WO2018143354A1 - 固体電解コンデンサ及びその製造方法 - Google Patents

固体電解コンデンサ及びその製造方法 Download PDF

Info

Publication number
WO2018143354A1
WO2018143354A1 PCT/JP2018/003434 JP2018003434W WO2018143354A1 WO 2018143354 A1 WO2018143354 A1 WO 2018143354A1 JP 2018003434 W JP2018003434 W JP 2018003434W WO 2018143354 A1 WO2018143354 A1 WO 2018143354A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor element
solid electrolytic
capacitor
cathode
electrolytic capacitor
Prior art date
Application number
PCT/JP2018/003434
Other languages
English (en)
French (fr)
Inventor
修 横倉
信田 知希
和豊 堀尾
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2018566088A priority Critical patent/JP6906242B2/ja
Priority to CN201880008552.3A priority patent/CN110249400B/zh
Publication of WO2018143354A1 publication Critical patent/WO2018143354A1/ja
Priority to US16/527,259 priority patent/US11017954B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • H01G9/10Sealing, e.g. of lead-in wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/14Structural combinations or circuits for modifying, or compensating for, electric characteristics of electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/07Dielectric layers

Definitions

  • the present invention relates to a solid electrolytic capacitor and a method for manufacturing the same.
  • Patent Document 1 discloses a porous sintered body of metal particles or conductive ceramic particles, an anode partially invaded into the porous sintered body, and the porous sintered body.
  • a solid electrolytic capacitor comprising a cathode formed on a surface is disclosed.
  • the anode wire constitutes the anode, and each end of the anode wire protruding from the porous sintered body is electrically connected to the anode lead member (anode terminal). Has been.
  • Patent Document 1 it is possible to improve noise removal characteristics in a wide frequency band, and to supply large capacity power with high responsiveness. Further, in an electric circuit using a solid electrolytic capacitor, it is possible to improve the space efficiency on the substrate and reduce the cost.
  • the present inventors replaced the solid electrolytic capacitor described in Patent Document 1 with a linear valve metal having a porous part on the surface of the core part as a part having the functions of a porous sintered body and an anode wire.
  • a method of reducing the number of parts and thereby reducing the cost by using a substrate was considered.
  • a dielectric layer is formed on the surface of the porous portion of the valve action metal substrate, and then a cathode layer is provided on the dielectric layer to form a capacitor element. Make electrical connection with the terminal.
  • the cathode layer provided on the linear valve metal substrate and the planar cathode terminal are connected to ensure the adhesive strength between the capacitor element and the cathode terminal. Becomes difficult. In particular, when the shape of the valve metal base is cylindrical, the contact area between the capacitor element and the cathode terminal is reduced. When the adhesive strength between the capacitor element and the cathode terminal decreases, the resistance increases because the capacitor element is easily peeled off from the cathode terminal due to the flow of the resin when the capacitor element is sealed with a resin sealing material. There is a risk that the electrical characteristics will deteriorate.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a solid electrolytic capacitor having excellent adhesion strength between a capacitor element having a valve action metal substrate having a linear shape and a cathode terminal. . Another object of the present invention is to provide a method for producing the solid electrolytic capacitor.
  • the solid electrolytic capacitor of the present invention includes a valve metal substrate having a porous portion on the surface of a core portion, a dielectric layer formed on the surface of the porous portion, and a cathode layer provided on the dielectric layer.
  • the valve action metal substrate has a linear shape extending in the axial direction, and the cathode terminal is provided with a recess having an inner wall surface along the axial direction.
  • at least one capacitor element is disposed in the recess of the cathode terminal, and the cathode layer of the capacitor element is connected to the inner wall surface of the recess.
  • the shape of the valve metal base is preferably a column having a curved surface.
  • the inner wall surface of the recess has a curved surface shape that follows the shape of the valve metal substrate.
  • the cathode terminal is preferably made of a metal plate.
  • the solid electrolytic capacitor of the present invention further includes an insulating layer for insulating the core portion and the cathode layer on the surface of the capacitor element, and the cathode terminal is in contact with the cathode layer and the insulating layer. It is preferable.
  • the cathode layer of the capacitor element is connected to the inner wall surface of the recess in a range of 1/5 or more of the length of the capacitor element in the axial direction.
  • the cathode layer of the capacitor element is connected to the inner wall surface of the recess to a range of 1/3 or more of the height of the capacitor element.
  • the height of the inner wall surface of the recess is preferably 1/3 or more of the height of the capacitor element, and more preferably equal to or higher than the height of the capacitor element.
  • the sealing material has a bottom surface and a side surface adjacent to the bottom surface, and an outer wall surface of the cathode terminal is exposed on the bottom surface and the side surface of the sealing material.
  • the cathode terminal exposed on the bottom surface and the side surface of the sealing material is preferably an integral body.
  • the length of the inner wall surface of the recess is preferably equal to or greater than the length of the outer wall surface of the cathode terminal exposed on the side surface of the sealing material.
  • the solid electrolytic capacitor of the present invention is preferably a three-terminal capacitor including a pair of the anode terminals on both end faces of the sealing material and the cathode terminal on at least the bottom surface of the sealing material.
  • the valve metal substrate having a porous part on the surface of the core part, the dielectric layer formed on the surface of the porous part, and the dielectric
  • a method of manufacturing a solid electrolytic capacitor comprising: sealing the capacitor element mounted on a terminal with a sealing material; and forming an anode terminal electrically connected to the core of the capacitor element.
  • the shape of the valve action metal substrate is a linear shape extending in the axial direction, and the cathode terminal is provided with a recess having an inner wall surface along the axial direction.
  • the method for producing a solid electrolytic capacitor of the present invention is the valve action metal substrate having a porous part on the surface of the core part, the dielectric layer formed on the surface of the porous part, and the dielectric Preparing a plurality of capacitor elements having a cathode layer provided on the body layer, and connecting the cathode layer of the capacitor element to an assembly frame serving as a cathode terminal, thereby providing a plurality of capacitors on the assembly frame.
  • a step of mounting elements a step of collectively sealing a plurality of capacitor elements mounted on the collective frame with a sealing material, a step of dividing the collective frame into a plurality of chips, A step of forming an anode terminal electrically connected to the core of the capacitor element in an individualized chip, and a method of manufacturing a solid electrolytic capacitor comprising the valve action
  • the metal base has a linear shape extending in the axial direction
  • the assembly frame is provided with a plurality of recesses having inner wall surfaces along the axial direction
  • the capacitor frame includes a plurality of capacitor elements.
  • at least one capacitor element is disposed in each of the recesses of the assembly frame, and the cathode layer of the capacitor element is connected to the inner wall surface of the recess.
  • the solid electrolytic capacitor which is excellent in the adhesive strength of the capacitor
  • FIG. 1 is a perspective view schematically showing the solid electrolytic capacitor according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the solid electrolytic capacitor shown in FIG. 1 taken along the line II-II.
  • 3 is a sectional view of the solid electrolytic capacitor taken along the line III-III shown in FIG. 4 is an enlarged cross-sectional view schematically showing an IV portion of the solid electrolytic capacitor shown in FIG.
  • FIG. 5 is a cross-sectional view schematically showing a solid electrolytic capacitor according to the second embodiment of the present invention.
  • FIG. 6 is a cross-sectional view schematically showing a solid electrolytic capacitor according to a third embodiment of the present invention.
  • FIG. 1 is a perspective view schematically showing the solid electrolytic capacitor according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the solid electrolytic capacitor shown in FIG. 1 taken along the line II-II.
  • 3 is a sectional view of the solid electrolytic capacitor taken along
  • FIG. 7 is a perspective view schematically showing a solid electrolytic capacitor according to the fourth embodiment of the present invention.
  • FIG. 8 is a cross-sectional view schematically showing a solid electrolytic capacitor according to a fifth embodiment of the present invention.
  • FIG. 9A, FIG. 9B, FIG. 9C, and FIG. 9D are perspective views schematically showing an example of a method for manufacturing the solid electrolytic capacitor shown in FIG. 10 (a), FIG. 10 (b), FIG. 10 (c), FIG. 10 (d) and FIG. 10 (e) are perspective views schematically showing an example of a method for manufacturing the solid electrolytic capacitor shown in FIG. It is.
  • the solid electrolytic capacitor of the present invention and the manufacturing method thereof will be described.
  • the present invention is not limited to the following configurations, and can be applied with appropriate modifications without departing from the scope of the present invention.
  • Each embodiment shown below is an illustration, and it cannot be overemphasized that a partial substitution or combination of composition shown in a different embodiment is possible.
  • the present invention also includes a combination of two or more desirable configurations of the present invention described below.
  • FIG. 1 is a perspective view schematically showing the solid electrolytic capacitor according to the first embodiment of the present invention.
  • the solid electrolytic capacitor 1 shown in FIG. 1 includes a capacitor element 10, a cathode terminal 21, a pair of anode terminals 31 and 32, and a sealing material 40 that covers the capacitor element 10.
  • the capacitor element 10 has a linear valve metal base 11 that extends in the axial direction (the direction indicated by the arrow L in FIG. 1).
  • the cathode terminal 21 is provided with a recess 21 a having an inner wall surface along the axial direction L, and the capacitor element 10 is disposed in the recess 21 a of the cathode terminal 21.
  • the sealing material 40 has a rectangular parallelepiped outer shape including the cathode terminal 21 and is opposed to a height direction (direction indicated by an arrow H in FIG. 1) orthogonal to the axial direction L.
  • a pair of opposing end faces 44 and 45 are provided. Both the side surfaces 42 and 43 of the sealing material 40 are adjacent to the bottom surface 41 and the top surface 46, and are also adjacent to the end surfaces 44 and 45.
  • the outer wall surface of the cathode terminal 21 is exposed on the bottom surface 41 and the side surface 42 of the sealing material 40.
  • the outer wall surface of the cathode terminal 21 is also exposed on the side surface 43 of the sealing material 40 (see FIG. 3).
  • the cathode terminal 21 exposed on the bottom surface 41, the side surface 42, and the side surface 43 of the sealing material 40 is an integrated object. In this way, by exposing the cathode terminal not only to the bottom surface but also to the side surface of the sealing material, a sufficient fillet can be formed on the side surface during mounting, so that high mounting strength can be obtained.
  • the anode terminal 31 is disposed on one end surface 44 of the sealing material 40, and the anode terminal 32 is disposed on the other end surface 45 of the sealing material 40.
  • the solid electrolytic capacitor of the present invention is preferably a three-terminal capacitor including a pair of anode terminals on both end faces of the sealing material and a cathode terminal on at least the bottom surface of the sealing material.
  • the solid electrolytic capacitor of the present invention is not limited to a three-terminal capacitor.
  • FIG. 2 is a cross-sectional view of the solid electrolytic capacitor shown in FIG. 1 taken along the line II-II.
  • 3 is a sectional view of the solid electrolytic capacitor taken along the line III-III shown in FIG. 4 is an enlarged cross-sectional view schematically showing an IV portion of the solid electrolytic capacitor shown in FIG.
  • the capacitor element 10 includes a valve action metal substrate 11 having a porous portion 13 on the surface of a core portion 12, and a dielectric layer 14 formed on the surface of the porous portion 13. (See FIG. 4) and a cathode layer 15 provided on the dielectric layer 14.
  • the cathode layer 15 includes a solid electrolyte layer 15a provided on the surface of the dielectric layer 14, a carbon layer 15b provided on the surface of the solid electrolyte layer 15a, and a silver provided on the surface of the carbon layer. Layer 15c.
  • a large number of pores 13 a are formed on the surface of the porous portion 13 of the valve action metal substrate 11.
  • the dielectric layer 14 is porous reflecting the surface state of the porous portion 13 and has a fine uneven surface shape.
  • the surface shape of the porous portion 13 is indicated by a wavy line, but this is a schematic illustration of the surface shape of the porous portion 13, and the actual porous portion 13 is more complicated. Surface shape.
  • the porous part 13 is shown by the area
  • the cathode terminal 21 is electrically connected to the cathode layer 15 of the capacitor element 10. Specifically, the cathode layer 15 of the capacitor element 10 is connected to the recess 21 a of the cathode terminal 21. In FIG. 3, the cathode layer 15 of the capacitor element 10 is connected to the recess 21 a of the cathode terminal 21 through the conductive adhesive 60.
  • the cathode layer may be directly connected to the concave portion of the cathode terminal.
  • the anode terminals 31 and 32 are electrically connected to the core portion 12 of the capacitor element 10.
  • both end surfaces of the core portion 12 are exposed from the sealing material 40 and are in contact with the pair of anode terminals 31 and 32, respectively.
  • the solid electrolytic capacitor 1 further includes an insulating layer 50 on the surface of the capacitor element 10 for insulating the core portion 12 and the cathode layer 15.
  • an insulating layer 50 is provided between the cathode layer 15 and the anode terminal 31 and between the cathode layer 15 and the anode terminal 32.
  • the solid electrolytic capacitor of the present invention is characterized in that the capacitor element is disposed in the recess provided in the cathode terminal, and the cathode layer of the capacitor element is connected to the inner wall surface of the recess.
  • the bonding area between the capacitor element and the cathode terminal is increased as compared with the case where the cathode terminal is not provided with a recess. Therefore, the equivalent series resistance (ESR) can be kept low.
  • the capacitor element is covered with the concave portion of the cathode terminal, it is possible to suppress external force to the capacitor element due to the flow of resin when sealing the capacitor element with the sealing material. Can be prevented.
  • the cathode terminal is preferably made of a metal plate.
  • a metal plate is used as the cathode terminal, parasitic components can be suppressed in the high-frequency region as compared with the case where a resin printed board is used, so that reliability can be improved. Moreover, since heat dissipation is high, the reliability with respect to heat can also be improved.
  • the length of the inner wall surface of the recess in the axial direction is not particularly limited as long as part or all of the capacitor element is covered.
  • the cathode layer of the capacitor element is preferably connected to the inner wall surface of the recess in a range of 1/5 or more of the length of the capacitor element in the axial direction.
  • the cathode layer (cathode part), it is more preferable to have a length required for the insulating layer.
  • the cathode layer of the capacitor element may be discontinuously connected to the inner wall surface of the recess.
  • Table 1 shows the relationship between the ratio of the connection length between the inner wall surface of the recess and the capacitor element to the length of the capacitor element and the ESR increase rate.
  • the length of the capacitor element and the connection length between the inner wall surface of the recess and the capacitor element are values measured using an image digitally processed by a microscope.
  • the ESR increase rate is an ESR increase rate at 100 kHz obtained by the following method.
  • ESR is measured by directly applying a probe to the anode terminal and the cathode terminal with respect to the capacitor element after being sealed with a sealing material and separated into pieces, and the value is taken as ESR 2 .
  • ESR 2 / ESR 1 is calculated from ESR 1 and ESR 2 , and the value is taken as the ESR increase rate.
  • ESR 1 and ESR 2 are measured using an LCR meter or an impedance analyzer.
  • the height of the inner wall surface of the recess provided in the cathode terminal is not particularly limited as long as it covers part or all of the capacitor element.
  • the cathode layer of the capacitor element and the cathode terminal may be in contact with each other, or a gap may be provided between the cathode layer of the capacitor element and the cathode terminal.
  • the cathode layer of the capacitor element is connected to the inner wall surface of the concave portion to 1/3 or more of a range of It is preferable.
  • the cathode layer of the capacitor element may be discontinuously connected to the inner wall surface of the recess.
  • Table 2 shows the relationship between the ratio of the connection height between the inner wall surface of the recess and the capacitor element to the height of the capacitor element and the ESR increase rate.
  • the height of the capacitor element and the connection height between the inner wall surface of the recess and the capacitor element are values measured using an image digitally processed by a microscope.
  • the height of the inner wall surface of the concave portion (in FIG. 3, the length indicated by a double-headed arrow H 21) is preferably 1/3 or more of the height of the capacitor element, More preferably, it is equal to or higher than the height of the capacitor element.
  • Table 3 shows the relationship between the ratio of the height of the inner wall surface of the recess to the height of the capacitor element and the ESR increase rate.
  • the height of the capacitor element and the height of the inner wall surface of the recess are values measured using an image digitally processed by a microscope.
  • the outer wall surface of the cathode terminal is exposed on the bottom surface and side surface of the sealing material.
  • the height of the outer wall surface of the cathode terminal is preferably the same as the height of the inner wall surface of the recess. Therefore, the height of the outer wall surface of the cathode terminal is preferably 1/3 or more of the height of the capacitor element, and more preferably equal to or more than the height of the capacitor element.
  • the height of the outer wall surface of the cathode terminal is the length indicated by the double arrow H 21 , and is the same as the height of the inner wall surface of the recess.
  • the cathode terminal exposed on the bottom surface and the side surface of the sealing material is a single piece.
  • the outer wall surface of the cathode terminal exposed on the side surface of the sealing material may be a cut surface.
  • the length of the inner wall surface of the recess in the width direction is not particularly limited.
  • the cathode layer and the cathode terminal of the capacitor element may be in contact with each other, or a gap may be provided between the cathode layer and the cathode terminal of the capacitor element.
  • FIG. 5 is a cross-sectional view schematically showing a solid electrolytic capacitor according to the second embodiment of the present invention.
  • an insulating layer 50 is provided between the cathode layer 15 and the anode terminal 31, and between the cathode layer 15 and the anode terminal 32. 15 and the insulating layer 50.
  • ESR can be kept low.
  • the cathode terminal 22 is in contact with both the insulating layer 50 between the cathode layer 15 and the anode terminal 31 and the insulating layer 50 between the cathode layer 15 and the anode terminal 32. It may be in contact with one insulating layer.
  • the length of the inner wall surface of the recess 22 a of the cathode terminal 22 is longer than the length of the outer wall surface of the cathode terminal 22 exposed at the bottom surface 41 of the sealing material 40 in the axial direction.
  • the length of the wall surface may be equal to or greater than the length of the outer wall surface of the cathode terminal exposed on the bottom surface of the sealing material.
  • the shape of the concave portion of the cathode terminal is not particularly limited, but the inner wall surface of the concave portion preferably has a shape along the shape of the valve action metal substrate.
  • FIG. 6 is a cross-sectional view schematically showing a solid electrolytic capacitor according to a third embodiment of the present invention.
  • the shape of the valve metal base 11 of the capacitor element 10 is a column having a curved surface
  • the inner wall surface of the recess 23 a of the cathode terminal 23 is a curved surface along the shape of the valve metal base 11. Shape.
  • the adhesion reliability can be improved.
  • the length of the inner wall surface of the recess is preferably equal to or greater than the length of the outer wall surface of the cathode terminal exposed on the side surface of the sealing material.
  • ESR since the conductive contact area can be increased, ESR can be kept low.
  • the area of the drawer portion can be reduced, a short circuit with the anode can be prevented.
  • FIG. 7 is a perspective view schematically showing a solid electrolytic capacitor according to the fourth embodiment of the present invention.
  • the length of the inner wall surface of the recess 24 a of the cathode terminal 24 (the length indicated by the double arrow L 24 a in FIG. 7) is exposed on the side surface of the sealing material 40 in the axial direction. It is longer than the length of the outer wall surface of the cathode terminal (the length indicated by the double arrow L 24b in FIG. 7).
  • the shape of the cathode terminal 24 is not limited to the shape shown in FIG.
  • FIG. 8 is a cross-sectional view schematically showing a solid electrolytic capacitor according to a fifth embodiment of the present invention.
  • two capacitor elements 10 are arranged in the recess 25 a of the cathode terminal 25.
  • a plurality of capacitor elements may be disposed in the concave portion of the cathode terminal.
  • a plurality of capacitor elements may be arranged in the width direction, or a plurality of capacitor elements may be arranged in the height direction.
  • the cathode terminal may be provided with a plurality of recesses, and a capacitor element may be disposed in each recess.
  • the number of capacitor elements arranged in each recess may be the same or different.
  • the valve metal substrate constituting the capacitor element is made of a valve metal that exhibits a so-called valve action.
  • the valve action metal include simple metals such as aluminum, tantalum, niobium, titanium, and zirconium, and alloys containing these metals. Among these, aluminum or tantalum is preferable.
  • Shape of a valve metal substrate when not particularly limited as long as a line shape extending in the axial direction, the maximum length of the maximum length in the width direction W B, in the height direction is H B, H B / W
  • the aspect ratio expressed as the ratio of B is preferably 0.5 or more, and more preferably 1 or more.
  • the shape of the valve-acting metal base is preferably a column having a curved surface, and examples thereof include a columnar shape, an elliptical columnar shape, a flat columnar shape, and a shape in which a ridge line portion of a rectangular column is chamfered.
  • the valve action metal substrate has a porous part on the surface of the core part.
  • the porous part is preferably an etching layer formed on the surface of the core part.
  • the dielectric layer formed on the surface of the porous portion is preferably made of an oxide film of the valve action metal.
  • an anodizing treatment also referred to as a chemical conversion treatment
  • a layer can be formed.
  • a solid electrolyte layer is provided on the surface of the dielectric layer as the cathode layer. More preferably, a conductor layer is provided on the surface of the solid electrolyte layer.
  • the material constituting the solid electrolyte layer examples include conductive polymers such as polypyrroles, polythiophenes, and polyanilines. Among these, polythiophenes are preferable, and poly (3,4-ethylenedioxythiophene) called PEDOT is particularly preferable.
  • the conductive polymer may contain a dopant such as polystyrene sulfonic acid (PSS).
  • PSS polystyrene sulfonic acid
  • the solid electrolyte layer preferably includes an inner layer that fills the pores (recesses) of the dielectric layer and an outer layer that covers the dielectric layer.
  • the conductor layer is preferably composed of a carbon layer as a base and a silver layer thereon, but may be a carbon layer alone or a silver layer alone.
  • the solid electrolytic capacitor of the present invention preferably further includes an insulating layer for insulating the core portion and the cathode layer on the surface of the capacitor element.
  • an insulating layer is preferably provided between the cathode layer and the anode terminal.
  • the material for the insulating layer include polyphenylsulfone resin, polyethersulfone resin, cyanate ester resin, fluorine resin (tetrafluoroethylene, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer, etc.), polyimide resin, polyamideimide Examples thereof include insulating resins such as resins and derivatives or precursors thereof.
  • the anode terminal is, for example, a plating film containing a metal such as nickel, zinc, copper, tin, gold, silver, palladium, lead, or an alloy containing these metals, or, for example, And a conductive resin film containing silver, copper, nickel, tin, palladium or the like as a conductive component.
  • the anode terminal may have a multilayer structure including a plating film and a conductive resin film.
  • the anode terminal may include two plating layers and a conductive resin layer located between these plating layers.
  • the sealing material includes, for example, a resin.
  • the resin contained in the sealing material include an epoxy resin and a phenol resin.
  • the sealing material may include a filler such as alumina or silica, a magnetic material, or the like in addition to the resin.
  • the method for producing a solid electrolytic capacitor according to the present invention includes, in the first aspect, a step of preparing the capacitor element, a step of mounting the capacitor element on the cathode terminal, and sealing the capacitor element mounted on the cathode terminal with a sealing material. A step of stopping and a step of forming an anode terminal.
  • the step of mounting the capacitor element on the cathode terminal is characterized in that at least one capacitor element is disposed in a recess provided in the cathode terminal, and the cathode layer of the capacitor element is connected to the inner wall surface of the recess.
  • FIGS. 9A, 9B, 9C, and 9D are perspective views schematically showing an example of a method for manufacturing the solid electrolytic capacitor shown in FIG.
  • the capacitor element 10 is prepared.
  • the capacitor element 10 has a linear valve metal base 11 that extends in the axial direction.
  • a capacitor element is prepared in which the capacitor element 10 and the cathode layer 15 shown in FIG. 1 have the same length and the insulating layers 50 at both ends are long.
  • the capacitor element 10 is manufactured as follows, for example.
  • the insulating layer 50 is formed by applying an insulating resin around both ends of the capacitor element 10 and drying it.
  • the cathode layer 15 is formed by forming a solid electrolyte layer, a carbon layer, and a silver layer on a portion of the valve metal substrate 11 where the insulating layer 50 is not formed.
  • FIG. 9A also shows the cathode terminal 21.
  • the cathode terminal 21 is provided with a recess 21a having an inner wall surface along the axial direction.
  • the cathode terminal 21 is preferably made of a metal plate.
  • the capacitor element 10 is mounted on the cathode terminal 21 by connecting the cathode layer 15 of the capacitor element 10 to the cathode terminal 21.
  • the capacitor element 10 is disposed in the recess 21a of the cathode terminal 21, and the cathode layer 15 of the capacitor element 10 is connected to the inner wall surface of the recess 21a.
  • the cathode layer of the capacitor element can be connected to the recess of the cathode terminal via a conductive adhesive.
  • the capacitor element 10 mounted on the cathode terminal 21 is sealed with a sealing material 40.
  • the sealing material 40 is formed so that both end faces of the capacitor element 10 and the bottom and side faces of the cathode terminal 21 are exposed.
  • polishing may be used, but dicing is preferable from the viewpoint of obtaining a uniform exposed surface.
  • anode terminals 31 and 32 that are electrically connected to the core of the capacitor element 10 are formed.
  • anode terminals 31 and 32 are formed so as to be connected to both end faces of the capacitor element 10 exposed from the sealing material 40.
  • the solid electrolytic capacitor 1 shown in FIG. 1 is obtained.
  • Other solid electrolytic capacitors can be manufactured by the same method.
  • the method of manufacturing a solid electrolytic capacitor according to the second aspect of the present invention includes, in the second aspect, a step of preparing a plurality of capacitor elements, a step of mounting a plurality of capacitor elements on an assembly frame serving as a cathode terminal, A plurality of capacitor elements are collectively sealed with a sealing material, an assembly frame is divided into a plurality of chips, and anode terminals are formed on the capacitor elements in the separated chips. And a step of performing.
  • the step of mounting a plurality of capacitor elements on the assembly frame at least one capacitor element is disposed in each recess provided in the assembly frame, and the cathode layer of the capacitor element is connected to the inner wall surface of the recess. To do.
  • FIGS. 10 (a), 10 (b), 10 (c), 10 (d) and 10 (e) a method for manufacturing a solid electrolytic capacitor according to the second aspect of the present invention will be described. Will be described. 10 (a), FIG. 10 (b), FIG. 10 (c), FIG. 10 (d) and FIG. 10 (e) are perspective views schematically showing an example of a method for manufacturing the solid electrolytic capacitor shown in FIG. It is.
  • the capacitor element 110 has a linear valve metal base 11 that extends in the axial direction.
  • the capacitor element 110 shown in FIG. 7 and the cathode layer 15 have the same length, and the capacitor element 110 having a long insulating layer 50 at both ends is prepared.
  • FIG. 10A also shows an assembly frame 124 that becomes the cathode terminal 24.
  • the collective frame 124 is provided with two recesses 24a each having an inner wall surface along the axial direction.
  • the assembly frame 124 is preferably made of a metal plate.
  • the two capacitor elements 110 are mounted on the collective frame 124 by connecting the cathode layer 15 of the capacitor element 110 to the collective frame 124.
  • the capacitor element 110 is disposed in each recess 24a of the assembly frame 124, and the cathode layer 15 of the capacitor element 110 is connected to the inner wall surface of the recess 24a.
  • the cathode layer of the capacitor element can be connected to each recess of the assembly frame via a conductive adhesive.
  • the two capacitor elements 110 mounted on the assembly frame 124 are collectively sealed with the sealing material 140.
  • FIG. 10D shows two chips 4 a in which the capacitor element 10 arranged in the recess 24 a of the cathode terminal 24 is sealed with the sealing material 40.
  • dicing is preferable. By dicing, both end surfaces of the capacitor element 10 and the bottom and side surfaces of the cathode terminal 24 can be exposed. In this case, the outer wall surface of the cathode terminal 24 exposed on the side surface of the sealing material 40 is a cut surface.
  • anode terminals 31 and 32 that are electrically connected to the core portion of the capacitor element 10 in the separated chip are formed.
  • anode terminals 31 and 32 are formed so as to be connected to both end faces of the capacitor element 10 exposed from the sealing material 40.
  • the solid electrolytic capacitor 4 shown in FIG. 7 is obtained.
  • Other solid electrolytic capacitors can be manufactured by the same method.
  • the solid electrolytic capacitor of the present invention is not limited to the above-described embodiment, and various applications and modifications can be made within the scope of the present invention with respect to the configuration and manufacturing method of the solid electrolytic capacitor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

本発明の固体電解コンデンサは、芯部の表面に多孔質部を有する弁作用金属基体、上記多孔質部の表面に形成された誘電体層、及び、上記誘電体層上に設けられた陰極層を有するコンデンサ素子と、上記コンデンサ素子の上記陰極層と電気的に接続された陰極端子と、上記コンデンサ素子の上記芯部と電気的に接続された陽極端子と、上記コンデンサ素子を覆う封止材と、を備える固体電解コンデンサであって、上記弁作用金属基体の形状は、軸線方向に延びる線状であり、上記陰極端子には、上記軸線方向に沿った内壁面を有する凹部が設けられており、上記陰極端子の上記凹部に少なくとも1つの上記コンデンサ素子が配置され、上記コンデンサ素子の上記陰極層が上記凹部の上記内壁面と接続されていることを特徴とする。

Description

固体電解コンデンサ及びその製造方法
本発明は、固体電解コンデンサ及びその製造方法に関する。
固体電解コンデンサとして、例えば、特許文献1には、金属粒子又は導電性セラミック粒子の多孔質焼結体と、上記多孔質焼結体内に一部が進入した陽極と、上記多孔質焼結体の表面に形成された陰極とを備える固体電解コンデンサが開示されている。特許文献1に記載の固体電解コンデンサにおいては、陽極ワイヤが陽極を構成しており、多孔質焼結体から突出する陽極ワイヤの各端部が、陽極リード部材(陽極端子)と電気的に接続されている。
特許文献1によれば、広い周波数帯域においてノイズ除去特性を向上させ、高い応答性で大容量の電力供給を行なうことが可能となる。また、固体電解コンデンサが用いられた電気回路において、基板上のスペース効率の向上とコスト低減とを図ることができる。
国際公開第2005/015588号
本発明者らは、特許文献1に記載の固体電解コンデンサに代えて、多孔質焼結体及び陽極ワイヤの機能を兼ね備える部品として、芯部の表面に多孔質部を有する線状の弁作用金属基体を用いることにより、部品点数の削減及びそれによる低コスト化を図る方法を考えた。このような固体電解コンデンサでは、弁作用金属基体の多孔質部の表面に誘電体層を形成した後、誘電体層上に陰極層を設けることによってコンデンサ素子とし、当該コンデンサ素子の陰極層を陰極端子と電気的に接続させる。
しかし、上記の構成を有する固体電解コンデンサでは、線状の弁作用金属基体に設けられた陰極層と平面状の陰極端子とを接続させるため、コンデンサ素子と陰極端子との接着強度を確保することが困難になる。特に、弁作用金属基体の形状が円柱状であると、コンデンサ素子と陰極端子との接触面積が小さくなる。コンデンサ素子と陰極端子との接着強度が低下すると、樹脂からなる封止材を用いてコンデンサ素子を封止する際、樹脂の流動によってコンデンサ素子が陰極端子から剥離しやすくなるため、抵抗が増大する等、電気特性が劣化する虞がある。
一方、コンデンサ素子と陰極端子との接着強度を高くするためには、コンデンサ素子と陰極端子とを多量の導電性接着剤を介して接着する方法も考えられるが、導電性接着剤の量が多くなると、導電性接着剤が封止材から漏れやすくなるため、漏れ不良が発生する虞がある。
本発明は上記の問題を解決するためになされたものであり、弁作用金属基体の形状が線状であるコンデンサ素子と陰極端子との接着強度に優れる固体電解コンデンサを提供することを目的とする。本発明はまた、上記固体電解コンデンサの製造方法を提供することを目的とする。
本発明の固体電解コンデンサは、芯部の表面に多孔質部を有する弁作用金属基体、上記多孔質部の表面に形成された誘電体層、及び、上記誘電体層上に設けられた陰極層を有するコンデンサ素子と、上記コンデンサ素子の上記陰極層と電気的に接続された陰極端子と、上記コンデンサ素子の上記芯部と電気的に接続された陽極端子と、上記コンデンサ素子を覆う封止材と、を備える固体電解コンデンサであって、上記弁作用金属基体の形状は、軸線方向に延びる線状であり、上記陰極端子には、上記軸線方向に沿った内壁面を有する凹部が設けられており、上記陰極端子の上記凹部に少なくとも1つの上記コンデンサ素子が配置され、上記コンデンサ素子の上記陰極層が上記凹部の上記内壁面と接続されていることを特徴とする。
本発明の固体電解コンデンサにおいて、上記弁作用金属基体の形状は、曲面を有する柱状であることが好ましい。
本発明の固体電解コンデンサにおいて、上記凹部の上記内壁面は、上記弁作用金属基体の形状に沿った曲面形状を有することが好ましい。
本発明の固体電解コンデンサにおいて、上記陰極端子は、金属板からなることが好ましい。
本発明の固体電解コンデンサは、上記コンデンサ素子の表面に、上記芯部と上記陰極層とを絶縁するための絶縁層をさらに備え、上記陰極端子は、上記陰極層及び上記絶縁層と接していることが好ましい。
本発明の固体電解コンデンサにおいて、上記コンデンサ素子の上記陰極層は、上記軸線方向における上記コンデンサ素子の長さの1/5以上の範囲において上記凹部の上記内壁面と接続されていることが好ましい。
本発明の固体電解コンデンサにおいて、上記コンデンサ素子の上記陰極層は、上記コンデンサ素子の高さの1/3以上の範囲まで上記凹部の上記内壁面と接続されていることが好ましい。
本発明の固体電解コンデンサにおいて、上記凹部の上記内壁面の高さは、上記コンデンサ素子の高さの1/3以上であることが好ましく、上記コンデンサ素子の高さと同等以上であることがより好ましい。
本発明の固体電解コンデンサにおいて、上記封止材は、底面と、上記底面に隣り合う側面とを有し、上記封止材の上記底面及び上記側面には、上記陰極端子の外壁面が露出しており、上記封止材の上記底面及び上記側面に露出する上記陰極端子は、一体物であることが好ましい。
この場合、上記軸線方向において、上記凹部の上記内壁面の長さは、上記封止材の上記側面に露出する上記陰極端子の上記外壁面の長さと同等以上であることが好ましい。
本発明の固体電解コンデンサは、上記封止材の両方の端面に1対の上記陽極端子を備えるとともに、上記封止材の少なくとも底面に上記陰極端子を備える3端子コンデンサであることが好ましい。
本発明の固体電解コンデンサの製造方法は、第1の態様において、芯部の表面に多孔質部を有する弁作用金属基体、上記多孔質部の表面に形成された誘電体層、及び、上記誘電体層上に設けられた陰極層を有するコンデンサ素子を準備する工程と、上記コンデンサ素子の上記陰極層を陰極端子と接続させることにより、上記陰極端子に上記コンデンサ素子を搭載する工程と、上記陰極端子に搭載された上記コンデンサ素子を封止材で封止する工程と、上記コンデンサ素子の上記芯部と電気的に接続される陽極端子を形成する工程と、を備える固体電解コンデンサの製造方法であって、上記弁作用金属基体の形状は、軸線方向に延びる線状であり、上記陰極端子には、上記軸線方向に沿った内壁面を有する凹部が設けられており、上記陰極端子に上記コンデンサ素子を搭載する工程では、上記陰極端子の上記凹部に少なくとも1つの上記コンデンサ素子を配置し、上記コンデンサ素子の上記陰極層を上記凹部の上記内壁面と接続させることを特徴とする。
本発明の固体電解コンデンサの製造方法は、第2の態様において、芯部の表面に多孔質部を有する弁作用金属基体、上記多孔質部の表面に形成された誘電体層、及び、上記誘電体層上に設けられた陰極層を有するコンデンサ素子を複数個準備する工程と、上記コンデンサ素子の上記陰極層を陰極端子となる集合フレームと接続させることにより、上記集合フレームに複数個の上記コンデンサ素子を搭載する工程と、上記集合フレームに搭載された複数個の上記コンデンサ素子を封止材で一括して封止する工程と、上記集合フレームから複数個のチップに個片化する工程と、個片化されたチップ内の上記コンデンサ素子の上記芯部と電気的に接続される陽極端子を形成する工程と、を備える固体電解コンデンサの製造方法であって、上記弁作用金属基体の形状は、軸線方向に延びる線状であり、上記集合フレームには、上記軸線方向に沿った内壁面を有する凹部が複数個設けられており、上記集合フレームに複数個の上記コンデンサ素子を搭載する工程では、上記集合フレームのそれぞれの上記凹部に少なくとも1つの上記コンデンサ素子を配置し、上記コンデンサ素子の上記陰極層を上記凹部の上記内壁面と接続させることを特徴とする。
本発明によれば、弁作用金属基体の形状が線状であるコンデンサ素子と陰極端子との接着強度に優れる固体電解コンデンサを提供することができる。
図1は、本発明の第1実施形態に係る固体電解コンデンサを模式的に示す斜視図である。 図2は、図1に示す固体電解コンデンサのII-II線断面図である。 図3は、図1に示す固体電解コンデンサのIII-III線断面図である。 図4は、図2に示す固体電解コンデンサのIV部分を拡大して模式的に示す断面図である。 図5は、本発明の第2実施形態に係る固体電解コンデンサを模式的に示す断面図である。 図6は、本発明の第3実施形態に係る固体電解コンデンサを模式的に示す断面図である。 図7は、本発明の第4実施形態に係る固体電解コンデンサを模式的に示す斜視図である。 図8は、本発明の第5実施形態に係る固体電解コンデンサを模式的に示す断面図である。 図9(a)、図9(b)、図9(c)及び図9(d)は、図1に示す固体電解コンデンサの製造方法の一例を模式的に示す斜視図である。 図10(a)、図10(b)、図10(c)、図10(d)及び図10(e)は、図7に示す固体電解コンデンサの製造方法の一例を模式的に示す斜視図である。
以下、本発明の固体電解コンデンサ及びその製造方法について説明する。
しかしながら、本発明は、以下の構成に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。以下に示す各実施形態は例示であり、異なる実施形態で示した構成の部分的な置換又は組み合わせが可能であることは言うまでもない。なお、以下において記載する本発明の個々の望ましい構成を2つ以上組み合わせたものもまた本発明である。
[固体電解コンデンサ]
図1は、本発明の第1実施形態に係る固体電解コンデンサを模式的に示す斜視図である。
図1に示す固体電解コンデンサ1は、コンデンサ素子10と、陰極端子21と、1対の陽極端子31及び32と、コンデンサ素子10を覆う封止材40と、を備える。コンデンサ素子10は、軸線方向(図1中、矢印Lで示す方向)に延びる線状の弁作用金属基体11を有している。
陰極端子21には、軸線方向Lに沿った内壁面を有する凹部21aが設けられており、陰極端子21の凹部21aにコンデンサ素子10が配置されている。
本実施形態では、封止材40は、陰極端子21を含めて直方体状の外形を有しており、軸線方向Lに直交する高さ方向(図1中、矢印Hで示す方向)に相対する1対の底面41及び上面46と、軸線方向L及び高さ方向Hに直交する幅方向(図1中、矢印Wで示す方向)に相対する1対の側面42及び43と、軸線方向Lに相対する1対の端面44及び45とを有している。封止材40の側面42及び43は、いずれも底面41及び上面46に隣り合っており、端面44及び45にも隣り合っている。
本実施形態では、封止材40の底面41及び側面42には、陰極端子21の外壁面が露出している。また、図1には示されていないが、封止材40の側面43にも、陰極端子21の外壁面が露出している(図3参照)。後述する図3に示すように、封止材40の底面41、側面42及び側面43に露出する陰極端子21は、一体物である。このように、封止材の底面だけでなく側面にも陰極端子を露出させることによって、実装時に側面にも充分なフィレットを形成することができるため、高い実装強度を得ることができる。
陽極端子31は、封止材40の一方の端面44に配置されており、陽極端子32は、封止材40の他方の端面45に配置されている。このように、本発明の固体電解コンデンサは、封止材の両方の端面に1対の陽極端子を備えるとともに、封止材の少なくとも底面に陰極端子を備える3端子コンデンサであることが好ましいが、本発明の固体電解コンデンサは、3端子コンデンサに限定されるものではない。
図2は、図1に示す固体電解コンデンサのII-II線断面図である。図3は、図1に示す固体電解コンデンサのIII-III線断面図である。図4は、図2に示す固体電解コンデンサのIV部分を拡大して模式的に示す断面図である。
図2、図3及び図4に示すように、コンデンサ素子10は、芯部12の表面に多孔質部13を有する弁作用金属基体11、多孔質部13の表面に形成された誘電体層14(図4参照)、及び、誘電体層14上に設けられた陰極層15を有する。本実施形態では、陰極層15は、誘電体層14の表面に設けられた固体電解質層15aと、固体電解質層15aの表面に設けられたカーボン層15bと、カーボン層の表面に設けられた銀層15cとを含んでいる。
図4に示すように、弁作用金属基体11の多孔質部13の表面には、多数の細孔13aが形成されている。誘電体層14は、多孔質部13の表面状態を反映して多孔質になっており、微細な凹凸状の表面形状を有している。なお、図4では、多孔質部13の表面形状が波線で示されているが、これは多孔質部13の表面形状を模式的に示したものであり、実際の多孔質部13はより複雑な表面形状を有している。また、図2及び図3では、多孔質部13は、点線で囲まれた領域によって示されている。
図2及び図3に示すように、陰極端子21は、コンデンサ素子10の陰極層15と電気的に接続されている。具体的には、コンデンサ素子10の陰極層15が陰極端子21の凹部21aと接続されている。図3では、コンデンサ素子10の陰極層15が導電性接着剤60を介して陰極端子21の凹部21aと接続されている。しかし、本発明の固体電解コンデンサにおいて、例えば陰極層が銀層を含む場合、銀層は導電性接着剤としても機能するため、陰極層が陰極端子の凹部と直接接続されていてもよい。
陽極端子31及び32は、コンデンサ素子10の芯部12と電気的に接続されている。図2では、芯部12の両端面が封止材40から露出しており、1対の陽極端子31及び32とそれぞれ接触している。また、固体電解コンデンサ1は、コンデンサ素子10の表面に、芯部12と陰極層15とを絶縁するための絶縁層50をさらに備える。図2では、陰極層15と陽極端子31との間、及び、陰極層15と陽極端子32との間に絶縁層50が設けられている。
上述したように、本発明の固体電解コンデンサにおいては、陰極端子に設けられた凹部にコンデンサ素子が配置され、コンデンサ素子の陰極層が凹部の内壁面と接続されていることを特徴としている。この場合、陰極端子に凹部が設けられていない場合と比べて、コンデンサ素子と陰極端子との接着面積が増大する。そのため、等価直列抵抗(ESR)を低く抑えることができる。
また、コンデンサ素子が陰極端子の凹部に覆われるため、封止材を用いてコンデンサ素子を封止する際における、樹脂の流動によるコンデンサ素子への外力を抑制することができ、その結果、電気特性の劣化を抑えることができる。
本発明の固体電解コンデンサにおいて、陰極端子は、金属板からなることが好ましい。陰極端子として金属板を用いる場合、樹脂製のプリント基板を用いた場合と比べて高周波領域において寄生成分を抑制することができるため、信頼性を向上させることができる。また、放熱性が高いため、熱に対する信頼性も向上させることができる。
本発明の固体電解コンデンサにおいて、軸線方向における凹部の内壁面の長さは特に限定されず、コンデンサ素子の一部又は全部を覆っていればよい。
ESRの増大を抑制する観点から、コンデンサ素子の陰極層は、軸線方向におけるコンデンサ素子の長さの1/5以上の範囲において凹部の内壁面と接続されていることが好ましく、芯部(陽極部)と陰極層(陰極部)とを絶縁するための絶縁層にかかる長さを有することがより好ましい。なお、軸線方向において、コンデンサ素子の陰極層は、凹部の内壁面と不連続に接続されていてもよい。
表1に、コンデンサ素子の長さに対する凹部の内壁面とコンデンサ素子との接続長さの比とESR増加率との関係を示す。サンプル数はN=50である。
Figure JPOXMLDOC01-appb-T000001
コンデンサ素子の長さ、及び、凹部の内壁面とコンデンサ素子との接続長さは、マイクロスコープでデジタル処理した画像を用いて測長した値である。
ESR増加率は、以下の方法により求められる100kHzにおけるESR増加率である。まず、陰極端子にコンデンサ素子の陰極層を接続した後、封止材で封止する前のコンデンサ素子に対して、コンデンサ素子の陽極と陰極の露出部に直接プローブを当ててESRを測定し、その値をESRとする。次に、封止材で封止し、個片化した後のコンデンサ素子に対して、陽極端子と陰極端子に直接プローブを当ててESRを測定し、その値をESRとする。ESR及びESRからESR/ESRを計算し、その値をESR増加率とする。なお、ESR及びESRは、LCRメーター又はインピーダンスアナライザーを用いて測定する。
本発明の固体電解コンデンサにおいて、陰極端子に設けられた凹部の内壁面の高さは特に限定されず、コンデンサ素子の一部又は全部を覆っていればよい。また、高さ方向において、コンデンサ素子の陰極層と陰極端子とが接していてもよいし、コンデンサ素子の陰極層と陰極端子との間に隙間が設けられていてもよい。
ESRの増大を抑制する観点から、コンデンサ素子の陰極層は、コンデンサ素子の高さ(図3中、両矢印H10で示す長さ)の1/3以上の範囲まで凹部の内壁面と接続されていることが好ましい。なお、高さ方向において、コンデンサ素子の陰極層は、凹部の内壁面と不連続に接続されていてもよい。
表2に、コンデンサ素子の高さに対する凹部の内壁面とコンデンサ素子との接続高さの比とESR増加率との関係を示す。サンプル数はN=50である。
Figure JPOXMLDOC01-appb-T000002
コンデンサ素子の高さ、及び、凹部の内壁面とコンデンサ素子との接続高さは、マイクロスコープでデジタル処理した画像を用いて測長した値である。
また、ESRの増大を抑制する観点から、凹部の内壁面の高さ(図3中、両矢印H21で示す長さ)は、コンデンサ素子の高さの1/3以上であることが好ましく、コンデンサ素子の高さと同等以上であることがより好ましい。
表3に、コンデンサ素子の高さに対する凹部の内壁面の高さの比とESR増加率との関係を示す。サンプル数はN=50である。
Figure JPOXMLDOC01-appb-T000003
コンデンサ素子の高さ、及び、凹部の内壁面の高さは、マイクロスコープでデジタル処理した画像を用いて測長した値である。
本発明の固体電解コンデンサにおいて、封止材の底面及び側面には、陰極端子の外壁面が露出していることが好ましい。この場合、陰極端子の外壁面の高さは、凹部の内壁面の高さと同じであることが好ましい。したがって、陰極端子の外壁面の高さは、コンデンサ素子の高さの1/3以上であることが好ましく、コンデンサ素子の高さと同等以上であることがより好ましい。図3において、陰極端子の外壁面の高さは、両矢印H21で示す長さであり、凹部の内壁面の高さと同じである。
本発明の固体電解コンデンサにおいて、封止材の底面及び側面に露出する陰極端子は、一体物であることが好ましい。この場合、封止材の側面に露出する陰極端子の外壁面は、切断面であってもよい。
本発明の固体電解コンデンサにおいて、幅方向における凹部の内壁面の長さは特に限定されない。幅方向において、コンデンサ素子の陰極層と陰極端子とが接していてもよいし、コンデンサ素子の陰極層と陰極端子との間に隙間が設けられていてもよい。
図5は、本発明の第2実施形態に係る固体電解コンデンサを模式的に示す断面図である。
図5に示す固体電解コンデンサ2では、陰極層15と陽極端子31との間、及び、陰極層15と陽極端子32との間に絶縁層50が設けられており、陰極端子22は、陰極層15及び絶縁層50と接している。この場合、導通接触面積を増大させることができるため、ESRを低く抑えることができる。
なお、図5では、陰極端子22は、陰極層15と陽極端子31との間の絶縁層50及び陰極層15と陽極端子32との間の絶縁層50の両方と接しているが、いずれか一方の絶縁層と接していてもよい。
また、図5では、軸線方向において、陰極端子22の凹部22aの内壁面の長さは、封止材40の底面41に露出する陰極端子22の外壁面の長さよりも長いが、凹部の内壁面の長さは、封止材の底面に露出する陰極端子の外壁面の長さと同等以上であればよい。
本発明の固体電解コンデンサにおいて、陰極端子の凹部の形状は特に限定されないが、凹部の内壁面が弁作用金属基体の形状に沿った形状を有することが好ましい。
図6は、本発明の第3実施形態に係る固体電解コンデンサを模式的に示す断面図である。
図6に示す固体電解コンデンサ3では、コンデンサ素子10の弁作用金属基体11の形状が曲面を有する柱状であり、陰極端子23の凹部23aの内壁面が弁作用金属基体11の形状に沿った曲面形状である。この場合、図3に示す固体電解コンデンサ1に比べて導電性接着剤60の量を少なくできるため、接着信頼性を向上させることができる。
本発明の固体電解コンデンサでは、軸線方向において、凹部の内壁面の長さは、封止材の側面に露出する陰極端子の外壁面の長さと同等以上であることが好ましい。この場合、導通接触面積を増大させることができるため、ESRを低く抑えることができる。一方、引出し部の面積を小さくすることができるため、陽極とのショートを防止することができる。
図7は、本発明の第4実施形態に係る固体電解コンデンサを模式的に示す斜視図である。
図7に示す固体電解コンデンサ4では、軸線方向において、陰極端子24の凹部24aの内壁面の長さ(図7中、両矢印L24aで示す長さ)は、封止材40の側面に露出する陰極端子の外壁面の長さ(図7中、両矢印L24bで示す長さ)よりも長い。なお、陰極端子24の形状は、図7に示す形状に限定されるものではない。
図8は、本発明の第5実施形態に係る固体電解コンデンサを模式的に示す断面図である。
図8に示す固体電解コンデンサ5では、陰極端子25の凹部25aに2つのコンデンサ素子10が配置されている。
図8に示すように、本発明の固体電解コンデンサにおいては、陰極端子の凹部に複数のコンデンサ素子が配置されていてもよい。この場合、図8に示すように、幅方向に複数のコンデンサ素子が配置されていてもよいし、高さ方向に複数のコンデンサ素子が配置されていてもよい。
本発明の固体電解コンデンサにおいて、陰極端子には、複数の凹部が設けられ、それぞれの凹部にコンデンサ素子が配置されていてもよい。この場合、それぞれの凹部に配置されるコンデンサ素子の個数は同じであってもよいし、異なっていてもよい。
本発明の固体電解コンデンサにおいて、コンデンサ素子を構成する弁作用金属基体は、いわゆる弁作用を示す弁作用金属からなる。弁作用金属としては、例えば、アルミニウム、タンタル、ニオブ、チタン、ジルコニウム等の金属単体、又は、これらの金属を含む合金等が挙げられる。これらの中では、アルミニウム又はタンタルが好ましい。
弁作用金属基体の形状は、軸線方向に延びる線状であれば特に限定されないが、幅方向における最大長さをW、高さ方向における最大長さをHとしたとき、H/Wの比として表されるアスペクト比が0.5以上であることが好ましく、1以上であることがより好ましい。
弁作用金属基体の形状は、曲面を有する柱状であることが好ましく、例えば、円柱状、楕円柱状、扁平柱状、角柱の稜線部分がR面取りされた形状等が挙げられる。
弁作用金属基体は、芯部の表面に多孔質部を有している。多孔質部は、芯部の表面に形成されたエッチング層であることが好ましい。
本発明の固体電解コンデンサにおいて、多孔質部の表面に形成される誘電体層は、上記弁作用金属の酸化皮膜からなることが好ましい。例えば、弁作用金属基体としてアルミニウム線が用いられる場合、アジピン酸アンモニウム等を含む水溶液中でアルミニウム線の表面に対して陽極酸化処理(化成処理ともいう)を行うことにより、酸化皮膜からなる誘電体層を形成することができる。
本発明の固体電解コンデンサにおいては、陰極層として、固体電解質層が誘電体層の表面に設けられていることが好ましい。固体電解質層の表面には、導体層が設けられていることがより好ましい。
固体電解質層を構成する材料としては、例えば、ポリピロール類、ポリチオフェン類、ポリアニリン類等の導電性高分子等が挙げられる。これらの中では、ポリチオフェン類が好ましく、PEDOTと呼ばれるポリ(3,4-エチレンジオキシチオフェン)が特に好ましい。また、上記導電性高分子は、ポリスチレンスルホン酸(PSS)等のドーパントを含んでいてもよい。なお、固体電解質層は、誘電体層の細孔(凹部)を充填する内層と、誘電体層を被覆する外層とを含むことが好ましい。
導体層は、下地であるカーボン層と、その上の銀層からなることが好ましいが、カーボン層のみでもよく、銀層のみでもよい。
本発明の固体電解コンデンサは、コンデンサ素子の表面に、芯部と陰極層とを絶縁するための絶縁層をさらに備えることが好ましい。特に、陰極層と陽極端子との間に絶縁層が設けられていることが好ましい。絶縁層の材料としては、例えば、ポリフェニルスルホン樹脂、ポリエーテルスルホン樹脂、シアン酸エステル樹脂、フッ素樹脂(テトラフルオロエチレン、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体等)、ポリイミド樹脂、ポリアミドイミド樹脂、及び、それらの誘導体又は前駆体等の絶縁性樹脂が挙げられる。
本発明の固体電解コンデンサにおいて、陽極端子は、例えば、ニッケル、亜鉛、銅、錫、金、銀、パラジウム、鉛等の金属、又は、これらの金属を含有する合金を含むめっき膜、あるいは、例えば、銀、銅、ニッケル、錫、パラジウム等を導電成分として含む導電性樹脂膜から構成される。陽極端子は、めっき膜と導電性樹脂膜とを含む多層構造とされてもよい。例えば、陽極端子は、2層のめっき層とこれらのめっき層の間にある導電性樹脂層とを備えていてもよい。
本発明の固体電解コンデンサにおいて、封止材は、例えば、樹脂を含む。封止材に含まれる樹脂としては、例えば、エポキシ樹脂、フェノール樹脂等が挙げられる。封止材は、樹脂に加えて、アルミナ又はシリカ等のフィラー、磁性材料等を含んでもよい。
[固体電解コンデンサの製造方法]
本発明の固体電解コンデンサの製造方法は、第1の態様において、コンデンサ素子を準備する工程と、陰極端子にコンデンサ素子を搭載する工程と、陰極端子に搭載されたコンデンサ素子を封止材で封止する工程と、陽極端子を形成する工程と、を備える。陰極端子にコンデンサ素子を搭載する工程では、陰極端子に設けられた凹部に少なくとも1つのコンデンサ素子を配置し、コンデンサ素子の陰極層を凹部の内壁面と接続させることを特徴とする。
以下、図9(a)、図9(b)、図9(c)及び図9(d)を参照しながら、本発明の第1の態様における固体電解コンデンサの製造方法について説明する。
図9(a)、図9(b)、図9(c)及び図9(d)は、図1に示す固体電解コンデンサの製造方法の一例を模式的に示す斜視図である。
図9(a)に示す工程では、コンデンサ素子10を準備する。コンデンサ素子10は、軸線方向に延びる線状の弁作用金属基体11を有している。なお、後述するダイシング加工を行う場合には、図1に示したコンデンサ素子10と陰極層15の長さは同じで、両端部の絶縁層50の長さが長いコンデンサ素子を準備しておく。
コンデンサ素子10は、例えば、以下のように製造される。弁作用金属基体11として、エッチング処理が施されることによって多孔質部が芯部の表面に形成され、陽極酸化処理によって誘電体層が多孔質部の表面に形成された円柱状のアルミニウム線を準備する。さらに、コンデンサ素子10の両端部のまわりに絶縁性樹脂を塗布して乾燥させることによって、絶縁層50を形成する。弁作用金属基体11の、絶縁層50が形成されていない部分に、固体電解質層、カーボン層及び銀層を形成することによって陰極層15を形成する。
図9(a)には、陰極端子21も示している。陰極端子21には、軸線方向に沿った内壁面を有する凹部21aが設けられている。陰極端子21は、金属板からなることが好ましい。
図9(b)に示す工程では、コンデンサ素子10の陰極層15を陰極端子21と接続させることにより、陰極端子21にコンデンサ素子10を搭載する。この工程では、陰極端子21の凹部21aにコンデンサ素子10を配置し、コンデンサ素子10の陰極層15を凹部21aの内壁面と接続させる。例えば、図3に示したように、導電性接着剤を介して、コンデンサ素子の陰極層を陰極端子の凹部と接続させることができる。
図9(c)に示す工程では、陰極端子21に搭載されたコンデンサ素子10を封止材40で封止する。図9(c)では、コンデンサ素子10の両端面、陰極端子21の底面及び側面が露出するように封止材40を形成する。これらの面を露出させる方法としては、研磨加工でもよいが、一様な露出面を得る観点からは、ダイシング加工が好ましい。
図9(d)に示す工程では、コンデンサ素子10の芯部と電気的に接続される陽極端子31及び32を形成する。図9(d)では、封止材40から露出するコンデンサ素子10の両端面に接続されるように、陽極端子31及び32を形成する。
以上の工程により、図1に示す固体電解コンデンサ1が得られる。同様の方法により、他の固体電解コンデンサも製造することができる。
本発明の固体電解コンデンサの製造方法は、第2の態様において、コンデンサ素子を複数個準備する工程と、陰極端子となる集合フレームに複数個のコンデンサ素子を搭載する工程と、集合フレームに搭載された複数個のコンデンサ素子を封止材で一括して封止する工程と、集合フレームから複数個のチップに個片化する工程と、個片化されたチップ内のコンデンサ素子に陽極端子を形成する工程と、を備える。集合フレームに複数個のコンデンサ素子を搭載する工程では、集合フレームに設けられたそれぞれの凹部に少なくとも1つのコンデンサ素子を配置し、コンデンサ素子の陰極層を凹部の内壁面と接続させることを特徴とする。
以下、図10(a)、図10(b)、図10(c)、図10(d)及び図10(e)を参照しながら、本発明の第2の態様における固体電解コンデンサの製造方法について説明する。
図10(a)、図10(b)、図10(c)、図10(d)及び図10(e)は、図7に示す固体電解コンデンサの製造方法の一例を模式的に示す斜視図である。
図10(a)に示す工程では、コンデンサ素子110を2個準備する。コンデンサ素子110は、軸線方向に延びる線状の弁作用金属基体11を有している。図10では、図7に示したコンデンサ素子10と陰極層15の長さは同じで、両端部の絶縁層50の長さが長いコンデンサ素子110を準備しておく。
図10(a)には、陰極端子24となる集合フレーム124も示している。集合フレーム124には、軸線方向に沿った内壁面を有する凹部24aが2個設けられている。集合フレーム124は、金属板からなることが好ましい。
図10(b)に示す工程では、コンデンサ素子110の陰極層15を集合フレーム124と接続させることにより、集合フレーム124に2個のコンデンサ素子110を搭載する。この工程では、集合フレーム124のそれぞれの凹部24aにコンデンサ素子110を配置し、コンデンサ素子110の陰極層15を凹部24aの内壁面と接続させる。例えば、導電性接着剤を介して、コンデンサ素子の陰極層を集合フレームのそれぞれの凹部と接続させることができる。
図10(c)に示す工程では、集合フレーム124に搭載された2個のコンデンサ素子110を封止材140で一括して封止する。
その後、集合フレームから複数のチップに個片化する。この工程では、集合フレームに設けられていた凹部の数に応じて適切な個数のチップに個片化する。図10(d)では、陰極端子24の凹部24aに配置されたコンデンサ素子10が封止材40で封止された2個のチップ4aが示されている。個片化の方法としては、ダイシング加工が好ましい。ダイシング加工により、コンデンサ素子10の両端面、陰極端子24の底面及び側面を露出させることができる。この場合、封止材40の側面に露出する陰極端子24の外壁面は切断面となる。
図10(e)に示す工程では、個片化されたチップ内のコンデンサ素子10の芯部と電気的に接続される陽極端子31及び32を形成する。図10(e)では、封止材40から露出するコンデンサ素子10の両端面に接続されるように、陽極端子31及び32を形成する。
以上の工程により、図7に示す固体電解コンデンサ4が得られる。同様の方法により、他の固体電解コンデンサも製造することができる。
本発明の固体電解コンデンサは、上記実施形態に限定されるものではなく、固体電解コンデンサの構成、製造方法等に関し、本発明の範囲内において、種々の応用、変形を加えることが可能である。
1,2,3,4,5 固体電解コンデンサ
4a チップ
10,110 コンデンサ素子
11 弁作用金属基体
12 芯部
13 多孔質部
13a 細孔
14 誘電体層
15 陰極層
15a 固体電解質層
15b カーボン層
15c 銀層
21,22,23,24,25 陰極端子
21a,22a,23a,24a,25a 凹部
31,32 陽極端子
40,140 封止材
41 封止材の底面
42,43 封止材の側面
44,45 封止材の端面
46 封止材の上面
50 絶縁層
60 導電性接着剤
124 集合フレーム

Claims (14)

  1. 芯部の表面に多孔質部を有する弁作用金属基体、前記多孔質部の表面に形成された誘電体層、及び、前記誘電体層上に設けられた陰極層を有するコンデンサ素子と、
    前記コンデンサ素子の前記陰極層と電気的に接続された陰極端子と、
    前記コンデンサ素子の前記芯部と電気的に接続された陽極端子と、
    前記コンデンサ素子を覆う封止材と、を備える固体電解コンデンサであって、
    前記弁作用金属基体の形状は、軸線方向に延びる線状であり、
    前記陰極端子には、前記軸線方向に沿った内壁面を有する凹部が設けられており、
    前記陰極端子の前記凹部に少なくとも1つの前記コンデンサ素子が配置され、前記コンデンサ素子の前記陰極層が前記凹部の前記内壁面と接続されていることを特徴とする固体電解コンデンサ。
  2. 前記弁作用金属基体の形状は、曲面を有する柱状である請求項1に記載の固体電解コンデンサ。
  3. 前記凹部の前記内壁面は、前記弁作用金属基体の形状に沿った曲面形状を有する請求項1又は2に記載の固体電解コンデンサ。
  4. 前記陰極端子は、金属板からなる請求項1~3のいずれか1項に記載の固体電解コンデンサ。
  5. 前記コンデンサ素子の表面に、前記芯部と前記陰極層とを絶縁するための絶縁層をさらに備え、
    前記陰極端子は、前記陰極層及び前記絶縁層と接している請求項1~4のいずれか1項に記載の固体電解コンデンサ。
  6. 前記コンデンサ素子の前記陰極層は、前記軸線方向における前記コンデンサ素子の長さの1/5以上の範囲において前記凹部の前記内壁面と接続されている請求項1~5のいずれか1項に記載の固体電解コンデンサ。
  7. 前記コンデンサ素子の前記陰極層は、前記コンデンサ素子の高さの1/3以上の範囲まで前記凹部の前記内壁面と接続されている請求項1~6のいずれか1項に記載の固体電解コンデンサ。
  8. 前記凹部の前記内壁面の高さは、前記コンデンサ素子の高さの1/3以上である請求項1~7のいずれか1項に記載の固体電解コンデンサ。
  9. 前記凹部の前記内壁面の高さは、前記コンデンサ素子の高さと同等以上である請求項8に記載の固体電解コンデンサ。
  10. 前記封止材は、底面と、前記底面に隣り合う側面とを有し、
    前記封止材の前記底面及び前記側面には、前記陰極端子の外壁面が露出しており、
    前記封止材の前記底面及び前記側面に露出する前記陰極端子は、一体物である請求項1~9のいずれか1項に記載の固体電解コンデンサ。
  11. 前記軸線方向において、前記凹部の前記内壁面の長さは、前記封止材の前記側面に露出する前記陰極端子の前記外壁面の長さと同等以上である請求項10に記載の固体電解コンデンサ。
  12. 前記封止材の両方の端面に1対の前記陽極端子を備えるとともに、前記封止材の少なくとも底面に前記陰極端子を備える3端子コンデンサである請求項1~11のいずれか1項に記載の固体電解コンデンサ。
  13. 芯部の表面に多孔質部を有する弁作用金属基体、前記多孔質部の表面に形成された誘電体層、及び、前記誘電体層上に設けられた陰極層を有するコンデンサ素子を準備する工程と、
    前記コンデンサ素子の前記陰極層を陰極端子と接続させることにより、前記陰極端子に前記コンデンサ素子を搭載する工程と、
    前記陰極端子に搭載された前記コンデンサ素子を封止材で封止する工程と、
    前記コンデンサ素子の前記芯部と電気的に接続される陽極端子を形成する工程と、を備える固体電解コンデンサの製造方法であって、
    前記弁作用金属基体の形状は、軸線方向に延びる線状であり、
    前記陰極端子には、前記軸線方向に沿った内壁面を有する凹部が設けられており、
    前記陰極端子に前記コンデンサ素子を搭載する工程では、前記陰極端子の前記凹部に少なくとも1つの前記コンデンサ素子を配置し、前記コンデンサ素子の前記陰極層を前記凹部の前記内壁面と接続させることを特徴とする固体電解コンデンサの製造方法。
  14. 芯部の表面に多孔質部を有する弁作用金属基体、前記多孔質部の表面に形成された誘電体層、及び、前記誘電体層上に設けられた陰極層を有するコンデンサ素子を複数個準備する工程と、
    前記コンデンサ素子の前記陰極層を陰極端子となる集合フレームと接続させることにより、前記集合フレームに複数個の前記コンデンサ素子を搭載する工程と、
    前記集合フレームに搭載された複数個の前記コンデンサ素子を封止材で一括して封止する工程と、
    前記集合フレームから複数個のチップに個片化する工程と、
    個片化されたチップ内の前記コンデンサ素子の前記芯部と電気的に接続される陽極端子を形成する工程と、を備える固体電解コンデンサの製造方法であって、
    前記弁作用金属基体の形状は、軸線方向に延びる線状であり、
    前記集合フレームには、前記軸線方向に沿った内壁面を有する凹部が複数個設けられており、
    前記集合フレームに複数個の前記コンデンサ素子を搭載する工程では、前記集合フレームのそれぞれの前記凹部に少なくとも1つの前記コンデンサ素子を配置し、前記コンデンサ素子の前記陰極層を前記凹部の前記内壁面と接続させることを特徴とする固体電解コンデンサの製造方法。
PCT/JP2018/003434 2017-02-03 2018-02-01 固体電解コンデンサ及びその製造方法 WO2018143354A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018566088A JP6906242B2 (ja) 2017-02-03 2018-02-01 固体電解コンデンサ及びその製造方法
CN201880008552.3A CN110249400B (zh) 2017-02-03 2018-02-01 固体电解电容器及其制造方法
US16/527,259 US11017954B2 (en) 2017-02-03 2019-07-31 Solid electrolytic capacitor and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017018569 2017-02-03
JP2017-018569 2017-02-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/527,259 Continuation US11017954B2 (en) 2017-02-03 2019-07-31 Solid electrolytic capacitor and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2018143354A1 true WO2018143354A1 (ja) 2018-08-09

Family

ID=63040720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003434 WO2018143354A1 (ja) 2017-02-03 2018-02-01 固体電解コンデンサ及びその製造方法

Country Status (4)

Country Link
US (1) US11017954B2 (ja)
JP (1) JP6906242B2 (ja)
CN (1) CN110249400B (ja)
WO (1) WO2018143354A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022035037A1 (ko) * 2020-08-14 2022-02-17 삼화전기주식회사 커패시터 어셈블리 조립 장치 및 이것을 이용한 커패시터 어셈블리 조립 방법

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111095452A (zh) * 2017-09-23 2020-05-01 株式会社村田制作所 固体电解电容器及其制造方法
US11222754B2 (en) * 2018-11-19 2022-01-11 KYOCERA AVX Components Corporation Solid electrolytic capacitor for a tantalum embedded microchip
US20230113070A1 (en) * 2020-03-27 2023-04-13 Panasonic Intellectual Property Management Co., Ltd. Electrolytic capacitor
US11856700B2 (en) 2020-04-29 2023-12-26 Samsung Electronics Co., Ltd. Horizontally mounted capacitor module and electronic device including same
WO2022116927A1 (zh) * 2020-12-03 2022-06-09 中国振华(集团)新云电子元器件有限责任公司(国营第四三二六厂) 新型表面封装电容器及新型表面封装电容器的制作方法
CN112435854A (zh) * 2020-12-03 2021-03-02 中国振华(集团)新云电子元器件有限责任公司(国营第四三二六厂) 新型表面封装电容器及新型表面封装电容器的制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4919342A (ja) * 1972-06-16 1974-02-20
JP2005033813A (ja) * 2004-07-26 2005-02-03 Nec Corp シールドスリップ線路型素子
JP2006005309A (ja) * 2004-06-21 2006-01-05 Shinko Electric Ind Co Ltd キャパシタ装置
JP2010021168A (ja) * 2008-07-08 2010-01-28 Rubycon Corp キャパシタ

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275477A (ja) * 1993-03-22 1994-09-30 Matsushita Electric Ind Co Ltd チップ状固体電解コンデンサおよびその製造方法
JP2003086463A (ja) * 2001-09-10 2003-03-20 Matsushita Electric Ind Co Ltd 固体電解コンデンサの製造方法
CN1701402A (zh) * 2003-03-19 2005-11-23 松下电器产业株式会社 电容器和连接电容器的方法
US7023078B2 (en) * 2003-05-06 2006-04-04 Seiko Instruments Inc. Packages for communication devices
JP2005015588A (ja) * 2003-06-25 2005-01-20 Yokohama Rubber Co Ltd:The ゴム組成物
JP4640988B2 (ja) 2003-08-12 2011-03-02 ローム株式会社 固体電解コンデンサ
US7542267B2 (en) * 2006-11-06 2009-06-02 Nec Tokin Corporation Lead frame, method of manufacturing a face-down terminal solid electrolytic capacitor using the lead frame, and face-down terminal solid electrolytic capacitor manufactured by the method
JP4919342B2 (ja) * 2007-01-23 2012-04-18 株式会社シマノ 釣り竿の竿先構造
US7835138B2 (en) * 2007-03-09 2010-11-16 Nec Tokin Corporation Solid electrolytic capacitor and method of manufacturing same
EP2372733B1 (en) * 2008-12-29 2018-10-17 Showa Denko K.K. Solid electrolytic capacitor
JP2010251643A (ja) * 2009-04-20 2010-11-04 Nec Tokin Corp 積層型コンデンサの製造方法
US8654509B2 (en) * 2010-02-15 2014-02-18 Panasonic Corporation Electrode foil, process for producing same, and capacitor using electrode foil
JP5796195B2 (ja) * 2011-01-12 2015-10-21 パナソニックIpマネジメント株式会社 固体電解コンデンサ
JP5466722B2 (ja) 2011-04-15 2014-04-09 Necトーキン株式会社 固体電解コンデンサ
WO2013145498A1 (ja) 2012-03-29 2013-10-03 株式会社村田製作所 導電性ペーストおよびそれを用いた固体電解コンデンサ
US9767963B2 (en) * 2015-05-29 2017-09-19 Avx Corporation Solid electrolytic capacitor with an ultrahigh capacitance
CN105869891A (zh) * 2016-03-31 2016-08-17 中山市帝森电子科技有限公司 一种贴片式电解电容器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4919342A (ja) * 1972-06-16 1974-02-20
JP2006005309A (ja) * 2004-06-21 2006-01-05 Shinko Electric Ind Co Ltd キャパシタ装置
JP2005033813A (ja) * 2004-07-26 2005-02-03 Nec Corp シールドスリップ線路型素子
JP2010021168A (ja) * 2008-07-08 2010-01-28 Rubycon Corp キャパシタ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022035037A1 (ko) * 2020-08-14 2022-02-17 삼화전기주식회사 커패시터 어셈블리 조립 장치 및 이것을 이용한 커패시터 어셈블리 조립 방법
US12040134B2 (en) 2020-08-14 2024-07-16 Samwha Electric Co. Ltd. Capacitor assembly manufacturing apparatus and capacitor assembly manufacturing method using same

Also Published As

Publication number Publication date
JPWO2018143354A1 (ja) 2019-11-07
CN110249400A (zh) 2019-09-17
US11017954B2 (en) 2021-05-25
US20190355526A1 (en) 2019-11-21
JP6906242B2 (ja) 2021-07-21
CN110249400B (zh) 2021-07-13

Similar Documents

Publication Publication Date Title
WO2018143354A1 (ja) 固体電解コンデンサ及びその製造方法
EP3226270B1 (en) Solid electrolytic capacitor
US10971310B2 (en) Electronic component
US6791822B2 (en) Solid electrolytic capacitor
US8014127B2 (en) Solid electrolytic capacitor
JP6856076B2 (ja) 固体電解コンデンサ
US7138713B2 (en) Chip-type solid electrolytic capacitor and method of producing the same
WO2018066253A1 (ja) 固体電解コンデンサ
JP4953091B2 (ja) コンデンサチップ及びその製造方法
US7957120B2 (en) Capacitor chip and method for manufacturing same
JP4899759B2 (ja) 固体電解コンデンサ用リードフレーム部材
JP2008091389A (ja) 固体電解コンデンサ用リードフレーム部材
WO2018150886A1 (ja) 固体電解コンデンサ及びその製造方法
JP6925577B2 (ja) 固体電解コンデンサ
JP2019067923A (ja) 固体電解コンデンサおよびその製造方法
JP5164213B2 (ja) 固体電解コンデンサ
JP5210672B2 (ja) コンデンサ部品
CN117012552A (zh) 固体电解电容器
JP2009295605A (ja) 固体電解コンデンサ
JP4735251B2 (ja) 固体電解コンデンサおよびその製造方法
JP6790628B2 (ja) 固体電解コンデンサおよびその製造方法
JP5642508B2 (ja) 表面実装薄型コンデンサ
JP2009295604A (ja) 固体電解コンデンサ
JP2010219128A (ja) 固体電解コンデンサ
JP2009231337A (ja) 固体電解コンデンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18747727

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018566088

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18747727

Country of ref document: EP

Kind code of ref document: A1