WO2020060035A1 - 자기장 차폐시트, 자기장 차폐시트의 제조방법 및 이를 이용한 안테나 모듈 - Google Patents

자기장 차폐시트, 자기장 차폐시트의 제조방법 및 이를 이용한 안테나 모듈 Download PDF

Info

Publication number
WO2020060035A1
WO2020060035A1 PCT/KR2019/010383 KR2019010383W WO2020060035A1 WO 2020060035 A1 WO2020060035 A1 WO 2020060035A1 KR 2019010383 W KR2019010383 W KR 2019010383W WO 2020060035 A1 WO2020060035 A1 WO 2020060035A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
sheet
field shielding
magnetic field
thin
Prior art date
Application number
PCT/KR2019/010383
Other languages
English (en)
French (fr)
Inventor
장길재
이동훈
Original Assignee
주식회사 아모센스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모센스 filed Critical 주식회사 아모센스
Priority to CN201980049931.1A priority Critical patent/CN112543983B/zh
Priority to US17/265,559 priority patent/US11594356B2/en
Publication of WO2020060035A1 publication Critical patent/WO2020060035A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0075Magnetic shielding materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/18Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by an internal layer formed of separate pieces of material which are juxtaposed side-by-side
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/007Thin magnetic films, e.g. of one-domain structure ultrathin or granular films
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/13Amorphous metallic alloys, e.g. glassy metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/26Thin magnetic films, e.g. of one-domain structure characterised by the substrate or intermediate layers
    • H01F10/265Magnetic multilayers non exchange-coupled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • H01F27/366Electric or magnetic shields or screens made of ferromagnetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/32Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying conductive, insulating or magnetic material on a magnetic film, specially adapted for a thin magnetic film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/526Electromagnetic shields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/208Magnetic, paramagnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/13Amorphous metallic alloys, e.g. glassy metals
    • H01F10/131Amorphous metallic alloys, e.g. glassy metals containing iron or nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/13Amorphous metallic alloys, e.g. glassy metals
    • H01F10/138Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/14Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing iron or nickel
    • H01F10/142Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing iron or nickel containing Si
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type

Definitions

  • the present invention relates to a magnetic field shielding sheet, and more particularly, to a magnetic field shielding sheet, a method of manufacturing a magnetic field shielding sheet, and an antenna module using the same, which can improve the efficiency of the overall production process by improving the heat treatment process of the thin magnetic sheet.
  • a wireless power transmission using an electromagnetic induction or magnetic resonance phenomenon is performed between the wireless power transmission device and the wireless power receiving device.
  • an antenna module including a communication antenna and a signal processing unit and a magnetic field shielding sheet are stacked and installed in a portable electronic device such as a terminal.
  • the quality factor (Q) is large to obtain frequency selectivity.
  • the quality factor (Q) is proportional to the inductance (L) value and inversely proportional to the resistance (R).
  • the magnetic field shielding sheet stacked on the antenna module functions as an inductor and serves as an absorber that absorbs radio waves and magnetic shielding to block the effect on the terminal body.
  • the amount of magnetic flux crossing the secondary coil to obtain a high voltage signal The more, the more advantageous.
  • the amount of magnetic flux increases as the amount of soft magnetic material contained in the secondary coil increases and the magnetic permeability of the material increases.
  • the wireless charging is essentially a non-contact power transmission, in order to focus the wireless electromagnetic waves generated by the primary coil of the wireless power transmission device into the secondary coil of the receiving device, the magnetic field shielding sheet on which the secondary coil is mounted has a magnetic permeability. It is necessary to be made of a high magnetic material.
  • the magnetic field shielding sheet for a conventional wireless power receiving device is a thin film, but considers the problem of heat generation due to shielding and the problem of not improving the wireless charging efficiency, and greatly reduces the loss due to eddy current by flaking the amorphous ribbon.
  • a magnetic field shielding sheet for a wireless charger having excellent power transmission efficiency has been proposed by blocking the influence of a magnetic field on a main body and a battery of a portable terminal device or the like and increasing the quality factor Q of a secondary coil.
  • the magnetic field shielding sheet adopts a structure in which a thin magnetic sheet is separated into a plurality of fine pieces by flaking while a protective film and a double-sided tape are attached to both surfaces of the thin magnetic sheet, thereby reducing eddy current loss and flaking-treated lamination.
  • the sheet is laminated to flatten and slim the laminated sheet and partially fill the adhesive with a gap between the fine pieces to insulate and prevent eddy current reduction and oxidation of the amorphous ribbon.
  • wireless charging may be classified into a magnetic induction method and a magnetic resonance method, or may be classified into a PMA method and a Qi method according to a method of sensing the access of the wireless power receiver to the wireless power transmitter.
  • the PMA wireless charging method controls the operation of the wireless power transmitter by detecting the approach of the wireless power receiver using a permanent magnet and a hall sensor.
  • the magnetic field shielding sheet used in the wireless power receiving device is required to have a larger number of thin magnetic sheets stacked than the case where the permanent magnet is not included.
  • the thin magnetic sheet is subjected to heat treatment for the purpose of increasing the permeability, and also through the heat treatment, brittleness increases, so that the flake treatment can be more easily performed.
  • the Fe-based amorphous ribbon in the form of a roll is manufactured by rapid cooling and solidification (RSP) by melt spinning, it is first cut to a certain length and laminated in a sheet form to facilitate post-treatment after heat treatment, and then laminated.
  • the ribbon sheet was heat-treated in a batch method.
  • heat-treating the laminated ribbon sheet in the form of a sheet cut to a certain length in a batch method is difficult to mass-produce the roll-to-roll method during subsequent flake treatment and laminate treatment. You have a problem.
  • antenna module operators have been supplied with a magnetic shielding sheet in the form of a roll, and want to use a magnetic shielding sheet by cutting (bunching) the magnetic shielding sheet in a desired pattern form. There is a problem that cannot meet the needs.
  • the present invention has been proposed to solve the problems of the prior art described above, the purpose of which is a magnetic field capable of improving the efficiency of the overall production process by in-line (in-line) heat treatment using a roll-to-roll magnetic sheet. It is to provide a method for manufacturing a shielding sheet and a magnetic field shielding sheet.
  • Another object of the present invention is a magnetic field shielding sheet that can be processed in a roll-to-roll process even during a subsequent flake process and a lamination process by continuously heat-treating a thin magnetic sheet in a roll-to-roll process, thereby improving productivity and reducing manufacturing cost. It is to provide a method for manufacturing a magnetic field shielding sheet.
  • Another object of the present invention is a magnetic field shielding sheet, a magnetic field provided in a roll form wound on a roll shaft, produced in a strip form by sequentially performing heat treatment, insulating layer formation, flake treatment, and laminating treatment of a thin magnetic sheet by a roll-to-roll method. It is to provide a method for manufacturing a shielding sheet and an antenna module using the same.
  • the magnetic field shielding sheet of the present invention includes at least one thin magnetic sheet; An insulating layer formed on one side or both sides of the thin magnetic sheet; And an adhesive layer formed between the insulating layers to laminate and bond the thin film magnetic sheet, wherein the thin magnetic sheet is flaked and divided into a plurality of magnetic body fragments.
  • the insulating layer may be partially or completely penetrated into a space between at least some of the adjacent magnetic material fragments, and the insulating layer may include an insulating layer forming composition containing a natural polymer compound and a synthetic polymer compound. have.
  • the magnetic field shielding sheet of the present invention may be manufactured in a strip form and provided in a roll form wound on a roll shaft.
  • the thickness of the thin magnetic sheet may be 15 to 35 ⁇ m, preferably 15 to 20 ⁇ m, and the thin magnetic sheet may be a magnetic body of a thin plate made of an amorphous alloy or a nanocrystalline alloy.
  • the adhesive layer is made of an acrylic adhesive, the thickness may be 5 ⁇ m or less, preferably 3 ⁇ m or less. Further, the thickness of the insulating layer may be 5 ⁇ m or less, and preferably 3 ⁇ m or less.
  • the magnetic field shielding sheet of the present invention further includes a protective member and an adhesive member respectively attached to the upper and lower surfaces of the plurality of laminated thin magnetic sheets, and the adhesive member is attached to the lower surface of the laminated thin magnetic sheet.
  • the first adhesive layer and the magnetic field shielding sheet may include a release film for protecting the first adhesive layer until it adheres to the adherend.
  • the magnetic field shielding sheet is used in combination with an antenna module for wireless power transmission, and may include a plurality of thin magnetic sheets when the wireless power transmission device includes a permanent magnet.
  • a magnetic field shielding sheet includes at least one thin magnetic sheet; An insulating layer formed on one side or both sides of the thin magnetic sheet; And first and second sealing portions for sealing the side surfaces of the thin magnetic sheet stacked on one side and the other side of the stacked magnetic sheet stack, respectively. It is characterized by being divided into fragments.
  • a method of manufacturing a magnetic field shielding sheet includes a first step of manufacturing a thin magnetic sheet in a roll form; A second step of performing an in-line heat treatment using a heat treatment furnace and an insulator coating device sequentially arranged in the roll-shaped thin magnetic sheet and forming an insulating layer on one or both surfaces of the heat-treated thin magnetic sheet; A third step of forming a magnetic sheet laminate by laminating the thin magnetic sheet on which the insulating layer is formed in multiple layers; And a fourth step of flaking the magnetic sheet laminate to divide the thin magnetic sheet into a plurality of magnetic debris, wherein the second to fourth steps are performed in a roll-to-roll process using a thin magnetic sheet in the form of a roll. It is characterized by being carried out.
  • the method of manufacturing a magnetic field shielding sheet according to the present invention when forming a magnetic sheet laminate by laminating a thin magnetic sheet on which the insulating layer is formed in a multi-layer, an adhesive layer between the insulating layers to be laminated and bonded to the thin magnetic sheet. It may further include the step of forming.
  • the third step may further include the step of laminating a temporary protective member on one surface of the magnetic sheet laminate
  • the magnetic sheet laminate may further include laminating a protective member and an adhesive member on both sides.
  • the present invention may further include a laminating step for reducing the flatness and thickness of the flake-treated magnetic sheet laminate after flaking the magnetic sheet laminate.
  • the method for manufacturing a magnetic field shielding sheet according to the present invention may further include a sealing step of stacking the thin magnetic sheet in multiple layers to form a magnetic sheet stack, and sealing both sides of the magnetic sheet stack.
  • a wireless power receiving antenna module includes a wireless power receiving antenna; And a magnetic field shielding sheet disposed on one surface of the antenna to improve the characteristics of the antenna for wireless power reception and focusing the magnetic flux toward the antenna.
  • the present invention it is possible to improve the efficiency of the overall production process by in-line heat treatment using a roll-to-roll process on a thin magnetic sheet.
  • the present invention by continuously heat-treating the thin magnetic sheet by the roll-to-roll method, it can be processed by the roll-to-roll process even during the subsequent flake process and laminate process, thereby improving productivity and reducing manufacturing cost.
  • inline heat treatment of a thin magnetic sheet, flake treatment and lamination treatment of a laminated multi-layer thin magnetic sheet can be processed by a roll-to-roll process, thereby providing a magnetic field shielding sheet in the form of a roll required by an antenna module operator or the like. can do.
  • FIG. 1 is a cross-sectional view showing a magnetic field shielding sheet according to an embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating a manufacturing process of a magnetic field shielding sheet according to an embodiment of the present invention.
  • Figure 3 is a schematic configuration diagram showing an inline heat treatment process of a magnetic field shielding sheet according to an embodiment of the present invention.
  • 4A and 4B are schematic process diagrams and magnetism showing a process of manufacturing a magnetic sheet laminate by laminating a plurality of thin magnetic sheets for a flake process after a heat treatment process of a magnetic field shielding sheet according to an embodiment of the present invention, respectively. It is a cross-sectional view in the width direction of the sheet laminate.
  • FIG. 5 is a cross-sectional view showing a magnetic sheet laminate in which a plurality of thin magnetic sheets are laminated for a flake process after a heat treatment process of a magnetic field shielding sheet according to another embodiment of the present invention.
  • 6A and 6B are schematic process cross-sectional views and enlarged views showing a flake treatment process and a lamination process of a magnetic sheet laminate according to an embodiment of the present invention.
  • FIG. 7 is a plan view showing a flake processing apparatus for a magnetic field shielding sheet according to an embodiment of the present invention.
  • FIG. 8 is a schematic perspective view showing an antenna module having a magnetic field shielding sheet according to an embodiment of the present invention.
  • the magnetic field shielding sheet according to the present invention is used for wireless charging, for example, a structure in which a plurality of thin magnetic sheets are stacked is adopted as a wireless charging antenna module for wireless charging of a secondary battery in a portable terminal. You can.
  • the wireless power receiving device when the permanent magnet is included in the wireless power transmission device, in the case where the thin magnetic sheet is made of Fe-based amorphous alloy, the wireless power receiving device is used by laminating 2 to 8 layers, and in the case of nano-grain alloy, 4 to 12 layers It may be required to use a laminate.
  • a thin layer magnetic sheet (Fe-based amorphous alloy or nanocrystalline alloy) may have a layered structure of 1 to 4 layers in the wireless power receiving device.
  • the magnetic field shielding sheet according to the present invention is applicable to shielding magnetic fields other than for wireless charging.
  • the magnetic field shielding sheet is described as an example in which a plurality of thin magnetic layers are laminated, but the magnetic field shielding sheet of the present invention may include a single thin magnetic sheet.
  • the "wireless power transmission device” may be simply referred to as a "wireless charger”.
  • the magnetic field shielding sheet according to the present invention proceeds in a strip form from a plurality of thin magnetic sheets which are raw materials to all the manufacturing process of the present invention in the form of a strip and is wound in a roll axis as it is wound on a roll shaft. Sieve is provided to antenna module operators as a finished product.
  • thin magnetic sheet means a sheet in the form of a strip provided from a winding body.
  • Magnetic field shielding sheet 100 as shown in Figure 1, a plurality of thin magnetic sheet (110a ⁇ 110d), a plurality of formed on one or both sides of the magnetic sheet (110a ⁇ 110d) Includes a pair of insulating layers (120a, 120b), a plurality of adhesive layers (125a ⁇ 125c) formed between the plurality of pairs of insulating layers (120a, 120b) to laminate and bond the plurality of thin film magnetic sheets (110a ⁇ 110d)
  • the thin magnetic sheets 110a to 110d are each flaked to be finely divided into a plurality of magnetic material fragments 101 or partially cracked.
  • the shielding sheet 100 is a single body in which a plurality of thin magnetic sheets 110a to 110d having insulating layers 120a and 120b formed on both surfaces or at least one surface are mutually bonded in a multi-layer structure using a plurality of adhesive layers 125a to 125c. Sheet.
  • the magnetic field shielding sheet 100 further comprises a protective member 140 and an adhesive member 130 attached to the upper and lower surfaces of the plurality of laminated thin magnetic sheets 110a to 110d, respectively. It can contain.
  • the adhesive member 130 is the first adhesive layer (130b) attached to the lower surface of the laminated thin magnetic sheet (110a ⁇ 110d) and the magnetic field shielding sheet 100 is attached to the adherend until the first adhesive layer (130b) A release film 130a for protection may be included.
  • the magnetic field shielding sheet 100 is manufactured in a strip form and constitutes a winding body 119 wound in a roll form on a roll shaft 119a. Accordingly, antenna module operators, etc. using a magnetic field shielding sheet can receive a roll-shaped winding body 119 product and cut and punch the magnetic field shielding sheet 100 in a desired pattern form.
  • the magnetic field shielding sheet 100 includes a flake treatment for dividing or cracking the thin magnetic sheets 110a to 110d into a plurality of magnetic material fragments 101, and flattening the flake-treated laminated sheet.
  • the insulating penetrating member 121 penetrating from the insulating layers 120a and 120b in the separation space between the magnetic body fragments 101 increases the bearing force of the fragments and blocks them from being separated from the flow of the fragments, and when the flexural strength is applied to the shielding sheet It can act as a buffer that can prevent damage such as micro-sculpting and shattering of fragments due to liver bumps.
  • the magnetic material provided in the thin magnetic sheets 110a to 110d may be a magnetic material (for example, a magnetic material such as an Fe-Si-B type amorphous alloy) having low electrical resistance and generating magnetic loss due to eddy current. .
  • the insulating penetrating member 121 penetrating the separation space of the magnetic material fragment 101 functions as a dielectric material, thereby significantly increasing the electrical resistance of the magnetic sheet, thereby preventing magnetic loss due to eddy currents and minimizing heat generation.
  • the efficiency of transmitting and receiving signals through a magnetic field can be maintained with high sensitivity.
  • the cross-sectional structure of the magnetic field shielding sheet according to an embodiment of the present invention will be described based on the case where the magnetic material is an amorphous alloy.
  • the thin magnetic sheets 110a to 110d are formed of a plurality of magnetic material fragments 101 that crush the magnetic material to improve the flexibility of the magnetic field shielding sheet.
  • the shape of the magnetic material fragments may be irregular.
  • the magnetic material may have the shape of a strip-shaped ribbon sheet so that it can be easily implemented as a thin film.
  • the thickness of the magnetic body provided must be very thin at the same time, and the magnetic bodies provided in the usual shielding sheet are very brittle, and when the thickness of the magnetic body sheet becomes thin, cracks or fines are generated even with very weak external force.
  • the permeability after cracking is lowered than the permeability when it is in a sheet form before cracking occurs.
  • the magnetic field shielding sheet made of a thin film has a problem of significantly reducing workability when manufacturing, storing, transporting, and putting it into a process as a product part.
  • the magnetic field shielding sheet is generally disposed on an adhered surface on which an antenna or the like is formed, and is generally attached to adhere to the adhered surface on which the antenna is formed to further improve antenna characteristics and prevent separation of the shielding sheet.
  • the magnetic field shielding sheet 100 may be attached to an adhered surface (not shown) through the adhesive member 130, for this purpose, the first adhesive layer of the adhesive member 130
  • the removal operation of the release film 130a protecting the 130b is preceded.
  • an external force of a certain level or more is required, but when the thickness of the shielding sheet is very thin, the sheet easily and significantly causes cracks due to the external force.
  • the magnetic material is included in the shielding sheet in a debris state, and the shielding sheet containing the magnetic material in the debris state retains initial properties such that it can exhibit excellent characteristics in the transmission / reception efficiency and the transmission / reception distance of signals related to a desired function from the beginning.
  • At least one side of some fragments may be crushed to have a curved shape, not a straight line. have.
  • the magnetic material that can be included in the thin magnetic sheets 110a to 110d according to the present invention is limited to the composition, crystal type, and microstructure of the sintered particles when it is possible to express the magnetic permeability properties of the magnetic field shielding sheet described later in a fragmented state.
  • a magnetic material provided in a known shielding sheet may be used.
  • the magnetic material may be a soft magnetic material.
  • the soft magnetic material has a very low coercive force with respect to the residual magnetic flux density, and has a high magnetic permeability, and thus has excellent shielding effect against electromagnetic fields.
  • the soft magnetic material is a Ni-Co-based alloy, Fe-Ni-based alloy, Fe-Cr-based alloy, Fe-Al-based alloy, Fe-Si-based alloy, Fe-Si-B-based alloy, Fe-Si-B-Cu- It may include one or more selected from the group consisting of Nb-based alloy.
  • the magnetic body included in one embodiment of the present invention may use a thin magnetic body made of an amorphous alloy or a nanocrystalline alloy.
  • the amorphous alloy may be an Fe-based or Co-based amorphous alloy, and it may be preferable to use an Fe-based amorphous alloy in consideration of production cost.
  • an Fe-based amorphous alloy for example, an Fe-Si-B-based amorphous alloy may be used, and it is preferable that Fe is 70 to 90 at%, and the sum of Si and B is 10 to 30 at%.
  • the higher the content of metals including Fe the higher the saturation magnetic flux density, but if the content of Fe element is excessive, it is difficult to form amorphous, so the content of Fe is preferably 70 to 90 at%.
  • the amorphous forming ability of the alloy is the best.
  • Corrosion-resistant elements such as Cr and Co may be added within 20 at% to prevent corrosion to the basic composition, and small amounts of other metal elements may be included as necessary to impart different characteristics.
  • the Fe-Si-B-based alloy may be, for example, a crystallization temperature of 508 ° C and a Curie temperature (Tc) of 399 ° C. However, this crystallization temperature may vary depending on the content of Si and B, or other metal elements added in addition to the ternary alloy component and its content.
  • the magnetic material included in one embodiment of the present invention may be a Fe-Si-B-Cu-Nb-based amorphous alloy. Copper contained in the alloy improves corrosion resistance of the alloy, and even if crystals are formed, the crystal size It prevents it from becoming large, and at the same time makes it possible to improve magnetic properties such as permeability.
  • the copper is preferably included in the alloy in an amount of 0.01 to 10 at%, and if it is included in an amount of less than 0.01 at%, the expression of the effect obtained due to copper may be insignificant, and if it exceeds 10 at%, an amorphous alloy is produced. There are problems that can be difficult.
  • niobium (Nb) contained in the alloy can improve magnetic properties such as permeability, and is preferably included at 0.01 to 10 at% in the alloy, and if included at less than 0.01 at%, the effect obtained due to niobium
  • the expression of the may be insignificant, and if it exceeds 10at%, there is a problem that it may be difficult to produce an amorphous alloy.
  • the thickness of the thin magnetic sheet (110a ⁇ 110d) may be the thickness of the magnetic sheet that is the origin of the magnetic body fragments, preferably the thickness of the thin magnetic sheet (110a ⁇ 110d) is a single layer thickness of 15 to 35 ⁇ m, preferably 15 to 20 ⁇ m, but is not limited thereto.
  • the permeability of the sheet increases in proportion to the thickness.
  • the magnetic field shielding sheet 100 and the thin magnetic sheet sheets 110a to 110d are wound on a roll shaft 119a so that the winding body 119 is supplied in a roll form, and users such as antenna module operators are supplied in a roll form. It can be cut into a desired shape from the strip type magnetic field shielding sheet 100 and used.
  • the application is applied to the magnetic field shielding sheet, for example, is used for wireless charging or near field communication (NFC), or the shape is rectangular to correspond to the antenna shape of a complex function to perform wireless charging and near field communication (NFC) at the same time ,
  • NFC wireless charging or near field communication
  • the square of the square it may be a polygonal shape such as a pentagon, a circular shape, an oval shape, or a partially curved and straight line.
  • the size of the shielding sheet (or magnetic sheet) is about 1 to 2 mm wider than the size of the antenna of the corresponding module.
  • the insulating layers 120a and 120b formed on at least one surface of the thin magnetic sheets 110a to 110d described above will be described.
  • the insulating layers 120a and 120b are crushed to fix and support each of the magnetic body fragments so that each of the magnetic body fragments that can be separated become one layer, thereby maintaining the thin magnetic sheets 110a to 110d in a sheet shape. At the same time, it buffers the external force applied to the magnetic body fragments, and plays a role in preventing moisture from penetrating and oxidizing the magnetic body.
  • the insulating layer (120a, 120b) can be easily adhered to the magnetic body fragments, the coating layer itself has excellent retention in the form of a sheet, easily broken by external force or reduced flexibility of the thin magnetic sheet (110a ⁇ 110d)
  • the coating layer itself has excellent retention in the form of a sheet, easily broken by external force or reduced flexibility of the thin magnetic sheet (110a ⁇ 110d)
  • it can be used as a preferred thin film insulating layer without limitation.
  • the insulating layers 120a and 120b may be formed by solidifying an insulating layer forming composition including at least one polymer compound among natural polymer compounds and synthetic polymer compounds.
  • the method of solidifying the insulating layer forming composition is not particularly limited.
  • the solidification reaction is limited to either solidification by drying or curing by solvent volatilization, solidification through curing by chemical reaction through heat / ray / moisture, and solidification by cooling after heat melting such as hot melt type. Can be used without.
  • the natural polymer compound may be a protein-based polymer compound such as glue, gelatin, starch, cellulose and its derivatives, and carbohydrate-based polymer compounds such as complex polysaccharides and natural rubber-based compounds such as latex.
  • a protein-based polymer compound such as glue, gelatin, starch, cellulose and its derivatives
  • carbohydrate-based polymer compounds such as complex polysaccharides and natural rubber-based compounds such as latex.
  • the synthetic polymer compound may include any one or more of a thermoplastic polymer compound, a thermosetting polymer compound and a rubber-based compound.
  • the thermoplastic polymer compound is polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyacrylonitrile resin, acrylonitrile-butadiene-styrene (ABS), styrene-acrylonitrile (SAN), acrylic resin, meta Krill resin, polyamide, thermoplastic polyester (Ex polyethylene terephthalate (PET), polybutylene terephthalate (PBT), etc.), polycarbonate, polyphenylene sulfide resin, polyamide imide, polyvinyl butyral, polyvinyl Formal, polyhydroxypolyether, polyether, polypthalamide, fluorine resin (Ex polytetrafluoroethylene (PTFE) and polychlorotrifluoroethylene (PCTFE)), phenoxy resin, polyurethane resin , Nitrile butadiene resin, and the like.
  • ABS acrylonitrile-butadiene-styrene
  • SAN styrene-acrylonit
  • thermosetting polymer compound may include one or more of phenolic resin (PE), urea resin (UF), melamine resin (MF), unsaturated polyester resin (UP) and epoxy resin.
  • the rubber-based compound is styrene-butadiene rubber (SBR), polybutadiene rubber (BR), acrylonitrile-butadiene rubber (NBR), polyisobutylene (PIB) rubber, acrylic rubber, fluorine rubber, silicone rubber and Chloroprene and the like may be included.
  • the insulating layers 120a and 120b are more preferably formed by solidifying a rubber-based compound in order to prevent unintended fine fragmentation of a magnetic material through improvement of a buffering action of the insulating layer and to further improve flexibility of a magnetic field shielding sheet.
  • the rubber-based compound may be a polymer copolymerized with ethylene-propylene-diene rubber (Ethylene Propylene Diene Monomer, EPDM).
  • the composition may further include a curable component capable of curing the above-described polymer compound, and in some cases, a solvent and a curing accelerator may be further added. It can contain.
  • the insulating layer forming composition is a pH adjuster, ion trapping agent, viscosity modifier, thixotropic agent, antioxidant, heat stabilizer, light stabilizer, ultraviolet absorber, colorant, dehydrating agent, flame retardant, antistatic agent, if necessary ,
  • a pH adjuster ion trapping agent, viscosity modifier, thixotropic agent, antioxidant, heat stabilizer, light stabilizer, ultraviolet absorber, colorant, dehydrating agent, flame retardant, antistatic agent, if necessary .
  • various additives such as antiseptics and preservatives may be added.
  • the thickness of the insulating layers 120a and 120b is preferably implemented within 5 ⁇ m, and preferably less than 3 ⁇ m in terms of thinning. However, when it is implemented in less than 3 ⁇ m, it may not be possible to prevent the magnetic material fragments from falling off, flow, etc., and the mechanical strength may be easily torn or the insulating layer may be torn or damaged by fragments.
  • the magnetic field shielding sheet 100 of the present invention is a protective member 140 is disposed on top of a plurality of laminated magnetic sheets 110a to 110d stacked as shown in FIG. 1, and thin magnetic sheet sheets 110a to 110d
  • the lower portion of) may further include an adhesive member 130 having a release film 130a and a first adhesive layer 130b formed on one surface of the release film 130a.
  • the protective member 140 prevents external force from being directly applied to the magnetic material in the process of crushing the magnetic material sheet, and prevents the magnetic material powder generated in the crushing process from scattering to help maintain a comfortable working environment. Can give.
  • the protective member 140 serves to protect the magnetic field shielding sheet from heat / pressure applied for curing of the adhesive.
  • the protective member 140 may be a protective film that is usually provided on a magnetic field shielding sheet, and is heat-resistant and externally applied to withstand heat or external forces applied during the crushing process of the magnetic material sheet or the attachment process of the magnetic field shielding sheet.
  • the paper can be used without limitation in the case of a protective member made of a material having mechanical strength and chemical resistance sufficient to protect the thin magnetic sheets 110a to 110d against physical and chemical stimuli.
  • Non-limiting examples of this polyethylene, polypropylene, polyimide, crosslinked polypropylene, nylon, polyurethane-based resin, acetate, polybenzimidazole, polyimide amide, polyetherimide, polyphenylene sulfide (PPS) polyethylene tere Phthalates (PET), polytrimethylene terephthalate (PTT) and polybutylene terephthalate (PBT), polyvinylidenefluoride (PVDF), polytetrafluoroethylene (PTFE) and polychlorotrifluoroethylene (PCTFE) , Polyethylenetetrafluoroethylene (ETFE) and other films may be used alone or in combination.
  • PPS polyphenylene sulfide
  • PET polyethylene tere Phthalates
  • PTT polytrimethylene terephthalate
  • PBT polybutylene terephthalate
  • PVDF polyvinylidenefluoride
  • PTFE polytetrafluoroethylene
  • the protective member 140 may be used having a thickness of 1 ⁇ 100 ⁇ m, preferably 10 ⁇ 30 ⁇ m, but is not limited thereto.
  • the protection member 140 may be directly face-to-face attached to the upper insulating layer 120a of the plurality of laminated thin magnetic sheets 110a to 110d without a separate adhesive member, or may be adhered through a separate adhesive member. have. However, in order to thin the magnetic field shielding sheet, it is preferable that it is directly attached to the insulating layer 120a without intervening an adhesive member.
  • the adhesive member 130 serves to attach the magnetic field shielding sheet 100 to an antenna or a substrate equipped with an antenna.
  • the adhesive member 130 may include a first adhesive layer (130b) for attaching the magnetic field shielding sheet 100 to the skin adhesion surface, to protect the first adhesive layer (130b) It may further include a release film (130a) for.
  • the release film 130a can be used without limitation in the case of a conventionally known release film that can be easily removed from the first adhesive layer 130b. In the present invention, the release film 130 is not particularly limited. Before being attached, it can be removed from the magnetic field shielding sheet 100.
  • the first adhesive layer 130b is formed by applying an adhesive layer forming composition to the lowermost portion of the thin magnetic sheets 110a to 110d, or by forming an adhesive composition on the release film 130a, the first adhesive layer 130b is thin magnetic It may be provided attached to the bottom of the sheet (110a ⁇ 110d).
  • the first adhesive layer 130b may be a double-sided adhesive layer coated with an adhesive layer forming composition on both sides of a support film, for example, a double-sided tape for reinforcing mechanical strength.
  • Method of manufacturing a magnetic field shielding sheet the first step of manufacturing a thin magnetic sheet (110a ⁇ 110d) in a roll form (S11); In-line heat treatment using a roll-to-roll process and thin plate magnetic sheets 110a to 110d using a plurality of the roll-shaped thin magnetic sheets 110a to 110d, sequentially arranged heat treatment furnace 200 and an insulator coating device 205.
  • an amorphous ribbon made of an amorphous alloy or a nanocrystalline alloy is manufactured by rapid cooling and solidification (RSP) by melt spinning.
  • the amorphous ribbon manufactured by rapid freezing and solidification by melt spinning (RSP) has a constant width and is obtained in a continuous strip form.
  • a Fe-based amorphous ribbon for example, a thin magnetic sheet (110a to 110d) of 30 ⁇ m or less made of an Fe-Si-B alloy is wound on a roll shaft 115a to produce a roll.
  • a Fe-based amorphous ribbon for example, a Fe-Si-B-Cu-Nb alloy made of 30 ⁇ m or less thin magnetic sheet (110a ⁇ 110d) of the roll axis (115a) ) Can be wound in a roll form.
  • the heat treatment furnace 200 and the insulator coating device 205 are sequentially arranged. It is installed so that a plurality of thin magnetic sheets 110a to 110d pass simultaneously in an in-line facility.
  • a plurality of winding bodies 111 in which thin magnetic sheets 110a to 110d are wound is disposed on the roll shaft 115a at the front end of the heat treatment furnace 200, and the thin magnetic layers 110a to 110d supplied therefrom are disposed.
  • the front end portion After passing through the heat treatment furnace 200 and the insulator coating device 205, the front end portion is wound with a winding reel (not shown) to be wound on a roll shaft 115b driven by a driving motor (not shown). 205).
  • the heat treatment furnace 200 is, for example, an inline heat treatment device composed of a continuous furnace having a length of 20 to 30 m
  • the insulator coating device 205 is, for example, a thermoplastic polymer using a bar coater.
  • Compound, a thermosetting polymer compound and a rubber-based compound may be implemented as equipment for coating any one.
  • the Fe-based amorphous ribbon for example, a thin magnetic sheet made of Fe-Si-B alloy (110a to 110d) is 300 ° C to 600 ° C, preferably 300 ° C to 400 ° C, so as to obtain a desired permeability.
  • Heat treatment is performed in the temperature range.
  • the heat treatment atmosphere may be performed in a nitrogen atmosphere or an atmosphere.
  • Fe-based amorphous ribbon for example, Fe-Si-B-Cu-Nb thin sheet magnetic sheet (110a ⁇ 110d) made of an alloy is 300 °C ⁇ 700 °C, preferably Is heat-treated in a temperature range of 400 ° C to 550 ° C to form a nanocrystalline ribbon sheet on which nanocrystalline grains are formed.
  • the heat treatment atmosphere has a Fe content of 70 at% or more, oxidation is performed when heat treatment is performed in the air, which is undesirable from a visual point of view, and thus is preferably performed in a nitrogen atmosphere.
  • the thin magnetic sheets 110a to 110d are applied to the front end of the heat treatment furnace 200 when winding driving is performed at a predetermined speed by a driving motor with the roll shaft 115b of the winding reel disposed at the rear end of the insulator coating device 205.
  • the thin magnetic sheets 110a to 110d wound on the roll shaft 115a pass through the heat treatment furnace 200 and the insulator coating device 205 while being unwound from the winding body 111, and are inline to improve the permeability.
  • coating of the insulating layers 120a and 120b may be performed on one or both surfaces of the thin magnetic sheets 110a to 110d.
  • the insulating layers 120a and 120b are formed immediately after the heat treatment of the thin magnetic sheets 110a to 110d, but the formation of the insulating layers 120a and 120b may be performed in a separate process. have.
  • the heat treatment furnace 200 is a furnace discharged to the outlet after treatments such as heating, maintenance, and cooling are continuously performed for each section from the inlet.
  • the thin magnetic sheet (110a ⁇ 110d) is, for example, a Fe-Si-B-Co-Ni-based amorphous alloy ribbon manufactured by rapid cooling and solidification (RSP) by melt spinning, and a ribbon strip having a thickness of 24 ⁇ m is heat treated. (200) at 460 ° C., subjected to magnetic field heat treatment in an atmosphere, and insulator coating device 205 insulated by mixing 9% by weight of ethylene-propylene-diene rubber (EPDM) and 91% by weight of toluene
  • the layer-forming composition liquid may be coated using a bar coater and dried to form an insulating layer having a thickness of 3 ⁇ m.
  • the plurality of thin magnetic sheets 110a to 110d that have passed through the insulator coating device 210 are wound in roll form on a roll shaft 115b of a winding reel with insulating layers 120a and 120b coated on one or both surfaces, respectively.
  • a winding body 113 To form a winding body 113.
  • a plurality of thin magnetic sheets 110a to 110d are stacked in an appropriate number according to the application to which the magnetic field shielding sheet 100 is applied according to the third step S13 to form the magnetic sheet stack 100a.
  • 4A and 4B it will be described, for example, that four thin magnetic sheets 110a to 110d are formed on both surfaces of the insulating layers 120a and 120b.
  • the adhesive layers 125a to 125c are respectively formed between the thin magnetic sheets 110a to 110d on which the insulating layers 120a and 120b are formed to form a single body, and on one surface of the four-layer laminate.
  • the protective member 140 is laminated on the other surface, respectively.
  • the adhesive layers 125a to 125c may be known adhesives, and adhesives such as acrylic, urethane, and epoxy may be used as non-limiting examples.
  • the adhesive layers 125a to 125c are each made of an inorganic type acrylic adhesive, and may have a thickness of 5 ⁇ m or less, preferably 3 ⁇ m or less.
  • a third step (S13) of stacking a plurality of thin magnetic sheets 110a to 110d to form the magnetic sheet stack 100a may also be performed in a roll-to-roll process.
  • FIGS. 4A and 4B four thin magnetic sheets 110a to 110d having insulating layers 120a and 120b formed on both surfaces of the insulating sheets 120a to 125c are inserted therebetween to insert the adhesive layers 125a to 125c.
  • the present invention can be modified to other structures.
  • the magnetic sheet stacked body is formed by stacking four thin magnetic sheets 110a to 110d having insulating layers 120a and 120b on both sides, and then stacking the thin magnetic sheet sheets 110a to First and second sealing portions 127a and 127b may be formed by coating both sides of 110d) with a sealing agent, respectively.
  • the first and second sealing parts 127a and 127b are formed to cover a part of the upper and lower surfaces of the laminated thin magnetic sheets 110a to 110d, so that a plurality of thin magnetic sheets 110a to 110d are formed. It can be configured to prevent leakage and integration into the laminated magnetic sheet laminate.
  • the material usable as the sealing agent may be silicon or epoxy, and the present invention is not particularly limited, and a known sealing agent can be used without limitation.
  • Step 4 is performed to reduce.
  • the flake process and the lamination process of the magnetic sheet laminate may be continuously performed in a roll-to-roll manner using the flake device 220 and the laminating device 230 shown in FIGS. 6A and 6B.
  • the flake device 220 and the laminating device 230 according to the present invention are continuously arranged, and the winding body wound on the roll shaft 117a at the front end of the flake device 220 (
  • the strip-shaped magnetic sheet laminate 100a is supplied from 117), and the strip-shaped magnetic field shielding sheet 100 that has been subjected to a flake treatment process and a lamination process is discharged to a rear end of the laminating device 230 by a driving motor.
  • the rolled shaft 119a is wound in a roll shape to form a winding body 119.
  • the method of flaking the thin magnetic sheets 110a to 110d of the magnetic sheet laminate 100a with a plurality of magnetic body fragments 101 is adopted without limitation in the case of a known method of crushing thin magnetic sheets (ie, magnetic bodies). You can.
  • the thin magnetic sheet may be passed through a flake device (ie, a crushing device) to sculpt the thin magnetic sheet into irregular fragments, and then pressurized to flatten the magnetic sheet stack 100a to flatten the magnetic material fragments. It is possible to reduce the separation space between magnetic body fragments while allowing the aggregate of them to have a desired thickness.
  • the method of applying pressure to the plurality of magnetic material fragments 101 is performed by applying pressure to the fragments crushed together with the crushing in the flake device, or after the magnetic material is crushed, a pressing process is further performed using a separate laminating device. It might be.
  • the flake device 220 is disposed below the plurality of crushing rollers 221 to 223 and the crushing rollers 221 to 223 that are rotatably supported between opposing partition walls. It includes a plurality of pressure rollers (221a ⁇ 223a) in contact with the crushing roller (221 ⁇ 223).
  • the plurality of crushing rollers 221 to 223 are formed with a plurality of irregularities on the outer circumference along the axial direction, and there is no particular limitation on the uneven structure.
  • the plurality of crushing rollers 221 to 223 may be equipped with a plurality of spherical balls instead of a plurality of irregularities formed on the outer circumference.
  • a plurality of pressure rollers (221a ⁇ 223a) may be composed of a rubber roller that can receive the pressure of the crushing roller (221 ⁇ 223).
  • 6A and 6B illustrate that the crushing rollers 221 to 223 are composed of three, but the thickness of the magnetic sheet layered body 100a, the number of layers of the thin magnetic sheets 110a to 110d, and the magnetic field shielding sheet 100
  • the size of the magnetic material fragment 101 required may vary depending on the environment to be applied, and accordingly, the number of crushing rollers 221 to 223 may be variously modified.
  • the roll shaft 119a driven by the driving motor disposed at the rear end of the laminating apparatus 230 is rotated at a predetermined speed to flake (crush) the thin magnetic sheet (that is, the magnetic body), the front end of the flake apparatus 220
  • the magnetic sheet stacked body 100a in the form of a strip is supplied from the winding body 117 located at and passes through the flake device 220.
  • the thin magnetic sheets 110a to 110d of the magnetic sheet laminate 100a that have passed through the flake device 220 are divided or cracked into a plurality of magnetic body fragments 101.
  • the thin magnetic sheets 110a to 110d are magnetic body fragments 101 to be crushed.
  • the size of is reduced, and the thickness of the magnetic sheet laminate 100a may be gradually reduced while being flattened.
  • the insulating layers 120a and 120b formed on both surfaces or at least one surface of the plurality of thin magnetic sheets 110a to 110d. Penetration may occur in a space between at least some of the magnetic fragments 101 adjacent to each other, but sufficient penetration may not be achieved.
  • a part of the insulating layers 120a and 120b sufficiently penetrates between adjacent magnetic material fragments 101 and that the lamination process is followed in order to achieve flattening of the sheet.
  • the laminating device 230 disposed at the rear end of the flake device 220 includes at least one upper roller 231,232 and at least one lower roller 231a, 232a corresponding thereto.
  • the upper rollers 231 and 232 and the lower rollers 231a and 232a may be configured as pressure rollers, respectively.
  • the magnetic sheet stacked body 100a in which the thin magnetic sheets 110a to 110d are divided or cracked into a plurality of magnetic body fragments 101 while passing through the flake device 220 is further pressurized while passing through the laminating device 230. do.
  • the magnetic field shielding sheet 100 discharged through the laminating device 230 is compressed while undergoing the lamination process, as shown in FIG. 1, to achieve flattening and thickness control of the sheet and at the same time a plurality of thin magnetic sheet sheets.
  • the insulating penetrating member 121 penetrating from the insulating layers 120a and 120b in the separation space between the magnetic body fragments 101 increases the bearing force of the fragments and blocks them from being separated from the flow of the fragments, and the bending strength of the shielding sheet When applied, it can act as a buffer that can prevent damage such as micro-fragmentation and fragmentation of fragments due to bumps between fragments.
  • the shape of the magnetic material fragments crushed through the flake step may be irregular.
  • at least one side of some fragments is crushed to have a curved shape rather than a straight line. Can be.
  • a plurality of thin magnetic sheets 110a to 110d are laminated using a plurality of adhesive layers 125a to 125c, and then protected on one surface of the laminate. It was exemplified that the member 140 proceeded with the magnetic sheet laminate 100a obtained by laminating the adhesive members 130 on the other surface, respectively.
  • the present invention proceeds only with a laminate of a plurality of thin magnetic sheets 110a to 110d without attaching the protective member 140 and the adhesive member 130 to both sides of the laminate, or crushing the temporary protective member 221 ⁇ 223) may be attached to only the upper surface of the stack in contact with the laminate, or may be subjected to a flake treatment and a laminating treatment while being attached to both sides.
  • the temporary protective member When the temporary protective member is laminated to undergo flake treatment and laminating treatment, the temporary protective member is peeled off, and the protective member 140 is laminated on one surface of the laminate and the adhesive member 130 is mounted on the other surface to complete the magnetic field shielding sheet. You can.
  • the temporary protection member prevents scattering and loss of the crushed magnetic material, thereby improving the work environment, and preventing an increase in material cost due to the lost magnetic material.
  • the temporary protection member is provided with an adhesive layer on one surface, and may be temporarily adhered to the magnetic material or not attached to the magnetic material, and may pass through the crushing device in a physically placed state.
  • the temporary protective member may be a conventional PET film or paper, and there is no particular limitation on the material.
  • the entire manufacturing process is performed in a roll-to-roll manner, and finally, as shown in FIG. 1, the magnetic field shielding sheet 100 on the roll shaft 119a ) May be wound and provided as a roll-shaped winding body 119.
  • the above-described magnetic field shielding sheet 100 can be simultaneously combined with other magnetic field shielding sheets having different magnetic characteristics at a predetermined frequency to simultaneously improve characteristics of antennas using different frequency bands. It may be implemented as a composite magnetic field unit, wherein the arrangement of the different magnetic field shielding sheet may be a stacked structure, one day the magnetic field shielding sheet may be placed interposed inside the other magnetic field shielding sheet, and in the present invention, for a specific arrangement relationship It is not limited.
  • the magnetic field shielding sheet may be used for the purpose of shielding a magnetic field at a specific frequency, and even the same magnetic field shielding sheet may be used for the purpose of absorbing electromagnetic waves at other specific frequency bands.
  • the magnetic field shielding and electromagnetic wave It can be used to achieve two purposes of absorption simultaneously.
  • the magnetic field shielding sheet when used in combination with an antenna module having a wireless power receiving antenna and a near field communication (NFC) antenna, the magnetic field shielding sheet functions as an inductor and serves as an absorber absorbing radio waves. It acts as a self-shield to block the effect on the terminal body. That is, it is possible to improve the characteristics of the antenna for wireless power reception by increasing the quality factor (Q) of the resonant circuit and focus the magnetic flux toward the antenna.
  • Q quality factor
  • the magnetic field shielding sheet is a magnetic field shielding sheet including at least one thin film magnetic sheet, and may be implemented as a wireless power receiving module, for example, in combination with a wireless power receiving antenna.
  • the magnetic field shielding sheet combined with the antenna for wireless power reception may be used by punching the magnetic field shielding sheet 100 supplied in the form of a strip from the roll-shaped winding body 119 into a shape corresponding to the antenna form.
  • the magnetic field shielding sheet 500 combined with the wireless power receiving antenna is patterned in a coil shape on a thin circuit board 610 made of, for example, a flexible printed circuit board (FPCB). It is disposed on one surface of the antenna module 600 including the formed wireless power receiving antenna 621, and serves to improve the characteristics of the wireless power receiving antenna and focus the magnetic flux toward the antenna.
  • a thin circuit board 610 made of, for example, a flexible printed circuit board (FPCB). It is disposed on one surface of the antenna module 600 including the formed wireless power receiving antenna 621, and serves to improve the characteristics of the wireless power receiving antenna and focus the magnetic flux toward the antenna.
  • FPCB flexible printed circuit board
  • the magnetic field shielding sheet 500 may be attached to the antenna module 600 through an adhesive member that may be provided on one surface of the sheet, or may be attached to the antenna module 600 through a separate adhesive member (not shown).
  • the antenna module 600 included in an embodiment of the present invention may further include any one or more of an antenna for near field communication (NFC) and an antenna for magnetic security transmission (MST).
  • NFC near field communication
  • MST magnetic security transmission
  • a magnetic security transmitting antenna 623 and a short-range communication antenna 625 are disposed outside the wireless power receiving antenna 621 to form the antenna module 600.
  • the antenna 621 for wireless power reception provided in the antenna module 600 included in an embodiment of the present invention is a self-resonant wireless power receiving antenna having a frequency band including a frequency of 678 MHz as an operating frequency. And it may be provided with any one or more of a self-guided wireless power receiving antenna having a frequency band including a frequency of 100khz as the operating frequency.
  • the antenna module 600 is located on the innermost side, a frequency band containing a frequency of 100khz as an operating frequency, and the antenna 621 for the self-induction type wireless power transmission and the outermost position, the frequency including a frequency of 678MHz It may include a self-resonant wireless power receiving antenna 627 with the band as the operating frequency.
  • the magnetic field shielding sheet 500 may be implemented as a short-range communication module only in combination with a short-range communication antenna 625.
  • a magnetic field shielding sheet 500 is disposed on the antenna module 600 including the short-range communication antenna 625 formed on the circuit board 610 to improve the characteristics of the short-range communication antenna and focus the magnetic flux to face the short-range communication antenna. You can.
  • the above-described wireless power receiving module or short-range communication module illustrates a receiving module that receives a wireless signal from the transmitting module to the electronic device, but may be a transmitting module that transmits a wireless signal from the wireless power transmitting module.
  • each of the antennas 621 to 627 provided in the antenna module 600 included in the wireless power transmission module or the short-range communication module may be an antenna coil wound so that the coil has a constant inner diameter, or an antenna on the substrate.
  • the pattern may be a printed antenna pattern, and the shape, structure, size, and material of a specific antenna are not particularly limited in the present invention.
  • the short-range communication module and / or the wireless charging module according to the embodiment of the present invention described above is carried by a module for receiving short-range communication for receiving the transmitted data or a module for receiving wireless power / data for receiving the transmitted wireless power / data. It may be provided in the device, through which the wireless power transmission efficiency, data reception efficiency and charging distance or data reception distance can be improved.
  • the flake treatment and the lamination treatment of the magnetic sheet laminate can be processed in a roll-to-roll process, shielding the magnetic field in the form of a roll required by an antenna module operator or the like. Sheets can be provided.
  • the present invention can be applied to the manufacture of a magnetic field shielding sheet capable of improving the efficiency of the overall production process by treating all processes in a roll-to-roll manner, including a heat treatment process of a thin magnetic sheet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

본 발명은 박판 자성시트의 열처리 공정을 개선하여 전체적인 생산 공정의 효율 향상을 도모할 수 있는 롤 형태의 자기장 차폐시트, 자기장 차폐시트의 제조방법 및 이를 이용한 안테나 모듈에 관한 것이다. 본 발명의 자기장 차폐시트는 적어도 하나의 박판 자성시트; 상기 박판 자성시트의 일면 또는 양면에 형성된 절연층; 상기 박막 자성시트를 적층하여 접합시키도록 상기 절연층 사이에 형성된 접착층;을 포함하고, 상기 박판 자성시트는 플레이크 처리되어 복수의 자성체 파편으로 분할되어 있는 것을 특징으로 한다.

Description

자기장 차폐시트, 자기장 차폐시트의 제조방법 및 이를 이용한 안테나 모듈
본 발명은 자기장 차폐시트에 관한 것으로, 특히 박판 자성시트의 열처리 공정을 개선하여 전체적인 생산 공정의 효율 향상을 도모할 수 있는 자기장 차폐시트, 자기장 차폐시트의 제조방법 및 이를 이용한 안테나 모듈에 관한 것이다.
무선충전은 무선전력송신장치와 무선전력수신장치 사이에 전자기 유도 또는 자기 공명 현상을 이용한 무선전력전송이 이루어진다. 무선전력전송을 위해 단말기 등의 휴대전자기기에는 통신용 안테나와 신호처리부를 포함하는 안테나 모듈 및 자기장 차폐시트가 적층되어 설치되고 있다.
무선전력전송을 위한 송신 및 수신은 효율을 높이도록 공진회로를 이용하며, 주파수 선택성을 얻기 위해서 품질계수(Q)가 큰 것이 바람직하다. 품질계수(Q)는 인덕턴스(L) 값에 비례하고 저항(R)에 반비례한다. 여기서, 안테나 모듈에 적층되는 자기장 차폐시트는 인덕터로서 기능을 하여 무선전파를 흡수하는 흡수체의 역할과 단말기 본체에 대한 영향을 차단하기 위한 자기차폐 역할을 한다.
무선전력수신장치, 즉 단말기의 2차 코일에 유도되는 전압은 페러데이 법칙(Faraday's law)과 렌쯔 법칙(Lenz's law)에 의하여 결정되므로, 높은 전압 신호를 얻기 위해서는 2차 코일과 쇄교하는 자속의 양이 많을수록 유리하다. 자속의 양은 2차 코일에 포함된 연자성 재료의 양이 많을수록, 그리고 재료의 투자율이 높을수록 크게 된다. 특히, 무선충전은 본질적으로 비접촉에 의한 전력 전송이기 때문에 무선전력송신장치의 1차 코일에서 만들어지는 무선 전자기파를 수신장치의 2차 코일로 집속시키기 위해서는 2차 코일이 실장되는 자기장 차폐시트가 투자율이 높은 자성재료로 이루어지는 것이 필요하다.
자기 투자율이 높은 비정질 리본의 경우 리본 자체가 금속 박판이므로 두께에 대한 부담은 없으나, 전력전송에 사용되는 100kHz 주파수에 따른 교류 자기장이 비정질 리본에 인가될 때 리본 표면의 와전류(Eddy Current) 영향으로 응용 기능이 저하되거나 무선 충전 시 효율 저하 및 발열 등의 문제점이 발생한다.
종래의 무선전력수신장치용 자기장 차폐시트는 박막이면서 차폐에 의한 발열 문제와 무선 충전 효율을 높이지 못하는 문제점을 고려하여, 비정질 리본의 플레이크 처리에 의해 와전류(Eddy Current)에 의한 손실을 크게 줄여줌에 의해 휴대 단말기기 등의 본체 및 배터리에 미치는 자기장 영향을 차단함과 동시에 2차 코일의 품질계수(Q)를 증가시켜 전력전송 효율이 우수한 무선 충전기용 자기장 차폐시트가 제안되어 있다.
상기 자기장 차폐시트는 박판 자성시트의 양면에 보호필름과 양면 테이프를 부착한 상태에서 플레이크 처리함에 의해 박판 자성시트를 다수의 미세 조각으로 분리시킨 구조를 채용함에 의해 와전류 손실을 줄여주며 플레이크 처리된 적층시트를 라미네이트 처리하여 적층시트의 평탄화 및 슬림화와 함께 미세 조각의 틈새로 접착제를 부분적으로 충진시켜서 절연시킴에 의해 와전류 저감과 비정질 리본의 산화를 방지하고 있다.
한편, 무선 충전은 자기 유도 방식과 자기 공진 방식으로 분류되기도 하며, 무선전력송신장치에 대한 무선전력수신장치의 접근을 감지하는 방식에 따라 PMA 방식과 Qi 방식으로 분류되기도 한다. 상기 PMA 무선 충전 방식은 영구자석과 홀 센서를 이용하여 무선전력수신장치의 접근을 감지함으로써 무선전력송신장치의 동작을 제어한다.
또한, 충전기의 효율을 최대한 높이기 위해 무선전력송신장치에 무선전력수신장치와의 정합(align)을 돕는 영구자석을 채용한 구조가 많은데, 영구자석의 직류 자기장에 의해 얇은 차폐시트는 착자(포화) 현상이 발생하여 성능이 떨어지거나 전력전송 효율이 급격하게 떨어지는 문제가 발생된다.
따라서, 무선전력송신장치에 영구자석을 포함하는 경우, 무선전력수신장치에 사용되는 자기장 차폐시트는 영구자석을 포함하지 않는 경우보다 더 많은 수의 박판 자성시트가 적층되는 것이 요구된다.
한편, 박판 자성시트는 투자율을 높이기 위한 목적으로 열처리를 실시하며, 또한 열처리를 거치면 취성이 증가하여 플에이크 처리가 좀더 쉽게 이루어질 수 있다.
이에 따라 종래에는 멜트스피닝에 의한 급냉응고법(RSP)으로 롤 형태의 Fe계 비정질 리본을 제조한 후, 열처리 후의 후처리를 용이하게 할 수 있도록 먼저 일정한 길이로 컷팅하여 시트 형태로 적층한 후, 적층된 리본 시트를 배치(batch) 방식으로 열처리하였다.
열처리 후의 후처리를 용이하게 하기 위한 목적으로 일정한 길이로 컷팅한 시트 형태의 적층된 리본 시트를 배치(batch) 방식으로 열처리하는 것은 후속된 플레이크 처리와 라미네이트 처리시에 롤투롤 방법의 양산 처리가 어려운 문제를 가지고 있게 된다.
또한, 박판 자성시트의 열처리를 위해 롤 형태의 비정질 리본을 제조한 후, 권취된 롤 형태로 배치(batch) 방식으로 열처리하는 방법도 있으나, 열처리를 거치면서 취성이 증가함에 따라 후속된 플레이크 처리를 위해 권취된 비정질 리본을 펼칠때 원하지 않는 크랙 등이 발생하여 롤투롤 방법으로 후속공정을 처리할 수 없는 문제를 가지게 된다.
더욱이, 최근들어 안테나 모듈 사업자는 롤 형태의 자기장 차폐시트를 공급받아서 자신들이 원하는 패턴 형태로 자기장 차폐시트를 재단(타발 성형)하여 사용하기를 원하고 있는 데 종래에 시트 형태의 자기장 차폐시트는 이러한 요구를 충족시킬 수 없는 문제가 있다.
따라서, 본 발명은 상기한 종래기술의 문제점을 해결하고자 제안된 것으로, 그 목적은 박판 자성시트를 롤투롤 공정을 이용한 인라인(in-line) 열처리 의해 전체적인 생산 공정의 효율 향상을 도모할 수 있는 자기장 차폐시트 및 자기장 차폐시트의 제조방법을 제공하는 데 있다.
본 발명의 다른 목적은 롤투롤 공정으로 박판 자성시트를 연속 열처리함에 의해 후속된 플레이크 공정과 라미네이트 공정시에도 롤투롤 공정으로 처리가 가능하여 생산성 향상과 제조비용 절감을 도모할 수 있는 자기장 차폐시트 및 자기장 차폐시트의 제조방법을 제공하는 데 있다.
본 발명의 다른 목적은 롤투롤 방법으로 박판 자성시트의 열처리, 절연층 형성, 플레이크 처리 및 라미네이팅 처리를 순차적으로 실시함에 의해 스트립 형태로 제작되어 롤축에 권선된 롤 형태로 제공되는 자기장 차폐시트, 자기장 차폐시트의 제조방법 및 이를 이용한 안테나 모듈을 제공하는 데 있다.
상기 목적을 달성하기 위하여, 본 발명의 자기장 차폐시트는 적어도 하나의 박판 자성시트; 상기 박판 자성시트의 일면 또는 양면에 형성된 절연층; 및 상기 박막 자성시트를 적층하여 접합시키도록 상기 절연층 사이에 형성된 접착층;을 포함하고, 상기 박판 자성시트는 플레이크 처리되어 복수의 자성체 파편으로 분할되어 있는 것을 특징으로 한다.
상기 절연층은 인접하는 자성체 파편 중 적어도 일부 파편 간에 존재하는 이격 공간에 일부 침투 또는 전부 침투되어 있을 수 있으며, 상기 절연층은 천연고분자 화합물 및 합성고분자 화합물을 함유하는 절연층 형성 조성물을 포함할 수 있다.
본 발명의 자기장 차폐시트는 스트립 형태로 제작되어 롤축에 권선된 롤 형태로 제공될 수 있다. 이 경우, 상기 박판 자성시트의 두께는 15 내지 35㎛, 바람직하게는 15 ~ 20㎛일 수 있으며, 상기 박판 자성시트는 비정질 합금 또는 나노결정립 합금으로 이루어진 박판의 자성체일 수 있다.
상기 접착층은 아크릴계 접착제로 이루어지며, 두께는 5㎛ 이하, 바람직하게는 3㎛ 이하일 수 있다. 또한, 상기 절연층의 두께는 5㎛ 이하, 바람직하게는 3㎛ 이하일 수 있다.
또한, 본 발명의 자기장 차폐시트는 적층된 복수의 박판 자성시트의 상부면과 하부면에 각각 부착되는 보호부재와 접착부재를 더 포함하며, 상기 접착부재는 적층된 박판 자성시트의 하부면에 부착되는 제1접착층 및 자기장 차폐시트가 피착물에 부착 전까지 상기 제1접착층을 보호하기 위한 이형필름을 포함할 수 있다.
상기 자기장 차폐시트는 무선전력전송용 안테나 모듈에 결합되어 사용되며, 무선전력전송장치가 영구자석을 포함하는 경우 복수의 박판 자성시트를 포함할 수 있다.
본 발명의 다른 특징에 따른 자기장 차폐시트는 적어도 하나의 박판 자성시트; 상기 박판 자성시트의 일면 또는 양면에 형성된 절연층; 및 상기 박판 자성시트가 적층된 자성시트 적층체의 일측 및 타측의 측면에 각각 형성되어 측면을 실링하기 위한 제1 및 제2 실링부;를 포함하고, 상기 박판 자성시트는 플레이크 처리되어 복수의 자성체 파편으로 분할되어 있는 것을 특징으로 한다.
본 발명의 또 다른 특징에 따른 자기장 차폐시트의 제조방법은 박판 자성시트를 롤 형태로 제조하는 제1단계; 상기 롤 형태의 박판 자성시트를 순차적으로 배치된 열처리 로와 절연체 코팅장치를 이용하여 인라인 열처리를 실시하고 열처리된 박판 자성시트의 일면 또는 양면에 절연층을 형성하는 제2단계; 상기 절연층이 형성된 박판 자성시트를 다층으로 적층하여 자성시트 적층체를 형성하는 제3단계; 및 상기 자성시트 적층체를 플레이크 처리하여 박판 자성시트를 복수의 자성체 파편으로 분할시키는 제4단계;를 포함하며, 상기 제2 내지 제4단계는 롤 형태의 박판 자성시트를 사용하여 롤투롤 공정으로 실시되는 것을 특징으로 한다.
본 발명에 따른 자기장 차폐시트의 제조방법은 상기 절연층이 형성된 박판 자성시트를 다층으로 적층하여 자성시트 적층체를 형성할 때, 상기 박막 자성시트를 적층하여 접합시키도록 상기 절연층 사이에 접착층을 형성하는 단계를 더 포함할 수 있다.
또한, 상기 제3단계를 실시한 후, 상기 자성시트 적층체의 일면에 임시보호부재를 적층하는 단계를 더 포함할 수 있으며, 상기 제3단계 또는 제4단계를 실시한 후, 상기 자성시트 적층체의 양면에 보호부재와 접착부재를 적층하는 단계를 더 포함할 수 있다.
더욱이, 본 발명은 상기 자성시트 적층체를 플레이크 처리한 후, 플레이크 처리된 상기 자성시트 적층체의 평탄화와 두께를 감소시키기 위한 라미네이팅 단계를 더 포함할 수 있다.
본 발명에 따른 자기장 차폐시트의 제조방법은 상기 박판 자성시트를 다층으로 적층하여 자성시트 적층체를 형성한 후, 상기 자성시트 적층체의 양 측면을 실링하는 실링단계를 더 포함할 수 있다.
본 발명의 다른 특징에 따른 무선전력수신용 안테나 모듈은 무선전력수신용 안테나; 및 상기 안테나의 일면에 배치되어 무선전력수신용 안테나 특성을 향상시키고, 안테나를 향해 자속을 집속시키는 자기장 차폐시트;를 포함하는 것을 특징으로 한다.
상기한 바와 같이, 본 발명에서는 박판 자성시트를 롤투롤 공정을 이용한 인라인(in-line) 열처리 의해 전체적인 생산 공정의 효율 향상을 도모할 수 있다. 또한, 본 발명에서는 롤투롤 방법으로 박판 자성시트를 연속 열처리함에 의해 후속된 플레이크 공정과 라미네이트 공정시에도 롤투롤 공정으로 처리가 가능하여 생산성 향상과 제조비용 절감을 도모할 수 있다.
더욱이, 본 발명에서는 박판 자성시트의 인라인 열처리, 적층된 다층 박판 자성시트의 플레이크 처리 및 라미네이트 처리를 모두 롤투롤 공정으로 처리할 수 있어, 안테나 모듈 사업자 등이 요구하는 롤 형태의 자기장 차폐시트를 제공할 수 있다.
도 1은 본 발명의 일 실시예에 따른 자기장 차폐시트를 나타내는 단면도이다.
도 2는 본 발명의 일 실시예에 따른 자기장 차폐시트의 제조공정을 나타내는 흐름도이다.
도 3은 본 발명의 일 실시예에 따른 자기장 차폐시트의 인라인 열처리 공정을 나타내는 개략 구성도이다.
도 4a 및 도 4b는 각각 본 발명의 일 실시예에 따른 자기장 차폐시트의 열처리 공정 이후에 플레이크 공정을 위해 복수의 박판 자성시트를 적층하여 자성시트 적층체를 제조하는 공정을 나타내는 개략 공정도 및 자성시트 적층체의 폭방향 단면도이다.
도 5는 본 발명의 다른 실시예에 따른 자기장 차폐시트의 열처리 공정 이후에 플레이크 공정을 위해 복수의 박판 자성시트가 적층된 자성시트 적층체를 나타내는 단면도이다.
도 6a 및 도 6b는 본 발명의 일 실시예에 따른 자성시트 적층체의 플레이크 처리공정과 라미네이트 공정을 보여주는 개략 공정 단면도 및 확대도이다.
도 7은 본 발명의 일 실시예에 따른 자기장 차폐시트의 플레이크 처리장치를 나타내는 평면 사진이다.
도 8은 본 발명의 일 실시예에 따른 자기장 차폐시트를 구비한 안테나 모듈을 나타내는 개략 사시도이다.
이하, 첨부된 도면을 참조하여 본 발명에 따른 실시예를 상세히 설명한다. 이 과정에서 도면에 도시된 구성요소의 크기나 형상 등은 설명의 명료성과 편의상 과장되게 도시될 수 있다.
우선, 본 발명에 따른 자기장 차폐시트는, 무선 충전용으로 사용될 때, 예를 들어, 휴대용 단말기에서 이차전지의 무선 충전을 위한 무선 충전용 안테나 모듈에는 복수의 박판 자성시트가 적층된 구조를 채용할 수 있다.
특히, 무선전력송신장치에 영구자석을 포함하는 경우, 무선전력수신장치에는 박판 자성시트가 Fe계 비정질 합금으로 이루어진 경우 2 내지 8층을 적층하여 사용하고, 나노 결정립 합금으로 이루어진 경우 4 내지 12층을 적층하여 사용하는 것이 요구될 수 있다.
또한, 무선전력송신장치에 영구자석을 포함하지 않는 경우, 무선전력수신장치에는 박판 자성시트(Fe계 비정질 합금 또는 나노결정립 합금)가 1 내지 4층의 적층 구조가 요구될 수 있다.
그러나, 본 발명에 따른 자기장 차폐시트는 무선 충전용 이외의 자기장 차폐에도 적용 가능하다.
또한, 하기 실시예 설명에서 자기장 차폐시트는 복수의 박판 자성시트가 적층된 것을 예를 들어 설명하나, 본 발명의 자기장 차폐시트는 단일의 박판 자성시트를 구비할 수도 있다.
이하의 실시예 설명시에 "무선전력송신장치"는 간단히 "무선 충전기"로 지칭될 수 있다.
또한, 본 발명에 따른 자기장 차폐시트는 원재료인 복수의 박판 자성시트부터 본 발명의 모든 제조공정을 스트립 형태로 거쳐서 최종적으로 얻어지는 자기장 차폐시트까지 스트립 형태로 진행되어 롤축에 권선됨에 따라 롤 형태의 권선체가 완성품으로 안테나 모듈 사업자 등에게 제공된다. 따라서, "박판 자성시트", "자성시트 적층체", "자기장 차폐시트"는 모두 권선체로부터 제공되는 스트립 형태의 시트를 의미한다.
본 발명의 일 실시예에 따른 자기장 차폐시트(100)는, 도 1에 도시된 바와 같이, 복수의 박판 자성시트(110a~110d), 상기 자성시트(110a~110d)의 일면 또는 양면에 형성된 복수쌍의 절연층(120a,120b), 상기 복수의 박막 자성시트(110a~110d)를 적층하여 접합시키도록 복수쌍의 절연층(120a,120b) 사이에 형성된 복수의 접착층(125a~125c)을 포함하고, 상기 박판 자성시트(110a~110d)는 각각 플레이크 처리되어 복수의 자성체 파편(101)으로 미세하게 분할되거나 부분적으로 크랙이 이루어져 있다.
상기 차폐시트(100)는 절연층(120a,120b)이 양면 또는 적어도 일면에 형성된 복수의 박판 자성시트(110a~110d)가 복수의 접착층(125a~125c)을 이용하여 다층 구조로 상호 접착된 단일체 시트이다.
본 발명의 일 실시예에 따른 자기장 차폐시트(100)는 적층된 복수의 박판 자성시트(110a~110d)의 상부면과 하부면에 각각 부착되는 보호부재(140)와 접착부재(130)를 더 포함할 수 있다.
상기 접착부재(130)는 적층된 박판 자성시트(110a~110d)의 하부면에 부착되는 제1접착층(130b) 및 자기장 차폐시트(100)가 피착물에 부착 전까지 상기 제1접착층(130b)을 보호하기 위한 이형필름(130a)을 포함할 수 있다.
본 발명에 따른 자기장 차폐시트(100)는 스트립 형태로 제작되어 롤축(119a)에 롤 형태로 권선된 권선체(119)를 구성한다. 이에 따라 자기장 차폐시트를 사용하는 안테나 모듈 사업자 등은 롤 형태의 권선체(119) 제품을 공급받아서 자신들이 원하는 패턴 형태로 자기장 차폐시트(100)를 재단(타발 성형)하여 사용할 수 있다.
또한, 본 발명의 일 실시예에 따른 자기장 차폐시트(100)는 박판 자성시트(110a~110d)를 복수의 자성체 파편(101)으로 분할 또는 크랙시키는 플레이크 처리와, 플레이크 처리된 적층 시트의 평탄화와 두께 조절을 위한 라미네이트 처리를 거치면서 압착되어 복수의 박판 자성시트(110a~110d)의 양면 또는 적어도 일면에 형성된 절연층(120a,120b)의 일부는 인접하는 자성체 파편(101) 중 적어도 일부 파편 간에 존재하는 이격공간에 침투가 이루어지게 된다.
자성체 파편(101) 사이의 이격공간에 절연층(120a,120b)으로부터 침투한 절연침투부재(121)는 파편들의 지지력을 높여서 파편의 유동과 분리되는 것을 차단하며, 차폐시트에 휨강도가 가해질 때 파편간 부딪침에 의한 파편의 미세조각화, 부서짐 등의 손상을 방지할 수 있는 완충작용을 할 수 있다.
또한, 절연층(120a,120b)이 자성체 파편(101) 사이 사이에 일부 또는 전부 침투한 경우 상기 절연층(120a,120b)과 절연침투부재(121)가 유전체로서의 기능을 수행하여 와전류에 의한 자기손실을 최소화할 수 있는 이점이 있다. 이떄, 상기 박판 자성시트(110a~110d)에 구비되는 자성체는 전기저항이 낮아서 와전류에 의한 자기손실이 발생할 수 있는 자성체(예를 들어, Fe-Si-B계 비정질 합금과 같은 자성체)일 수 있다. 이 경우 자성체 파편(101)의 이격 공간에 침투된 절연침투부재(121)는 유전체로서 기능하여 자성시트의 전기저항을 현저히 증가시킴에 따라 와전류에 의한 자기손실을 방지하고 발열을 최소화할 수 있으며, 자기장을 통한 신호의 송수신 효율을 높은 감도로 지속시킬 수 있다.
이하, 본 발명의 일 실시예에 의한 자가장 차폐시트의 단면구조를 자성체가 비정질 합금인 경우에 기준해서 설명하기로 한다.
구체적으로 상기 박판 자성시트(110a~110d)는 자가장 차폐시트의 가요성을 향상시키기 위하여 자성체를 파쇄시킨 복수의 자성체 파편(101)으로 형성된다. 상기 자성체 파편의 형상은 비정형일 수 있다.
상기 자성체는 박막으로 쉽게 구현될 수 있도록 스트립 형태의 리본시트의 형상을 가지는 것이 유리할 수 있다. 차폐시트의 슬림화, 박형화를 위해서는 구비되는 자성체의 두께가 동시에 매우 얇아져야 하는데, 통상의 차폐시트에 구비되는 자성체들은 취성이 매우 강해 자성체 시트의 두께가 얇아질 경우 매우 약한 외력에도 크랙이 발생하거나 미세 파편으로 부서짐에 따라서 크랙이 발생하기 전 시트상일 때 투자율보다 크랙 발생 후 투자율이 저하되는 문제점이 있다.
또한, 박막으로 구현된 자가장 차폐시트는 제조 후 보관, 운송 및 이를 제품의 부품으로 공정에 투입 시 작업성을 현저히 감소시키는 문제점이 있다. 구체적으로 자가장 차폐시트는 안테나 등이 형성된 피착면 상에 배치되며, 안테나 특성을 보다 향상시키고, 차폐시트의 이탈을 방지하기 위해 안테나가 형성된 피착면 상에 밀착되도록 부착시키는 것이 일반적이다.
이와 같은 부착 공정을 도 1을 참고로 설명하면 자가장 차폐시트(100)는 접착부재(130)를 통해 피착면(미도시)에 부착될 수 있는데, 이를 위해 접착부재(130)의 제1접착층(130b)을 보호하는 이형필름(130a)의 제거작업이 선행된다. 그러나 이형필름(130a)을 차폐시트(100)에서 박리시키기 위해서는 일정 수준 이상의 외력을 필요로 하나, 차폐시트의 두께가 매우 얇을 경우 상기 외력에 의해 시트에 쉽게, 그리고 현저히 많은 크랙이 발생한다.
이에 따라 크랙에 따른 물성저하를 막기 위해 크랙이 발생하지 않도록 이형필름을 벗겨내는데 매우 큰 노력이 가해져 작업성이 현저히 저하되는 문제점이 있다. 또한, 차폐시트에 크랙이 발생하지 않도록 매우 큰 노력을 기울여 휴대용 기기를 제조한 경우에도 이후 사용자의 제품 취급 중 떨어뜨림 등의 충격에 의해 자성체 시트에 크랙, 부서짐이 발생하여 목적하는 수준의 송수신 효율이나 송수신 거리를 담보하지 못하는 문제가 있다.
그러나, 본 발명에 따른 자가장 차폐시트(100)는 차폐시트의 가요성을 현저히 향상시키기 위하여 자성체가 처음부터 파쇄되어 파편상태로 구비됨에 따라서 차폐시트의 단면두께가 박형화 되더라도 외력에 의해서 자성체에 크랙이 더 발생할 수 있는 우려를 원천적으로 봉쇄시킬 수 있다. 또한, 자성체가 파편상태로 차폐시트에 포함되며, 파편상태의 자성체를 포함하는 차폐시트가 처음부터 목적하는 기능에 관계된 신호의 송수신 효율 및 송수신 거리에서 우수한 특성을 발현할 수 있을 정도의 초기 물성 보유하고, 상기 초기 물성을 차폐시트를 장착하는 완성품의 제조단계, 더 나아가 완성품의 사용단계에서도 지속적으로 유지시킬 수 있음에 따라서 통상의 비파편화된 자성체를 구비하는 차폐시트에서 발생하는 의도하지 않은 파편화로 인한 물성저하 및 이로 인한 신호 송수신 성능의 현저한 저하 우려를 제거할 수 있다.
다만, 자성시트가 휘어지거나 구부러짐에 따라 발생할 수 있는 의도하지 않은 추가적인 자성체 파편의 파손, 조각, 부서짐을 더욱 방지하기 위하여 바람직하게는 일부 파편의 적어도 한 변은 직선이 아닌 만곡형상을 갖도록 파쇄될 수 있다.
외부충격으로 초도에 구비시킨 파편보다 미세화된 파편이 증가할 수 있어 자성시트의 투자율 감소 등 물성저하를 초래할 수 있는 문제가 있다.
한편, 본 발명에 따른 박판 자성시트(110a~110d)에 포함될 수 있는 자성체는 파편화된 상태로 후술하는 자기장 차폐시트의 투자율 물성을 발현할 수 있는 경우 조성, 결정종류, 소결입자의 미세구조에 제한은 없으며, 공지된 차폐시트에 구비되는 자성체를 사용해도 무방하다.
상기 자성체는 연자성체일 수 있다. 상기 연자성체는 잔류자속밀도에 대해 보자력이 극히 적고, 투자율이 크기 때문에 전자기장에 대한 차폐 효과가 뛰어나다. 상기 연자성체는 Ni-Co계 합금, Fe-Ni계 합금, Fe-Cr계 합금, Fe-Al계 합금, Fe-Si계 합금, Fe-Si-B계 합금, Fe-Si-B-Cu-Nb계 합금으로 이루어진 군에서 선택된 1 종 이상을 포함할 수 있다.
또한, 본 발명의 일 실시예에 포함되는 자성체는 비정질 합금 또는 나노결정립 합금으로 이루어진 박판의 자성체를 사용할 수 있다.
상기 비정질 합금은 Fe계 또는 Co계 비정질 합금을 사용할 수 있으며, 생산단가를 고려할 때 Fe계 비정질 합금을 사용하는 것이 바람직할 수 있다. Fe계 비정질 합금은, 예를 들어, Fe-Si-B계 비정질 합금을 사용할 수 있으며, 이때, Fe가 70 ~ 90at%, Si 및 B의 합이 10 ~ 30at%인 것이 바람직하다. Fe를 비롯한 금속의 함유량이 높을수록 포화자속밀도가 높아지지만 Fe 원소의 함유량이 과다할 경우 비정질을 형성하기 어려우므로, Fe의 함량이 70 ~ 90at%인 것이 바람직하다. 또한, Si 및 B의 합이 10 ~ 30at%의 범위일 때 합금의 비정질 형성능이 가장 우수하다. 이러한 기본 조성에 부식을 방지시키기 위해 Cr, Co 등 내부식성 원소를 20at% 이내로 첨가할 수도 있고, 다른 특성을 부여하도록 필요에 따라 다른 금속 원소를 소량 포함할 수 있다. 또한, 상기 Fe-Si-B계 합금은 예를 들어, 결정화 온도가 508℃이고, 큐리온도(Tc)가 399℃인 것을 사용할 수 있다. 그러나, 이러한 결정화온도는 Si 및 B의 함량이나, 3원계 합금 성분 이외에 첨가되는 다른 금속 원소 및 그의 함량에 따라 변동될 수 있다.
또한, 본 발명의 일실시예에 포함되는 자성체는 Fe-Si-B-Cu-Nb계 비정질 합금일 수 있다 상기 합금 내에 포함되는 구리는 합금의 내식성을 향상시키고, 결정이 생성되더라도 결정의 크기가 커지는 것을 방지하는 동시에 투자율 등의 자기적 특성을 개선할 수 있게 한다. 상기 구리는 합금내 0.01 ~ 10at%로 포함되는 것이 바람직하며, 만일 0.01at% 미만으로 포함될 경우 구리로 인해 수득되는 효과의 발현이 미미할 수 있고, 만일 10at%를 초과할 경우 비정질의 합금이 생성되기 어려울 수 있는 문제점이 있다. 또한, 합금내 포함되는 니오븀(Nb)은 투자율 등의 자기적 특성을 개선시킬 수 있으며, 합금내 0.01 ~ 10at%로 포함되는 것이 바람직하고, 만일 0.01at% 미만으로 포함될 경우 니오븀으로 인해 수득되는 효과의 발현이 미미할 수 있고, 만일 10at%를 초과할 경우 비정질의 합금이 생성되기 어려울 수 있는 문제점이 있다.
한편, 상기 박판 자성시트(110a~110d)의 두께는 자성체 파편의 유래가 되는 자성체 시트의 두께일 수 있으며, 바람직하게는 박판 자성시트(110a~110d)의 두께는 단일층의 두께가 15 내지 35㎛, 바람직하게는 15 ~ 20㎛일 수 있으나, 이에 제한되는 것은 아니다. 시트의 투자율은 두께에 비례하여 증가한다.
또한, 상기 자기장 차폐시트(100)와 박판 자성시트(110a~110d)는 롤축(119a)에 권선되어 권선체(119)는 롤 형태로 공급되며, 안테나 모듈 사업자 등의 사용자는 롤 형태로 공급된 스트립형 자기장 차폐시트(100)로부터 원하는 형태로 재단하여 사용할 수 있다.
즉, 자기장 차폐시트가 적용되는 적용처, 예를 들어, 무선 충전 또는 근거리통신(NFC)용에 사용되거나, 무선 충전과 근거리통신(NFC)을 동시에 수행하는 복합 기능의 안테나 형상에 대응되도록 형상이 직사각형, 정사각형의 사각형 이외에 오각형 등의 다각형이나 원형, 타원형이나 부분적으로 곡선과 직선이 혼재된 형상일 수 있다. 이때 차폐시트(또는 자성시트)의 크기는 대응되는 모듈의 안테나 크기보다 약 1 ~ 2mm 더 넓은 폭으로 이루어지는 것이 바람직하다.
다음으로, 상술한 박판 자성시트(110a~110d)의 적어도 일면에 형성된 절연층(120a,120b)에 대해 설명한다.
상기 절연층(120a,120b)는 파쇄되어 각각이 분리될 수 있는 자성체 파편들을 하나의 층이 될 수 있도록 자성체 파편들 각각을 고정 및 지지시켜 박판 자성시트(110a~110d)를 시트형상으로 유지시키는 동시에 자성체 파편들에 가해지는 외력을 완충시키고, 수분이 침투하여 자성체가 산화되는 것을 방지하는 역할을 담당한다.
구체적으로 상기 절연층(120a,120b)은 자성체 파편들과 용이하게 접착할 수 있고, 코팅층 자체로서 시트형상으로 유지력이 뛰어나며, 외력에 쉽게 깨지거나 박판 자성시트(110a~110d)의 가요성을 감소시키는 현저히 낮은 굴곡특성을 가지지 않고, 박막으로 구현될 수 있도록 도막성이 우수하며, 상온에서 택키(tacky)가 적어서 작업성을 저하시키지 않는 재질인 경우 제한 없이 바람직한 박막 절연층으로 사용될 수 있다.
상기 절연층(120a,120b)은 천연고분자 화합물 및 합성고분자 화합물 중 어느 하나 이상의 고분자화합물을 포함하는 절연층 형성 조성물이 고화되어 형성된 것일 수 있다. 상기 절연층 형성 조성물을 고화시키는 방법에는 특별히 제한이 없다. 일 예로, 상기 고화반응은 용제휘산에 의한 건조 또는 경화에 의한 고화, 열/광선/수분 등을 통한 화학반응에 의한 경화를 통한 고화 및 핫멜트 타입과 같은 열용융 후 냉각에 의한 고화 중 어느 것이나 제한 없이 사용될 수 있다.
구체적으로 상기 천연고분자 화합물은 아교, 젤라틴 등의 단백질계 고분자화합물, 전분, 셀룰로오스 및 그 유도체 및 복합 다당류 등의 탄수화물계 고분자 화합물 및 라텍스 등의 천연고무계 화합물 중 1 종 이상을 사용할 수 있다.
또한, 상기 합성고분자 화합물은 열가소성 고분자 화합물, 열경화성 고분자 화합물 및 고무계 화합물 중 어느 하나 이상을 포함할 수 있다.
상기 열가소성 고분자 화합물은 폴리에틸렌, 폴리프로필렌, 폴리스티렌, 폴리염화비닐, 폴리아크릴로나이트릴 수지, 아크릴로나이트릴-부타디엔-스티렌(ABS), 스트렌-아크릴로나이트릴(SAN), 아크릴계 수지, 메타크릴계 수지, 폴리아미드, 열가소성 폴리에스테르(Ex 폴리에틸렌테레프탈레이트(PET), 폴리부틸렌테레프탈레이트(PBT) 등), 폴리카보네이트, 폴리페닐렌설파이드 수지, 폴리아미드이미드, 폴리비닐부티랄, 폴리비닐포르말, 폴리히드록시폴리에테르, 폴리에테르, 폴리프탈아마이드(polypthalamide), 불소계 수지(Ex 폴리테트라플루오로에틸렌(PTFE) 및 폴리클로로트리플루오로에틸렌(PCTFE)), 페녹시 수지, 폴리우레탄계 수지, 나이트릴부타디엔 수지 등을 1 종 이상 포함할 수 있다. 또한, 상기 열경화성 고분자 화합물은 페놀계수지(PE), 유레아계 수지(UF), 멜라민계 수지(MF), 불포화 폴리에스테르계 수지(UP) 및 에폭시 수지 등을 1종 이상 포함할 수 있다. 또한, 상기 고무계 화합물은 스티렌-부타디엔 고무(SBR), 폴리부타디엔 고무(BR), 아크릴로나이트릴-부타디엔 고무(NBR), 폴리이소부틸렌(PIB) 고무, 아크릴고무, 불소고무, 실리콘 고무 및 클로로프렌 등을 1종 이상 포함할 수 있다.
상기 절연층(120a,120b)은 보다 바람직하게는 절연층의 완충작용 향상을 통한 자성체의 의도하지 않은 미세 파편화를 방지하고, 자기장 차폐시트의 가요성을 더욱 향상시키기 위하여 고무계 화합물이 고화되어 형성된 것일 수 있고, 상기 고무계 화합물로 보다 더 바람직하게는 에틸렌-프로필렌-디엔 고무(Ethylene Propylene Diene Monomer, EPDM)가 공중합된 폴리머일 수 있다.
상기 절연층(120a,120b)을 형성시키는 절연층 형성조성물이 경화반응을 통하여 고화되는 경우 상술한 고분자 화합물을 경화시킬 수 있는 경화성 성분을 더 포함할 수 있고, 경우에 따라서 용매, 경화촉진제를 더 포함할 수 있다.
또한, 상기 절연층 형성 조성물은 필요에 따라 pH 조정제, 이온포착제, 점도조정제, 요변성(搖變性) 부여제, 산화방지제, 열안정제, 광안정제, 자외선흡수제, 착색제, 탈수제, 난연제, 대전방지제, 방미제(防黴劑), 방부제, 등의 각종 첨가제의 1 종류 또는 2 종류 이상이 첨가될 수도 있다.
더욱이, 상기 절연층(120a,120b)의 두께는 5㎛ 이내로 구현됨이 바람직하고, 박형화 측면에서 3㎛ 이하로 구현됨이 좋다. 다만, 3㎛ 미만으로 구현될 경우 자성체 파편들의 탈락, 유동 등을 방지할 수 없을 수 있고, 기계적 강도가 약해 쉽게 찢어지거나 파편에 의해 절연층이 찢어지거나 손상되는 문제가 있을 수 있다.
한편, 본 발명의 자기장 차폐시트(100)는 도 1에 도시된 바와 같이 적층된 복수의 박판 자성시트(110a~110d)의 상부에는 보호부재(140)가 배치되고, 박판 자성시트(110a~110d)의 하부에는 이형필름(130a) 및 상기 이형필름(130a) 일면에 형성된 제1접착층(130b)을 구비하는 접착부재(130)를 더 포함할 수 있다.
먼저, 상기 보호부재(140)는 자성체 시트를 파쇄시키는 공정에서 자성체에 직접적으로 외력이 가해지는 것을 방지하고, 파쇄과정에서 발생하는 자성체 분말이 비산하는 것을 방지시켜 작업장 환경을 쾌적하게 유지시키는데 도움을 줄 수 있다. 또한, 안테나 패턴이 형성된 가요성 기판(FPCB)에 자기장 차폐시트를 부착시키는 공정에서 접착제의 경화를 위해 가해지는 열/압력 등으로부터 자기장 차폐시트를 보호하는 역할을 수행한다.
상기 보호부재(140)는 통상적으로 자기장 차폐시트에 구비되는 보호필름일 수 있으며, 자성체 시트의 파쇄공정 또는 자기장 차폐시트의 부착공정에서 가해지는 열이나 외력을 견딜 수 있을 만큼의 내열성 및 외부에서 가해지는 물리적, 화학적 자극에 대해 박판 자성시트(110a~110d)를 보호할 수 있을 정도의 기계적 강도, 내화학성이 담보되는 재질로 이루어진 보호부재의 경우 제한 없이 사용될 수 있다. 이에 대한 비제한적인 예로서, 폴리에틸렌, 폴리프로필렌, 폴리이미드, 가교 폴리프로필렌, 나일론, 폴리우레탄계 수지, 아세테이트, 폴리벤즈이미다졸, 폴리이미드아마이드, 폴리에테르이미드, 폴리페닐렌설파이드(PPS) 폴리에틸렌테레프탈레이트(PET), 폴리트리메틸렌테레프탈레이트(PTT) 및 폴리부틸렌테레프탈레이트(PBT), 폴리비닐리덴플루오라이드(PVDF), 폴리테트라플루오로에틸렌(PTFE) 및 폴리클로로트리플루오로에틸렌(PCTFE), 폴리에틸렌테트라플루오로에틸렌(ETFE) 등의 필름을 단독 또는 병용할 수 있다.
또한, 상기 보호부재(140)는 1 ~ 100㎛, 바람직하게는 10 ~ 30㎛의 두께를 가지는 것을 사용할 수 있으나 이에 제한되는 것은 아니다.
더욱이, 보호부재(140)는 적층된 복수의 박판 자성시트(110a~110d)의 최상부 절연층(120a)상에 별도의 접착부재 없이 직접 대면하여 부착되거나 또는 별도의 접착부재를 개재시켜 접착될 수도 있다. 다만, 자기장 차폐시트의 박형화를 위하여 접착부재의 개재없이 직접 절연층(120a)에 부착되는 것이 바람직하다.
다음으로 상기 접착부재(130)는 자기장 차폐시트(100)를 안테나 또는 안테나가 구비된 기판 등에 부착시키기 위한 역할을 수행한다. 도 1에 도시된 바와 같이, 상기 접착부재(130)는 자기장 차폐시트(100)을 피부착면에 부착시키는 제1접착층(130b)을 포함할 수 있고, 상기 제1접착층(130b)을 보호하기 위한 이형필름(130a)을 더 구비할 수 있다. 상기 이형필름(130a)은 제1접착층(130b)에서 쉽게 제거될 수 있는 통상의 공지된 이형필름의 경우 제한 없이 사용할 수 있으며, 본 발명에서는 이에 대해 특별히 한정하지 않고, 최종 피착면 자기장 차폐시트가 부착되기 전 자기장 차폐시트(100)에서 제거될 수 있다.
상기 제1접착층(130b)은 박판 자성시트(110a~110d)의 최하부에 접착층 형성 조성물이 도포되어 형성되거나, 이형필름(130a)상에 접착조성물이 도포되어 형성된 제1접착층(130b)이 박판 자성시트(110a~110d)의 최하부에 부착되어 구비될 수 있다. 또한, 상기 제1접착층(130b)은 기계적 강도의 보강을 위하여 지지필름의 양면에 접착층 형성조성물이 코팅된 양면형 접착층, 예를 들어, 양면 테이프일 수도 있다.
이하에 상술한 본 발명의 일실시예에 따른 자기장 차폐시트의 제조방법에 대하여 도 2를 참고하여 설명한다.
본 발명의 일실시예에 따른 자기장 차폐시트의 제조방법은, 박판 자성시트(110a~110d)를 롤 형태로 제조하는 제1단계(S11); 상기 롤 형태의 박판 자성시트(110a~110d)를 복수개, 순차적으로 배치된 열처리 로(200)와 절연체 코팅장치(205)를 이용하여 롤투롤 공정을 이용한 인라인 열처리와 박판 자성시트(110a~110d)의 일면 또는 양면에 절연층(120a,120b)을 형성하는 제2단계(S12); 상기 절연층(120a,120b)이 형성된 박판 자성시트(110a~110d)를 다층으로 적층한 후, 양면에 보호부재(140)와 접착부재(130)를 적층하여 자성시트 적층체(100a)를 형성하는 제3단계(S13); 및 상기 자성시트 적층체(100a)를 플레이크 처리와 라미네이팅 처리를 순차적으로 실시하여 박판 자성시트(110a~110d)를 복수의 자성체 파편(101)으로 미세하게 분할시키는 제4단계(S14)를 포함하여 제조될 수 있으며, 본 발명은 이에 제한되는 것은 아니다.
이하에 상기한 본 발명에 따른 자기장 차폐시트의 제조방법을 공정별로 상세하게 설명한다.
먼저, 상기 박판 자성시트(110a~110d)를 롤 형태로 제조하는 제1단계(S11)는 비정질 합금 또는 나노결정립 합금으로 이루어진 비정질 리본을 멜트 스피닝에 의한 급냉응고법(RSP)으로 제조한다. 이 경우, 멜트 스피닝에 의한 급냉응고법(RSP)으로 제조되는 비정질 리본은 일정한 폭을 가지며 연속된 스트립 형태로 얻어진다. 스트립 형태의 박판 자성시트(110a~110d)를 롤축(115a)에 권선하면 롤 형태의 권선체(111)가 얻어질 수 있다.
비정질 리본이 비정질 합금인 경우, Fe계 비정질 리본, 예를 들어, Fe-Si-B 합금으로 이루어진 30㎛ 이하의 박판 자성시트(110a~110d)를 롤축(115a)에 권선하여 롤 형태로 제조하고, 또한, 비정질 리본이 나노결정립 합금으로 이루어진 경우, Fe계 비정질 리본, 예를 들어, Fe-Si-B-Cu-Nb 합금으로 이루어진 30㎛ 이하의 박판 자성시트(110a~110d)를 롤축(115a)에 권선하여 롤 형태로 제조할 수 있다.
이어서, 롤투롤 공정을 이용한 인라인 열처리와 절연층 코팅을 실시하는 제2단계(S12)를 실시하도록 도 3에 도시된 바와 같이, 열처리 로(200)와 절연체 코팅장치(205)가 순차적으로 배치된 인라인(in-line) 설비에 복수의 박판 자성시트(110a~110d)가 동시에 통과하도록 설치한다.
이를 위해 열처리 로(200)의 전단에 롤축(115a)에 박판 자성시트(110a~110d)가 권선된 복수의 권선체(111)를 배치하고, 이로부터 공급되는 박판 자성시트(110a~110d)의 선단부는 열처리 로(200)와 절연체 코팅장치(205)를 통과한 후, 구동모터(도시되지 않음)에 의해 권선 구동되는 롤축(115b)에 권선되도록 권선릴(도시되지 않음)을 절연체 코팅장치(205)의 후단부에 배치한다.
이 경우, 열처리 로(200)는 예를 들어, 20~30m의 길이의 연속로로 구성된 인라인 열처리 장치이고, 절연체 코팅장치(205)는 예를 들어, 바코터(Bar Coater)를 사용하여 열가소성 고분자 화합물, 열경화성 고분자 화합물 및 고무계 화합물 중 어느 하나를 코팅하는 장비로 구현될 수 있다.
이러한 상태에서 Fe계 비정질 리본, 예를 들어, Fe-Si-B 합금으로 이루어진 박판 자성시트(110a~110d)는 원하는 투자율을 얻을 수 있도록 300℃~600℃, 바람직하게는 300℃~400℃의 온도범위에서 열처리를 행한다. 이 경우, 열처리 분위기는 질소 분위기 또는 대기 중에서 열처리를 진행하여도 무방하다.
상기한 열처리 온도가 300℃ 미만인 경우 자성시트 제조 시 발생한 내부 응력의 풀림(stress relief)이 완벽하게 이루어지지 않아 투자율 등의 자기특성의 불균일이 해소되지 않기 때문에 열처리 시간을 길게 해야 하는 문제가 있고, 600℃를 초과하는 경우 과열처리에 의해 자성시트 내부에 결정화가 급격하게 이루어지고 이에 따라 투자율이 현저하게 낮아져서 원하는 투자율을 나타내지 못하는 문제가 있다.
또한, 비정질 리본이 나노결정립 합금으로 이루어진 경우, Fe계 비정질 리본, 예를 들어, Fe-Si-B-Cu-Nb 합금으로 이루어진 박판 자성시트(110a~110d)는 300℃~700℃, 바람직하게는 400℃~550℃의 온도범위에서 열처리를 행함으로써 나노 결정립이 형성된 나노 결정립 리본 시트를 형성한다.
이 경우, 열처리 분위기는 Fe의 함량이 70at% 이상이므로 대기 중에서 열처리가 이루어지면 산화가 이루어져서 시각적인 측면에서 바람직하지 못하며, 따라서 질소 분위기에서 이루어지는 것이 바람직하다.
이 경우, 열처리 온도가 300℃ 미만인 경우 나노 결정립이 충분히 생성되지 않아 원하는 투자율이 얻어지지 않으며 열처리 시간이 길게 소요되는 문제가 있고, 700℃를 초과하는 경우는 과열처리에 의해 투자율이 현저하게 낮아지는 문제가 있다.
박판 자성시트(110a~110d)는 절연체 코팅장치(205)의 후단부에 배치된 권선릴의 롤축(115b)을 구동모터에 의해 미리 설정된 속도로 권선 구동이 이루어지면 열처리 로(200)의 전단에 롤축(115a)에 권선되어 있는 박판 자성시트(110a~110d)는 권선체(111)로부터 풀리면서 열처리 로(200)와 절연체 코팅장치(205)를 미리 설정된 이송속도로 통과하면서 투자율 향상을 위한 인라인 열처리가 이루어진 후, 박판 자성시트(110a~110d)의 일면 또는 양면에 절연층(120a,120b)의 코팅이 이루어질 수 있다.
상기한 실시예 설명에서는 박판 자성시트(110a~110d)의 열처리후 바로 이어서 절연층(120a,120b)의 형성이 이루어지는 것을 예시하였으나, 상기 절연층(120a,120b)의 형성은 별도 공정으로 이루어질 수 있다.
열처리 로(200)는 입구로부터 구간별로 승온, 유지, 냉각 등의 처리가 연속적으로 이루어진 후 출구로 배출되는 노(furnace)이다.
상기 박판 자성시트(110a~110d)는 예를 들어, 멜트 스피닝에 의한 급냉응고법(RSP)으로 제조된 Fe-Si-B-Co-Ni계 비정질 합금 리본으로서 두께가 24㎛인 리본 스트립을 열처리 로(200)에서 460℃, 대기 분위기에서 무자장 열처리를 실시하고, 절연체 코팅장치(205)에서 에틸렌-프로필렌-디엔 고무(Ethylene Propylene Diene Monomer, EPDM) 9중량%와 톨루엔 91중량%가 혼합된 절연층 형성 조성액을 바코터(Bar coater)를 이용하여 코팅하고, 건조하여 두께가 3㎛인 절연층을 형성할 수 있다.
상기 절연체 코팅장치(210)를 통과한 복수의 박판 자성시트(110a~110d)는 각각 일면 또는 양면에 절연층(120a,120b)이 코팅된 상태로 권선릴의 롤축(115b)에 롤 형태로 권선되어 권선체(113)를 형성한다.
그후, 제3단계(S13)에 따라 복수개의 박판 자성시트(110a~110d)를 자기장 차폐시트(100)가 적용되는 용도에 따라 적정 개수로 적층하여 자성시트 적층체(100a)를 형성한다. 도 4a 및 도 4b에 도시된 실시예 설명에서는 절연층(120a,120b)이 양면에 형성된 4개의 박판 자성시트(110a~110d)를 적층하는 것을 예를 들어 설명한다.
이 경우, 상기 절연층(120a,120b)이 형성된 박판 자성시트(110a~110d) 사이에는 상호 접착하여 단일체를 형성하기 위해 각각 접착층(125a~125c)이 형성되어 있으며, 4층 적층체의 일면에 보호부재(140)를, 타면에 접착부재(130)를 각각 적층한다.
상기 접착층(125a~125c)은 공지의 접착제일 수 있고, 이에 대한 비제한적인 예로서 아크릴계, 우레탄계, 에폭시계 등의 접착제를 사용할 수 있다. 특히, 상기 접착층(125a~125c)은 각각 무기재 타입의 아크릴계 접착제로 이루어지며, 두께는 5㎛ 이하, 바람직하게는 3㎛ 이하로 형성될 수 있다.
복수개의 박판 자성시트(110a~110d)를 적층하여 자성시트 적층체(100a)를 형성하는 제3단계(S13)도 롤투롤 공정으로 진행될 수 있다.
상기 제2단계(S12)에서 얻어진 절연층(120a,120b)이 양면에 형성된 4개의 박판 자성시트(110a~110d)를 롤축(115b)에 권선체(113)가 형성된 롤 형태로 준비한 후, 먼저 접착제 코팅기(210)를 이용하여 3개의 박판 자성시트(110b~110d)의 일면 또는 양면에 접착제를 도포하여 접착층(125a~125c)을 도포한 후, 이어서 보호부재(140), 4개의 박판 자성시트(110a~110d) 및 접착부재(130) 순서로 적층된 적층체를 합지기(215)를 이용하여 합지하면 롤 형태의 자성시트 적층체(100a)가 얻어질 수 있다.
상기한 도 4a 및 도 4b에 도시된 실시예 설명에서는 절연층(120a,120b)이 양면에 형성된 4개의 박판 자성시트(110a~110d)를 이들 사이에 접착층(125a~125c)을 삽입하여 합지함에 의해 단일체의 자성시트 적층체(100a)를 형성하는 것을 예시하였으나, 본 발명은 다른 구조로 변형될 수 있다.
도 5에 도시된 다른 실시예에 따르면, 자성시트 적층체는 절연층(120a,120b)이 양면에 형성된 4개의 박판 자성시트(110a~110d)를 적층한 후, 적층된 박판 자성시트(110a~110d)의 양 측면을 각각 실링제로 코팅하여 제1 및 제2 실링부(127a,127b)를 형성할 수 있다.
이 경우, 제1 및 제2 실링부(127a,127b)는 적층된 박판 자성시트(110a~110d)의 상부면과 하부면의 일부를 커버하도록 형성되어 복수의 박판 자성시트(110a~110d)가 적층된 자성시트 적층체 내부로 누수되는 것을 막고 일체화하도록 구성될 수 있다.
실링제로 사용 가능한 물질은 실리콘이나 에폭시 등을 사용할 수 있으며, 본 발명에서는 이에 대해 특별히 한정하지 않고 공지된 실링제를 제한 없이 사용할 수 있다.
상기와 같이 자성시트 적층체(100a)를 준비한 후, 플레이크 처리와 라미네이팅 처리를 순차적으로 실시하여 박판 자성시트(110a~110d)를 복수의 자성체 파편(101)으로 미세하게 분할시킨 후 평탄화와 함께 두께를 줄여주는 제4단계(S14)를 실시한다.
본 발명에서는 자성시트 적층체의 플레이크 공정과 라미네이트 공정을 도 6a 및 도 6b에 도시된 플레이크 장치(220)와 라미네이팅 장치(230)를 이용하여 롤투롤 방식으로 연속하여 실시할 수 있다.
도 6a 및 도 6b를 참고하면, 본 발명에 따른 플레이크 장치(220)와 라미네이팅 장치(230)는 연속적으로 배치되어 있으며, 플레이크 장치(220)의 전단부에 롤축(117a)에 권취된 권선체(117)로부터 스트립 형태의 자성시트 적층체(100a)가 공급되고, 라미네이팅 장치(230)의 후단부에 플레이크 처리공정과 라미네이트 공정을 거친 스트립 형태의 자기장 차폐시트(100)가 배출되어 구동모터에 의해 구동되는 롤축(119a)에 롤 형태로 권선되어 권선체(119)를 형성한다.
상기 자성시트 적층체(100a)의 박판 자성시트(110a~110d)를 복수의 자성체 파편(101)으로 플레이크시키는 방법은 공지된 박판 자성시트(즉, 자성체)의 파쇄방법인 경우 제한 없이 채용하여 사용할 수 있다. 그 일예로, 박판 자성시트를 플레이크 장치(즉, 파쇄장치)를 통과시켜 상기 박판 자성시트를 비정형의 파편들로 조각낼 수 있고, 이후 압력을 가하여 자성시트 적층체(100a)를 평탄화시켜 자성체 파편들의 집합체가 목적하는 두께를 가지도록 하는 동시에 자성체 파편들 간의 이격공간을 줄일 수 있다.
상기 복수의 자성체 파편(101)에 압력을 가하는 방법은 플레이크 장치에서 파쇄와 함께 파쇄된 파편들에 압력을 가하는 방식으로 수행되거나 자성체를 파쇄시킨 후 별도의 라미네이팅 장치를 이용하여 가압공정을 더 수행할 수도 있다.
도 6a 및 도 6b에 도시된 것과 같이, 플레이크 장치(220)는 대향한 격벽 사이에 회전 가능하게 지지되는 복수의 파쇄 롤러(221~223)와, 파쇄 롤러(221~223)의 하측에 배치되고 파쇄 롤러(221~223)와 접촉되는 복수의 가압 롤러(221a~223a)를 포함한다.
상기 복수의 파쇄 롤러(221~223)는 외주에 복수의 요철이 축방향을 따라 형성되어 있으며, 요철 구조에 특별한 제한은 없다. 상기 복수의 파쇄 롤러(221~223)는 외주에 복수의 요철이 형성되는 대신에 복수의 구형볼이 장착되는 것도 가능하다. 복수의 가압 롤러(221a~223a)는 파쇄 롤러(221~223)의 압박을 받아줄 수 있는 고무롤러로 구성될 수 있다.
도 6a 및 도 6b에는 파쇄 롤러(221~223)가 3개로 구성된 것을 예시하였으나, 자성시트 정층체(100a)의 두께, 박판 자성시트(110a~110d)의 적층수, 자기장 차폐시트(100)가 적용되는 환경 등에 따라 요구되는 자성체 파편(101)의 크기가 달라질 수 있고, 이에 따라 파쇄 롤러(221~223)의 수는 다양하게 변형될 수 있다.
도 7에는 파쇄 롤러가 6열로 이루어진 것을 나타낸 사진이다.
박판 자성시트(즉, 자성체)의 플레이크(파쇄)시키기 위해 라미네이팅 장치(230)의 후단부에 배치된 구동모터에 의해 구동되는 롤축(119a)이 소정 속도로 회전되면 플레이크 장치(220)의 전단부에 위치한 권선체(117)로부터 스트립 형태의 자성시트 적층체(100a)가 공급되어 플레이크 장치(220)를 거치게 된다.
그 결과, 플레이크 장치(220)를 통과한 자성시트 적층체(100a)의 박판 자성시트(110a~110d)는 복수의 자성체 파편(101)으로 분할 또는 크랙이 이루어지게 된다.
플레이크 처리가 다단으로 구성되고, 파쇄 롤러(221~223)와 가압 롤러(221a~223a) 사이의 간격을 후단으로 갈수록 좁게 설정하면, 박판 자성시트(110a~110d)는 파쇄되는 자성체 파편(101)의 크기가 작아지고, 자성시트 적층체(100a)는 평탄화와 동시에 두께도 점차적으로 축소될 수 있다.
또한, 플레이크 처리에 따라 박판 자성시트(110a~110d)가 복수의 자성체 파편(101)으로 분할되면서 복수의 박판 자성시트(110a~110d)의 양면 또는 적어도 일면에 형성된 절연층(120a,120b)의 일부가 인접하는 자성체 파편(101) 중 적어도 일부 파편 간에 존재하는 이격공간에 침투가 이루어질 수 있으나, 충분한 침투가 이루어지지는 못한다.
더욱이, 절연층(120a,120b)이 이격공간에 침투가 부족하면 자성체 파편(101)의 유동에 따라 자성체 파편(101)이 서로 접촉하여 자성체 파편(101)의 크기가 증가하여 와전류 손실의 증가와 투자율의 변화가 발생할 수 있다.
따라서, 이러한 현상을 막기 위해서 절연층(120a,120b)의 일부가 인접하는 자성체 파편(101) 사이에 충분히 침투하고 시트의 평탄화가 이루어지려면 라미네이트 공정이 후속되는 것이 바람직하다.
플레이크 장치(220)의 후단에 배치된 라미네이팅 장치(230)는 적어도 하나의 상부 롤러(231,232)와 이에 대응하는 적어도 하나의 하부 롤러(231a,232a)를 포함한다. 상부 롤러(231,232)와 하부 롤러(231a,232a)는 각각 가압롤러로 구성될 수 있다.
플레이크 장치(220)를 통과하면서 박판 자성시트(110a~110d)가 복수의 자성체 파편(101)으로 분할 또는 크랙된 자성시트 적층체(100a)는 라미네이팅 장치(230)를 거치면서 더욱더 가압이 이루어지게 된다.
그 결과, 라미네이팅 장치(230)를 통과하여 배출되는 자기장 차폐시트(100)는 도 1에 도시된 바와 같이, 라미네이트 처리를 거치면서 압착되어 시트의 평탄화와 두께 조절이 이루어짐과 동시에 복수의 박판 자성시트(110a~110d)의 양면 또는 적어도 일면에 형성된 절연층(120a,120b)의 일부, 즉 절연침투부재(121)가 인접하는 자성체 파편(101) 중 적어도 일부 파편 간에 존재하는 이격공간에 침투가 이루어지게 된다.
그 결과, 자성체 파편(101) 사이의 이격공간에 절연층(120a,120b)으로부터 침투한 절연침투부재(121)는 파편들의 지지력을 높여서 파편의 유동과 분리되는 것을 차단하며, 차폐시트에 휨강도가 가해질 때 파편간 부딪침에 의한 파편의 미세조각화, 부서짐 등의 손상을 방지할 수 있는 완충작용을 할 수 있다.
본 발명의 일실시예에 따라서 상기 플레이크 단계를 통해 파쇄된 자성체 파편의 형상은 비정형일 수 있다. 다만, 제조된 차폐시트가 휘어지거나 구부러짐에 따라 발생할 수 있는 의도하지 않은 추가적인 자성체 파편의 파손, 조각, 부서짐을 더욱 방지하기 위하여 바람직하게는 일부 파편의 적어도 한 변은 직선이 아닌 만곡형상을 갖도록 파쇄될 수 있다.
한편, 상기한 실시예 설명에서는 플레이크 처리와 라미네이팅 처리를 실시할 때, 복수의 박판 자성시트(110a~110d)를 복수의 접착층(125a~125c)을 이용하여 적층한 후, 적층체의 일면에 보호부재(140)를, 타면에 접착부재(130)를 각각 적층하여 얻어진 자성시트 적층체(100a)를 가지고 진행한 것을 예시하였다.
그러나, 본 발명은 적층체의 양면에 보호부재(140)와 접착부재(130)를 부착하지 않고 복수의 박판 자성시트(110a~110d)의 적층체 만으로 진행하거나, 임시 보호부재를 파쇄 롤러(221~223)와 접촉되는 적층체의 상부면에만 부착하고나 양면에 부착한 상태로 플레이크 처리와 라미네이팅 처리를 실시할 수 있다.
임시보호부재를 적층하여 플레이크 처리와 라미네이팅 처리를 거친 경우, 임시보호부재를 벗겨내고 적층체의 일면에 보호부재(140)를, 타면에 접착부재(130)를 각각 적층하여 자기장 차폐시트를 완성할 수 있다.
상기 임시보호부재는 파쇄되는 자성체의 비산 및 손실을 방지하여 작업장 환경을 쾌적화시키고, 손실되는 자성체로 인한 재료비 상승 등을 예방할 수 있는 이점이 있다. 상기 임시보호부재는 점착층을 일면에 구비하여 자성체에 임시점착되거나 자성체상에 부착되지 않고, 물리적으로 올려 놓아진 상태로 파쇄장치를 통과할 수 있다. 상기 임시보호부재는 통상적인 PET 필름이나 종이 등일 수 있고 소재상 특별한 제한은 없다.
상기한 바와 같이, 본 발명의 일실시예에 따른 자기장 차폐시트(100)는 전체 제조공정이 롤투롤 방식으로 진행되어 최종적으로 도 1에 도시된 바와 같이, 롤축(119a)에 자기장 차폐시트(100)가 권선되어 롤 형태의 권선체(119)로서 제공될 수 있다.
상술한 본 발명의 일실시예에 따른 자기장 차폐시트(100)는 소정의 주파수에서 자기적 특성이 상이한 다른 자기장 차폐시트와 복합화되어 서로 다른 주파수 대역을 사용하는 안테나의 특성을 각각 동시에 향상시킬 수 있는 복합 자기장 유닛으로 구현될 수도 있으며, 이때 서로 다른 자기장 차폐시트의 배치는 적층구조일 수 있고, 어느 일 자기장 차폐시트가 다른 자기장 차폐시트의 내부에 끼워져 배치될 수 있으며 본 발명에서는 구체적인 배치관계에 대해서는 한정하지 않는다.
한편, 상기 자기장 차폐시트는 특정 주파수에서는 자기장 차폐의 목적으로 사용될 수 있고, 동일한 자기장 차폐시트일지라도 다른 특정 주파수대역에서는 전자파 흡수의 목적으로 사용될 수 있으며, 안테나 모듈과 조합되어 사용되는 경우 자기장 차폐와 전자파 흡수의 2가지 목적을 동시에 달성하도록 사용될 수 있다.
예를 들어, 자기장 차폐시트가 무선전력수신용 안테나 및 근거리통신(NFC)용 안테나가 형성된 안테나 모듈과 조합되어 사용되는 경우, 자기장 차폐시트는 인덕터로서 기능을 하여 무선전파를 흡수하는 흡수체의 역할과 단말기 본체에 대한 영향을 차단하는 자기차폐 역할을 한다. 즉, 공진회로의 품질계수(Q)를 증가시켜 무선전력수신용 안테나 특성을 향상시키고 안테나를 향하도록 자속을 집속시킬 수 있다.
우선, 본 발명의 일실시예에 따른 자기장 차폐시트는 적어도 하나의 박막 자성시트를 포함하는 자기장 차폐시트로서 예를 들어, 무선전력수신용 안테나와 조합되어 무선전력수신 모듈로 구현될 수 있다.
이 경우, 무선전력수신용 안테나와 조합되는 자기장 차폐시트는 롤 형태의 권선체(119)로부터 스트립 형태로 공급되는 자기장 차폐시트(100)를 안테나 형태에 대응하는 형상으로 타발 성형하여 사용할 수 있다.
도 8을 참고로 설명하면, 무선전력수신용 안테나와 조합되는 자기장 차폐시트(500)는 예를 들어, 가요성 인쇄회로기판(FPCB)로 이루어진 박막의 회로기판(610)상에 코일 형상으로 패턴 형성된 무선전력수신용 안테나(621)를 포함하는 안테나 모듈(600)의 일면에 배치되어, 무선전력수신용 안테나 특성을 향상시키고 자속이 안테나를 향하도록 집속시키는 역할을 한다.
이때, 자기장 차폐시트(500)는 시트의 일면에 구비될 수 있는 접착부재를 통해 안테나 모듈(600)에 부착되거나 별도의 접착부재(미도시)를 통해 안테나 모듈(600)에 부착될 수도 있다.
또한, 본 발명의 일실시예에 포함되는 상기 안테나 모듈(600)은 근거리통신(NFC)용 안테나 및 마그네틱 보안전송(MST)용 안테나 중 어느 하나 이상을 더 포함할 수 있다. 무선전력수신용 안테나(621)의 외측으로 마그네틱 보안전송용 안테나(623) 및 그 외측으로 근거리 통신용 안테나(625)가 배치되어 안테나 모듈(600)을 형성할 수 있다.
더욱이, 본 발명의 일실시예에 포함되는 상기 안테나 모듈(600)에 구비된 무선전력수신용 안테나(621)는 678MHz의 주파수를 포함하는 주파수대역을 동작주파수로 하는 자기공진방식 무선전력수신용 안테나 및 100khz의 주파수를 포함하는 주파수대역을 동작주파수로 하는 자기유도방식 무선전력수신용 안테나 중 어느 하나 이상을 구비할 수 있다.
즉, 안테나 모듈(600)은 최내측에 위치하고, 100khz의 주파수를 포함하는 주파수대역을 동작주파수로 하는 자기유도방식 무선전력전송용 안테나(621) 및 최외측에 위치하고, 678MHz의 주파수를 포함하는 주파수대역을 동작주파수로 하는 자기공진방식 무선전력수신용 안테나(627)를 포함할 수 있다.
또한, 상술한 본 발명의 일실시예에 따른 자기장 차폐시트(500)는 단지 근거리통신용 안테나(625)와 조합되어 근거리통신 모듈로 구현될 수 있다. 회로기판(610) 상에 형성된 근거리통신용 안테나(625)를 포함하는 안테나 모듈(600)상에 자기장 차폐시트(500)가 배치되어 근거리통신용 안테나 특성을 향상시키고 근거리통신용 안테나를 향하도록 자속을 집속시킬 수 있다.
한편, 상술한 본 발명에 따른 무선전력수신 모듈 또는 근거리통신 모듈은 송신모듈로부터 전자기기 측으로 무선 신호를 수신하는 수신모듈을 예시하였으나, 무선전력송신 모듈로부터 무선 신호를 송출하는 송신모듈일 수 있다.
또한, 무선전력전송 모듈 또는 근거리통신 모듈에 포함된 안테나 모듈(600)에 구비되는 각각의 안테나(621~627)는 코일이 일정한 내경을 가지도록 감겨진 안테나 코일일 수 있고, 또는 기판상에 안테나 패턴이 인쇄된 안테나 패턴일 수 있으며, 구체적인 안테나의 형상, 구조, 크기, 재질 등은 본 발명에서 특별히 한정하지 않는다.
나아가, 상술한 본 발명의 일실시예에 따른 근거리통신 모듈 및/또는 무선 충전 모듈은 전송된 데이터를 수신하는 근거리통신 수신용 모듈 또는 전송된 무선전력/데이터를 수신하는 무선전력 수신용 모듈로 휴대기기에 구비될 수 있으며, 이를 통해 무선전력전송 효율, 데이터 수신 효율 및 충전거리 또는 데이터 수신거리가 향상될 수 있다.
상기한 바와 같이 본 발명에서는 박판 자성시트의 인라인 열처리를 포함하여, 자성시트 적층체의 플레이크 처리 및 라미네이트 처리를 모두 롤투롤 공정으로 처리할 수 있어, 안테나 모듈 사업자 등이 요구하는 롤 형태의 자기장 차폐시트를 제공할 수 있다.
이상에서는 본 발명을 특정의 바람직한 실시예를 예를 들어 도시하고 설명하였으나, 본 발명은 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.
본 발명은 박판 자성시트의 열처리 공정을 포함하여 모든 공정을 롤투롤 방식으로 처리하여 전체적인 생산 공정의 효율 향상을 도모할 수 있는 자기장 차폐시트의 제조에 적용할 수 있다.

Claims (17)

  1. 적어도 하나의 박판 자성시트;
    상기 박판 자성시트의 일면 또는 양면에 형성된 절연층; 및
    상기 박막 자성시트를 적층하여 접합시키도록 상기 절연층 사이에 형성된 접착층;을 포함하고,
    상기 박판 자성시트는 플레이크 처리되어 복수의 자성체 파편으로 분할되어 있는 자기장 차폐시트.
  2. 제1항에 있어서,
    상기 절연층은 인접하는 자성체 파편 중 적어도 일부 파편 간에 존재하는 이격 공간에 일부 침투 또는 전부 침투되어 있는 자기장 차폐시트.
  3. 제1항에 있어서,
    상기 자기장 차폐시트는 스트립 형태로 제작되어 롤축에 권선된 롤 형태로 제공되는 자기장 차폐시트.
  4. 제1항에 있어서,
    상기 박판 자성시트의 두께는 15 내지 35㎛인 자기장 차폐시트.
  5. 제1항에 있어서,
    상기 박판 자성시트는 비정질 합금 또는 나노결정립 합금으로 이루어진 박판의 자성체인 자기장 차폐시트.
  6. 제1항에 있어서,
    상기 접착층은 아크릴계 접착제로 이루어지며, 두께는 5㎛ 이하인 자기장 차폐시트.
  7. 제1항에 있어서,
    상기 절연층의 두께는 5㎛ 이하인 자기장 차폐시트.
  8. 제7항에 있어서,
    상기 절연층은 천연고분자 화합물 및 합성고분자 화합물을 함유하는 절연층 형성 조성물을 포함하는 자기장 차폐시트.
  9. 제1항에 있어서,
    적층된 복수의 박판 자성시트의 상부면과 하부면에 각각 부착되는 보호부재와 접착부재를 더 포함하며,
    상기 접착부재는 적층된 박판 자성시트의 하부면에 부착되는 제1접착층 및 자기장 차폐시트가 피착물에 부착 전까지 상기 제1접착층을 보호하기 위한 이형필름을 포함하는 자기장 차폐시트.
  10. 제1항에 있어서,
    상기 자기장 차폐시트는 무선전력전송용 안테나 모듈에 결합되어 사용되며,
    무선전력전송장치가 영구자석을 포함하는 경우 복수의 박판 자성시트를 포함하는 자기장 차폐시트.
  11. 무선전력수신용 안테나; 및
    상기 안테나의 일면에 배치되어 무선전력수신용 안테나 특성을 향상시키고, 안테나를 향해 자속을 집속시키는 자기장 차폐시트;를 포함하며,
    상기 자기장 차폐시트는
    적어도 하나의 박판 자성시트;
    상기 박판 자성시트의 일면 또는 양면에 형성된 절연층; 및
    상기 박막 자성시트를 적층하여 접합시키도록 상기 절연층 사이에 형성된 접착층;을 포함하고,
    상기 박판 자성시트는 플레이크 처리되어 복수의 자성체 파편으로 분할되어 있는 무선전력수신용 안테나 모듈.
  12. 박판 자성시트를 롤 형태로 제조하는 제1단계;
    상기 롤 형태의 박판 자성시트를 순차적으로 배치된 열처리 로와 절연체 코팅장치를 이용하여 인라인 열처리를 실시하고 열처리된 박판 자성시트의 일면 또는 양면에 절연층을 형성하는 제2단계;
    상기 절연층이 형성된 박판 자성시트를 다층으로 적층하여 자성시트 적층체를 형성하는 제3단계; 및
    상기 자성시트 적층체를 플레이크 처리하여 박판 자성시트를 복수의 자성체 파편으로 분할시키는 제4단계;를 포함하며,
    상기 제2 내지 제4단계는 롤 형태의 박판 자성시트를 사용하여 롤투롤 공정으로 실시되는 자기장 차폐시트의 제조방법.
  13. 제12항에 있어서,
    상기 절연층이 형성된 박판 자성시트를 다층으로 적층하여 자성시트 적층체를 형성할 때, 상기 박막 자성시트를 적층하여 접합시키도록 상기 절연층 사이에 접착층을 형성하는 단계를 더 포함하는 자기장 차폐시트의 제조방법.
  14. 제12항에 있어서,
    상기 제3단계를 실시한 후, 상기 자성시트 적층체의 일면에 임시보호부재를 적층하는 단계를 더 포함하는 자기장 차폐시트의 제조방법.
  15. 제12항에 있어서,
    상기 제3단계 또는 제4단계를 실시한 후, 상기 자성시트 적층체의 양면에 보호부재와 접착부재를 적층하는 단계를 더 포함하는 자기장 차폐시트의 제조방법.
  16. 제12항에 있어서,
    상기 자성시트 적층체를 플레이크 처리한 후, 플레이크 처리된 상기 자성시트 적층체의 평탄화와 두께를 감소시키기 위한 라미네이팅 단계를 더 포함하는 자기장 차폐시트의 제조방법.
  17. 제12항에 있어서,
    상기 박판 자성시트를 다층으로 적층하여 자성시트 적층체를 형성한 후, 상기 자성시트 적층체의 양 측면을 실링하는 실링단계를 더 포함하는 자기장 차폐시트의 제조방법.
PCT/KR2019/010383 2018-09-19 2019-08-14 자기장 차폐시트, 자기장 차폐시트의 제조방법 및 이를 이용한 안테나 모듈 WO2020060035A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980049931.1A CN112543983B (zh) 2018-09-19 2019-08-14 磁场屏蔽片、磁场屏蔽片的制造方法及利用其的天线模块
US17/265,559 US11594356B2 (en) 2018-09-19 2019-08-14 Magnetic field shielding sheet, method for manufacturing magnetic field shielding sheet, and antenna module using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0112324 2018-09-19
KR1020180112324A KR102383612B1 (ko) 2018-09-19 2018-09-19 자기장 차폐시트 및 자기장 차폐시트의 제조방법

Publications (1)

Publication Number Publication Date
WO2020060035A1 true WO2020060035A1 (ko) 2020-03-26

Family

ID=69888540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/010383 WO2020060035A1 (ko) 2018-09-19 2019-08-14 자기장 차폐시트, 자기장 차폐시트의 제조방법 및 이를 이용한 안테나 모듈

Country Status (4)

Country Link
US (1) US11594356B2 (ko)
KR (1) KR102383612B1 (ko)
CN (1) CN112543983B (ko)
WO (1) WO2020060035A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11805631B2 (en) * 2009-10-30 2023-10-31 Amosense Co., Ltd. Magnetic field shielding sheet for a wireless charger, method for manufacturing same, and receiving apparatus for a wireless charger using the sheet
JP6283615B2 (ja) * 2011-12-21 2018-02-21 アモセンス・カンパニー・リミテッドAmosense Co., Ltd. 無線充電器用磁場遮蔽シート及びその製造方法と、それを用いた無線充電器用受信装置
WO2020256409A1 (ko) * 2019-06-18 2020-12-24 주식회사 아모센스 자기장 차폐시트 및 이의 제조방법
KR102447782B1 (ko) * 2020-06-22 2022-09-27 주식회사 아모센스 안테나모듈
KR102406429B1 (ko) * 2020-08-20 2022-06-08 이상민 전자파 차폐를 위한 전자파 차폐 장치 및 이를 이용하는 전자파 차폐 시설체
KR102586948B1 (ko) * 2021-04-02 2023-10-10 주식회사 아모센스 자기장 차폐시트 및 이의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150123604A1 (en) * 2011-12-21 2015-05-07 Amosense Co., Ltd. Magnetic field shielding sheet for a wireless charger, method for manufacturing same, and receiving apparatus for a wireless charger using the sheet
EP2139011B1 (en) * 2007-04-13 2015-08-26 Hitachi Metals, Ltd. Magnetic core for antenna, method for producing magnetic core for antenna, and antenna
KR20170009301A (ko) * 2015-07-16 2017-01-25 주식회사 에프씨엔 자기 시트 및 그 제조방법
KR20170040777A (ko) * 2015-10-05 2017-04-13 주식회사 아모그린텍 자성시트 제조방법
KR20170051570A (ko) * 2015-10-29 2017-05-12 주식회사 비에스피 자기장 차폐시트의 제조장치와 제조방법

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2811324C (en) * 2010-09-15 2019-10-08 Evolution Oil Tools Inc. Anchor for a tubing string and method
JP5964627B2 (ja) * 2011-04-18 2016-08-03 日東シンコー株式会社 電気絶縁用立体形状物及び電気絶縁性シート材
KR101295664B1 (ko) * 2011-06-24 2013-08-13 그래핀스퀘어 주식회사 안정한 그래핀 필름 및 그의 제조 방법
KR101361771B1 (ko) 2012-04-17 2014-02-11 주식회사 아모센스 자기장 차폐시트 및 그의 제조방법과 이를 이용한 휴대 단말기기
WO2014137151A1 (ko) * 2013-03-05 2014-09-12 주식회사 아모센스 자기장 및 전자파 차폐용 복합시트 및 이를 구비하는 안테나 모듈
WO2016104959A1 (ko) * 2014-12-22 2016-06-30 주식회사 아모센스 Pma 무선 충전 방식 무선전력 수신모듈용 어트랙터 및 그 제조방법과, 이를 구비하는 무선전력 수신모듈
CN104900383B (zh) * 2015-04-27 2017-04-19 安泰科技股份有限公司 无线充电用单/多层导磁片及其制备方法
US9691580B2 (en) * 2015-08-05 2017-06-27 Cooper Technologies Company Fuse holder and configurable bus module for power distribution system
KR101746950B1 (ko) 2015-10-02 2017-06-14 주식회사 포스코 소재 로딩장치
JP6715324B2 (ja) * 2015-10-05 2020-07-01 アモグリーンテック カンパニー リミテッド 磁性シート、これを含むモジュールおよびこれを含む携帯用機器
CN105336465B (zh) * 2015-10-27 2017-06-13 安泰科技股份有限公司 一种无线充电和近场通讯用复合导磁片及其制备方法
KR101892799B1 (ko) * 2015-12-08 2018-08-28 삼성전기주식회사 자기장 차폐 구조물 및 전자기기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2139011B1 (en) * 2007-04-13 2015-08-26 Hitachi Metals, Ltd. Magnetic core for antenna, method for producing magnetic core for antenna, and antenna
US20150123604A1 (en) * 2011-12-21 2015-05-07 Amosense Co., Ltd. Magnetic field shielding sheet for a wireless charger, method for manufacturing same, and receiving apparatus for a wireless charger using the sheet
KR20170009301A (ko) * 2015-07-16 2017-01-25 주식회사 에프씨엔 자기 시트 및 그 제조방법
KR20170040777A (ko) * 2015-10-05 2017-04-13 주식회사 아모그린텍 자성시트 제조방법
KR20170051570A (ko) * 2015-10-29 2017-05-12 주식회사 비에스피 자기장 차폐시트의 제조장치와 제조방법

Also Published As

Publication number Publication date
KR102383612B1 (ko) 2022-04-19
CN112543983B (zh) 2022-10-28
US20210241956A1 (en) 2021-08-05
KR20200032991A (ko) 2020-03-27
US11594356B2 (en) 2023-02-28
CN112543983A (zh) 2021-03-23

Similar Documents

Publication Publication Date Title
WO2020060035A1 (ko) 자기장 차폐시트, 자기장 차폐시트의 제조방법 및 이를 이용한 안테나 모듈
WO2017061773A1 (ko) 자성시트, 이를 포함하는 모듈 및 이를 포함하는 휴대용 기기
WO2017090977A1 (ko) 자기장 차폐유닛 및 이를 포함하는 다기능 복합모듈
WO2017039420A1 (ko) 자기공진방식 무선전력 전송용 자기장 차폐유닛, 이를 포함하는 무선전력 전송모듈 및 전자장치
WO2013095036A1 (ko) 무선 충전기용 자기장 차폐시트 및 그의 제조방법과 이를 이용한 무선충전기용 수신장치
WO2017061772A1 (ko) 다기능 복합모듈 및 이를 포함하는 휴대용 기기
WO2014104816A1 (ko) 전자파 흡수시트 및 그의 제조방법과 이를 포함하는 전자기기
WO2018012668A1 (ko) 안테나 모듈 형성용 복합기판 및 이의 제조방법
WO2017057972A1 (ko) 마그네틱 보안전송용 자기장 차폐유닛, 이를 포함하는 모듈 및 이를 포함하는 휴대용 기기
US11108276B2 (en) High-performance shielding sheet and preparation method thereof and coil module comprising the same
WO2014137151A1 (ko) 자기장 및 전자파 차폐용 복합시트 및 이를 구비하는 안테나 모듈
WO2017014430A1 (ko) 무선전력 송신모듈
WO2014092500A1 (ko) 자기장 차폐시트 및 그 제조방법과 이를 이용한 휴대 단말기
CN108370085B (zh) 磁隔离器、其制作方法和包括该磁隔离器的装置
EP3576111B1 (en) Wireless charging module comprising a shield sheet
WO2016052939A1 (ko) 복합자성시트 및 이를 포함하는 무선충전모듈
WO2018021623A1 (en) Complex sheet for wireless charging and method for fabricating the same
WO2018048281A1 (ko) 자성시트 및 이를 포함하는 무선 전력 수신 장치
WO2017086688A1 (ko) 무선전력 전송용 자기장 차폐유닛 및 이를 포함하는 무선전력 전송모듈
WO2018147649A1 (ko) 자성시트 및 이를 포함하는 무선 전력 수신 장치
KR20160028384A (ko) 무선 전력 송신장치용 차폐시트 및 이를 구비한 무선 전력 송신장치
KR101909649B1 (ko) 자기장 차폐유닛 및 이를 포함하는 다기능 복합모듈
KR102474488B1 (ko) 전기 자동차 무선충전용 차폐시트 및 그 제조방법
KR101990410B1 (ko) 자성시트 제조방법
KR20170040774A (ko) 자성시트, 이를 포함하는 모듈 및 이를 포함하는 휴대용 기기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862516

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19862516

Country of ref document: EP

Kind code of ref document: A1