JP5420671B2 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP5420671B2
JP5420671B2 JP2011530722A JP2011530722A JP5420671B2 JP 5420671 B2 JP5420671 B2 JP 5420671B2 JP 2011530722 A JP2011530722 A JP 2011530722A JP 2011530722 A JP2011530722 A JP 2011530722A JP 5420671 B2 JP5420671 B2 JP 5420671B2
Authority
JP
Japan
Prior art keywords
power supply
vias
lsi
power
tsv
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011530722A
Other languages
English (en)
Other versions
JPWO2011030467A1 (ja
Inventor
雅直 山岡
健一 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2011030467A1 publication Critical patent/JPWO2011030467A1/ja
Application granted granted Critical
Publication of JP5420671B2 publication Critical patent/JP5420671B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • H01L23/5286Arrangements of power or ground buses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0652Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next and on each other, i.e. mixed assemblies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06541Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/50Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Description

本発明は、複数の半導体集積回路がシリコン貫通ビア(TSV:Through Silicon Via)を用いて3次元に集積された半導体装置に関する。
近年、半導体集積回路(LSI:Large Scale Integrated Circuit)では、半導体製造プロセスの微細化に伴い、1枚のチップに集積される回路量が増加するとともに、その回路の性能も向上している。しかし、チップをパッケージに封入し、そのパッケージをボード上に搭載した場合、チップ間の通信距離が長いため通信の性能が低下し、チップ内の性能向上に追いつけない。また、微細化の限界や、最先端プロセスの利用コストの増大などの影響で、今後はこれまでのような1チップ上への集積化による性能向上が必ずしも最適解ではなくなる。
ここで、このチップ間の性能向上を可能とする技術として、複数のチップを3次元に積層し、それぞれのチップ間はシリコン貫通ビアを用いて接続してチップ間通信を行う技術が特許文献1に開示されている。また、信号に用いられる貫通電極のショート不良を発見する技術が特許文献2に紹介されている。
特開2008−4853号公報 特開2008−96312号公報
上記のように、複数のチップを3次元に積層し、TSVによりチップ間の通信を行えば、チップ間の通信距離を短縮することが出来、チップ間の通信による性能の劣化を抑えることが可能となる。その場合、チップ内の回路は高速に動作するため各チップが消費する電力は比較的大きく、それぞれのチップに十分に電力を供給する必要がある。従来のように、チップを3次元に集積してない場合には、1チップで消費される電力には限りがあったため、チップを配置しているパッケージ基板との間の配線により電力の供給を行うことが出来た。しかし、3次元にチップを集積した場合には、積層する数が大きくなればなるほど、供給する電力が増大する。従って、電源を供給するためのTSVも大量に準備する必要がある。しかしながら、TSVを用いた場合には、LSIのシリコン基板を貫通する穴を開け、チップを貫通する金属配線を形成する必要があるため、貫通ビアの周辺に比較的大規模な回路、たとえばCPUやオンチップメモリを配置することが難しい。従って、大量に準備した電源用のTSVをどのように配置するのが効率的なのかを検討する必要がある。
さらに、3次元にチップを積層する場合、1種類のチップを積層する場合もあれば、複数種、例えばプロセッサチップとメモリチップといった異なるチップを積層する必要がある。この場合に、それぞれのチップに搭載されている回路に最適化した貫通ビアの配置を採用することは困難である。
また、電源供給用のシリコン貫通ビアに不良が発生すると、積層されたLSIは全く動作しなかったり、異常動作が発生したりする。更に、不良の発生数が全体の電極数に対して少数の場合、LSIの特定の動作状態のみ異常動作が発生する場合もある。従来のLSIの電源テスト手法は、製造時にウェハ表面に出ている電極にプローブを当てることにより検査する手法が取られていた。しかしながらシリコン貫通ビアにより接続された積層LSIのテスト手法、特にシリコン貫通ビアの接続状態のテスト手法は、従来のテスト手法で想定されていない点が存在する。即ち、従来のシリコン・ウェハ片面のみのデバイステスト手法では、ウェハ表面に出ている電極にプローブを当てることによりテストを行うが、貫通ビアを用いた積層LSIでは、当然のことだが、積層後にしかテストができない。そうすると、下層にあるLSIの電極が上層にあるLSIにより隠されてしまい、プローブをあてて検査することはできない。また、信号に用いられる貫通電極とLSI基板との間のショート不良を発見する特許文献2に紹介されている方法は、複数のLSIを積層後に生じる貫通電極の断線不良や貫通電極同士の接触不良等を検出することはできない。断線不良や接触不良が生じると必要十分な電源が供給されなくなり、動作不良が生じるためこれらの不良の有無も検査する必要がある。
更には、積層型半導体装置では、同一構成のチップから積層枚数を変更することで、多種の製品へ展開する。従って、装置外部からテストを行う場合は、積層枚数毎にテスト手順を変更する必要があり、検査工程が煩雑になるという課題がある。
したがって、本発明の目的とするところは、3次元に積層したLSIチップに十分な電力を供給するとともに、異なる種類のチップにおいて共通の貫通ビアの配置を行うことである。また、電源用シリコン貫通ビアのための新しいテスト手法を提案することにある。
本発明の代表的な半導体装置は、以下の通りである。まず電源用貫通ビアの配置に関し、第1の方向に延びる第1及び第2の辺と、第1の方向と交差する第2の方向に延びる第3及び第4の辺とを有する第1半導体基板上に形成された第1回路ブロックと、第1半導体基板と接続され、第1回路ブロックから出力される信号を他の第2半導体基板に形成された第2回路ブロックに伝達する複数の信号線用貫通ビアと、第1回路ブロックに電源を供給するための複数の電源用貫通ビアとを具備し、複数の電源用貫通ビアは、第3の辺及び第4の辺に沿って、第1半導体基板の端に形成され、かつ、第1の方向に複数列形成されることを特徴とする。
また、電源用貫通ビアのテストに関し、ノーマルモードと電力消費モードを有する第1プロセッシング・ユニットと、第1電源テスト回路を有する第1LSIと、第1LSIと積層され、ノーマルモードと電力消費モードを有する第2プロセッシング・ユニットと第2電源テスト回路とを有する第2LSIと、第1LSIと第2LSIとを接続し、第1LSI及び第2LSIに動作電圧を供給する電源用貫通ビアとを具備し、電力消費モードにおける第1プロセッシング・ユニットの消費電力は、ノーマルモードにおける第1プロセッシング・ユニットの消費電力より大きく、電力消費モードにおける第2プロセッシング・ユニットの消費電力は、ノーマルモードにおける第2プロセッシング・ユニットの消費電力より大きく、第1電源テスト回路は、第1プロセッシング・ユニットが電力消費モードとなっている場合に、電源用貫通ビアを介して供給される動作電圧の電圧値を測定し、第2電源テスト回路は、第2プロセッシング・ユニットが電力消費モードとなっている場合に、電源用貫通ビアを介して供給される動作電圧の電圧値を測定することを特徴とする。
本発明によれば、積層されたLSIに対し、電源を確実に供給することが可能となる。
本発明が適用された積層LSIのTSVの配置概略図である。 本発明が適用された積層LSIの断面図である。 本発明が適用された積層LSIのTSVおよび回路の配置概略図である。 本発明が適用された積層LSIのTSVおよび回路の配置概略図である。 本発明が適用された積層LSIの断面図である。 本発明が適用された積層LSIの電源配線の概略図である。 本発明が適用された積層LSIの断面図である。 本発明が適用された積層LSIのTSVの配置概略図である。 本発明が適用された積層LSIのTSVの配置概略図である。 本発明が適用された積層LSIの断面図である。 本発明が適用された積層LSIのTSVの配置概略図である。 本発明が適用された積層LSIの断面図である。 本発明が適用された積層LSIのTSVの配置概略図である。 本発明が適用された積層LSIの断面図である。 本発明が適用された積層LSIのTSVの配置概略図である。 本発明が適用された積層LSIのTSVの配置概略図である。 本発明が適用された積層LSIのTSVの配置概略図である。 本発明が適用された積層LSIの電源配線の概略図である。 本発明が適用された積層LSIのTSVの配置概略図である。 本発明が適用された積層LSIのTSVの配置概略図である。 本発明が適用された積層LSIのTSVの配置概略図である。 本発明が適用された積層LSIの断面図である。 本発明が適用された積層LSIのTSVの配置概略図である。 本発明が適用された積層LSIの断面図である。 本発明が適用された積層LSIのTSVおよび回路配置の概略図である。 本発明が適用された積層LSIのTSVおよび回路配置の概略図である。 本発明が適用された積層LSIのTSVの配置概略図である。 本発明が適用された積層LSIのTSVの配置概略図である。 本発明が適用された積層LSIのTSVの配置概略図である。 本発明が適用された積層LSIの断面図である。 本発明が適用された積層LSIのTSVの配置概略図である。 本発明が適用された積層LSIの断面図である。 本発明に係る半導体装置の断面方向の概念図である。 本発明に係る半導体装置の主要部の構成を示す回路図である。 本発明に係る半導体装置において、搭載する機能ブロックにおける最大電力を模擬させるための回路構造の一部分を示した概略図である。 本発明に係る半導体装置において、電源テストを行う機能ブロックの構成の一実施形態を示した概略図である。 本発明に係る半導体装置における電源テストの手順を示したものである。 本発明に係る半導体装置における電源テスト結果を記録するテーブル構成を示したものである。 本発明に係る半導体装置の電源の構成を示す回路図である。 本発明に係る半導体装置の主要部の構成を示す回路図である。 本発明に係る半導体装置において、電源テストを行う機能ブロックの構成の一実施形態を示した概略図である。 本発明に係る半導体装置における電源テストの手順を示したものである。
<実施例1−1>
図1に本発明を用いた3次元に積層するLSIのシリコン貫通ビア(TSV)の配置概略図を示す。図1において、黒丸は電源を積層したチップに供給するための電源用TSV、白丸は積層したチップ間で信号を伝送する信号線用TSVである。チップの外周部に電源用のTSVが複数列配置され、その内側に信号線用のTSVが配置されている。このTSVの配置構成を用いて、CPU(Central Processing Unit)が複数搭載されているCPUチップとメモリアレイが搭載されたメモリチップを2枚ずつ積層した場合の断面構造を図2に示す。図2は、図1のチップをA−A’で切断した場合の断面である。それぞれのチップ間を接続する電源用TSVと信号線用TSVは上下方向に同じ場所に配置されている。ぞれぞれのチップはメタル配線層が下向きに積層され、TSVは上に積層されているチップの金属配線層に接続され、そこから下に積層されているチップのシリコン層を貫通して下に積層されているチップの金属配線層に接続される。この様子を図7に示す。ここで、一番下のチップは、パッケージ基板と接続する。ここで、一番下のチップはパッケージ基板との間の信号線の距離を短くするためメタル配線層を下向きとし、また、それに合わせてすべてのチップを下向きに積層している。
図3に本発明を用いたCPUチップのTSVの配置とCPUの配置の一例を示す。このLSIチップには、8個のCPUコアCPU1〜8が集積されている。電源用および信号線用のTSVがチップの周囲に配置され、チップの中央部にCPUが配置されている。このように、CPUなどの回路ブロックは、TSVの置かれない領域に配置される。
図4に本発明を用いたメモリチップのTSVの配置とメモリの配置の一例を示す。電源用および信号線用のTSVがチップの周囲に配置され、チップの中央部にメモリアレイであるRAM1およびRAM2が配置されている。このように、メモリなどの回路ブロックは、TSVの置かれない領域に配置される。
ここで、図3及び図4に共通しているのは、第1にチップの最外周に電源用TSVを複数列配置している点である。このように最外周に電源用TSVを複数列まとめて配置することで、必要な電力を供給することが可能となる。また、最外周に配置しているため、回路ブロックや信号線用TSVを内側に自由に配置・配線することが可能となる。第2に、チップの最外周に電源用TSVを配置し、電源用TSVと回路ブロックの間に信号線用TSVを配置している点である。電源用TSV及び信号線用TSVを回路ブロックの外周に配置したのは、回路ブロックが配置できる領域を大きく確保するためであり、また、電源用TSVより信号線用TSVを内側に配置したのは、回路ブロックと信号線用TSVの距離を短くすると共に、後述するように異種チップ間の積層を考慮したものである。
図5にCPUチップとメモリチップをそれぞれ2枚、さらにパッケージ基板にLSIを接続するためのインタフェースチップとパッケージ基板の断面を示す。この図では、LSIチップとパッケージ基板は金属バンプで接続される。本実施例では、上に積層されるチップの上層の金属配線とTSVが接続され、そのTSVは下に積層されるチップのシリコンを貫通して形成され、下のチップの上層の金属配線と接続される。よって、それぞれのチップの上層の金属配線はTSVに接続される形状に設計される。つまり、図5の例では、2枚のメモリチップが同じ形状で作られている場合には、下側のメモリチップの上層の金属配線はTSVに接続するための構造となっている。通常、TSV間のピッチは、数多くのTSVを配置するため、パッケージ基板の配線ピッチより狭い。従って、ここにパッケージ基板と接続するための金属バンプを直接接続することは難しい。よって、最下層のメモリチップとパッケージ基板間にインタフェースチップを挿入し、TSVと金属バンプに接続可能な形状に金属配線を設計することで、積層されたCPUチップおよびメモリチップとパッケージ基板を接続することが可能となる。即ち、インタフェースチップでは、最上層の配線で外周に設けられたTSVから内側に向けて配線を延ばすことによりバンプ接続用の配線を形成することが可能となる。さらに、この構造をとった場合には、インタフェースチップに、DDRやPCIなどの信号を外部と接続するためのインタフェースを持つ回路を搭載すれば、個々のメモリチップに外部と接続するためのインタフェース回路を搭載することなく、外部とDDRやPCIなどのプロトコルで通信することが可能となる。また、本発明では、信号用TSVが電源用TSVより内側に設けられているためパッケージ基板との接続に用いるバンプと信号用TSVとの距離を短くすることが可能となる。TSVと金属バンプのピッチが等しい場合や、同じ金属配線構造でTSVと金属バンプを接続できる場合、または最下層のチップを金属バンプに対応した配線構造と出来る場合には、このインタフェースチップを挿入することなく積層されたLSIチップとパッケージ基板を接続することが可能である。
図6には、本発明を用いたLSIチップのTSVに接続する電源用配線の配置例を示す。電源用配線は、最上層の配線層により第1の方向(本図では左右方向)に延びた電源用配線と、下層の配線により第2の方向(本図では上下方向)に延びた電源用配線で構成され、各交点若しくは任意の交点で上下の電源用配線を接続し、メッシュ状に配線される。ここで、チップの最外周部には電源用TSVのみが配置されるため、金属配線に関しても電源用の配線で占めることが可能となり、抵抗値を下げることが可能となる。チップの中央部を通る電源用配線は、2本中1本等、間隔をあけて通すように構成される。これにより、電源用TSVの内側に設けられた信号線用TSVの信号配線を容易に通すことが可能となる。また、TSVに接続する金属配線層は、TSVの上側に接続するためにチップの上層配線に必要な上に、シリコンを貫通したTSVの下側に接続するためにチップの下層配線に必要となる。チップの下層配線は、通常配線にも使用されるため、動作回路が置かれる領域の占有率はなるべく下げたいという要求がある。本発明のように、チップ外周部に電源用TSVを配置すれば、TSVに接続する部分に関しては電源配線の密度を高くし、CPU回路などの動作回路を配置する部分に関しては電源配線の密度を低くして、信号配線を通すことが可能となる。
図7に、本発明を用いたLSIチップおよびパッケージ基板、TSV、金属バンプの接続を示す断面図を示す。TSVは、上に積層されるチップの上層の金属配線に接続され、下に積層されるチップのシリコン部分を貫通しそのチップの下層の金属配線に接続される。各バンプは、最下層に積層されているチップの上層の金属配線とパッケージ基板を接続している。
図8(a)には、本発明を用いたLSIの電源用TSVの割り当て図を示す。LSIの電源には、接地電位電源であるVSSと高い電位の電源であるVDDが存在する。それぞれ用のTSVを交互に配置することで、それぞれの電源間の容量を大きくすることが可能となり、電源の安定性を向上することが可能となる。また、図8(b)に、電源用TSVと最上層の電源用配線との接続関係を示す。本図では、電源用TSVの間にVSSとVDDの2本の電源配線が通っている。なお、本図では、TSVおよび電源線の配置を明確化になるよう、TSVを大きく示しているため、配線およびTSVが高い密度で配置されているように見える。しかし、実際にはTSVの密度は低く、配線を容易に通すことが出来る。例えば、50umピッチで直径10umのTSVを配置することが可能であり、この場合にはTSV間に40umのスペースをとることができ、TSV間に容易に複数の電源配線を配置することが可能である。また、電源線と電源用TSVを接続部分において、電源線を太くし、凸状とする。これにより、確実に電源線と電源用TSVを接続することが可能となる。
以上のように、本発明を用いると、3次元に積層されるLSIチップに電源を供給することが可能となる。また、電源用TSVを複数列配置することによって、複数チップが積層されて多くの電流が消費される積層LSIに大電流を供給することが可能となる。
<実施例1−2>
図9に、本発明を用いて、異なる大きさのチップを3次元に積層する場合のTSVの配置概略図を示す。チップAは例えばCPUが複数搭載されたCPUチップ、チップBは例えばメモリが搭載されたメモリチップである。メモリチップ等は比較的消費電力が低いため、電源用のTSVの数は少なくすることが可能である。よって、電源用のTSVはチップAの方がチップBよりも多くなっている。また、チップAとチップBでは、別チップとの通信に必要な信号線用のTSV数は異なっている。図10は、図9のチップをB−B’で切断した場合の断面である。チップの左および上半面では、それぞれのチップ間を接続する電源用TSVと信号線用TSVは上下方向に同じ場所に配置されており、さらに右および下半面のTSVはチップBの接続に関しては存在していない。このように、最外周に電源用TSV、その内側に信号用TSVを配置しているため、チップの2辺の位置をそろえて配置し、電源用および信号線用TSVの位置を揃えることで、異なる大きさのチップを積層することが可能となる。また、同様の考え方で、1辺を揃えれば、さらに規模の小さいチップを積層することも可能となる。
以上のように、本発明を用いると、3次元に積層されるLSIチップに電源を供給し、さらに異種のLSIチップを積層することが可能となる。また、チップ外周部に電源用TSVを配置することによって、大きさの異なるLSIを積層した場合に、電源を供給するTSVを容易に配置することが可能となる。
<実施例1−3>
図11に、本発明を用いて、異なる大きさのチップを3次元に積層する場合のTSVの配置概略図を示す。チップAは例えばCPUが複数搭載されたCPUチップ、チップCは例えばメモリが搭載されたメモリチップである。メモリチップ等は比較的消費電力が低いため、電源用のTSVの数は少なくすることが可能であり、電源用のTSVはチップAの方がチップBよりも多くなっている。また、本実施例では、実施例1−2とは異なり、信号用TSVの数を等しくできる。これは、電源用TSVを最外周に複数列配置しているため、大きなチップの電源用TSVの一部を小さいチップに接続しないことで、信号用TSVの位置を併せることが可能となっている。よって、この場合には、チップAとチップCで信号線用のTSVの位置を揃える必要がある。
図12は、図11のチップをC−C’で切断した場合の断面である。それぞれのチップ間を接続する信号線用TSVは上下方向に同じ場所に配置されている。それに対して、電源用のTSVは大きい電力を供給する必要のあるチップA上には存在するがチップC上には存在しない部分がある。このように、信号線用TSVの位置を揃えれば、異なる大きさで信号線の数が等しいチップを積層することが可能となる。
以上のように、本発明を用いると、3次元に積層されるLSIチップに電源を供給し、さらに異種のLSIチップを積層することが可能となる。また、チップ外周部に電源用TSVを配置することによって、大きさの異なるLSIを積層した場合に、電源を供給するTSVを容易に配置するとともに通信用のTSVを異なるチップ間で同数配置することが可能となる。
<実施例1−4>
図13に、本発明を用いて、異なる大きさのチップを3次元に積層する場合のTSVの配置概略図を示す。チップAは例えばCPUが複数搭載されたCPUチップ、チップDは例えばメモリが搭載されたメモリチップである。チップAおよびチップDともに同様に外周部分に電源用のTSVおよび信号線用のTSVを配置する必要があるチップを積層する必要がある場合には、チップAとチップD間で電源配線および信号配線を接続するためにインタフェースチップを挿入する必要がある。
図14は、インタフェースチップを含んだ、図13のチップをD−D’で切断した場合の断面である。チップAとチップDでは、電源用および信号線用のTSVが上下方向に同じ位置に配置されていない。そのため、間にインタフェースチップが挿入され、その部分で上下のチップAとチップDの電源配線および信号線を接続している。このように、異なる大きさを持ち、さらに電源線や信号線のTSVの異なるチップを積層する場合には、インタフェースチップを挿入して積層することによって、それぞれの電源および信号線を接続することが可能となる。
以上のように、本発明を用いると、3次元に積層されるLSIチップに電源を供給し、さらに異種のLSIチップを積層することが可能となる。また、チップ外周部に電源用TSVを配置することによって、大きさの異なるLSIを積層した場合に、すべてのチップにほぼ同等の電流を供給することが可能となる。
<実施例1−5>
図15(a)には、本発明を用いたLSIの電源用TSVの割り当て図を示す。チップ最外周のTSVにVDDを割り当て、その内側のTSVにVSSが割り当てられている以外は、実施例1−1と同等である。このように、同じ役割を持つ電源を隣り合って配置することにより、電源配線とTSVを接続するパターンを容易に作ることが可能となる。即ち、図15(b)に示すように、各電源用TSVの間にVDD若しくはVSSの電源配線のいずれか一方を配線すればよく、図8と比較して、電源線の本数を少なくすることができる。よって、1本あたりの電源線を太くすることが可能となり、抵抗値を下げることが可能となる。
以上のように、本発明を用いると、3次元に積層されるLSIチップに電源を供給し、さらに異種のLSIチップを積層することが可能となる。また、TSVのVDDとVSSへの割り当てを外周部から固定することによって、1つのTSV列に対して1本の電源線を通すことが可能となり、電源線の幅を大きく取ることが可能となる。
<実施例1−6>
図16(a)には、本発明を用いたLSIの電源用TSVの割り当て図を示す。この例では、チップ外周の4列に電源線用のTSVが割り当てられている例を示している。このチップでは、近傍の4つのTSVに同じ種類の電源、つまりVDDおよびVSSが割り当てられ、それらが千鳥格子状に配置されている。また、それ以外の構成に関しては、実施例1−1と同様である。この構成をとった場合には、電源用のTSVの数をVDDとVSSで揃えることが可能になるとともに、例えば一つのTSVが製造時に破壊されるなどのなんらかの理由で動作しない状態となった場合にも周りに同種類の電源用のTSVが配置されているため、電流の集中が起きない。つまり、この構成をとることで、製造時の破壊等に強い電源用TSV配置が可能となる。更に本実施例では、実施例1−5と同様に、各電源用TSVの間にVDD若しくはVSSのいずれか一方の電源線を配線すればよく(図16(b))、1本の電源線を太くすることが可能となる。
以上のように、本発明を用いると、3次元に積層されるLSIチップに電源を供給し、さらに異種のLSIチップを積層することが可能となる。また、TSVのVDDとVSSへの割り当てを複数TSVでまとめることによって、製造時の破壊等に強い電源用TSVを形成することが可能であると共に、1つのTSV列に対して1本の電源線を通すことが可能となり、電源線の幅を大きく取ることが可能となる。
<実施例1−7>
図17には、本発明を用いたLSIの電源用TSVの割り当て図を示す。この例では、チップ外周の4列に電源線用のTSVが割り当てられている例を示している。このチップでは、横方向に並ぶ同一の行のTSVには同じ種類の電源、つまりVDDおよびVSSが割り当てられている。また、それ以外の構成に関しては、実施例1−1と同様である。この構成をとった場合には、電源用のTSVの数をVDDとVSSで揃えることが可能となるとともに、TSVが接続される電源配線層をTSVに沿ってチップの横方向に並べることが可能となる。TSVに接続される電源配線層の構成を図18に示す。図に示すとおり、同じ種類の電源、VDDとVSSが同一行状に並ぶため、電源用の金属配線をストライプ状に配置することが容易となる。特に、今までの実施例では、電源用TSVの間に電源線を配線していたが、本実施例では、同種の電源が左右方向に並ぶため、電源用TSVの間に配線するのではなく、電源用TSV上に、配線することが可能となり、更に電源線を太くすることが可能となる。言い換えれば、上述の実施例では、電源配線と電源用TSVとを接続するために、電源線の一部を太くした凸型形状とする必要があるが、本実施例では、電源用TSVのすべてを包含する(電源用TSVより太い)配線とすることが可能となり、凸型形状を形成する必要がない。また、この配線層は、TSVの上面に接続するチップ上層の配線層であるとともに、シリコンを貫通したTSVが接続するチップの下層の配線層の様子を示している。実際には、チップの下層の配線層は、TSVが突き抜ける形なるため、他の実施例においては、上述の凸型形状を設けることにより、下層においても電源用TSVとの接続が可能となる。しかしながら、凸型形状とTSVの位置を合わせる必要があるため、位置ずれ等を考慮する必要がある。一方、本実施例では、電源線をTSVより太くしているため、凸型形状が不要で、配線のどの部分と接触してもよいことになり、下層の配線層での電源線と電源用TSVの接続が容易となる。
以上のように、本発明を用いると、3次元に積層されるLSIチップに電源を供給し、さらに異種のLSIチップを積層することが可能となる。また、横方向に配置されるTSVの供給する電源種を揃えることで、電源を供給する電源配線をTSV上に配置することが可能となる。
<実施例1−8>
図19(a)には、本発明を用いたLSIの電源用TSVの割り当て図を示す。この例では、チップ外周の4列に電源線用のTSVが割り当てられている例を示している。また、このチップでは、高い電源電圧VDDHと低い電源電圧VDDLおよび接地電位電源VSSを持つ構成を示している。このチップでは、近傍の4つのTSVに同じ種類の電源、つまりVDDH、VDDLおよびVSSが割り当てられ、それらが千鳥格子状に配置されている。また、TSVの数は、VDDH用のTSVの個数とVDDL用のTSVの個数を加えた数がVSSと等しくなっている。これは、VDDHおよびVDDLから供給された電流はVSSを経由して流れる必要があるため、電流容量によってTSVの個数が決められているためである。この構成をとった場合には、電源用のTSVの数をVDDHとVDDLを加えた数とVSSの数で揃えることが可能となるとともに、例えば一つのTSVが製造時に破壊されるなどのなんらかの理由で動作しない状態となった場合にもまわりに同種類の電源用のTSVが配置されているため、電流の集中が起きない。つまり、この構成をとることで、製造時の破壊等に強い電源用TSV配置が可能となる。また、この実施例では、電源の種類が3種類の場合の例を示しているが、同様の考え方で4種類以上の電源を持つ場合にも対応可能である。さらに、本実施例では4つのTSVをまとめて千鳥格子状に並べる例を示したが、2x3の6つや3x3の9つのTSVごとにまとめて千鳥格子状に並べる構成も可能となる。
また、VDDH又はVDDL用のTSVは、左右方向若しくは上下方向に対し、同一行(列)に配置されている。よって、図19(b)に示されるように各電源用TSVの間には、VDDH,VDDL,VSSの電源線のうち、いずれか1本のみを配線すればよく、電源線を太くすることが可能となる。
以上のように、本発明を用いると、3次元に積層されるLSIチップに電源を供給し、さらに異種のLSIチップを積層することが可能となる。また、3種類の電源種を固めて配置することで、1つのTSV列に対して1本の電源線を通すことが可能となり、電源線の幅を大きく取ることが可能となる。
<実施例1−9>
図20(a)には、本発明を用いたLSIの電源用TSVの割り当て図を示す。この例では、チップ外周の4列に電源線用のTSVが割り当てられている例を示している。また、このチップでは、高い電源電圧VDDHと低い電源電圧VDDLおよび接地電位電源VSSを持つ構成を示している。このチップでは、近傍の4つのTSVにVDD側およびVSS側の電源が割り当てられ、それらが千鳥格子状に配置されている。また、TSVの数は、VDDH用のTSVの個数とVDDL用のTSVの個数を加えた数がVSSと等しくなっている。これは、VDDHおよびVDDLから供給された電流はVSSを経由して流れる必要があるため、電流容量によってTSVの個数が決められているためである。さらに、VDDHはVDDLよりも高い電位を供給しているため多くの電流を供給する必要があると考えられるため、電流容量を揃えるために、VDDHにVDDLよりも多くのTSVが割り当てられている。また、図20(b)に示されるように、TSVに隣接する最上層の電源配線はVDDHおよびVSSに割り当てられ、それぞれのTSVから配線で接続される。また、最上層の1層下のTSVに隣接する電源配線はVDDH、VDDLおよびVSSに割り当てられ、それぞれのTSVから配線で接続される。この構造を持つことによって、3種類以上ある電源用のすべてのTSVから各電源配線に接続することが可能となる。本図では、TSVに隣接する電源配線のみ図示したが、実際にはTSV間には十分のスペースがあるため、追加の配線層が配置されている。たとえば、最上層にはVDDHおよびVSSの配線層のみ図示しているが、その間にVDDLの配線や、VDDHおよびVSSの余分な配線を配置することで、電源配線の抵抗を下げることは可能である。また、本実施例では、電源の種類が3種類の場合の例を示しているが、同様の考え方で4種類以上の電源を持つ場合にも対応可能である。さらに、本実施例では4つのTSVをまとめて千鳥格子状に並べる例を示したが、2x3の6つや3x3の9つのTSVごとにまとめて千鳥格子状に並べる構成も可能となる。その場合には、さらに細かくVDDHとVDDLの比率を設定することも可能となる。
以上のように、本発明を用いると、3次元に積層されるLSIチップに電源を供給し、さらに異種のLSIチップを積層することが可能となる。
<実施例1−10>
図21に、本発明を用いて、異なる大きさのチップを3次元に積層する場合のTSVの配置概略図を示す。チップAは例えばCPUが複数搭載されたCPUチップ、チップEは例えばメモリが搭載されたメモリチップである。基本的には、実施例1−2と同じ考え方に基づくが、この例では、チップEの大きさがチップAの約1/4となっている場合の例を示す。この場合、チップAの外周部に電源用のTSVを配置し、その上部の同じ位置にチップEのTSVを配置して積層することによって、異なる面積のチップを積層することが可能となる。
図22は、図21のチップをE−E’で切断した場合の断面である。それぞれのチップ間を接続する電源用および信号線用TSVは上下方向に同じ場所に配置されている。このように、信号線用TSVの位置を揃えれば、異なる大きさで信号線の数が等しいチップを積層することが可能となる。
以上のように、本発明を用いると、3次元に積層されるLSIチップに電源を供給し、さらに異種のLSIチップを積層することが可能となる。
<実施例1−11>
図23に、本発明を用いて、複数の種類のチップを積層する場合のTSVの配置概略図を示す。この構成では、実施例1同様電源用TSVをチップ外周部に配置するとともに、信号線用TSVは実施例1と異なり、チップ中央部に配置している。
図24は、図23のチップをF−F’で切断した場合の断面である。この例では、CPUを複数搭載したCPUチップを2枚と、メモリを搭載したメモリチップを2枚積層した構成を示している。それぞれのチップ間を接続する電源用および信号線用TSVは上下方向に同じ場所に配置されている。
さらに、CPUチップ内での各CPU回路の配置構成例を図25に示す。このチップにはCPUが8個搭載され、外周部には電源用TSVが配置されている。さらにチップ中央部のCPUが配置されていない部分に信号線用TSVが配置されている。図26にはメモリチップ内での各メモリの配置構成例を示す。メモリチップにおいてもCPUチップと同様、チップ中央部にメモリ回路が配置され、その中でメモリ回路が置かれていない部分に信号線用TSVが配置されている。この構成では、チップ外周部に電源配線用TSVを配置することで必要な電流供給能力を確保し、さらに内部回路の隙間に信号線用のTSVを配置することでチップ内を有効に利用して信号線用TSVを配置することが可能となる。さらに、内部の動作回路の近傍に信号線用のTSVを配置することが可能となるため、信号線を通して通信を行う際の性能が向上する。
以上のように、本発明を用いると、3次元に積層されるLSIチップに電源を供給し、さらに異種のLSIチップを積層することが可能となる。
<実施例1−12>
図27に、本発明を用いて、複数の種類のチップを積層する場合のTSVの配置概略図を示す。この構成では、実施例1−1と異なり、チップの左右の外周部に電源用のTSVを複数列配置し、その内側に信号線用のTSVを複数列配置している。積層されたチップはすべて同様のTSV配置の構成をしている。この構成では、実施例1−1と異なり、チップの上下側の外周部にはTSVが配置されていない。内部の回路の形状が縦に長く、外周部に近い場所まで内部回路を置く必要がある場合には、本実施例の構成をとることで、チップ面積を縮小することが可能となる。
また、図27は面積がほぼ等しいチップを積層する場合について示したが、小さい面積のチップを複数積層する場合に、本実施例の構成が有利となる場合がある。この場合のTSVの配置例と、それぞれのチップの概略図を図28に示す。この例では、チップGが面積の大きいチップを、チップHがチップGの面積の約1/8の面積のチップを示している。チップGでは左右方向のチップ外周部にTSVを配置している。そのTSVと同じ位置に、小さい面積のチップが複数積層されている。本実施例の構成では、このように例えば1/8の面積のチップを8枚積層する場合には、実施例1−2の構成よりも配置効率が高くなる。
以上のように、本発明を用いると、3次元に積層されるLSIチップに電源を供給し、さらに異種のLSIチップを積層することが可能となる。
<実施例1−13>
図29に、本発明を用いて、複数の種類のチップを積層する場合のTSVとチップ間の通信に用いられるコイルの配置概略図を示す。実施例1−1〜1−12では、チップを3次元に積層した場合に、チップ間の信号通信にTSVを用いる例を示した。本実施例では、チップ間の通信に、コイルによる誘導結合通信を用いる場合の構成例を示す。この構成では、チップの外周部に電源用のTSVを複数列配置している。さらに、チップの中央部にはそれぞれのチップの動作回路、たとえばCPUやメモリが配置されるが、その上層の配線を用いて、チップ貫通信用のコイルが形成される。
図30は、図29のチップをI−I’で切断した場合の断面である。この例では、CPUを複数搭載したCPUチップを2枚と、メモリを搭載したメモリチップを2枚積層した構成を示している。それぞれのチップ間を接続する電源用のTSVは上下方向に同じ場所に配置され、さらにチップ間の通信を行う通信用コイルも上下方向に同じ場所に配置される。
このように、チップ外周部に電源用のTSVを配置すれば、チップ間の通信にTSVを用いない場合には、チップ中央部に動作回路とチップ間通信に用いる回路を配置することが可能となり、チップ内の領域を有効に利用して、積層チップ用の回路を配置することが可能となる。さらに、本発明を用いると、3次元に積層されるLSIチップに電源を供給し、さらに異種のLSIチップを積層することが可能となる。
<実施例1−14>
図31に、本発明を用いて、異なる大きさのチップを3次元に積層する場合のTSVの配置概略図を示す。チップJは例えばCPUが複数搭載されたCPUチップ、チップAは例えばメモリが搭載されたメモリチップである。メモリチップ等の比較的消費電力が低いチップに関しては、電源用のTSVの数は少なくすることが可能であり、逆にCPUチップ等の電力が大きいチップに関しては、電源用のTSVの数が多く必要となる。また、チップAとチップJで必要な信号線用TSVの数は等しい。
図32は、図31のチップをJ−J’で切断した場合の断面図である。それぞれのチップ間を接続する信号線用TSVは上下方向に同じ場所に配置されている。それに対して、電源用のTSVは大きい電力を供給する必要のあるチップJ上には存在するがチップA上には存在しない部分がある。このように、信号線用TSVの位置を揃えれば、異なる大きさで信号線の数が等しいチップを積層することが可能となる。さらに、本構成では、大きいチップJが小さいチップA上配置されているため、チップJ下のチップAが存在しない領域は、絶縁層等を充填する必要がある。また、本構成では、積層チップの上側に電力の大きいチップが積層されているため、ワイヤボンディング等によって、電力消費量の大きいチップ側から電源を供給する必要がある。
以上のように、本発明を用いると、3次元に積層されるLSIチップに電源を供給し、さらに異種のLSIチップを積層することが可能となる。
次に電源用のTSVに不良が発生したか否かをテストする手法について説明する。以下、説明するテスト手法は、実施例1に記載される発明以外の構成についても適用可能である。しかし、実施例1に記載される発明のように外周部に多数の電源用のTSVを配置した場合、一つのTSVに不良があったとしても積層型LSI全体としては十分動作可能な場合があり、これから説明する発明は、このような状況をも考慮できるため、特に有用となる。
<実施例2−1>
図33は、本発明の実施例2に係る半導体装置の積層断面図と不良の発生の様相を示したものである。
本形態においては、半導体集積回路LSI_A、LSI_B、LSI_Cが、この順でパッケージ基板PKCBの上方に積層された構成を示している。3つのLSIは、それぞれ回路実装面を下向き(フェイス・ダウン)に積層される。最下層のLSI_Aは、半田バンプBMPを介してパッケージ基板PKCBと電気的に接続され、LSI_BおよびLSI_Cは、マイクロバンプMBMPとシリコン貫通ビアTSVを介して下層のLSIと電気的に接続される。
TSV_VSSは、接地電位を各チップに供給するためのシリコン貫通ビアであり、TSV_VDDは電源電位を各チップに供給するためのシリコン貫通ビアである。TSV_VSS、TSV_VDDは、それぞれ各LSIで同一の位置に配置されており、マイクロバンプMBMPを介して、上下のチップを電気的に接続する。即ち、LSI_Bは、LSI_Aを介して電源の供給を受け、LSI_CはLSI_Bを介して電源の供給を受ける。また、LSI_Aはパッケージ基板PKCBを介して外部から電源の供給を受ける。
ここで、例えば図33のTSV_VSS、TSV_VDDにおいて、Xで示した部分全てに断線が発生した場合、LSI_AおよびLSI_Bには電源が供給されるが、LSI_Cには電源が供給されないため、LSI_Cは動作しない。また、図33におけるXで示した部分において接触不良が発生し抵抗値が上昇していた場合、LSI_Cにおいて大電力を消費する処理を行おうとすると、その処理が電力不足のため正しく動作しない可能性がある。これは、Xで示した部分の一部において断線していた場合も、同様の事象が発生する可能性がある。本実施例に係る積層LSIは、このような断線もしくは接触不良による電源不良を検出する電源テスト手段を提供する。
図33において、電源テスト制御回路PTEST_CTRLは、積層LSIパッケージの電源テストシーケンスを制御するための機能ブロックであり、最下層のLSI_Aに搭載される。電源テスト回路PTESTは、搭載されたLSI単体の電源テストを実行するための機能ブロックであり、LSI_BおよびLSI_Cに搭載される。PTESTは、PTEST_CTRLからの制御信号により各LSIの電源テストを実行する。
TSV_SIGは、LSI_A、LSI_B、LSI_Cとの間で、データ通信を行うための信号用のシリコン貫通ビアである。
TSV_TREQ、TSV_SCK、TSV_TDI(TSV_TDI_A、TSV_TDI_B、TSV_TDI_C)、TSV_TDO(TSV_TDO_B、TSV_TDO_C)は、電源テストに用いられる信号用シリコン貫通ビアである。TSV_TREQとTSV_SCKは、それぞれPTEST_CTRLから出力された信号をPTESTへ伝送するためのシリコン貫通ビアであり、TSV_TREQはPTESTが行う電源テストを制御するために用いられ、TSV_SCKは電源テスト結果を読み出すクロック信号をPTESTに与えるシリコン貫通ビアである。TSV_TDIとTSV_TDOは、他のシリコン貫通ビアと異なり、シリコン貫通ビアがLSI内部で電気的に分離されている。即ち、TSV_TDO_CはTSV_TDI_Bと、TSV_TDO_BはTSV_TDI_Aと、電気的に接続された構成を取る。
図34は、図33におけるLSI_AとLSI_Bとに実装される機能ブロックの論理的な構成と接続の一実施の形態を示したものである。なお、図34において、LSI_Cの論理的な構成と接続とは図示されないが、LSI_Bと同一である。また、TSV_SIG、TSV_TREQ、TSV_SCK、TSV_TDI、TSV_TDOは、図33における同一の符号で示された電極と同一のものを示し、破線は電気的な接続があることを示す。
図34において、LSI_Aは、演算命令の実行処理部であるプロセッシング・ユニットPU_A0と、積層LSI間の通信インタフェースである3DIと、外部デバッガや外部テスタなどと接続可能なテストアクセスポートTAPと、外部のデバイスバスにアクセスするためのローカルバスコントローラLBSCと、図33で示した積層LSIパッケージの電源テストシーケンスを制御するためのPTEST_CTRLと、LSI_A内部の機能ブロック間を接続するオンチップ・インタコネクトOCI_Aとを備える。PTEST_CTRLには、電源テスト結果を格納するためのテスト結果テーブルRSLT_TBLを備える。また、LSI_Aは、LBSCを介して外部の不揮発メモリNVMEMと接続する。不揮発メモリNVMEMには、電源テストシーケンスが記載された電源テストプログラムPTESTPROGなどが記憶される。
LSI_Bは、演算命令の実行処理部であるプロセッシング・ユニットを4つ(PU_B0、PU_B1、PU_B2、PU_B3)と、特定の演算処理や制御処理を行う機能モジュールIP_B0およびIP_B1と、積層LSI間の通信インタフェースである3DIと、固定の記憶素子の配列などで構成された読み出し専用メモリROMと、LSI_B内部の機能ブロック間を接続するオンチップ・インタコネクトOCI_Bと、動作モード制御部MD_CTRLと、図33に示したLSI_Bの電源テストを制御するためのPTESTと、を備える。MD_CTRLは、動作モードを設定するためのレジスタMDREGを備える。読み出し専用メモリROMには、最大電力消費プログラムMAXPPROGが記憶されている。
LSI_Bは、通常の処理を実行する他に、電源供給用シリコン貫通ビアの不良を検出する為のLSI_Bに搭載されるプロセッシング・ユニットや機能モジュールを全て活性化させて最大電力を消費する動作を模擬する機構を備えることを特徴とする。以下、この機構を最大電力消費機構と呼び、これについて詳細に説明する。なお、本明細書における「最大電力消費」とは、そのプロセッシング・ユニット若しくは機能モジュールの論理的に考えられる最も大きく電力を消費することを意味するものでなく、所定の期間における平均消費電力が、通常動作時(ノーマルモードにおいて、通常のプログラムを処理する動作時)より大きくなる状態を言う。
最大電力消費機構の動作開始・終了はPTESTによって制御される。PTESTがテスト要求信号TREQをアサートすると、MD_CTRLは内部のレジスタMDREG内の特定のビット(電力消費モード遷移ビット)に1を書き込む。また、PTESTがテスト要求信号TREQをネゲートすると、MD_CTRLはMDREG内の電力消費モード遷移ビットに0を書き込む。
MD_CTRLは、MDREG内の電力消費モード遷移ビットの内容に応じて、電力消費モード遷移要求信号MAXPREQのアサート/ネゲートを切り替える。MD_CTRLが電力消費モード遷移要求信号MAXPREQをアサートすることにより、プロセッシング・ユニットPU_B0〜PU_B3と機能モジュールIP_B0・IP_B1とは電力消費モードに遷移する。一方、MD_CTRLがMAXPREQをネゲートすると、電力消費モード遷移前の状態に復帰する。
プロセッシング・ユニットPU_B0〜PU_B3は、電力消費モードに遷移すると、オンチップ・インタコネクトOCI_Bを介して、最大電力消費プログラムMAXPPROGを読み出し専用メモリROMからロードして実行する。最大電力消費プログラムには、プロセッシング・ユニットが内包する全てもしくは大部分の回路ブロックを活性化させる処理を定義しておく。これは例えば、特定命令シーケンスをループ実行することにより実現できる。この最大電力消費プログラムを実行することにより、プロセッシング・ユニットは最大電力消費動作を行う。この最大電力消費動作では、ノーマルモードに比べ定常的により多くの回路ブロックが活性化されるため、所定の期間においてはノーマルモードにおける消費電力より大きな電力を消費する。
機能モジュール(IP_B0・IP_B1)は、電力消費モードに遷移すると、内部に予め設定された最大電力消費動作を行う。これは、機能モジュールが実現しうる処理の中で最も処理負荷が重い内容を実行することなどで実現できる。しかし、このような処理に他のLSIとの通信が必要となる場合は、以下に述べるような特定の動作モードを内部に備え、その動作モードに遷移することで最大電力消費動作を行う。
機能モジュールが備える最大電力消費動作を行うための特定の動作モードの一実施の形態を説明する。図34において、IP_B0・IP_B1が他のLSIとの通信を必要とするような機能ブロック、例えば積層LSI外部との通信を行うイーサネット・インタフェースブロックなどの場合、受信側のイーサネット・インターフェースが受信可能な状態となっているかは不明であり、また通信インタフェース3DICなどを介した外部入出力ピンまでの通信経路も動作しているか不明であるため、通常の通信を行ってしまう上述の方法では最大の電力を消費させる動作をさせることができない。その場合、例えば内包するフリップ・フロップの全てもしくは大部分を活性化することで、最大電力を消費する動作を模擬する。これは次のような方法で実現する。図35は、このような機能ブロックにおいて、最大電力を模擬させるための回路構造の一部分を示した概略図である。
図35において、FFはフリップ・フロップであり、CLOGICは組み合わせ論理によって構成された回路ブロックであり、RNDGENは擬似乱数発生器であり、SELは制御信号に応じて二つの入力から出力を選択するセレクタ回路である。MAXPREQは、前述の電力消費モード遷移要求信号であり、CLKは動作クロック信号である。MAXPREQがネゲート、つまり通常動作においては、各フリップ・フロップFFから動作クロック信号CLKのサイクル毎に出力される信号は、組み合わせ論理CLOGICによって演算され、次のステージのフリップ・フロップFFに入力される。このとき、信号遷移がなかった回路部分や、演算に使用していない回路ブロックが存在すると、機能モジュールIP_B0全体の消費電力は最大とはならない。一方、MAXPREQがアサート、つまり電力消費モードにおいては、各フリップ・フロップFFの出力が近傍のフリップ・フロップの入力に直接接続され、即ちフリップ・フロップFF全体で1つのチェーン状の構成をとる。そして、このフリップフロップチェーンの始点は、擬似乱数発生器RNDGENに接続される。この電力消費モードにおいては、動作クロック信号CLKのサイクル毎にフリップフロップチェーンに順次乱数列が入力されることになり、各フリップ・フロップFFおよび組み合わせ論理回路CLOGICの全てもしくは大部分が常に信号が遷移する状態となる。機能モジュールにおける消費電力は、フリップ・フロップ動作のためのクロック供給に要する電力と、組み合わせ論理回路CLOGICの信号遷移に要する電力が大部分を占めるため、このようにフリップフロップチェーンによって乱数的に動作させることで、IP_B0全体が活性化し消費電力が最大値となる動作を模擬することが可能となる。
このようにして、フリップ・フロップFFの大部分を活性化する状態の消費電力は、機能ブロックの通常動作の消費電力より大きくなる場合が多いが、強制的に機能ブロックを電力消費動作状態にさせることが可能であるため、供給電源の検査という観点からは確実性の高いテストが実施できる。なお、このフリップ・フロップをチェーン状に接続する構成は、従来のLSIテスト設計によって組み込まれていることが多く、それを流用して構成しても良い。また、このフリップフロップチェーンを利用して最大消費電力を模擬する動作を、プロセッシング・ユニットPU_B0〜PU_B3に適用しても良い。
以上のようにして、LSI_B内に搭載される機能ブロックPU_B0〜PU_B3、IP_B0・IP_B1の全てが、消費電力が最大となる動作を行うことにより、LSI_Bは最大電力消費状態となる。このとき、3DIを介した積層LSI間の通信は発生しない。
このように、本発明に係る積層LSIにおいては、シリコン貫通ビアを介して電源が供給されるLSI_Bが、LSI_Bが実現する動作の中で最大の電力を消費する状態を、他のLSIやパッケージ外部にアクセスすることなく実現する動作機構を備えることを特徴とする。
本実施例に係る積層LSIにおいて、この動作機構を用いて、電源供給用シリコン貫通ビアの接続不良を判定する方法を以下に示す。
図33において、積層LSI外部からPKCBおよびLSI_A上のTSV_VDDを介したLSI_Bへの電源電位の供給経路においては、TSV_VDDが持つ固有の抵抗値などから決まる寄生抵抗が存在する。この寄生抵抗によって、LSI_Bの動作時に電源供給経路上を流れる電流量に応じて、LSI_Bの電源電位は積層LSI外部から与えた電位より降下する。LSIによって定まる所定の電源電位を下回ると、トランジスタのスイッチング速度の低下による誤動作の発生や、トランジスタが正常にスイッチングしないといった不具合が生じる。そこで、通常は、設計時にLSI_Bで消費される電力を見積もり、この電源電位の降下が十分小さくなるようにTSV_VDDを多数設けるため、動作時のLSI_Bの電源電位は所定の値まで上昇する。
ここで、LSI_Bに電源を供給するTSV_VDDの一部もしくは全てに断線もしくは接触不良が発生していた場合、電源供給経路の寄生抵抗値が上昇し、設計時に見積もられた所定の電源電位より降下する。即ち、LSI_Bの動作時に、電源電位が所定の値を上回っていれば、電源供給用シリコン貫通ビアに断線および接触不良が発生していない、もしくは発生していてもLSI_Bの動作に影響しないと判断できる。そこで、本実施例に係る積層LSIにおいては、最大電力消費機構によりLSI_Bの電力を最大にした状態、即ちLSI_Bへの電源供給経路に最大の電流が流れた状態で、LSI_B上の電源電位が所定の値まで上昇しているか電圧モニタで判定することで、電源供給用シリコン貫通ビアの不良をテストする。
一方、LSI_B上の電源電位が平均的に所定の電源電位まで上昇していても、回路の特定箇所の動作により、一時的もしくは局所的な電圧降下が引き起こされて、LSI_Bが誤動作する場合がある。このような一時的もしくは局所的な電圧降下を測定する電圧モニタを実装することは困難なことが多い。そこで、本実施例に係る積層LSIにおいては、最大電力消費動作状態において、このような一時的もしくは局所的な電圧降下の発生によって回路の誤動作が発生していないか判定するために、LSI_B内に搭載される回路の中で最もタイミング制約が厳しい論理経路(クリティカル・パス)が正しく動作しているか判定するディレイ・モニタを更に備える。通常、半導体集積回路LSIを積層する前の段階で、それぞれの半導体集積回路LSI単体で動作テストを行い、動作不良が生じないことを確認する。従って、最大電力動作機構を作動させた状態で、LSI_B内のクリティカル・パスに誤動作が発生した場合は、その原因は、積層時にLSI_Bに電源を供給するシリコン貫通ビアにおける接続不良が生じたものと考えられる。なお、ディレイ・モニタは必要に応じて設ければよく、電圧モニタのみで動作不良を検出可能であれば設ける必要はない。逆に、ディレイ・モニタによりクリティカル・パスが正しく動作していることのみでテストしてもよく、この場合、ディレイ・モニタのみ設けてもよい。
このようにして、LSI_Bの電源電位およびクリティカル・パスの動作チェックを行うことにより、LSI_Bの電源供給用シリコン貫通ビアにおける接続不良のテストを行うことが可能となる。なお、LSI_Cも同様の特徴を備えることは言うまでもない。
図36は、図34におけるLSI_Bの電源テストを行うPTESTの構成の一実施形態を示したものである。図36において、PTESTは、電源テスト制御ブロックTESTCTRLと、ディレイ・モニタDELAYMONと、電圧モニタVMONと、DELAYMONとVMONのそれぞれ内部の値を取り込むシフトレジスタSHIFTREGとを備える。また、TSV_TREQ、TSV_SCK、TSV_TDI、TSV_TDOは、それぞれ図34に示した信号と同一のものを示す。
電源テスト制御ブロックTESTCTRLは、電源テストの開始・終了を制御する機能ブロックである。電源テストには、上述のように電源電位および回路動作のチェックが必要である。まず、TEST_CTRLは、TSV_TREQがアサートされると、テスト要求信号TREQをアサートする。同時に、TEST_CTRLは、ディレイ・モニタDELAYMONと電圧モニタVMONとを稼動させ、LSI_Bの動作状態の測定を行う。
シフトレジスタSHIFTREGは、TSV_SCKから周期サイクル信号が入力されていない場合は、それぞれ接続されたモニタブロック(ディレイ・モニタDELAYMONもしくは電圧モニタVMON)から入力される値を内部のレジスタに記録する。一方、TSV_SCKから周期サイクル信号が入力されると、内部のレジスタの値を1ビットずつ上位にシフトさせ、最上位ビットを外部にOUT端子に出力し、最下位ビットにIN端子から入力された値を付与する。
電圧モニタVMONは、LSI_B内に供給される電圧を測定するブロックである。これは、例えばリングオシレータと、カウンタ回路などを組み合わせることにより構成する。電圧モニタVMONは、次のように動作する。まず、電圧モニタVMONに接続されるシフトレジスタSHIFTREGには、予め測定前に電圧モニタVMONが測定でき得る最大電圧値を記録する。測定動作中の電圧モニタVMONは、LSIの電圧値を周期的に測定する。また、その測定値と、電圧モニタVMONに接続されるシフトレジスタSHIFTREGに記録されている値(記録値)とを比較し、測定値が記録値を下回った場合は、その測定値をシフトレジスタSHIFTREGに記録する。即ち、測定動作が終了すると、その測定動作期間における電圧最小値がシフトレジスタSHIFTREGに記録されている状態になる。
ディレイ・モニタDELAYMONは、LSI_B内に搭載される回路の中で最もタイミング制約が厳しい論理経路(クリティカル・パス)が正しく動作するか判定するブロックである。これは、例えばクリティカル・パスを模倣する回路構成と、その演算結果の正否を判定する回路などにより構成する。ディレイ・モニタDELAYMONは、測定動作期間中に一度でもクリティカル・パス模倣回路の演算結果に不正が発生した場合、接続されるシフトレジスタSHIFTREGに、ディレイ不正が発生したことを記録する。搭載されるLSIの供給電圧値が低下してLSIの誤動作が発生する場合、大半の原因はクリティカル・パスの誤動作である。即ち、クリティカル・パス模倣回路のディレイ不正を判定することにより、LSI_Bの電源不良による誤動作を検査できる。
以上のように、PTESTにより、電源テストの開始および終了を制御することに加えて、テスト期間における搭載LSIの電圧値の測定、および電源不良の影響による誤動作検査を行うことが可能となる。
図37は、図33における積層LSIの電源テスト手順の一形態を示す。本形態は、積層LSIの起動時に電源テストを実行する手順である。テストの手順は、(1)PU_A0による電源テストプログラムの読み込み、(2)PU_A0による電力テストプログラムの実行、(3)電源テスト結果の処理の3段階に分かれる。
まず、(1)において、積層LSIに電源が投入されると(パワーオン)、LSI_BおよびLSI_Cに搭載されるプロセッサユニット(PU_B0〜PU_B3、PU_C0〜PU_C3)および機能モジュール(IP_B0、IP_B1、IP_C0、IP_C1)は待機状態となり、LSI_Aに搭載されるPU_A0のみ動作を開始する。ここで言う、LSI_BおよびLSI_Cの待機状態とは、LSI_Aの動作およびLSI_B・LSI_Cそれぞれに搭載されるPTESTの動作を妨げない状態を指す。具体的には、クロック供給停止もしくは電源遮断など実動作を停止させる状態などが望ましい。これらは、電源供給用のシリコン貫通ビアの品質に特に依存しない状態であるからである。
PU_A0は動作を開始すると、LSI_A上のローカルバスコントローラLBSCを介して外部の不揮発メモリNVRAMから、電源テストプログラムPTESTPROGを読み込む。ここで読み込むとは、特に内部のメモリやメインメモリにプログラムをロードすることに限定せず、PU_A0のプログラムカウンタが指すアドレスをPTESTPROGに設定することを意味する。
次に、(2)において、PU_A0は電源テストプログラムを実行する。まず、PU_A0は、オンチップ・インタコネクトOCI_Aを介して、PTEST_CTRLを制御し、次の(2−1)および(2−2)に示す電源テストシーケンスを開始する。
(2−1)において、PTEST_CTRLは電源テストシーケンスが開始すると、TSV_TREQ信号をアサートする。TSV_TREQ信号は、シリコン貫通ビアを介して積層されるLSI_BとLSI_Cとに備えられるPTESTへと伝播する。すると、上述したように、LSI_BおよびLSI_Cに搭載されるプロセッシング・ユニット(PU_B0〜PU_B3もしくはPU_C0〜PU_C3)や機能モジュール(IP_B0・IP_B1もしくはIP_C0・IP_C1)を電力消費モードへ遷移し、また同時に各LSI上のPTESTにおいて電源電位の測定および誤動作検査が開始される。この状態を電源テストとし、電源テストは電源テストプログラムによって定められる所定の期間継続して実施される。ここで、LSI_B及びLSI_Cの電源テストは、並行して実行するほうがよい。テスト時間の短縮化ができることはもちろんだが、LSI_BとLSI_Cが貫通ビアで電源が供給されているためである。即ち、LSI_BとLSI_Cは、電源の供給元が同じであり、LSI_Bで多くの電力を消費すると、LSI_Cに電源を供給する貫通ビアでは電圧降下が起こる可能性がある。一方、上述したとおり、電源用TSVでは、一部に接触不良・断線不良があったとしても、その他の正常なTSVで十分な電力が供給できる場合がある。従って、LSI_B、LSI_C単体でテストした場合は、他の正常な電源用TSVを介して十分な電力が供給されてしまい、テストを行ったとしてもパスしてしまうことがある。しかしながら、通常動作時では、LSI_BとLSI_Cは並列して動作することが多い。よって、LSI_B、LSI_Cを並行して電力消費モードにてテストすることにより、各LSIでの電力消費も考慮したテストを行うことが可能となる。
次に(2−2)において、PU_A0は電源テスト結果の読み出しを行う。ここでは、まず、PU_A0は、PTEST_CTRLを制御し、TSV_TREQ信号をネゲートする。すると、LSI_BおよびLSI_Cに搭載されるプロセッシング・ユニット(PU_B0〜PU_B3もしくはPU_C0〜PU_C3)や機能モジュール(IP_B0・IP_B1もしくはIP_C0・IP_C1)を電力消費モードから元の状態(待機状態)に復帰する。続いて、PU_A0は、PTEST_CTRLを制御し、TSV_SCKに周期サイクル信号を発生させる。TSV_SCKは、シリコン貫通ビアを介して積層されるLSI_BとLSI_Cとに備えられるPTESTへと伝播される。すると、図36に示したように、各PTEST内のシフトレジスタSHIFTREGに記録されている値が、TSV_TDI・TSV_TDOを介して、1ビットずつシリアル状にLSI_AのPTEST_CTRLへと出力される。即ち、PU_A0は、周期サイクル信号を所定の期間継続することで、PTESTによって検査された積層するLSI_BとLSI_Cとの最低電源電位およびディレイ不正判定結果を、下層にあるLSIから順番に、PTEST_CTRLへと読み出すことが可能である。このように、シフトレジスタSHIFTREGに記録されている結果を、チェーン状に順次読み出すことにより、電源テストに用いられるシリコン貫通ビアの数を減らすことが可能となる。更に、積層順にテスト結果を読み出すことが出来るため、図33に示したようにLSI_Cがシリコン貫通ビアの電源不良により動作していない場合でも、LSI_Bの結果を取り出すことが可能となる。また、読み出されるシリアル状のビット列において、それぞれのLSIでのテスト結果が記録されている箇所は、積層の順番によって自ずと決定される。これにより、詳細は(3)において後述するが、テスト結果と各LSIを対応付ける処理を、LSI_A単体で行うことが可能である。
(3)において、PU_A0は、PTEST_CTRLに読み出されたテスト結果の解析処理を行う。前述のように、読み出されたビット列は、各LSIでの電源測定値とクリティカル・パスのディレイ不正判定結果が、積層順に格納されている。PU_A0は、各LSIにおいて、電源測定値が所定の閾値以下である場合と、ディレイ不正が発生している場合とを解析し、それぞれのどちらかが発生している場合は、そのLSIに搭載されるプロセッシング・ユニットおよび機能モジュールは使用不能であると判定する。こうした解析処理の結果は、PTEST_CTRL内のテスト結果テーブルRSLT_TBLに記録する。
なお、図37において(2−2)の処理と(3)の処理とが行われる期間は、明確に別に記載されているが、本発明はこれに限定するものではない。即ち、(3)の処理を、(2−2)と並行して行うことで、PTEST_CTRLにテスト結果を格納するための記憶領域を減らすことが可能となり、また、並行動作により処理時間の短縮も期待できる。
以上のような手順を経ることにより、積層LSIに搭載されるプロセッシング・ユニットおよび機能モジュールのうち、使用可能なものがテスト結果テーブルRSLT_TBLに記録される。この、テスト結果テーブルRSLT_TBLの記録形態の一例を図38に示す。図38において示される表のように、テスト結果テーブルRSLT_TBLには、使用可能なプロセッシング・ユニットおよび機能モジュールが、使用可能な場合は対応ビットを「1」、使用不可能な場合は対応ビット「0」と記録される。
また、図37においては、積層LSIの起動時に電源テストを行った後、通常のプログラムの実行を行う。本形態において、PU_A0が積層LSI全体のタスクを管理し、テスト結果テーブルRSLT_TBLを参照しながら、使用可能なプロセッシング・ユニットおよび機能モジュールにタスクを割り付けてゆく処理を示している。なお、ここで言うタスクとは、プロセッシング・ユニットもしくは機能モジュールが実行する処理全般を指す。
以上、本発明を実施の形態に従って具体的に説明したが、本発明はそれに限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは言うまでもない。
例えば、図34において、LSI_AとLSI_Bは異なる構成のLSIを用いているが、全て同一の構成を持つLSIを積層する場合も想定される。この場合、各LSI上に入力パッドを備えたPTEST_CTRLを予め実装しておく。このPTEST_CTRLは入力パッドに何も接続されない場合は非活性状態、設置電位を与えた場合にのみ活性状態になるよう構成する。LSIを積層後、最下層のLSI、即ちパッケージ基板PKCBと接続されているLSIのみ、PTEST_CTRLに接続された入力パッドにワイヤボンディングなどにより接地電位を与えてPTEST_CTRLを活性化させ、その他のLSI上のPTEST_CTRLに接続された入力パッドは解放して不活性化させる。このような構成を取ることで、最下層のLSIのみPTEST_CTRLを動作させることが可能となり、図37に示したテスト手順を変更することなく電源テストを行うことが可能である。
図36において、PTESTには電圧モニタVMONおよび、ディレイ・モニタDELAYMONは、それぞれ1つずつ搭載されている様相が図示されているが、PTESTに複数の電圧モニタVMONやディレイ・モニタDELAYMONを搭載しても良い。一般に、LSIの各箇所において電源変動は異なる。従って、電圧モニタVMONやディレイ・モニタDELAYMONを複数搭載し、搭載LSI上の多数の箇所における電源電位やディレイ不正を測定することにより、電源供給用のシリコン貫通ビアの不良による影響を、より正確にテストすることが可能となる。なお、当然のことながら、電圧モニタVMONやディレイ・モニタDELAYMONに接続されるシフトレジスタSHIFTREGも複数搭載する。この場合も、シフトレジスタSHIFTREGのチェーン状に接続することで、図37に示したテスト手順を変更することなく電源テストを行うことが可能である。
図37のテスト手順においては、LSI_A上のPU_A0が電源テストプログラムを実行することにより、積層LSIの電源テストを行ったが、本発明はこれに限定するものではない。例えば、外部デバッガや外部テスタを用いて、図34におけるTAPを介して直接PTEST_CTRLを制御することにより電源テストプログラムを実行することが可能となる。これにより、特に不揮発性メモリNVRAMを積層LSIに接続する必要がない。従って、製造におけるパッケージ後などのタイミングで電源テストを行うことが可能となり、テストコストの削減が見込まれる。
<実施例2−2>
次に、図33における電源供給用のシリコン貫通ビアで短絡による不良が発生している場合について言及する。具体的には、図33においてTSV_VDDもしくはTSV_VSSの間で電気的な接続が発生してしまう不良に相当する。
図39は、本発明による第2の実施形態に係る積層LSIにおける、電源供給構成の一実施の形態を模式的に示した概略構成図である。以下、図39の説明において、「**」と記載された部分は、A0、B0などで示される符号を全て示すものとする。
VDD_SW_A0、VDD_SW_A1、VSS_SW_A0、VSS_SW_A1、VDD_SW_B0、VDD_SW_B1、VSS_SW_B0、VSS_SW_B1は、それぞれ、二つの端子間の導通・遮断を制御する導通スイッチであり、例えばMOSトランジスタスイッチと制御回路の組み合わせで構成される。
VDD_Aは、LSI_Aにおける電源電位を与える配線であり、VSS_Aは、LSI_Aにおける接地電位を与える配線である。VDD_STACKは、LSI_A上にあって、LSI_Aの上方に積層されるLSIへ電源電位を与えるための配線であり、VSS_STACKは、LSI_A上にあって、LSI_Aの上方に積層されるLSIへ電源電位を与えるための配線である。VDD_AおよびVDD_STACK、VSS_AおよびVSS_STACKは、図では示されないが、パッケージ基板PKCBを介して、それぞれ外部から電源電位および接地電位が供給されている。なお、このように、PU_A0の電源配線と、積層されるLSIへ電源を与える配線を別にすることで、シリコン貫通ビア形成の不良により、電源供給用のシリコン貫通ビアに短絡が発生していた場合でも、PU_A0のみ動作させることが可能となる。なお、図39では、PU_A0のみ図示されているが、LSI_A上に搭載される全ての機能ブロックはVDD_AおよびVSS_Aを電源配線とするように構成する。
VDD_B0は、LSI_BにおけるPU_B0に電源電位を与える配線であり、VSS_B0は、PU_B0に接地電位を与える配線である。この対応関係と同様に、VDD_**は、PU_**に電源電位を与える配線であり、VSS_**は、PU_**に接地電位を与える配線を示す。
TSV_VDD_C0は、VDD_C0とVDD_SW_B0とを電気的に接続するシリコン貫通ビアおよびマイクロバンプで形成された配線である。また、VDD_SW_B0は、VDD_B0と電気的に接続されている。同様に、TSV_VDD_C1は、VDD_C1とVDD_SW_B1とを、TSV_VSS_C0はVSS_C0とVSS_SW_B0とを、TSV_VSS_C1はVSS_C1とVSS_SW_B1とを、それぞれ電気的に接続しており、VDD_SW_B1とVDD_B1、VSS_SW_B0とVSS_B0、VSS_SW_B1とVSS_B1は電気的に接続されている。
TSV_VDD_B0は、VDD_B0とVDD_SW_A0とを電気的に接続するシリコン貫通ビアとマイクロバンプとで形成された配線である。また、VDD_SW_A0は、VDD_STACKと電気的に接続されている。同様に、TSV_VDD_B1はVDD_B1とVDD_SW_A1とを、TSV_VSS_B0はVSS_B0とVSS_SW_A0とを、TSV_VSS_B1はVSS_B1とVSS_SW_A1とを、それぞれ電気的に接続しており、VDD_SW_A1とVDD_STACK、VSS_SW_A0およびVSS_SW_A1とVSS_STACKは電気的に接続されている。
TSV_VDD_B0とTSV_VSS_B0とが、シリコン貫通ビア形成の不良などにより電気的に短絡していた場合について説明する。この場合、導通スイッチ(VDD_SW_**、VSS_SW_**)の全てが、それぞれ導通状態にある場合は、LSI_Aより上方に積層されているLSIで電源配線は短絡を起こしていることになり、電源電位が所定の値まで上昇しなかったり、積層LSIに過剰な電流が流入したりする。そのため、PU_B0、PU_B1、PU_C0、PU_C1は全て動作させることが不可能であったり、過剰な電力を消費したりすることになる。
ここで、VDD_SW_A0とVSS_SW_A0とを遮断状態にした場合、TSV_VDD_B0およびTSV_VSS_B0とが短絡していても、電源を供給する経路が存在しなくなるため、電源短絡は発生しない。これにより、VDD_B0、VSS_B0、VDD_C0、VSS_C0にはそれぞれ電位が供給されないため、PU_B0およびPU_C0は動作させることができないが、その他のPU_A0、PU_B1、PU_C1は動作させることが可能となる。
同様にして、TSV_VDD_B1とTSV_VSS_B1とが短絡している場合はVDD_SW_B1とVSS_SW_B1とを、TSV_VDD_C0とTSV_VSS_C0とが短絡している場合はVDD_SW_C0とVSS_SW_C0とを、TSV_VDD_C1とTSV_VSS_C1とが短絡している場合はVDD_SW_C1とVSS_SW_C1とを、それぞれ遮断状態にすることで、積層LSIの一部のプロセッシング・ユニットを動作させることが可能となる。また、TSV_VSS_B0とTSV_VDD_B1というように、異なるプロセッシング・ユニットの電源を供給しているシリコン貫通ビアが電気的に短絡している場合は、VDD_SW_A0とVSS_SW_A0の組、もしくはVDD_SW_A1とVSS_SW_A1の組のどちらか一方を遮断状態にすれば良い。
このように、本実施例に係る積層LSIは、電源を供給するシリコン貫通ビア群に短絡が発生していた場合、それを遮断状態にすることで救済することを特徴とする。
なお、初期状態においてそれぞれの導通スイッチ(VDD_SW_**、VSS_SW_**)が導通状態であると、電源供給用のシリコン貫通ビアに短絡があった場合は、積層LSIの電源投入時に電源短絡状態で起動することとなる。従って、これらの導通スイッチの初期状態は遮断状態であることが望ましい。シリコン貫通ビアの短絡テストが完了した後に、それぞれの導通スイッチの導通・遮断状態を設定する。この短絡テストの手順については後述する。また、図39において、TSV_VDD_**およびTSV_VSS_**は、それぞれ1本の配線として図示されているが、これが複数のシリコン貫通ビアとマイクロバンプで形成される場合がある場合も、同様にして短絡状態を救済できることは言うまでもない。
図40は、本発明による第2の実施形態に係る積層LSIにおいて、図33におけるLSI_AとLSI_Bとに実装される機能ブロックの論理的な構成と接続の一実施の形態を示したものであり、図34と対比される図である。図40において、LSI_Bは、プロセッシング・ユニットをPU_B0〜PU_B3の4つが具備しているが、図39に記載されていないPU_B2、PU_B3については、図39におけるPU_B0、PU_B1と同様の電源供給経路を持つものとする。なお、図40において、図34と対応する部分については同一符号を付し、その詳細な説明は繰り返さない。図40において、図34で示される構成と異なる点は、以下の通りである。
図40において、LSI_Aは、外部から積層LSIに電源を供給するレギュレータREGULATORから割込み信号を受信する割込みコントローラINTCを備える。レギュレータREGULATORは、積層LSIに所定の値を超える過剰な電流が流入した場合は、割込みコントローラINTCに対して割込み信号を入力する。これにより、LSI_AのPU_A0は電源の短絡があったことを検知できる。
LSI_Bは、PTESTおよびMD_CTRLに代わり、PTEST_B0、PTEST_B1、PTEST_B2、PTEST_B3の4つの電源テストを行う機能ブロックを備え、それぞれPTEST_B0はPU_B0に、PTEST_B1はPU_B1というように、特定のプロセッシング・ユニットに接続されている。
なお、ここでは、プロセッシング・ユニット毎に1つの電源テスト機能ブロックが接続されている場合を示しているが、これに限定するものではない。複数のプロセッシング・ユニットが電源を供給される配線を共有する場合は、その共有しているグループ毎に電源テスト機能ブロックを具備する構造であれば良い。
図41は、図40におけるPU_B0、PU_B1、PTEST_B0、PTEST_B1との間の接続構成を示したものである。図36に示されるPTESTと、PTEST_B0およびPTEST_B1との間で異なる点は、TSV_TREQ_I信号がPTEST_B0内のシフトレジスタSHIFTREGに入力され、シフトレジスタSHIFTREGに入力された値がTESTCTRLに入力される点である。また、PTEST_B0のシフトレジスタSHIFTREGの出力は、PTEST_B1のシフトレジスタに入力される。このようにシフトレジスタをチェーン状に構成することにより、TSV_TREQ_SCKから周期サイクル信号を入力すると、TSV_TREQ_Iに入力されている値がPTEST_B3のシフトレジスタSHIFTREG取り込まれ、これまでPTEST_B3内のシフトレジスタSHIFTREGに記録されていた値が、PTEST_B2内のシフトレジスタSHIFTREGに取り込まれる。同様に、電圧モニタVMONおよびディレイ・モニタDELAYMONの値を記録するシフトレジスタSHIFTREGもチェーン状に構成される。また、図41には示されないが、PU_B2に接続されるPTEST_B2やPU_B3に接続されるPTEST_B3も同様の構成であり、PTEST_B3内のシフトレジスタSHIFTREGの値は、TSV_TREQ_SCKの周期サイクル信号によって、TSV_TREQ_Oを介して上方に積層されるLSI_Cへと、もしくはTSV_TDO_Bを介して下方に積層されるLSI_Aへと伝播される。
また、PTEST_B0内のTESTCTRLは、接続されているシフトレジスタSHIFTREGの値に応じて、接続されるプロセッシング・ユニットPU_B0に対して、電力消費モード遷移要求信号MAXPREQ_B0のアサート/ネゲートを切り替える。即ち、このシフトレジスタSHIFTREG内の値が「1」の場合は、プロセッシング・ユニットPU_B0に対して電力消費モード遷移要求信号MAXPREQ_B0をアサートする。これにより、PU_B0は実施例1で述べた電力消費モードに遷移する。また、この構成はPTEST_B1においても同様である。
以上のような構成により、TSV_TREQ_SCKの周期サイクル信号に対応してTSV_TREQ_Iから所定のビット列を入力することで、LSI_Bに搭載されるプロセッシング・ユニットPU_B0〜PU_B3において任意の組み合わせのプロセッサを電力消費モードで動作させることが可能となる。
図42は、本実施の形態において、LSI_Bにおける電源供給用のシリコン貫通ビアの短絡テストを行う手順の一例を示したものである。まず、初期状態においては、PTEST_B0〜PTEST_B3内のシフトレジスタSHIFTREG内の値は「0」と設定しておき、また図39における電源スイッチVDD_SW_**、VSS_SW_**は全て遮断状態に設定する。このため、LSI_B上のPU_B0〜PU_B3には電源が供給されず停止状態で起動する。従って、TSV_VDD_**およびTSV_VSS_**において短絡不良が存在する場合でも、積層LSIは短絡不良の影響を受けずに起動することができる。一方、LSI_A上にあるPU_A0は、VDD_A、VSS_Aを介して電源が供給されるため、動作可能な状態で起動する。
次に、まず図39における電源スイッチVDD_SW_A0およびVSS_SW_A0の遮断を解除する。すると、PU_B0が起動し、このPU_B0のみ電源テストが実行可能な状態となる。ここで、TSV_TREQ_SCKの周期サイクル信号に応じて、TSV_TREQ_Iより「1」を1周期のみ入力する。次のTSV_TREQ_SCKのサイクルにおいて、PTEST_B0内のSHIFTREGに信号「1」が書き込まれ、PU_B0に対する導通テストを開始する。PTEST_B0はPU_B0に対して電力消費モード遷移要求信号MAXPREQ_B0をアサートし、PU_B0は電力消費モードとして動作する。そして、次のTSV_TREQ_SCKの周期サイクルにおいては、PTEST_B0内のSHIFTREGは信号「0」に、PTEST_B1内のSHIFTREGは信号「1」に遷移し、図39における電源スイッチVDD_SW_A0およびVSS_SW_A0を再び遮断状態に戻し、電源スイッチVDD_SW_A1およびVSS_SW_A1の遮断を解除する。PTEST_B0は電力消費モード遷移要求信号MAXPREQ_B0をネゲートし、PU_B0の電力消費モード動作は終了する。同時に、PTEST_B1が導通テストを実施するためにPU_B1に対して電力消費モード遷移要求信号MAXPREQ_B1をアサートし、PU_B1は電力消費モードとして動作する。このようにして、TSV_TREQ_SCKのサイクル毎に、順次PU_0、PU_B1、PU_B2、PU_B3の順で、それぞれ1つずつプロセッシング・ユニットを電力消費モードで動作させることが可能である。
これらの導通テスト期間を通じて、LSI_A上のPU_A0は、レギュレータREGULATORからの割込みを監視しておく。図42においては、PU_B1の導通テスト期間に、レギュレータREGULATORからの割込み信号が入力された様相を示している。上述のように、積層LSIに過剰な電流が流入した場合にのみレギュレータREGULATORからの割込み信号が入力される。即ち、PU_B1に電源を供給しているシリコン貫通ビアおよびそれに接続される配線上に短絡が発生していることを判別可能となる。
短絡が発生している場合は、PU_A0は、PTEST_CTRL内のRSLT_TBLにPU_B1が使用不可能であることを記録し、また、図39で説明したように、PU_B1へ電源を供給しているシリコン貫通ビアに接続されている導通スイッチVDD_SW_A1およびVSS_SW_A0を遮断する。
以上のようにして、本形態に係る半導体装置は、電源用シリコン貫通ビアの短絡テストおよび短絡発生時の救済手段を提供する。
CPU1〜CPU8…プロセッサ、RAM1・RAM2…メモリ、PKCB・・・パッケージ基板、LSI_A、LSI_B、LSI_C・・・積層向けLSI、BMP・・・半田バンプ、MBMP・・・マイクロバンプ、TSV_VDD、TSV_VSS・・・電源用シリコン貫通ビア、TSV_SIG・・・信号用シリコン貫通ビア、TSV_SCK、TSV_TREQ、TSV_TDI_A、TSV_TDI_B、TSV_TDI_C、TSV_TDO_A、TSV_TDO_B、TSV_TDO_C・・・電源テスト信号用シリコン貫通ビア、PTEST・・・電源テスト回路、PTEST_CTRL・・・電源テスト制御回路、PU_A0、PU_B0、PU_B1、PU_B2、PU_B3・・・プロセッシング・ユニット、IP_B0、IP_B1・・・機能ブロック、OCI_A、OCI_B・・・オンチップ・インタコネクト、3DI・・・積層LSI間通信インタフェース、TAP・・・テストアクセスポート、LBSC・・・ローカルバスコントローラ、NVMEM・・・不揮発性メモリ、PTESTPROG・・・電源テストプログラム、RSLT_TBL・・・テスト結果テーブル、TREQ・・・テスト要求信号、MAXPREQ・・・電力消費モード遷移要求信号、MD_CTRL・・・動作モード制御部、MDREG・・・動作モードレジスタ、ROM・・・読み出し専用メモリ、MAXPPROG・・・最大電力消費プログラム、SEL・・・セレクタ、FF・・・フリップ・フロップ、CLK・・・クロック信号、TESTCTRL・・・電源テスト制御ブロック、DELAYMON・・・ディレイ・モニタ、VMON・・・電圧モニタ、SHIFTREG・・・シフトレジスタ、TSV_VDD_B0、TSV_VDD_B1、TSV_VDD_C0、TSV_VDD_C1、TSV_VSS_B0、TSV_VSS_B1、TSV_VSS_C0、TSV_VSS_C1・・・電源用シリコン貫通ビア、VDD_STACK、VSS_STACK・・・積層LSIへ電源電位を与える配線、VDD_A、VDD_B0、VDD_B1、VDD_C0、VDD_C1、VSS_A、VSS_B0、VSS_B1、VSS_C0、VSS_C1・・・各LSIの電源配線、VDD_SW_A0、VDD_SW_A1、VDD_SW_B1、VDD_SW_B2、VSS_SW_A0、VSS_SW_A1、VSS_SW_B0、VSS_SW_B1・・・電源スイッチ、PTEST_B0、PTEST_B1、PTEST_B2、PTEST_B3・・・電源テスト機能ブロック。

Claims (18)

  1. 複数のLSIが積層され、各LSIの間が貫通ビアで接合され、
    前記複数のLSIは、第1LSI及び第2LSIを有する半導体装置であって、
    前記第1LSIは、第1の方向に延びる第1及び第2の辺と、前記第1の方向と交差する第2の方向に延びる第3及び第4の辺とを有する第1半導体基板上に形成された第1回路ブロックを有し
    前記第2LSIは、前記第1の方向に延びる第1及び第2の辺と、前記第2の方向に延びる第3及び第4の辺とを有する第2半導体基板上に形成され、前記第1回路ブロックとは異なる第2回路ブロックを有し
    前記半導体装置は、前記第1回路ブロックから出力される信号を前記第2回路ブロックに伝達する複数の信号線用貫通ビアと、前記第1回路ブロックに電源を供給するための複数の電源用貫通ビアとをし、
    前記第1LSI及び前記第2LSIの最外周の前記第1〜第4の4辺に、前記複数の電源用貫通ビアの列が複数設けられ、
    前記複数の電源用貫通ビアの内側の前記第1〜第4の4辺に、前記複数の信号線用貫通ビアの列が複数設けられ、
    前記複数の信号線用貫通ビアの内側に、前記第1回路ブロック又は前記第2回路ブロックが設けられていることを特徴とする半導体装置。
  2. 請求項1において、
    前記複数の電源用貫通ビアは、前記第1半導体基板の前記第3の辺に沿った第1の領域と前記第4の辺に沿った第2の領域に形成され、前記第1回路ブロック及び前記複数の信号線用貫通ビアは、前記第1の領域と前記第2の領域との間の第3の領域に形成され、
    前記第1の領域に形成された前記複数の電源用貫通ビアを接続する第1電源線は、前記第1の方向に延在すると共に、前記第2の方向に並んだ前記複数の電源用貫通ビアの間のすべてに形成され、
    前記第2の領域に形成された前記複数の電源用貫通ビアを接続する第2電源線は、前記第1の方向に延在すると共に、前記第2の方向に並んだ前記複数の電源用貫通ビアの間のすべてに形成され、
    前記第1の領域に形成された前記複数の電源用貫通ビアと前記第2の領域に形成された前記複数の電源用貫通ビアとを接続する第3電源線の数は、前記第1電源線及び前記第2電源線の数より少ないことを特徴とする半導体装置。
  3. 請求項1において、
    前記複数の電源用貫通ビアは、第1の電圧を供給する複数の第1電源用貫通ビアと、前記第1の電圧とは異なる電圧を供給する複数の第2電源用貫通ビアとを含み、
    前記第2の方向に一列に並んで形成された前記複数の電源用貫通ビアは、前記第1電源用貫通ビアと、前記第2電源用貫通ビアとが交互に設けられ、
    前記第1の方向に一列に並んで形成された複数の電源用貫通ビアは、前記第1電源用貫通ビアと前記第2電源用貫通ビアとが交互に設けられることを特徴とする半導体装置。
  4. 請求項1において、
    前記複数の電源用貫通ビアは、第1の電圧を供給する複数の第1電源用貫通ビアと、前記第1の電圧とは異なる電圧を供給する複数の第2電源用貫通ビアとを含み、
    前記複数の第1電源用貫通ビアは、前記第2の方向に一列に形成され、
    前記複数の第2電源用貫通ビアは、前記複数の第1電源用貫通ビアと前記複数の信号線用貫通ビアの間に、前記第2の方向に一列に形成されることを特徴とする半導体装置。
  5. 請求項1において、
    前記複数の電源用貫通ビアは、第1の電圧を供給する複数の第1電源用貫通ビアと、前記第1の電圧とは異なる電圧を供給する複数の第2電源用貫通ビアとを含み、
    前記第2の方向に一列に並んで形成された前記複数の電源用貫通ビアは、前記第1電源用貫通ビアと、前記第2電源用貫通ビアとが所定数毎に交互に設けられ、
    前記第1の方向に一列に並んで形成された複数の電源用貫通ビアは、前記第1電源用貫通ビアと前記第2電源用貫通ビアとが前記所定数毎に交互に設けられることを特徴とする半導体装置。
  6. 請求項1において、
    前記複数の電源用貫通ビアは、第1の電圧を供給する複数の第1電源用貫通ビアと、前記第1の電圧とは異なる電圧を供給する複数の第2電源用貫通ビアとを含むと共に、前記第1半導体基板の前記第3の辺に沿った第1の領域と前記第4の辺に沿った第2の領域に形成され、
    前記第1及び第2の領域に形成された複数の第1電源用貫通ビアは、前記第1の方向に一列に配置され、
    前記第1及び第2の領域に形成された複数の第2電源用貫通ビアは、前記第1の方向に一列に配置され、
    前記第1及び第2の領域に形成された複数の電源用貫通ビアを接続する電源線は、前記第1の方向に延在することを特徴とする半導体装置。
  7. 請求項1において、
    前記複数の電源用貫通ビアは、第1の電圧を供給する複数の第1電源用貫通ビアと、前記第1の電圧とは異なる電圧を供給する複数の第2電源用貫通ビアと、前記第1及び第2の電圧とは異なる第3の電圧を供給する複数の第3電源用貫通ビアとを含み、
    前記複数の第1電源用貫通ビアは、前記複数の第2及び第3電源用貫通ビアから前記第1回路ブロックを介して電流が流れ、
    前記複数の第1電源用貫通ビアの数は、前記複数の第2電源用貫通ビアの数、及び、前記複数の第3電源用貫通ビアの数の夫々より多いことを特徴とする半導体装置。
  8. 請求項において、
    前記複数の第1電源用貫通ビアの数は、前記複数の第2電源用貫通ビア及び前記複数の第3電源用貫通ビアの数の合計と同数であることを特徴とする半導体装置。
  9. 請求項1において、
    前記第1回路ブロックは、プロセッシング・ユニットを有し、
    前記プロセッシング・ユニットは、通常動作を行うノーマルモードにおける電力消費より大きい電力を消費する電力消費モードを有することを特徴とする半導体装置。
  10. 請求項において、
    前記第1回路ブロックは、機能モジュールを更に有し、
    前記機能モジュールは、スキャン・チェーン部と、前記スキャン・チェーン部に接続された乱数発生部と、を有し、
    前記プロセッシング・ユニットが前記電力消費モードとなった場合に、前記乱数発生部から前記スキャン・チェーン部に乱数を送出することを特徴とする半導体装置。
  11. 請求項において、
    前記第1回路ブロックは、前記電力消費モードにおいて、前記複数の電源用貫通ビアより供給された電圧を計測する電圧モニタを有することを特徴とする半導体装置。
  12. 請求項11において、
    前記第1回路ブロックは、前記電力消費モードにおいて、クリティカル・パスのディレイを計測するディレイ・モニタを有することを特徴とする半導体装置。
  13. 請求項1において、
    前記第1LSIは、ノーマルモードと電力消費モードを有する第1プロセッシング・ユニットと、第1電源テスト回路を有
    前記第2LSIは、前記第1LSIと積層され、前記ノーマルモードと前記電力消費モードを有する第2プロセッシング・ユニットと第2電源テスト回路とを有
    前記第1LSIと前記第2LSIとを接続し、前記第1LSI及び前記第2LSIに動作電圧を供給する電源用貫通ビアを有し
    前記電力消費モードにおける前記第1プロセッシング・ユニットの消費電力は、前記ノーマルモードにおける前記第1プロセッシング・ユニットの消費電力より大きく、
    前記電力消費モードにおける前記第2プロセッシング・ユニットの消費電力は、前記ノーマルモードにおける前記第2プロセッシング・ユニットの消費電力より大きく、
    前記第1電源テスト回路は、前記第1プロセッシング・ユニットが前記電力消費モードとなっている場合に、前記電源用貫通ビアを介して供給される前記動作電圧の電圧値を測定し、
    前記第2電源テスト回路は、前記第2プロセッシング・ユニットが前記電力消費モードとなっている場合に、前記電源用貫通ビアを介して供給される前記動作電圧の電圧値を測定することを特徴とする半導体装置。
  14. 請求項13において、
    前記第1プロセッシング・ユニットが前記電力消費モードで動作する期間は、前記第2プロセッシング・ユニットが前記電力消費モードで動作する期間と並行し、
    前記第1電源テスト回路が前記動作電圧の電圧値を測定する期間及び前記第2電源テスト回路が前記動作電圧の電圧値を測定する期間は、前記第1プロセッシング・ユニットと前記第2プロセッシング・ユニットが前記電力消費モードにて動作している期間と並行していることを特徴とする半導体装置。
  15. 請求項13において
    前記第1LSIは、前記電力消費モードにおいて、前記第1プロセッシング・ユニットが実行する最大電力消費プログラムを格納する第1メモリを更に具備し、
    前記第2LSIは、前記電力消費モードにおいて、前記第2プロセッシング・ユニットが実行する最大電力消費プログラムを格納する第2メモリを更に具備することを特徴とする半導体装置。
  16. 請求項13において、
    前記第1LSIは、動作モードが設定される第1レジスタを有し、
    前記第2LSIは、動作モードが設定される第2レジスタを有し、
    前記半導体装置は、外部から前記第1レジスタに動作モードを設定するためにデータを転送する第1テスト用貫通ビアと、前記第1LSIから前記第2レジスタに動作モードを設定するためにデータを転送する第2テスト用貫通ビアを更に具備することを特徴とする半導体装置。
  17. 請求項13において、
    前記第1電源テスト回路は、前記第1プロセッシング・ユニットのクリティカル・パスを模擬した第1ディレイ・モニタを有し、
    前記第2電源テスト回路は、前記第2プロセッシング・ユニットのクリティカル・パスを模擬した第2ディレイ・モニタを有し、
    前記第1及び第2ディレイ・モニタは、前記電力消費モードにおいて、前記クリティカル・パスを正しく動作しているか否かを判定することを特徴とする半導体装置。
  18. 請求項13において、
    前記第1LSIは、第1スキャン・チェーンと前記第1スキャン・チェーンに接続される第1乱数発生部とを有する第1機能モジュールを更に有し、
    前記第2LSIは、第2スキャン・チェーンと前記第2スキャン・チェーンに接続される第2乱数発生部とを有する第2機能モジュールを更に有し、
    前記第1及び第2乱数発生部は、前記電力消費モードにおいて、前記第1及び第2スキャン・チェーンに乱数を送出することを特徴とする半導体装置。
JP2011530722A 2009-09-14 2009-09-14 半導体装置 Expired - Fee Related JP5420671B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/066040 WO2011030467A1 (ja) 2009-09-14 2009-09-14 半導体装置

Publications (2)

Publication Number Publication Date
JPWO2011030467A1 JPWO2011030467A1 (ja) 2013-02-04
JP5420671B2 true JP5420671B2 (ja) 2014-02-19

Family

ID=43732152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011530722A Expired - Fee Related JP5420671B2 (ja) 2009-09-14 2009-09-14 半導体装置

Country Status (3)

Country Link
US (2) US8653645B2 (ja)
JP (1) JP5420671B2 (ja)
WO (1) WO2011030467A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11069623B2 (en) 2018-05-15 2021-07-20 Samsung Electronics Co., Ltd. Semiconductor package

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5643665B2 (ja) * 2011-01-24 2014-12-17 学校法人慶應義塾 積層型半導体集積回路装置
JP2012243910A (ja) * 2011-05-18 2012-12-10 Elpida Memory Inc 半導体チップのクラックのチェックテスト構造を有する半導体装置
JP5775787B2 (ja) * 2011-10-07 2015-09-09 株式会社日立製作所 半導体装置
US9368437B2 (en) * 2011-12-31 2016-06-14 Intel Corporation High density package interconnects
US9099477B2 (en) * 2012-05-10 2015-08-04 Panasonic Intellectual Property Management Co., Ltd. Three-dimensional integrated circuit having stabilization structure for power supply voltage, and method for manufacturing same
JP2013258271A (ja) * 2012-06-12 2013-12-26 Ps4 Luxco S A R L 半導体装置
KR101960496B1 (ko) * 2012-08-29 2019-03-20 에스케이하이닉스 주식회사 반도체 장치
JP6058336B2 (ja) * 2012-09-28 2017-01-11 ルネサスエレクトロニクス株式会社 半導体装置
JP6121677B2 (ja) * 2012-10-02 2017-04-26 株式会社日立製作所 半導体装置
KR102032887B1 (ko) * 2012-12-10 2019-10-16 삼성전자 주식회사 반도체 패키지 및 반도체 패키지의 라우팅 방법
US9482720B2 (en) * 2013-02-14 2016-11-01 Duke University Non-invasive pre-bond TSV test using ring oscillators and multiple voltage levels
US9030025B2 (en) * 2013-03-15 2015-05-12 IPEnval Consultant Inc. Integrated circuit layout
JP6207228B2 (ja) * 2013-05-10 2017-10-04 キヤノン株式会社 集積回路装置およびその構成方法
KR20140148179A (ko) * 2013-06-21 2014-12-31 삼성전자주식회사 반도체 패키지 장치 및 이의 제조 방법
CN108847263B (zh) 2013-10-23 2021-03-23 钰创科技股份有限公司 具有嵌入式内存的系统级封装内存模块
US9726691B2 (en) 2014-01-07 2017-08-08 International Business Machines Corporation 3D chip testing through micro-C4 interface
US8929169B1 (en) * 2014-05-13 2015-01-06 Sandisk Technologies Inc. Power management for nonvolatile memory array
US10147658B2 (en) * 2014-06-09 2018-12-04 SK Hynix Inc. Stacked semiconductor apparatus being electrically connected through through-via and monitoring method
JP6235423B2 (ja) * 2014-06-30 2017-11-22 東芝メモリ株式会社 半導体装置
JP6295863B2 (ja) * 2014-07-16 2018-03-20 富士通株式会社 電子部品、電子装置及び電子装置の製造方法
JP6495692B2 (ja) * 2015-03-11 2019-04-03 東芝メモリ株式会社 半導体装置及びその製造方法
US9439330B1 (en) * 2015-03-29 2016-09-06 Banqiu Wu 3D IC computer system
JP6528592B2 (ja) * 2015-08-17 2019-06-12 富士通株式会社 半導体装置
CN107305861B (zh) * 2016-04-25 2019-09-03 晟碟信息科技(上海)有限公司 半导体装置及其制造方法
US10170448B2 (en) * 2016-12-07 2019-01-01 Micron Technology, Inc. Apparatus and method of power transmission sensing for stacked devices
JP6822253B2 (ja) * 2017-03-22 2021-01-27 富士通株式会社 電子装置及びその製造方法、電子部品
JP2019046951A (ja) * 2017-09-01 2019-03-22 ルネサスエレクトロニクス株式会社 半導体装置、半導体システム、及び、半導体装置の製造方法
JP7010428B2 (ja) * 2017-10-20 2022-01-26 電子商取引安全技術研究組合 半導体装置
WO2019146039A1 (ja) * 2018-01-25 2019-08-01 ソフトバンク株式会社 三次元積層集積回路の冷媒による冷却方式と、それを用いた三次元積層集積回路
FR3077925B1 (fr) * 2018-02-14 2021-06-18 Commissariat Energie Atomique Circuit integre tridimensionnel face a face de structure simplifiee
JP2019169565A (ja) 2018-03-22 2019-10-03 東芝メモリ株式会社 半導体装置
JP6850336B1 (ja) * 2019-12-05 2021-03-31 ソフトバンク株式会社 半導体パッケージならびに穴開きインターポーザーによる液浸冷却方式を用いた三次元積層集積回路
US11107771B2 (en) * 2019-12-26 2021-08-31 Taiwan Semiconductor Manufacturing Company, Ltd. Segregated power and ground design for yield improvement
CN115087876A (zh) * 2020-02-28 2022-09-20 索尼半导体解决方案公司 半导体装置和测试系统
JP7424580B2 (ja) 2020-03-06 2024-01-30 本田技研工業株式会社 半導体装置とその製造方法
CN115842013B (zh) * 2023-02-13 2023-06-09 浙江力积存储科技有限公司 一种三维堆叠存储器及其数据处理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007150208A (ja) * 2005-11-30 2007-06-14 System Fabrication Technologies Inc 半導体装置
JP2008004853A (ja) * 2006-06-26 2008-01-10 Hitachi Ltd 積層半導体装置およびモジュール
JP2008096312A (ja) * 2006-10-12 2008-04-24 Elpida Memory Inc 積層型半導体装置及びそのテスト方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6566848B2 (en) * 2000-12-26 2003-05-20 Intel Corporation Auto-calibrating voltage regulator with dynamic set-point capability
JP4272968B2 (ja) * 2003-10-16 2009-06-03 エルピーダメモリ株式会社 半導体装置および半導体チップ制御方法
CN101507379A (zh) * 2005-09-06 2009-08-12 超刀片公司 三维多层模块化计算机体系结构
US8106520B2 (en) * 2008-09-11 2012-01-31 Micron Technology, Inc. Signal delivery in stacked device
US7835207B2 (en) * 2008-10-07 2010-11-16 Micron Technology, Inc. Stacked device remapping and repair

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007150208A (ja) * 2005-11-30 2007-06-14 System Fabrication Technologies Inc 半導体装置
JP2008004853A (ja) * 2006-06-26 2008-01-10 Hitachi Ltd 積層半導体装置およびモジュール
JP2008096312A (ja) * 2006-10-12 2008-04-24 Elpida Memory Inc 積層型半導体装置及びそのテスト方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11069623B2 (en) 2018-05-15 2021-07-20 Samsung Electronics Co., Ltd. Semiconductor package

Also Published As

Publication number Publication date
US20120136596A1 (en) 2012-05-31
WO2011030467A1 (ja) 2011-03-17
US9318397B2 (en) 2016-04-19
US20140159041A1 (en) 2014-06-12
US8653645B2 (en) 2014-02-18
JPWO2011030467A1 (ja) 2013-02-04

Similar Documents

Publication Publication Date Title
JP5420671B2 (ja) 半導体装置
US6734549B2 (en) Semiconductor device having a device for testing the semiconductor
JP5416200B2 (ja) 半導体装置
JP5165404B2 (ja) 半導体装置と半導体装置の製造方法及びテスト方法
US7816154B2 (en) Semiconductor device, a method of manufacturing a semiconductor device and a testing method of the same
US20130159587A1 (en) Interconnect Redundancy for Multi-Interconnect Device
TW201507087A (zh) 半導體裝置
KR20120045331A (ko) 반도체 장치와 그 테스트 방법 및 제조방법
Xu et al. Yield enhancement for 3D-stacked ICs: Recent advances and challenges
US11842985B2 (en) Semiconductor devices having through-stack interconnects for facilitating connectivity testing
JP2013197576A (ja) 半導体装置
Cheng On 3-d ic design for test
Taouil et al. Interconnect test for 3D stacked memory-on-logic
JP2008140530A (ja) 半導体装置およびそのテスト方法
KR20170034178A (ko) 반도체 패키지 장치
KR20130070249A (ko) 시스템 집적회로
JP2011100898A (ja) 半導体デバイス
Yang et al. A TSV repair scheme using enhanced test access architecture for 3-D ICs
JP2011211113A (ja) 半導体装置の製造方法
Taouil et al. Exploring test opportunities for memory and interconnects in 3D ICs
Garita-Rodríguez et al. Challenges for High Volume Testing of Embedded IO Interfaces in Disaggregated Microprocessor Products
JP2005156479A (ja) 半導体集積回路装置およびそのテスト方法
JP2011151084A (ja) 剥離テスト装置及び剥離テスト方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131120

LAPS Cancellation because of no payment of annual fees