JP5434931B2 - 有機エレクトロルミネッセンス素子、それを用いた照明装置 - Google Patents

有機エレクトロルミネッセンス素子、それを用いた照明装置 Download PDF

Info

Publication number
JP5434931B2
JP5434931B2 JP2010549487A JP2010549487A JP5434931B2 JP 5434931 B2 JP5434931 B2 JP 5434931B2 JP 2010549487 A JP2010549487 A JP 2010549487A JP 2010549487 A JP2010549487 A JP 2010549487A JP 5434931 B2 JP5434931 B2 JP 5434931B2
Authority
JP
Japan
Prior art keywords
layer
hard coat
light
film
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010549487A
Other languages
English (en)
Other versions
JPWO2010090207A1 (ja
Inventor
邦雅 檜山
雄史 小野
恭雄 當間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2010549487A priority Critical patent/JP5434931B2/ja
Publication of JPWO2010090207A1 publication Critical patent/JPWO2010090207A1/ja
Application granted granted Critical
Publication of JP5434931B2 publication Critical patent/JP5434931B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Description

本発明は、有機エレクトロルミネッセンス素子とその素子を用いた照明装置に関する。
発光型の電子ディスプレイデバイスとして、エレクトロルミネッセンスディスプレイ(ELD)がある。ELDの構成要素としては、無機エレクトロルミネッセンス素子や有機エレクトロルミネッセンス素子が挙げられる。無機エレクトロルミネッセンス素子は平面型光源として使用されてきたが、発光素子を駆動させるためには交流の高電圧が必要である。有機エレクトロルミネッセンス素子(以下、有機EL素子とも記す。)は、発光する化合物を含有する発光層(蛍光性有機化合物を含む有機化合物薄膜)を、陰極と陽極で挟んだ構成を有し、発光層に電子及び正孔を注入して、再結合させることにより励起子(エキシトン)を生成させ、このエキシトンが失活する際の光の放出(蛍光・燐光)を利用して発光する素子である。通常、この発光を利用するために、有機化合物薄膜を挟む電極の少なくとも一方は、ITO等の透明電極が用いられ、該透明電極は、さらにガラス等の透明基体によって支持されている。
有機EL素子は、数V〜数十V程度の低電圧で発光が可能であり、自己発光型であるために視野角に富み、視認性が高く、薄膜型の完全固体素子であるので省スペース、携帯性等の観点から注目されている。
しかしながら、今後の実用化に向けた有機エレクトロルミネッセンス素子においては、さらに低消費電力で効率よく高輝度に発光する有機エレクトロルミネッセンス素子の開発が望まれている。
今後の性能向上のために解決すべき課題の一つとして、有機エレクトロルミネッセンス素子では光の取り出し効率(発光したエネルギーに対して基板の外に出てくるエネルギーの割合)が低いという問題がある。すなわち、発光層の発光には指向性がなく、四方八方に散逸してしまうため、発光層から前方向へ光を導く際のロスが大きく、光強度が足りず表示画面が暗くなる問題がある。
発光層からの発光は、前方向へ出てくるもののみを利用することになるが、古典光学に基づいた多重反射から導き出される前方向への光取り出し効率(発光効率)は1/2nで近似でき、発光層の屈折率nでほぼ決まってしまう。発光層の屈折率を約1.7とすると、単純に前記有機EL部からの発光効率は約20%となる。残りの光は、発光層の面積方向へ伝搬するか(横方向への霧散)、発光層を挟んで透明電極と相対する金属電極で消失する(後方向への吸収)。換言すると、有機エレクトロルミネッセンス素子は、空気よりも屈折率の高い(屈折率が1.7〜2.1程度)層の内部で発光し、発光層で発生した光のうち15%から20%程度の光しか取り出せない。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として、光が素子側面方向に逃げるためである。
この光の取り出しの効率を向上させる手法としては、様々な方法が検討されている。例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(特許文献1参照。)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(特許文献2参照。)、基板ガラスと発光体の間に基板ガラスよりも低屈折率を持つ平坦層を導入する方法(特許文献3参照。)、基板ガラス、透明電極層や発光層のいずれかの層間(含む、基板ガラスと外界間)に回折格子を形成する方法(特許文献4参照。)などが考えられている。
しかしながら、透明基板の表面に凹凸を形成する方法や回折格子を形成する構成においては、凹凸を形成する手段として、フォトリソグラフィーの手法でエッチングで凹凸を設ける方法が一般的であるが、生産性が悪く、コストアップになる。また基板と発光体の間に中間の屈折率を持つ平坦層や基板と発光体の間に基板ガラスよりも低屈折率を有する平坦層を導入する方法では、結局、屈折率の異なる界面が存在することとなり、光の取り出し効率の向上は少ない。
これらより簡便な方法で屈折率の異なる界面をなくす方法として、透明基材と透明電極の間に屈折率の傾斜構造を有する膜を設ける方法(特許文献5参照。)が検討されている。しかしながら、この方法では傾斜構造を得る為に2成分膜の成分比率を連続的に変化させることが必要となり、膜応力の不均一性が生じる。その結果として、クラックの発生や膜はがれなど膜物性に致命的な欠陥を生じる恐れがあることがわかった。
本発明においては、基材に透明樹脂フィルムを用いることが特徴のひとつであり、透明樹脂フィルムのフレキシブル性を維持しつつ、耐傷性、膜密着性、カール特性を確保するためには両面にハードコートを有することが必要である。そのため、これら透明樹脂フィルム、2つのハードコート層、透明電極層の4層の屈折率や厚みのバランスが光の取り出し効率や物理特性の改善に重要であることが判明した。
米国特許第4774435号明細書 特開昭62−172691号公報 特開2001−202827号公報 特開平11−283751号公報 特開2007−73465号公報
本発明は、上記課題に鑑みてなされたものであり、その目的は、光取り出し効率が大幅に向上し、かつ膜物性が改良されたエレクトロルミネッセンス素子とその素子を用いた照明装置を提供することにある。
本発明の上記課題は、以下の構成により達成される。
1.透明基材上に透明電極、有機エレクトロルミネッセンス層および陰極が順次積層された有機エレクトロルミネッセンス素子において、該透明基材が透明樹脂フィルムの両面にハードコート層を有し、それぞれの屈折率が式(1)〜(4)を満足し、かつ有機エレクトロルミネッセンス層に対して光出射側に光散乱機能を有し、前記透明樹脂フィルムの屈折率n(B)が1.6以上であり、前記透明電極側の前記ハードコート層、及び、前記透明電極と反対側の前記ハードコート層は、透明樹脂と、前記透明樹脂に分散された微粒子とを有し、記透明電極側の前記ハードコート層、及び、前記透明電極と反対側の前記ハードコート層は、前記微粒子を5〜30質量%含有し、前記微粒子は粒径1〜50nm、及び、屈折率1.6以上であり、前記透明電極側の前記ハードコート層、及び、前記透明電極と反対側の前記ハードコート層の屈折率が、前記透明樹脂に対して0.02以上高いことを特徴とする有機エレクトロルミネッセンス素子。
式(1) −0.2≦n(H1)−n(A)≦0.2
式(2) −0.1≦n(H1)−n(B)≦0.1
式(3) −0.1≦n(H2)−n(B)≦0.1
式(4) −0.1≦n(H1)−n(H2)≦0.1
ただし、n(A):透明電極の屈折率
n(H1):ハードコート層(透明電極側)の屈折率
n(H2):ハードコート層(透明電極と反対側)の屈折率
n(B):透明樹脂フィルムの屈折
.前記透明樹脂が、硬化性樹脂であることを特徴とする前記記載の有機エレクトロルミネッセンス素子。
前記透明電極側の前記ハードコート層、及び、前記透明電極と反対側の前記ハードコート層は、光散乱性のフィラーを含有することを特徴とする前記1又は2に記載の有機エレクトロルミネッセンス素子。
4.前記透明電極側の前記ハードコート層、及び、前記透明電極と反対側の前記ハードコート層は、前記光散乱性のフィラーを0.1〜30質量%含有することを特徴とする前記3に記載の有機エレクトロルミネッセンス素子。
5.前記透明樹脂フィルムが、光散乱性のフィラーを含有したフィルムであることを特徴とする前記1〜4の何れか1項記載の有機エレクトロルミネッセンス素子。
6.前記透明基材上の透明電極と反対側の面に光取り出しフィルムを有することを特徴とする前記1〜5の何れか1項記載の有機エレクトロルミネッセンス素子。
7.前記透明樹脂フィルムがポリエステルフィルムであることを特徴とする前記1〜6の何れか1項記載の有機エレクトロルミネッセンス素子。
8.前記透明樹脂フィルムが延伸ポリエチレンナフタレートフィルムであることを特徴とする前記1〜6の何れか1項記載の有機エレクトロルミネッセンス素子。
9.前記ハードコート層の膜厚が少なくとも2μm以上50μm以下であり、かつ下記式(5)〜(7)を満たすことを特徴とする前記1〜8の何れか1項記載の有機エレクトロルミネッセンス素子。
式(5) d(H1)>d(A)
式(6) d(H1)<d(B)
式(7) −10μm<d(H2)−d(H1)<+10μm
ただし、d(A):透明電極の膜厚
d(H1):ハードコート層(透明電極側)の膜厚
d(H2):ハードコート層(透明電極と反対側)の膜厚
d(B):樹脂フィルムの膜厚
10.前記1〜9の何れか1項に記載の有機エレクトロルミネッセンス素子を用いることを特徴とする照明装置。
本発明により、光取り出し効率が大幅に向上し、かつ膜物性が改良されたエレクトロルミネッセンス素子とその素子を用いた照明装置を提供することができた。
以下、本発明と構成要素等について詳細に説明する。
本発明は以下の関係を満足することによって、光取り出し効率が大幅に向上し、かつ膜物性が改良された有機エレクトロルミネッセンス素子を提供するものである。
式(1) −0.2≦n(H1)−n(A)≦0.2
式(2) −0.1≦n(H1)−n(B)≦0.1
式(3) −0.1≦n(H2)−n(B)≦0.1
式(4) −0.1≦n(H1)−n(H2)≦0.1
ただし、n(A):透明電極の屈折率、n(H1):ハードコート層(透明電極側)の屈折率、n(H2):ハードコート層(透明電極と反対側)の屈折率、n(B):透明樹脂フィルムの屈折率、である。
基材として透明樹脂フィルムを用いる場合、耐傷性、カール特性、透明電極層との密着性等の様々な物性を確保する目的でハードコート層の様な物性確保層が必要となり、透明ガラス基板を用いるときより、屈折率の異なる層が多く積層されることになり、界面における全反射の機会も増大する。各層の屈折率のバランスを、上記関係を満足するように設計することで、物性を改良した透明樹脂フィルムを基材として用いた場合においても光取り出し効率を改善させることができる。
式(1)においてさらに、下記式(1a)であることが好ましく、さらには下記式(1b)であることが好ましい。
式(1a) −0.1<n(H1)−n(A)<0.1
式(1b) n(H1)≦n(A)
式(2)、式(3)においてさらに、下記式(2a)、(3a)であることが好ましく、さらには下記式(2b)、(3b)であることが好ましい。
式(2a) −0.05<n(H1)−n(B)<0.05
式(3a) −0.05<n(H2)−n(B)<0.05
式(2b) n(H1)≦n(B)
式(3b) n(H2)≦n(B)
式(4)においてさらに、下記式(4a)であることが好ましく、さらには下記式(4b)であることが好ましい。
式(4a) −0.05<n(H1)−n(H2)<0.05
式(4b) n(H1)=n(H2)
上記、本発明の好ましい態様によって、従来から知られている光取り出し効率の向上だけでなく、微細な膜構造を有する有機エレクトロルミネッセンス素子の、膜物性を大幅に向上させることができるものである。
〔屈折率の測定方法〕
本発明において、屈折率の測定方法は通常用いられている方法を用いることができる。例えば、各層を単独で塗設したサンプルについて、分光光度計(日立製作所製U−4000型等)の分光反射率の測定結果から求めることができる。裏面を粗面化処理した後、黒色のスプレーで光吸収処理を行って裏面の光反射を防止したうえで、5度正反射の条件で可視光領域(400〜700nm)の反射率を測定することで求めることができる。
〔透明樹脂基板〕
〔透明樹脂フィルム〕
本発明の有機エレクトロルミネッセンス素子で用いる透明基材には透明樹脂フィルムを用いる。透明樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類またはそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(商品名JSR社製)あるいはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。本発明においては、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルムを用いることが好ましく、特に延伸ポリエチレンナフタレートフィルムを用いることが耐熱性の面で好ましい。
本発明において透明樹脂フィルムの屈折率は、1.60以上であることが好ましく、さらに1.70以上1.80以下であることが特に好ましい。
本発明において透明樹脂フィルムの厚さは、50μm以上250μm以下であることが好ましく、さらに75μm以上200μm以下であることが特に好ましい。
〔ハードコート層〕
本発明において、透明樹脂フィルム基材の耐傷性、カール等の物理特性を向上させるため、透明樹脂フィルムの両面にハードコート層を設ける。
本発明においてハードコート層は、平均粒子径が1nm以上400nm以下の微粒子を含有した樹脂で構成されていることが好ましい。微粒子は両面のハードコートそれぞれに含有されることが好ましい。
本発明のハードコート層においては、透明樹脂中にその樹脂よりも屈折率が高い微粒子を、平均粒子径が1〜400nmで分散することにより、所望の屈折率を有した透明なハードコート層を得ることができる。
本発明に用いられる微粒子は、体積平均粒子径で400nm以下であり、更に1nm以上、50nm以下であることがより好ましい。平均粒子径が1nm未満の場合、粒子の分散が困難になり所望の性能が得られないおそれがあるため、平均粒子径は1nm以上であることが好ましい。一方、平均粒子径が50nmを超える場合、屈折率差によっては得られるハードコート層が濁るなどして透明性が低下するおそれがあることから、平均粒子径は50nm以下であることが好ましい。ここで、平均粒子径とは、各粒子を同体積の球に換算した時の直径(球換算粒径)の体積平均値をいう。
本発明に用いられる微粒子としては、屈折率1.6以上であることが好ましく、1.8以上がより好ましく、2.0以上が更に好ましい。具体的には、酸化物微粒子、金属塩微粒子、半導体微粒子などが好ましく用いられ、この中から、光学素子として使用する波長領域において吸収、発光、蛍光等が生じないものを適宜選択して使用することが好ましい。
酸化物微粒子としては、金属酸化物を構成する金属が、Li、Na、Mg、Al、Si、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Rb、Sr、Y、Nb、Zr、Mo、Ag、Cd、In、Sn、Sb、Cs、Ba、La、Ta、Hf、W、Ir、Tl、Pb、Bi及び希土類金属からなる群より選ばれる1種または2種以上の金属である金属酸化物を用いることができ、具体的には、例えば、酸化チタン、酸化亜鉛、酸化アルミニウム(アルミナ)、酸化ジルコニウム、酸化ハフニウム、酸化ニオブ、酸化タンタル、酸化マグネシウム、酸化バリウム、酸化インジウム、酸化錫、酸化鉛、これら酸化物より構成される複酸化物であるニオブ酸リチウム、ニオブ酸カリウム、タンタル酸リチウム、アルミニウム・マグネシウム酸化物(MgAl)等の粒子および複合粒子の中で、屈折率が1.6以上を満たすものが挙げられる。
また、酸化物微粒子として、希土類酸化物を用いることもでき、具体的には、酸化スカンジウム、酸化イットリウム、酸化ランタン、酸化セリウム、酸化プラセオジム、酸化ネオジム、酸化サマリウム、酸化ユウロピウム、酸化ガドリニウム、酸化テルビウム、酸化ジスプロシウム、酸化ホルミウム、酸化エルビウム、酸化ツリウム、酸化イッテルビウム、酸化ルテチウム等も挙げられる。
金属塩微粒子としては、炭酸塩、リン酸塩、硫酸塩およびその複合粒子のうち、屈折率が1.6以上であるものが適用可能である。その他、TiやZrのオキソクラスターなども適用可能である。
これらの無機粒子の調製方法としては、気相中で無機粒子の原料を噴霧、焼成して微小な粒子を得ることが可能である。更には、プラズマを用いて粒子を調製する方法、原料固体をレーザー等でアブレーションさせ微粒子化する方法、蒸発させた金属ガスを酸化させ微粒子を調製する方法なども好適に用いることができる。また、液相中で調製する方法として、アルコキシドや塩化物溶液を原料としたゾル−ゲル法等を用い、ほぼ一次粒子として分散した無機微粒子分散液を調製することが可能である。あるいは、溶解度の低下を利用した反応晶析法を用いて粒子径のそろった分散液を得ることが可能である。
液相で得られた粒子は、乾燥、焼成することにより、無機粒子の機能を安定に引き出すことは好ましい。乾燥には、凍結乾燥、噴霧乾燥、超臨界乾燥などの手段が適用可能であり、焼成は、単に雰囲気を制御しながら高温にするだけでなく、有機あるいは無機の焼結防止剤を用いて行うことが好ましい。
これら粒子のうち、安価で、安全性を考慮して無機粒子を選択することが可能であり、さらに小粒径化の容易性を考えると、次のような無機粒子を用いることが好ましい。すなわち、TiO、Al、LiNbO、Nb、ZrO、Y、MgO、ZnO、SnO、Bi、ITO、CeO、AlN、ダイヤモンド、KTaOなどを用いることが特に好ましい。
樹脂への充填率について特に制約は無いが、50nm以下の無機粒子を樹脂に充填する場合、30体積%を超えることは実質的に難しく、成型性の確保(流動性、ひび割れなし)を考えた場合には25体積%以下であることが好ましい。一方、無機粒子を充填することにより光学物性(屈折率)を変化させるにはある程度の充填率が必要で、5体積%以上、さらには10体積%以上が好ましい。ここでいう無機粒子の体積分率は、無機粒子の比重をa、含有量をxグラム、作製された微粒子含有樹脂材料の全体積樹脂をYミリリットルとした時に式(x/a)/Y×100で求められる。無機粒子の含有量の定量は、透過型電子顕微鏡(TEM)による半導体結晶像の観察(EDX等の局所元素分析により半導体結晶組成に関する情報も得ることが可能)、あるいは与えられた樹脂組成物が含有する灰分の元素分析により求まる所定組成の含有質量と該組成の結晶の比重とから算出可能である。これに伴う、屈折率の増加は、元の樹脂に対して、0.02以上あることが好ましく、更に好ましくは0.05以上である。
《表面処理剤》
無機粒子は、それを樹脂と均一に混合する必要があることから、樹脂との親和力を高めるため、表面処理がなされていることが好ましい。必要な表面処理剤と粒子表面との結合には、下記のような導入手法が考えられるが、それらに限るものではない。
A.物理吸着(二次結合性の活性剤処理)
B.表面化学種の利用反応(表面水酸基との共有結合)
C.活性種の表面導入と反応(ラジカル等の活性点導入とグラフト重合、高エネルギー線照射とグラフト重合)
D.樹脂コーティング(カプセル化、プラズマ重合)
E.沈着固定化(難溶性有機酸塩の沈着)
更に具体例を示すと下記のようになる。
(1)シランカップリング剤
シラノール基と粒子表面の水酸基との縮合反応や水素結合を利用する。例えば、ビニルシラザン、トリメチルクロロシラン、ジメチルジクロロシラン、メチルトリクロロシラン、トリメチルアルコキシシラン、ジメチルジアルコキシシラン、メチルトリアルコキシシラン、ヘキサメチルジシラザン等が挙げられ、トリメチルメトキシシラン、ジメチルジメトキシシラン、メチルトリメトキシシラン、ヘキサメチルジシラザン等が好ましく用いられる。
(2)その他カップリング剤
チタネート、アルミナート、ジルコネート系のカップリング剤も適用可能である。さらに、ジルコアルミネート、クロメート、ボレート、スタネート、イソシアネート等も使用可能である。ジケトン系のカップリング剤も使用可能である。
(3)表面吸着剤
アルコール、ノニオン系界面活性剤、イオン系界面活性剤、カルボン酸類、アミン類などが適用可能である。
(4)樹脂系表面処理
上記(1)−(3)の手法で粒子表面に活性種を導入後、グラフト重合により表面にポリマー層を設ける手法や、あらかじめ合成したポリマー分散剤を粒子表面に吸着、結合させる手法がある。粒子表面により強固にポリマー層を設けるためにはグラフト重合が好ましく、特に高密度にグラフトさせることが好ましい。
《微粒子を含有する樹脂の製造方法》
本発明の微粒子を含有する樹脂の製造にあたっては、はじめに複合材料前駆体(熱可塑性樹脂を用いる場合は溶融状態、硬化性用いる場合は未硬化の状態)を調製した後、基材上に塗布等することにより形成される。
特に硬化性樹脂を用いる場合、複合材料前駆体は、有機溶媒に溶解した硬化性樹脂と、本発明に係る微粒子を混合し、その後、有機溶媒を除去することで調製されてもよいし、硬化性樹脂の原料の一つであるモノマー溶液中に本発明に係る微粒子を添加、混合した後に重合して調製されても良い。また、モノマーが一部重合したオリゴマーや低分子量のポリマーを溶融し、そこに本発明に係る微粒子を添加、混合することで調製されても良い。
ここで用いられる有機溶媒としては、炭素数1〜4程度の低級アルコール、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン類、酢酸メチル、酢酸エチルなどのエステル類、トルエン、キシレンなどの炭化水素類などを選択することができるが、モノマーよりも沸点が低く、しかもこれらのモノマーと相溶性を有するものであれば、特に限定されるものではない。
特に、本発明においては、モノマー溶液中に本発明に係る微粒子を添加した後に重合させる方法が好ましく、特に、モノマーと本発明に係る微粒子を混合した高粘性の溶液を、冷却しながらシェアを与えて混合する方法が好ましい。この時、硬化性樹脂中への本発明に係る微粒子の分散が最適になるように粘度を調整することも重要である。粘度調整の方法としては、本発明に係る微粒子の粒径、表面状態、添加量の調整や、溶媒や粘度調整剤の添加等が挙げられるが、本発明に係る微粒子はその構造により表面修飾が容易なことから、最適な混練状態を得ることが可能である。
シェアを与え複合化を行う場合、本発明に係る微粒子は粉体ないし凝集状態のまま添加することが可能である。あるいは、液中に分散した状態で添加することも可能である。液中に分散した状態で添加する場合は、混合後に脱気を行うことが好ましい。
液中に分散した状態で添加する場合、あらかじめ凝集粒子を一次粒子に分散して添加することが好ましい。分散には各種分散機が使用可能であるが、特にビーズミルが好ましい。ビーズは各種の素材があるがその大きさは小さいものが好ましく、特に直径0.001〜0.5mmのものが好ましい。
本発明に係る微粒子は表面処理された状態で加えられることが好ましいが、表面処理剤と微粒子とを同時に添加し、硬化性樹脂との複合化を行うインテグラルブレンドのような方法を用いることも可能である。
《樹脂モノマー》
本発明に係るハードコート層は硬化性樹脂を用いることが好ましい。更に好ましくは、活性線硬化樹脂を用いる。活性線硬化樹脂とは、紫外線や電子線のような活性線照射により架橋反応等を経て硬化する樹脂を主たる主成分とする。活性線硬化樹脂としては、エチレン性不飽和二重結合を有するモノマーを含む成分が好ましく用いられ、紫外線や電子線のような活性線を照射することによって硬化させてハードコート層が形成される。活性線硬化樹脂としては紫外線硬化性樹脂や電子線硬化性樹脂が代表的なものとして挙げられるが、紫外線照射によって硬化する樹脂が好ましい。
《ハードコート層の塗布》
充分な耐久性、耐衝撃性、光学特性、および膜物性を付与する観点から、ハードコート層の膜厚は1μm〜100μmが好ましく、さらに好ましくは、2μm〜50μmである。ハードコート層は樹脂フィルムの両面に塗設されるが、表面(透明電極側)と裏面(透明電極と反対の面)のそれぞれの膜厚比はカール等のバランスに応じて調整することが可能であるが、表面と裏面の膜厚差は10μm以下が好ましい。また、表面側のハードコート層の膜厚は、透明電極および樹脂フィルムの厚さより小さいことが光学特性上好ましい。
ハードコート層の屈折率は、用いる透明電極、透明樹脂フィルムの屈折率との差が小さくなるように調整することが光学特性上、および膜物性改良上好ましい。本発明に係る表側ハードコート層の屈折率と透明電極との屈折率差は±0.2以内であり、更に好ましくは±0.15以内である。本発明に係る表側および裏側ハードコート層の屈折率と透明樹脂フィルムの屈折率との差異は±0.1以下であり、さらに好ましくは±0.5以下である。本発明の表側ハードコート層と裏側ハードコート層の屈折率の差異は±0.1以下であり、好ましくは同一の屈折率を有することである。
これらハードコート層はグラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター、インクジェット法等公知の方法で塗設することができる。
紫外線硬化性樹脂を光硬化反応により硬化させ、硬化皮膜層を形成するための光源としては、紫外線を発生する光源であれば制限無く使用できる。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることが出来る。照射条件はそれぞれのランプによって異なるが、活性線の照射量は、通常5〜500mJ/cm、好ましくは5〜150mJ/cmであるが、特に好ましくは20〜100mJ/cmである。
〔光散乱機能〕
本発明の有機エレクトロルミネッセンス素子の光出射側には透明基材中に取り込まれた光を外部へ取り出す際に生じる界面の全反射を緩和する目的で光散乱機能を有するものである。光散乱機能としては、有機EL素子の光出射面に光散乱機能を有する公知の光取り出しフィルムを付与する方法、透明基材内に光散乱性のフィラーを含有させる方法が挙げられる。透明基材内に光散乱性のフィラーを含有させる場合、含有させる層はハードコート層、透明フィルムのいずれでもよく、光散乱性のフィラーとしては、無機またはポリマーからなる公知のフィラーを使用することができる。無機化合物の例として、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、およびリン酸カルシウムを挙げることができる。ポリマーの例としては、シリコーン樹脂、フッ素樹脂、アクリル樹脂を挙げることができる。これらフィラーをハードコート層あるいは透明フィルムに添加する場合の添加量は0.1〜30質量%が好ましいが、光散乱性の程度に合わせて調整しても良い。
〔透明電極〕
本発明の有機EL素子における透明電極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性光透過性材料が挙げられる。また、IDIXO(In−ZnO)等非晶質で光透過性の導電膜を作製可能な材料を用いてもよい。本発明においては、透明電極は陽極として用いられることが好ましい。陽極はこれらの電極物質を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式製膜法を用いることもできる。陽極としてのシート抵抗は数百Ω/□以下が好ましい。更に膜厚は材料にもよるが、通常10〜1000nm、好ましくは10〜200nmの範囲で選ばれる。
本発明において透明電極の屈折率は、1.5以上2.0以下であることが好ましく、さらに1.6以上1.9以下であることが特に好ましい。
本発明においては、透明電極、ハードコート層、透明樹脂フィルムの屈折率や厚さのバランスを最適化することによって、従来から知られている光取り出し効率の向上だけでなく、微細な膜構造を有する有機エレクトロルミネッセンス素子の、膜物性を大幅に向上させることができるものである。
〔有機EL素子〕
有機EL素子の層構成の好ましい具体例を以下に示す。
(i)陽極/発光層/電子輸送層/陰極
(ii)陽極/正孔輸送層/発光層/電子輸送層/陰極
(iii)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極
(iv)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
(v)陽極/陽極バッファー層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
ここで、発光層は、少なくとも発光色の異なる2種以上の発光材料を含有していることが好ましく、単層でも複数の発光層からなる発光層ユニットを形成していてもよい。また、正孔輸送層には正孔注入層、電子阻止層も含まれる。
《発光層》
本発明に係る発光層は、電極または電子輸送層、正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。
本発明に係る発光層は、含まれる発光材料が前記要件を満たしていれば、その構成には特に制限はない。
また、同一の発光スペクトルや発光極大波長を有する層が複数層あってもよい。
各発光層間には非発光性の中間層を有していることが好ましい。
本発明における発光層の膜厚の総和は1〜100nmの範囲にあることが好ましく、更に好ましくは、より低い駆動電圧を得ることができることから30nm以下である。なお、本発明でいうところの発光層の膜厚の総和とは、発光層間に非発光性の中間層が存在する場合には、当該中間層も含む膜厚である。
個々の発光層の膜厚としては1〜50nmの範囲に調整することが好ましく、更に好ましくは1〜20nmの範囲に調整することである。青、緑、赤の各発光層の膜厚の関係については、特に制限はない。
発光層の作製には、後述する発光材料やホスト化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法、インクジェット法等の公知の薄膜化法により製膜して形成することができる。
本発明においては、各発光層には複数の発光材料を混合してもよく、また燐光発光材料と蛍光発光材料を同一発光層中に混合して用いてもよい。
本発明においては、発光層の構成として、ホスト化合物、発光材料(発光ドーパント化合物ともいう)を含有し、発光材料より発光させることが好ましい。
本発明に係る有機EL素子の発光層に含有されるホスト化合物としては、室温(25℃)における燐光発光の燐光量子収率が0.1未満の化合物が好ましい。更に好ましくは燐光量子収率が0.01未満である。また、発光層に含有される化合物の中で、その層中での体積比が50%以上であることが好ましい。
ホスト化合物としては、公知のホスト化合物を単独で用いてもよく、または複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。また、後述する発光材料を複数種用いることで異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。
本発明に用いられるホスト化合物としては、従来公知の低分子化合物でも、繰り返し単位をもつ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)でもいい。
公知のホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、且つ発光の長波長化を防ぎ、なお且つ高Tg(ガラス転移温度)である化合物が好ましい。ここで、ガラス転移点(Tg)とは、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS−K−7121に準拠した方法により求められる値である。
公知のホスト化合物の具体例としては、以下の文献に記載されている化合物が挙げられる。例えば、特開2001−257076号公報、同2002−308855号公報、同2001−313179号公報、同2002−319491号公報、同2001−357977号公報、同2002−334786号公報、同2002−8860号公報、同2002−334787号公報、同2002−15871号公報、同2002−334788号公報、同2002−43056号公報、同2002−334789号公報、同2002−75645号公報、同2002−338579号公報、同2002−105445号公報、同2002−343568号公報、同2002−141173号公報、同2002−352957号公報、同2002−203683号公報、同2002−363227号公報、同2002−231453号公報、同2003−3165号公報、同2002−234888号公報、同2003−27048号公報、同2002−255934号公報、同2002−260861号公報、同2002−280183号公報、同2002−299060号公報、同2002−302516号公報、同2002−305083号公報、同2002−305084号公報、同2002−308837号公報等が挙げられる。
次に、発光材料について説明する。
本発明に係る発光材料としては、蛍光性化合物、燐光発光材料(燐光性化合物、燐光発光性化合物等ともいう)を用いる。
本発明において、燐光発光材料とは励起三重項からの発光が観測される化合物であり、具体的には室温(25℃)にて燐光発光する化合物であり、燐光量子収率が25℃において0.01以上の化合物であると定義されるが、好ましい燐光量子収率は0.1以上である。
上記燐光量子収率は第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中での燐光量子収率は種々の溶媒を用いて測定できるが、本発明において燐光発光材料を用いる場合、任意の溶媒のいずれかにおいて上記燐光量子収率(0.01以上)が達成されればよい。
燐光発光材料の発光は原理としては2種挙げられ、一つはキャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーを燐光発光材料に移動させることで燐光発光材料からの発光を得るというエネルギー移動型、もう一つは燐光発光材料がキャリアトラップとなり、燐光発光材料上でキャリアの再結合が起こり燐光発光材料からの発光が得られるというキャリアトラップ型であるが、いずれの場合においても、燐光発光材料の励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件である。
燐光発光材料は、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができるが、好ましくは元素の周期表で8〜10族の金属を含有する錯体系化合物であり、更に好ましくはイリジウム化合物、オスミウム化合物、または白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。
本発明に係る有機エレクトロルミネッセンス素子には、蛍光発光体を用いることもできる。蛍光発光体(蛍光性ドーパント)の代表例としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、又は希土類錯体系蛍光体等が挙げられる。
また、従来公知のドーパントも本発明に用いることができ、例えば、国際公開第00/70655号パンフレット、特開2002−280178号公報、同2001−181616号公報、同2002−280179号公報、同2001−181617号公報、同2002−280180号公報、同2001−247859号公報、同2002−299060号公報、同2001−313178号公報、同2002−302671号公報、同2001−345183号公報、同2002−324679号公報、国際公開第02/15645号パンフレット、特開2002−332291号公報、同2002−50484号公報、同2002−332292号公報、同2002−83684号公報、特表2002−540572号公報、特開2002−117978号公報、同2002−338588号公報、同2002−170684号公報、同2002−352960号公報、国際公開第01/93642号パンフレット、特開2002−50483号公報、同2002−100476号公報、同2002−173674号公報、同2002−359082号公報、同2002−175884号公報、同2002−363552号公報、同2002−184582号公報、同2003−7469号公報、特表2002−525808号公報、特開2003−7471号公報、特表2002−525833号公報、特開2003−31366号公報、同2002−226495号公報、同2002−234894号公報、同2002−235076号公報、同2002−241751号公報、同2001−319779号公報、同2001−319780号公報、同2002−62824号公報、同2002−100474号公報、同2002−203679号公報、同2002−343572号公報、同2002−203678号公報等が挙げられる。
本発明においては、少なくとも一つの発光層に2種以上の発光材料を含有していてもよく、発光層における発光材料の濃度比が発光層の厚さ方向で変化していてもよい。
《中間層》
本発明において、各発光層間に非発光性の中間層(非ドープ領域等ともいう)を設ける場合について説明する。
非発光性の中間層とは、複数の発光層を有する場合、その発光層間に設けられる層である。
非発光性の中間層の膜厚としては1〜20nmの範囲にあるのが好ましく、更には3〜10nmの範囲にあることが隣接発光層間のエネルギー移動等相互作用を抑制し、且つ素子の電流電圧特性に大きな負荷を与えないということから好ましい。
この非発光性の中間層に用いられる材料としては、発光層のホスト化合物と同一でも異なっていてもよいが、隣接する2つの発光層の少なくとも一方の発光層のホスト材料と同一であることが好ましい。
非発光性の中間層は非発光層、各発光層と共通の化合物(例えば、ホスト化合物等)を含有していてもよく、各々共通ホスト材料(ここで、共通ホスト材料が用いられるとは、燐光発光エネルギー、ガラス転移点等の物理化学的特性が同一である場合やホスト化合物の分子構造が同一である場合等を示す。)を含有することにより、発光層−非発光層間の層間の注入障壁が低減され、電圧(電流)を変化させても正孔と電子の注入バランスが保ちやすいという効果を得ることができる。更に、非ドープ発光層に各発光層に含まれるホスト化合物と同一の物理的特性または同一の分子構造を有するホスト材料を用いることにより、従来の有機EL素子作製の大きな問題点である素子作製の煩雑さをも併せて解消することができる。
本発明で有機EL素子を用いる場合、ホスト材料はキャリアの輸送を担うため、キャリア輸送能を有する材料が好ましい。キャリア輸送能を表す物性としてキャリア移動度が用いられるが、有機材料のキャリア移動度は一般的に電界強度に依存性が見られる。電界強度依存性の高い材料は正孔と電子注入・輸送バランスを崩しやすいため、中間層材料、ホスト材料は移動度の電界強度依存性の少ない材料を用いることが好ましい。
また、一方では正孔や電子の注入バランスを最適に調整するためには、非発光性の中間層は後述する阻止層、即ち正孔阻止層、電子阻止層として機能することも好ましい態様として挙げられる。
《注入層:電子注入層、正孔注入層》
注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記の如く陽極と発光層または正孔輸送層の間、及び陰極と発光層または電子輸送層との間に存在させてもよい。
注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。
陽極バッファー層(正孔注入層)は、特開平9−45479号公報、同9−260062号公報、同8−288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。
陰極バッファー層(電子注入層)は、特開平6−325871号公報、同9−17574号公報、同10−74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるがその膜厚は0.1nm〜5μmの範囲が好ましい。
《阻止層:正孔阻止層、電子阻止層》
阻止層は、上記の如く有機化合物薄膜の基本構成層の他に必要に応じて設けられるものである。例えば、特開平11−204258号公報、同11−204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
正孔阻止層とは、広い意味では、電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する電子輸送層の構成を必要に応じて、本発明に係る正孔阻止層として用いることができる。正孔阻止層は、発光層に隣接して設けられていることが好ましい。
一方、電子阻止層とは、広い意味では、正孔輸送層の機能を有し、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。本発明に係る正孔阻止層、電子輸送層の膜厚としては好ましくは3〜100nmであり、更に好ましくは5〜30nmである。
《正孔輸送層》
正孔輸送層とは、正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層または複数層設けることができる。
正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。
正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。
芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′−テトラフェニル−4,4′−ジアミノフェニル;N,N′−ジフェニル−N,N′−ビス(3−メチルフェニル)−〔1,1′−ビフェニル〕−4,4′−ジアミン(TPD);2,2−ビス(4−ジ−p−トリルアミノフェニル)プロパン;1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン;N,N,N′,N′−テトラ−p−トリル−4,4′−ジアミノビフェニル;1,1−ビス(4−ジ−p−トリルアミノフェニル)−4−フェニルシクロヘキサン;ビス(4−ジメチルアミノ−2−メチルフェニル)フェニルメタン;ビス(4−ジ−p−トリルアミノフェニル)フェニルメタン;N,N′−ジフェニル−N,N′−ジ(4−メトキシフェニル)−4,4′−ジアミノビフェニル;N,N,N′,N′−テトラフェニル−4,4′−ジアミノジフェニルエーテル;4,4′−ビス(ジフェニルアミノ)クオードリフェニル;N,N,N−トリ(p−トリル)アミン;4−(ジ−p−トリルアミノ)−4′−〔4−(ジ−p−トリルアミノ)スチリル〕スチルベン;4−N,N−ジフェニルアミノ−(2−ジフェニルビニル)ベンゼン;3−メトキシ−4′−N,N−ジフェニルアミノスチルベンゼン;N−フェニルカルバゾール、更には米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′−ビス〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェニル(NPD)、特開平4−308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″−トリス〔N−(3−メチルフェニル)−N−フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。
更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型−Si、p型−SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。
また、特開平11−251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような所謂、p型正孔輸送材料を用いることもできる。本発明においては、より高効率の発光素子が得られることから、これらの材料を用いることが好ましい。
正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5〜200nmである。この正孔輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。
また、不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4−297076号公報、特開2000−196140号公報、同2001−102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
本発明においては、このようなp性の高い正孔輸送層を用いることが、より低消費電力の素子を作製することができるため好ましい。
《電子輸送層》
電子輸送層とは、電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層または複数層設けることができる。
従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側に隣接する電子輸送層に用いられる電子輸送材料(正孔阻止材料を兼ねる)としては、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。更に、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
また、8−キノリノール誘導体の金属錯体、例えば、トリス(8−キノリノール)アルミニウム(Alq)、トリス(5,7−ジクロロ−8−キノリノール)アルミニウム、トリス(5,7−ジブロモ−8−キノリノール)アルミニウム、トリス(2−メチル−8−キノリノール)アルミニウム、トリス(5−メチル−8−キノリノール)アルミニウム、ビス(8−キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、GaまたはPbに置き替わった金属錯体も、電子輸送材料として用いることができる。その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型−Si、n型−SiC等の無機半導体も電子輸送材料として用いることができる。
電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。電子輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5〜200nmである。電子輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。
また、不純物をドープしたn性の高い電子輸送層を用いることもできる。その例としては、特開平4−297076号公報、同10−270172号公報、特開2000−196140号公報、同2001−102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
本発明においては、このようなn性の高い電子輸送層を用いることがより低消費電力の素子を作製することができるため好ましい。
《陰極》
陰極としては仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm〜5μm、好ましくは50nm〜200nmの範囲で選ばれる。尚、発光した光を透過させるため、有機EL素子の陽極または陰極のいずれか一方が透明または半透明であれば発光輝度が向上し好都合である。
また、陰極に上記金属を1nm〜20nmの膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
〔光取り出し〕
有機EL素子は空気よりも屈折率の高い(屈折率が1.7〜2.1程度)層の内部で発光し、発光層で発生した光のうち15%から20%程度の光しか取り出せないことが一般的に言われている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として光が素子側面方向に逃げるためである。
この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(米国特許第4,774,435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(特開昭63−314795号公報)、素子の側面等に反射面を形成する方法(特開平1−220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(特開昭62−172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(特開2001−202827号公報)、基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法(特開平11−283751号公報)等がある。
本発明においては、これらの方法を本発明の有機EL素子と組み合わせて用いることができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、あるいは基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法を好適に用いることができる。
本発明はこれらの手段を組み合わせることにより、更に高輝度あるいは耐久性に優れた素子を得ることができる。
透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚みで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど外部への取り出し効率が高くなる。
低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマー等が挙げられる。透明基板の屈折率は一般に1.5〜1.7程度であるので、低屈折率層は屈折率がおよそ1.5以下であることが好ましい。また、更に1.35以下であることが好ましい。
また、低屈折率媒質の厚みは媒質中の波長の2倍以上となるのが望ましい。これは低屈折率媒質の厚みが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。
全反射を起こす界面もしくはいずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は回折格子が1次の回折や2次の回折といった所謂ブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光層から発生した光のうち層間での全反射等により外に出ることができない光を、いずれかの層間もしくは、媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。
導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な1次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。
回折格子を導入する位置としては前述の通り、いずれかの層間もしくは媒質中(透明基板内や透明電極内)でもよいが、光が発生する場所である有機発光層の近傍が望ましい。
このとき、回折格子の周期は媒質中の光の波長の約1/2〜3倍程度が好ましい。
回折格子の配列は正方形のラチス状、三角形のラチス状、ハニカムラチス状等、2次元的に配列が繰り返されることが好ましい。
《集光シート》
本発明の有機EL素子は基板の光取り出し側に、例えば、マイクロレンズアレイ状の構造を設けるように加工したり、あるいは所謂集光シートと組み合わせることにより、特定方向、例えば、素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。
マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10μm〜100μmが好ましい。これより小さくなると回折の効果が発生して色付く、大きすぎると厚みが厚くなり好ましくない。
集光シートとしては、例えば、液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして、例えば、住友スリーエム社製輝度上昇フィルム(BEF)等を用いることができる。プリズムシートの形状としては、例えば、基材に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であってもよい。
また、発光素子からの光放射角を制御するために、光拡散板・フィルムを集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)等を用いることができる。
〔有機EL素子の作製方法〕
本発明に係る有機EL素子の作製方法の一例として、陽極/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極からなる有機EL素子の作製法について説明する。
まず適当な支持基板上に所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10〜200nmの膜厚になるように蒸着やスパッタリング等の方法により形成させ、陽極を作製する。次に、この上に有機EL素子材料である正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層の有機化合物薄膜を形成させる。
この有機化合物薄膜の薄膜化の方法としては、前記の如く蒸着法、ウェットプロセス(スピンコート法、キャスト法、インクジェット法、印刷法)等があるが、均質な膜が得られやすく、且つピンホールが生成しにくい等の点から、真空蒸着法、スピンコート法、インクジェット法、印刷法が特に好ましい。更に層毎に異なる製膜法を適用してもよい。製膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50〜450℃、真空度10−6〜10−2Pa、蒸着速度0.01〜50nm/秒、基板温度−50〜300℃、膜厚0.1nm〜5μm、好ましくは5〜200nmの範囲で適宜選ぶことが望ましい。
これらの層を形成後、その上に陰極用物質からなる薄膜を1μm以下好ましくは50〜200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法により形成させ、陰極を設けることにより所望の有機EL素子が得られる。この有機EL素子の作製は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる製膜法を施しても構わない。その際、作業を乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。
また作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。このようにして得られた多色の液晶表示装置に直流電圧を印加する場合には、陽極を+、陰極を−の極性として電圧2〜40V程度を印加すると発光が観測できる。また交流電圧を印加してもよい。なお、印加する交流の波形は任意でよい。
〔用途〕
本発明の有機EL素子は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。発光光源として、例えば、家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではないが、特にカラーフィルターと組み合わせた液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
〔照明装置〕
本発明の有機EL素子は、また、照明装置として、実質白色の発光を生じる白色発光有機EL素子に適用できる。複数の発光材料により複数の発光色を同時に発光させて混色により白色発光を得る。複数の発光色の組み合わせとしては、青色、緑色、赤色の3原色の3つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙色等の補色の関係を利用した2つの発光極大波長を含有したものでもよい。
また、複数の発光色を得るための発光材料の組み合わせは、複数のリン光または蛍光を発光する材料(発光ドーパント)を、複数組み合わせたもの、蛍光またはリン光を発光する発光材料と、該発光材料からの光を励起光として発光する色素材料とを組み合わせたもののいずれでもよいが、本発明に係わる白色発光有機EL素子においては、発光ドーパントを複数組み合わせる方式が好ましい。
複数の発光色を得るための有機EL素子の層構成としては、複数の発光ドーパントを、一つの発光層中に複数存在させる方法、複数の発光層を有し、各発光層中に発光波長の異なるドーパントをそれぞれ存在させる方法、異なる波長に発光する微小画素をマトリックス状に形成する方法等が挙げられる。
本発明に係わる白色発光有機EL素子においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもいいし、電極と発光層をパターニングしてもいいし、素子全層をパターニングしてもいい。
発光層に用いる発光材料としては特に制限はなく、例えば液晶表示素子におけるバックライトであれば、CF(カラーフィルター)特性に対応した波長範囲に適合するように、本発明に係わる白金錯体、また公知の発光材料の中から任意のものを選択して組み合わせて白色化すればよい。
このように、白色発光有機EL素子は、前記表示デバイス、ディスプレイに加えて、各種発光光源、照明装置として、家庭用照明、車内照明、また、露光光源のような1種のランプとして、液晶表示装置のバックライト等、表示装置にも有用に用いられる。
その他、時計等のバックライト、看板広告、信号機、光記憶媒体等の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等、さらには表示装置を必要とする一般の家庭用電気器具等広い範囲の用途が挙げられる。
《ハードコート付き透明フィルム101の作製》
(ジルコニア粒子の調製)
オキシ塩化ジルコニウム8水塩の2600gを純水40L(リットル)に溶解させたジルコニウム塩溶液に、28%アンモニア水を340g、純水を20L溶解させた希アンモニア水を攪拌しながら加え、ジルコニア前駆体スラリーを調製した。
次いで、このジルコニア前駆体スラリーに、硫酸ナトリウム400gを5Lの純水に溶解させた硫酸ナトリウム水溶液を攪拌しながら加えた。
次いで、この混合物を、乾燥器を用いて、大気中、120℃にて24時間、乾燥させて固形物を得た。
次いで、この固形物を自動乳鉢等により粉砕した後、電気炉を用いて、大気中、500℃にて1時間焼成した。この焼成物を純水中に投入し、攪拌してスラリー状とした後、遠心分離器を用いて洗浄を行い、添加した硫酸ナトリウムを十分に除去した後、乾燥器にて乾燥させ、ジルコニア粒子1を調製した。TEM観察の結果、平均粒子径は5nmであった。XRDから粒子がZrO結晶であることが確認された。
(ジルコニア粒子に対する表面処理)
上記のジルコニア粒子10gを、フェニルトリメトキシシラン(信越化学製)2gと、メタクリロキシプロピルトリメトキシシラン0.1gを含むトルエン100mlに加え、窒素下で0.03mmのジルコニアビーズを用いて分散しながら100℃まで加熱し、均一分散液を得た後、そのまま窒素下で5時間加熱還流して表面処理済ジルコニア粒子のトルエン分散液を得た。
(樹脂中への粒子分散)
硬化性樹脂モノマー(フルオレンアクリレート)と、上記表面処理済ジルコニア分散液(所望の屈折率となる量)を30vol%で混合し、重合開始剤を添加してハードコート用モノマー塗布液を調製した。
(ハードコート層)
得られたハードコート用モノマー塗布液を厚さ125μmの二軸延伸PEN(帝人デュポン社製;屈折率1.75)の両面にそれぞれ乾燥膜厚5μmになるように塗布し、紫外線を照射して硬化させ、ハードコート付き透明フィルム試料101を得た。ハードコート層の屈折率は1.75であった。
《ハードコート付き透明フィルム試料102〜108および110〜123の作製》
ハードコート付き透明フィルム101に対し、添加するZrOの量、ハードコート層の表裏膜厚を表1のように変化させた以外は同様にしてハードコート付き透明フィルム試料102〜108および110〜123を作製した。なお、試料109はハードコート層のない二軸延伸PENフィルムである。また、ハードコート付き透明フィルム試料117〜123の基材として、厚さ125μmの二軸延伸PET(コニカミノルタ社製;屈折率1.65)フィルムを用いた。
《ハードコート付き透明フィルムの評価》
〔耐傷性の評価〕
得られた試料101〜123に対し、2cm×2cmのスチールウールを用い、この上に500gの加重をかけて試料表面を10回往復して擦り、1cm幅あたりに発生する傷の本数を目視でカウントした。得られた結果を表1に示す。
◎:傷なし
○:数本の傷がつく
△:10〜49本の傷がつく
×:50本以上の傷がつく
〔カールの評価〕
A4サイズに断裁した試料フィルムを80℃、60%RHで50時間の加熱保存を行った後、23℃、55%RHの部屋で24時間調湿し、平らな机上に平置きした。4隅の反りあがり高さを計測し、表面を上にしたときの反りあがり高さを+、裏面を上にしたときの反りあがり高さを−として、絶対値の最大値を基に下記ランク付けを行った。得られた結果を表1に示す。
◎:反りあがり高さ±0.5cm未満
○:反りあがり高さ±0.5〜1.0cm未満
△:反りあがり高さ±1.0〜2.0cm未満
×:反りあがり高さ±2.0cm以上
尚、特許文献5を参考にし、ハードコートを屈折率の傾斜構造とした試料も作製したが、他のハードコート付き透明フィルムに比して耐傷性およびカールが大きく劣ることがわかった。
実施例2
得られた両面ハードコート付き透明フィルム試料101上にITO(インジウムチンオキシド;屈折率1.85)を100nm製膜した基板にパターニングを行った後、このITO透明電極を設けた基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。この基板上に、ポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホネート(PEDOT/PSS、Bayer製、Baytron P Al 4083)を純水で70%に希釈した溶液を3000rpm、30秒でスピンコート法により製膜した後、基板表面温度200℃にて1時間乾燥し、膜厚30nmの正孔注入層を設けた。
この基板を、窒素雰囲気下、JIS B 9920に準拠し、測定した清浄度がクラス100で、露点温度が−80℃以下、酸素濃度0.8ppmのグローブボックスへ移した。グローブボックス中にて正孔輸送層用塗布液を下記のように調製し、スピンコーターにて、1500rpm、30秒の条件で塗布した。この基板を、基板表面温度150℃で30分間加熱乾燥し正孔輸送層を設けた。別途用意した基板にて、同条件にて塗布を行い測定したところ、膜厚は20nmであった。
(正孔輸送層用塗布液)
モノクロロベンゼン 100g
ポリ−(N,N′−ビス(4−ブチルフェニル)−N,N′−ビス(フェニル)ベンジジン)(ADS254BE:アメリカン・ダイ・ソース社製)
0.5g
次いで、発光層塗布液を下記のように調製し、スピンコーターにて、2000rpm、30秒の条件で塗布した。さらに基板表面温度120℃で30分加熱し発光層を設けた。別途用意した基板にて、同条件にて塗布を行い測定したところ、膜厚は40nmであった。尚、下記発光層組成物のうち、最も低いTgを示したのはH−Aであり、132℃であった。
(発光層用塗布液)
酢酸ブチル 100g
H−A 1g
D−A 0.11g
D−B 0.002g
D−C 0.002g
次いで、電子輸送層用塗布液を下記のように調製し、スピンコーターにて、1500rpm、30秒の条件で塗布した。さらに基板表面温度120℃で30分加熱し電子輸送層を設けた。別途用意した基板にて、同条件にて塗布を行い測定したところ、膜厚は30nmであった。
(電子輸送層用塗布液)
2,2,3,3−テトラフルオロ−1−プロパノール 100g
ET−A 0.75g
次いで、電子輸送層まで設けた基板を、大気曝露せずに、蒸着機に移動し、4×10−4Paまで減圧した。尚、フッ化カリウムおよびアルミニウムをそれぞれタンタル製抵抗加熱ボートに入れ、蒸着機に取り付けておいた。
先ず、フッ化カリウムの入った抵抗加熱ボートに通電し加熱し、基板上にフッ化カリウムからなる電子注入層を3nm設けた。続いて、アルミニウムの入った抵抗加熱ボートに通電加熱し、蒸着速度1〜2nm/秒でアルミニウムからなる膜厚100nmの陰極を設けた。
(光取り出し部材の付与)
得られた有機EL素子の光出射面に(株)きもと製光拡散フィルム(MTN−W1)を粘着層を介して貼付し、有機EL素子201とした。
《有機EL素子202〜223の作製》
用いる透明樹脂基板101を表2の通り102〜123に変更した以外は同様にして有機EL素子202〜223を作製した。
《有機EL素子の評価》
〔外部取り出し量子効率〕
作製した有機EL素子に対し、2.5mA/cm定電流を流したときの外部取り出し量子効率(%)を不活性ガス雰囲気下で測定した。なお、測定には分光放射輝度計CS−1000(コニカミノルタセンシング製)を用いた。得られた結果を有機EL素子101の測定値を100としたときの相対値で表2に表した。
〔曲げ伸ばし試験〕
作製した有機EL素子の発光部に対し、光出射面を内側にし、屈曲半径2cmになるように曲げて伸ばす動作を不活性ガス雰囲気下で10回繰り返した。曲げ伸ばし試験を実施した前後の発光状態を目視で観察し、下記のランクづけを行った。得られた結果を表2に示す。
◎:輝点、黒点がなく、均一な発光である
○:輝点あるいは黒点がみられるが、安定した発光が見られる
△:輝点あるいは黒点がみられ、発光輝度が不安定である
×:発光しない
得られた結果を表2に表した。尚、輝点および黒点が観察された部分の断面を観察したところ、ハードコート層とITOの界面から膜剥がれが生じていることが判った。
尚、特許文献5を参考にし、ハードコートを屈折率の傾斜構造とした透明フィルムを用いた有機EL素子も作製したが、発光状態が著しく劣り、評価不能であった。
また、実施例1および2のハードコート樹脂に添加した微粒子を平均粒径500nmのジルコニア粒子としたフィルム基板を作製したが、ハードコート層が白濁し、ハードコート層にも多数のクラックが発生し、評価不能であった。
実施例3
実施例2で作製した本発明の有機EL素子201において、光取り出し部材((株)きもと製光拡散フィルム(MTN−W1))を使用せず、替わりにハードコート層に粒径1.5μmのPMMAからなるフィラーを2質量%添加した以外は同様にして有機EL素子301を作製した。同様に、有機EL素子201において、光取り出し部材を使用せず、替わりに、用いる透明フィルムを粒径1.5μmのPMMAからなるフィラーが2質量%添加されたフィルムに換えた以外は同様にして有機EL素子302を作製した。実施例2と同様の評価を行い、得られた結果を表3に示す。尚、有機EL素子201において光取り出し部材を使用しない以外は同様にして作製した素子303を比較素子とした。
実施例4
実施例2で作製した本発明の有機EL素子201をガラスケースで覆い、照明装置とした。ガラスカバー内には窒素ガスが充填され、光出射面と反対側のガラスカバー内に捕水剤を設けた。
本発明に係る照明装置は発光効率が高く、発光寿命の長い白色光を発する薄型の照明装置として使用することが出来た。
実施例5
実施例2で作製した本発明の有機EL素子201を透明バリヤフィルム(二酸化ケイ素膜で被覆された透明樹脂フィルム)で覆い、フレキシブルな照明装置とした。本発明に係る照明装置は多少の屈曲動作に対しても高い発光効率を維持し、発光寿命の長い白色光を発する薄型の照明装置として使用することが出来た。

Claims (10)

  1. 透明基材上に透明電極、有機エレクトロルミネッセンス層および陰極が順次積層された有機エレクトロルミネッセンス素子において、前記透明基材が透明樹脂フィルムであり、前記透明樹脂フィルムの両面にハードコート層を有し、それぞれの屈折率が式(1)〜(4)を満足し、かつ有機エレクトロルミネッセンス層に対して光出射側に光散乱機能を有し、
    前記透明樹脂フィルムの屈折率n(B)が1.6以上であり、
    前記透明電極側の前記ハードコート層、及び、前記透明電極と反対側の前記ハードコート層は、透明樹脂と、前記透明樹脂に分散された微粒子とを有し、
    前記透明電極側の前記ハードコート層、及び、前記透明電極と反対側の前記ハードコート層は、前記微粒子を5〜30質量%含有し、
    前記微粒子は粒径1〜50nm、及び、屈折率1.6以上であり、
    前記透明電極側の前記ハードコート層、及び、前記透明電極と反対側の前記ハードコート層の屈折率が、前記透明樹脂に対して0.02以上高い
    ことを特徴とする有機エレクトロルミネッセンス素子。
    式(1) −0.2≦n(H1)−n(A)≦0.2
    式(2) −0.1≦n(H1)−n(B)≦0.1
    式(3) −0.1≦n(H2)−n(B)≦0.1
    式(4) −0.1≦n(H1)−n(H2)≦0.1
    ただし、n(A):透明電極の屈折率
    n(H1):ハードコート層(透明電極側)の屈折率
    n(H2):ハードコート層(透明電極と反対側)の屈折率
    n(B):透明樹脂フィルムの屈折率
  2. 前記透明樹脂が、硬化性樹脂であることを特徴とする請求項1記載の有機エレクトロルミネッセンス素子。
  3. 前記透明電極側の前記ハードコート層、及び、前記透明電極と反対側の前記ハードコート層は、光散乱性のフィラーを含有することを特徴とする請求項1又は2に記載の有機エレクトロルミネッセンス素子。
  4. 前記透明電極側の前記ハードコート層、及び、前記透明電極と反対側の前記ハードコート層は、前記光散乱性のフィラーを0.1〜30質量%含有することを特徴とする請求項3に記載の有機エレクトロルミネッセンス素子。
  5. 前記透明樹脂フィルムが、光散乱性のフィラーを含有したフィルムであることを特徴とする請求項1〜4の何れか1項記載の有機エレクトロルミネッセンス素子。
  6. 前記透明基材上の透明電極と反対側の面に光取り出しフィルムを有することを特徴とする請求項1〜5の何れか1項記載の有機エレクトロルミネッセンス素子。
  7. 前記透明樹脂フィルムがポリエステルフィルムであることを特徴とする請求項1〜6の何れか1項記載の有機エレクトロルミネッセンス素子。
  8. 前記透明樹脂フィルムが延伸ポリエチレンナフタレートフィルムであることを特徴とする請求項1〜6の何れか1項記載の有機エレクトロルミネッセンス素子。
  9. 前記ハードコート層の膜厚が少なくとも2μm以上50μm以下であり、かつ下記式(5)〜(7)を満たすことを特徴とする請求項1〜8の何れか1項記載の有機エレクトロルミネッセンス素子。
    式(5) d(H1)>d(A)
    式(6) d(H1)<d(B)
    式(7) −10μm<d(H2)−d(H1)<+10μm
    ただし、d(A):透明電極の膜厚
    d(H1):ハードコート層(透明電極側)の膜厚
    d(H2):ハードコート層(透明電極と反対側)の膜厚
    d(B):樹脂フィルムの膜厚
  10. 請求項1〜9の何れか1項に記載の有機エレクトロルミネッセンス素子を用いることを特徴とする照明装置。
JP2010549487A 2009-02-09 2010-02-03 有機エレクトロルミネッセンス素子、それを用いた照明装置 Expired - Fee Related JP5434931B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010549487A JP5434931B2 (ja) 2009-02-09 2010-02-03 有機エレクトロルミネッセンス素子、それを用いた照明装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009027160 2009-02-09
JP2009027160 2009-02-09
PCT/JP2010/051489 WO2010090207A1 (ja) 2009-02-09 2010-02-03 有機エレクトロルミネッセンス素子、それを用いた照明装置
JP2010549487A JP5434931B2 (ja) 2009-02-09 2010-02-03 有機エレクトロルミネッセンス素子、それを用いた照明装置

Publications (2)

Publication Number Publication Date
JPWO2010090207A1 JPWO2010090207A1 (ja) 2012-08-09
JP5434931B2 true JP5434931B2 (ja) 2014-03-05

Family

ID=42542100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010549487A Expired - Fee Related JP5434931B2 (ja) 2009-02-09 2010-02-03 有機エレクトロルミネッセンス素子、それを用いた照明装置

Country Status (3)

Country Link
US (1) US8686630B2 (ja)
JP (1) JP5434931B2 (ja)
WO (1) WO2010090207A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5532605B2 (ja) * 2006-12-18 2014-06-25 コニカミノルタ株式会社 多色燐光発光有機エレクトロルミネッセンス素子及び照明装置
WO2011062215A1 (ja) * 2009-11-19 2011-05-26 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子の製造方法並びにこれを用いる照明装置
JP5827104B2 (ja) * 2010-11-19 2015-12-02 株式会社半導体エネルギー研究所 照明装置
CN102736145A (zh) * 2012-06-29 2012-10-17 南京第壹有机光电有限公司 增光膜、其制备方法及使用该增光膜的器件
KR20140101506A (ko) * 2013-02-08 2014-08-20 삼성디스플레이 주식회사 유기 발광 장치
US11433651B2 (en) 2015-03-18 2022-09-06 Riken Technos Corporation Hard coat laminated film
US10809418B2 (en) 2015-03-18 2020-10-20 Riken Technos Corporation Anti-glare hard coat laminated film
EP3513970B1 (en) 2016-09-14 2023-05-03 Riken Technos Corporation Hard coat laminated film
JP7064313B2 (ja) 2016-11-25 2022-05-10 リケンテクノス株式会社 ハードコート積層フィルム
JP7037757B2 (ja) * 2018-03-14 2022-03-17 大日本印刷株式会社 保護層転写シート
US11588137B2 (en) 2019-06-05 2023-02-21 Semiconductor Energy Laboratory Co., Ltd. Functional panel, display device, input/output device, and data processing device
US11659758B2 (en) 2019-07-05 2023-05-23 Semiconductor Energy Laboratory Co., Ltd. Display unit, display module, and electronic device
JPWO2021009587A1 (ja) 2019-07-12 2021-01-21
JPWO2021069999A1 (ja) 2019-10-11 2021-04-15

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004020746A (ja) * 2002-06-13 2004-01-22 Sumitomo Bakelite Co Ltd 発光装置用基板およびこれを用いた発光装置
JP2005142002A (ja) * 2003-11-06 2005-06-02 Toyota Industries Corp 照明装置及び表示装置
JP2006073636A (ja) * 2004-08-31 2006-03-16 Japan Science & Technology Agency フレキシブル透明有機エレクトロルミネッセンス装置
JP2006286616A (ja) * 2005-03-11 2006-10-19 Mitsubishi Chemicals Corp エレクトロルミネッセンス素子及び照明装置
JP2008543074A (ja) * 2005-06-03 2008-11-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 有機エレクトロルミネッセント光源

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0766856B2 (ja) 1986-01-24 1995-07-19 株式会社小松製作所 薄膜el素子
US4774435A (en) 1987-12-22 1988-09-27 Gte Laboratories Incorporated Thin film electroluminescent device
JPH1167444A (ja) 1997-08-27 1999-03-09 Tdk Corp 有機el素子
JP2991183B2 (ja) 1998-03-27 1999-12-20 日本電気株式会社 有機エレクトロルミネッセンス素子
JP4279971B2 (ja) 1999-11-10 2009-06-17 パナソニック電工株式会社 発光素子
JP4302914B2 (ja) 2001-07-30 2009-07-29 三星モバイルディスプレイ株式會社 発光素子、および表示装置
JP2003059642A (ja) 2001-08-09 2003-02-28 Matsushita Electric Ind Co Ltd 有機エレクトロルミネッセンス素子、それを用いた照明装置、表示装置及び携帯端末
JP4103531B2 (ja) 2002-10-09 2008-06-18 松下電工株式会社 有機電界発光素子
WO2004089042A1 (ja) * 2003-03-12 2004-10-14 Mitsubishi Chemical Corporation エレクトロルミネッセンス素子
US7030555B2 (en) * 2003-04-04 2006-04-18 Nitto Denko Corporation Organic electroluminescence device, planar light source and display device using the same
EP1548856A3 (en) * 2003-12-26 2012-08-08 Nitto Denko Corporation Electroluminescence device, planar light source and display using the same
JP2005297498A (ja) * 2004-04-16 2005-10-27 Dainippon Printing Co Ltd 可撓性基板およびそれを用いた有機デバイス
KR100624307B1 (ko) * 2005-02-23 2006-09-19 제일모직주식회사 표시장치용 저반사율의 휘도 향상 다층 광학필름 및 이를이용한 유기발광다이오드 표시장치
EP1860919B1 (en) 2005-03-11 2012-02-15 Mitsubishi Chemical Corporation Electroluminescence element and lighting apparatus
JP2007073465A (ja) 2005-09-09 2007-03-22 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、それを用いた表示装置及び照明装置
KR100813850B1 (ko) * 2007-03-29 2008-03-17 삼성에스디아이 주식회사 발광 장치
JP5093231B2 (ja) 2007-04-24 2012-12-12 旭硝子株式会社 膜付き基板、透明導電性膜付き基板および発光素子
KR101407578B1 (ko) * 2007-07-24 2014-06-13 삼성디스플레이 주식회사 페닐페녹사진 또는 페닐페노시아진계 화합물 및 이를이용한 유기 전계 발광 소자
US20090052195A1 (en) * 2007-08-21 2009-02-26 Fujifilm Corporation Scattering member and organic electroluminescent display device using the same
KR101296656B1 (ko) * 2008-06-24 2013-08-14 엘지디스플레이 주식회사 유기 발광 표시장치 및 그의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004020746A (ja) * 2002-06-13 2004-01-22 Sumitomo Bakelite Co Ltd 発光装置用基板およびこれを用いた発光装置
JP2005142002A (ja) * 2003-11-06 2005-06-02 Toyota Industries Corp 照明装置及び表示装置
JP2006073636A (ja) * 2004-08-31 2006-03-16 Japan Science & Technology Agency フレキシブル透明有機エレクトロルミネッセンス装置
JP2006286616A (ja) * 2005-03-11 2006-10-19 Mitsubishi Chemicals Corp エレクトロルミネッセンス素子及び照明装置
JP2008543074A (ja) * 2005-06-03 2008-11-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 有機エレクトロルミネッセント光源

Also Published As

Publication number Publication date
US20110279024A1 (en) 2011-11-17
US8686630B2 (en) 2014-04-01
JPWO2010090207A1 (ja) 2012-08-09
WO2010090207A1 (ja) 2010-08-12

Similar Documents

Publication Publication Date Title
JP5434931B2 (ja) 有機エレクトロルミネッセンス素子、それを用いた照明装置
US8987711B2 (en) Organic electroluminescence element, method for producing organic electroluminescence element, and illumination device using organic electroluminescence element
JP5835216B2 (ja) 光取り出しシート、有機エレクトロルミネッセンス素子及び照明装置
JP5655795B2 (ja) 有機エレクトロルミネッセンス素子及び照明装置
US8310146B2 (en) Organic electroluminescent device, liquid crystal display and illuminating device
JP5994884B2 (ja) 有機エレクトロルミネッセンス素子および照明装置
JP2006236748A (ja) 有機電界発光装置
JP2007180277A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2011108392A (ja) 光拡散シートおよびその製造方法、有機エレクトロルミネッセンス素子
JP5664715B2 (ja) 有機エレクトロルミネッセンス素子
JPWO2015147073A1 (ja) 有機エレクトロルミネッセンス素子及び照明装置
JP5708677B2 (ja) 有機エレクトロルミネッセンス素子および照明装置
JP2011150803A (ja) 有機エレクトロルミネッセンス素子および照明装置
WO2012172883A1 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP4978034B2 (ja) 有機エレクトロルミネッセンス素子
JP5126162B2 (ja) 面発光体用基板とそれを用いた有機エレクトロルミネッセンス素子
JP5056827B2 (ja) 有機エレクトロルミネッセンス素子、それを用いた照明装置
JP2011039375A (ja) 光散乱基板、光散乱基板の製造方法及び有機エレクトロルミネッセンス素子
JP2007221028A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2010134419A1 (ja) 有機エレクトロルミネッセンス素子、それを用いた照明装置
JP5353852B2 (ja) 面発光体および面発光体の製造方法
JP2011171093A (ja) 面発光体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120710

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131125

R150 Certificate of patent or registration of utility model

Ref document number: 5434931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees