 illustrates the wavefront fringes (212A, 212B inFIG. 2 ) as seen by theCCD detector 108. As shown inFIG. 4 , in the upper right-hand photograph, sheared fringes for a single object space slit are shown, where the slit is positioned in front of an incoherent, diffuse source that fills the maximum numerical aperture and smoothes any wavefront inhomogeneities. The bottom right-hand figure shows afringe visibility function 401, with zeroth order pattern 502 and firstorder diffraction patterns 403. The 50% duty cycle on thegrating 106 makes all even orders of the diffraction pattern invisible. At the bottom left ofFIG. 4 , the image space sharing grating 106 is shown, with a shear ratio of 0.5. -
[0034] In practice, a source point (101) is replaced by the “extended object 103” to increase the optical throughput. The minimal dimensions of theextended object 103 are dictated by the available illumination power and the sensitivity of the detector device used to measure the interferograms. Depending on the object-side numerical aperture (NA) of theprojection optics 104 and the optical throughput requirements, it is often the case that the angular width of the diffraction pattern from theextended object 103 is small compared to the object-side NA of thePO 104. In that case, most of the light from this object ends up concentrated within a small area of thePO 104pupil 105. Even for the highest pupil fills of theprojection optics 104, thepupil 105 is still not completely filled, as is preferred for a complete aberration measurement. In this situation, the wavefront measurement methods will have very little sensitivity to thePO 104 aberrations occurring outside a relatively small illuminated area of thepupil 105. It is therefore preferred to fill thepupil 105 of thePO 104 more or less uniformly. -
[0035] Thus, the problem of measuring wavefront aberrations has to balance two competing interests: filling the entire pupil 105 (but at the cost of very low intensity), or having sufficient intensity, but only on a small portion of thepupil 105. -
[0036] The following methods can be used to ensure the desired pupil fill in shearing interferometry: -
- (1) introducing a transmissive pattern inside the
extended object 103 that matches the shearing grating (e.g., a Ronchi grating) and providing a fully incoherent illumination of the extended object 103 [see Baselmans, supra]; and - (2) placing an extended incoherent source into an object plane (by using a critical illumination or a diffuser in the object plane) and superimposing it with a Ronchi grating that matches the shearing grating [see Bratt et al., supra].
- (1) introducing a transmissive pattern inside the
-
[0039] These methods have several problems: -
- (1) speckle disturbance of the measured interferograms occurs due to the remaining coherence of the effective source (this applies to
methods 1 and 2) or due to a finite size of the object plane diffuser elements (this applies to method 2). The speckle disturbance adds high-frequency intensity fluctuations to the measured interferograms, resulting in wavefront measurement errors; - (2) the need to switch to a special illumination mode (this applies to
methods 1 and 2) during the measurement complicates the wavefront measurement process; and - (3) a significant portion of light is diffracted from the
extended object 103 away from thepupil 105 and does not participate in a formation of the sheared interferogram.
- (1) speckle disturbance of the measured interferograms occurs due to the remaining coherence of the effective source (this applies to
-
[0043] The present invention thus applies to the situation when the size of theextended object 103 needed to ensure the required optical throughput is such that the characteristic width of the diffraction pattern is much less than the object side NA of thePO 104, i.e., λ/extended object size<<NA object. -
[0044] The pupil fill by theextended object 103 can be achieved dynamically. During the measurement of the interferogram, theextended object 103 can be dynamically modified, so that the diffraction pattern from this object scans across thewhole entrance pupil 105. TheCCD detector 108 that measures the sheared interferogram integrates (or sums) the momentary interferograms occurring in the process of measurement. -
[0045] The dynamic modification of anextended object 103 can be performed by using a reflective element, such as a tilting mirror, or by using a refractive object with varying slope and/or other characteristics (e.g., a parabolic or spherical lens) moved against an aperture. -
[0046] The reflected and transmissive extended objects described above use dynamic phase variation of light induced by linearly varying complex reflectivity/transmittance within or across theextended object 103. However, arbitrary (non-linear) phase variation effect can be also used to fill thepupil 105 dynamically. Many physical arrangements well known to those skilled in the art are possible for realizing such arbitrary non-linear phase variations. For instance, they can be achieved by using an extended movable object with its structure changing within or across it, and/or dynamically deformed, and/or otherwise dynamically modified (e.g., using spatial light modulators). Other possible realizations of dynamically introduced phase variation can include a diffusor pattern formed on a transmissive or reflective flexible substrate that can be physically deformed, including plastics, piezoelectric materials, and stress-birefringent materials whose stresses are induced by actuators, etc. -
[0047] Unless very small shears are utilized, in either of the above methods, theextended object 103 must have a transmittance pattern (an object plane Ronchi grating matching the shearing grating) superimposed on it to provide additional redistribution of light in thepupil 105, as described in Bratt et al. and Baselmans, cited above. -
[0048] The dynamic modification is performed so that the transmittance function within the extended object has a time-dependent linear variation of the phase that ensures that the diffraction pattern from the extended object is shifted within thepupil 105, dynamically sweeping thepupil 105 during the act of measurement. -
[0049] The measurement of the interferogram is performed by theCCD detector 108 that records energy distribution across theCCD detector 108 plane. TheCCD detector 108 is capable of integrating the time-varying intensity at every point in thedetector 108 plane to collect a sufficient number of photons during the act of measurement. The CCD arrays used in present-day wavefront sensors (like the CCD detector 108) satisfy this requirement. -
[0050] As noted above, the dynamic modification of theextended object 103 can be achieved by any number of mechanisms. For instance, a reflectiveextended object 103 may be used. Examples of such reflective objects include: -
- (1) A tilting flat mirror can be used in a combination with an aperture, or having only a small flat portion of a large tilting object to be reflective. A relatively large tilting mirror is easier to control (e.g., to tilt and rotate) compared to a micro-mirror. The
extended object 103 in this case coincides with the tilting flat mirror, as shown inFIG. 9 . - (2) A tilting micro-mirror, such as a mirror from a spatial light modulator (SLM) array, can be used as the entire extended object 103 (see
FIG. 9 ). In order to sweep thepupil 105, the micro-mirror has to tilt in two axes in the object plane. If the micro-mirror can only tilt in one axis, it can be rotated around the axis perpendicular to the object plane, thus allowing a conical sweep of the2D pupil 105. In practice, such a case is rare. - (3) A reflective object with a varying slope of a reflective surface, such as a parabolic or spherical mirror, which is moved linearly behind a small aperture, can be used as the entire
extended object 103.
- (1) A tilting flat mirror can be used in a combination with an aperture, or having only a small flat portion of a large tilting object to be reflective. A relatively large tilting mirror is easier to control (e.g., to tilt and rotate) compared to a micro-mirror. The
-
[0054] Note that in the case of reflective elements used to scan the diffraction pattern across thepupil 105, they need not always be located at the object plane. For example, a flat tilting mirror could be located between the object plane and thepupil 105 of the PO 104 (also acting to fold the optical axis of the system). -
[0055] Theextended object 103 can also be transmissive. In that case, the dynamic pupil fill can be achieved by moving a refractive element with a varying slope of one of its surfaces (e.g., a spherical or parabolic lens) against a small aperture, as shown inFIG. 8 . A transmissive grating can also be used, such that various regions on the grating have different grating pitch, and the grating is moved linearly in its plane (i.e., perpendicular to the direction of the propagation of the electromagnetic radiation) so as to vary the direction of the beam (i.e., to scan it across the pupil 105). It is also important to realize that, depending on the particular type ofextended object 103 used, the size of thepupil 105 and the scanning approach, maintaining proper focus in the image plane may become a problem, as the diffraction pattern is being scanned across thepupil 105. However, it is currently believed that although it is preferred to maintain focus, some de-focusing is acceptable. -
[0056] Unless very small shears are utilized, in any of the above implementations, theextended object 103 must have a transmittance pattern (an object plane Ronchi grating matching the shearing grating) superimposed on it to provide additional redistribution of light in thepupil 105, as described in Bratt et al. and Baselmans. In addition, any of the above objects are preferably translatable in two lateral dimensions to accomplish the phase shift readout of fringes preferred in the shearing interferometer measurement. -
[0057] The final sheared interferogram measured by theCCD detector 108 is a result of integration in time of the momentary sheared interferograms resulting from most of the light concentrated within a small portion of thepupil 105. The momentary sheared interferograms may have high contrast interference fringes only within a relatively small portion of the pupil image in the detector plane formed by the interfering diffraction orders. Their time integral measured by theCCD detector 108 has well-defined interference fringes across thewhole pupil 105 that can be used (typically in conjunction with phase-stepping) to compute the wavefront aberration. -
[0058] This is due to the fact that dynamic pupil fill described above is equivalent to the use of a stationary source corresponding to an actual source convolved with the dynamic movement (source scanning). Thus, regardless of the degree of coherence of illumination from the actual source, the effective source provides fully incoherent illumination. -
[0059] FIG. 5 illustrates the rationale for the present invention, showing the optical exposure system in a somewhat stylized, schematic form. This figure relates to the use of a pinhole in the object plane in order to generate the spherical wave that fills thepupil 105 and whose aberration is measured by the shearing interferometer. As shown inFIG. 5 , going from top to bottom in the figure, light from a light source goes through acondenser lens 102, and then through an object plane with a pinhole. The magnitude of the field at thepupil 105 of theprojection optics 104 is shown by diagram A, where thepupil 105 coordinate is given as “f”. Light then is focused onto animage plane 605, then passes through optionaldetector projection optics 107, and is detected by thedetector 108 in the detector plane. Graph B shows magnitudes of the −1 and +1 diffraction orders formed by the shearing grating, which is located in theimage plane 605. Graph C shows an interferogram resulting form the diffraction orders from the shearing grating. Note the visible image variation that is due to the aberrations (phase variations) that are present in the resulting interferogram. -
[0060] FIG. 6 shows how the magnitudes of the diffraction orders and change in the interferogram, when anextended object 103 is placed in the object plane that fills only a small portion of thepupil 105, resulting in interferogram fringes of very small (negligible) contrast observed in the detector plane within the non-overlapping peaks corresponding to the sheared diffraction pattern of theextended object 103. As inFIG. 5 , Graph A inFIG. 6 shows the magnitude of the field in thepupil 105 of theprojection optics 104, with the pupil coordinate “f”. Graph B shows the magnitudes of the 0th, −1, and +1 diffraction orders formed by the shearing grating 106, when anextended object 103 is present in the object plane. Graph C shows the interferograms resulting from the diffraction orders from the shearing grating. Because the diffraction orders do not overlap sufficiently, the resulting interferogram only weakly depends on the wavefront aberrations. -
[0061] FIG. 7 illustrates the effect of modulating theextended object 103 by a Ronchi grating, that redistributes the light in thepupil 105 to those locations that will mutually overlap as a result of shearing. As withFIGS. 5 and 6 , Graph A shows the magnitude of the field in thepupil 105 of theprojection optics 104. Graph B shows magnitudes of the 0th, +1 and −1 diffraction orders formed by the shearing grating, and Graph C shows the resulting interferogram from the diffraction orders from the shearing grating and the matching Ronchi grating. As a result of the overlap between the 0th, +1 and −1 diffraction orders, the interferogram in the overlap region (inside the peaks) strongly depends on the wavefront aberrations. -
[0062] FIG. 8 is another illustration of the arrangement of the optical elements that may be used in the present invention, namely a dynamic pupil fill using a moving refractive object. The illustration ofFIG. 8 is primarily applicable to a transmissiveextended object 103. For example, as shown inFIG. 8 , a transmissive Ronchi grating 801 can be used, with a refractive object having a varying slope that is moved against the object plane. The graphs on the lower right ofFIG. 8 illustrate the interferograms resulting with this arrangement. Note that the refractive object, as noted above, may be, for instance, a spherical or a parabolic lens that is being moved against a small aperture. -
[0063] FIG. 9 is another illustration of dynamic pupil fill using a tilting reflective Ronchi grating 901, with the beam patterns not shown. As shown inFIG. 9 , abeam splitter 902 may also be necessary. The reflective extended object 103 (in this case, the Ronchi grating 901) is placed on a tilting mirror. The diagrams at bottom right illustrate the resulting interferogram patterns. The large tilting mirror can be used in combination with an aperture, or can have only a small, flat part portion, or can be a small flat portion of a large tilting object, which is made reflecting. A relatively large mirror, or a larger object, is easier to handle (in other words, to tilt and rotate) compared to a micromirror. Theextended object 103 in this case would coincide with the large tilting mirror, as shown inFIG. 9 . -
[0064] Also, a tilting micromirror (such as a mirror in a spatial light-modulator array) may be used as the entireextended object 103. -
[0065] The present invention has a number of advantages over conventional systems. For example, the dynamic pupil fill eliminates the need for a diffuser in the object plane (e.g., in EUV wavefront sensors), thus resulting in elimination or reduction of speckle-induced wave front measurement errors. -
[0066] The dynamic pupil fill also eliminates the need to switch to a special illumination mode during the wavefront measurement. The same illumination mode used during the exposure can be used to perform the wavefront measurement. (However, one still has to properly position a reticle stage with the tilting mirror on it.) -
[0067] The dynamic pupil fill also allows to fill thePO pupil 105 “tightly,” thus significantly reducing the loss of light that occurs with other methods. If necessary or desirable, the dynamic pupil fill allows sampling only the portions of the PO pupil that are of interest. -
[0068] It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined in the appended claims. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.