JP5438824B2 - 電力制御装置及びそれを備える系統連系システム - Google Patents

電力制御装置及びそれを備える系統連系システム Download PDF

Info

Publication number
JP5438824B2
JP5438824B2 JP2012514589A JP2012514589A JP5438824B2 JP 5438824 B2 JP5438824 B2 JP 5438824B2 JP 2012514589 A JP2012514589 A JP 2012514589A JP 2012514589 A JP2012514589 A JP 2012514589A JP 5438824 B2 JP5438824 B2 JP 5438824B2
Authority
JP
Japan
Prior art keywords
power
storage battery
unit
unit price
surplus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012514589A
Other languages
English (en)
Other versions
JPWO2011141798A1 (ja
Inventor
朗 馬場
清隆 竹原
晶子 高宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2012514589A priority Critical patent/JP5438824B2/ja
Publication of JPWO2011141798A1 publication Critical patent/JPWO2011141798A1/ja
Application granted granted Critical
Publication of JP5438824B2 publication Critical patent/JP5438824B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/62The condition being non-electrical, e.g. temperature
    • H02J2310/64The condition being economic, e.g. tariff based load management
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S50/00Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
    • Y04S50/10Energy trading, including energy flowing from end-user application to grid

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、商用電源の電力系統と需要家に設けた分散電源との連系を制御する電力制御装置及びそれを備える系統連系システムに関するものである。
近年、住宅や工場などの電力の需要家において、太陽光発電装置、燃料電池、風力発電装置、コージェネレーション装置のような発電装置が利用されるようになってきている。また、この種の発電装置を商用電源の電力系統に連系させることにより分散電源として用いた系統連系システムも実用化されている。系統連系システムでは、分散電源が発電をした電力を需要家において消費しきれないときには、余剰電力として商用電源の電力系統に逆潮流させることが許容されている。電力系統への逆潮流を行う場合には、電力を商用電源として供給している電力供給事業者から逆潮流を行った電力量に見合う対価を受け取ることが可能になっている場合もある。
ところで、電力系統に分散電源を連系させる場合に逆潮流を行うと、電力系統の電圧の上昇、周波数の変化、位相の進みなどが生じる可能性がある。とくに、柱上トランスを共用する電力系統に接続される分散電源の台数が増加すると、この種の現象が生じやすくなる。しかも、柱上トランスから分散電源までの距離が大きくなるほど電力系統の電圧が上昇しやすくなる。
分散電源を電力系統に連系させる場合の上述のような問題を回避するために、分散電源には、逆潮流時に電力系統の電圧が上昇すると出力制御を行う機能を設けることが義務付けられている。さらに、各分散電源について柱上トランスからの距離が大きくなるほど、出力制御を開始する電圧を高く設定する技術が提案されている(特許文献1参照)。
このように、分散電源において上述した現象を監視し、上述した現象が規定した程度を上回って生じる場合には、分散電源から電力系統への逆潮流を抑制し、電力系統への影響を軽減している。また、特許文献1に記載の技術では、出力制御が開始される電圧を、柱上トランスから分散電源までの距離に応じて設定することにより、電力系統への逆潮流による給電を行う機会が各分散電源において公平に分配されるようにしている。言い換えると、柱上トランスから分散電源までの距離にかかわらず余剰電力を売電する可能性を公平に割り与えることを可能にしている。
特許文献1に記載の技術では出力制御が開始される電圧に閾値を設定し、柱上トランスから個々の分散電源までのインピーダンスに応じて閾値を調節することにより、分散電源から電力系統への逆潮流による給電の機会の不均衡を是正している。したがって、住宅の密集地などにおいて柱上トランスの二次側に接続される分散電源の台数が多くなると、隣接する分散電源に対して設定される閾値の差が小さくなり、閾値の設定に高い精度が要求されることになる。
さらに、上述した閾値を設定するには、柱上トランスの二次側に接続された分散電源と柱上トランスとの間のインピーダンスを計算する必要がある。したがって、分散電源の設置に際しては、配電網のトポロジ、配線の距離および線種の情報を取得する必要があり、しかも、分散電源の仕様に関する情報も必要になる。すなわち、多くの情報を管理することが必要になり、データ管理のコストが増大につながる。
上述のように、特許文献1に記載の技術は、柱上トランスの二次側に接続される分散電源の台数が多く、かつ隣接する分散電源の間で電力系統の電路間の距離が短いという条件下では、実施が困難になるという問題を有している。
また、上述のように、電力系統の都合によって逆潮流を抑制する制御を行うと、需要家において余剰電力が生じていても電力系統への逆潮流を行うことができない。つまり、逆潮流による対価を受け取ることができないから、需要家にとっては経済的な損失が生じていることになる。その結果、分散電源の設置に投資した費用の回収期間が延長されることになり、費用対効果が低下することになる。このことは、分散電源の導入意欲が向上しない一因にもなっている。
ところで、分散電源の出力制御を行う理由は、電力系統に対して分散電源からの逆潮流が生じることが原因であるから、分散電源から電力系統への逆潮流を減少させることによって、分散電源の出力制御に伴う問題は解決できると考えられる。分散電源から電力系統への逆潮流を抑制する技術としては、特許文献2に記載された技術のように、分散電源に蓄電池を組み合わせて用いることが提案されている。また、特許文献2には、逆潮流による電力量の目標値として、過去に逆潮流を行ったときの電力量の移動平均を用いることにより、逆潮流を行う際の電力量の時間あたりのピーク値を低減させる技術が示されている。
[特許文献1]日本国特許第4266003号公報
[特許文献2]日本国特開第2009−268247号公報
特許文献2に記載の技術を用いることにより、逆潮流を行わない電力を蓄電池に蓄電することができるから、分散電源の出力制御を行う場合に比較すれば、需要家にとって経済的な損失は低減される。
しかしながら、電力系統に逆潮流を行った場合の単価と、蓄電した電力を放電して使用するときの買電の単価との差額分については、経済的な損失が発生する。いま、逆潮流により電力系統に給電した場合の単価を48(円/kWh)とし、電力系統から受電した場合の単価を28(円/kWh)とする。この場合、逆潮流を行えば、1kWh当たり48円の利益が発生するため、それより28円の費用を差し引いても20円の利益になる。これに対して、特許文献2の構成では、分散電源の発電電力として蓄電された蓄電池の電力を放電し用いるため、1kWh当たり28円の費用が不要になるが、逆潮流を行わないので、利益も発生しない。従って、逆潮流を行う場合に比較すると、1kWh当たり20円の損失が生じていることになる。
また、特許文献2には、電力系統への逆潮流を行った電力量を計測し、計測した電力量をすべての需要家の分散電源の台数で均等に配分した値を、個々の需要家が逆潮流を行う際の上限値とする旨の記載がある。しかしながら、個々の分散電源の発電電力には差があり、また、需要家の消費する電力量も異なるから、個々の需要家での余剰電力には差がある。したがって、均等に配分すると、余剰電力の多い需要家ほど不利益を被ることになる。
本発明は上記事由に鑑みて為されたものであり、需要家における経済的な不利益を低減するとともに、複数の需要家が公平に売電を行うことを可能にし、しかも、分散電源の出力制御を低減させて高効率での運転を可能にした電力制御装置を提供する。
本発明の第1側面によれば、分散電源及び蓄電池を備える需要家において、分散電源による余剰電力を前記蓄電池に蓄電可能にする電力制御装置であって、前記蓄電池への蓄電時における売電単価と、前記蓄電池からの放電時における買電単価とを用いることにより対価を算出する対価計算部を備える電力制御装置が提供される。前記電力制御装置は商用電源の電力系統の電圧を監視する電圧検知部と、分散電源に余剰電力が生じた場合であって、電圧検知部により監視している電力系統の電圧が規定の閾値以下であれば電力系統への逆潮流により電力系統に給電する状態を選択し、電圧検知部により監視している電力系統の電圧が規定の閾値を超えていれば電力系統への逆潮流を行わずに蓄電池に蓄電する状態を選択する余剰電力管理部と、分散電源から蓄電池に蓄電した電力量を取得する第1の電力取得部と、蓄電池から放電した電力量を取得する第2の電力取得部と、電力系統への給電を行う際の売電単価を取得する売電単価取得部と、電力系統から受電を行う際の買電単価を取得する買電単価取得部とを更に備え、前記対価計算部は前記余剰電力管理部が前記蓄電池に余剰電力を蓄電する状態を選択している間に当該余剰電力の逆潮流を行わなかったことに伴って生じる損失額を逆潮流による対価相当金額として、電圧検知部により監視している電力系統の電圧が規定の閾値を超えている期間に第1の電力取得部により取得した電力量と、売電単価取得部が取得する蓄電池への蓄電時における売電単価と、第2の電力取得部により取得した電力量と、買電単価取得部が取得する蓄電池からの放電時における買電単価とを用いることにより算出する。
対価計算部は、蓄電池からの放電時における単価として、蓄電池への蓄電時における売電単価と、蓄電池からの放電時における買電単価との差を用いることにより対価を算出するのが望ましい。
この場合、対価計算部は、蓄電池への蓄電時の売電単価が放電時の買電単価よりも高いときに蓄電池から放電した電力量に対する対価を計算するのが望ましい。
本発明の第2の側面によれば、複数の需要家に設けられた電力制御装置と、前記複数の需要家のうち2つ以上の需要家において余剰電力が生じているときに、蓄電池の残容量が少ない方の需要家における余剰電力管理部に対して広域網を通して蓄電池への蓄電を選択させる指令を与える管理サーバとを備える系統連系システムが提供される。
本発明の構成によれば、逆潮流により得られる利益の損失を防止して需要家における経済的な不利益を低減し、かつ複数の需要家が公平に売電を行うことが可能になるという利点がある。しかも、逆潮流を行えない場合でも蓄電池に蓄電することにより、分散電源の出力制御を低減させ、高効率での運転が可能になる。
本発明の目的及び特徴は以下のような添付図面とともに与えられた後述する好ましい実施形態の説明から明白になる。
本発明の一実施形態による電力制御装置を示すブロック図である。 本発明の一実施形態による系統連系システムの概略的なブロック図である。 一実施形態による電力制御装置の動作説明図である。 一実施形態による系統連系システムの動作説明図である。 本発明の他の実施形態による電力制御装置を示すブロック図である。
以下、本発明の実施形態が本明細書の一部をなす添付図面を参照にしてより詳細に説明する。図面全体において、同一または類似した部分には同じ部材符号を付してそれについての重複する説明を省略する。
図2には、需要家10に設けた分散電源1と商用電源の電力系統2との系統連系を行う系統連系システムの概略的な構成が示され、需要家10には蓄電池3を設けてある。蓄電池3は、分散電源1から出力された電力のうち電気負荷4では消費できない余剰電力の少なくとも一部を蓄電し、また必要に応じて電気負荷4に電力を供給するために設けられている。蓄電池3は、需要家の建物内外の少なくとも一方に設置される。
需要家10は、商用電源の電源系統2に設けられた柱上トランス31の二次側に接続されており、1台の柱上トランス31の二次側からは、複数の需要家10に商用電源が供給される。ここで、以下の実施形態では、1台の柱上トランス31の二次側に複数の分散電源1が分電盤7及び電力メータ11を介して接続されている場合を想定する。また、図示例では、需要家10に設けたコントローラ20が広域網であるインターネット32を介して管理サーバ30と通信可能である構成を例示している。コントローラ20と管理サーバ30との機能については後述する。
分散電源1としては、太陽光発電装置を用いる例を示している。太陽光発電装置は、陽電池5と、太陽電池5から出力される直流電圧を交流電圧に変換するパワーコンディショナ6とを備える。パワーコンディショナ6は、蓄電池3の充放電を制御する機能も備える。なお、太陽光発電装置は分散電源の一例であり、風力発電装置、小型水力発電装置などの再生可能エネルギーを利用する発電装置のほか、燃料電池、コージェネレーション装置などを分散電源に用いることを妨げるものではない。
パワーコンディショナ6は分電盤7に接続され、分電盤7の内部において分散電源1と商用電源の電力系統2との連系が行われる。また、電気負荷4は、分電盤7に収納された分岐ブレーカ(図示せず)に接続されており、パワーコンディショナ6の出力と商用電源とからの電力が供給される。すなわち、電気負荷4の電源として、商用電源と蓄電池3と太陽電池5とを用いることが可能になっている。
需要家10には、商用電源の電力系統2から受電した電力および商用電源の電力系統に逆潮流を行った電力を計測する第1の電力メータ11と、蓄電池3の充電電力と放電電力とをそれぞれ計測する第2の電力メータ12とが設けられる。さらに、各需要家10において商用電源の電力系統2からの受電点付近には、電源系統2の電圧を検出する電圧センサ13が配置される。電圧センサ13は、電力系統2に余剰電力の逆潮流を行ってもよいか否かを判断するために用いる。
さらに、需要家10には、パワーコンディショナ6を制御することにより、太陽電池5から出力された電力の供給先を決めるコントローラ(電力制御装置)20が設けられる。
太陽電池5の電力の供給先は、電気負荷4と電力系統2とであって、これらの供給先に対して、太陽電池5による発電して直ちに供給する場合と、太陽電池5により発電した電力を蓄電池3に一旦蓄電した後に供給する場合とを選択することができる。
そのため、図1に示すように、パワーコンディショナ6には、太陽電池5から出力された電力の供給先として蓄電池3を選択するスイッチSW2が設けられると共に、太陽電池5から出力された電力は分電盤7を介して電気負荷4へ供給できるようになっている。また、パワーコンディショナ6は、蓄電池3の電力を分電盤7に供給するか否かを選択するスイッチSW3が設けられる。図示例では、商用電源から蓄電池3に蓄電する状態を選択可能にするためにスイッチSW4が設けられているが、スイッチSW4については要旨ではないので詳述しない。また、図2に示すように、分電盤7と電力メータ11との間には電力系統2への逆潮流を選択するスイッチSW1が設けられる。
なお、図1では、パワーコンディショナ6において、直流電力と交流電力との間の変換を行う電力変換器は省略しているが、蓄電池3と太陽電池5との電力を分電盤7に供給する場合には直流電圧を交流電圧に変換する必要がある。また、商用電源から蓄電池3に充電する場合には、交流電圧を直流電圧に変換する必要がある。
また、図1では、蓄電池3の充電量と放電量とを監視する部位を説明するために、パワーコンディショナ6の中に第2の電力メータ12を便宜的に記載しているが、第2の電力メータ12は、図2に示してあるように、パワーコンディショナ6とは別に設けられていても良い。第2の電力メータ12では、電流のみを計測すれば蓄電池3の充放電の電荷量を計測することが可能であるが、電圧を電流と合わせて計測することにより、蓄電池3に蓄電された電力と、蓄電池3から放電された電力とを求めるのが望ましい。
コントローラ20は、プログラムを実行するプロセッサおよびメモリを用いて構成されており、プログラムを実行することにより以下に述べる機能を実現する。コントローラ20には、電圧センサ13の出力を取得することにより電力系統2の電圧を監視する電圧検知部21が設けられる。電圧検知部21は、電圧センサ13の出力を所定時間毎に取得し、デジタル値に変換する。
電圧検知部21が取得した電圧は余剰電力管理部22に入力され、余剰電力管理部22では、電圧検知部21により監視している電力系統2の電圧が、規定の閾値以下であるときにはスイッチSW1をオンにする。よって、太陽電池5により発電された電力がパワーコンディショナ6を介して分電盤7に供給され、スイッチSW1がオンにされているので、太陽電池5により発電された電力のうち電気負荷4で消費されない余剰電力の電力系統2への逆潮流を許容する。
また、スイッチSW3をオンにすることにより蓄電池3の電力を(交流電力に変換した後に)分電盤7に供給し、太陽電池5が発電した電力と併せて蓄電池3の電力も電気負荷4に供給する。したがって、太陽電池5が発電した電力と蓄電池3から出力される電力との合計が電気負荷4で消費される電力を上回るときに、その差分の電力が余剰電力として電力系統2への逆潮流に用いられる。なお、太陽電池5が発電した電力は、蓄電池3の電力に優先して電気負荷4で消費される。また、分散電源1では、最大電力追従(MPPT=Maximum Power Point Tracking)制御を行う。
一方、電圧検知部21が取得した電力系統2の電圧が閾値を超えるときには、余剰電力管理部22は、スイッチSW1をオフにし、スイッチSW2をオンにする。したがって、太陽電池5により発電された電力は、電力系統2へ供給されずに蓄電池3に蓄電される。言い換えると、電圧検知部21が取得した電力系統2の電圧が閾値を超える場合には、他の需要家10が電力の逆潮流を行っているとみなし、太陽電池5により発電した電力の逆潮流を行わずに、太陽電池3により発電した電力を蓄電池3に蓄電すると共に電気負荷4に供給する。
スイッチSW1、SW3をオンにしている状態では、スイッチSW2はオフであって、蓄電池3への充電は行われない。なお、スイッチSW1、SW3をオンにしている状態において、蓄電池3及び分散電源1からの電力が電気負荷4の消費電力に足りない場合、パワーコンディショナ6から電気負荷4に給電されるとともに、商用電源の電力系統2からも電気負荷4に給電される。
スイッチSW1,SW2のオン・オフは、上述のように、余剰電力管理部22が制御し、スイッチSW3(SW4)のオン・オフは、コントローラ20に設けた充放電制御部23が制御する。また、充放電制御部23の動作は、全体動作制御部24から指示される。全体動作制御部24は、余剰電力管理部22への指示も行う。
すなわち、全体動作制御部24では、太陽電池5の発電電力を分電盤7に供給する動作と、余剰電力を蓄電池3に蓄電する動作と、蓄電池3に蓄電した電力を電気負荷4に給電する動作とを選択する。さらに、全体動作制御部24は、通信部25を介して管理サーバ30と通信可能であって、管理サーバ30に対して必要な情報を通知し、また管理サーバ30からの指令に従ってスイッチSW1〜SW4のオン・オフを制御する。全体動作制御部24は、蓄電池3から残容量を取得する機能も備える。なお、蓄電池3はマイコンを内蔵しており、種々の情報を外部装置に与えることが可能になっているものを用いる。すなわち、蓄電池3の残容量は蓄電池3において計測されており、計測された情報を全体動作制御部24が取得する。
ところで、コントローラ20には、太陽電池5(分散電源1)から蓄電池3に蓄電した電力量を取得する第1の電力取得部26aと、蓄電池3から放電した電力量を取得する第2の電力取得部26bとが設けられる。さらに、コントローラ20は、電力系統2に給電する(売電を行う)ときの電力の単価を取得する売電単価取得部29aと、電力系統2から受電する(買電を行う)ときの電力の単価を取得する買電単価取得部29bとを備えている。売電単価取得部29aおよび買電単価取得部29bは最新の情報を取得する必要があるから、通信部25を通して管理サーバ30から情報を取得するのが望ましい。
さらに、コントローラ20には、第1の電力取得部26aが取得した蓄電池3への蓄電量を、売電単価取得部29aおよび買電単価取得部29bが取得した電力の単価とともに記録する蓄電量記憶部28が設けられる。また、蓄電量記憶部28に記録された蓄電池3への蓄電量および電力の単価を用いることにより、蓄電池3に電力を蓄電せずに電力系統2に逆潮流を行った場合の対価に相当する金額を算出する対価計算部27が設けられる。蓄電量記憶部28に記録される情報については後述する。また、対価計算部27は、蓄電池3に余剰電力を蓄電する状態を選択している間に、当該余剰電力の逆潮流を行わなかったことに伴って生じる損失額を逆潮流による対価相当金額として算出する。
以下に動作例を説明する。ここでは、1日の時間経過に伴う動作を説明する。まず、太陽の高度が上昇するのに伴って太陽電池5の発電量が増加すると、パワーコンディショナ6が動作を開始し、商用電源の電力系統2の電圧が余剰電力管理部22に設定された閾値以下であれば、パワーコンディショナ6から出力された交流電力が分電盤7を通して電気負荷4に供給される。
太陽電池5の出力電力(発電電力)が電気負荷4で消費される電力(負荷電力)を上回っている場合には、発電電力と負荷電力との差が余剰電力になり、余剰電力は電力系統2に供給される。すなわち、余剰電力により電力系統2への逆潮流が行われる。このとき、第1の電力メータ11では、逆潮流が行われた余剰電力の電力量が売電電力量として計測される。
ところで、他の需要家10においても余剰電力の逆潮流が行われると、柱上トランス31の二次側から受電している需要家10が消費する電力量よりも逆潮流により電力系統2に給電される電力量のほうが多くなることがある。このような事象が生じると、柱上トランス31の二次側において電力系統2の電圧が上昇する。
各需要家10のコントローラ20では、需要家10における受電点の近傍において電力系統2の電圧を監視しているから、電力系統2の電圧の上昇を検出することができる。ここで、電力系統2の電圧が余剰電力管理部22に設定された閾値を超えると、コントローラ20では、分電盤7と電力メータ11との間に設けたスイッチSW1をオフにし、パワーコンディショナ6に設けたスイッチSW2をオンにする。これによって、電力系統2への余剰電力の逆潮流を行わずに、余剰電力を蓄電池3に蓄電する。ここに、蓄電池3の容量は1日分の余剰電力の電力量よりも大きいものとする。
逆潮が行われていない状態で、太陽の高度が下降するのに伴って、太陽電池5の発電電力が低下し、発電電力が負荷電力を下回ると、コントローラ20は、スイッチSW3をオンにして蓄電池3からの放電を開始させる。蓄電池3から放電する電力は、太陽電池5の発電量と負荷電力の需要との差分とし、太陽電池5の発電電力と蓄電池3の放電電力の合計が負荷電力による需要と等しくなるように制御する。蓄電池3からの放電が可能である期間は、電力系統2からの電力は電気負荷4で使用されない。
すなわち、電力系統2から電力を受電しないから、第1の電力メータ11においては電力量は計測されない。一方、第2の電力メータ12では、蓄電池3の放電による電力量が計測される。蓄電池3に蓄電された電力は過去に発生した余剰電力であって、余剰電力の発生時点において電力系統2に給電可能であった電力であるから、逆潮流を行うことができた電力と等価である。
太陽電池5による発電電力と蓄電池3から供給可能な電力との合計に対して、電気負荷4が要求する負荷電力が上回るようになると、電力系統2からも電気負荷4に電力が供給されるようになる。すなわち、第1の電力メータ11によって受電した電力量が計測されることになる。
以上の説明からわかるように、第1の電力メータ11で計測した電力系統2への給電電力量と、第2の電力メータ12で計測した蓄電池3の放電電力量との合計は、電力系統2に売電を行った電力量に相当する。また、第1の電力メータ11で計測した電力系統2からの受電電力量が、電力系統2から買電を行った電力量に相当する。
なお、上述の動作では、蓄電池3の容量が1日分の余剰電力を蓄電できると仮定しているが、余剰電力によって蓄電池3が満充電になる場合には、パワーコンディショナ6の出力を抑制する。この動作は背景技術として説明した構成と同様である。
ところで、蓄電池3への蓄電を行わずに電力系統2への逆潮流を行ったと仮定した場合の余剰電力の電力量は、第1の電力メータ11とにより計測した余剰電力の電力量と、第2の電力メータ12により計測した電力量との相当する。これは、第1の電力メータ11が逆潮流を行った余剰電力を計測しており、第2の電力メータ12が逆潮流を行った電力と等価な電力を計測しているからである。
いま、電力系統2から受電する電力の単価(円/kW)と、電力系統2に給電する(逆潮流を行う)電力の単価とが表1に示す値であるものとする。表1では、電力系統2から受電する場合を買電、電力系統2に給電する場合を売電と表記し、買電については昼間時間帯と夜間時間帯(たとえば、23時から翌朝7時)とにおいて異なる場合を想定している。
なお、電力の単価は、電力供給事業者との契約により定められ、契約の内容や時期によって変化する。たとえば、買電の単価は、時間帯別に3段階に設定される場合、時間帯別の単価が設定されず買電による電力量に応じて単価が変化する場合などがある。さらに、燃料の単価の変動が買電の単価に影響し、分散電源1の普及率が売電の単価に影響することもある。したがって、売電単価取得部29aおよび買電単価取得部29bにより、売電および買電の単価を取得する必要がある。
Figure 0005438824
また、第2の電力メータ12で計測した電力に対する単価は、買電と売電との単価の差であって、表2のように表すことができる。このように買電と売電との単価の差を用いる理由については後述する。表2に示す単価は、蓄電池3から放電した電力の対価であり、この値を用いることにより、太陽電池5により発電した余剰電力について、電力系統2への逆潮流を行うか蓄電池3に蓄電するかにかかわらず、需要家10の対価の合計が等しくなる。
Figure 0005438824
第1の電力メータ11と第2の電力メータ12とにより計測される電力の単価を、それぞれ表1、表2のように設定しておくことにより、対価計算部27では、売買電に対する対価を計算することができる。
いま、蓄電池3の蓄電量と蓄電時の売電の単価とが対応付けて記録されている場合を想定する。たとえば、蓄電池3への蓄電量が表3のように記録されているものとする。
Figure 0005438824
表3では売電の単価の最大値は48(円/kWh)であり、その単価が適用される蓄電量(電力量)は、3200Whであるから、第2の電力メータ12において放電量を監視する第2の電力取得部26bには「3200Wh」と設定される。ここで、蓄電池3に蓄電した電力を100Whだけ放電し、放電時において、電力系統2から受電する電力の単価が20(円/kW)であるとする。電力系統2から受電する場合と、余剰電力を電力系統2に給電した場合との差額は、1kWh当たり28円(=48円−20円)であるから、100Whの放電では、2.8円(=28円/kWh×0.1kWh)を受け取り可能な対価として算出する。
上述の構成において第1の電力メータ11と第2の電力メータ12とは機能が異なるから別体として記載しているが、両機能を1つの筐体内に設けてもよい。
図3を参照して蓄電池3の充放電に関する動作を説明する。蓄電池3への蓄電および蓄電池3からの放電を行っていない状態では、コントローラ20はスイッチSW2,SW3をオフにして充放電処理を停止している(S1)。
前述したように、コントローラでは電力系統への逆潮流が不可能な場合に蓄電池3に充電を行う。蓄電池3の充電時、余剰電力管理部22は、スイッチSW2をオンにして蓄電池3への蓄電を開始する(S2)。このとき、充放電制御部23はスイッチSW3をオフに保っており、売電単価取得部29aでは売電単価を取得する(S3)。また、第1の電力取得部26aでは、売電単価取得部29aが取得した売電単価をセットする(S4)。
その後、第1の電力取得部26aは、蓄電池3への蓄電量を計測する(S5)。蓄電が停止するまでに(S7)、売電単価が変化しなければ(S6)、蓄電の停止後に、第1の電力取得部26aは計測された蓄電量および売電単価を蓄電量記憶部28に記録する(S8)。一方、蓄電が停止するまでに(S7)、売電単価が変化すると(S6)、蓄電量および売電単価を蓄電量記憶部28に記録する(S9)ステップS9の後には、ステップS3に戻り、新たな売電単価を取得し(S3)、蓄電が停止するまで上述した動作を繰り返す。
一方、蓄電池3の放電時に余剰電力管理部22はスイッチSW2をオフにし、充放電制御部23はスイッチSW3をオンにして蓄電池3から分電盤7への放電を開始する(S10)。ここで、蓄電量記憶部28に記録されている蓄電量から売電単価のもっとも高い情報を読み出し、この蓄電量を第2の電力取得部26bにセットする(S11)。また、買電単価取得部29bは、蓄電池3からの放電中に適用する買電単価を取得する(S12)。第2の電力取得部26bでは、第2の電力メータ12から蓄電池3の放電量を読み出してセットされた蓄電量から減算して計測値を得る(S13)。
ここで、蓄電池3から放電した電力量は、蓄電時に電力系統2に給電すれば対価を得ることができた電力量であり、蓄電していなければ放電時に電力系統2から購入した電力量になる。そこで、両者を相殺するために、放電した電力に対する単価として、蓄電時の売電単価と、放電時の買電単価との差を用いる。売電単価と買電単価との差を放電した電力量に乗じた値を抑制対価と呼ぶ。すなわち、蓄電量の減算とともに抑制対価を計算する(S14)。
買電単価が変化しない場合(S15で「No」)、第2の電力取得部26bにおいて読み出している計測値(蓄電量)が0になれば(S16で「Yes」)、第2の電力取得部26bは蓄電量記憶部28から前回読み出した蓄電量を削除し、次に売電単価の高い情報を読み出す(S11)。また、売電単価が変化した場合には(S15)、新たな売電単価を取得し(S12)、上述の動作を繰り返す。
その後、蓄電池3からの放電が停止すると(S17)、その時点における第2の電力取得部26bの計測値を蓄電量記憶部28に記憶させる(S18)。
ところで、コントローラ20は、インターネット32を介して管理サーバ30と通信可能であって、管理サーバ30から買電単価および売電単価を取得するだけではなく、管理サーバ30からの指示による動作も可能になっている。管理サーバ30が2つの需要家10に設けたコントローラ20に対して制御を指示する例を図4に示す。図4において、中央のフローチャートが管理サーバ30の動作を示しており、左右のフローチャートが異なる需要家10のコントローラ20の動作を示している。図4の破線は、コントローラ20と管理サーバ30との間で、インターネット32を通して通信を行うことを示している。
いま、図4に示す需要家10において、電力系統2の電圧の上昇が検出され、蓄電池3への余剰電力の蓄電が開始されたとする(S101)。コントローラ20は、通信部25を通して管理サーバ30に余剰電力の蓄電開始を通知する(S102)。管理サーバ30では、蓄電池3への余剰電力の蓄電が開始されたことの通知を受けると(S103)、通知を受け取った需要家10と同じ柱上トランス31の二次側に接続された需要家10を抽出するとともに、各需要家10の蓄電池3の残容量を取得する(S104)。
管理サーバ30では、最初に通知を行った需要家10を除いて、蓄電池3の残容量が最大である需要家10を選択し、最初に通知を行った需要家10および選択した需要家10に対して蓄電量の残容量の比較を行い、その結果によって蓄電の継続、開始または解除の制御指令を送信する(S105)。
最初に通知を行った需要家10は、管理サーバ30から受け取った指令が継続の指令であると(S106)、蓄電池3への余剰電力の蓄電を継続する(S107)。また、管理サーバ30から受け取った指令が継続の指令でなければ、蓄電池3への蓄電を停止する(S109)。蓄電池3への余剰電力の蓄電を行っている間に、電力系統2への余剰電力の逆潮流が可能になった場合にも(S108)、蓄電池3への蓄電を停止する(S109)。蓄電池3への蓄電を停止すると、管理サーバ30に対して蓄電の停止を通知する(S110)。
一方、管理サーバ30が選択した需要家10に対しては、電力系統2への逆潮流ができる場合には蓄電池3への蓄電の動作を解除する指示を与え、逆潮流ができない場合には蓄電池3への蓄電の動作開始を指示する(S105)。この需要家10では、蓄電の指令を受信すると(S111)、蓄電池3への余剰電力の蓄電を開始し(S112)、管理サーバ30には蓄電を開始したことを通知する(S113)。この需要家10では、管理サーバ30から蓄電の解除が指示されるまでは(S116)、蓄電を継続する(S114)。また、蓄電中の蓄電池の残容量を適宜のタイミングで管理サーバ30に通知する(S115)。
管理サーバ30が選択した需要家10において、管理サーバ30から蓄電池3への蓄電を停止する指令を受け取ると(S116)、蓄電を停止し(S117)、管理サーバ30に対して蓄電を停止したことを通知する(S118)。
ところで、管理サーバ30では、各需要家10から取得した蓄電池3の蓄電量の順位が変化した場合には(S119)、ステップS104に移行して需要家及び電池容量を取得する。このように、蓄電池3の残容量が大きい需要家10に対しては、電力系統2への余剰電力の逆潮流を行わせ、蓄電池3の残容量が小さい需要家10に対しては、余剰電力を蓄電池3に蓄電させるのである。
柱上トランス21の二次側に3個以上の需要家10が接続されている場合も、管理サーバ30において、上述した判断および指令の送信を行う。この制御により、柱上トランス32の二次側の電力系統2に接続された需要家10において、電力系統2に余剰電力の逆潮流を行うことができない場合に、余剰電力を蓄電池10に蓄電することが可能になる。すなわち、蓄電池3の残容量に応じて逆潮流を行う需要家10が分散するから、逆潮流を行う需要家10の偏りを抑制することができる。また、各需要家10では、余剰電力の逆潮流ができない場合でも、蓄電池3に蓄電した余剰電力に対する対価を受け取ることが可能であるから、余剰電力に対する対価の取りこぼしが抑制されることになり、分散電源1の導入意欲の向上につながる。
なお、電圧検知部21において監視している電力系統2の電圧が閾値を超えるときに蓄電池3への蓄電を開始する構成ではなく、あらかじめ蓄電池3が満充電になった後に、電力系統2への逆潮流を行う構成としてもよい。また、コントローラ20において蓄電池3への蓄電の指示を外部から通信により行ってもよい。
また、売電単価および買電単価を蓄電量記憶部28に記録する構成を採用しているが、電力量と日時とを記録しておき、記録された電力量に日時に応じた単価を適用することにより、電力料金を算出するようにしてもよい。また、放電時の対価は、売電単価が買電単価よりも高いときにのみ計算することが望ましい。
放電時の単価は、需要家10と電力供給事業者との双方を考慮して設定しているが、需要家10の利益をより高めることにより、蓄電池3を並設した分散電源1を需要家10に導入させるための動機付けを行うようにしてもよい。逆に、放電時の単価が、電力供給事業者に不利にならないように、蓄電池および放電時の損失分を考慮して設定してもよい。
上述の構成例では、蓄電池3を需要家の建物に設置した場合を想定しているが、蓄電池3を建物に設置することは必須ではなく、電気自動車や電動二輪車などに搭載する蓄電池3のように、建物とは別に蓄電池3を設けてもよい。あるいはまた、建物とは別に設けた蓄電池3と建物に設置した蓄電池3とを併用することも可能である。
建物とは別に蓄電池3を設ける場合は、分散電源1からの電力を充電装置から蓄電池3に充電する際に、買電単価と売電単価との差を対価として計算する手段を設けてもよい。ここで、建物とは別に設けた蓄電池3に充電するにあたって電力系統2から受電した電力を用いる場合を想定すると、買電単価が最安値である時間帯の電力を用いることが可能である。したがって、分散電源1からの電力を用いて蓄電池3に充電する際の買電単価を最安値に固定して対価を計算してもよい。
上述の実施形態においては、パワーコンディショナにスイッチSW2,SW3を設けると共に分電盤7と電力メータ11との間にスイッチSW1を設け、余剰電力管理部22によりスイッチSW1,SW2をオン・オフし全体動作制御部24により充放電制御部23を制御することで余剰電力の逆潮及び蓄電池の充放電を行なったが、本発明はこれに制限されない。例えば、従来のパワーコンディショナを用いて本発明を実施してもよい。
図5には従来のパワーコンディショナに本発明による電力制御装置を適用した他の実施形態が示されている。本実施形態ではスイッチSW1〜SW4が省かれている点で図1の電力制御装置と異なる。パワーコンディショナは独自に系統保護のために、系統電圧上昇時に出力を抑制する機能を有している。よって、本実施形態においてはこのパワーコンディショナの停止電圧よりも低い電圧を、蓄電動作を開始する閾値とする。
具体的には、全体動作制御部24では余剰電力管理部22を介して電圧検知部21から取得した系統電圧が閾値以上であれば逆潮方向の電流値がゼロになるように、同電流値での充電を開始する指令を充放電制御部23に送信する。また、サーバからの指令によっても全体動作制御部24は蓄電池への充電を開始する指令を充放電制御部23に送信する。一方、電圧検知部21から取得した系統電圧が閾値以下であれば、蓄電池3からの放電を指令し、太陽電池5が発電した電力と蓄電池3から出力される電力との合計が電気負荷4で消費される電力を上回るときに、その差分の電力が余剰電力として電力系統2への逆潮流に用いられる。
逆潮流されていない状態で、太陽の高度が下降するに伴って、太陽電池5の発電電力が低下し発電電力が負荷電力を下回ると、コントローラ20は蓄電池3からの放電を開始する。蓄電池3から放電する電力は、太陽電池5の発電量と負荷電力の需要との差分とし、太陽電池5の発電電力と蓄電池3の放電電力との合計が負荷電力による需要と等しくなるように制御する。蓄電池3からの放電が可能である場合、電力系統2からの電力は電気負荷4で使用されない。その他の計算などについては、図1に示した電力制御装置に関する説明と同様であるため、説明を省略する。
以上、本発明の好ましい実施形態が説明されているが、本発明はこれらの特定の実施形態に限られるものではなく、請求範囲の範疇から離脱しない多様な変更及び変形が可能であり、それも本発明の範疇内に属する。

Claims (5)

  1. 分散電源及び蓄電池を備える需要家において、前記分散電源による余剰電力を前記蓄電池に蓄電可能にする電力制御装置であって、前記蓄電池への蓄電時における売電単価と、前記蓄電池からの放電時における買電単価とを用いることにより対価を算出する対価計算部を備えることを特徴とする電力制御装置。
  2. 商用電源の電力系統の電圧を監視する電圧検知部と、前記分散電源に余剰電力が生じた場合であって、前記電圧検知部により監視している前記電力系統の電圧が規定の閾値以下であれば前記電力系統への逆潮流により前記電力系統に給電する状態を選択し、前記電圧検知部により監視している前記電力系統の電圧が規定の閾値を超えていれば前記電力系統への逆潮流を行わずに前記蓄電池に蓄電する状態を選択する余剰電力管理部と、前記分散電源から前記蓄電池に蓄電した電力量を取得する第1の電力取得部と、前記蓄電池から放電した電力量を取得する第2の電力取得部と、前記電力系統への給電を行う際の売電単価を取得する売電単価取得部と、前記電力系統から受電を行う際の買電単価を取得する買電単価取得部とを更に備え、前記対価計算部は前記余剰電力管理部が前記蓄電池に余剰電力を蓄電する状態を選択している間に当該余剰電力の逆潮流を行わなかったことに伴って生じる損失額を逆潮流による対価相当金額を、前記電圧検知部により監視している前記電力系統の電圧が規定の閾値を超えている期間に前記第1の電力取得部により取得した電力量と、前記売電単価取得部が取得する前記蓄電池への蓄電時における売電単価と、前記第2の電力取得部により取得した電力量と、前記買電単価取得部が取得する前記蓄電池からの放電時における買電単価とを用いることにより算出することを特徴とする請求項1に記載の電力制御装置。
  3. 前記対価計算部は、前記蓄電池からの放電時における単価として、前記蓄電池への蓄電時における売電単価と、前記蓄電池からの放電時における買電単価との差を用いることにより前記対価を算出することを特徴とする請求項2記載の電力制御装置。
  4. 前記対価計算部は、前記蓄電池への蓄電時の売電単価が放電時の買電単価よりも高いときに前記蓄電池から放電した電力量に対する対価を計算することを特徴とする請求項3記載の電力制御装置。
  5. 複数の需要家に設けられた請求項2〜4のいずれか1項に記載の電力制御装置と、前記複数の需要家のうち2つ以上の需要家において余剰電力が生じているときに、前記蓄電池の残容量が少ない方の需要家における前記余剰電力管理部に対して広域網を通して前記蓄電池への蓄電を選択させる指令を与える管理サーバを備えることを特徴とする系統連系システム。
JP2012514589A 2010-05-11 2011-05-11 電力制御装置及びそれを備える系統連系システム Active JP5438824B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012514589A JP5438824B2 (ja) 2010-05-11 2011-05-11 電力制御装置及びそれを備える系統連系システム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010109562 2010-05-11
JP2010109562 2010-05-11
JP2012514589A JP5438824B2 (ja) 2010-05-11 2011-05-11 電力制御装置及びそれを備える系統連系システム
PCT/IB2011/000999 WO2011141798A2 (ja) 2010-05-11 2011-05-11 電力制御装置及びそれを備える系統連系システム

Publications (2)

Publication Number Publication Date
JPWO2011141798A1 JPWO2011141798A1 (ja) 2013-07-22
JP5438824B2 true JP5438824B2 (ja) 2014-03-12

Family

ID=44914758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012514589A Active JP5438824B2 (ja) 2010-05-11 2011-05-11 電力制御装置及びそれを備える系統連系システム

Country Status (5)

Country Link
US (1) US9153963B2 (ja)
EP (1) EP2571130B1 (ja)
JP (1) JP5438824B2 (ja)
CN (1) CN102884703B (ja)
WO (1) WO2011141798A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021026509A (ja) * 2019-08-05 2021-02-22 中国電力株式会社 電気預かりポイントシステム

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011101529A (ja) * 2009-11-06 2011-05-19 Panasonic Electric Works Co Ltd 配電システム
US20130030590A1 (en) * 2011-07-29 2013-01-31 Green Charge Networks Llc Peak Mitigation Extension Using Energy Storage and Load Shedding
JP5967516B2 (ja) 2011-11-22 2016-08-10 パナソニックIpマネジメント株式会社 電力管理装置、電力管理プログラム、及び、電力分配システム
US20140324237A1 (en) * 2011-12-06 2014-10-30 The Chugoku Electric Power Co., Inc. Hydroelectric power generation plan adjusting device, hydroelectric power generation plan adjusting method and program
TWI524618B (zh) * 2011-12-09 2016-03-01 台達電子工業股份有限公司 電能管理裝置及其操作方法
JP5895157B2 (ja) * 2011-12-22 2016-03-30 パナソニックIpマネジメント株式会社 充放電制御装置
JP6025332B2 (ja) * 2012-01-10 2016-11-16 株式会社Nttファシリティーズ 電力供給システム、電力供給制御装置、電力供給方法及びプログラム
JP5738212B2 (ja) * 2012-02-20 2015-06-17 三菱重工業株式会社 電力貯蔵型の発電システム
JP5990767B2 (ja) * 2012-03-29 2016-09-14 パナソニックIpマネジメント株式会社 電力変換システム
CN103378622B (zh) * 2012-04-25 2015-11-25 比亚迪股份有限公司 控制电池充、放电系统及方法
JP5876374B2 (ja) * 2012-05-29 2016-03-02 京セラ株式会社 電力制御方法、電力制御システム、及び電力制御装置
JP5696110B2 (ja) * 2012-09-19 2015-04-08 株式会社東芝 電源システム、電源制御装置およびプログラム
US9780564B2 (en) * 2012-09-28 2017-10-03 Eaton Corporation Dual-input inverter and method of controlling same
US9728964B2 (en) * 2013-03-15 2017-08-08 Vivint, Inc. Power production monitoring or control
US20140297206A1 (en) * 2013-03-28 2014-10-02 Kaspar Llc Universal Smart Energy Transformer Module
JP6016719B2 (ja) * 2013-06-27 2016-10-26 トヨタホーム株式会社 充電制御システム
KR20160046895A (ko) * 2013-12-10 2016-04-29 쥬코쿠 덴료쿠 가부시키 가이샤 충방전 제어 장치, 프로그램
JP2015162925A (ja) * 2014-02-26 2015-09-07 株式会社Nttファシリティーズ 電力管理システム
WO2015159388A1 (ja) * 2014-04-16 2015-10-22 三菱電機株式会社 制御装置、制御システム、制御方法及びプログラム
JP6137497B2 (ja) * 2014-10-23 2017-05-31 トヨタ自動車株式会社 電力供給管理システム
JP6060956B2 (ja) * 2014-10-29 2017-01-18 中国電力株式会社 電力系統制御システム、電力系統制御システムの制御方法
US9830672B2 (en) * 2014-10-29 2017-11-28 Solarcity Corporation Power management message bus system
JP6204614B2 (ja) * 2014-11-27 2017-09-27 京セラ株式会社 電力制御装置、電力制御方法及び電力制御システム
JP6495089B2 (ja) * 2015-04-28 2019-04-03 京セラ株式会社 電力管理装置及び電力変換装置
WO2016185759A1 (ja) * 2015-05-20 2016-11-24 シャープ株式会社 機器制御システムおよび制御方法
JP6481942B2 (ja) * 2015-06-12 2019-03-13 パナソニックIpマネジメント株式会社 電力管理システム、電力管理方法、およびプログラム
US9857040B1 (en) * 2015-08-20 2018-01-02 X Development Llc Kinematically linked optical components for light redirection
JPWO2018052117A1 (ja) * 2016-09-15 2019-06-24 京セラ株式会社 電力管理方法、電力管理サーバ、ローカル制御装置及び電力管理システム
US11508019B2 (en) 2019-06-04 2022-11-22 Inventus Holdings, Llc Regulating charging and discharging of an energy storage device as part of an electrical power distribution network
JP7380272B2 (ja) * 2020-02-04 2023-11-15 トヨタ自動車株式会社 車両

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06133472A (ja) * 1992-10-19 1994-05-13 Canon Inc 太陽光発電システム
JP2003189477A (ja) * 2001-12-14 2003-07-04 Daikin Ind Ltd 電力制御装置
JP2010213468A (ja) * 2009-03-11 2010-09-24 Toshiba Toko Meter Systems Co Ltd 電力制御システム
JP2011130638A (ja) * 2009-12-21 2011-06-30 Hitachi Ltd 自然エネルギを用いた発電システム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5548200A (en) * 1994-07-06 1996-08-20 Norvik Traction Inc. Universal charging station and method for charging electric vehicle batteries
JPH11178234A (ja) * 1997-12-10 1999-07-02 Nissan Motor Co Ltd 電気自動車を用いた家庭用電力供給システム
JP2001258175A (ja) 2000-03-14 2001-09-21 Hitachi Ltd 電力貯蔵用二次電池の利用システムおよび利用方法
US7256516B2 (en) * 2000-06-14 2007-08-14 Aerovironment Inc. Battery charging system and method
US6680547B1 (en) * 2002-08-01 2004-01-20 Innovations Electrical, Lc Power sharing system including rechargeable power source
JP2005133472A (ja) 2003-10-31 2005-05-26 Maruto Kogyo Kk ケーソンの沈設工事における掘削土搬出方法とその装置
JP4064334B2 (ja) * 2003-11-06 2008-03-19 日本電信電話株式会社 エネルギーシステムの制御装置および制御方法
JP4266003B2 (ja) 2004-10-25 2009-05-20 株式会社日立製作所 分散発電装置の制御方法及び装置
US8111036B2 (en) * 2006-03-27 2012-02-07 Stephen George Rosenstock System for electrically connecting and disconnecting a vehicle generator from a vehicle storage unit
CA2706779C (en) * 2007-11-27 2017-10-31 Solaroad Electrawall, Llc Autonomous, modular power generation, storage and distribution apparatus, system and method thereof
JP5319156B2 (ja) * 2008-04-24 2013-10-16 一般財団法人電力中央研究所 電力需給制御プログラム、電力需給制御装置および電力需給制御システム
CN101557115A (zh) 2009-05-15 2009-10-14 江苏省电力公司金湖县供电公司 谷电峰用储能装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06133472A (ja) * 1992-10-19 1994-05-13 Canon Inc 太陽光発電システム
JP2003189477A (ja) * 2001-12-14 2003-07-04 Daikin Ind Ltd 電力制御装置
JP2010213468A (ja) * 2009-03-11 2010-09-24 Toshiba Toko Meter Systems Co Ltd 電力制御システム
JP2011130638A (ja) * 2009-12-21 2011-06-30 Hitachi Ltd 自然エネルギを用いた発電システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021026509A (ja) * 2019-08-05 2021-02-22 中国電力株式会社 電気預かりポイントシステム
JP7413674B2 (ja) 2019-08-05 2024-01-16 中国電力株式会社 電気預かりポイントシステム

Also Published As

Publication number Publication date
WO2011141798A2 (ja) 2011-11-17
EP2571130A2 (en) 2013-03-20
US20130049695A1 (en) 2013-02-28
EP2571130A4 (en) 2017-12-20
CN102884703B (zh) 2015-07-01
US9153963B2 (en) 2015-10-06
JPWO2011141798A1 (ja) 2013-07-22
EP2571130B1 (en) 2023-04-12
CN102884703A (zh) 2013-01-16
WO2011141798A3 (ja) 2012-01-05

Similar Documents

Publication Publication Date Title
JP5438824B2 (ja) 電力制御装置及びそれを備える系統連系システム
JP5891461B2 (ja) 電力制御装置及びそれを用いた電力制御システム
JP5372724B2 (ja) 自然エネルギを用いた発電システム
JP5807201B2 (ja) 電力制御装置
JP6160957B2 (ja) 電力管理装置、電力管理方法、プログラム
JP5799228B2 (ja) 電力供給システム
JP6025332B2 (ja) 電力供給システム、電力供給制御装置、電力供給方法及びプログラム
JP6426922B2 (ja) 電力システム、御装置及び充放電制御方法
JP7457926B2 (ja) 電力供給システム及びその制御方法
JP2003250221A (ja) 給電方法及び給電システム
JP6226282B2 (ja) 電力調整装置、電力調整方法、プログラム
JP2016063629A (ja) 蓄電池制御装置、蓄電池制御方法及びプログラム
WO2013145178A1 (ja) 電力供給システム
JP7205421B2 (ja) 電力供給システム及び、電気料金の管理方法
US20160241072A1 (en) Charge/discharge control device and program
WO2016185671A1 (ja) 蓄電池制御装置
JP5912055B2 (ja) 制御装置及び制御方法
JP6789020B2 (ja) 蓄電池運用方法および蓄電池運用装置
JP2014236627A (ja) サーバ装置、需要家の制御装置及び蓄電池の充放電制御方法
JP2012063821A (ja) 売買料金計算システム
JP6971158B2 (ja) 電力管理装置及びプログラム
JP6543187B2 (ja) 蓄電池制御方法
JP2020054136A (ja) 充電電力算出装置および蓄電池充電システム
JP7406436B2 (ja) 電力融通システム
JP2022056255A (ja) 電力供給システム

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131213

R150 Certificate of patent or registration of utility model

Ref document number: 5438824

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150