JP5466722B2 - 固体電解コンデンサ - Google Patents

固体電解コンデンサ Download PDF

Info

Publication number
JP5466722B2
JP5466722B2 JP2012030286A JP2012030286A JP5466722B2 JP 5466722 B2 JP5466722 B2 JP 5466722B2 JP 2012030286 A JP2012030286 A JP 2012030286A JP 2012030286 A JP2012030286 A JP 2012030286A JP 5466722 B2 JP5466722 B2 JP 5466722B2
Authority
JP
Japan
Prior art keywords
electrode terminal
solid electrolytic
electrolytic capacitor
electrode
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012030286A
Other languages
English (en)
Other versions
JP2012231120A (ja
Inventor
陽洋 川合
健二 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2012030286A priority Critical patent/JP5466722B2/ja
Priority to CN201210089518.8A priority patent/CN102737857B/zh
Priority to KR1020120036846A priority patent/KR101451685B1/ko
Priority to US13/446,265 priority patent/US9007743B2/en
Publication of JP2012231120A publication Critical patent/JP2012231120A/ja
Application granted granted Critical
Publication of JP5466722B2 publication Critical patent/JP5466722B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/26Structural combinations of electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices with each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

本発明は、電源回路等に用いられる固体電解コンデンサに関する。
従来から、弁作用金属として、タンタル、ニオブ等を用いた固体電解コンデンサがある。このような固体電解コンデンサは、小型で静電容量が大きく、周波数特性に優れ、低いESL(等価直列インダクタンス)特性を持ち、CPU(Central Processing Unit)のデカップリング回路あるいは電源回路等に広く使用されている。
また携帯型電子機器の発展に伴い、特に基板電極構造型の固体電解コンデンサの製品化が進んでいる。この種の固体電解コンデンサを電子回路基板に実装する際には、実装電極面の端子部分と共に、半田によるフィレットと呼ばれる端子部分と実装基板との接続部分の構造が重要になる。
特許文献1には、固体電解コンデンサにおいて、陽極端子及び陰極端子の側面部に窪みを形成する技術が記載されている。これらの窪みは、実装面側に、又は実装面側に加えてその反対側にも開いている。固体電解コンデンサを実装基板に半田を用いて装着する場合、半田は実装面側から窪みの底面に至って該底面と実装基板とを接合する。
特許文献2には、下面電極型固体電解コンデンサの変換基板の側面に上下方向に貫通する凹形状のフィレット形成面(特許文献2の図8の符号15e、15f)を形成する技術が記載されている。つまり、外側面に露出する面に切欠き部が設けられ、その内部にめっきが施された陽極端子形成部及び陰極端子形成部を備えた変換基板を使用してコンデンサ素子と接続し、外装樹脂(特許文献2の図8の符号19)を形成した後、切断面に沿って切断することで、下面電極型固体電解コンデンサの陽極及び陰極の外側面にフィレット形成面を形成する。
特許文献3には、フィレット形成部を絶縁板の側面凹部に設ける技術が記載されている。また、特許文献4には、陽極リードフレーム、及び陰極リードフレームの実装面までの引き出し距離を短くすることで、低いESL特性を導く技術が記載されている。
特開2004−103981号公報 特開2008−258602号公報 特開2008−270317号公報 特開2006−190925号公報
小型化が要求される固体電解コンデンサでは、さらに小型化するために固体電解コンデンサの外形に対するコンデンサ素子の体積効率を向上させることは不可欠である。しかしながら、前述したような、リードフレームに窪みを設けた構造(特許文献1)、又は電極基板にフィレット形成部を設けた構造(特許文献2及び3)にはそれぞれ、問題点が存在しており、これらを改善しながら安定したフィレット形成を設けることは困難であるとい課題がある。
特許文献1の構造の場合には、部分的にLの字型を有した製造フレーム(リードフレーム)が外装樹脂に埋め込まれているので、体積効率を低下させてしまう。また、外装樹脂がリードフレーム実装端子表面に漏れてしまい、回路基板への実装時に不具合を起こしてしまう。
特許文献1には、コンデンサの陽極及び陰極の外側面に露出する面(凹部)にめっきが施され、このめっきが施された部分にフィレットが形成される構造が記載されている。しかし、フィレットが形成される部分がリードフレームの厚さに制限され、フィレットを形成する高さが不十分となる懸念がある。
特許文献2の構造の場合には、フィレット形成面に半田のねれ上がりが生じる。しかし、電極基板が外装樹脂よりも外側に突出しており、外装樹脂のサイズが制約される。そのため、陰極面積が小さくなってしまい大容量化に対して不利な構造になっている。
また、特許文献3の図1に示される第二の陽極上面端子(符号25)は、製品端面まで延伸していない構造となっている。
これは、製品実装時にリフロー時の熱履歴により、コンデンサ端子内部からのガス発生(蒸気、又は、樹脂からの溶媒揮発分など)に対して、絶縁板と外装樹脂との密着により、コンデンサ端子内部からのガス抜けが十分に行われないからである。これにより、ガスの圧力により、絶縁板の反りや絶縁板と外装樹脂との剥離などが生じる可能性がある。
また、特許文献4には、低ESLを目的としたリードフレーム構造を用いた技術が記載されている。リードフレーム構造の場合、基板構造と比べて加工が困難であり、製品サイズの変更に伴う実装端子、内部端子の変更に時間がかかり量産性に難がある。また、リードフレーム構造では外装部形成時に実装面側の電極端子に外装樹脂回り込みが生じることがあり、コンデンサを基板実装する際に外部端子の半田濡れ性問題が生じていた。
そこで、本発明の目的は、前述の問題点を解決し、生産性に優れ、大容量化を目的とした体積効率を向上させて、安定した実装時のフィレット形状を持つ固体電解コンデンサを提供することになる。
本発明は、前述の課題を解決するために、電極基板の端部には非貫通の電極基板窪み部を有し、さらに電極基板窪み部の側面及び上部にはめっきが施されていることにより、半田が側面のみならず上部にも半田が付着して安定した実装時のフィレット形成を可能とすると共に、また、前記素子接続用電極端子が第一方向(900)の両端面まで達していることにより、コンデンサ素子内部から発生するガスが抜けやすくなり、前記電極基板と外装樹脂との剥離を防止できるとともに、陽極端子と陰極端子との電流経路を短くすることにより、低ESL特性を有した固体電解コンデンサが得られる。
すなわち、本発明による固体電解コンデンサは、線状、箔状又は板状の弁作用金属を含む陽極体の少なくとも一方の端部に配置される陽極部と、前記陽極体における前記陽極部と絶縁樹脂によって分離された領域に配置される陰極部とを有するコンデンサ素子と、一方の面に形成され、前記コンデンサ素子の陽極部又は陰極部が電気的に接続される素子接続用の電極端子と、他方の面に形成され、回路基板の電極端子と電気的に接続される実装電極側の電極端子と、前記素子接続用の電極端子と前記実装電極側の電極端子とを電気的に接続する接続部と、を有する電極基板と、前記コンデンサ素子を被覆する被覆部材と、を備え、前記電極基板における第一方向に配置される側面に第一窪み部が形成されており、前記第一窪み部は、前記実装電極側の電極端子又は前記素子接続用の電極端子と電気的に接続されるように導電性部材で覆われ、前記素子接続用の電極端子は、少なくとも前記第一方向に沿って前記被覆部材の端面まで延伸し、前記第一窪み部の上部を覆うことを特徴とする。
本発明によれば、前記実装電極側の電極端子は、前記被覆部材における前記第一方向に配置される一方の端面まで延伸する第一電極端子と、前記被覆部材における前記第一方向に配置される他方の端面まで延伸する第二電極端子と、前記第一電極端子又は前記第二電極端子と電気的に接続される前記素子接続用の電極端子と異なる極性の電極端子に電気的に接続され、前記第二電極端子から離間された領域に配置される第三電極端子と、を備え、前記電極基板における前記第一方向と直交する第二方向に配置される側面に第二窪み部が形成されており、前記第二窪み部は、前記第三電極端子又は前記第三電極端子と電気的に接続される前記素子接続用の電極端子と電気的に接続されるように導電性部材で覆われ、前記第三電極端子は、前記第二方向に沿って前記被覆部材の端面まで延伸し、前記第二窪み部の上部を覆うことを特徴とする。また前記コンデンサ素子が一端より陽極リードが導出された弁作用金属の焼結体からなる多孔質体の表面に誘電体、固体電解質、陰極層が順次形成されたものであっても良いし、また前記コンデンサ素子が両端から陽極リードが導出され、中央部に弁作用金属の多孔質体の表面に誘電体、電解質、陰極層が順次形成された陰極部がある伝送線路構造を有するものであっても良い。
上記により得られた固体電解コンデンサを固体基板に形成されているランドに半田実装した際に、半田のフィレット形成部分である前記窪み部の少なくとも一部に半田が塗布されている。また前記第一窪み部は前記第一方向に開口部を有し、前記開口部における前記第一方向と直交する前記第二方向への長さは、前記第一窪み部近傍の前記実装電極側の電極端子の前記第二方向への長さに対して10%以上有することが好ましく、さらに前記第二窪み部は前記第二方向に開口部を有し、前記開口部における前記第二方向と直交する前記第一方向への長さは、前記第二窪み部近傍の前記実装電極側の電極端子の前記第一方向への長さに対して10%以上有することが好ましい。
本発明によれば、電極基板の所定部に窪み部を設けることにより、実装電極側の陽極端子及び陰極端子を回路基板に半田付けする際に形成されるフィレットを安定的に設けることができる。
また、本発明によれば、素子接続用の電極端子が固体電解コンデンサの端面まで達していることから、コンデンサ端子の内部等から発生するガスが抜けやすい(外装樹脂と端子では樹脂と金属であり、外装樹脂と電極基板(樹脂)よりも隙間が生じやすい)。
さらに本発明によれば、リードフレームを用いた構造でないので、生産性が高く、しかも体積効率を向上させることができる。
本発明の実施の形態1に係る固体電解コンデンサの製品断面図を示す。 本発明の実施の形態1に係る固体電解コンデンサにおける、実装電極側から見た製品底面図を示す。 本発明の実施の形態1に係る固体電解コンデンサにおける、素子接続用電極側から見た電極基板の上面図を示す。 本発明の実施の形態1に係る固体電解コンデンサにおける、窪み部近傍の拡大図を示す。 本発明の実施の形態2に係る固体電解コンデンサの製品断面図を示す。 本発明の実施の形態2に係る固体電解コンデンサにおける、実装電極側から見た製品底面図を示す。 本発明の実施の形態2に係る固体電解コンデンサにおける、素子接続用電極側から見た電極基板の上面図を示す。 本発明の実施の形態3に係る固体電解コンデンサにおける、実装電極側から見た製品底面図を示す。 本発明の実施の形態3に係る固体電解コンデンサにおける、素子接続用電極側から見た電極基板の上面図を示す。 本発明の実施の形態4に係る固体電解コンデンサの製品断面図を示す。 本発明の実施の形態4に係る固体電解コンデンサにおける、実装電極側から見た製品底面図を示す。 本発明の実施の形態4に係る固体電解コンデンサにおける、素子接続用電極側から見た電極基板の上面図を示す。 本発明の実施の形態に係る固体電解コンデンサの電極基板における、フィレット形成部の詳細図であり、半田実装後の半田塗布状態を示す。 本発明の実施の形態に係る固体電解コンデンサの電極基板における、ビア部分の詳細図を示す。
以下、本発明の実施の形態について、図面を用いて説明する。なお、以下の説明において、重複する説明は省略する。
(実施の形態1)
実施の形態1について、図1A〜D及び図5A、Bを用いて説明する。
図1は本発明の実施の形態1に係る固体電解コンデンサの構成を示す図であり、図1Aは1個の固体電解コンデンサの断面図、図1Bは実装電極側から見た製品底面図、図1Cは素子接続用電極端子側から見た上面図を示す。図1Dは図1Bの符号112部分の拡大図を示す。
固体電解コンデンサ500は、以下のように製作して得ることができる。先ず、線状、箔状又は板状の弁作用金属を含む陽極体の一方のコンデンサ素子陽極部(陽極部)101と、絶縁樹脂102によって分離された当該陽極体の他方の表面に順次形成された誘電体層、固体電解質層、グラファイト層及び銀ペースト層を含むコンデンサ素子陰極部(陰極部)103と、を有するコンデンサ素子を製作する。
次に、コンデンサ素子陽極部101に金属片105を溶接する。その後、コンデンサ素子陰極部103は導電性接着剤104を介して他層のコンデンサ素子陰極部103と接続され、コンデンサ素子陽極部101は金属片105を介して他層のコンデンサ素子陽極部101と接続されるように、コンデンサ素子を積層してコンデンサ積層体素子600を製作する。
次に、コンデンサ積層体素子600の陽極部の最下部の金属片105と電極基板800の素子接続用陽極端子107、及びコンデンサ積層体素子600の最下部のコンデンサ素子陰極部103と電極基板800の素子接続用陰極端子109とを導電性接着剤104を介して接続する。なお、電極基板800の構成については後述する。
その後、例えばエポキシ樹脂からなる外装樹脂200でコンデンサ積層体素子600を被覆・密閉後、ダイシング加工又はレーザ加工などで製品外形形状に切断して、固体電解コンデンサ500を製作する。
切断する位置は、図1B及びCに示す切断線51、52である。切断線51は、第二方向901に延びる。切断線51で切断することにより、固体電解コンデンサ500の奥行方向の製品外形寸法が規定される。本実施の形態の切断線51は、詳細は後述する電極基板800の基材106に形成される長孔の短手方向の略中央位置を通るように設定される。
切断線52は、第二方向901と直交する第一方向900に延びる。切断線52で切断することにより、固体電解コンデンサ500の幅方向の製品外形寸法が規定される。本実施の形態の切断線52は、隣接する切断線52との間で、後述するように電極基板800に形成される窪み部112が略中央位置に配置されるように設定される。また、本実施の形態の切断線52は、隣接する切断線52との間で、実装電極側陽極端子108及び実装電極側陰極端子110が略中央位置に配置されるように設定される。さらに、本実施の形態の切断線52は、隣接する切断線52との間で、素子接続用陽極端子107及び素子接続用陰極端子109が略中央位置に配置されるように設定される。
次に、電極基板800の構成について詳細に説明する。電極基板800の基材106には、図1B及びCに示すように、予め第一方向900に間隔を開け、第二方向901を長手方向とする長孔が形成される。この基材106を上述の切断位置で切断して個片化すると、長孔は短手方向の略中央位置で切断され、個片化された基材106における第一方向900に配置される両側面に窪み部112が形成される。このとき、窪み部112は第一方向900に開口部を有する形状となるが、当該開口部の第二方向901への長さL1は、当該窪み部112近傍の実装電極側の電極端子の第二方向901への長さL2に対して10%以上有することが好ましい。開口部が10%未満であると、フィレットに半田が集中して寄ってしまう可能性がある。ちなみに、当該開口部の第二方向901への長さL1は、当該第一窪み部112近傍の実装電極側の電極端子の第二方向901への長さL2に対して50%以上有することがより好ましい。また、図1Dに示すように、窪み部112における固体電解コンデンサ500の端面と平行な部分(本実施の形態では、切断線51と平行な部分)300は直立した平面であることが好ましく、これは、実装後の半田によるフィレット形成部の視認性が良好になるためである。
そして、個片化した基材106に対して、窪み部112を含む側面全周を覆い、且つ基材106の上面の所定の領域に素子接続用陽極端子107及び素子接続用陰極端子109が形成され、基材106の下面の所定の領域に実装電極側陽極端子108及び実装電極側陰極端子110が形成されるように、導電性部材が形成される。導電性部材として例えばめっきが施される。
このとき、素子接続用陽極端子107及び素子接続用陰極端子109は、固体電解コンデンサ500の端面(即ち、外装樹脂200の端面である切断線51)まで延伸し、窪み部112の上部を覆うように形成される。また、素子接続用陽極端子107及び実装電極側陽極端子108は一方の窪み部112の導電性部材と電気的に接続され、素子接続用陰極端子109及び実装電極側陰極端子110は他方の窪み部112の導電性部材と電気的に接続される。このような非貫通の窪み部112は、フィレット形成部400とされる。ここで、窪み部112の上部は非貫通、即ち素子接続用の電極端子で覆われるので、外装樹脂200でコンデンサ積層体素子600を被覆する際に、当該窪み部112に外装樹脂200が漏れることがない。なお、窪み部112の形状は、半長穴形状、多角形の穴形状でも同様の効果が得られる。また、窪み部112の導電性部材は、素子接続用の電極端子又は実装電極側の電極端子の少なくとも一方に電気的に接続されれば良い。
さらに素子接続用陽極端子107と実装電極側陽極端子108、及び素子接続用陰極端子109と実装電極側陰極端子110とは、ビア111を介して電気的に接続される。なお、ビア111の構成については後述する。
次に、フィレット形成部400及びビア111の構造について述べる。
図5は、電極基板800の一部を詳細に説明する図であり、図5Aはフィレット形成部400の詳細図であり、半田実装後の半田塗布状態、図5Bはビア部分の詳細図を示す。
図5Aに示す通り、フィレット形成部400は非貫通構造となっている。つまり、フィレット形成部400の上部が素子接続用陽極端子107又は素子接続用陰極端子109で覆われている。言い換えると、素子接続用陽極端子107又は素子接続用陰極端子109は、固体電解コンデンサ500の第一方向900の端面まで達している。要するに、窪み部112の上部には基材106が配置されず、素子接続用陽極端子107及び素子接続用陰極端子109は固体電解コンデンサ500の端面から露出する。この素子接続用陽極端子107及び素子接続用陰極端子109としてめっきが施されており、コンデンサ積層体素子600を外装樹脂200で被覆した際に、当該外装樹脂200との間に微細な隙間が生じる。そのため、実装時に導電性接着剤104及びコンデンサ素子内から発生するガスを矢印A方向に沿って外に逃がすことができる。
また、フィレット形成部400の側面及び上部がめっきで覆われているため、実装時の半田213がフィレット部の側面のみならず上部にも濡れることから安定した半田フィレットが形成される。
このとき、外装樹脂200と金属である素子接続用電極端子ではなく、基材106であった場合には、外装樹脂200と基材106とは樹脂同士で密着性が高く、ガスが抜けづらくなり、該ガスが膨張して外装樹脂200と電極基板との剥離が生じる原因となる。
図5Bには、ビア111の詳細な構造を示す。本図のように、ビア111は銅箔210bまでレーザを用いて穴を開けた後、銅めっき及び金めっきによるめっき層211を銅箔210a、210bの表面、及びビア111の内部表面に施す。
このような固体電解コンデンサ500は、図5Aに示すように、窪み部112において半田213を介して回路基板(実装基板)212に固着されることが好ましい。このとき、窪み部112及び素子接続用の電極端子の一部は半田213で形成されるフィレットで覆われることになる。
(実施の形態2)
実施の形態2について図2を用いて説明する。
図2は、本発明の実施の形態2に係る固体電解コンデンサの構成を示す図であり、図2Aは1個の固体電解コンデンサの断面図、図2Bは実装電極側から見た製品底面図、図2Cは素子接続用電極側から見た上面図を示す。
コンデンサ積層体素子600の製造については、実施の形態1と同様であることから省略する。本実施の形態の電極基板800は、図2Aに示すように、実装電極が3端子とされている。
つまり、実装電極側の第一陰極端子110a(実施の形態1の実装電極側陰極端子110)に対して第一方向900に間隔Rを開けて離間された位置に、実装電極側の第二陰極端子110bが配置されている。この第二陰極端子110bは、図2Bに示すように第二方向901に延伸している。
このような電極基板800を用いて、実施の形態1と同様にコンデンサ積層体素子600の最下部の金属片105と素子接続用陽極端子107、及びコンデンサ積層体素子600の最下部のコンデンサ素子陰極部103と素子接続用陰極端子109とが導電性接着剤104を介して接続される。
その後、実施の形態1と同様に、外装樹脂200にて被覆した後に、切断線51、52に沿ってダイシング加工又はレーザ加工等で切断することにより、固体電解コンデンサ500を製作する。ここで、切断線51、52は、4側面に窪み部(112a〜112d)をそれぞれ形成するために基材106に形成される、長孔の略中央位置を通るように設定される。ちなみに、切断した際に窪み部112a及び112bは第一方向900に開口部を有する形状となるが、当該開口部の第二方向901への長さL1は、当該窪み部112a又は112b近傍の実装電極側の電極端子の第二方向901への長さL2に対して10%以上有することが好ましい。また、窪み部112c及び112dは第二方向901に開口部を有する形状となるが、当該開口部の第一方向900への長さL3は、当該窪み部112c又は112d近傍の実装電極側の電極端子の第一方向900への長さL4に対して10%以上有することが好ましい。
このような固体電解コンデンサ500は、実施の形態1の固体電解コンデンサ500と比較して第二陰極端子110bが実装電極側陽極端子108に近いので、ESLを低減することができる。つまり、実装電極側陽極端子108と第二陰極端子110bとの距離が近いほど、電流経路が短くなるため、ESLの低減効果は大きくなる。
ここで、実装電極側の第二陰極端子110bは、固体電解コンデンサ500における第二方向901に配置される端面まで達しており、端面部に実施の形態1で示したフィレット形成部400が同様に存在することが好ましい。
これにより、本実施の形態では、3端子存在すると共に、フィレット形成部400が4箇所(窪み部112a〜112d)存在することにより、より安定した実装特性を得ると共にESL特性を低減することができる。
なお、ビア111及びフィレット形成部400の詳細については、前述した図5に基づくものと同様であるので、説明を省略する。
(実施の形態3)
実施の形態3について、図3A及び図3Bを用いて説明する。
図3Aは実装電極側から見た製品底面図、図3Bは素子接続用電極側から見た上面図を示す。
実施の形態3は前述の実施の形態2と比較して、窪み部112c及び112dがなく、第二陰極端子110b及び素子接続用陰極端子109は第二方向901に延伸しているものの、切断線52までは延伸しておらず、切断線52の手前で止まっている。
上記以外は、実施の形態2と同様の形態とする。尚、実施の形態2と実施の形態3ではESL値に差は認められない。
(実施の形態4)
図4は、本発明の実施の形態4に係る固体電解コンデンサの構成を示す図であり、図4Aは1個の固体電解コンデンサの断面図、図4Bは実装電極側から見た製品底面図、図4Cは素子接続用電極側から見た上面図を示す。
本実施の形態のコンデンサ積層体素子700は、両側にコンデンサ素子陽極部101を有し、中央にコンデンサ素子陰極部103を有する伝送線路素子の積層体の構造を有している。
電極基板800は、当該伝送線路素子の構造に対応しており、両側に素子接続用陽極端子107及び実装電極側陽極端子108がそれぞれ配置され、その間に素子接続用陰極端子109及び実装電極側陰極端子110が配置されている。素子接続用陽極端子107と実装電極側陽極端子108とはビア111で電気的に接続されている。素子接続用陰極端子109と実装電極側陰極端子110ともビア111で電気的に接続されている。
このような伝送線路構造を有するコンデンサ積層体素子700と電極基板800とを用いて、当該コンデンサ積層体素子700の両側にある陽極部の最下部の金属片105と素子接続用陽極端子107、及びコンデンサ積層体素子700の最下部のコンデンサ素子陰極部103と素子接続用陰極端子109とが導電性接着剤104を介して接続される。
その後、実施の形態1と同様に、外装樹脂200にて被覆した後に、切断線51、52に沿ってダイシング加工又はレーザ加工等で切断することにより、固体電解コンデンサ500を製作する。ここで、切断線51、52は、窪み部(112a〜112d)を形成するために基材106に形成される、長孔の略中央位置を通るように設定される。ちなみに、切断した際に窪み部112a及び112bは第一方向900に開口部を有する形状となるが、当該開口部の第二方向901への長さL1は、当該窪み部112a又は112b近傍の実装電極側の電極端子の第二方向901への長さL2に対して10%以上有することが好ましい。また、窪み部112c及び112dは第二方向901に開口部を有する形状となるが、当該開口部の第一方向900への長さL3は、当該窪み部112c又は112d近傍の実装電極側の電極端子の第一方向900への長さL4に対して10%以上有することが好ましい。
なお、ビア111及びフィレット形成部400の詳細については、前述した図5に基づくものと同様であるので、説明を省略する。
実施の形態2乃至5に示している3端子構造については、従来技術にリードフレームにおける同様の技術が既知となっているが、リードフレームの場合、スパッタリングによるリードフレームの切削加工などが必要となり、加工に困難を要するが、本実施の形態のように電極基板での端子形成は、パターン形成のみで済むことから、リードフレームの複雑な加工形成よりも容易である点も特徴として挙げられる。しかも、リードフレームを外装樹脂に埋め込む構造でないので、体積効率を向上させることができる。
(実施例1)
実施例1について、実施の形態に用いた図1A〜Dを用いて説明する。
表面がエッチングにより拡面化された長さ6.0mm、幅3.5mm、厚さ350μmのアルミニウム箔を用いて、その表面に電気化学的処理により誘電体皮膜を形成してアルミ化成箔とした。陽極部と陰極部との絶縁を図る為に、アルミ化成箔のエッチング部を除去した後に絶縁樹脂102を塗布形成した。
更に、アルミ化成箔の表面に固体電解質層として、ベンゼンスルホン酸鉄塩を酸化剤とし、3,4−エチレンジオキシチオフィンをモノマーとした化学酸化重合により、導電性高分子ポリチオフェンの層を形成した。さらにその表面にグラファイト層及び銀ペースト層を形成して、コンデンサ素子陰極部103を製作した。
しかる後、コンデンサ素子陽極部101に、厚さ60μmの銅板に銀めっきが施されている金属片105を超音波溶接により接合した。さらに、コンデンサ素子陰極部103に導電性接着剤104を塗布してコンデンサ素子陰極部103を3枚積層した後、150℃で60分間乾燥することにより、コンデンサ素子陰極部103同士を電気的に接続した。
さらに、コンデンサ素子陽極部101同士を接合するために、当該コンデンサ素子陽極部101を構成するアルミ基板と金属片105とをレーザ溶接により接合し、3枚積層したコンデンサ積層体素子600を製作した。その際の定格電圧は2V、定格容量は470μFであった。
しかる後、材質をガラスエポキシとした厚さが100μmの基材106に、厚さ20μmの銅箔を施し、その上にめっき厚20μmの銅めっきを施し、素子接続用陽極端子107及び素子接続用陰極端子109、実装電極側陽極端子108及び実装電極側陰極端子110を形成した。この時、レーザにて掘り込んだ複数箇所のビア111にも同時に銅めっきを施し、前述の陽極部と陰極部とのそれぞれの素子接続用電極端子と実装電極側電極端子とを導通させた。また、同様にフィレット形成部400(窪み部)の側面を含めて全周にも銅めっきを形成した。
その後、前述の銅めっきが形成された上面に0.06μmの金めっきを施し、さらに回路形成を行うことにより、厚さ200μmの電極基板800を得た。
続いて、製作したコンデンサ積層体素子600の陽極部の最下部の金属片105と素子接続用陽極端子107、及びコンデンサ積層体素子600の陰極部の最下部の陰極部103と素子接続用陰極端子109とをそれぞれ銀を含む導電性接着剤104を所定箇所に塗布後、150℃60分間、硬化・乾燥することにより接合した。
その後、エポキシ樹脂である外装樹脂200で被覆し、予め銅めっきを施した窪み部112を切断線51で切断することにより、フィレット形成部400(陽極部及び陰極部)を形成することができた。また、固体電解コンデンサの幅方向の製品外形寸法となる切断線52で切断することにより、安定したフィレットが形成され、かつ体積効率を向上させ、また、実装後の視認性も容易となった、幅4.3mm、長さ7.3mm、高さ1.9mmの固体電解コンデンサ500を得た。出来上がった固体電解コンデンサ500の定格電圧は2V、定格容量は470μFであった。
(実施例2)
実施例2について、図2A〜Cを用いて説明する。実施例1との相違点を中心に説明する。
コンデンサ積層体素子600の製造例、又はコンデンサ積層体素子600の電極基板800への搭載方法は、実施例1と同様であり省略する。
実施例2に用いた電極基板の上面図を図2Aに示すが、本図から、電極基板800の第一方向端面に配置されている実装電極側の第一陰極端子110aから1.5mm(図2BのR)離間した箇所に実装電極側の第二陰極端子110bを配置した。形状は略T字型であり、実装電極側の第二陰極端子110bの第二方向に延伸する端子は、第二方向の端面まで達しており、端面部に実施の形態1で示したフィレット形成部400を得た。つまり、本実施例では、端子が3端子存在すると共に、フィレット形成部400が4箇所存在することになる。
コンデンサ積層体素子600を前述した電極基板800に対応するように搭載した後、エポキシ樹脂である外装樹脂200で被覆し、予め銅めっきを施した窪み部112(112a〜112d)を切断線51、52で切断することにより、フィレット形成部400(陽極部及び陰極部)を形成することができた。
本実施例によるフィレットは、実装面に合計4箇所存在しており、内訳として、陽極部に2箇所(112a及び112b)、陰極部に2箇所(112c及び112d)になる。
固体電解コンデンサの幅方向、及び長さ方向の製品外形寸法となる切断線51、52で切断することにより、安定したフィレットが形成され、かつ体積効率を向上させ、また、実装後の視認性も容易となった、幅4.7mm、長さ7.3mm、高さ1.9mmの伝送線路構造を有した固体電解コンデンサ500を得た。
なお、ビア111及びフィレット形成部400の詳細については、前述した図5に基づくものと同様であり、出来上がった固体電解コンデンサ500の定格電圧は2V、定格容量は470μFであった。
(実施例3)
実施例3について図4A〜Cを用いて説明する。表面がエッチングにより拡面化された長さ6.0mm、幅3.5mm、厚さ350μmのアルミニウム箔を用いて、その表面に電気化学的処理により誘電体皮膜を形成してアルミ化成膜とした。陽極部と陰極部との絶縁を図るために、アルミ化成膜両端のエッチング部を除去した後に絶縁樹脂102を塗布形成した。
その後、モノマーとして3,4−エチレンジオキシチオフィンを用い、21重量%の過硫酸アンモニウム水溶液を酸化剤として、化学酸化重合方法により、固体電解質層となる導電性高分子を形成した後、グラファイト層及び銀ペースト層を形成してコンデンサ素子陰極部103を製作した。次に、両端の絶縁樹脂102の所定箇所をレーザ照射により切断して、陽極部と陰極部とを確実に分離した(150)。
次に、コンデンサ素子陽極部101と金属片105とを超音波溶接した後、陰極部は銀からなる導電性接着剤104を介し、陽極部はレーザ溶接にて接合して積層することでなる伝送線路構造を有したコンデンサ積層体素子700を製作した。その際の定格電圧は2V、定格容量は330μFであった。
材質をガラスエポキシとした厚さが100μmの基材106に、めっき厚20μmの銅めっきを施し、基板の両端に素子接続用陽極端子107を形成し、中央に素子接続用陰極端子109を形成した。この時、レーザにて掘り込んだ複数箇所のビア111にも同時に銅めっきを施し、前述の陽極部と陰極部とのそれぞれの素子接続用電極端子と実装電極側電極端子とを導通させた。また、同様にフィレット形成部400(窪み部)の側面を含めて全周にも銅めっきを形成した。
その後、前述の銅めっきが形成された上面に0.06μmの金めっきを施し、電極基板上に回路形成を行うことにより、厚さ200μmの電極基板800を得た。
次に、コンデンサ積層体素子600の両端に配置されているコンデンサ素子陽極部101の最下部にある金属片105と素子接続用陽極端子107、及びコンデンサ積層体素子700の最下部のコンデンサ素子陰極部103と素子接続用陰極端子109とをそれぞれ銀を含む導電性接着剤104を所定箇所に塗布後、150℃60分間、硬化・乾燥することにより接合した。
その後、エポキシ樹脂である外装樹脂200で被覆し、予め銅めっきを施した窪み部112(112a〜112dの4箇所)を切断線51、52で切断することにより、フィレット形成部400(陽極部及び陰極部)を形成することができた。
本実施例によるフィレットは、実装面に合計4箇所存在しており、内訳として、陽極部に2箇所(112a及び112b)、陰極部に2箇所(112c及び112d)になる。
固体電解コンデンサの幅寸法、及び長さ方向の製品外形寸法となる切断線51、52で切断することにより、安定したフィレットが形成され、かつ体積効率を向上させ、また、実装後の視認性も容易となった、幅4.3mm、長さ7.3mm、高さ1.9mmの伝送線路構造を有した固体電解コンデンサ500を得た。
なお、電極基板800における電極端子、及びビアのめっき構造、厚みについては、前述の実施例1と同様とした。
(比較例1)
リードフレームを用いた2端子のコンデンサとして、特開2006−190925号公報の図6に示す構造のコンデンサを得た。
(比較例2)
また、同様にリードフレームを用いた3端子のコンデンサとして、特開2006−190925号公報の図1に示す構造のコンデンサを得た。
なお、比較例1、2は定格電圧が2V、定格容量が470μFとして、外形寸法は実施例と同様に幅4.3mm、長さ7.3mm、高さ1.9mmとした。
実施例1〜3及び比較例1、2によるESL値の比較を表1に示した。
Figure 0005466722
表1より、比較例に比べた本発明のESLが低いことが分かる。
端子数としての比較では、2端子である実施例1と比較例1との比較、及び3端子である実施例2、3と比較例2との比較をするとより効果が分かり易い。
この結果から、本発明が比較例と比べて、効果的に電流経路を短くした発明となっており、従来の課題を解決した結果となっている。
以上、実施例を用いて、この発明の実施の形態を説明したが、この発明は、これらの実施例に限定されるものではなく、この発明の要旨を逸脱しない範囲の設計変更があっても本発明に含まれる。すなわち、当業者であれば、当然なし得るであろう各種変形、修正もまた発明に含まれる。
51、52 切断線
101 コンデンサ素子陽極部
102 絶縁樹脂
103 コンデンサ素子陰極部
104 導電性接着剤
105 金属片
106 基材
107 素子接続用陽極端子
108 実装電極側陽極端子
109 素子接続用陰極端子
110 実装電極側陰極端子
110a 第一陰極端子、110b 第二陰極端子
111 ビア
112(112a、112b、112c、112d) 窪み部
200 外装樹脂
210a、210b 銅箔
211 めっき層
300 窪み部における固体電解コンデンサの端面と平行な部分
400 フィレット形成部
500 固体電解コンデンサ
600、700 コンデンサ積層体素子
800 電極基板
900 第一方向
901 第二方向

Claims (10)

  1. 線状、箔状又は板状の弁作用金属を含む陽極体の少なくとも一方の端部に配置される陽極部と、前記陽極体における前記陽極部と絶縁樹脂によって分離された領域に配置される陰極部とを有するコンデンサ素子と、
    一方の面に形成され、前記コンデンサ素子の陽極部又は陰極部が電気的に接続される素子接続用の電極端子と、他方の面に形成され、回路基板の電極端子と電気的に接続される実装電極側の電極端子と、前記素子接続用の電極端子と前記実装電極側の電極端子とを電気的に接続するビアと、を有する電極基板と、
    前記コンデンサ素子を被覆する被覆部材と、を備え、
    前記電極基板における第一方向に配置される側面に第一窪み部が形成されており、前記第一窪み部の上部及び側面は、前記実装電極側の電極端子又は前記素子接続用の電極端子と電気的に接続されるように導電性部材で覆われ、
    前記素子接続用の電極端子は、少なくとも前記第一方向に沿って前記被覆部材の端面まで延伸し、前記第一窪み部の上部を覆い、
    前記素子接続用の電極端子と前記被覆部材との間に、前記コンデンサ素子の陽極部又は陰極部と前記素子接続用の電極端子とを接続する導電性接着剤から前記被覆部材の端面まで連通するガス抜き用の隙間を有する固体電解コンデンサ。
  2. 前記実装電極側の電極端子は、
    前記被覆部材における前記第一方向に配置される一方の端面まで延伸する第一電極端子と、
    前記被覆部材における前記第一方向に配置される他方の端面まで延伸する第二電極端子と、
    前記第一電極端子又は前記第二電極端子と電気的に接続される前記素子接続用の電極端子と異なる極性の電極端子に電気的に接続され、前記第二電極端子から離間された領域に配置される第三電極端子と、を備え、
    前記電極基板における前記第一方向と直交する第二方向に配置される側面に第二窪み部が形成されており、前記第二窪み部は、前記第三電極端子又は前記第三電極端子と電気的に接続される前記素子接続用の電極端子と電気的に接続されるように導電性部材で覆われ、
    前記第三電極端子は、前記第二方向に沿って前記被覆部材の端面まで延伸し、前記第二窪み部の上部を覆う請求項1に記載の固体電解コンデンサ。
  3. 前記第二窪み部及び前記素子接続用の電極端子の少なくとも一部は半田で形成されるフィレットで覆われる請求項2に記載の固体電解コンデンサ。
  4. 前記第二窪み部は前記第二方向に開口部を有し、前記開口部における前記第二方向と直交する前記第一方向への長さは、前記第二窪み部近傍の前記実装電極側の電極端子の前記第一方向への長さに対して10%以上有する請求項2又は3に記載の固体電解コンデンサ。
  5. 前記コンデンサ素子は、線状、箔状又は板状の弁作用金属を含む陽極体の両端に陽極部が配置され、前記陽極部の間に陰極部が配置される請求項1乃至4のいずれか1項に記載の固体電解コンデンサ。
  6. 半田を介して前記回路基板に固着される請求項1乃至5のいずれか1項に記載の固体電解コンデンサ。
  7. 前記第一窪み部及び前記素子接続用の電極端子の少なくとも一部は半田で形成されるフィレットで覆われる請求項1乃至6のいずれか1項に記載の固体電解コンデンサ。
  8. 前記第一窪み部は前記第一方向に開口部を有し、前記開口部における前記第一方向と直交する第二方向への長さは、前記第一窪み部近傍の前記実装電極側の電極端子の前記第二方向への長さに対して10%以上有する請求項1乃至7のいずれか1項に記載の固体電解コンデンサ。
  9. 前記第一窪み部又は第二窪み部の上部に基材が存在せず、
    前記素子接続用の電極端子は、固体電解コンデンサの端面から露出する請求項1乃至8のいずれか1項に記載の固体電解コンデンサ。
  10. 前記第一窪み部又は第二窪み部における固体電解コンデンサの端面と平行な部分は直立した面により形成されている請求項1乃至9のいずれか1項に記載の固体電解コンデンサ。
JP2012030286A 2011-04-15 2012-02-15 固体電解コンデンサ Active JP5466722B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012030286A JP5466722B2 (ja) 2011-04-15 2012-02-15 固体電解コンデンサ
CN201210089518.8A CN102737857B (zh) 2011-04-15 2012-03-27 固体电解电容器
KR1020120036846A KR101451685B1 (ko) 2011-04-15 2012-04-09 고체 전해 콘덴서
US13/446,265 US9007743B2 (en) 2011-04-15 2012-04-13 Solid electrolytic capacitor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011090662 2011-04-15
JP2011090662 2011-04-15
JP2012030286A JP5466722B2 (ja) 2011-04-15 2012-02-15 固体電解コンデンサ

Publications (2)

Publication Number Publication Date
JP2012231120A JP2012231120A (ja) 2012-11-22
JP5466722B2 true JP5466722B2 (ja) 2014-04-09

Family

ID=46993161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012030286A Active JP5466722B2 (ja) 2011-04-15 2012-02-15 固体電解コンデンサ

Country Status (4)

Country Link
US (1) US9007743B2 (ja)
JP (1) JP5466722B2 (ja)
KR (1) KR101451685B1 (ja)
CN (1) CN102737857B (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104685590B (zh) 2012-09-28 2018-02-09 松下知识产权经营株式会社 固体电解电容器及其制造方法
CN104685589B (zh) * 2012-09-28 2018-05-29 松下知识产权经营株式会社 固体电解电容器
WO2014155603A1 (ja) * 2013-03-28 2014-10-02 日本カーリット株式会社 導電性高分子製造用酸化剤溶液及びそれを用いた固体電解コンデンサ並びに固体電解コンデンサの製造方法
US9859057B2 (en) * 2014-08-22 2018-01-02 Apple Inc. Capacitor module
WO2017106452A1 (en) * 2015-12-15 2017-06-22 Kemet Electronics Corporation Conductive polymer dispersion with enhanced coverage
JP6710085B2 (ja) 2016-03-31 2020-06-17 株式会社村田製作所 固体電解コンデンサ
JP6647124B2 (ja) * 2016-04-14 2020-02-14 株式会社トーキン 固体電解コンデンサ、および固体電解コンデンサの製造方法
US10381166B2 (en) * 2016-05-25 2019-08-13 Vishay Sprague, Inc. High performance and reliability solid electrolytic tantalum capacitors and screening method
TWI626671B (zh) * 2016-06-06 2018-06-11 鈺邦科技股份有限公司 用於提升電氣性能的固態電解電容器封裝結構、及其電容單元與製作方法
JP6776731B2 (ja) 2016-08-29 2020-10-28 株式会社村田製作所 固体電解コンデンサ
WO2018143354A1 (ja) * 2017-02-03 2018-08-09 株式会社村田製作所 固体電解コンデンサ及びその製造方法
CN107170582A (zh) * 2017-07-01 2017-09-15 湖南艾华集团股份有限公司 一种叠层电容器
US10178770B1 (en) * 2017-12-22 2019-01-08 Kemet Electronics Corporation Higher density multi-component and serial packages
US11024464B2 (en) * 2018-08-28 2021-06-01 Vishay Israel Ltd. Hermetically sealed surface mount polymer capacitor
CN113327771B (zh) 2021-05-11 2022-08-23 东莞顺络电子有限公司 一种片式导电聚合物电容器封装方法及电容器
TWM616164U (zh) * 2021-06-24 2021-08-21 立隆電子工業股份有限公司 堆疊型鋁電解電容器
US11923148B2 (en) * 2022-04-18 2024-03-05 Capxon Electronic Technology Co., Ltd. Substrate-type multi-layer polymer capacitor (MLPC) having electroplated terminal structure

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367862A (ja) 2001-04-05 2002-12-20 Rohm Co Ltd 固体電解コンデンサおよびその製造方法
JP2004103981A (ja) * 2002-09-12 2004-04-02 Sanyo Electric Co Ltd 固体電解コンデンサの製造方法及びこの方法によって製造される固体電解コンデンサ
JP4613669B2 (ja) * 2004-12-06 2011-01-19 パナソニック株式会社 固体電解コンデンサ
TW200701280A (en) * 2005-05-17 2007-01-01 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor
JP4440911B2 (ja) * 2006-10-13 2010-03-24 ニチコン株式会社 固体電解コンデンサ
US7835138B2 (en) * 2007-03-09 2010-11-16 Nec Tokin Corporation Solid electrolytic capacitor and method of manufacturing same
JP4753380B2 (ja) * 2007-04-17 2011-08-24 Necトーキン株式会社 下面電極型固体電解コンデンサ
JP5201671B2 (ja) * 2008-09-08 2013-06-05 Necトーキン株式会社 下面電極型固体電解コンデンサおよびその製造方法
JP5131852B2 (ja) * 2008-11-19 2013-01-30 Necトーキン株式会社 固体電解コンデンサ

Also Published As

Publication number Publication date
KR20120117653A (ko) 2012-10-24
US20120262847A1 (en) 2012-10-18
CN102737857B (zh) 2016-04-27
US9007743B2 (en) 2015-04-14
KR101451685B1 (ko) 2014-10-16
JP2012231120A (ja) 2012-11-22
CN102737857A (zh) 2012-10-17

Similar Documents

Publication Publication Date Title
JP5466722B2 (ja) 固体電解コンデンサ
JP4757698B2 (ja) 固体電解コンデンサ
JP2011071559A (ja) 固体電解コンデンサ
JP2009158692A (ja) 積層型固体電解コンデンサ
JP5453174B2 (ja) 下面電極型の固体電解積層コンデンサおよびその実装体
JP2006190929A (ja) 固体電解コンデンサ及びその製造方法
JP2007081069A (ja) チップ型固体電解コンデンサおよび端子ならびに端子の製造方法
JP4688676B2 (ja) 積層型固体電解コンデンサおよびコンデンサモジュール
JP2006190925A (ja) 固体電解コンデンサ及びその製造方法
JP2007013043A (ja) 電子素子搭載用電極アセンブリ及びこれを用いた電子部品、並びに固体電解コンデンサ
JP2006032880A (ja) 固体電解コンデンサ及びその製造方法
JP5429392B2 (ja) 固体電解コンデンサ及びその製造方法
JP4654929B2 (ja) チップ形固体電解コンデンサ
JP4936458B2 (ja) 積層型固体電解コンデンサ
JP5164213B2 (ja) 固体電解コンデンサ
JP5035999B2 (ja) 固体電解コンデンサおよびその製造方法
JP2005311216A (ja) 固体電解コンデンサ及びその製造方法
WO2024043279A1 (ja) 固体電解コンデンサおよび固体電解コンデンサの製造方法
JP5258071B2 (ja) 固体電解コンデンサ
JP5371865B2 (ja) 3端子型コンデンサ
JP2022085762A (ja) 電解コンデンサ
JP2009231337A (ja) 固体電解コンデンサ
JP2010147274A (ja) 固体電解コンデンサ
JP2010239065A (ja) 固体電解コンデンサの製造方法
JP2009295604A (ja) 固体電解コンデンサ

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130501

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130513

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140124

R150 Certificate of patent or registration of utility model

Ref document number: 5466722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250