JP5398399B2 - ガラスセラミック基板およびコイル内蔵ガラスセラミック配線基板ならびにガラスセラミック基板の製造方法 - Google Patents

ガラスセラミック基板およびコイル内蔵ガラスセラミック配線基板ならびにガラスセラミック基板の製造方法 Download PDF

Info

Publication number
JP5398399B2
JP5398399B2 JP2009171759A JP2009171759A JP5398399B2 JP 5398399 B2 JP5398399 B2 JP 5398399B2 JP 2009171759 A JP2009171759 A JP 2009171759A JP 2009171759 A JP2009171759 A JP 2009171759A JP 5398399 B2 JP5398399 B2 JP 5398399B2
Authority
JP
Japan
Prior art keywords
crystal
ferrite
glass
layer
green sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009171759A
Other languages
English (en)
Other versions
JP2010080930A (ja
Inventor
隆典 亀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2009171759A priority Critical patent/JP5398399B2/ja
Publication of JP2010080930A publication Critical patent/JP2010080930A/ja
Priority to US12/779,878 priority patent/US8546699B2/en
Application granted granted Critical
Publication of JP5398399B2 publication Critical patent/JP5398399B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/004Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of particles or flakes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/165Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed inductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4688Composite multilayer circuits, i.e. comprising insulating layers having different properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/04Particles; Flakes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/08Magnetic details
    • H05K2201/083Magnetic materials
    • H05K2201/086Magnetic materials for inductive purposes, e.g. printed inductor with ferrite core
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/06Lamination
    • H05K2203/061Lamination of previously made multilayered subassemblies
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • H05K3/4629Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating inorganic sheets comprising printed circuits, e.g. green ceramic sheets

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Glass Compositions (AREA)

Description

本発明は、フェライト層と絶縁層とが積層されてなるガラスセラミック基板およびフェライト層にコイルが内蔵され、絶縁層に配線導体が形成されたコイル内蔵ガラスセラミック配線基板ならびにガラスセラミック基板の製造方法に関するものである。
従来から、携帯電話機をはじめとする移動体通信機器等の電子機器には多数の電子装置が組み込まれており、電子機器の小型化が急激に進んでいるのに伴って、各種電子装置も小型化や薄型化が要求されている。たとえば、LCフィルタは、従来は比較的大型のチップコイルやチップコンデンサを基板に搭載することにより形成されていたが、近年では、セラミック基板の内部に高透磁率を有するフェライト層を形成し、このフェライト層にコイル導体を埋設することにより形成することが提案されている(例えば、特許文献1,2を参照。)。
このようなセラミック基板は、例えば、配線層が形成された一対の絶縁層と、その一対の絶縁層に挟まれて積層されるとともに内部に平面コイル導体が埋設されたフェライト層とによって構成されている。配線層や平面コイル導体には、抵抗による電気的なロスを抑えるために低抵抗のCuやAgなどの低抵抗金属を用いる必要があり、このような低抵抗金属は比較的低融点であることから、低温焼成が可能である絶縁層およびフェライト層として、それぞれガラスセラミックスおよびFeFeを主相とするフェライトを用いて、これらを同時焼成することによってガラスセラミック基板が製造される。
特開平6−20839号公報 特開平6−21264号公報
しかしながら、ガラスセラミック基板の機械的特性や電気的特性を満足させるために、絶縁層のガラスセラミックスのガラスとして結晶化ガラスを用いる場合が多いが、このような場合に、その製造過程において絶縁層とフェライト層との界面にボイドや隙間が発生し、結果としてこの界面での接合強度の低化を招いてしまうという問題点があった。これは、ガラスセラミックス中の結晶の結晶構造とフェライト層中のフェライト結晶の結晶構造とが異なり、それらの大きさ、すなわち格子定数が異なるために、ガラスセラミックスのガラスが焼成時に軟化して流動しているときにはこのガラスとフェライトとは接合しているが、その後、このガラスが結晶化する際に、結晶化した部分とフェライト結晶とが接合することができなくなって、絶縁層のガラスセラミックスとフェライト層のフェライトとの間にボイドや隙間が発生するためであると考えられる。
よって、絶縁層とフェライト層との間の接合強度をより向上させたガラスセラミック基板が求められている。
本発明のガラスセラミック基板は、ガラス相および第1結晶を含むガラスを有するガラスセラミックスからなる絶縁層と、フェライト結晶を有するフェライト層と、前記絶縁層と前記フェライト層との間の界面わたって析出して設けられた第2結晶を含むガラスを有する中間層とを有しており、前記第2結晶は、前記フェライト結晶および前記第1結晶と同一の結晶構造であるとともに、前記第2結晶とフェライト結晶との格子定数の差、および前記第2結晶と前記第1結晶との格子定数の差は、それぞれ前記第2結晶の格子定数の10%以内であり、前記第1結晶はMg SiO を主相とし、前記フェライト結晶はFeFe を主相とし、前記第2結晶は、ZnFe ,FeAl およびZnAl の少なくともいずれか1つを主相とすることを特徴とするものである。
また、本発明のガラスセラミック基板は、好ましくは、上記構成において、前記第2結晶は、前記第1結晶に含まれる元素の一部と前記フェライト結晶に含まれる元素の一部とを有することを特徴とするものである。
また、本発明のガラスセラミック基板は、好ましくは、上記各構成において、前記中間層および前記フェライト層が、複数の前記絶縁層の間に設けられていることを特徴とするものである。
本発明のコイル内蔵ガラスセラミック配線基板は、上記各構成の本発明のガラスセラミック基板と、前記絶縁層に形成された配線導体と、前記フェライト層に内蔵されたコイル導体とを具備することを特徴とするものである。
本発明のガラスセラミック基板の製造方法は、ガラスセラミックスからなる複数の絶縁層と、該複数の絶縁層の間に設けられたフェライト結晶を有するフェライト層と、前記絶縁層と前記フェライト層との間に設けられた中間層とを有するガラスセラミック基板の製造方法であって、フォルステライトからなる10〜40質量%のフィラーと、SiOを22〜52質量%、Bを2〜12質量%、Alを9〜29質量%、ZnOを9〜29質量%、CaOを1〜9質量%およびMgOを7〜21質量%含み、かつ前記Alに対する前記ZnOのモル比が0.8〜1.2である60〜90質量%のガラスとを有する複数のセラミックグリーンシートを準備する第1準備工程と、FeFeを主相とするフェライト結晶を有するフェライトグリーンシートを準備する第2準備工程と、前記セラミックグリーンシートと前記フェライトグリーンシートとを積層してグリーンシート積層体を作製する積層体作製工程と、前記グリーンシート積層体を焼成するとともに前記セラミックグリーンシートと前記フェライトグリーンシートとの界面にZnFe ,FeAl およびZnAl の少なくともいずれか1つを含む前記中間層を析出させる焼成工程とを具備することを特徴とするものである。
本発明のガラスセラミック基板によれば、第2結晶は、フェライト結晶および第1結晶と同一の結晶構造であるとともに、第2結晶とフェライト結晶との格子定数の差、および第2結晶と第1結晶との格子定数の差は、それぞれ第2結晶の格子定数の10%以内であることから、ガラスセラミックス中の第1結晶と中間層中の第2結晶との間、および中間層中の第2結晶とフェライト層中のフェライト結晶との間で、結晶構造が同じで結晶の大きさが同程度となるので、その製造過程において、ガラスセラミックスと中間層との界面、および中間層とフェライト層との界面にボイドや隙間を発生させることがないため、絶縁層とフェライト層との接合強度の高いガラスセラミック基板を実現することができる。
また、本発明のガラスセラミック基板によれば、上記構成において、第2結晶が第1結晶に含まれる元素の一部とフェライト結晶に含まれる元素の一部とを有するときには、異元素間における結合と比較して、同元素間における結合の方が結合強度が高くなるので、中間層中の第2結晶が絶縁層中の第1結晶およびフェライト層中のフェライト結晶の元素を含むことで、絶縁層とフェライト層との接合強度がより高いものとなる。
また、本発明のガラスセラミック基板によれば、上記各構成において、中間層およびフェライト層が複数の絶縁層の間に設けられているときには、ガラスセラミック基板の表裏面がガラスセラミックスからなる絶縁層で構成されることから、一般的にフェライトと比較して絶縁抵抗が高く、また、配線導体との接合強度が高いガラスセラミックスがガラスセラミック基板の表面に位置するので、絶縁信頼性が高く、配線導体上に部品を実装したり配線導体を介してガラスセラミック基板を外部回路基板に実装したりする場合の実装信頼性の高いガラスセラミック配線基板に好適なガラスセラミック基板となる。
また、本発明のセラミック基板によれば、上記各構成において、第1結晶はMgSiOを主相とし、前記フェライト結晶はFeFeを主相とし、前記第2結晶は、ZnFe,FeAlおよびZnAlのいずれか1つを主相とするときには、第2結晶は、フェライト結晶および第1結晶と同一の結晶構造であるとともに、第2結晶とフェライト結晶との格子定数の差、および第2結晶と第1結晶との格子定数の差は、それぞれ第2結晶の格子定数の5%以内とより小さいものとなることから、ボイドや隙間を発生させることがより少なくなるので、より接合強度の高いガラスセラミック基板とすることができる。
本発明のコイル内蔵ガラスセラミック配線基板によれば、上記各構成の本発明のガラスセラミック基板と、絶縁層に形成された配線導体と、フェライト層に内蔵されたコイル導体とを具備することから、絶縁層とフェライト層との接合強度が高いので、基板強度が高く、信頼性の高いコイル内蔵ガラスセラミック配線基板となる。
本発明のガラスセラミック基板の製造方法によれば、フォルステライトからなる10〜40質量%のフィラーと、SiOを22〜52質量%、Bを2〜12質量%、Alを9〜29質量%、ZnOを9〜29質量%、CaOを1〜9質量%およびMgOを7〜21質量%含み、かつ前記Alに対する前記ZnOのモル比が0.8〜1.2である60〜90質量%のガラスとを有する複数のセラミックグリーンシートを準備する第1準備工程と、FeFeを主相とするフェライト結晶を有するフェライトグリーンシートを準備する第2準備工程とを具備することから、第1結晶がMgSiOを主相とし、フェライト結晶がFeFeを主相とし、第2結晶が、ZnFe,FeAlおよびZnAlのいずれか1つを主相とする、絶縁層とフェライト層との間の接合強度の高いガラスセラミック基板を、通常の積層体作製工程および焼成工程により容易に作製することができる。
本発明のガラスセラミック基板の実施の形態の一例を示す断面図である。 本発明のコイル内蔵ガラスセラミック配線基板の実施の形態の一例を示す断面図である。
本発明のガラスセラミック基板の実施の形態について、添付図面を参照しつつ以下に詳細に説明する。
図1は本発明のガラスセラミック基板の実施の形態の一例を模式的に示す断面図である。図1において、1は絶縁層、2はフェライト層、3は絶縁層1とフェライト層2との間に形成された中間層である。
フェライト層2は、スピネル構造の固溶体である強磁性フェライトであり、X−Fe(XはCu,Ni,Zn)として示されるNi−Zn系フェライト,Y−Fe(YはMn,Zn)として示されるMn−Zn系フェライト,Z−Fe(ZはMg,Zn)として示されるMg−Zn系フェライト,U−Fe(UはNi,Co)として示されるNi−Co系フェライト等が挙げられる。これらの中でFeFeはスピネル構造の主成分である。また、上記スピネル構造を有する強磁性フェライトの中でもNi−Zn系フェライトは、高周波帯域で十分に高い透磁率を得ることができるため、100kHz以上の高い周波数で使用する用途において使用することが好ましい。
Ni−Zn系フェライトの場合であれば、その組成比は焼結体としてFeFeを63〜73質量%,CuOを5〜10質量%,NiOを5〜12質量%,ZnOを10〜23質量%とすると、絶縁層1のガラスセラミックスを焼成する800℃〜1000℃以下の温度で焼結密度5.0g/cm以上の高密度焼成が可能であり、かつ高周波帯域で十分に高い透磁率を得ることができるので好ましい。FeFeはフェライトの主成分であり、その割合が63質量%以上であると十分な透磁率が得られる。また、FeFeが73質量%以下であると、焼結密度を低下させることなく機械的強度を保持することができる。CuOは焼結温度の低温化のために重要な要素であり、CuOが低温で液相を形成することにより焼結を促進させる効果を用いて、磁気特性を損なわずに800〜1000℃の低温で焼成することができる。CuOは、その割合が5質量%以上であると、配線層や平面コイル導体と同時に800〜1000℃で焼成を行なった場合に焼結密度を高くすることができることから、機械強度を保持することができ、10質量%以下であると、磁気特性の低いCuFeの割合を低く抑えることができるために磁気特性を維持しやすい。NiOはフェライト層2の高周波域における透磁率を確保するために含有させる。NiFeは高周波域まで共振による透磁率の減衰を起こさず、高周波域での透磁率を比較的高い値に維持することができるが、初期透磁率は低いという特性をもつため、5質量%以上であると10MHz以上の高周波域での透磁率を低下させることなく保持することができ、12質量%以下であると初期透磁率を高く維持できる。ZnOはフェライト層2の透磁率向上のために重要な要素であり、フェライト組成のうち10質量%以上であると透磁率を高く保持することができ、23質量%以下であれば、磁気特性を良好に維持できる。
フェライト層2は、フェライト層2用のフェライトグリーンシートを焼成することで作製される。フェライトグリーンシートに用いられる強磁性フェライト粉末は、例えば、FeFeとCuO,ZnOまたはNiOとを予め仮焼することにより作製されたフェライト粉末であり、平均粒径が0.1μm〜0.9μmの範囲で均一であり、粒形状は球形状に近いものが望ましい。これは、平均粒径が0.1μm以上であると、フェライトグリーンシートの製作においてフェライト粉末の均一な分散が容易となり、平均粒径が0.9μm以下であるとフェライトグリーンシートの焼結温度を低く抑えることができるからである。また、粒径が均一で球状に近いことにより均一な焼結状態を得ることができる。フェライト粉末の粒径が均一であると、局所的に結晶粒の成長が低下するといったこともなく、焼結後に得られるフェライト層2の透磁率が安定しやすい。
絶縁層1は、ガラス相および第1結晶を含むガラスを有するガラスセラミックスからなるものである。ガラス相としては、SiO系,SiO−B系,SiO−Al系,SiO−MO系(但し、MはCa、Sr、Mg、BaまたはZnを示す),SiO−B系−MO系,SiO−MO−MO系(但し、MおよびMは同一または異なってCa、Sr、Mg、BaまたはZnを示す),SiO−B−MO−MO系,SiO−M O系(但し、MはLi、NaまたはKを示す),SiO−B−M O系等のガラスが挙げられる。また、上記以外にCo,Cd,Inやその酸化物が含まれていてもよい。
第1結晶は、絶縁層1用のグリーンシートを焼成することによって、ガラス粉末とフィラー粉末とを含む絶縁層1用のグリーンシート中のガラスが結晶化してできた結晶、またはガラス成分とフィラー成分とから生成された結晶、あるいは絶縁層1用のグリーンシート中に含まれている結晶である。結晶化してスピネル構造となるガラスとしては、例えばSiO−Al−MgOガラス(但し、Alに対するMgOのモル比が0.8〜1.2),SiO−MgOガラス(但し、SiOに対するMgOのモル比が1.8〜2.2),SiO−Al−ZnOガラス(但し、Alに対するZnOのモル比が0.8〜1.2),SiO−CoO−MnOガラス(但し、MnOに対するCoOのモル比が1.8〜2.2),SiO−CdO−InOガラス(但し、InOに対するCdOのモル比が1.8〜2.2)等がある。また、ガラス成分としてMgOを含み、フィラー成分としてSiOを含む場合であれば、これらによって第1結晶としてMgSiOが生成されることがある。あるいは、ガラス成分としてZnOを含み、フィラー成分としてAlを含む場合であれば、これらによって第1結晶としてZnAlが生成されることがある。あるいは、ガラス成分としてAlを含み、フィラー成分としてFeを含む場合であればFeAlが生成されることがある。第1結晶がグリーンシートにフィラーとして含まれる場合は、例えば、フォルステライト(MgSiO)やガーナイト(ZnAl)が挙げられる。
第1結晶としては、フェライト結晶と同じ構造であれば特に限定されるものではないが、例えば、フェライト結晶が上述したようなスピネル構造である場合であれば、フォルステライト(MgSiO)およびガーナイト(ZnAl)が挙げられる。
中間層3は、ガラスセラミック基板を作製する際に、絶縁層1中の成分とフェライト層2中の成分とによって絶縁層1とフェライト層2との間に形成されるものであり、第2結晶を含むガラスを有するものでる。第2結晶は、例えば、ZnFe,FeFe,FeAl,ZnAl,CoMnOまたはCdInを含む結晶であり、中間層3とフェライト層2との境界面の全体にわたって存在している。例えば、絶縁層1がSiO−B−Al−ZnO−MgO系ガラスを含むグリーンシートを焼結してなるものであり、フェライト層2がX−Fe(XはCu,Ni,Zn)として示されるNi−Zn系フェライトからなる場合であれば、第2結晶としては、ZnFe,FeAlおよびZnAlが生成される。ガラスセラミックスのグリーンシートを焼成することにより、ガラスセラミックス中のガラス成分が焼成温度領域において軟化して流動し、フェライト層との界面にZnFe,FeAlおよびZnAlを析出しながら焼結する。そのため、ZnFe,FeAlおよびZnAlとガラスセラミック層との結合は強固なものとなる。
第1結晶、第2結晶およびフェライト結晶は、同じ構造であり、第2結晶の格子定数とフェライト結晶の格子定数との差、および第2結晶の格子定数と第1結晶の格子定数との差は、第2結晶の格子定数の10%以内である。このように、第2結晶が第1結晶と同一の結晶構造を有し、かつ第2結晶の格子定数と第1結晶の格子定数との差が第2結晶の格子定数の10%以内であると、絶縁層1と中間層3とを原子レベルで接合させることができるため、絶縁層1と中間層3との接合強度を高くすることができる。また、絶縁層1と中間層3との間における格子欠陥の発生を抑制することができることから、第2結晶と第1結晶との界面において、ボイドおよび隙間の発生を低減することができる。また、同様に、第2結晶がフェライト結晶と同一の結晶構造を有し、かつ第2結晶の格子定数とフェライト結晶の格子定数との差が第2結晶の格子定数の10%以内であると、フェライト層2と中間層3とを原子レベルで接合させることができるため、フェライト層2と中間層3との接合強度を高くすることができる。また、フェライト層2と中間層3との間における格子欠陥の発生を抑制することができることから、第2結晶とフェライト結晶との界面においてボイドおよび隙間の発生を低減することができる。
第2結晶が第1結晶に含まれる元素の一部とフェライト結晶に含まれる元素の一部とを有するとき、例えば、フェライト結晶がFeFeで、第1結晶がZnAlであって、第2結晶がZnFeであるときには、異元素間における結合と比較して、同元素間における結合の方が結合強度が高くなるので、中間層3中の第2結晶と絶縁層1中の第1結晶およびフェライト層2中のフェライト結晶との結合強度が高くなり、絶縁層1とフェライト層2との接合強度がより高いものとなる。また、絶縁層1となるセラミックグリーンシートとフェライト層2となるフェライトグリーンシートとを積層して焼成することにより、第2結晶を形成することができる。そのため、絶縁層1とフェライト層2との間の接合強度の高いガラスセラミック基板を、通常の積層体作製工程および焼成工程により容易に作製することができる。
第1結晶はフォルステライト(MgSiO)を主相とし、フェライト結晶はFeFeを主相とし、第2結晶はZnFe,FeAlおよびZnAlのいずれか1つを主相とすることが好ましい。このようにすると、第2結晶はフェライト結晶および第1結晶と同一の結晶構造であるとともに、第2結晶とフェライト結晶との格子定数の差、および第2結晶と第1結晶との格子定数の差は、それぞれ第2結晶の格子定数の5%以内とより小さいものとなることから、ボイドや隙間を発生させることがより少なくなるので、より接合強度の高いガラスセラミック基板とすることができる。具体的には、絶縁層1と中間層3との結合は、ガラスセラミックス中の第1結晶であるフォルステライト(MgSiO)結晶と中間層3との結合と、ガラスセラミックス中のガラス相と中間層3との結合とによる。ガラスセラミックス中の第1結晶であるフォルステライト結晶と中間層3との結合については、第1結晶であるフォルステライト結晶と中間層3中の結晶、すなわち第2結晶であるZnFe,FeAlおよびZnAlとの結晶構造が同じであり、両者の格子定数の差が第2結晶の格子定数の5%以内であることから、両者の原子レベルでの結合が可能である。また、絶縁層1のガラスセラミックスがフォルステライト(MgSiO)を主相とし、フェライト層2のフェライト結晶がFeFeを主相とすることによって、両者の熱膨張係数が近くなるため、焼成工程やその後の加熱工程、あるいは信頼性評価の工程において、熱膨張の差から生じる応力によるクラックの発生を抑えることができる。
なお、第2結晶は、ZnFe,FeFeおよびFeAlを全て含んでいなくてもよく、ZnFe,FeAlおよびZnAlの少なくともいずれか1つを含む結晶であればよい。ZnFe,FeAlおよびZnAlは、それぞれ第1結晶およびフェライト結晶と同じ結晶構造を有しており、第1結晶と第2結晶との格子定数の差、および第2結晶とフェライト結晶との格子定数との差は、それぞれ第2結晶の格子定数の10%以内である。
ここで、絶縁層1における第1結晶の結晶構造、中間層3における第2結晶の結晶構造、およびフェライト層2の結晶構造を確認する方法としては、透過型電子顕微鏡を用いる方法がある。この方法によれば、まず、セラミック基板の切断加工およびその切断面の研磨加工を行なって、結晶構造を確認したい層、すなわち絶縁層1,中間層3およびフェライト層2のいずれかを透過型電子顕微鏡で観察できる状態にする。その後、その層の切断面における回折格子像を観察することにより、所望の層の結晶構造を同定することができる。結晶相の同定は、既知のものについてはJPCDSカードを参照して行なうことができる。例えば、ZnFe,FeAlおよびZnAlの結晶構造および回折格子像は、JPCDSカード(ZnFe:JPCDS No.22−1012,FeAl:JPCDS No.34−0192,ZnAl:JPCDS No.5−669)に記載されているので、上記結晶相が析出しているかどうかは容易に確認することができる。
第1結晶と第2結晶との格子定数の差、および第2結晶とフェライト結晶との格子定数との差が、それぞれ第2結晶の格子定数の10%以内であることは、第1結晶,第2結晶およびフェライト結晶が同じ結晶構造である場合は、回折格子像の原点からそれぞれの同じ面方位に対応する点までの距離を測定することによって確認することができる。第1結晶,第2結晶およびフェライト結晶が同じ結晶構造であることを上記JPCDSカードなどで確認した後、回折格子像の原点からそれぞれ同じ面方位に対応する点までの距離を測定する。第1結晶,第2結晶およびフェライト結晶の、回折格子像の原点からそれぞれ同じ面方位に対応する点までの距離をd1,d2およびd3とすると、第1結晶と第2結晶との格子定数の差の、第2結晶の格子定数に対する割合は、(1/d1−1/d2)×d2から算出することができ、第2結晶とフェライト結晶との格子定数の差の、第2結晶の格子定数に対する割合は、(1/d2−1/d3)×d2から算出することができる。
透過型電子顕微鏡を用いる方法以外の絶縁層1,フェライト層2および中間層3の結晶構造を確認する方法としては、X線回折法を用いる方法がある。この方法によれば、まず、セラミック基板の切断加工およびその切断面の研磨加工を行なって、所望の層をX線回折により観察できる状態にする。その後、その層の断面にX線を照射することにより、回折格子像を得ることができる。X線の照射は、所望の層の部分のみが照射されるように、10μm四方程度の領域に照射するようにする。その後、上記透過型電子顕微鏡での結晶構造の同定と同じ手順で、絶縁層1,フェライト層2および中間層3の結晶構造を特定することができる。
このような本発明のガラスセラミック基板は、絶縁層1用のセラミックグリーンシートを準備する第1準備工程と、フェライト層2用のフェライトグリーンシートを準備する第2準備工程と、セラミックグリーンシートとフェライトグリーンシートとを積層してグリーンシート積層体を作製する積層体作製工程と、グリーンシート積層体を焼成する焼成工程とを経て作製される。
絶縁層1用のセラミックグリーンシートは、ガラス粉末とフィラー粉末とからなる絶縁体粉末および有機バインダーを主成分とするものである。ガラス粉末は、上述したガラス相のガラスの粉末である。フィラー粉末は、上述したフィラー粉末以外に、絶縁層1の電気的特性や機械的特性に応じて、例えばAl,SiO,ZrOとアルカリ土類金属酸化物との複合酸化物、TiOとアルカリ土類金属酸化物との複合酸化物、AlおよびSiOから選ばれる少なくとも1種を含む複合酸化物(例えばスピネル,ムライト,コージェライト)等のセラミック粉末を含んでいてもよい。
フェライト層2用のフェライトグリーンシートは、上述したようなフェライト結晶の粉末であるフェライト粉末、あるいは例えば、FeFeとCuO,ZnOまたはNiOとを予め仮焼することにより作製されたフェライト粉末、および有機バインダーを主成分とするものである。
絶縁層1用のセラミックグリーンシートおよびフェライト層2用のフェライトグリーンシートに含まれる有機バインダーは、従来からセラミックグリーンシートに使用されているものが使用可能であり、例えばアクリル系(アクリル酸,メタクリル酸またはそれらのエステルの単独重合体または共重合体,具体的にはアクリル酸エステル共重合体,メタクリル酸エステル共重合体,アクリル酸エステル−メタクリル酸エステル共重合体等),ポリビニルブチラ−ル系,ポリビニルアルコール系,アクリル−スチレン系,ポリプロピレンカーボネート系,セルロース系等の単独重合体または共重合体が挙げられる。焼成工程での分解性や揮発性を考慮すると、アクリル系バインダーがより好ましい。
絶縁層1用のセラミックグリーンシートおよびフェライト層2用のフェライトグリーンシートは、スラリーを調製して、スラリーをドクターブレード法等の塗布方法によって塗布してスラリー中の溶剤を乾燥することによって作製する。グリーンシートを作製するためのスラリーは、絶縁体粉末やフェライト粉末100質量部に対して有機バインダーを5〜20質量部、有機溶剤を15〜50質量部加え、ボールミル等の混合手段により混合することにより3〜100cpsの粘度となるように調製される。このときの有機溶剤は、絶縁体粉末やフェライト粉末と有機バインダーとを良好に分散させて混合できるようなものであればよく、トルエン,ケトン類またはアルコール類の有機溶媒や水等が挙げられる。これらの中で、トルエン,メチルエチルケトンまたはイソプロピルアルコール等の蒸発係数の高い溶剤はスラリー塗布後の乾燥工程が短時間で実施できるので好ましい。
グリーンシート積層体を作製する方法は、積み重ねた絶縁層1用のセラミックグリーンシートとフェライト層2用のフェライトグリーンシートとに熱と圧力とを加えて熱圧着する方法や、有機バインダー,可塑剤および溶剤等からなる密着剤をシート間に塗布して熱圧着する方法等が採用可能である。積層の際の加熱加圧の条件は、用いる有機バインダー等の種類や量により異なるが、概ね30〜100℃および2〜30MPaである。このときのセラミックグリーンシートおよびフェライトグリーンシートは、ガラスセラミック基板に要求される特性に応じた厚みとなるように、グリーンシートの厚みにより必要な枚数を積層すればよい。
グリーンシート積層体の焼成は、300〜600℃の温度で脱バインダーした後、800〜1000℃の温度で焼成することにより行なわれる。
本発明のガラスセラミック基板の製造方法は、絶縁層1用のセラミックグリーンシートの絶縁体粉末としては、フォルステライトからなる10〜40質量%のフィラーと、SiOを22〜52質量%、Bを2〜12質量%、Alを9〜29質量%、ZnOを9〜29質量%、CaOを1〜9質量%およびMgOを7〜21質量%含み、Alに対するZnOのモル比が0.8〜1.2である60〜90質量%のガラスとを有するものであり、フェライト層2のフェライトグリーンシートは、FeFeを主相とするフェライト結晶を有するものである。
このような製造方法によれば、ZnFe,FeAlおよびZnAlが、第1結晶がMgSiOを主相とする絶縁層1とフェライト結晶がFeFeを主相とするフェライト層2との間に、中間層3中において第2結晶として形成される。上述したガラス成分比であれば、第2結晶であるZnFe,FeAlおよびZnAlが絶縁層1フェライト層2との界面に析出し易くなる。特に、Alに対するZnOのモル比が0.8〜1.2である場合には、ZnAlが800〜1000℃の焼成温度領域で析出し易くなる。よって、絶縁層1とフェライト層2との間の接合強度の高いガラスセラミック基板を、上述したような通常の積層体作製工程および焼成工程により容易に作製することができる。
図2は、本発明のコイル内蔵ガラスセラミック配線基板の実施の形態の一例を示す断面図である。図2において、4は配線導体、5は平面コイル導体であり、他の符号は図1と同じである。本発明のコイル内蔵ガラスセラミック配線基板は、上記の本発明のガラスセラミック基板と、絶縁層1に形成された配線導体4と、フェライト層2に内蔵されたコイル導体5とを具備することから、絶縁層1とフェライト層2との接合強度が高いので、基板強度が高く、信頼性の高いコイル内蔵ガラスセラミック配線基板となる。
図2に示す例のコイル内蔵ガラスセラミック基板におけるガラスセラミック基板は、2つの絶縁層1と、これら絶縁層1の間に設けられた、フェライト結晶を有するフェライト層2と、各絶縁層1とフェライト層2との間に設けられた中間層3とを有する。このような構成とした場合には、ガラスセラミック基板の表裏面がガラスセラミックスからなる絶縁層1で構成されることから、一般的にフェライトに比較して絶縁抵抗が高く、また、配線導体4との接合強度が高いガラスセラミックスがガラスセラミック基板の表面に位置するので、絶縁信頼性が高く、配線導体4上に部品を実装したり、配線導体4を介して外部回路基板に実装したりする場合の実装信頼性の高いコイル内蔵ガラスセラミック配線基板となる。
配線導体4は、Cu,Ag,Au,Pt,Ag−Pd合金およびAg−Pt合金等の低抵抗金属の粉末の焼結体であるメタライズ金属からなるものであり、絶縁層1用グリーンシートに配線導体4用導体ペーストを印刷することによって配線導体4となる配線導体パターンを形成しておき、これを絶縁層1用グリーンシートと同時焼成することによって形成される。配線導体4には、コイル内蔵ガラスセラミック基板の外表面に形成され、その上に電子部品を実装したり、ろう材等を介して外部回路基板に実装したりするための外部配線導体と、上下の外部配線を接続するための内部配線導体とがあり、内部配線導体には、絶縁層1内での平面方向の引き回しのための内部配線層と、内部配線層同士または内部配線と外部配線導体とを接続するための、絶縁層1をその厚み方向に貫通する貫通導体とがある。
平面コイル導体5は、配線導体4と同様に金属粉末の焼結体であるメタライズ金属層からなるものであり、フェライト層2用グリーンシートの表面に平面コイル導体5用導体ペーストを印刷することによってコイルパターンを形成し、さらにその上にフェライト層2用グリーンシートを積層して同時焼成することによって、フェライト層2に埋設されて(フェライト層2に内蔵されて)形成される。図2に示す例では、3重巻きの平面コイル導体5が上下に2つ重ねて形成されているが、このように複数のコイル導体5が上下に重ねられて形成される場合は、コイル導体5となるコイル導体パターンおよびコイル導体同士あるいはコイル導体と内部配線層とを接続するための貫通導体となる貫通導体パターンが形成されたフェライト層2用グリーンシートを複数積層した上に、さらにフェライト層2用グリーンシートを積層すればよい。
平面コイル導体5の作製に用いられる金属粉末は、配線導体4と同様のCu,Ag,Au,Pt,Ag−Pd合金およびAg−Pt合金等の低抵抗金属の粉末を用いる。これにより、平面コイル導体5の電気抵抗を小さくすることができる。
コイル内蔵ガラスセラミック配線基板は、上記したガラスセラミック基板の製造方法において、絶縁層1用のセラミックグリーンシートおよびフェライト層2用のフェライトグリーンシートに配線導体パターンおよびコイル導体パターンを形成しておくことによって作製することができる。図2に示す例のようなコイル内蔵ガラスセラミック配線基板であれば、コイル導体パターンが形成されたものを含む所定枚数のフェライト層2用グリーンシートの上下にそれぞれ配線パターンが形成された所定枚数の絶縁層1用グリーンシートを配置して積層体を作製し、この積層体を焼成することによってセラミック基板が作製される。
配線導体4となる配線導体パターンは、絶縁層1用グリーンシートの表面に配線導体4用の導体ペーストをスクリーン印刷法やグラビア印刷法等の印刷法で所定パターンに印刷して形成される。配線導体4となる貫通導体は、配線導体パターンの形成に先立って絶縁層1用グリーンシートにパンチング加工やレーザ加工等により貫通孔を形成し、この貫通孔に印刷やプレス充填等の埋め込み手段によって配線導体4用導体ペーストを充填することで形成される。
平面コイル導体5となるコイル導体パターンも同様に、フェライト層2用グリーンシートの表面に平面コイル導体5用の導体ペーストをスクリーン印刷法やグラビア印刷法等の印刷法で所定パターンに印刷して形成し、フェライト層2内の貫通導体となる配線パターンも上記貫通導体となる配線導体パターンと同様にして形成する。平面コイル導体5用の導体ペーストには、配線導体4用導体ペーストと同じものを用いればよい。平面コイル導体5となるコイル導体パターンは、要求されるインダクタンス値やサイズにもよるが、上記のように印刷により形成する場合は、線幅および隣接する外周と内周の導体間距離が0.1mm程度以上であれば容易に形成できる。
配線導体4用および平面コイル導体5用の導体ペーストは、主成分の金属粉末に有機バインダー,有機溶剤,必要に応じて分散剤等を加えてボールミル,三本ロールミル,プラネタリーミキサー等の混練手段により混合および混練することで作製される。
導体ペーストの有機バインダーは、従来から導体ペーストに使用されているものが使用可能であり、例えばアクリル系(アクリル酸,メタクリル酸またはそれらのエステルの単独重合体または共重合体,具体的にはアクリル酸エステル共重合体,メタクリル酸エステル共重合体,アクリル酸エステル−メタクリル酸エステル共重合体等),ポリビニルブチラ−ル系,ポリビニルアルコール系,アクリル−スチレン系,ポリプロピレンカーボネート系,セルロース系等の単独重合体または共重合体が挙げられる。焼成工程での分解、揮発性を考慮すると、アクリル系、アルキド系の有機バインダーがより好ましい。
導体ペーストの有機溶剤は、上記した金属粉末と有機バインダーとを良好に分散させて混合できるようなものであればよく、テルピネオールやブチルカルビトールアセテートおよびフタル酸等が使用可能である。
配線導体4用の導体ペーストや平面コイル導体5用の導体ペーストは、金属導体粉末100質量部に対して有機バインダーを3〜15質量部および有機溶剤を10〜30質量部加えて混練することにより、印刷により導体ペーストの滲みやかすれ等の不具合が発生せず良好に所定形状のパターン形成ができる程度の粘度となるようにすることが望ましい。
貫通導体となる配線パターンを形成するための導体ペーストは、溶剤量や有機バインダー量により、配線導体4用の導体ペーストや平面コイル導体5用の導体ペーストに対して比較的流動性の低いペースト状に調整し、貫通孔への充填を容易にし、かつ加温硬化するようにするとよい。また、焼結挙動の調整のために金属導体粉末にガラスやセラミックスの粉末を加えた無機成分を含んでいてもよい。
焼成雰囲気としては、平面コイル導体5やその他の配線導体4がAg等の酸化しにくい材料から成る場合は大気中にて行なわれ、Cu等の酸化しやすい材料から成る場合は、窒素雰囲気が用いられ、脱バインダーしやすいように加湿したものが用いられる。
焼成後のコイル内蔵ガラスセラミック配線基板の表面に形成された配線導体4には、半導体チップやチップ部品、または外部電気回路との半田等による接合を強固なものにするために、その表面にニッケル層および金層をめっき法により順次被着するとよい。
なお、本発明は以上の実施の形態の例に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の変更を加えることは何ら差し支えない。例えば、上記の例ではフェライト層2用のフェライトグリーンシートの上下に絶縁層1用のセラミックグリーンシートを配置して積層体を作製し、この積層体を焼成することによりガラスセラミック基板を作製する例について説明したが、先にフェライトグリーンシートのみで積層体を作製し焼成した後に、その上下にセラミックグリーンシートを積層して、この積層体を焼成することによりガラスセラミック基板を作製してもよい。
上記の実施の形態の例によるコイルを内蔵したガラスセラミック基板およびその製造方法の実施例を以下に詳細に説明する。
[実験1]
(実施例1)
まず、ガラス粉末としてSiOを37質量%、Bを7質量%、Alを19質量%、ZnOを17質量%、CaOを5質量%およびMgOを15質量%含むガラスの粉末80質量%と、フィラー粉末としてフォルステライト粉末20質量%とを混合して絶縁体粉末とし、この絶縁体粉末100質量%に対して、有機バインダーとしてアクリル樹脂を12質量%、可塑剤としてフタル酸系可塑剤を6質量%および溶剤としてトルエンを30質量%を加え、ボールミル法により混合してスラリーを調製し、このスラリーを用いてドクターブレード法によって厚さ160μmの、絶縁層となるセラミックグリーンシートを成形した。
このセラミックグリーンシートに金型による打ち抜き加工によって、貫通導体用の直径150μmの貫通孔を形成した。この貫通孔に貫通導体ペーストをスクリーン印刷法によって充填し、70℃で30分乾燥した。貫通導体ペーストとしては、Ag粉末100質量部と、焼結助剤としてのガラス粉末10質量部に、アクリル樹脂12質量部と有機溶剤としてのα−テルピネオール2質量部とを加え、攪拌脱泡機により十分に混合した後に3本ロールにて十分に混練したものを用いた。
次に、このセラミックグリーンシートに導体ペーストをスクリーン印刷法により2mm四方のサイズで20μmの厚みに塗布して、70℃で30分乾燥して配線導体パターンを形成した。
導体ペーストとしては、金属粉末としてAg粉末100質量部に、アクリル樹脂12質量部と有機溶剤としてのα−テルピネオール2質量部とを加え、攪拌脱泡機により十分に混合した後に3本ロールにて十分に混練したものを用いた。
次に、FeFe粉末700g,CuO粉末60g,NiO粉末60g,ZnO粉末180gおよび純水4000cmをジルコニアボールとともに容量が7000cmのポットに入れて、ポットを回転させることによるボールミルにて24時間かけて混合した後、乾燥した混合粉末をジルコニアるつぼに入れて大気中730℃で1時間加熱することによって、強磁性フェライト粉末を作製した。このフェライト粉末100質量部に対し、有機バインダーとしてブチラール樹脂を10質量部および有機溶剤としてIPAを45質量部添加し、上記と同様のボールミル法により混合してスラリーとした。このスラリーを用いてドクターブレード法により厚さ100μmのフェライトグリーンシートを成形した。
このフェライトグリーンシートに、金型による打ち抜き加工によって貫通導体用の直径150μmの貫通孔を形成した。この貫通孔に、貫通導体ペーストをスクリーン印刷法によって充填し、70℃で30分乾燥して貫通導体となる貫通導体組成物を形成した。貫通導体ペーストとしては、上記と同じものを用いた。
続いて、このフェライトグリーンシート2枚にそれぞれ導体ペーストをスクリーン印刷法によって30μmの厚みに塗布し、70℃で30分乾燥して、平面コイル導体パターンを形成した。導体ペーストとしては、Ag粉末100質量部に、アクリル樹脂10質量部と有機溶剤としてのα−テルピネオール1質量部とを加え、攪拌脱泡機により十分に混合したものを用いた。
次に、平面コイル導体パターンを形成したフェライトグリーンシートを2枚重ね、その上下にそれぞれ4枚の絶縁層用グリーンシートを積み重ねて、20MPaの圧力と55℃の温度で加熱圧着して絶縁層用グリーンシートが表層に位置する積層体を作製した。
次に、この積層体を、大気中で500℃、3時間の条件で加熱して有機成分を除去した後、大気中で900℃、1時間の条件で焼成して、コイル内蔵ガラスセラミック配線基板を作製した。
このコイル内蔵ガラスセラミック配線基板の外表面に形成された配線導体上には、無電界めっき法を用いてNiめっき皮膜およびAuめっき皮膜を順次形成した。
(比較例1)
実施例1との比較のために、従来構成として、中間層のないコイル内蔵セラミック基板を作製した。絶縁体粉末に、ガラス粉末としてSiO系ガラスの粉末を80質量%と、フィラー粉末としてアルミナ粉末20質量%とを混合したものを用いた以外は、実施例1と同様にしてコイル内蔵ガラスセラミック配線基板を作製した。
(比較例2)
実施例1との比較のために、ガラスセラミックグリーンシートは実施例1と同様のものを用い、フェライトグリーンシートを実施例と異なるものを用いたコイル内蔵セラミック基板を作製した。フェライトグリーンシートのフェライト粉末としてハードフェライト粉であるBaFe19(M型)を用いた以外は、実施例1と同様にしてコイル内蔵セラミック基板を作製した。しかし、作製したコイル内蔵ガラスセラミック配線基板のフェライト層は焼結されておらず、ボイドや空隙が多数見られた。
このようにして得られた実施例1,比較例1および比較例2のセラミック基板において、蛍光探傷液の浸透試験、および抗折強度試験を実施した。また、実施例1および比較例1、比較例2のコイル内蔵ガラスセラミック配線基板の絶縁層、フェライト層および中間層の透過型電子顕微鏡観察を行なった。
蛍光探傷液の浸透試験においては、ガラスセラミック基板を蛍光探傷液に浸漬し、0.5MPaの圧力をかけた状態で2時間放置し、蛍光探傷液から取り出した後、コイル内蔵ガラスセラミック配線基板の側面を研磨して、蛍光探傷液の絶縁層とフェライト層との間への浸透があるかどうかの確認を行なった。浸透があったものについては、絶縁層とフェライト層との界面にボイドや隙間が形成されていると判断した。
抗折強度試験においては、コイル内蔵ガラスセラミック配線基板の3点曲げ強度試験を実施した。3点曲げ強度σ(Pa)は、破断加重をP(N)、スパンをL(m)、試料幅をW(m)、試料厚みをt(m)とした場合に、σ=3PL/(2Wt)から算出することができる。破断加重測定にはオートグラフAG−IS(島津製作所製)を用いた。試料幅はノギスを、試料厚みはマイクロメータを用いて測定した。
透過型電子顕微鏡観察においては、まず、コイル内蔵ガラスセラミック配線基板を断面方向から透過型電子顕微鏡で観察できるように基板の切断加工および研磨加工を行なった後、中間層の部分を透過型電子顕微鏡で観察できる状態にした。透過型電子顕微鏡はJEM−2010F(JEOL製)を用いた。像観察を行ない、中間層の有無の特定を行なった後、中間層が存在したものについては、中間層の部分の回折格子像を観察することにより中間層の結晶構造を同定した。結晶相の同定は、JPCDSカードで行なった。
蛍光探傷液浸透試験、3点曲げ強度試験および透過型電子顕微鏡による観察の結果を表1に示す。なお、Nは測定数であり、例えばN=5とは、5つの試料について測定した結果である。
Figure 0005398399
表1に示すように、実施例1のコイル内蔵ガラスセラミック配線基板は、上記実施の形態において説明した中間層が形成されていたが、比較例1および比較例2のコイル内蔵ガラスセラミック配線基板には中間層が形成されていなかった。
また、透過型電子顕微鏡観察の結果から、実施例1のコイル内蔵ガラスセラミック配線基板は絶縁層にZnFeが、中間層にZnFe,FeAlおよびZnAlが、フェライト層にFeFeがそれぞれ形成されており、全てスピネル構造であり同じ結晶構造であった。また、絶縁層に形成されたZnFeと中間層に形成されたZnFe,FeAlおよびZnAlとの格子定数の差、および中間層に形成されたZnFe,FeAlおよびZnAlとフェライト層に形成されたFeFeとの格子定数との差が、それぞれ中間層に形成されたZnFe,FeAlおよびZnAlとの格子定数の10%以内であった。
そして、上記特徴を持つ中間層を有する実施例1のコイル内蔵ガラスセラミック配線基板は、蛍光探傷液の基板への浸透がなく、高い3点曲げ強度を有するが、中間層が形成されなかった比較例1および比較例2のコイル内蔵ガラスセラミック配線基板は、蛍光探傷液の基板への浸透があり、実施例1と比較して3点曲げ強度が低いことが確認された。
以上の結果から、絶縁層とフェライト層との間に中間層が形成された実施例1のコイル内蔵ガラスセラミック配線基板は、高い信頼性を有するガラスセラミック基板であることがわかった。これはコイル導体および配線導体を形成していないガラスセラミック基板においても同様であるといえる。
[実験2]
第1結晶,第2結晶およびフェライト結晶の結晶構造およびこれらの結晶の格子定数の差による、絶縁層とフェライト層との界面におけるボイドや隙間の発生状況を比較するための実験を行なった。
まず、ガラス粉末として表2の「ガラスセラミックスのガラスに含まれる主な元素」欄に示すような元素を含むガラス粉末80質量%と、フィラー粉末としてフォルステライト(MgSiO)またはガーナイト(ZnAl)の粉末20質量%とを混合し、実施例1と同様にして厚さ81μmのガラスセラミックグリーンシートを成形した。
次に、表2に示すようなフェライト結晶をもつフェライト粉末を用いて、実施例1と同様にして厚さ100μmのフェライトグリーンシートを成形した。
次に、これらのフェライトグリーンシートを8枚重ねたその上下にそれぞれ2枚のセラミックグリーンシートを積み重ねて、20MPaの圧力および55℃の温度で加熱圧着して、セラミックグリーンシートが表層に位置する積層体を作製した。
次に、この積層体を30×35mmの大きさに切断した後、大気中で400℃、1時間の条件で加熱して有機成分を除去した後、大気中で900℃、1時間の条件で焼成することによって、ガラスセラミックスからなる絶縁層の間にフェライト層が設けられたガラスセラミック基板を作製した。
このようにして得られた実施例3〜実施例31の試料、および比較例3〜比較例13の試料について、実験1と同様にして蛍光探傷液の浸透試験および透過型電子顕微鏡観察を行なった。その結果を表3に示す。
Figure 0005398399
Figure 0005398399
表3に示すように、全ての試料において第2結晶を含む中間層が形成されたガラスセラミック基板が得られた。第1の結晶は、複数の結晶が観察されたものもあったが、フィラーとして用いたフォルステライト(MgSiO)またはガーナイト(ZnAl)が主な結晶であったので、それを表3に示した。第2結晶は、同じフェライト結晶およびフィラー粉末を用いても、絶縁層となるセラミックグリーンシートに用いたガラスの種類(ガラスに含まれる主な元素)によって、表3に示すような異なるものとなった。ガラスに含まれる主な元素が同じであっても、その量比によって生成される第2結晶は異なるものとなっている。なお、表3には中間層中の結晶のうち、主な結晶を第2結晶として示している。
また、フェライト結晶と第1結晶と第2結晶との結晶構造が同一で、かつ第2結晶とフェライト結晶との格子定数の差、および第2結晶と第1結晶との格子定数の差が第2結晶の格子定数の10%以内である実施例2〜実施例31は、蛍光探傷液の浸透がないことが確認された。それに対して、上記実施例の条件のうち1つでも満たさない比較例3〜比較例13は、蛍光探傷液の浸透があることが確認された。
以上から、上記実施の形態において説明した、第2結晶を含む中間層が形成されており、フェライト結晶と第1結晶と第2結晶との結晶構造が同一で、かつ第2結晶とフェライト結晶との格子定数の差、および第2結晶と第1結晶との格子定数の差が、それぞれ第2結晶の格子定数の10%以内であるガラスセラミック基板は、フェライト層と絶縁層との間にボイドや隙間が発生せず、その結果、フェライト層と絶縁層との間の接合強度の高いセラミック基板を得ることができることを確認した。
1・・・絶縁層
2・・・フェライト層
3・・・中間層
4・・・配線導体
5・・・平面コイル導体

Claims (5)

  1. ガラス相および第1結晶を含むガラスを有するガラスセラミックスからなる絶縁層と、フェライト結晶を有するフェライト層と、前記絶縁層と前記フェライト層との間の界面わたって析出して設けられた第2結晶を含むガラスを有する中間層とを有しており、前記第2結晶は、前記フェライト結晶および前記第1結晶と同一の結晶構造であるとともに、前記第2結晶と前記フェライト結晶との格子定数の差、および前記第2結晶と前記第1結晶との格子定数の差は、それぞれ前記第2結晶の格子定数の10%以内であり、前記第1結晶はMg SiO を主相とし、前記フェライト結晶はFeFe を主相とし、前記第2結晶は、ZnFe ,FeAl およびZnAl の少なくともいずれか1つを主相とすることを特徴とするガラスセラミック基板。
  2. 前記第2結晶は、前記第1結晶に含まれる元素の一部と前記フェライト結晶に含まれる元素の一部とを有することを特徴とする請求項1に記載のガラスセラミック基板。
  3. 前記中間層および前記フェライト層が、複数の前記絶縁層の間に設けられていることを特徴とする請求項1または請求項2に記載のガラスセラミック基板。
  4. 請求項1乃至請求項のいずれかに記載のガラスセラミック基板と、前記絶縁層に形成された配線導体と、前記フェライト層に内蔵されたコイル導体とを具備することを特徴とするコイル内蔵ガラスセラミック配線基板。
  5. ガラスセラミックスからなる複数の絶縁層と、該複数の絶縁層の間に設けられたフェライト結晶を有するフェライト層と、前記絶縁層と前記フェライト層との間に設けられた中間層とを有するガラスセラミック基板の製造方法であって、
    フォルステライトからなる10〜40質量%のフィラーと、SiOを22〜52質量%、Bを2〜12質量%、Alを9〜29質量%、ZnOを9〜29質量%、CaOを1〜9質量%およびMgOを7〜21質量%含み、かつ前記Alに対する前記ZnOのモル比が0.8〜1.2である60〜90質量%のガラスとを有する複数のセラミックグリーンシートを準備する第1準備工程と、
    FeFeを主相とするフェライト結晶を有するフェライトグリーンシートを準備する第2準備工程と、
    前記セラミックグリーンシートと前記フェライトグリーンシートとを積層してグリーンシート積層体を作製する積層体作製工程と、
    前記グリーンシート積層体を焼成するとともに前記セラミックグリーンシートと前記フェ
    ライトグリーンシートとの界面にZnFe ,FeAl およびZnAl の少なくともいずれか1つを含む前記中間層を析出させる焼成工程と
    を具備することを特徴とするガラスセラミック基板の製造方法。
JP2009171759A 2008-08-27 2009-07-23 ガラスセラミック基板およびコイル内蔵ガラスセラミック配線基板ならびにガラスセラミック基板の製造方法 Expired - Fee Related JP5398399B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009171759A JP5398399B2 (ja) 2008-08-27 2009-07-23 ガラスセラミック基板およびコイル内蔵ガラスセラミック配線基板ならびにガラスセラミック基板の製造方法
US12/779,878 US8546699B2 (en) 2008-08-27 2010-05-13 Glass-ceramic substrate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008217893 2008-08-27
JP2008217893 2008-08-27
JP2009171759A JP5398399B2 (ja) 2008-08-27 2009-07-23 ガラスセラミック基板およびコイル内蔵ガラスセラミック配線基板ならびにガラスセラミック基板の製造方法

Publications (2)

Publication Number Publication Date
JP2010080930A JP2010080930A (ja) 2010-04-08
JP5398399B2 true JP5398399B2 (ja) 2014-01-29

Family

ID=42210963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009171759A Expired - Fee Related JP5398399B2 (ja) 2008-08-27 2009-07-23 ガラスセラミック基板およびコイル内蔵ガラスセラミック配線基板ならびにガラスセラミック基板の製造方法

Country Status (2)

Country Link
US (1) US8546699B2 (ja)
JP (1) JP5398399B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5319568B2 (ja) * 2009-03-27 2013-10-16 京セラ株式会社 セラミック積層体およびこれを備えた電子装置
JP5591009B2 (ja) * 2010-07-29 2014-09-17 京セラ株式会社 コイル内蔵配線基板
JP5591055B2 (ja) * 2010-10-06 2014-09-17 京セラ株式会社 ガラスセラミック基板およびコイル内蔵ガラスセラミック配線基板
CN103553585B (zh) * 2013-10-22 2016-04-27 瑞声声学科技(深圳)有限公司 铁氧体陶瓷的制备方法
KR20150085253A (ko) * 2014-01-15 2015-07-23 삼성전기주식회사 복합 페라이트 시트와 그 제조 방법 및 이를 구비하는 전자 기기
WO2017057972A1 (ko) * 2015-09-30 2017-04-06 주식회사 아모센스 마그네틱 보안전송용 자기장 차폐유닛, 이를 포함하는 모듈 및 이를 포함하는 휴대용 기기
JP6414566B2 (ja) * 2016-05-26 2018-10-31 株式会社村田製作所 ガラス−セラミック−フェライト組成物および電子部品
JP6740994B2 (ja) * 2017-11-29 2020-08-19 株式会社村田製作所 ガラス−セラミック−フェライト組成物および電子部品

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3344314B2 (ja) * 1998-04-08 2002-11-11 株式会社村田製作所 パルス発生用コンデンサ
JP2002043759A (ja) * 2000-07-31 2002-02-08 Kyocera Corp 多層配線基板
JP2004221329A (ja) * 2003-01-15 2004-08-05 Kyocera Corp ガラスセラミック基板およびその製造方法
JP2005123450A (ja) * 2003-10-17 2005-05-12 Murata Mfg Co Ltd 積層セラミック電子部品
JP4619026B2 (ja) * 2003-10-24 2011-01-26 京セラ株式会社 ガラスセラミック基板およびその製造方法
JP2006278602A (ja) * 2005-03-29 2006-10-12 Kyocera Corp ガラスセラミック基板
JP5065603B2 (ja) * 2005-03-29 2012-11-07 京セラ株式会社 コイル内蔵基板および電子装置
JP5004548B2 (ja) * 2006-10-27 2012-08-22 京セラ株式会社 低温焼成磁器およびその製造方法、ならびにそれを用いた配線基板
JP2009035721A (ja) * 2007-07-11 2009-02-19 Seiko Epson Corp 接合膜付き基材、接合方法および接合体

Also Published As

Publication number Publication date
US20110018671A1 (en) 2011-01-27
US8546699B2 (en) 2013-10-01
JP2010080930A (ja) 2010-04-08

Similar Documents

Publication Publication Date Title
JP5398399B2 (ja) ガラスセラミック基板およびコイル内蔵ガラスセラミック配線基板ならびにガラスセラミック基板の製造方法
JP6214930B2 (ja) 多層配線基板
JP5454713B2 (ja) 積層コイル部品
JP5195904B2 (ja) 積層コイル部品
CN209962815U (zh) 层叠线圈部件
JP5104761B2 (ja) セラミック基板およびその製造方法
JP5473561B2 (ja) ガラスセラミック配線基板およびコイル内蔵ガラスセラミック配線基板ならびにガラスセラミック配線基板の製造方法
JP5158040B2 (ja) ガラスセラミックス基板
JP2007294862A (ja) 基板およびこれを用いた回路基板
JP5796602B2 (ja) セラミック電子部品およびその製造方法
JP2010147098A (ja) 電子部品
JP2007273914A (ja) 配線基板および配線基板の製造方法
JP5591055B2 (ja) ガラスセラミック基板およびコイル内蔵ガラスセラミック配線基板
JP6084836B2 (ja) コイル内蔵配線基板
JPH1095686A (ja) 銅メタライズ組成物及びそれを用いたガラスセラミック配線基板
JP5591009B2 (ja) コイル内蔵配線基板
JP2007173650A (ja) 配線基板およびその製造方法
JP5319568B2 (ja) セラミック積層体およびこれを備えた電子装置
JP6493560B2 (ja) 多層セラミック基板及び電子部品
JP2006278602A (ja) ガラスセラミック基板
JP2012015173A (ja) ガラスセラミック配線基板およびフェライト内蔵ガラスセラミック配線基板
JP2006156499A (ja) 複数個取り基板およびガラスセラミック基板
JP5230565B2 (ja) 配線基板
JP2007266114A (ja) 配線基板の製造方法
JP2004014338A (ja) 導電性ペースト

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131022

R150 Certificate of patent or registration of utility model

Ref document number: 5398399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees