WO2017057972A1 - 마그네틱 보안전송용 자기장 차폐유닛, 이를 포함하는 모듈 및 이를 포함하는 휴대용 기기 - Google Patents

마그네틱 보안전송용 자기장 차폐유닛, 이를 포함하는 모듈 및 이를 포함하는 휴대용 기기 Download PDF

Info

Publication number
WO2017057972A1
WO2017057972A1 PCT/KR2016/011013 KR2016011013W WO2017057972A1 WO 2017057972 A1 WO2017057972 A1 WO 2017057972A1 KR 2016011013 W KR2016011013 W KR 2016011013W WO 2017057972 A1 WO2017057972 A1 WO 2017057972A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnetic field
ferrite
shielding unit
field shielding
Prior art date
Application number
PCT/KR2016/011013
Other languages
English (en)
French (fr)
Inventor
이웅용
김성태
홍경표
Original Assignee
주식회사 아모센스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모센스 filed Critical 주식회사 아모센스
Priority to CN201680058263.5A priority Critical patent/CN108141994B/zh
Priority to US15/764,564 priority patent/US10930418B2/en
Publication of WO2017057972A1 publication Critical patent/WO2017057972A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0075Magnetic shielding materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • H01F1/37Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles in a bonding agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/20Ferrites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • H01F27/366Electric or magnetic shields or screens made of ferromagnetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • H04B5/26Inductive coupling using coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/40Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by components specially adapted for near-field transmission
    • H04B5/43Antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/72Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for local intradevice communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/32Composite [nonstructural laminate] of inorganic material having metal-compound-containing layer and having defined magnetic layer

Definitions

  • the present invention relates to a magnetic field shielding unit, and more particularly, to a magnetic field shielding unit for magnetic security transmission (MST), a module including the same and a portable device.
  • MST magnetic security transmission
  • an antenna refers to a device for converting an electrical signal into a radio wave signal, and may be classified into a dielectric antenna using dielectric properties and a magnetic antenna using magnetic properties. All antennas can be used in various areas, but the efficiency varies depending on the shape or structure.
  • dielectric antennas using high dielectric constant materials has been actively conducted.
  • studies on magnetic materials having high permeability of conventional high dielectric constant materials have been conducted.
  • these antennas have been used, and recently, these antennas have been used for various portable terminal devices (smartphones, tablet PCs, etc.) for near field communication (NFC), wireless power transmission, and magnetic. Attempts have been made to combine magnetic security transmission (MST) functions.
  • MST magnetic security transmission
  • the NFC, WPT, and MST functions are performed by transmitting and receiving electromagnetic signals between the transmitting module and the receiving module.
  • the electromagnetic signal does not exist only between the transmitting module and the receiving module, and there is a problem of leaking to the surroundings. There is a problem that may reduce the transmission and reception efficiency of the signal, shorten the transmission and reception distance, and negatively affect the user using other components and devices arranged around the module.
  • a magnetic shield is provided in the module to isolate other parts in the device from the magnetic field, and to induce concentration of the magnetic field between the transmitter and receiver, thereby improving transmission and reception communication and reducing the function of other components by the magnetic field. Attempts to prevent this continue.
  • the magnetic field shielding material may be advantageous in transmission and reception efficiency as the magnetic permeability is higher.
  • the magnetic permeability varies depending on the type of magnetic material provided in the magnetic field shielding material, and any magnetic material having a specific composition may have different magnetic permeability characteristics depending on the manufacturing process such as sintering temperature. For example, it is common to have a permeability trend having a large variation in frequency bands. Therefore, in order to improve the performance of the antenna provided in the transmission / reception module having a specific frequency band as an operating frequency, it is very advantageous to use a magnetic field shielding material provided with a magnetic material having excellent permeability characteristics in the specific frequency band.
  • the antennas performing the above-described NFC, WPT and MST functions have different frequency bands as operating frequencies within the wide frequency band of 100 kHz to 13.56 MHz, and any magnetic material has excellent permeability over the wide frequency band as described above. It is very difficult to have.
  • the thin magnetic field shielding material can not avoid the damage of the magnetic body due to the external shock, and when the magnetic body is broken and broken into pieces, it exhibits the magnetic properties below the initially designed physical properties, and thus the function of the module is intended. There is a problem that can not be expressed.
  • the present invention has been made in view of the above, it is possible to block the influence of the magnetic field on the user's human body or components, such as a portable terminal device and at the same time have a variety of structures, shapes, sizes and intrinsic characteristics (inductance, resistivity, etc.) Even when combined with antennas of various kinds and / or various uses, it is possible to remarkably increase the characteristics of each antenna to be combined at the same time, and to provide a magnetic field shielding unit for magnetic security transmission that continuously expresses the properties related to the initial magnetic properties.
  • the purpose is to.
  • another object of the present invention is to provide a magnetic field shielding unit for magnetic security transmission, which can simultaneously exhibit excellent characteristics of a near field communication antenna and a magnetic field transmission antenna only with the magnetic field shielding unit according to the present invention.
  • another object of the present invention is to provide a magnetic secure transmission module and a portable device having the same, which can significantly increase a transmission efficiency and a transmission / reception distance of a desired signal through the magnetic field shielding unit according to the present invention.
  • the present invention includes a magnetic field shielding layer formed of fragments of ferrite containing crushed magnesium oxide (MgO) in order to improve the flexibility of the shielding unit, the ferrite containing the magnesium oxide Provides a magnetic shielding unit for magnetic secure transmission (MST) in which the real part ( ⁇ ') of the complex permeability at a frequency of 100 kHz satisfies 650 or more.
  • MST magnetic secure transmission
  • the protective member is disposed on one surface of the magnetic field shielding layer and may further include a first adhesive member disposed on the other surface of the magnetic field shielding layer.
  • the ferrite containing magnesium oxide may have a real part ( ⁇ ') of complex permeability at a frequency of 100 Hz of 1000 or more.
  • the ferrite containing magnesium oxide may have an imaginary part ( ⁇ ′′) of a complex permeability at a frequency of 100 Hz of 50 or less.
  • the ferrite containing magnesium oxide may have a real part ( ⁇ ') of complex permeability at a frequency of 200 Hz or more and 650 or more, and a real part ( ⁇ ') of complex permeability at a frequency of 13.56 MHz.
  • the imaginary part ( ⁇ ") of the complex permeability at a frequency of 200 Hz may be 50 or less
  • the imaginary part ( ⁇ ′) of the complex permeability at a frequency of 13.56 MHz may be 400 or less.
  • the single fragment shape of the ferrite fragments may be atypical, and some fragments of the ferrite fragments may have a curved shape in which at least one side is not a straight line, and preferably, some fragments having the at least one side have a curved shape. May be at least 45%, more preferably at least 60% of the total number of ferrite fragments.
  • the single particle average particle diameter of the ferrite fragments may be 100 ⁇ 2000 ⁇ m.
  • the ferrite includes magnesium oxide in 3 to 12 mol%, 8 to 14 mol% copper oxide, further includes nickel oxide and zinc oxide, the nickel oxide and zinc oxide value according to Equation 1 below This may be 3.6 or more.
  • the ferrite may include 3 to 12 mol% of magnesium oxide and 46 to 52 wt% of iron oxide, and may further include 8 to 14 mol% of copper oxide, 1 to 10 mol% of nickel oxide, and 25 to 32 mol% of zinc oxide. Can be.
  • the ferrite fragments may include 30% or more of fragments having a degree of release of 8.0 or less according to Equation 2 below.
  • the present invention is an antenna unit having an antenna for magnetic security transmission; And a magnetic field shielding unit for magnetic security transmission according to the present invention disposed on one surface of the antenna unit to improve characteristics of the antenna and focus the magnetic field toward the antenna.
  • the antenna unit may further include at least one antenna of a wireless power transmission (WPT) antenna and a near field communication (NFC) antenna.
  • WPT wireless power transmission
  • NFC near field communication
  • the present invention provides a portable device including a magnetic secure transmission module according to the present invention as a receiving module.
  • the magnetic field shielding unit for the magnetic security transmission prevents the magnetic field effect on the human body of a component such as a portable terminal device and at the same time has a variety of structures, shapes, sizes and unique characteristics (inductance, resistivity, etc.) Even when combined with antennas of various kinds and various uses, the characteristics of the combined antennas can be significantly increased.
  • the flexibility of the shielding unit is remarkably excellent, so that even if the shielding unit is thinned, the storage unit is transported, the process of attaching to the adherend, and the electronic device provided with the adhered adherend.
  • the change or decrease of physical properties such as the initial designed permeability due to the occurrence of additional cracks of the magnetic material can be prevented.
  • the cracks of the magnetic material in the process of adhesion can be prevented to prevent physical property changes.
  • the magnetic field shielding unit according to the present invention is not only combined with a heterogeneous sheet having different permeability characteristics in a predetermined frequency band, but also the characteristics of the antenna for short distance communication and the characteristics of the antenna for wireless power transmission, as well as the characteristics of the antenna for the magnetic security transmission. As it is maintained or improved, it may be very advantageous to implement a slimmer module and a portable device. In addition, as the transmission efficiency and transmission distance can be significantly increased, the present invention can be widely applied to various portable devices such as mobile devices, smart appliances, or devices for the Internet of Things.
  • FIG. 1 is a cross-sectional view showing a magnetic field shielding unit for magnetic security transmission according to an embodiment of the present invention
  • Figure 2 is a view schematically showing the shape of the debris observed on one surface of the magnetic field shielding layer formed of ferrite debris in the magnetic field shielding unit according to an embodiment of the present invention
  • 3 and 4 is a view showing the circumscribed circle diameter and inscribed circle diameter of the debris for evaluation of the degree of release of ferrite debris of irregular shape;
  • FIG. 5 and 6 are schematic diagrams illustrating a manufacturing process through a crushing apparatus used to manufacture a magnetic shielding unit according to an embodiment of the present invention
  • FIG. 5 shows a crushing apparatus for crushing a ferrite sheet through irregularities provided in a roller
  • 6 is a view showing a manufacturing process
  • FIG. 6 is a view showing a manufacturing process using a crushing apparatus for crushing a ferrite sheet through a metal ball provided on a support plate.
  • FIG. 7 is a view showing a cross-sectional view of a magnetic security transmission shielding unit according to an embodiment of the present invention having three layers of magnetic field shielding layers formed of ferrite fragments, and
  • FIG 8 is an exploded perspective view of the magnetic security transmission module according to an embodiment of the present invention.
  • Magnetic field shielding unit 100 for the magnetic security transmission includes a magnetic field shielding layer 110, the magnetic field shielding layer 110 includes magnesium oxide It is formed of debris 111 of ferrite.
  • the magnetic field shielding unit 100 may further include a protection member 140 disposed on the magnetic field shielding layer 110 and a first adhesive member 130 disposed below the magnetic field shielding layer 110.
  • the first adhesive member 130 may further include a release film 130a for protecting the first adhesive layer 130b until the first adhesive layer 130b and the magnetic field shielding unit 100 are attached to the adherend. can do.
  • the magnetic field shielding layer 110 is formed of ferrite fragments 111 in which a ferrite sheet including magnesium oxide is crushed to improve the flexibility of the shielding unit.
  • the thickness of the magnetic material to be provided must be very thin at the same time.
  • Ferite containing magnesium oxide is very brittle, and when the thickness of the ferrite sheet becomes thin, cracks or fine debris occur even at very weak external force.
  • the magnetic properties change after the occurrence of cracks and the magnetic properties decrease significantly when the microfragmentation intensifies, rather than the magnetic properties such as permeability, in the sheet form before cracks occur. There is no problem.
  • a magnetic field shielding unit having a very thin ferrite has a problem of significantly reducing workability as it must be handled so that no crack occurs when storing, transporting, and putting it into an assembly process.
  • the magnetic field shielding unit is generally disposed on the adhered surface on which the antenna is formed, and is generally attached to closely adhere to the adhered surface on which the antenna is formed in order to further improve antenna characteristics and prevent separation of the magnetic field shielding unit.
  • the magnetic field shielding unit 100 may be attached to an adhered surface (not shown) through the first adhesive member 130, and for this purpose, the first adhesive member 130 may be attached. Removal of the release film 130a protecting the first adhesive layer 130b is preceded.
  • the magnetic field shielding unit 100 has a ferrite containing magnesium oxide, which is a magnetic substance, and is crushed from the beginning so that the flexibility of the shielding unit is remarkably improved. Concern for further microfragmentation of the ferrite may be blocked at source.
  • the ferrite is properly provided in the magnetic field shielding layer in a debris state with a property value capable of expressing excellent characteristics in magnetic security transmission, and the initial property value is used in the manufacturing step of the finished product, and further, the use of the finished product.
  • the shape of the ferrite fragment 111 containing the magnesium oxide may be amorphous.
  • the intention that may occur as the shielding unit is bent or bent is caused. Further breakage, fragmentation, or crushing of unferred ferrite fragments may occur, in which case at least one side of some fragments may be crushed to have a curved shape rather than a straight line in order to prevent this from happening as a property change or deterioration occurs. (See FIG. 2). If at least one side includes a debris having a curved shape when the shielding unit is bent, there is an advantage that can prevent additional breakage of the debris can be reduced or bumps and friction with the adjacent debris.
  • the number of fragments having at least one side curved shape may be 45% or more of the total number of fragments in the magnetic shielding layer, and more preferably 60% or more. If the number of fragments having at least one side curved shape is less than 45% of the total number of fragments, flexibility improvement may be insignificant, and finer fragments may be increased than the fragments provided at the beginning due to external impact, thus reducing the permeability of the shielding unit. Etc., may cause a decrease in physical properties.
  • the single particle average particle diameter of the ferrite fragments 111 including the magnesium oxide may be 100 ⁇ 2000 ⁇ m. If the average particle diameter exceeds 2000 ⁇ m, it may be difficult to maintain the initial physical design value of the magnetic shielding unit due to the increase in the occurrence of additional debris, fragments.
  • the average particle diameter of the fragments is less than 100 ⁇ m, the magnetic properties such as ferrite permeability should be selected with high remarkability before crushing, but manufacturing ferrite with high permeability has a limitation in manufacturing. There is a problem that the initial physical properties are difficult to design.
  • the average particle diameter of the debris is a result measured on the basis of the volume average diameter measured by a laser diffraction particle size distribution meter.
  • the ferrite fragments 111 including the magnesium oxide preferably include 30% or more of fragments having a release degree of 8.0 or less on one surface of the fragment according to Equation 2 below. can do.
  • Equation (2) in the circumscribed circle diameter is meant the presence longest distance of the distances between any two points on any one surface of the fragments of debris (Fig. 3 R 1, in FIG. 4 R 2), and two of the fragments in the longest The circle passing through the point is the circumscribed circle of the fragment.
  • the diameter of the inscribed circle of the fragment means the diameter of the inscribed circle having the largest diameter among the inscribed circles contacting at least two sides present on one side of the fragment (r 1 in FIG. 3, r 2 in FIG. 4).
  • a large degree of deformation of one side of the fragment means that the shape of one side of the fragment is likely to include a long (see FIG. 3) or pointed portion (see FIG. 4), and such a shape may cause additional fragments to break or fragment. It means that there is.
  • the number of fragments having a large degree of heteromorphism among the ferrite fragments 111 including magnesium oxide included in the magnetic field shielding layer 110 is preferably included below a predetermined ratio, and thus, among all the fragments in the magnetic field shielding layer 110.
  • 30% or more of the fragments having one or more heteromorphisms of 8.0 or less of the fragments according to Equation 2 may be included, and more preferably, 45% or more, and even more preferably 60% or more of the fragments satisfying the fragments. If less than 30% of the debris exceeds 8.0%, there is a problem that may cause a significant decrease in physical properties such as permeability due to the fine fragmentation of the additional ferrite fragments, it may not be able to sustain the desired initial properties design.
  • the magnetic field shielding layer 110 includes a ferrite containing magnesium oxide as a magnetic material, the ferrite containing magnesium oxide to increase the real part of the complex permeability while minimizing the imaginary part to maintain or increase the imaginary part Play a role.
  • the magnetic shielding layer has the advantages of simultaneously exhibiting the electromagnetic shielding and heat dissipation characteristics, excellent mechanical strength, there is an advantage that the magnet is not easily magnetized even in the permanent magnet that can be provided in the transmitter to align the magnetic field between the transceiver antenna.
  • the ferrite containing magnesium oxide included in one embodiment of the present invention can significantly improve the transmission and reception efficiency / distance of the signal for the magnetic security transmission as it exhibits excellent magnetic characteristics at the operating frequency used for the magnetic security transmission Can be.
  • the transmission / reception efficiency / distance of a data signal can be maintained or improved even at an operating frequency used for near field communication (NFC).
  • NFC near field communication
  • heterogeneous functions such as near field communication and / or wireless power transmission as well as magnetic security transmission are provided.
  • the ferrite containing magnesium oxide is not limited in composition, crystal type, and microstructure of the sintered particles when the magnetic permeability properties of the magnetic field shielding unit described later in the fragmented state can be expressed.
  • the crystal structure of the ferrite containing magnesium oxide may be a spinel type.
  • the ferrite containing magnesium oxide may preferably contain 3 to 12 mol% of magnesium oxide. If the content of magnesium oxide is less than 3 mol%, it may be difficult to satisfy all of the desired physical properties, such as the increase in the real part of the complex permeability is insignificant and the magnetic security transmission efficiency cannot be improved.
  • the magnesium oxide content in the ferrite exceeds 12 mol%, the saturation magnetic density is lowered, the imaginary part may increase at a larger rate than the real part of the complex permeability, and the temperature coefficient is also worsened. It can be hard to satisfy all.
  • the ferrite may include 46 to 52 mol% iron trioxide. If iron trioxide is contained in excess of 52 mol%, the content of copper oxide, zinc oxide and nickel oxide, which will be described later, including magnesium oxide, may be reduced, and thus, it may be difficult to express desired physical properties through each component. In addition, if iron trioxide is included in less than 46 mol% may not exhibit the desired level of magnetic properties.
  • the ferrite provided in one embodiment of the present invention further comprises 8 to 14 mol% copper oxide.
  • the copper oxide lowers the sintering temperature and plays a role of growing grains, and if the content of copper oxide is less than 8 mol%, at least one or more frequency bands of the frequency bands used by the short-range communication and the wireless power transmission magnetic security transmission.
  • the real part of the complex permeability can be reduced, and if the content exceeds 14 mol%, the imaginary part of the complex permeability can be significantly increased because the growth of particles during sintering is not normal.
  • the ferrite may further include 25 to 32 mol% of zinc oxide (ZnO) and 1 to 10 mol% of nickel oxide (NiO). If the nickel oxide content is less than 1 mol%, the complex permeability real part at the 100 kHz frequency may be lowered. In particular, the resonant frequency of the complex permeability shifts to the low frequency side, thereby reducing the real permeability of the complex permeability at the frequency of the near field communication. As the imaginary part is remarkably increased, the short-range communication efficiency may be remarkably reduced, and thus it may be difficult to simultaneously improve various functions such as magnetic security transmission and short-range communication with a single magnetic field shielding unit.
  • ZnO zinc oxide
  • NiO nickel oxide
  • the real part of the complex permeability decreases significantly in the low frequency band and the high frequency band, and it may be difficult to simultaneously improve various functions such as secure transmission and short-range communication. As a result, the magnetic loss and heat generation due to the increased eddy current generation may be increased.
  • the real part of the complex permeability is reduced in at least one or more frequency bands of the desired short-range communication, wireless power transmission, or magnetic security transmission to improve the characteristics of all antennas. If it exceeds 32 mol%, the imaginary part of the complex permeability in at least one or more of the frequency bands used by the desired short-range communication, wireless power transmission, or magnetic secure transmission increases significantly, and magnetic Loss and fever may occur.
  • the nickel oxide and zinc oxide may have a value of 3.6 or more, and more preferably 12 or less, according to Equation 1 below.
  • Equation 1 If the value according to Equation 1 is less than 3.6, the imaginary part of the complex permeability is implemented at a frequency of 100 Hz to 200 Hz, but the real part is greatly reduced, and it may be difficult to express the desired level of physical properties.
  • Ferrite according to an embodiment of the present invention is 47 to 51 mol% iron trioxide, 3 to 8 mol% nickel oxide, 26 to 30 mol% zinc oxide, 9 to 12 mol% copper oxide and 6 to 11 mol% magnesium oxide It may include, through which may be more advantageous to express all the desired properties.
  • the composition and the composition ratio of the ferrite containing magnesium oxide is not limited thereto, and may be changed depending on the degree of the desired physical properties.
  • the thickness of the magnetic field shielding layer 110 may be a thickness of a ferrite sheet derived from the ferrite fragments 111 including magnesium oxide, and may be 30 to 600 ⁇ m. If the average thickness is less than 30 ⁇ m may not be able to express the magnetic properties to the desired level, if it exceeds 600 ⁇ m it is not preferable for the thinning of the shielding unit.
  • the shape of the magnetic field shielding layer is rectangular in addition to the rectangular, square shape so as to correspond to the application of the magnetic field shielding unit, specifically, the shape of the magnetic transmission antenna, wireless power transmission antenna and / or short-range communication antenna. It may be a polygon, such as a pentagon, a circle, an oval, or a shape in which curves and straight lines are partially mixed.
  • the size of the magnetic shielding unit is preferably about 1 to 2 mm wider than the size of the antenna of the corresponding module.
  • a protection member 140 including a base film 140a and a second adhesive layer 140b formed on one surface of the base film 140a is disposed on the magnetic field shielding layer 110.
  • the first adhesive member 130 may further include a release film 130a and a first adhesive layer 130b formed on one surface of the release film 130a below the magnetic field shielding layer 110.
  • the base film 140a of the protective member 140 may be a protective film that is typically provided in the magnetic field shielding unit, and heat / pressure applied for curing in a process of attaching the shielding sheet to a substrate having an antenna.
  • a film of a material whose mechanical strength and chemical resistance are sufficient to protect the magnetic field shielding layers 110 and 110 'against heat resistance and external physical and chemical stimuli to withstand the back Can be used.
  • PET Polyethylene terephthalate
  • PTT polytrimethylene terephthalate
  • PBT polybutylene terephthalate
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PCTFE polychlorotrifluoroethylene
  • ETFE polyethylenetetrafluoroethylene
  • the base film 140a may be used to have a thickness of 1 ⁇ 100 ⁇ m, preferably 10 ⁇ 30 ⁇ m, but is not limited thereto.
  • the protective member 140 may include a first adhesive layer 140b on one surface of the base film 140a, and the protective member 140 may have a magnetic field shielding layer 110 through the second adhesive layer 140b. It can be attached to.
  • the second adhesive layer 140b may be used without limitation in the case of a general adhesive layer, and may be an adhesive layer in the form of a double-sided tape in which a single layer is formed through an adhesive layer forming composition or an adhesive layer forming composition is formed on both sides of a support film.
  • the thickness of the second adhesive layer 140b may be 3 to 50 ⁇ m, but the thickness of the second adhesive layer 140b is not limited thereto.
  • the first adhesive member 130 serves to attach the magnetic field shielding units 100 and 100 'to an antenna or a substrate having an antenna.
  • the first adhesive member 130 may include a first adhesive layer 130b attaching the magnetic field shielding units 100 and 100 'to the skin adhesion surface, and the first adhesive layer ( A release film 130a may be further provided to protect the 130b.
  • the release film 130a may be used without limitation in the case of a conventional known release film that can be easily removed from the first adhesive layer 130b, and the present invention is not particularly limited thereto.
  • the first adhesive layer 130b is formed by applying the adhesive layer forming composition to the lower portion of the magnetic field shielding layers 110 and 110 ', or the first adhesive layer 130b formed by applying the adhesive composition on the release film 130a is a magnetic field. It may be attached to the shielding layer (110, 110 ').
  • the first adhesive layer 130b may be a double-sided adhesive layer coated with an adhesive layer forming composition on both sides of the support film for reinforcing mechanical strength.
  • the thickness of the first adhesive layer 130b may be 3 to 50 ⁇ m, but the thickness of the first adhesive layer 130b is not limited thereto.
  • the magnetic field shielding unit (100, 100 ') according to the present invention, the ferrite containing magnesium oxide is provided in a fragmented state from the beginning to form a magnetic field shielding layer, the characteristics of the antenna for magnetic security transmission (MST) remarkably
  • the bulk ferrite containing magnesium oxide to improve the magnetic field toward the antenna has a real part ( ⁇ ') of complex permeability of 650 or more at a frequency of 100 Hz, preferably a real part ( ⁇ '). 830 or more, and even more preferably, the real part may be 1400 or less. Also, preferably, the imaginary part ⁇ ′′ of the complex permeability at the frequency may be 50.0 or less.
  • the real part of the complex permeability is less than 650 at the 100 kHz frequency, the desired magnetic security transmission efficiency cannot be achieved, the transmission and reception distance can be significantly reduced, and the magnetic security transmission is further performed when further fine fragmentation of the ferrite fragment occurs.
  • the product does not meet the required level of physical properties, causing product defects, defects.
  • the purpose of expressing the purpose of the wireless power transmission as well as the magnetic security transmission may not express the desired level of wireless power transmission performance.
  • the real part of the complex permeability exceeds 1400, the rapid increase in the imaginary part may not achieve the desired physical properties.
  • the complex permeability imaginary part exceeds 50 at the corresponding frequency, even if the real part of the complex permeability is large, the transmission efficiency / distance of the magnetic security data signal and the wireless power transmission signal may not be achieved at a desired level.
  • the bulk ferrite containing magnesium oxide provided in the magnetic shielding unit according to an embodiment of the present invention to further improve the characteristics of the antenna for magnetic secure transmission (MST) quality index according to the following equation (3)
  • the value may satisfy 29.0 or more at a frequency of 100 Hz.
  • Quality index real part of complex permeability ( ⁇ ') at given frequency ⁇ imaginary part of complex permeability at predetermined frequency ( ⁇ ")
  • Increasing the value of the quality index according to Equation 3 means that the real part of the complex permeability is increased and the imaginary part is not changed or the real part of the complex permeability is constant but the imaginary part decreases or the real part of the complex permeability increase and the imaginary part decrease. It means to occur at the same time, in any case, it is possible to increase the improved signal transmission and reception efficiency, transmission and reception distance. If the quality index value is less than 29.0 at the frequency of 100 kHz, it may not be able to express the magnetic security transmission efficiency to the desired level, and co-expression of the improvement of the wireless power transmission performance may be difficult.
  • the ferrite containing magnesium oxide may have a real part ( ⁇ ') of complex permeability at a frequency of 200 kHz or more, and a real part ( ⁇ ') of complex permeability at a frequency of 13.56 MHz may be 140 to 236.
  • the imaginary part ( ⁇ ") of the complex permeability at a frequency of 200 Hz can be 50 or less
  • the imaginary part ( ⁇ ') of the complex permeability at a frequency of 13.56 MHz can be 400 or less, thereby allowing the magnetic security data.
  • the wireless power transmission may be applied to the Qi method, or a portion of the magnetic force lines generated in the permanent magnet may be applied to the wireless power transmission of the PMA method induced through the attractor (not shown).
  • it can be applied to a magnetic resonance method in which wireless power transmission is performed at a frequency of several tens of kHz to 6.78 MHz.
  • Magnetic shielding unit according to an embodiment of the present invention described above may be manufactured by the manufacturing method described below, but is not limited thereto.
  • a step (a) of preparing a ferrite sheet containing magnesium oxide may be performed.
  • the ferrite sheet including the magnesium oxide can be prepared through a method for producing a conventional known ferrite sheet, the present invention is not particularly limited thereto.
  • the production method will be described.
  • a raw material mixture is obtained by mixing nickel oxide, zinc oxide, copper oxide, magnesium oxide, and trioxide to a predetermined composition ratio.
  • the mixture may be mixed through dry mixing or wet mixing, the particle size of the raw material to be mixed is preferably 0.05 ⁇ 5 ⁇ m.
  • the components of magnesium oxide, nickel oxide, zinc oxide and the like included in the raw material mixture may be themselves or in the form of a composite oxide containing the components.
  • the raw material mixture may be calcined to obtain a calcined material.
  • Calcining is carried out to promote the thermal decomposition of the raw materials, homogenization of the components, the production of ferrite, the loss of ultrafine powders by sintering and the growth of the particles to a suitable particle size, thereby converting the raw material mixture into a form suitable for the later processing.
  • Such calcination can be carried out preferably at a temperature of 800 to 1100 for about 1 to 3 hours.
  • Calcining may be performed in an atmosphere or an atmosphere having a higher oxygen partial pressure than the atmosphere.
  • the obtained plastic material is pulverized to obtain a pulverized material.
  • Crushing is performed in order to break down the aggregation of a plastic material and to make powder which has a moderate degree of sintering property.
  • wet milling using a ball mill, an attritor, or the like after rough milling.
  • Wet grinding can be performed until the average particle diameter of a grinding
  • the ferrite sheet including magnesium oxide can then be produced through the obtained crushed material.
  • the method for producing the ferrite sheet can use a known method, and the present invention is not particularly limited thereto.
  • the obtained grinding material is slurried together with additives such as a solvent, a binder, a dispersant, a plasticizer, and the like to prepare a paste. And this paste can be used to form a ferrite sheet having a thickness of 30 to 600 mu m.
  • a ferrite sheet may be manufactured through a binder removal process and a baking process.
  • the firing can be performed at a temperature of 900 to 1300 for about 1 to 5 hours, and the atmosphere at this time may be performed in an atmospheric atmosphere or an atmosphere having an oxygen partial pressure higher than that of the atmosphere.
  • the density of the sintered compact may be, for example, 5.0 to 5.3 g / cm 3 .
  • a ferrite sheet containing magnesium oxide after mixing the ferrite powder and the binder resin, it may be prepared by a known method such as powder compression molding method, injection molding method, calender method, extrusion method. .
  • step (b) may be performed to crush the ferrite sheet including magnesium oxide to form a magnetic field shielding layer formed of ferrite fragments.
  • the embodiment of the step (b) is attached to the protective member 140, the second adhesive layer (140b) is formed on one surface of the ferrite sheet, the first adhesive member (1) the first adhesive layer (130b) is formed on the other surface (
  • the ferrite sheet may be sliced into atypical debris by passing through the crushing device to which the laminate 130 is attached. Thereafter, by applying pressure to the laminate, it is possible to prevent damage, crushing and fine fragmentation of additional fragments by improving flexibility by adjusting the particle size and mold release degree of the desired fragment.
  • the method for adjusting the particle size and the degree of release can be prepared by appropriately adjusting the gap between the unevenness, the shape of the unevenness, etc. in the shredding device as shown in FIG.
  • the laminate 100a is passed through a crushing apparatus having a crusher to crush the laminate 100a, and then the laminate is formed through the third roller 13 and the fourth roller 23 corresponding to the third roller 13.
  • the magnetic field shielding unit 100 may be manufactured by further crushing 100b.
  • a support plate 30 having a plurality of metal balls 31 mounted on one surface thereof and rollers 41 and 42 positioned above the support plate 30 to move the object to be crushed is provided.
  • the stack 100a including the ferrite sheet is introduced into the crushing apparatus provided therein, and the sheet is crushed by applying pressure through the metal ball 31.
  • the ball 31 may have a spherical shape, but is not limited thereto.
  • the ball 31 may have a triangular shape, a polygon shape, an ellipse, and the like, and the shape of the ball provided in the single first roller may be configured in one shape or mixed in various shapes. May be
  • the above-described magnetic field shielding layer is provided with a plurality of 110A, 110B and 110C in the magnetic field shielding unit 100 ′′, and is disposed between adjacent magnetic field shielding layers 110A / 110B and 110B / 110C.
  • Second adhesive members 131 and 132 may be interposed.
  • the method of increasing the magnetic properties of the magnetic field shielding unit itself includes a method of using a magnetic material having excellent properties such as permeability at a desired frequency, and a method of increasing the thickness of the magnetic field shielding layer.
  • a magnetic material having excellent properties such as permeability at a desired frequency
  • a method of increasing the thickness of the magnetic field shielding layer In order to increase the thickness of the ferrite sheet in a single layer to a certain level or more, the surface area and the inside of the sheet may not be uniformly and uniformly fired in the firing process, and thus the plastic particle structure may be different, so that the improvement of permeability may be insignificant.
  • the permeability increase through increasing the thickness of the magnetic field shielding layer of a single layer is limited. Accordingly, by providing a plurality of magnetic field shielding layer itself, it is possible to achieve a high permeability increase effect by increasing the overall thickness of the shielding layer in the shielding unit, the magnetic field shielding unit having a stacked magnetic field shielding layer is a magnetic security transmission, wireless power The characteristics of the antenna for transmission and data transmission and reception can be further improved.
  • the magnetic field shielding unit 100 ′′ may be provided with two to twelve magnetic shielding layers, but the present invention is not limited thereto.
  • the magnetic field shielding layers 110A, 110B, and 110C are provided in the second adhesive members 131 and 132, the magnetic field shielding layers are adhered to each other between adjacent magnetic field shielding layers 110A / 110B and 110B / 110C.
  • the buffer function to prevent further fine fragmentation of the debris and serves to prevent the oxidation of the ferrite debris due to the penetration of moisture.
  • the second adhesive members 131 and 132 may be the same as the first adhesive member described above.
  • the adhesive composition may be a double-sided adhesive member coated with an adhesive composition on both sides of the support base material, or the adhesive composition may be applied to the magnetic field shielding layer without the support base material, and another magnetic field shielding layer may be stacked on the upper surface of the support composition. It may be.
  • the second adhesive members 131 and 132 may include a heat dissipation adhesive layer to improve heat dissipation, and the heat dissipation adhesive layer may include nickel, silver, and carbon in an adhesive component such as acrylic, urethane, and epoxy.
  • Known heat dissipation fillers such as materials may be mixed, and the specific composition and content thereof may follow the known composition and content, and thus the present invention is not particularly limited thereto.
  • each magnetic field shielding layer 110A, 110B, and 110C when a plurality of magnetic field shielding layers 110A, 110B, and 110C are provided, the compositions of ferrites included in each magnetic field shielding layer may be the same or different. In addition, even if the composition is the same, the magnetic permeability of each magnetic field shielding layer may be different due to different firing conditions. In addition, the thickness of each magnetic field shielding layer can also be configured to be the same or different from each other according to the purpose.
  • the magnetic field shielding unit 100, 100 ', 100 "for the magnetic security transmission according to the embodiment of the present invention is combined with another shielding unit having different magnetic characteristics at a predetermined frequency to use different frequency bands.
  • the magnetic field shielding unit according to an embodiment of the present invention can improve the antenna characteristics of each of the antennas using different frequency bands simultaneously. Combination with other shielding units with different magnetic properties at a given frequency may be undesirable.
  • the magnetic field shielding unit (100, 100 ', 100 ") for the magnetic security transmission of the various embodiments according to the present invention described above at least one functional layer (not shown) for performing electromagnetic shielding and / or heat radiation at least on one surface It can be provided with one or more, through which the magnetic shielding unit having a functional layer prevents the frequency fluctuation of the combined antenna due to electromagnetic waves such as power supply noise to increase significantly, reducing the failure rate of the antenna, applied mobile devices, etc. It is easy to dissipate heat during heat generation, so it can prevent the durability of parts due to heat generation, deterioration of function, and discomfort due to heat transfer to the user.
  • the functional layer (not shown) provided on the upper and / or lower portion of the magnetic field shielding unit (100, 100 ', 100 ") has a heat radiation function, it is possible to improve the thermal conductivity in the horizontal direction of the magnetic field shielding unit.
  • a metal foil such as copper and aluminum having excellent thermal conductivity and conductivity may be attached to the upper portions of the protective members 130 and 1300 through an adhesive or a double-sided tape.
  • Cu, Ni, Ag, Al, Au, Sn, Zn, Mn, Mg, Cr, Tw, Ti or a combination of these metals is known for sputtering, vacuum deposition, chemical vapor deposition, etc.
  • the adhesive may be a known adhesive, and non-limiting examples thereof may use an adhesive such as acrylic, urethane, and epoxy. Meanwhile, the adhesive may be used by providing heat dissipation performance.
  • a known filler such as nickel, silver, and carbon may be mixed with the adhesive, and the content of the filler may be the content of the filler in the known heat dissipation adhesive. Accordingly, the present invention is not particularly limited thereto.
  • the functional layer may have a thickness of 5 to 100 ⁇ m, and more preferably, a thickness of 10 to 20 ⁇ m for thinning the magnetic field shielding unit.
  • the magnetic field shielding unit 1000 for the magnetic security transmission is a wireless power transmission antenna 1540, a magnetic security transmission antenna 1530 and a near field communication antenna as shown in FIG. 1520 is disposed on one surface of the antenna unit is provided may implement a magnetic security transmission module.
  • the magnetic security transmission module may be a transmission module for transmitting power / signal to the electronic device, or may be a reception module for receiving power / signal from the transmission module.
  • each of the antennas 1520, 1530, and 1540 may be antenna coils in which coils are wound to have a constant inner diameter, or antenna patterns printed on the substrate, and may include specific antenna shapes, structures, Size, material, etc. are not specifically limited in this invention.
  • the antenna unit 1500 is provided with a near field communication antenna 1520 provided at the outermost side of the circuit board 1510 and sequentially spaced inwards therefrom.
  • a magnetic security transmission antenna 1530 and a wireless power transmission antenna 1540 may be provided.
  • the magnetic security transmission module does not have a wireless power transmission antenna 1540, unlike the Figure 8, and has a near field communication antenna 1520 and a magnetic security transmission antenna 1530 It may be implemented as a magnetic security transmission module or may be implemented as a magnetic security transmission module without the wireless power transmission antenna 1540 and the short-range communication antenna 1520.
  • Ferrite powder with an average particle diameter of 0.75 ⁇ m Fe 2 O 3 48.5 mol%, NiO 4.1 mol%, ZnO 28.8 mol%, CuO 10.3 mol%, MgO 8.2 mol%) 10 parts by weight of polyvinyl alcohol and 50 parts by weight of pure water as a solvent were mixed, dissolved and dispersed in a ball mill. I was. Thereafter, the mixture was put and press-molded into a mold having cylindrical holes having a diameter of 0.5 mm and a height of 0.5 mm to prepare granules.
  • the granules were put into a mold and pressed to form a donut shape having a final molding density of 3.2 g / cm 3, outer diameter of 18 mm, inner diameter of 13 mm, and thickness of 3.7 mm, and then degreased at 500 for 10 hours, and fired at 940 for 2.2 hours. And cooling to prepare bulk ferrite.
  • the permeability was measured at 100 kHz, 200 kHz and 13.56 MHz for the samples prepared according to Preparation Examples and Comparative Preparation Examples, and the real and imaginary parts of the complex permeability are shown in Tables 1 to 2.
  • the magnetic permeability was measured through an impedance analyzer (4294A Precision Impedance Analyzer and 42942A Terminal Adapter Kit), and the test fixture was measured under the condition of Osc Level 500mV using the 16454A Magnetic Material Test Fixture.
  • Comparative Example 1 it can be seen that the real part of the complex permeability does not satisfy 650 at a frequency of 100 Hz according to the composition ratio of nickel oxide, zinc oxide, and copper oxide.
  • Ferrite powder having the same average particle diameter as that used in Preparation Example 1 (0.75 ⁇ m) Fe 2 O 3 48.5 mol%, NiO 4.1 mol%, ZnO 28.8 mol%, CuO 10.3 mol%, MgO 8.2 mol%) 5 parts by weight of polyvinyl butyral resin, and toluene and ethanol were mixed at 5: 5 as a solvent. 50 parts by weight of the solvent were mixed, dissolved and dispersed in a ball mill.
  • the ferrite mixture was prepared in a sheet shape through a conventional tape casting method, and then degreased at 500 to 10 hours, calcined and cooled at 940 for 2.2 hours to prepare a ferrite sheet having a final thickness of 80 ⁇ m.
  • a magnetic field shielding unit was manufactured by passing through a crushing apparatus as shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

마그네틱 보안전송용 자기장 차폐유닛이 제공된다. 본 발명의 일 실시예에 따른 마그네틱 보안전송용 자기장 차폐유닛은 차폐유닛의 가요성을 향상시키기 위하여 파쇄시킨 산화마그네슘(MgO)을 포함하는 페라이트의 파편들로 형성된 자기장 차폐층;을 구비하고, 상기 산화마그네슘을 포함하는 페라이트는 100㎑의 주파수에서 복소투자율의 실수부(μ')가 650 이상이다. 이에 의하면, 휴대 단말기기 등의 부품이나 이를 사용하는 사용자의 인체에 미치는 자기장 영향을 차단함과 동시에 다양한 구조, 형상, 크기 및 고유특성(인덕턴스, 비저항 등)을 가지는 여러 종류 및 다양한 용도의 안테나들과 조합되더라도 조합되는 안테나의 특성을 보다 현저히 증가시킬 수 있다.

Description

마그네틱 보안전송용 자기장 차폐유닛, 이를 포함하는 모듈 및 이를 포함하는 휴대용 기기
본 발명은 자기장 차폐유닛에 관한 것으로, 더욱 상세하게는 마그네틱보안 전송(MST)용 자기장 차폐유닛, 이를 포함하는 모듈 및 휴대용 기기에 관한 것이다.
일반적으로 안테나는 전기적인 신호를 전파신호로 변화시키는 장치를 말하며, 유전특성을 이용한 유전체 안테나와 자성특성을 이용한 자성체 안테나로 분류할 수 있다. 모든 안테나는 다양한 영역에서 사용이 가능하나 형태나 구조에 따라 효율이 달라진다. 종래에는 고유전율 소재를 통한 유전체 안테나에 대한 연구가 활발했으나 더 높은 주파수를 사용함에 따라 소형화에 따른 안테나의 성능저하 문제가 새롭게 대두되면서 종전의 고유전율 소재에서 고투자율을 가지는 자성소재에 대한 연구가 활발히 진행되고 있는 추세에 있으며, 최근에는 이들 안테나를 활용하여 각종 휴대 단말기기(스마트폰, 태블릿 PC 등)를 통해 근거리 무선통신(NFC, Near Field Communication), 무선전력 전송(Wireless Power Transmission), 마그네틱 보안 전송(MST, Magnetic security Transmission) 기능을 복합화하는 시도가 계속되고 있다.
상기 NFC, WPT 및 MST 기능은 송신모듈과 수신모듈 사이의 전자파 신호의 송수신을 통해 수행되는데, 상기 전자파 신호는 송신모듈과 수신모듈 사이에서만 존재하지 못하고 주변으로 누설되는 문제가 있으며, 누설된 전자파는 신호의 송수신 효율 감소, 송수신 거리 단축 및 모듈 주변에 배치되는 타부품과 기기를 사용하는 사용자에게 부정적 영향을 미칠 수 있는 문제가 있다.
이러한 문제들을 해결하기 위해 자기장 차폐재를 모듈내 구비시켜 기기내 다른 부품을 자기장에서 격리시키는 역할을 하는 동시에 송/수신부 사이에 자기장의 집중을 유도하여 송수신 교신 향상, 자기장에 의한 타부품의 기능 저하를 방지하는 시도가 계속되고 있다.
상기 자기장 차폐재는 투자율이 높을수록 송수신 효율에 있어서 유리할 수 있는데, 상기 투자율은 자기장 차폐재에 구비되는 자성체의 종류에 따라 달라지고, 어느 특정 조성의 자성체일지라도 소결온도 등 제조공정에 따라 상이한 투자율 특성을 나타내며, 주파수 대역별로 큰 변동폭을 가지는 투자율 경향을 가지는 것이 일반적이다. 따라서 특정 주파수 대역을 동작주파수로 갖는 송수신 모듈에 구비된 안테나의 성능 향상을 위해서는 상기 특정 주파수 대역에서 우수한 투자율 특성을 갖는 자성체가 구비된 자기장 차폐재를 사용함이 매우 유리하다.
그러나 상술한 NFC, WPT 및 MST 기능을 수행하는 안테나들은 100㎑ ~ 13.56MHz의 넓은 주파수 대역 안에서 각각 서로 상이한 주파수 대역을 동작주파수로 가지며, 어떠한 하나의 자성체가 상기와 같은 넓은 주파수 대역 전체에서 우수한 투자율을 가지기는 매우 어렵다.
이에 따라 최근에는 각각의 안테나가 갖는 동작주파수에 맞춰 해당 주파수에서 우수한 투자율을 가지는 자성체를 구비한 자기장 차폐재를 안테나별로 각각 선정하여 복수개의 자기장 차폐재를 복합화하려는 시도가 있으나, 복합화된 자기장 차폐재는 두께가 두꺼워지는 문제가 있고 이는 경박단소형화의 추세에 있는 휴대기기의 제품화 경향을 고려할 때 바람직하지 못하다.
또한, 얇게 구현된 통상의 자기장 차폐재는 외부충격에 따른 자성체의 파손을 피할 수 없고, 자성체가 파손되어 조각으로 분리될 경우 초기설계된 물성치 이하의 자기적 특성을 발현함에 따라서 모듈의 기능을 목적하는 수준으로 발현시키지 못하는 문제점이 있다.
따라서, 휴대용 전자장치의 경박단소형화의 추세에 부응하여 매우 슬림화되도록 구현된 자기장 차폐재를 구비함에도 불구하고 하나의 모듈 내 다기능을 구현하기 위하여 구비된 이종의 안테나들 각각의 안테나 성능이 동시에 향상됨에 따라서 목적하는 여러 기능을 매우 뛰어난 효율로 발휘시키고, 외부 충격에 따른 기능저하를 예방할 수 있는 복합모듈의 개발이 시급한 실정이다.
본 발명은 상기와 같은 점을 감안하여 안출한 것으로, 휴대 단말기기 등의 부품이나 사용자의 인체에 미치는 자기장 영향을 차단함과 동시에 다양한 구조, 형상, 크기 및 고유특성(인덕턴스, 비저항 등)을 가지는 여러 종류 및/또는 다양한 용도의 안테나들과 조합되더라도 조합되는 안테나 각각의 특성을 동시에 현저히 증가시킬 수 있고, 초기설계 되는 자기적 특성과 관련된 물성을 지속적으로 발현시키는 마그네틱 보안전송용 자기장 차폐유닛을 제공하는데 목적이 있다.
또한, 본 발명은 본 발명에 따른 자기장 차폐유닛만으로도 근거리 통신용 안테나 및 마그네틱 보안전송용 안테나 특성을 동시에 우수하게 발현시킬 수 있는 마그네틱 보안전송용 자기장 차폐유닛을 제공하는데 다른 목적이 있다.
나아가, 본 발명은 본 발명에 따른 자기장 차폐유닛을 통해 목적하는 신호의 송신 효율과 송수신 거리를 현저히 증가시킬 수 있는 마그네틱 보안전송용 모듈 및 이를 구비하는 휴대용 기기를 제공하는데 또 다른 목적이 있다.
상술한 과제를 해결하기 위하여 본 발명은 차폐유닛의 가요성을 향상시키기 위하여 파쇄시킨 산화마그네슘(MgO)을 포함하는 페라이트의 파편들로 형성된 자기장 차폐층;을 구비하고, 상기 산화마그네슘을 포함하는 페라이트는 100㎑의 주파수에서 복소투자율의 실수부(μ')가 650 이상을 만족하는 마그네틱 보안전송(MST)용 자기장 차폐유닛을 제공한다.
본 발명의 일 실시예에 의하면, 상기 자기장 차폐층의 일면에 배치되는 보호부재 및 상기 자기장 차폐층의 타면에 배치되는 제1접착부재를 더 포함할 수 있다.
또한, 산화마그네슘을 포함하는 페라이트는 100㎑의 주파수에서 복소투자율의 실수부(μ')가 1000 이상일 수 있다.
또한, 산화마그네슘을 포함하는 페라이트는 100㎑의 주파수에서 복소투자율의 허수부(μ")가 50 이하일 수 있다.
또한, 산화마그네슘을 포함하는 페라이트는 200㎑의 주파수에서 복소투자율의 실수부(μ')가 650 이상이며, 13.56㎒ 의 주파수에서 복소투자율의 실수부(μ')가 140 ~ 236일 수 있다. 이때, 200㎑의 주파수에서 복소투자율의 허수부(μ")가 50 이하이며, 13.56㎒ 의 주파수에서 복소투자율의 허수부(μ')가 400 이하일 수 있다.
또한, 상기 페라이트 파편들의 단일파편 형상은 비정형일 수 있으며, 상기 페라이트의 파편들 중 일부 파편은 적어도 한 변이 직선이 아닌 만곡형상을 가질 수 있고, 바람직하게는 상기 적어도 한 변이 만곡형상을 가지는 일부 파편은 전체 페라이트 파편 개수대비45% 이상, 보다 더 바람직하게는 60% 이상일 수 있다.
또한, 상기 페라이트 파편들의 단일파편 평균입경은 100 ~ 2000 ㎛일 수 있다.
또한, 상기 페라이트는 산화마그네슘을 3 ~ 12몰%로 포함하고, 산화구리 8 ~ 14몰%, 산화니켈 및 산화아연을 더 포함하며, 상기 산화니켈 및 산화아연은 하기의 수학식 1에 따른 값이 3.6 이상일 수 있다.
[수학식 1]
Figure PCTKR2016011013-appb-I000001
또한, 상기 페라이트는 산화마그네슘 3 ~ 12몰% 및 산화철 46 ~ 52 중량%를 포함하고, 산화구리 8 ~ 14몰%, 산화니켈 1 ~ 10몰%, 산화아연 25 ~ 32몰%를 더 포함할 수 있다.
또한, 상기 페라이트 파편들은 하기 수학식 2에 따른 이형도가 8.0 이하인 파편을 30% 이상 포함할 수 있다.
[수학식 2]
Figure PCTKR2016011013-appb-I000002
또한, 본 발명은 마그네틱 보안전송용 안테나를 구비하는 안테나 유닛; 및 상기 안테나 유닛의 일면에 배치되어 상기 안테나의 특성을 향상시키고, 상기 안테나를 향하도록 자기장을 집속시키는 본 발명에 따른 마그네틱 보안전송용 자기장 차폐유닛;를 포함하는 마그네틱 보안전송용 모듈을 제공한다.
본 발명의 일 실시예에 의하면, 상기 안테나 유닛은 무선전력 전송(WPT)용 안테나 및 근거리통신(NFC)용 안테나 중 적어도 하나의 안테나를 더 포함할 수 있다.
또한, 본 발명은 본 발명에 따른 마그네틱 보안전송용 모듈을 수신용 모듈로 포함하는 휴대용 기기를 제공한다.
본 발명에 의하면, 마그네틱 보안전송용 자기장 차폐유닛은 휴대 단말기기 등의 부품이나 사용자의 인체에 미치는 자기장 영향을 차단함과 동시에 다양한 구조, 형상, 크기 및 고유특성(인덕턴스, 비저항 등)을 가지는 여러 종류 및 다양한 용도의 안테나들과 조합되더라도 조합되는 안테나의 특성을 보다 현저히 증가시킬 수 있다.
또한, 구비되는 자성체 자체의 취성이 높음에도 불구하고 차폐유닛의 가요성이 현저히 우수하여 차폐유닛을 박형화 시키더라도 차폐유닛의 보관, 운반, 피착물에 부착공정, 부착된 피착물이 구비된 전자장치의 사용 중에 자성체의 추가적인 크랙 발생으로 인한 초기 설계된 투자율 등의 물성변동 또는 저하가 예방될 수 있다. 또한, 우수한 가요성으로 인해 피착물의 피착면에 단차가 존재하는 경우에도 우수한 밀착력으로 접착시킬 수 있고, 밀착시키는 과정에서 자성체의 크랙이 방지되어 물성변동이 예방될 수 있다.
나아가, 본 발명에 따른 자기장 차폐유닛은 소정의 주파수대역에서 상이한 투자율 특성을 갖는 이종의 시트와 조합되지 않아도 단독으로 마그네틱 보안전송용 안테나 특성뿐만 아니라 근거리통신용 안테나의 특성 및 무선전력전송용 안테나 특성을 유지 또는 향상시킴에 따라서 슬림화된 모듈, 휴대용기기의 구현에 매우 유리할 수 있다. 더불어 전송효율 및 전송거리를 현저히 증가시킬 수 있음에 따라서 모바일기기, 스마트가전 또는 사물 인터넷(Internet of Things)용 기기 등의 각종 휴대기기에 널리 응용될 수 있다.
도 1은 본 발명의 일 실시예에 따른 마그네틱 보안전송용 자기장 차폐유닛을 나타낸 단면도,
도 2는 본 발명의 일실시예에 따른 자기장 차폐유닛에서 페라이트 파편으로 형성된 자기장 차폐층의 일표면에서 관찰되는 파편의 형상을 개략적으로 나타낸 도면,
도 3 및 도 4는 형상이 비정형인 페라이트 파편의 이형도 평가를 위한 파편의 외접원 직경 및 내접원 직경을 도시한 도면,
도 5 및 도 6은 본 발명의 일 실시예에 따른 자기장 차폐유닛을 제조에 이용되는 파쇄장치를 통한 제조공정 모식도로, 도 5는 롤러에 구비된 요철을 통해 페라이트 시트를 파쇄시키는 파쇄장치를 이용한 제조공정을 나타내는 도면이고, 도 6은 지지판에 구비된 금속볼을 통해 페라이트 시트를 파쇄시키는 파쇄장치를 이용한 제조공정을 나타내는 도면,
도 7은 페라이트 파편으로 형성된 자기장 차폐층을 3층으로 구비하는 본 발명의 일 실시예에 따른 마그네틱 보안전송용 차폐유닛의 단면도를 나타내는 도면, 그리고
도 8은 본 발명의 일 실시예에 따른 마그네틱 보안전송모듈의 분해사시도를 나타내는 도면이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 부가한다.
본 발명의 일 실시예에 따른 마그네틱 보안전송용 자기장 차폐유닛(100)은 도 1에 도시된 바와 같이, 자기장 차폐층(110)을 포함하고, 상기 자기장 차폐층(110)은 산화마그네슘을 포함하는 페라이트의 파편들(111)로 형성된다. 또한, 상기 자기장 차폐유닛(100)은 자기장 차폐층(110)의 상부에 배치되는 보호부재(140) 및 상기 자기장 차폐층(110)의 하부에 배치되는 제1접착부재(130)를 더 포함할 수 있고, 상기 제1접착부재(130)는 제1접착층(130b) 및 자기장 차폐유닛(100)이 피착물에 부착 전까지 상기 제1 접착층(130b)을 보호하기 위한 이형필름(130a)을 더 구비할 수 있다.
먼저, 상기 자기장 차폐층(110)은 차폐유닛의 가요성을 향상시키기 위하여 산화마그네슘을 포함하는 페라이트 시트를 파쇄시킨 페라이트 파편들(111)로 형성된다.
자기장 차폐유닛의 슬림화, 박형화를 위해서는 구비되는 자성체의 두께가 동시에 매우 얇아져야 하는데, 산화마그네슘을 포함하는 페라이트는 취성이 매우 강해 페라이트 시트의 두께가 얇아질 경우 매우 약한 외력에도 크랙이 발생하거나 미세 파편들로 부서짐에 따라서 크랙이 발생하기 전의 시트상일 때 투자율 등의 자기적 특성보다 크랙 발생 후 자기적 특성이 변동되고 미세파편화가 심화될 경우 자기적 특성이 현저히 저하되기 때문에 설정해 놓은 초기 물성치를 지속시킬 수 없는 문제점이 있다.
또한, 매우 얇게 구현된 페라이트를 구비한 자기장 차폐유닛은 보관, 운송 및 이를 조립공정에 투입 시 크랙이 발생하지 않도록 핸들링 되어야 함에 따라서 작업성을 현저히 감소시키는 문제점이 있다. 구체적으로 자기장 차폐유닛은 통상적으로 안테나가 형성된 피착면 상에 배치되며, 안테나 특성을 보다 향상시키고, 자기장 차폐유닛의 이탈을 방지하기 위해 안테나가 형성된 피착면 상에 밀착되도록 부착시키는 것이 일반적이다. 이와 같은 부착 공정을 도 1을 참고로 설명하면 자기장 차폐유닛(100)은 제1접착부재(130)를 통해 피착면(미도시)에 부착될 수 있는데, 이를 위해 제1접착부재(130)의 제1 접착층(130b)을 보호하는 이형필름(130a)의 제거작업이 선행된다. 그러나 이형필름(130a)을 자기장 차폐유닛(100)에서 박리시키기 위해서는 일정 수준 이상의 외력을 필요로 하는데, 페라이트 시트의 두께가 매우 얇을 경우 이형필름을 벗겨내는 외력에 의해서도 쉽게 크랙이 발생함에 따라서 이형필름을 벗겨내는 작업에서 조차 매우 큰 수공이 가해져 작업성이 저하되는 문제점이 있다. 또한, 페라이트 시트에 크랙이 발생하지 않도록 매우 큰 노력을 기울여 휴대용 기기를 제조한 경우에도 사용 중 떨어뜨림 등의 충격에 페라이트 시트의 크랙, 부서짐이 발생하여 목적하는 수준의 마그네틱 보안 데이터를 비롯한 각종 데이터 신호와 무선전력 신호의 송수신 효율이나 송수신 거리를 담보하지 못하는 문제가 있다.
그러나 본 발명에 따른 자기장 차폐유닛(100)은 자성체인 산화마그네슘을 포함하는 페라이트가 처음부터 파쇄되어 파편상태로 구비되어 차폐유닛의 가요성이 현저히 향상됨에 따라서 차폐유닛의 단면두께가 박형화 되더라도 외력에 의한 페라이트의 추가적인 미세파편화 우려가 원천적으로 봉쇄될 수 있다. 또한, 마그네틱 보안전송에서 우수한 특성을 발현할 수 있을 정도의 물성치로 페라이트가 파편상태로 적절히 자기장 차폐층에 구비되고, 이와 같은 초기 물성치를 차폐유닛을 장착하는 완성품의 제조단계, 더 나아가 완성품의 사용단계에서도 지속적으로 유지시킬 수 있음에 따라서 통상의 비파편화된 자성체를 구비하는 차폐유닛에서 발생하는 의도하지 않은 파편화로 인한 물성저하 및 이로 인한 데이터 신호/무선전력 신호의 송수신 성능 저하 우려를 제거할 수 있다.
한편, 상기 산화마그네슘을 포함하는 페라이트 파편(111)의 형상은 비정형일 수 있다. 다만, 파편 간 이격된 틈은 자기를 누설시켜 물성의 저하를 초래함에 따라서 파편들간에는 이격된 틈이 없도록 파편화되는 것이 물성적으로 유리한데, 이 경우 차폐유닛이 휘어지거나 구부러짐에 따라 발생할 수 있는 의도하지 않은 페라이트 파편의 추가적인 파손, 조각, 부서짐이 발생할 수 있고, 이 경우 물성의 변동이나 저하가 생김에 따라서 이를 방지하기 위하여 바람직하게는 일부 파편의 적어도 한 변은 직선이 아닌 만곡형상을 갖도록 파쇄될 수 있다(도 2 참조). 적어도 일변이 만곡형상을 가지는 파편이 포함될 경우 차폐유닛이 휘게될 때 인접한 파편과 부딪침이나 마찰이 감소할 수 있어 파편의 추가적 부서점을 방지할 수 있는 이점이 있다.
또한, 보다 바람직하게 적어도 한 변이 만곡형상을 갖는 파편의 개수는 자기장 차폐층내 전체 파편개수 중 45% 이상일 수 있으며, 보다 바람직하게는 60 %이상일 수 있다. 만일 적어도 한 변이 만곡형상을 갖는 파편의 개수가 전체 파편개수의 45% 미만일 경우 가요성 향상이 미미할 수 있고, 외부충격으로 초도에 구비시킨 파편보다 미세화된 파편이 증가할 수 있어 차폐유닛의 투자율 감소 등 물성저하를 초래할 수 있다.
또한, 상기 산화마그네슘을 포함하는 페라이트 파편들(111)의 단일파편 평균입경은 100 ~ 2000 ㎛일 수 있다. 만일 평균입경이 2000㎛를 초과하는 경우 추가적인 파편의 파손, 조각의 발생이 증가하여 자기장 차폐유닛의 초기물성 설계치의 유지가 어려울 수 있다. 또한, 만일 파편의 평균입경이 100㎛ 미만인 경우 파쇄 전 페라이트의 투자율 등 자기적 물성치가 현저히 높은 것을 선택해야 하나 투자율이 높은 페라이트를 제조하는 것은 제조상 한계가 있음에 따라서 목적하는 수준으로 자기장 차폐유닛의 초기물성을 설계하기 어려운 문제가 있다. 한편, 파편의 평균입경이란 레이저 회절식 입도분포계에 의해 측정된 체적 평균 지름 기준으로 측정된 결과이다.
또한, 페라이트 파편의 추가적인 파손, 조각을 더욱 방지하기 위하여 바람직하게는 상기 산화마그네슘을 포함하는 페라이트 파편들(111)은 하기 수학식 2에 따른 파편의 일면의 이형도가 8.0 이하인 파편을 30% 이상 포함할 수 있다.
[수학식 2]
Figure PCTKR2016011013-appb-I000003
상기 수학식 2에서 파편의 외접원 직경이란 파편의 어느 일면에 존재하는 어느 두 점 사이의 거리 중 최장거리를 의미(도 3의 R1, 도 4의 R2)하며, 최장거리에 있는 파편의 두 점을 지나가는 원이 파편의 외접원에 해당된다. 또한, 파편의 내접원의 직경은 파편의 어느 일면에 존재하는 적어도 두 변과 접하는 내접원 중 직경이 가장 큰 내접원의 직경을 의미(도 3의 r1, 도 4의 r2)한다. 파편의 일면의 이형도가 크다는 것은 파편의 일면 형상이 길다랗거나(도 3 참조) 뾰족한 부분(도 4 참조)을 포함할 가능성이 높다는 것을 의미하고, 이러한 형상일수록 추가적인 파편의 파손, 조각이 발생할 수 있음을 의미한다.
이에 따라 자기장 차폐층(110)에 포함되는 산화마그네슘을 포함하는 페라이트 파편들(111) 중 이형도가 큰 파편의 개수가 일정비율 이하로 포함됨이 바람직함에 따라서 자기장 차폐층(110)내 전체 파편들 중 상기 수학식 2에 따른 파편의 일면 이형도가 8.0이하인 파편이 30% 이상 포함될 수 있고, 보다 바람직하게는 이를 만족하는 파편이 45% 이상, 보다 더 바람직하게는 60% 이상 포함될 수 있다. 만일 이형도가 8.0을 초과하는 파편이 30% 미만인 경우 추가적인 페라이트 파편의 미세 조각화로 인해 투자율 등 물성의 현저한 저하를 유발할 수 있는 문제가 있고, 목적한 초기 물성 설계치를 지속시킬 수 없을 수 있다.
한편, 본 발명에 따른 자기장 차폐층(110)은 자성체로 산화마그네슘을 포함하는 페라이트를 포함하는데, 산화마그네슘을 포함하는 페라이트는 복소투자율의 실수부를 증가시키는 동시에 허수부가 유지 또는 허수부의 증가를 최소화시키는 역할을 담당한다. 또한, 자기장차폐층이 전자파차폐 특성 및 방열특성을 동시에 발현하도록 하며, 기계적 강도도 우수하고, 송수신부 안테나 간의 자기장 얼라인을 위해 송신부에 구비될 수 있는 영구자석에도 쉽게 자화되지 않는 이점이 있다. 또한, 일반적으로 고온소성에 의해 제조되는 페라이트에 비하여 낮은 온도에서 소성(저온소성)시켜 제조해도 페라이트의 미세구조가 치밀하고 균일하여 매우 우수한 투자율을 달성할 수 있다. 나아가, 고온소성되는 페라이의 제조시에 문제되는 페라이트 시트의 굴곡화 문제가 발생되지 않고, 소성 후에도 형상변화가 거의 없어 제품 적용 및 응용이 고온소성되는 페라이트보다 유리한 이점이 있다.
더불어, 본 발명의 일 실시예에 포함되는 산화마그네슘을 포함하는 페라이트는 마그네틱 보안전송에 사용하는 동작주파수에서 우수한 자기적 특성을 발현함에 따라서 마그네틱 보안전송을 위한 신호의 송수신 효율/거리를 현저히 향상시킬 수 있다. 또한, 근거리통신에 통상적으로 많이 사용되는 페라이트에 대비했을 때 근거리통신(NFC)에 사용하는 동작주파수에서도 데이터 신호의 송수신 효율/거리를 유지 또는 그 이상으로 향상시킬 수 있다. 나아가, 무선전력 전송(WPT)에 사용되는 주파수대역에서도 우수한 무선전력 신호의 송신효율/거리를 확보함에 따라서 마그네틱 보안전송뿐만 아니라 근거리통신 및/또는 무선전력 전송과 같은 이종의 기능을 본 발명의 일 실시예에 포함하는 페라이트를 통해 모두 우수하게 발현시킬 수 있고, 모든 기능의 발현을 위하여 이종의 자성체와 복합화될 필요가 없어서 슬림화된 차폐유닛, 모듈 및 휴대용 기기를 구현시키는데 매우 적합할 수 있다.
상기 산화마그네슘을 포함하는 페라이트는 파편화된 상태로 후술하는 자기장 차폐유닛의 투자율 물성을 발현할 수 있는 경우 조성, 결정종류, 소결입자의 미세구조에 제한은 없다. 다만, 바람직하게는 산화마그네슘을 포함하는 페라이트의 결정구조는 스피넬형일 수 있다. 또한, 상기 산화마그네슘을 포함하는 페라이트는 바람직하게는 산화마그네슘을 3 ~ 12몰% 포함할 수 있다. 만일 산화마그네슘의 함량이 3몰% 미만일 경우 복소투자율의 실수부의 증가가 미미하여 마그네틱보안 전송 효율을 향상시킬 수 없는 등 목적하는 물성을 모두 만족시키기 어려울 수 있다. 또한, 만일 페라이트내 산화마그네슘 함량이 12몰%를 초과하는 경우 포화자성밀도가 낮아지고, 복소투자율의 실수부 증가보다 허수부가 더 큰 비율로 증가할 수 있으며, 온도계수도 나빠지는 등 목적하는 물성을 모두 만족시키기 어려울 수 있다.
또한, 상기 페라이트는 삼산화철을 46 ~ 52몰%로 포함할 수 있다. 만일 삼산화철이 52몰%를 초과하여 포함될 경우 산화마그네슘을 비롯한 후술하는 산화구리, 산화아연 및 산화니켈의 함량이 줄어들어 각 성분을 통한 목적하는 물성을 발현하기 어려울 수 있다. 또한, 만일 삼산화철이 46몰% 미만으로 포함될 경우 목적하는 수준의 자기적 물성을 발현하지 못할 수 있다.
또한, 본 발명의 일실시예에 구비되는 페라이트는 산화구리 8 ~ 14몰%를 더 포함한다. 상기 산화구리는 소결온도을 낮추고, 결정립을 성장시키는 역할을 담당하며, 만일 산화구리의 함량이 8몰% 미만인 경우 목적하는 근거리통신, 무선전력 전송 마그네틱보안 전송이 사용하는 주파수 대역 중 적어도 하나 이상의 주파수 대역에서 복소투자율의 실수부가 감소할 수 있고, 만일 함량이 14몰%를 초과하는 경우 소결시 입자의 성장이 정상적이지 못해 복소투자율의 허수부가 현저히 증가될 수 있다.
또한, 상기 페라이트는 산화아연(ZnO) 25 ~ 32몰% 및 산화니켈(NiO) 1 ~ 10몰%를 더 포함할 수 있다. 만일 산화니켈의 함량이 1몰% 미만일 경우 100㎑ 주파수에서의 복소투자율 실수부의 저하를 가져올 수 있고, 특히 복소투자율의 공명 주파수가 저주파측으로 시프트하여 근거리통신의 주파수에서 복소투자율의 실수부가 감소하고, 허수부가 현저히 증가됨에 따라서 근거리통신효율이 현저히 저하될 수 있어서 단독의 자기장 차폐유닛으로 마그네틱 보안전송 및 근거리통신 등 여러 기능을 동시에 향상시키기 어려울 수 있다. 또한, 산화니켈의 함량이 10몰%를 초과하는 경우 저주파대역 및 고주파대역에서 전체적으로 복소투자율의 실수부 저하가 현저해져 보안전송 및 근거리통신 등 여러 기능을 동시에 향상시키기 어려울 수 있고, 페라이트의 저항이 감소하여 와전류 발생 증가로 인한 자기손실, 발열이 증가될 수 있다. 또한, 산화아연의 함량이 25몰% 미만일 경우 목적하는 근거리통신, 무선전력 전송, 마그네틱 보안전송이 사용하는 주파수 대역 중 적어도 하나 이상의 주파수 대역에서 복소투자율의 실수부가 감소하여 모든 안테나의 특성을 향상시킬 수 없을 수 있고, 만일 32몰%를 초과하면 목적하는 근거리통신, 무선전력 전송, 마그네틱 보안전송이 사용하는 주파수 대역 중 적어도 하나 이상의 주파수 대역에서 복소투자율의 허수부가 현저히 증가하고, 와전류 발생으로 인한 자기손실, 발열이 발생할 수 있다.
한편, 상기 산화니켈 및 산화아연은 하기의 수학식 1에 따른 값이 3.6 이상일 수 있고, 보다 바람직하게는 12 이하일 수 있다.
[수학식 1]
Figure PCTKR2016011013-appb-I000004
만일 수학식 1에 따른 값이 3.6 미만인 경우 100㎑ 내지 200㎑의 주파수에서 복소투자율의 허수부가 낮도록 구현되나 실수부가 크게 저하되며, 목적하는 수준의 물성을 발현하기 어려울 수 있다.
본 발명의 일 실시예에 따른 페라이트는 삼산화철 47 ~ 51몰%, 산화니켈 3 ~ 8몰%, 산화아연 26 ~ 30몰%, 산화구리 9 ~ 12 몰% 및 산화마그네슘 6 ~ 11몰%를 포함할 수 있고, 이를 통해 목적하는 물성들을 모두 발현하기에 보다 유리할 수 있다. 한편, 산화마그네슘을 포함하는 페라이트의 조성과 조성비는 이에 제한되는 것은 아니며 목적하는 물성의 정도에 따라 변경하여 실시할 수 있다.
또한, 상기 자기장 차폐층(110)의 두께는 산화마그네슘을 포함하는 페라이트 파편들(111)의 유래가 되는 페라이트 시트의 두께일 수 있으며, 30 ~ 600㎛일 수 있다. 만일 평균두께가 30㎛ 미만일 경우 목적하는 수준으로 자기적 특성을 발현할 수 없을 수 있고, 600㎛를 초과하는 경우 차폐유닛의 박막화에 바람직하지 못하다.
또한, 상기 자기장 차폐층의 형상은 자기장 차폐유닛이 적용되는 적용처, 구체적으로 마그네틱 보안전송용 안테나, 무선전력 전송용 안테나 및/또는 근거리통신용 안테나의 형상에 모두 대응되도록 형상이 직사각형, 정사각형의 사각형 이외에 오각형 등의 다각형이나 원형, 타원형이나 부분적으로 곡선과 직선이 혼재된 형상일 수 있다. 이때 자기장 차폐유닛의 크기는 대응되는 모듈의 안테나 크기보다 약 1 ~ 2mm 더 넓은 폭으로 이루어지는 것이 바람직하다.
한편, 도 1에 도시된 바와 같이 자기장 차폐층(110)의 상부에는 기재필름(140a) 및 상기 기재필름(140a) 일면에 형성된 제2접착층(140b)을 구비하는 보호부재(140)가 배치되고, 상기 자기장 차폐층(110)의 하부에는 이형필름(130a) 및 상기 이형필름(130a) 일면에 형성된 제1접착층(130b)을 구비하는 제1접착부재(130)를 더 포함할 수 있다.
먼저, 상기 보호부재(140)의 기재필름(140a)은 통상적으로 자기장 차폐유닛에 구비되는 보호필름일 수 있고, 안테나를 구비하는 기판에 차폐시트를 부착시키는 공정에서 경화를 위해 가해지는 열/압력 등을 견딜 수 있을 만큼의 내열성 및 외부에서 가해지는 물리적, 화학적 자극에 대해 자기장 차폐층(110, 110')을 보호할 수 있을 정도의 기계적 강도, 내화학성이 담보되는 재질의 필름의 경우 제한 없이 사용될 수 있다. 이에 대한 비제한적인 예로써, 폴리에틸렌, 폴리프로필렌, 폴리이미드, 가교 폴리프로필렌, 나일론, 폴리우레탄계 수지, 아세테이트, 폴리벤즈이미다졸, 폴리이미드아마이드, 폴리에테르이미드, 폴리페닐렌설파이드(PPS). 폴리에틸렌테레프탈레이트(PET), 폴리트리메틸렌테레프탈레이트(PTT) 및 폴리부틸렌테레프탈레이트(PBT), 폴리비닐리덴플루오라이드(PVDF), 폴리테트라플루오로에틸렌(PTFE) 및 폴리클로로트리플루오로에틸렌(PCTFE), 폴리에틸렌테트라플루오로에틸렌(ETFE) 등이 있으며, 이들을 단독 또는 병용할 수 있다.
또한, 상기 기재필름(140a)은 1 ~ 100㎛, 바람직하게는 10 ~ 30 ㎛의 두께를 가지는 것을 사용할 수 있으나 이에 제한되는 것은 아니다.
또한, 보호부재(140)는 상기 기재필름(140a)의 일면에 제1 접착층(140b)을 구비할 수 있는데, 상기 제2 접착층(140b)을 통해 보호부재(140)가 자기장 차폐층(110)에 부착될 수 있다. 상기 제2 접착층(140b)은 통상의 접착층인 경우 제한 없이 사용될 수 있고, 단층으로 접착층 형성조성물을 통해 형성되거나 지지필름의 양면에 접착층 형성조성물이 형성된 양면형 테이프 형식의 접착층일 수도 있다. 상기 제2 접착층(140b)의 두께는 3 ~ 50㎛일 수 있으나 이에 제한되는 것은 아니며 목적에 따라 변경하여 실시될 수 있다.
다음으로 상기 제1접착부재(130)는 자기장 차폐유닛(100, 100')을 안테나 또는 안테나가 구비된 기판 등에 부착시키기 위한 역할을 수행한다. 도 1에 도시된 바와 같이, 상기 제1접착부재(130)는 자기장 차폐유닛(100, 100')을 피부착면에 부착시키는 제1 접착층(130b)을 포함할 수 있고, 상기 제1 접착층(130b)을 보호하기 위한 이형필름(130a)을 더 구비할 수 있다. 상기 이형필름(130a)은 제1 접착층(130b)에서 쉽게 제거될 수 있는 통상의 공지된 이형필름의 경우 제한 없이 사용할 수 있으며, 본 발명에서는 이에 대해 특별히 한정하지 않는다.
상기 제1 접착층(130b)은 자기장 차폐층(110, 110')의 하부에 접착층 형성 조성물이 도포되어 형성되거나, 이형필름(130a)상에 접착조성물이 도포되어 형성된 제1 접착층(130b)이 자기장 차폐층(110, 110')에 부착되어 구비될 수 있다. 또한 상기 제1 접착층(130b)은 기계적강도의 보강을 위하여 지지필름의 양면에 접착층 형성조성물이 코팅된 양면형 접착층일 수도 있다. 상기 제1접착층(130b)의 두께는 3 ~ 50㎛일 수 있으나 이에 제한되는 것은 아니며 목적에 따라 변경하여 실시될 수 있다.
한편, 본 발명에 따른 자기장 차폐유닛(100, 100')은 산화마그네슘을 포함하는 페라이트가 파편상태로 처음부터 구비되어 자기장 차폐층을 형성함에도 불구하고 마그네틱 보안전송(MST)용 안테나의 특성을 현저히 향상시키고, 안테나를 향하여 자기장을 집속시키기 위하여 산화마그네슘을 포함하는 벌크상태의 페라이트는 100㎑의 주파수에서 복소투자율의 실수부(μ')가 650 이상이고, 바람직하게는 실수부(μ')가 830 이상일 수 있고, 보다 더 바람직하게는 실수부가 1400 이하일 수 있다. 또한, 바람직하게는 상기 주파수에서 복소투자율의 허수부 μ"는 50.0 이하일 수 있다.
만일 상기 100㎑ 주파수에서 복소투자율의 실수부가 650미만일 경우 목적하는 수준의 마그네틱 보안전송 효율을 달성할 수 없고, 송수신 거리도 현저히 감소할 수 있으며, 페라이트 파편의 추가 미세 조각화가 더 발생할 경우 마그네틱 보안전송에 요구되는 수준의 물성치를 만족시키지 못해 제품이상, 불량을 초래하는 문제점이 있을 수 있다. 또한, 상기 마그네틱 보안전송뿐만 아니라 무선전력 전송의 용도를 동시에 발현시키고자 할 때에도 목적하는 수준의 무선전력 전송 성능을 발현시키지 못할 수 있다. 또한, 복소투자율의 실수부가 1400을 초과하는 경우 허수부의 급격한 증가로 목적하는 물성을 달성하지 못할 수 있다. 한편, 해당 주파수에서 복소투자율 허수부가 50을 초과할 경우 복소투자율의 실수부가 크더라도 목적하는 수준으로 마그네틱 보안 데이터 신호 및 무선전력전송 신호의 전송 효율/거리를 달성할 수 없을 수 있다.
또한, 본 발명의 일 실시예에 따른 자기장 차페유닛에 구비되는 산화마그네슘을 포함하는 벌크상태의 페라이트는 마그네틱 보안전송(MST)용 안테나의 특성을 더욱 현저히 향상시키 위하여 하기 수학식3에 따른 품질지수 값이 100㎑의 주파수에서 29.0 이상을 만족할 수 있다.
[수학식 3]
품질지수 = 소정의 주파수에서 복소투자율의 실수부(μ') ÷소정의 주파수에서 복소투자율의 허수부(μ")
상기 수학식 3에 따른 품질지수의 값이 증가한다는 것은 복소투자율의 실수부가 증가하고 허수부에는 변화가 없거나 복소투자율의 실수부는 일정한데 허수부가 감소하거나 또는 복소투자율의 실수부 증가와 허수부 감소가 동시에 일어나는 것을 의미하고, 어느 경우에나 향상된 신호 송수신효율, 송수신거리를 증대시킬 수 있다. 만일 품질지수 값이 100㎑의 주파수에서 29.0 미만일 경우 목적하는 수준으로 마그네틱 보안전송 효율을 발현시킬 수 없을 수 있고, 무선전력 전송 성능 향상의 동시발현도 어려울 수 있다.
또한, 상기 산화마그네슘을 포함하는 페라이트는 200㎑의 주파수에서 복소투자율의 실수부(μ')가 650 이상이며, 13.56㎒ 의 주파수에서 복소투자율의 실수부(μ')가 140 ~ 236일 수 있다. 또한, 보다 바람직하게는 200㎑의 주파수에서 복소투자율의 허수부(μ")가 50 이하이며, 13.56㎒ 의 주파수에서 복소투자율의 허수부(μ')가 400 이하일 수 있고, 이를 통해 마그네틱 보안 데이터 신호뿐만 아니라 무선전력 신호, 근거리 데이터 신호를 보다 우수한 효율 및 연장된 거리로 전송시킬 수 있어서 소정의 주파수에서 다른 투자율 경향을 보이는 자기장 차폐유닛과의 복합화 없이도 본 발명에 따른 자기장 차폐유닛 단독으로써 목적하는 여러 기능을 동시에 우수한 성능으로 발현시킬 수 있다.
한편, 상기 무선전력 전송은 Qi 방식에 적용될 수도 있고, 영구자석에서 발생되는 자기력선의 일부가 어트랙터(미도시)를 통해 유도되는 PMA 방식의 무선전력 전송에 적용될 수도 있다. 더불어, 수십 ㎑ ~ 6.78MHz의 주파수에서 무선전력 전송이 이루어지는 자기공진방식에도 적용될 수 있다.
상술한 본 발명의 일실시예에 따른 자기장 차폐유닛은 후술하는 제조방법으로 제조될 수 있으나 이에 제한되는 것은 아니다.
먼저, 산화마그네슘을 포함하는 페라이트 시트를 준비하는 단계(a)를 수행할 수 있다. 상기 산화마그네슘을 포함하는 페라이트 시트는 통상의 공지된 페라이트 시트를 제조하는 방법을 통해 제조될 수 있음에 따라 본발명은 이에 대해 특별한 한정하지 않는다. 그 일예로써 제조방법을 설명하면, 산화니켈, 산화아연, 산화구리, 산화마그네슘 및 이산화삼철을 소정의 조성비가 되도록 혼합하여 원료혼합물을 수득한다. 이때 상기 혼합물은 건식 혼합이나 습식혼합을 통해 혼합될 수 있고, 혼합되는 원료의 입경은 0.05 ~ 5㎛인 것이 바람직하다. 상기 원료혼합물에 포함되는 산화마그네슘, 산화니켈, 산화아연 등의 성분들은 그 자체 또는 상기 성분들을 함유하는 복합산화물 형태일 수도 있다.
다음으로 원료 혼합물의 가소를 실시하여, 가소 재료를 수득할 수 있다. 가소는 원료의 열분해, 성분의 균질화, 페라이트의 생성, 소결에 의한 초미분의 소실과 적당한 정도의 입자 사이즈로의 입자 성장을 촉진시켜 원료 혼합물을 후공정에 적합한 형태로 변환시키기 위해 실시된다. 이러한 가소는 바람직하게는 800 내지 1100의 온도에서, 1 ~ 3시간 정도 실시할 수 있다. 가소는 대기 분위기 또는 대기보다 산소분압이 높은 분위기에서 실시해도 좋다.
다음으로 수득된 가소 재료의 분쇄를 실시하여, 분쇄 재료를 수득한다. 분쇄는 가소 재료의 응집을 무너뜨려 적당한 정도의 소결성을 갖는 분체로 하기 위해 실시된다. 가소 재료가 큰 덩어리를 형성하고 있을 때에는 조분쇄를 실시한 후 볼밀이나 아트라이터 등을 사용하여 습식 분쇄를 실시할 수 있다. 습식 분쇄는 분쇄 재료의 평균입자 직경이, 바람직하게는 0.5 내지 2㎛ 정도가 될 때까지 실시할 수 있다.
이후 수득된 분쇄 재료를 통해 산화마그네슘을 포함하는 페라이트 시트를 제조할 수 있다. 당해 페라이트 시트를 제조하는 방법은 공지된 방법을 사용할 수 있어 본 발명에서는 이를 특별히 한정하지 않는다. 이에 대한 비제한적이 예로써, 수득된 분쇄 재료를 용매, 바인더, 분산제, 가소제 등의 첨가제와 함께 슬러리화하여 페이스트를 제작한다. 그리고 이 페이스트를 사용하여 30 내지 600㎛의 두께를 갖는 페라이트 시트를 형성할 수 있다. 상기 시트를 소정의 형상으로 가공한 후 탈바인더 공정, 소성 공정을 거쳐 페라이트 시트가 제조될 수 있다. 상기 소성은 바람직하게는 900 ~ 1300의 온도에서, 1 ~ 5시간 정도 실시할 수 있고, 이때의 분위기는 대기 분위기 또는 대기보다 산소 분압이 높은 분위기에서 실시해도 좋다. 제조된 페라이트 시트를 소성한 후 소결체의 밀도는 일예로 5.0 ~ 5.3g/㎝3 일 수 있다.
한편, 산화마그네슘을 포함하는 페라이트 시트를 제조하는 다른 실시예로써, 페라이트 분말과 바인더수지를 혼합한 후, 분말 압축 성형법, 사출 성형법, 캘린더법, 압출법 등의 공지의 방법에 의해 제조할 수도 있다.
다음으로, 제조된 산화마그네슘을 포함하는 페라이트 시트를 파쇄하여 페라이트 파편들로 형성된 자기장 차폐층을 형성시키는 단계(b)를 수행할 수 있다.
먼저, 상기 (b) 단계에 대한 일실시예는 페라이트 시트의 일면에 제2 접착층(140b)이 형성된 보호부재(140)를 부착시키고, 타면에 제1 접착층(130b)이 형성된 제1접착부재(130)를 부착시킨 적층체를 파쇄장치를 통과시켜 상기 페라이트 시트를 비정형의 파편들로 조각낼 수 있다. 이후 적층체에 압력을 가하여 목적하는 파편의 입경, 이형도를 조절하여 가요성을 향상시킴을 통해 추가적인 파편의 손상, 파쇄, 미세 조각화를 방지할 수 있다. 파편입경 및 이형도를 조절하는 방법은 도 5와 같은 파쇄장치의 경우 파쇄장치에서 요철 간 간격, 요철의 형상 등을 적절히 조절하여 제조할 수 있다.
구체적으로 도 5에 도시된 것과 같이, 요철(11a, 12a)이 있는 복수개의 제1 롤러(11, 12)와 상기 제1 롤러(11, 12)와 각각 대응되는 제2 롤러(21, 22)를 구비하는 파쇄장치에 적층체(100a)를 통과시켜 적층체(100a)를 파쇄시킨 뒤 제3 롤러(13) 및 상기 제3 롤러(13)에 대응되는 제4 롤러(23)를 통해 적층체(100b)를 더 파쇄시켜 자기장 차폐유닛(100)를 제조할 수 있다.
또한, 도 6에 도시된 것과 같이 일표면에 복수개의 금속볼(31)이 장착된 지지판(30) 및 상기 지지판(30)의 상부에 위치하고, 피파쇄물을 이동시키기 위한 롤러(41, 42)를 구비하는 파쇄장치에 페라이트 시트를 포함하는 적층체(100a)를 투입시켜 상기 금속볼(31)을 통해 압력을 가해 시트를 파쇄시킬 수 있다. 상기 볼(31)의 형상은 구형일 수 있으나 이에 제한되는 것은 아니며, 삼각형, 다각형, 타원 등일 수 있고, 단일의 제1 롤러에 구비되는 볼의 형상은 한가지 형상으로 구성되거나 여러 형상이 혼합되어 구성될 수도 있다.
한편, 도 7에 도시된 바와 같이 상술한 자기장 차폐층은 자기장 차폐유닛(100")에 복수개(110A, 110B, 110C)로 구비되고, 인접한 자기장 차폐층(110A/110B, 110B/110C) 사이에는 제2 접착부재(131, 132)가 개재될 수 있다.
자기장 차폐유닛이 적용되는 구체적 경우에 따라 단일의 자기장 차폐층만 구비시킬 경우 목적하는 수준 이상의 향상된 신호 송수신 효율 및 거리를 달성하기 어려울 수 있다. 즉, 자기장 차폐유닛 자체의 자기적 특성을 증가시키는 방법은 목적하는 주파수에서 투자율 등의 물성이 우수한 자성체를 사용하는 방법, 자기장 차폐층의 두께를 증가시키는 방법 등이 있으나, 자기장 차폐층의 두께를 증가시키기 위해 단층의 페라이트 시트 두께를 일정수준 이상으로 증가시킬 경우 소성 공정에서 시트의 표면부와 내부가 모두 균일하고 동일하게 소성되지 못해 소성입자 구조가 상이할 수 있어서 투자율의 향상이 미미할 수 있음에 따라서 단층의 자기장 차폐층의 두께 증가를 통한 투자율 증가는 한계가 있다. 이에 따라 자기장 차폐층 자체를 복수개로 구비시켜 차폐유닛에서 차폐층의 전체적 두께 증가를 통한 높은 투자율 증가효과를 달성할 수 있으며, 적층된 자기장 차폐층을 구비하는 자기장 차폐유닛은 마그네틱 보안 전송, 무선전력 전송, 데이터 송수신을 위한 안테나의 특성을 더욱 향상시킬 수 있다.
자기장 차폐유닛(100")내에 복수개로 자기장 차폐층(110A, 110B, 110C)을 구비할 경우 바람직하게는 2 ~ 12개의 자기장 차폐층을 구비할 수 있으나 이에 한정되는 것은 아니다.
한편, 상기 제2 접착부재(131, 132)는 자기장 차폐층(110A, 110B, 110C)이 복수개로 구비되는 경우 인접하는 자기장 차폐층(110A/110B, 110B/110C) 사이에 자기장 차폐층간을 접착시키고, 차폐유닛의 가요성 향상, 파편의 추가적 미세 조각화를 방지하기 위한 완충기능 및 수분의 침투로 인한 페라이트 파편의 산화를 방지시킬 수 있는 역할을 수행한다. 상기 제2접착부재(131, 132)은 상술한 제1접착부재와 동일할 수 있다. 즉, 지지기재의 양면에 접착조성물이 도포된 양면형 접착부재이거나 또는 차폐유닛의 박형화를 위해 상기 접착조성물이 지지기재 없이 일자기장 차폐층에 도포되고 그 상부에 다른 자기장 차폐층이 적층되어 형성될 수도 있다.
또한, 다른 실시예는 상기 제2 접착부재(131, 132)는 방열성의 향상을 위해 방열접착층을 포함할 수 있는데, 상기 방열접착층은 아크릴계, 우레탄계, 에폭시계 등의 접착성분에 니켈, 은, 탄소소재 등의 공지된 방열필러가 혼합된 것일 수 있으며, 구체적인 조성 및 함량은 공지된 조성 및 함량을 따를 수 있음에 따라 본 발명에서는 이를 특별히 한정하지 않는다.
또한, 상기 자기장 차폐층(110A, 110B, 110C)이 복수개로 구비되는 경우 각각의 자기장 차폐층에 포함되는 페라이트의 조성은 서로 동일하거나 상이할 수 있다. 또한, 조성이 동일하더라도 소성 조건 등의 상이함으로 인해 각각의 자기장 차폐층의 투자율이 서로 다를 수 있다. 또한, 각각의 자기장 차폐층의 두께도 목적에 따라 서로 동일하거나 상이하게 구성시킬 수 있다.
이상으로 상술한 본 발명의 일실시예에 따른 마그네틱 보안전송용 자기장 차폐유닛(100, 100', 100")은 소정의 주파수에서 자기적 특성이 상이한 다른 차폐유닛과 복합화되어 서로 다른 주파수 대역을 사용하는 안테나들의 특성을 향상시킬 수 있으나, 본 발명의 일실시예에 따른 자기장 차폐유닛만으로도 서로 다른 주파수 대역을 사용하는 안테나들 각각의 안테나 특성을 동시에 향상시킬 수 있음에 따라 자기장 차폐유닛의 박형화 측면에서 소정의 주파수에서 자기적 특성이 상이한 다른 차폐유닛과 복합화는 바람직하지 않을 수 있다.
한편, 상술한 본 발명에 따른 여러 실시예들의 마그네틱 보안전송용 자기장 차폐유닛(100, 100', 100")은 적어도 어느 일면에 전자파 차폐 및/또는 방열을 수행하는 기능층(미도시)을 적어도 하나 이상 구비할 수 있고, 이를 통해 기능층을 구비하는 자기장 차폐유닛이 전원노이즈와 같은 전자파로 인하여 조합되는 안테나의 주파수 변동폭이 현저히 증가하는 것을 방지하여 안테나의 불량률을 감소시키며, 적용되는 휴대기기 등의 발열시 열분산이 용이하여 발열로 인한 부품의 내구성 저하, 기능저하, 사용자에게 열전달로 인한 불쾌감을 방지할 수 있다.
또한, 자기장 차폐유닛(100, 100', 100")의 상부 및/또는 하부에 구비된 기능층(미도시)이 방열기능을 구비한다면 자기장 차폐유닛의 수평방향으로 열전도도를 향상시킬 수 있다.
구체적으로 자기장 차폐유닛(100)의 보호부재(130)의 상부 및/또는 접착부재(140)의 하부에 전자파 차폐층, 방열층(미도시) 및/또는 이들이 적층된 복합층(미도시)이나 이들이 하나의 층으로 기능이 복합된 복합층과 같은 기능층이 구비될 수 있다. 일예로, 열전도도 및 도전율이 우수한 구리, 알루미늄 등의 금속 포일이 접착제나 양면테이프를 통해 보호부재(130, 1300)의 상부에 부착될 수 있다. 또는 Cu, Ni, Ag, Al, Au, Sn, Zn, Mn, Mg, Cr, Tw, Ti 또는 이들 금속의 조합이 보호부재(130, 1300)상에 스퍼터링, 진공증착, 화학기상증착 등의 공지된 방법으로 증착되어 금속박막을 형성할 수도 있다. 상기 기능층이 접착제를 통해 구비되는 경우 상기 접착제는 공지의 접착제일 수 있고, 이에 대한 비제한적인 예로써 아크릴계, 우레탄계, 에폭시계 등의 접착제를 사용할 수 있다. 한편 상기 접착제에도 방열성능을 부여시켜 사용할 수 있고, 이를 위해 접착제에 니켈, 은, 탄소소재 등의 공지된 필러를 혼합시킬 수 있으며, 상기 필러의 함량은 공지된 방열접착제내 필러의 함량일 수 있음에 따라 본 발명에서는 이를 특별히 한정하지 않는다.
상기 기능층의 두께는 5 ~ 100㎛일 수 있고, 보다 바람직하게는 자기장 차폐유닛의 박막화를 위해 10 ~ 20㎛의 두께로 형성시킴이 바람직하다.
또한, 본 발명의 일 실시예에 따른 마그네틱 보안전송용 자기장 차폐유닛(1000)은 도 8에 도시된 바와 같이 무선전력 전송용 안테나(1540), 마그네틱 보안전송용 안테나(1530) 및 근거리 통신용 안테나(1520)가 구비되는 안테나유닛의 일면에 배치되어 마그네틱 보안전송 모듈을 구현할 수 있다.
여기서, 상기 마그네틱 보안전송 모듈은 전자기기 측으로 전력/신호를 송출하는 송신모듈일 수도 있고, 송신모듈로부터 전력/신호를 수신하는 수신모듈일 수도 있다. 또한, 상기 각각의 안테나(1520, 1530, 1540)는 코일이 일정한 내경을 가지도록 감겨진 안테나 코일일 수 있고 또는 기판상에 안테나 패턴이 인쇄된 안테나 패턴일 수 있으며, 구체적인 안테나의 형상, 구조, 크기, 재질 등은 본 발명에서 특별히 한정하지 않는다. 또한, 상기 안테나들의 배치의 경우 도 8를 참조하면, 상기 안테나 유닛(1500)은 회로기판(1510)의 최외곽에 구비되는 근거리 통신용 안테나(1520) 및 이로부터 내측으로 순차적으로 각기 이격되어 구비된 마그네틱 보안전송용 안테나(1530) 및 무선전력 전송용 안테나(1540)를 구비할 수 있다.
한편, 본 발명의 일 실시예에 따른 마그네틱 보안전송 모듈은 도 8와는 다르게 무선전력 전송용 안테나(1540)를 구비하지 않고, 근거리통신용 안테나(1520) 및 마그네틱 보안전송용 안테나(1530)를 구비하여 마그네틱 보안전송 모듈로 구현거나 무선전력 전송용 안테나(1540) 및 근거리통신용 안테나(1520)를 구비하지 않고 마그네틱보안 전송용 모듈로 구현될 수도 있다.
하기의 실시예를 통하여 본 발명을 더욱 구체적으로 설명하기로 하지만, 하기 실시예가 본 발명의 범위를 제한하는 것은 아니며, 이는 본 발명의 이해를 돕기 위한 것으로 해석되어야 할 것이다.
먼저, 페라이트 자성체의 조성에 따른 물성을 평가하기 위하여 하기와 같은 준비예를 실시하였다.
<준비예 1>
평균입경이 0.75㎛인 페라이트 분말(Fe2O3 48.5몰%, NiO 4.1몰%, ZnO 28.8몰%, CuO 10.3몰%, MgO 8.2몰%) 100 중량부에 대해 폴리비닐알코올 10중량부, 용매로써 순수를 50 중량부 볼밀에서 혼합, 용해, 분산시켰다. 이후 혼합물을 직경 0.5㎜, 높이 0.5㎜인 원통 구멍들이 형성된 금형에 투입 및 가압성형하여 과립물을 제조하였다. 제조된 과립물을 금형에 넣고 프레스 하여 최종 성형밀도가 3.2 g/㎝3 외경 18㎜, 내경 13㎜, 두께 3.7㎜인 도넛모양으로 성형한 후 500 에서 10 시간 탈지시키고, 940 에서 2.2 시간 동안 소성 및 냉각하여 벌크 페라이트를 제조하였다.
<준비예2 ~ 14>
준비예1과 동일하게 실시하여 제조하되, 페라이트 분말의 조성/조성비를 하기 표 1과 같이 변경하여 하기 표 1과 같은 벌크 페라이트를 제조하였다.
<비교준비예 1 ~ 2>
준비예1과 동일하게 실시하여 제조하되, 페라이트 분말의 조성/조성비를 하기 표 2와 같이 변경하여 하기 표 2와 같은 벌크페라이트를 제조하였다.
<실험예>
준비예 및 비교준비예에 따라 제조된 시료에 대해 100㎑, 200㎑ 및 13.56㎒에서 투자율을 측정하여 복소투자율의 실수부와 허수부를 표 1 내지 표 2에 나타내었다.
구체적으로 투자율은 임피던스 분석장치(4294A Precision Impedance Analyzer 및 42942A용 Terminal adapter kit)를 통해 측정하였고, 시험픽스쳐는 16454A 자성물질 시험픽스쳐(Magnetic Material Test Fixture)로 하여 Osc Level 500mV의 조건에서 측정하였다.
Figure PCTKR2016011013-appb-T000001
Figure PCTKR2016011013-appb-T000002
상기 표 1 및 표 2를 통해 확인할 수 있듯이,
산화마그네슘을 포함하지 않는 페라이트를 사용한 비교준비예 2의 경우 준비예들보다 복소투자율의 실수부가 낮고, 허수부가 현저히 높은 것을 확인할 수 있다.
또한, 비교준비예 1의 경우 산화니켈, 산화아연 및 산화구리의 조성비에 따라서 100㎑의 주파수에서 복소투자율의 실수부가 650을 만족하지 못하는 것을 확인할 수 있다.
또한, 산화아연 및 산화니켈의 함량비율이 3.6 미만인 준비예 19의 경우 준비예 9에 대비하여 100㎑의 주파수에서 복소투자율의 실수부 차이가 현저한 것을 확인할 수 있다.
또한, 산화마그네슘의 바람직한 함량범위를 만족하는 준비예 1 내지 10, 12 및 13의 경우 준비예 11 및 준비예 13에 비하여 복소투자율의 실수부가 크고 및/또는 허수부가 적어서 물성적으로 우수할 것을 예상할 수 있다.
<실시예>
준비예1에서 사용된 것과 동일한 평균입경이 0.75㎛인 페라이트 분말(Fe2O3 48.5몰%, NiO 4.1몰%, ZnO 28.8몰%, CuO 10.3몰%, MgO 8.2몰%) 100 중량부에 대해 폴리비닐부티랄 수지 5중량부, 용매로써 톨루엔과 에탄올을 5:5로 혼합한 용제 50 중량부를 볼밀에서 혼합, 용해, 분산시켰다. 이후 페라이트 혼합물을 통상적인 테이프 캐스팅(Tape casting) 방법을 통해 시트형상으로 제조한 후 500 에서 10 시간 탈지시키고, 940 에서 2.2 시간 동안 소성 및 냉각하여 최종 두께가 80㎛인 페라이트 시트를 제조하였다.
이후 상기 페라이트시트 일면에 이형필름이 부착된 두께가 10㎛인 양면테이프(지지기재 PET, 케이원 코퍼레이션, VT-8210C)를 부착시키고, 타면에 두께가 7㎛이고, 일면에 점착층이 형성된 PET 보호부재(국제라텍, KJ-0714)를 부착시킨 후, 도 5와 같은 파쇄장치를 통과시켜 자기장 차폐유닛을 제조하였다.
이상에서 본 발명의 일 실시예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.

Claims (13)

  1. 차폐유닛의 가요성을 향상시키기 위하여 파쇄시킨, 산화마그네슘(MgO)을 포함하는 페라이트의 파편들로 형성된 자기장 차폐층;을 구비하고,
    상기 산화마그네슘을 포함하는 페라이트는 100㎑의 주파수에서 복소투자율의 실수부(μ')가 650 이상인 마그네틱 보안전송(MST)용 자기장 차폐유닛.
  2. 제1항에 있어서, 상기 자기장 차폐유닛은
    자기장 차폐층의 일면에 배치되는 보호부재 및 상기 자기장 차폐층의 타면에 배치되는 접착부재를 더 포함하는 마그네틱 보안전송용 자기장 차폐유닛.
  3. 제1항에 있어서,
    상기 산화마그네슘을 포함하는 페라이트는 200㎑의 주파수에서 복소투자율의 실수부(μ')가 650 이상이며, 13.56㎒ 의 주파수에서 복소투자율의 실수부(μ')가 140 ~ 236인 마그네틱 보안전송(MST)용 자기장 차폐유닛.
  4. 제1항에 있어서,
    적어도 한 변이 직선이 아닌 만곡형상을 갖는 페라이트 파편의 개수는 전체 페라이트 파편 개수대비 45% 이상인 마그네틱 보안전송용 자기장 차폐유닛.
  5. 제1항에 있어서,
    상기 산화마그네슘을 포함하는 페라이트는 100㎑의 주파수에서 복소투자율의 허수부(μ")가 50 이하인 마그네틱 보안전송용 자기장 차폐유닛.
  6. 제1항에 있어서,
    상기 산화마그네슘을 포함하는 페라이트는 200㎑의 주파수에서 복소투자율의 허수부(μ")가 50 이하이며, 13.56㎒ 의 주파수에서 복소투자율의 허수부(μ')가 400 이하인 마그네틱 보안전송용 자기장 차폐유닛.
  7. 제1항에 있어서,
    상기 페라이트는 산화마그네슘을 3 ~ 12몰%로 포함하고,
    산화구리 8 ~ 14몰%, 산화니켈 및 산화아연을 더 포함하며, 상기 산화니켈 및 산화아연은 하기의 수학식 1에 따른 값이 3.6 이상인 마그네틱 보안전송용 자기장 차폐유닛.
    [수학식 1]
    Figure PCTKR2016011013-appb-I000005
  8. 제1항에 있어서,
    상기 페라이트는 산화마그네슘 3 ~ 12몰% 및 산화철 46 ~ 52 중량%를 포함하고,
    산화구리 8 ~ 14몰%, 산화니켈 1 ~ 10몰%, 산화아연 25 ~ 32몰%를 더 포함하는 마그네틱 보안전송용 자기장 차폐유닛.
  9. 제1항에 있어서,
    상기 페라이트 파편들은 하기 수학식 2에 따른 이형도가 8.0 이하인 파편을 30% 이상 포함하는 마그네틱 보안전송용 자기장 차폐유닛.
    [수학식 2]
    Figure PCTKR2016011013-appb-I000006
  10. 제1항에 있어서,
    상기 산화마그네슘을 포함하는 페라이트는 100㎑의 주파수에서 복소투자율의 실수부(μ')가 1000 이상인 마그네틱 보안전송용 자기장 차폐유닛.
  11. 마그네틱 보안전송용 안테나를 구비하는 안테나 유닛; 및
    상기 안테나 유닛의 일면에 배치되어 상기 안테나의 특성을 향상시키고, 상기 안테나를 향하도록 자기장을 집속시키는 제1항에 따른 마그네틱 보안전송용 자기장 차폐유닛;를 포함하는 마그네틱 보안전송용 모듈.
  12. 제11항에 있어서,
    상기 안테나 유닛은 무선전력 전송(WPT)용 안테나 및 근거리통신(NFC)용 안테나 중 적어도 하나의 안테나를 더 포함하는 마그네틱 보안전송용 모듈.
  13. 제12항에 따른 마그네틱 보안전송용 모듈을 수신용 모듈로 포함하는 휴대용 기기.
PCT/KR2016/011013 2015-09-30 2016-09-30 마그네틱 보안전송용 자기장 차폐유닛, 이를 포함하는 모듈 및 이를 포함하는 휴대용 기기 WO2017057972A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680058263.5A CN108141994B (zh) 2015-09-30 2016-09-30 磁场屏蔽单元、包括其的模块及包括其的便携式设备
US15/764,564 US10930418B2 (en) 2015-09-30 2016-09-30 Magnetic shielding unit for magnetic security transmission, module comprising same, and portable device comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0138059 2015-09-30
KR20150138059 2015-09-30

Publications (1)

Publication Number Publication Date
WO2017057972A1 true WO2017057972A1 (ko) 2017-04-06

Family

ID=58423871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/011013 WO2017057972A1 (ko) 2015-09-30 2016-09-30 마그네틱 보안전송용 자기장 차폐유닛, 이를 포함하는 모듈 및 이를 포함하는 휴대용 기기

Country Status (4)

Country Link
US (1) US10930418B2 (ko)
KR (1) KR101890334B1 (ko)
CN (1) CN108141994B (ko)
WO (1) WO2017057972A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108666115A (zh) * 2018-05-08 2018-10-16 苏州世诺新材料科技有限公司 一种低损耗非晶、纳米晶磁片及其制备方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6841825B2 (ja) 2015-11-16 2021-03-10 アモテック・カンパニー・リミテッド 無線電力伝送用磁場遮蔽ユニット及びこれを含む無線電力伝送モジュール
WO2017090977A1 (ko) * 2015-11-23 2017-06-01 주식회사 아모센스 자기장 차폐유닛 및 이를 포함하는 다기능 복합모듈
FR3082370B1 (fr) * 2018-06-12 2020-05-15 Continental Automotive France Dispositif de communication en champ proche a haute frequence et de rechargement par induction d’un appareil
CN109586365B (zh) * 2018-11-20 2022-05-31 安克创新科技股份有限公司 无线充电装置
KR102094548B1 (ko) * 2019-04-05 2020-03-27 주식회사 디에스텔레콤 Nfc/wpc용 자성체 리본 롤러장치
US11328850B2 (en) 2019-07-02 2022-05-10 3M Innovative Properties Company Magnetic film including regular pattern of through-cracks
EP3822328A1 (en) * 2019-11-12 2021-05-19 Nanoleq AG Elongated elastic seam tape with electrical conductor
WO2021178801A1 (en) 2020-03-05 2021-09-10 Yank Technologies, Inc. High intrinsic quality receiver construction
US11754650B2 (en) * 2020-04-10 2023-09-12 Howmedica Osteonics Corp. MRI shield

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10229007A (ja) * 1997-02-13 1998-08-25 Kureha Chem Ind Co Ltd 軟磁性複合材料
JP2002104873A (ja) * 2000-09-27 2002-04-10 Kyocera Corp フェライト材料およびこれを用いたフェライト基板並びに電磁波吸収部材
JP2007295557A (ja) * 2006-03-31 2007-11-08 Nitta Ind Corp 磁気シールドシート、非接触icカード通信改善方法および非接触icカード収容容器
KR100898587B1 (ko) * 2008-08-25 2009-05-20 에스씨씨(주) 전자파 차폐용 부직포의 조성물
KR20100028365A (ko) * 2008-09-04 2010-03-12 쓰리엠 이노베이티브 프로퍼티즈 캄파니 전자기파간섭 억제용 복합시트

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812904A (ja) * 1994-07-04 1996-01-16 Tatsuta Electric Wire & Cable Co Ltd 電磁波吸収ペーストおよびそのペーストで処理された電子部品
JP3181560B2 (ja) * 1998-10-23 2001-07-03 ティーディーケイ株式会社 フェライト酸化物磁性材料
JP4540768B2 (ja) * 1999-09-20 2010-09-08 Tdk株式会社 磁性フェライト焼結体
CN1196651C (zh) * 2000-08-21 2005-04-13 Tdk株式会社 铁氧体材料
TW527612B (en) * 2000-12-25 2003-04-11 Tdk Corp Low-temperature burnt ferrite material and ferrite parts using the same
US6822541B2 (en) * 2002-04-25 2004-11-23 Kyocera Corporation Electromagnetic wave absorber and high-frequency circuit package using the same
TWI221618B (en) * 2003-08-12 2004-10-01 Chilisin Electronics Corp Ni-Zn ferrite low temperature sintered leadfree flux composition
KR101187172B1 (ko) * 2007-03-07 2012-09-28 도다 고교 가부시끼가이샤 페라이트 성형 시트, 소결 페라이트 기판 및 안테나 모듈
US7728695B2 (en) * 2007-04-19 2010-06-01 Tdk Corporation Multilayer filter having an inductor portion and a varistor portion stacked with an intermediate portion
JP2009027033A (ja) * 2007-07-20 2009-02-05 Tdk Corp 積層型複合電子部品
CN101354941B (zh) * 2008-05-16 2010-11-03 广东风华高新科技股份有限公司 一种含镁、镍、锌元素的软磁铁氧体材料及其制造方法
JP5398399B2 (ja) * 2008-08-27 2014-01-29 京セラ株式会社 ガラスセラミック基板およびコイル内蔵ガラスセラミック配線基板ならびにガラスセラミック基板の製造方法
CN101386530B (zh) * 2008-10-16 2012-05-30 广东肇庆微硕电子有限公司 一种镍锌软磁铁氧体材料及其制备方法
JP5685827B2 (ja) * 2010-03-29 2015-03-18 ソニー株式会社 磁性シート、アンテナモジュール及び電子機器
JP5070353B1 (ja) * 2011-04-08 2012-11-14 株式会社Maruwa フェライト複合シートとその製造方法及びそのようなフェライト複合シートに用いられる焼結フェライト小片
TWI414484B (zh) * 2011-12-09 2013-11-11 Ind Tech Res Inst 鐵氧磁鐵材料
EP2684689B1 (en) * 2012-07-12 2018-03-07 SKC Co., Ltd. Flexible ceramic laminate sheet and preparation method thereof
US9824802B2 (en) * 2012-10-31 2017-11-21 Toda Kogyo Corp. Ferrite sintered plate and ferrite sintered sheet
KR101434416B1 (ko) 2012-12-27 2014-08-26 전자부품연구원 무선 전력 전송 장치
WO2015064693A1 (ja) * 2013-10-31 2015-05-07 戸田工業株式会社 フェライト焼結体、フェライト焼結板及びフェライト焼結シート
WO2015178450A1 (ja) * 2014-05-22 2015-11-26 戸田工業株式会社 フェライト焼結板及びフェライト焼結シート
CN104647819B (zh) * 2014-12-31 2017-02-22 横店集团东磁股份有限公司 一种隔磁材料及其柔性处理方法
JP6841825B2 (ja) * 2015-11-16 2021-03-10 アモテック・カンパニー・リミテッド 無線電力伝送用磁場遮蔽ユニット及びこれを含む無線電力伝送モジュール

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10229007A (ja) * 1997-02-13 1998-08-25 Kureha Chem Ind Co Ltd 軟磁性複合材料
JP2002104873A (ja) * 2000-09-27 2002-04-10 Kyocera Corp フェライト材料およびこれを用いたフェライト基板並びに電磁波吸収部材
JP2007295557A (ja) * 2006-03-31 2007-11-08 Nitta Ind Corp 磁気シールドシート、非接触icカード通信改善方法および非接触icカード収容容器
KR100898587B1 (ko) * 2008-08-25 2009-05-20 에스씨씨(주) 전자파 차폐용 부직포의 조성물
KR20100028365A (ko) * 2008-09-04 2010-03-12 쓰리엠 이노베이티브 프로퍼티즈 캄파니 전자기파간섭 억제용 복합시트

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108666115A (zh) * 2018-05-08 2018-10-16 苏州世诺新材料科技有限公司 一种低损耗非晶、纳米晶磁片及其制备方法

Also Published As

Publication number Publication date
CN108141994B (zh) 2020-02-07
US20180315527A1 (en) 2018-11-01
US10930418B2 (en) 2021-02-23
KR101890334B1 (ko) 2018-08-21
KR20170038750A (ko) 2017-04-07
CN108141994A (zh) 2018-06-08

Similar Documents

Publication Publication Date Title
WO2017057972A1 (ko) 마그네틱 보안전송용 자기장 차폐유닛, 이를 포함하는 모듈 및 이를 포함하는 휴대용 기기
WO2017086688A1 (ko) 무선전력 전송용 자기장 차폐유닛 및 이를 포함하는 무선전력 전송모듈
WO2017090977A1 (ko) 자기장 차폐유닛 및 이를 포함하는 다기능 복합모듈
WO2017061773A1 (ko) 자성시트, 이를 포함하는 모듈 및 이를 포함하는 휴대용 기기
KR101359872B1 (ko) 페라이트 성형 시트, 소결 페라이트 기판 및 안테나 모듈
KR101939653B1 (ko) 자기장 차폐유닛 및 이를 포함하는 다기능 복합모듈
WO2017039420A1 (ko) 자기공진방식 무선전력 전송용 자기장 차폐유닛, 이를 포함하는 무선전력 전송모듈 및 전자장치
KR101476044B1 (ko) 페라이트 그린 시트, 소결 페라이트 시트, 이를 포함하는 페라이트 복합시트 및 도전 루프 안테나 모듈
WO2020060035A1 (ko) 자기장 차폐시트, 자기장 차폐시트의 제조방법 및 이를 이용한 안테나 모듈
KR101909649B1 (ko) 자기장 차폐유닛 및 이를 포함하는 다기능 복합모듈
CN109071262B (zh) 铁氧体粉末、树脂组合物、电磁波屏蔽材料、电子电路基板、电子电路部件及电子设备壳体
WO2014088954A1 (en) Ferrite green sheet, sintered ferrite sheet, ferrite composite sheet comprising the same, and conductive loop antenna module
KR20170040774A (ko) 자성시트, 이를 포함하는 모듈 및 이를 포함하는 휴대용 기기
CN107836140B (zh) 铁氧体叠层体和噪声抑制片
KR102525700B1 (ko) 근거리통신(nfc)용 자기장 차폐유닛, 이를 포함하는 복합 자기장 차폐 유닛 및 이를 포함하는 모듈
KR101939654B1 (ko) 자기장 차폐유닛 및 이를 포함하는 다기능 복합모듈
KR102525699B1 (ko) 무선전력 전송용 자기장 차폐유닛, 이를 포함하는 무선전력 전송모듈 및 이를 포함하는 전자기기
KR20170040775A (ko) 자성시트, 이를 포함하는 모듈 및 이를 포함하는 휴대용 기기
KR20170062415A (ko) 자기장 차폐유닛 및 이를 포함하는 다기능 복합모듈
KR102281024B1 (ko) 복합 메탈 페라이트 시트 및 그 제조 방법
WO2017065547A1 (ko) 페라이트 시트, 이의 제조 방법, 및 이를 포함하는 복합 안테나 모듈
WO2021101326A1 (ko) 무선충전 장치 및 이를 포함하는 이동 수단
KR20170062414A (ko) 자기장 차폐유닛 및 이를 포함하는 다기능 복합모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16852118

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15764564

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16852118

Country of ref document: EP

Kind code of ref document: A1