JP5304090B2 - クロック再生回路およびそれを用いる受信機 - Google Patents

クロック再生回路およびそれを用いる受信機 Download PDF

Info

Publication number
JP5304090B2
JP5304090B2 JP2008198884A JP2008198884A JP5304090B2 JP 5304090 B2 JP5304090 B2 JP 5304090B2 JP 2008198884 A JP2008198884 A JP 2008198884A JP 2008198884 A JP2008198884 A JP 2008198884A JP 5304090 B2 JP5304090 B2 JP 5304090B2
Authority
JP
Japan
Prior art keywords
symbol
value
circuit
clock
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008198884A
Other languages
English (en)
Other versions
JP2010041139A (ja
Inventor
和則 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Icom Inc
Original Assignee
Icom Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Icom Inc filed Critical Icom Inc
Priority to JP2008198884A priority Critical patent/JP5304090B2/ja
Priority to US12/935,039 priority patent/US8331515B2/en
Priority to CN2009801059635A priority patent/CN101946476B/zh
Priority to PCT/JP2009/056371 priority patent/WO2010013512A1/ja
Priority to EP09802757.6A priority patent/EP2309691B1/en
Publication of JP2010041139A publication Critical patent/JP2010041139A/ja
Priority to HK11103064.2A priority patent/HK1149130A1/xx
Application granted granted Critical
Publication of JP5304090B2 publication Critical patent/JP5304090B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • H04L27/14Demodulator circuits; Receiver circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • H04L27/16Frequency regulation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information
    • H04L7/033Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop
    • H04L7/0334Processing of samples having at least three levels, e.g. soft decisions

Description

本発明は、受信信号からシンボル値の復調を行うデジタル復調器において、前記シンボル値の判定を行うタイミングを決定するシンボルクロックを再生するための回路およびそれを用いる受信機に関する。
基地局を使用する通常の移動体通信のように、基地局からクロックを送信する構成では、その基地局からのクロックを受信して同期を得ることができる。しかしながら、たとえば400MHz帯のデジタル無線機のように、必要なときにだけ発呼する無線機では、FSK(Frequency Shift Keying)などによる変調信号を受信し、シンボル値を復調するにあたって、先ず前記シンボルクロックを再生する必要がある。従来からの一般的なシンボルクロックの再生方法としては、復調信号を2乗した信号を、クロック周波数を中心周波数とするバンドパスフィルタを通過させることで行われている。そして、前記バンドパスフィルタによって生じる位相差を補正するために、クロック成分の正負が入れ替わる零クロス点を元に位相差を検出し、補正を行う等の手法が用いられている。しかしながら、上述の従来技術は、2値FSK等の2値の変調波では復調信号が正弦波に近い形となることから、前記のように復調信号を2乗することでクロック成分の抽出が可能になるが、4値FSK等の多値の変調波の場合は、復調信号が複数の振幅を取るので、2乗演算を行っても、クロック成分を抽出することはできない。そこでこのような問題を解決する従来技術としては、特許文献1が挙げられる。
特許文献1は、前記4値FSKのように絶対値が異なるサンプル値間の遷移がある場合、その遷移曲線が零クロスするタイミングが正しいクロックのタイミングからずれるので、多値変調波を検波した後、前記シンボルクロックよりも速いクロックでオーバーサンプリングし、そのサンプリングによって得られるデータ系列がスレッショルド値とクロスするタイミングに出力されるクロスタイミング信号が、シンボル区間の前半にあるのか後半にあるのかから再生クロックの遅れまたは進みを判断し、再生クロックの位相を調整するようにしたクロック再生回路が示されている。
特開平10−4436号公報
ところで、ナイキストの第2基準を満たしていない場合、状態間の遷移曲線が所定の電圧をクロスするタイミングにずれを生じることが知られている。狭帯域で通信を行う場合には前記ナイキストの第2基準が満たされない状態となるので、上述の従来技術では、スレッショルド値とのクロス点に、シンボル毎にずれが生じる。このため、再生クロックの位相が進んでいるのか遅れているのかを正確に判定できず、安定したクロック再生が困難になるという問題がある(特に、クロックの状態遷移のタイミングで前記クロスタイミング信号が出力されてしまうと、180°の進みか遅れか分らない)。また、スレッショルド値が増える程、タイミング演算の演算量が増加するという問題もある。
本発明の目的は、少ない演算量で、多値変調波から安定したクロックを再生することができるクロック再生回路およびそれを用いる受信機を提供することである。
本発明のクロック再生回路は、変調波における周波数または位相の偏差に対応した振幅を有する(アイパターンが存在する種々の変調方式の)復調信号を、予め定めるシンボル点でサンプリングし、得られたシンボルデータの振幅値から復調データを再生するにあたって、前記サンプリングタイミングを規定するシンボルクロックを再生するクロック再生回路において、前記シンボルクロックを発生するタイマと、前記シンボルクロックよりも高い周波数で前記復調信号をオーバーサンプリングするオーバーサンプリング手段と、前記オーバーサンプリングによって得られたシンボルデータの内、新しいシンボルデータから古い方へ計3点の第1ないし第3シンボルデータそれぞれについて、前記予め定めるシンボル点にて得られるべき理想の振幅レベルとの差分値をそれぞれ演算する演算手段と、前記第1シンボルデータに対応する第1差分値および第3シンボルデータに対応する第3差分値において、小さい方の差分値に対応するオーバーサンプリングの測定点を選択する選択手段と、前記タイマに、前記選択手段で選択された測定点側に、前記第2シンボル点における第2差分値に対応した時間だけ、次回のシンボル点のサンプリングタイミングを移動させるタイミング補正手段とを含むことを特徴とする。
上記の構成によれば、アンテナで受信された信号を必要に応じて周波数変換し、得られた中間周波信号をデジタル変換して復調回路へ入力し、その復調回路において、前記中間周波信号が直交変換されて得られたI成分、Q成分が直交検波され、さらに遅延検波されて検出された周波数または位相の偏差に対応した振幅値からシンボル値が求められるFSK受信機などの受信機に用いられ、前記同期検波のためのサンプリングタイミングを規定するシンボルクロックを再生するクロック再生回路において、自走するタイマで発生するシンボルクロックのタイミングを、以下のようにして補正する。すなわち、前記復調信号をオーバーサンプリング手段によって前記シンボルクロックよりも高い周波数でオーバーサンプリングし、得られたサンプルデータの内、新しいシンボルデータから古い方へ計3点の第1ないし第3シンボルデータそれぞれについて、演算手段で、前記予め定めるシンボル点にて得られるべき理想の振幅レベルとの差分値をそれぞれ求め、前記第1シンボルデータに対応する第1差分値および第3シンボルデータに対応する第3差分値において、小さい方の差分値に対応するオーバーサンプリングの測定点を選択手段で選択し、タイミング補正手段は、前記選択手段で選択された測定(サンプル)点側に、前記第2シンボル点における第2差分値に対応した時間だけ、前記タイマの次回のシンボル点のサンプリングタイミングを移動させる。
したがって、たとえば「00」,「01」,「10」,「11」の4値の変調波の場合、「00」と「01」、或いは「10」と「11」のように、中央値を跨がないような遷移や、「00」と「10」、「01」と「11」のように、中央値を跨いでも、その中央値からの偏差が不均等な遷移の場合にも、サンプリングタイミングは、最大でオーバーサンプリングの周期ずつでずれが修正されてゆく。また、サンプリングタイミングに、180°近くの大きなずれが生じていても、タイミングを修正すべき方向は検知できる。こうして、多値変調波から、安定したクロックを再生することができる。また、アイパターンの開口率に依存しないため、ロールオフ率の変更に対して対応が容易である。さらにまた、タイミング演算は、シンボル点と、その前後2点の計3点程度で行われるので、演算量を削減することもできる。
また、本発明のクロック再生回路では、前記タイマは、同期ワードパターン検出器からの同期ワードパターンの検出タイミングでリセットされることを特徴とする。
上記の構成によれば、自走するタイマが、同期ワードパターン検出器が同期ワードパターンを検出するとリセットされるので、本体データ(トラヒックチャンネル)の先頭から、精度の高いクロックを再生することができる。
さらにまた、本発明のクロック再生回路は、前記同期ワードパターン検出器では、前記シンボルクロックの検出によって、送受信周波数のずれに起因するDCオフセットが検出されており、前記演算手段に入力される前記復調信号から、前記DCオフセットの補正を行う引算器をさらに備えることを特徴とする。
上記の構成によれば、送受信周波数のずれに起因するDCオフセットを補正してクロック再生を行うことで、シンボル点で得られるシンボルデータを、前記理想の振幅レベルに近付けることができる。
したがって、より安定したクロックを再生することができる。
また、本発明の受信機は、前記のクロック再生回路を用いることを特徴とする。
上記の構成によれば、多値変調波から、少ない演算量で、安定したクロックを再生することができる受信機を実現することができる。
本発明のクロック再生回路およびそれを用いる受信機は、変調波における周波数または位相の偏差に対応した振幅を有する復調信号を、予め定めるシンボル点でサンプリングし、得られたシンボルデータの振幅値から復調データを再生するためのシンボルクロックを再生するにあたって、自走するタイマで前記シンボルクロックを作成する一方、前記復調信号をオーバーサンプリング手段によって前記シンボルクロックよりも高い周波数でオーバーサンプリングし、得られたサンプルデータの内、前記シンボル点と、その前後2点の計3点のサンプルデータについて、演算手段で、シンボル点にて得られるべき理想の振幅レベルとの差分値を求め、前記シンボル点の前後の測定(サンプル)点の内、前記差分値が小さい方の測定(サンプル)点を選択手段で選択し、タイミング補正手段が、前記選択手段で選択された測定(サンプル)点側に、前記シンボル点における差分値に対応した時間だけ、前記タイマの次回のシンボル点のサンプリングタイミングを移動させる。
それゆえ、多値変調波から、少ない演算量で、安定したクロックを再生することができる。
図1は、本発明の実施の一形態に係るFSK受信機1の電気的構成を示すブロック図である。このFSK受信機1は、ダブルスーパーヘテロダイン方式で構成され、アンテナ3で受信された信号は、バンドパスフィルタ4を介して、たとえば440MHzのFSK高周波信号の成分が濾波され、アンプ5で増幅された後、1段目の混合器6に入力される。混合器6では、局部発振回路7からの、たとえば486.35MHzの発振信号と混合され、得られた、たとえば46.35MHzの中間周波信号(第1の中間周波信号)は、バンドパスフィルタ8によって、その中間周波成分が濾波され、アンプ9で増幅された後、2段目の混合器10に入力される。混合器10では、局部発振回路11からの、たとえば45.9MHzの発振信号と混合され、得られた、たとえば450kHzの中間周波信号(第2の中間周波信号)は、バンドパスフィルタ12によって、その中間周波成分が濾波され、アンプ(中間周波アンプ)13で増幅された後、アナログ/デジタル変換器14に入力される。アナログ/デジタル変換器14では、入力信号が、たとえば30kHzでダウンサンプリングされ、96ksps(sample per second)のレートのデジタル値に変換されて、復調回路21に入力される。
前記復調回路21は、DSP(デジタルシグナルプロセッサ)などから成り、この復調回路21では、音声信号が復調されて、デジタル/アナログ変換器15でアナログ変換され、スピーカ16から音響化される。また、前記復調回路21は、その入力信号レベルに応じたデータをデジタル/アナログ変換器17に出力し、アナログ変換されて、RFアンプ5、中間周波アンプ9,13のゲイン制御が行われる。
図2は、前記復調回路21の一構成例を示すブロック図である。前記アナログ/デジタル変換器14からの信号は、周波数変換器22に入力され、先ずハイパスフィルタ221によって高周波成分が濾波され、混合器222において、局部発振回路223からの、たとえば18kHz、96kspsのレートの発振信号と混合され、得られた12kHz、96kspsの信号は、バンドパスフィルタ224によってその信号成分が濾波された後、コンバータ23において、1/2間引き、すなわち1/2の周波数(48kHz)にダウンサンプルされて、直交変換器24に入力される。前記コンバータ23は、直交変換器24での処理を軽減するために設けられているものであり、前記直交変換器24での処理が対応可能な場合、省略されてもよい。
直交変換器24では、入力された信号は2分配され、それぞれ混合器241,242に入力され、混合器241では局部発振回路243からの、たとえば12kHz、48kspsの発振信号と混合され、混合器242では局部発振回路243からの発振信号が移相器244で90°位相がシフトされた後混合され、直交変換されたそれぞれ48kspsのI成分、Q成分の信号となる。前記I成分、Q成分の信号は、ローパスフィルタ245,246を介して出力され、コンバータ25,26において、1/2の周波数(24kHz)にダウンサンプルされてローパスフィルタ27,28を通過し、位相検出器29に入力される。前記コンバータ25,26は、ローパスフィルタ27,28での帯域制限処理の負担を軽減するために設けられているものであり、ローパスフィルタ27,28での処理が対応可能な場合、省略されてもよい。
位相検出器29は、前記I,Q成分から、I=cosθ、Q=sinθとして、θ=tan−1(Q/I)の演算を行い、信号の位相を求める。求められた位相は、周波数検出器30の加算器301において、遅延器302で遅延された1サンプル前の位相が減算され、位相の微分量である前記周波数偏差の量が求められる。こうして、位相検出器29および周波数検出器30は、検波回路を構成し、これらによって遅延検波を行い、その出力には、シンボルレート(2.4kHz)の10倍のサンプリングレート(24kHz)でオーバーサンプルされた復調信号が得られる。
その復調信号は、逆Sincフィルタ31からルート・レイズド・コサインフィルタ32を介して、4値FSKシンボル再生回路33および同期ワードパターン検出回路34に入力される。前記逆Sincフィルタ31とルート・レイズド・コサインフィルタ32とは、送信側に挿入されているSincフィルタと共に、ルート・コサイン・ロールオフフィルタとして機能し、両者を合わせてナイキスト・フィルタを実現するとともに、前記Sincフィルタ31は高周波側を抑圧し、この逆Sincフィルタ31はそれを元に戻す(高周波側を強調する)ことで、帯域制限が実現されている。
前記4値FSKシンボル再生回路33では、復調信号の振幅値(周波数偏差)から、前記4値FSKのシンボルデータが復調される。その復調にあたっては、この4値FSKシンボル再生回路33は、後述するようにして内部でシンボルクロックを発生し、前記2.4kHzのそのシンボルクロックのタイミングで、前記振幅値(周波数偏差)を取込んでマップ判定することで、前記振幅値(周波数偏差)が4値FSKにおける「00」,「01」,「10」,「11」の何れのシンボル値に該当するかを判断し、シンボルデータの再生を行う。この4値FSKシンボル再生回路33には、後述するように同期ワードパターン検出回路34から、同期ワードパターンの検出タイミングでリセット信号が入力され、前記内部のシンボルクロックのタイミング調整が行われる。
前記4値FSKシンボル再生回路33で復調されたシンボルデータは、前記4値につき2ビットで、前記シンボルレートの2.4kspsの信号としてフレーム生成回路35へ出力される。フレーム生成回路35では、前記同期ワードパターン検出回路34で、後述するように同期ワードパターンが検出されている、すなわち正常に受信が行われていると、前記シンボルデータを所定のフレームに構成して、音声復調部3へ出力する。なお、この同期ワードパターン検出回路34によるシンボルクロックの補正および4値FSKシンボル再生回路33でのシンボルデータの再生については、後に詳述する。
得られたシンボルデータは、前記音声復調部36において、サンプル周波数が前記2.4kHzの4値のデータから、所定の音声コーデック回路を使用して、圧縮されていた信号が伸長され、8kHz,16ビットのPCM音声信号に復調される。そのPCM音声信号は、コンバータ37において6倍の周波数(48kHz)でオーバーサンプルされ、ローパスフィルタ38を通過した後、デジタル/アナログ変換器39に入力され、アナログ音声信号に復調され、アンプ40で増幅された後、スピーカ41から音響化される。
一方、前記アナログ/デジタル変換器14からの変換データはまた、コンバータ45において、1/24の周波数(4kHz)にダウンサンプルされてRSSI回路46に入力され、ハイパスフィルタ461において、前記アナログ/デジタル変換器14で混入した直流成分が除去された後、絶対値回路462で絶対値が求められ、さらにローパスフィルタ463で平均化されてRSSIレベルが求められ、図示しないインジケータなどに与えられるとともに、AGC演算回路42に入力される。AGC演算回路42は、前記RSSIレベルに基づいてIFゲインを演算し、そのデータは前記アナログ/デジタル変換器39でアナログ変換され、前記RFアンプ5、中間周波アンプ9,13のゲイン制御が行われる。
上述のように構成されるFSK受信機1において、注目すべきは、本実施の形態では、補正手段であるDCオフセット補正回路50は、前記復調信号の最大値「11」および最小値「00」の中央値(F0’)に基づいて、局部発振回路223(または243)の発振周波数を調整して、DCオフセット成分(f0−F0’=Δf)の除去を行うにあたって、補正制御回路51,52が設けられており、その補正が場合によって休止されることである。なお、前記周波数変換器22は、後段での処理を軽減するために設けられており、省略されてもよい。その場合、局部発振回路243は、30kHz、96kspsの発振信号を出力し、前記周波数偏差によるDCオフセット補正は、この局部発振回路243の発振周波数を制御することで行われることになる。
図3は、その補正の様子を示す波形図である。本実施の形態では、キャリア周波数f0に対して、たとえば最小値「00」での周波数偏差は−1050Hzに、「01」での周波数偏差は−350Hzに、「10」での周波数偏差は+350Hzに、最大値「11」での周波数偏差は+1050Hzに、それぞれ設定されているものとする。
送信側のキャリア周波数f0に受信側のキャリア周波数F0が一致していると、図3(a)で示すように、サンプル点で得られたシンボル値は、前記の各周波数となる。なお、この図3では、説明の簡略化のために、サンプル点はアイパターンを考慮すると最も偏差の少ない点であるシンボル判定点としている。これに対して、送信側のキャリア周波数f0に受信側のキャリア周波数F0’が一致していないと、図3(b)で示すように、サンプル点で得られるシンボル値に、ずれを生じる。この図3(b)の例では、受信側のキャリア周波数F0’が高い側にずれているので、前記最小値「00」のデータは現れず、残りの「01」,「10」,「11」のデータのみとなり、感度劣化の原因となる。このため、前述のように、復調信号の最大値「11」および最小値「00」の中央値(F0’)に基づいて、局部発振回路223(または243)の発振周波数を調整して、DCオフセット成分(f0−F0’=Δf)の除去が行われる。
図4は、前記DCオフセット補正回路50の補正動作に、第1の補正制御手段である前記補正制御回路51の制御動作を説明するための図である。前記ルート・レイズド・コサインフィルタ32からは、前記復調信号として、図4(a)で示すような波形のデータが、シンボルレート(2.4kHz)の10倍の前記24kHzでオーバーサンプリングされた状態(24ksps)で出力されており、それが前記4値FSKシンボル再生回路33において、前記シンボルレートの2.4kHzでサンプリングされると、図4(a)において黒丸で示すサンプル値(周波数偏差)P1〜P9が得られる。なお、この図4(a)では、スケールは周波数偏差の周波数で表しているが、実際にルート・レイズド・コサインフィルタ32から出力されるのは、この図4(a)で示すようなDC波形の波高値のデータであり、説明を分り易くするために、そのDC値を周波数に読替えて表示している。
ここで、前記DCオフセット補正回路50は、DCオフセット補正を行うにあたって、前記サンプル値P1〜P9を取込んでゆき、図4(d)で示すように、既存値より大きな値が入力されると、それを最大値として更新してゆく。同様に、図4(e)で示すように、既存値より小さな値が入力されると、それを最小値として更新してゆく。一方、補正制御回路51は、図4(f)で示すように、それらの最大値と最小値との差を求め、その差が予め定める閾値TH1未満であるときには、前記DCオフセット補正回路50による補正動作を休止させ、前記閾値TH1以上となると補正動作を行わせるとともに、前記最大値および最小値をリセットさせる。
ここで、前記閾値TH1は、(最大周波数偏差−最小周波数偏差)より小さく、かつn値変調(nは3以上)である場合に、(最大周波数偏差−最小周波数偏差)×(n−2)/(n−1)よりも大きく、適宜マージンを考慮して選ばれる。本実施の形態では、n=4であり、最大周波数偏差は+1050Hzであり、最小周波数偏差は−1050Hzであるので、2100Hzより小さく、1400Hzより大きく、前記マージンを考慮して、1500Hzに選ばれる。
図4の例では、最初のサンプル値P1での周波数偏差は−350Hzであり、それが最大値および最小値に共に登録され、次のサンプル値P2での周波数偏差は+1050Hzであるので、最大値はこの値に更新され、また最大値と最小値との差は1400Hzであり、DCオフセットの補正動作は禁止されている。これに対して、サンプル値P3での周波数偏差は+1400Hzになり、最大値はこの値に更新され、また最大値と最小値との差は1750Hzであり、DCオフセットの補正動作が行われる。その補正動作は、図4(g)で示すように、前記図3のΔfに相当する前記最大値と最小値との平均値を求め、その平均値をサンプル値から減算するもので、サンプル値P3の例では、(1400−350)/2=525Hzを前記1400Hzから減算し、875Hzを補正後のサンプル値P3’とするものである。
実際の補正動作は、前記局部発振回路223(または243)の発振周波数を変化させ、入力される周波数偏差のデータを、前記525Hzだけ低くシフトさせるものである。すなわち、前記局部発振回路223(または243)はデジタルVCOから成り、DCオフセット補正回路50は、発振波形の基となるsinテーブルから、波形(振幅レベルを表す)データを読出すタイミングを変化することで、発振周波数を変化させることができ、その読出しタイミングを、現在の発振周波数より前記525Hzだけ低い発振周波数とするタイミングに変更する。
この補正動作によって、以降はサンプル値P4〜P9となっていた周波数偏差のデータが、参照符号P4’〜P9’にシフトされ、前記4値FSKシンボル再生回路33での判定結果が、図4(c)となるところ、図4(b)で示すような正しい値で復調することができるようになる。前記サンプル値P3’への補正が適切であると、補正後1サイクル分のデータが入力された時点(P7’)では、最大値と最小値との絶対値が略等しく、補正量(Δf)が0となっている。
一方、前記加算器301からの周波数偏差量のデータは、スケルチ回路43に与えられ、ハイパスフィルタ431でノイズ成分が抽出され、絶対値回路432でそのノイズの絶対値が求められ、さらにローパスフィルタ433で平均化されることで、スケルチレベルが求められている。前記補正制御回路52は、前記スケルチレベル(ノイズレベル)が予め定める閾値TH2より大きい場合も、前記DCオフセット補正回路50による局部発振回路223(または243)の発振周波数の調整を禁止させる。これによって、ノイズによる誤った補正を防止している。
図5は、DCオフセット補正回路50および補正制御回路51,52の一構成例を示す図である。前記ルート・レイズド・コサインフィルタ32からの24kspsの復調信号は、前記4値FSKシンボル再生回路33と同様に、サンプラ501において、前記4値FSKシンボル再生回路33からの2.4kspsのシンボルレートのクロックでサンプリングされ、引算器502において、後述する同期ワードパターン検出による前記DCオフセットΔfに対応した周波数偏差情報が減算された後、サンプルホールド回路503,504に入力される。サンプルホールド回路503は、リセットタイミングから、逐次入力されるデータをストアデータと比較し、ストアデータより大きいデータが入力されると、ストアデータをその入力値に更新することで、前記最大値を求め、保持している。同様に、サンプルホールド回路504は、リセットタイミングから、逐次入力されるデータをストアデータと比較し、ストアデータより小さいデータが入力されると、ストアデータをその入力値に更新することで、前記最小値を求め、保持している。そして、これら最大値および最小値のデータは加算器505で相互に加算され、割り算器506で1/2分割されて、前記周波数偏差の情報が求められる。その情報は、ノイズ除去のためのローパスフィルタ507を介して変換回路508に入力され、前記局部発振回路223(または243)を構成するデジタルVCOの波形データの読出しタイミングに変換されて前記局部発振回路223(または243)に与えられる。
そして、前記補正制御回路51は、前記サンプルホールド回路503にホールドされている最大値から、前記サンプルホールド回路504にホールドされている最小値を減算して、それらの差を求める引算器511と、求められた差を前記1500Hzの閾値TH1と比較する閾値判定部512と、前記割り算器506からの出力を、前記差が前記閾値TH1以上であると許容し、閾値TH1未満であるときには阻止するゲート513とを備えて構成される。同様に、前記補正制御回路52は、前記スケルチ回路43からのスケルチレベルを所定の閾値TH2と比較する閾値判定部521と、前記割り算器506からの出力を、前記スケルチレベルが前記閾値TH2以下であると許容し、閾値TH2より大きい場合は阻止するゲート522とを備えて構成される。
このように構成することで、FSK受信機1において、送受信の周波数偏差に起因して生じるDCオフセット成分の補正を、DCオフセット補正回路50が、復調信号の最大値および最小値の中央値から行うにあたって、補正制御回路51を設け、該補正制御回路51は、前記最大値と最小値との差が予め定める閾値TH1未満であるときには、前記DCオフセット補正回路50による補正を休止させるので、たとえば前記4値FSK信号の場合、「00」と「01」、「10」と「11」のように中央値を跨がないような値や、「00」と「10」、「01」と「11」のように、中央値を跨いでも、その中央値からの偏差が不均等な値ではオフセット補正は行われず、「00」と「11」の前記最大値および最小値が得られた場合にだけオフセット補正が行われることになり、多値のFSK信号であっても、周波数偏差を正確に検出でき、適切なオフセット除去を行うことができる。また、前記予め定める閾値TH1以上の信号が得られた時点でオフセット補正を行うので、長時間信号を監視する必要はなく、迅速にオフセット補正を行うことができる。
また、前記DCオフセット補正回路50は、オフセット補正を、受信高周波信号から中間周波信号を得る周波数変換器22における局部発振器223と、得られた前記中間周波信号を直交変換する直交変換器24における局部発振器243との何れか一方の発振周波数を制御することで行うので、バンドパスフィルタ224やローパスフィルタ245,246;27,28の特性を変更する必要はなく(通過帯域は同じため)、隣接チャネル信号除去能力を高めることもできる。
さらにまた、補正制御回路52は、スケルチ回路43の出力に応答して、ノイズレベルが大きい場合にも、前記DCオフセット補正回路50による補正動作を休止させるので、ノイズによる誤動作を防止することもできる。
ここで、前記DCオフセット補正回路50は、オフセット補正を、前述のように受信高周波信号から中間周波信号を得る周波数変換器22における局部発振器223、または得られた前記中間周波信号を直交変換する直交変換器24における局部発振器243の発振周波数を制御することで行っているが、本発明の実施の他の形態として、図6の復調回路61で示すように、前記DCオフセット補正回路50は、ルート・レイズド・コサインフィルタ32からの24kspsの復調信号の出力信号レベルから、前記最大値と最小値との平均値(中央値)を引算器62で減算して、復調信号のレベル自体を直接補正するようにしてもよい。この場合、前記局部発振器223,243の制御は行われない。
このようにDCオフセットを復調信号から直接減算することで、周波数偏差の量に拘わらず、速やかにシンボル再生を行うことが可能になる。一方、前述のように局部発振器223,243の発振周波数を制御した場合は、得られた中間周波信号の中心周波数がバンドパスフィルタ224の中心周波数に常に一致しており、或いはローパスフィルタ245,246;27,28の通過帯域に一致しており、信号劣化が少なく、高い感度を得ることができる。
また、注目すべきは、本実施の形態では、フレーム同期検出回路である前記同期ワードパターン検出回路34が同期ワードパターンを検出するにあたって、先ず前記送受信の周波数差に起因するDCオフセットΔfの補正が行われることである。図7は、前記同期ワードパターン検出回路34の一構成例を示すブロック図である。この同期ワードパターン検出回路34は、大略的に、受信ワードパターン(前記復調信号)の所定数、たとえば10シンボル期間分のオーバーサンプル値を記憶するメモリ341と、そのオーバーサンプル値の移動平均値を算出する平均値算出部342と、既定の同期ワードパターンにおける前記所定数分の平均値を理想平均値としてストアしているレジスタ343と、前記レジスタ343に記憶されている理想平均値と前記平均値算出部342で求めた移動平均値との差分から、DCオフセットを求める引算器344と、受信ワードパターンの各オーバーサンプル値から前記DCオフセットを減算する引算器345と、前記同期ワードパターンをストアしているメモリ346と、前記引算器345でのDCオフセット補正後の受信ワードパターンと前記メモリ346に記憶されている同期ワードパターンとの相関演算を行う相関演算器347と、予め定められる閾値TH3をストアしているレジスタ348と、前記相関演算器347で求められた相関値と前記レジスタ348に記憶されている閾値TH3とを比較し、閾値TH3よりも大きい場合に、同期ワード候補と認識する比較器349と、前記比較器349で同期ワード候補が認織された場合、前記DCオフセット補正後の受信ワードパターンと前記同期ワードパターンとの各シンボル値を比較し、総てのシンボルの誤差が一定の範囲にある場合に、同期ワードパターンを検出したと判定するシンボル比較器340とを備えて構成される。
図8〜図12は、上述のような同期ワードパターン検出回路34の動作を説明するための波形図である。なお、前述の説明では、オーバーサンプルはシンボルクロックの10倍の周波数で行われているとしているが、これらの図では、図面の煩雑化を避けるために、5倍の周波数で示している。前記ルート・レイズド・コサインフィルタ32からの24kspsの受信ワードパターン(前記復調信号)は、メモリ341に入力され、図8において、時刻・・・,t−2,t−1,t0で示すように、オーバーサンプル値が入力される毎に逐次更新されて、最新の10シンボル期間分だけ記憶される。この図8では、オーバーサンプル値を連続する実線で示し、シンボル値P11〜P20を丸印で示している。
続いて、平均値算出部342では、メモリ341のストア内容が更新される毎に、その平均値が演算され、図9で示すようなオーバーサンプル値の移動平均値が逐次求められる。その後、レジスタ343に格納されている同期ワードパターンにおける前記10シンボル期間分の平均値が、オフセット演算手段である引算器344において前記平均値算出部342からの移動平均値から減算されることで、DCオフセット(周波数補正量)Δfが求められる。さらに引算器345において、前記メモリ341に格納されている受信ワードパターンの各オーバーサンプル値から前記DCオフセットΔfを減算することで、DCオフセット補正後の受信ワードパターンが得られる。
そのDCオフセット補正後の受信ワードパターンは、相関演算器347において、メモリ346に記憶されている同期ワードパターンとの相関演算(畳み込み)が行われ、図10で示すような相関値が求められる。すなわち、同期ワードパターンをai、受信ワードパターンをbiとするとき、相関値Fは、F=Σ[ai*(bi−Δf)](ただし、サンプル数で、i=1,2,・・・,91)である。前記FSKの場合、たとえば80または40msecのフレームデータは、同期バーストを含む同期ワードと、本体データであるトラヒックチャネルとを備えて構成される。前記メモリ346に記憶されている同期ワードパターンは、この同期ワードのパターンである。
こうして求められた相関値Fが、候補判定手段である比較器349において、レジスタ348に記憶されている閾値TH3と比較されると、図8〜図10で示す例では、図11で示すように、5サンプル前の時刻t−5において閾値TH3よりも大きくなっており、比較器349は、同期ワード候補が受信されたと判定するとともに、その時刻t−5を暫定のシンボルタイミングと判定する。すなわち、この相関演算(畳み込み)では、受信ワードパターンは、オフセット補正が行われることで、これらの図8〜図11で示すグラフにおけるy軸方向へのずらしが行われ、逐次入力されてくることでx軸方向のずらしが行われることと等価となり、固定の同期ワードパターンに対して、マッチングが判定されることになる。
そして、前記候補判定をトリガとして、最終判定手段であるシンボル比較器340は、シンボル値P11〜P20について、図12で示すように、前記DCオフセットΔfの補正を行い、補正後のシンボル値P11’〜P20’に対して、前記メモリ346に記憶されている同期ワードパターンにおける対応するシンボル値と比較を行い、総てのシンボルの誤差が一定の範囲にある場合に、最終的に同期ワードパターンを検出したと判定する。すなわち、同期ワードパターンのシンボル値をAk、受信ワードパターンのシンボル値をBkとするとき、誤差Eは、E=Σ|Ak−(Bk−Δf)|(ただし、kはサンプル数で、k=1,2,・・・,10)であり、その誤差Eが所定の閾値TH4以内である場合に、最終的な同期判定を行う。
その同期ワードパターンの検出判定で、シンボル比較器340は、4値FSKシンボル再生回路33に、後述するように、同期ワードパターンの検出タイミングでリセット信号を与え、内部のシンボルクロックのタイミング調整を行う。また、シンボル比較器340は、上述のように判定に使用していた暫定のDCオフセットΔfを真値として、それに対応する値を、前記4値FSKシンボル再生回路33およびDCオフセット補正回路50に周波数偏差情報として与え、通信終了まで、後述するようにしてDCオフセット補正を行わせる。さらに、シンボル比較器340は、同期ワードパターンが検出されると、前記4値FSKシンボル再生回路33およびフレーム生成回路35に、同期ワードパターンが検出されている、すなわち正常に受信が行われていることを通知し、前記4値FSKシンボル再生回路33でのシンボル再生およびフレーム生成回路35でのフレーム構成、すなわち音声出力を許可する。一方、比較器349で相関値が閾値TH3以下であるとき、およびシンボル比較器340で同期ワードパターンの検出とならなかったときは、前記のような制御出力は行われない。
このように構成することで、相関演算器347での相関演算(畳み込み)前に、引算器344においてDCオフセットΔfが除去されているので、シンボル比較器340で同期ワード検出と判定する閾値を厳しくすることができ、しかも相関演算(畳み込み)結果で同期ワード検出を判定するのではなく、個々のシンボル点総てについて、誤差が一定の範囲にあることを最終の検出条件とするので、結果的に、フレーム同期の確立を速やかに、かつ高精度に行うことができる。
さらにまた、注目すべきは、本実施の形態では、前記4値FSKシンボル再生回路33において、前記図4(a)におけるサンプル値(周波数偏差)P1〜P9,P3’〜P9’を得るシンボルクロックの補正が行われることである。図13は、その4値FSKシンボル再生回路33の一構成例を示すブロック図である。この4値FSKシンボル再生回路33では、前記ルート・レイズド・コサインフィルタ32からのシンボルレートの10倍にオーバーサンプルされた復調信号は、引算器330に入力され、前記同期ワードパターン検出回路34のシンボル比較器340で同期ワードパターンを検出することで得られたDCオフセットΔfに対応した周波数偏差情報が減算された後、シフトレジスタ331−1に入力される。シフトレジスタ331−1には、2段のシフトレジスタ331−2,331−3が縦続接続されており、新たなサンプルデータが入力されると、順次シフトされてゆく。したがって、前記オーバーサンプルの周期で、最も新しいデータがシフトレジスタ331−1に、古いデータがシフトレジスタ331−3に、3サンプル分保持される。
なお、前記引算器330での周波数偏差情報の減算は、同期ワードパターン検出回路34で同期ワードパターンが検出されている、すなわちフレームを受信し、正常に受信が行われている場合に限られ、そうでない場合は前記DCオフセット補正回路50による局部発振器223,243の発振周波数の制御または引算器62でのDCオフセット成分の減算によって補償が行われており、同期ワードパターンが検出された際は、前記シンボル比較器340はこのDCオフセットΔfを出力し、検出されない間はΔf=0とする。これによって、同期ワードパターン検出回路34で同期ワードパターンが検出されると、その際に検出されたDCオフセットΔfによる補正が優先され、素早く、前記DCオフセットΔfの補償を行うことができる。
ここで同様に、前記DCオフセット補正回路50において、引算器502で、このDCオフセットΔfに対応した周波数偏差情報の減算が行われることで、前記同期ワードパターン検出回路34による同期ワードパターンの検出で、前述のように速やかに4値FSKシンボル再生回路33の引算器330で周波数偏差情報が減算されてDCオフセットが補償されたのと同様の条件で、該DCオフセット補正回路50内での補正動作を行わせることができる。すなわち、前述のように同期ワードパターン検出回路34での同期ワードパターンの検出によるDCオフセット補正が4値FSKシンボル再生回路33で優先して行われ、その補正と該DCオフセット補正回路50での補正とが重複しないように、該DCオフセット補正回路50では、前記引算器502で周波数偏差情報の減算が行われる。同期ワードパターンが検出されていない間は、前記シンボル比較器340は、前記周波数偏差情報を0とするので、該DCオフセット補正回路50での局部発振器223,243等への補正が、フルに機能することになる。
なお、前記同期ワードパターンが検出された通信(呼)は、最初の同期ワードで得られた前記周波数偏差情報(DCオフセット)を使用して、その通信(呼)が終了するまで、その周波数偏差情報(DCオフセット)を使用し続ける。また、前記同期ワードパターン検出回路34が同期ワードパターンを検出すると、以後は、4値FSKシンボル再生回路33における通常のシンボル再生で同期ワードを検出できるので、前記同期ワードパターン検出回路34は、その通信(呼)が終了するまで、同期ワードパターンの検出処理を行わない。このため、周波数偏差を持ちながら受信を行っているので、前記DCオフセット補正回路50による補正動作に比べて、前記バンドパスフィルタ224やローパスフィルタ245,246;27,28での相性は悪くなるものの、同期ワードパターンが検出できているので、前記4値FSKシンボル再生回路33には復調に問題のないレベルの信号が入力されており、再生されたシンボルデータには誤りは無く、問題はない。
図13に戻って、前記各シフトレジスタ331−1〜3のストア内容は、ゲート回路332によって、タイマ333で発生された前記シンボルクロックのタイミングで、シフトレジスタ334−1〜3にそれぞれ取込まれる。したがって、各シフトレジスタ334−2,334−1,334−3には、図14で示すような、理想のシンボル点P付近のサンプル点T2およびその前後のサンプル点T1,T3でのサンプリング値がストアされる。そして、サンプル点T2でのサンプリング値がシンボル判定部335に入力され、そのサンプル点T2でのサンプリング値から推定される実際のシンボル点Pのシンボル値として、前記「00」,「01」,「10」,「11」の何れが最も確からしいか判定され、その判定結果が前記2ビット、2.4kspsの信号としてフレーム生成回路35へ出力される。
また、シンボル判定部335からは、その判定結果のシンボル値に対応した理想の振幅レベルが出力され、引算器336−1〜3において、前記各シフトレジスタ334−1〜3でのストア内容から減算される。その減算結果、すなわち前記理想の振幅レベルからの誤差(差分値)の大きさV1〜V3の内、シフトレジスタ334−1,3、すなわちサンプル点T1,T3でのサンプリング値での誤差V1,V3の大きさがセレクタ337に入力されて、どちらの誤差が大きいか判断され、誤差の小さい方、すなわち図14ではサンプル点T3を、サンプル点T2を移動させるべき方向のデータ(指標)として、タイミング補正回路338へ出力される。
一方、前記タイミング補正回路338には、前記引算器336−2での誤差の大きさV2が、補正量のデータとして入力されており、このタイミング補正回路338は、その補正量のデータに対応したカウント値に、補正方向のデータとして符号を組合わせて、タイミング制御信号として、ループフィルタ339を介して前記タイマ333へ出力する。前記ループフィルタ339は、IIRフィルタなどのローパスフィルタから構成され、前記シンボルクロックが、時定数が大きくなる程安定となり、小さくなる程追従性が良くなる。
前記タイマ333は、デジタルのVCOなどの自走式のカウンタから成り、その発振周波数は、シンボル周波数に設定されており、シンボル周期(シンボルタイミング)となった時点で、桁溢れ分を除き、リセットしてカウント動作を再開する。そして、シンボルタイミングは、そのデジタルVCOの位相が0°を通過したタイミングとなる。たとえば、VCOの位相の0〜360°(1シンボル周期)をカウンタの0〜30000のカウント値に対応させると、タイマ333は、1つのオーバーサンプル点T毎に3000を加算してゆくことで、24kspsのオーバーサンプルのデータから、2.4kspsのシンボルレートのシンボル値をサンプリング可能なシンボルクロックを再生することができる。
そして、タイマ333は、前記図14の場合、次回のシンボルクロックを、補正方向として、サンプル点T3方向、すなわち進ませる方向に、補正量として前記サンプル点T2での誤差V2に対応して、たとえば500カウントだけ進ませるように、前記デジタルVCOの位相が0°でのカウント値を500に初期設定する。すると、その500カウントする間だけ、シンボルタイミングが速められ、次回のサンプル点T2が、実際のシンボル点Pに近付くことになる。具体的には、カウント動作の繰返しの中で、前記500のカウント値を補正するとタイマ333は、30500でオーバーフローし、この時リセットされて、桁溢れ分を除いた500に、今回の補正値500が加算されてカウント動作を再開し、次は31000でオーバーフローする。こうして、補正値の合計が3000になると、1サンプル分、サンプリングタイミングが速められることになる。
図15には、前記タイマ333のカウント動作の例として、初期値に負の値を設定し、シンボルタイミングを遅らせる場合を示す。このタイマ333の最大値を大きくすれば分解能が高くなり、オーバーサンプルのサンプリングレートを上げれば補正精度が向上する。なお、前記サンプル点T2での誤差V2が所定値より小さい場合は、上述のようなタイミング補正を行わないような不感帯を設けることで、安定性を向上することができる。また、このタイマ333は、前記同期ワードパターン検出回路34のシンボル比較器340からの前記リセット信号によって、同期ワードパターンの検出タイミングで、強制的に0リセットされ、カウント動作を再開する。
以上のように、本実施の形態の4値FSKシンボル再生回路33は、復調信号を予め定めるシンボル点でサンプリングし、得られたシンボルデータの振幅値から復調データを再生するにあたって、前記復調信号をシンボルクロックよりも高い周波数でオーバーサンプリングしたシンボルデータの内、前記シンボル点Pに近いサンプル点T2と、その前後のサンプル点T1,T3との3点のシンボルデータについて、演算手段を構成するシフトレジスタ331−1〜3、ゲート回路332、シフトレジスタ334−1〜3、シンボル判定部335および引算器336−1〜3によって、シンボル点Pにて得られるべき理想の振幅レベルとの差分値V1〜V3を求め、前記前後のサンプル点T1,T3の内、前記差分値V1,V3が小さい方の測定点を選択手段であるセレクタ337で選択し、タイミング補正回路338が、前記セレクタ337で選択されたサンプルT3側に、前記サンプル点T2における差分値V2に対応した時間だけ、自走する前記タイマ333の次回のシンボル点のサンプリングタイミングを移動させる。
したがって、たとえば「00」,「01」,「10」,「11」の4値の変調波の場合、「00」と「01」、或いは「10」と「11」のように、中央値を跨がないような遷移や、「00」と「10」、「01」と「11」のように、中央値を跨いでも、その中央値からの偏差が不均等な遷移の場合にも、サンプリングタイミングは、最大でオーバーサンプリングの周期ずつでずれが修正されてゆく。また、サンプリングタイミングに、180°近くの大きなずれが生じていても、タイミングを修正すべき方向は検知できる。こうして、多値変調波から、安定したシンボルクロックを再生することができる。また、アイパターンの開口率に依存しないため、ロールオフ率の変更に対して対応が容易である。さらにまた、タイミング演算は、シンボル点P付近のサンプル点T2と、その前後のサンプル点T1,T3との3点程度で行われるので、演算量を削減することもできる。このようなシンボルクロックの再生方法は、周波数変調に限らず、位相変調などのアイパターンが存在する種々の変調方式に適用することができる。
また、自走する前記タイマ333およびループフィルタ339は、前記同期ワードパターン検出回路34での同期ワードパターンの検出タイミングで、強制的にリセットされるので、本体データ(トラヒックチャンネル)の先頭から、精度の高いシンボルクロックを再生することができる。さらにまた、引算器330において、復調信号から、DCオフセット分の補正を行うので、サンプル点T2で得られるシンボルデータを、前記理想の振幅レベルに近付けることができ、より安定したクロックを再生することができる。
本発明の実施の一形態に係るFSK受信機の電気的構成を示すブロック図である。 前記FSK受信機における復調回路の一構成例を示すブロック図である。 4値FSKにおいて、送受信周波数ずれによって受信信号に発生するDCオフセットを説明するための波形図である。 本発明の実施の一形態に係るDCオフセット補正動作および補正制御動作を説明するための図である。 前記図4で示す動作を行うDCオフセット補正回路および補正制御回路の一構成例を示す図である。 本発明の実施の他の形態に係るFSK受信機における復調回路の一構成例を示すブロック図である。 同期ワードパターン検出回路の一構成例を示すブロック図である。 前記同期ワードパターン検出回路の動作を説明するための波形図である。 前記同期ワードパターン検出回路の動作を説明するための波形図である。 前記同期ワードパターン検出回路の動作を説明するための波形図である。 前記同期ワードパターン検出回路の動作を説明するための波形図である。 前記同期ワードパターン検出回路の動作を説明するための波形図である。 4値FSKシンボル再生回路の一構成例を示すブロック図である。 前記4値FSKシンボル再生回路の動作を説明するための波形図である。 前記4値FSKシンボル再生回路におけるタイマのカウント動作を説明するための波形図である。
符号の説明
1 FSK受信機
3 アンテナ
4,8,12,224 バンドパスフィルタ
5,9,13,40 アンプ
6,10;222,241,242 混合器
7,11;223,243 局部発振回路
14 アナログ/デジタル変換器
15,17,39 デジタル/アナログ変換器
16 スピーカ
21,61 復調回路
22 周波数変換器
221 ハイパスフィルタ
23,25,26,37,45 コンバータ
24 直交変換器
244 移相器
245,246,27,28,38,507 ローパスフィルタ
29 位相検出器
30 周波数検出器
301 加算器
302 遅延器
31 逆Sincフィルタ
32 ルート・レイズド・コサインフィルタ
33 4値FSKシンボル再生回路
330,336−1〜3,502 引算器
331−1〜3,334−1〜3 シフトレジスタ
332 ゲート回路
333 タイマ
335 シンボル判定部
337 セレクタ
338 タイミング補正回路
339 ループフィルタ
34 同期ワードパターン検出回路
340 シンボル比較器
341,346 メモリ
342 平均値算出部
343,348 レジスタ
344,345 引算器
347 相関演算器
349 比較器
35 フレーム生成回路
36 音声復調部
41 スピーカ
42 AGC演算回路
46 RSSI回路
50 DCオフセット補正回路
501 サンプラ
503,504 サンプルホールド回路
505 加算器
506 割り算器
508 変換回路
51,52 補正制御回路
511,62 引算器
512,521 閾値判定部
513,522 ゲート

Claims (4)

  1. 変調波における周波数または位相の偏差に対応した振幅を有する復調信号を、予め定めるシンボル点でサンプリングし、得られたシンボルデータの振幅値から復調データを再生するにあたって、前記サンプリングタイミングを規定するシンボルクロックを再生するクロック再生回路において、
    前記シンボルクロックを発生するタイマと、
    前記シンボルクロックよりも高い周波数で前記復調信号をオーバーサンプリングするオーバーサンプリング手段と、
    前記オーバーサンプリングによって得られたシンボルデータの内、新しいシンボルデータから古い方へ計3点の第1ないし第3シンボルデータそれぞれについて、前記予め定めるシンボル点にて得られるべき理想の振幅レベルとの差分値をそれぞれ演算する演算手段と、
    前記第1シンボルデータに対応する第1差分値および第3シンボルデータに対応する第3差分値において、小さい方の差分値に対応するオーバーサンプリングの測定点を選択する選択手段と、
    前記タイマに、前記選択手段で選択された測定点側に、前記第2シンボル点における第2差分値に対応した時間だけ、次回のシンボル点のサンプリングタイミングを移動させるタイミング補正手段とを含むことを特徴とするクロック再生回路。
  2. 前記タイマは、同期ワードパターン検出器からの同期ワードパターンの検出タイミングでリセットされることを特徴とする請求項1記載のクロック再生回路。
  3. 前記同期ワードパターン検出器では、前記シンボルクロックの検出によって、送受信周波数のずれに起因するDCオフセットが検出されており、
    前記演算手段に入力される前記復調信号から、前記DCオフセットの補正を行う引算器をさらに備えることを特徴とする請求項2記載のクロック再生回路。
  4. 前記請求項1〜3のいずれか1項に記載のクロック再生回路を用いることを特徴とする受信機。
JP2008198884A 2008-07-31 2008-07-31 クロック再生回路およびそれを用いる受信機 Active JP5304090B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2008198884A JP5304090B2 (ja) 2008-07-31 2008-07-31 クロック再生回路およびそれを用いる受信機
US12/935,039 US8331515B2 (en) 2008-07-31 2009-03-27 Clock regeneration circuit and receiver using the same
CN2009801059635A CN101946476B (zh) 2008-07-31 2009-03-27 时钟再生电路以及采用该时钟再生电路的接收机
PCT/JP2009/056371 WO2010013512A1 (ja) 2008-07-31 2009-03-27 クロック再生回路およびそれを用いた受信機
EP09802757.6A EP2309691B1 (en) 2008-07-31 2009-03-27 Clock regeneration circuit and receiver using the same
HK11103064.2A HK1149130A1 (en) 2008-07-31 2011-03-28 Clock regeneration circuit and receiver using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008198884A JP5304090B2 (ja) 2008-07-31 2008-07-31 クロック再生回路およびそれを用いる受信機

Publications (2)

Publication Number Publication Date
JP2010041139A JP2010041139A (ja) 2010-02-18
JP5304090B2 true JP5304090B2 (ja) 2013-10-02

Family

ID=41610222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008198884A Active JP5304090B2 (ja) 2008-07-31 2008-07-31 クロック再生回路およびそれを用いる受信機

Country Status (6)

Country Link
US (1) US8331515B2 (ja)
EP (1) EP2309691B1 (ja)
JP (1) JP5304090B2 (ja)
CN (1) CN101946476B (ja)
HK (1) HK1149130A1 (ja)
WO (1) WO2010013512A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4424378B2 (ja) * 2007-06-13 2010-03-03 ソニー株式会社 フレーム同期装置及びその制御方法
JP5444863B2 (ja) * 2009-06-11 2014-03-19 ソニー株式会社 通信装置
US8874390B2 (en) * 2011-03-23 2014-10-28 Hach Company Instrument and method for processing a doppler measurement signal
JP5739521B2 (ja) * 2011-04-19 2015-06-24 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 信号生成方法及び信号生成装置
JP5880246B2 (ja) * 2012-04-19 2016-03-08 アイコム株式会社 アナログ信号再生装置およびアナログ信号再生方法
US8744021B1 (en) * 2012-11-30 2014-06-03 Motorola Solutions, Inc. Systems, methods, and devices for improving signal quality
WO2016154607A1 (en) * 2015-03-26 2016-09-29 Sonarmed, Inc. Improved acoustical guidance and monitoring system
US10478261B2 (en) * 2015-05-29 2019-11-19 Deka Products Limited Partnership System, method, and apparatus for remote patient care
EP3483014B1 (en) * 2017-11-10 2021-05-19 Nxp B.V. Pattern detection for automotive access

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3404232A (en) * 1964-12-01 1968-10-01 Bell Telephone Labor Inc Stabilized pulse regenerator
CA1311033C (en) * 1988-03-19 1992-12-01 Shinji Ohta Circuit for obtaining accurate timing information received signal
JP3076519B2 (ja) 1996-02-15 2000-08-14 松下電器産業株式会社 ビット同期回路及びビット同期方法
JPH104436A (ja) 1996-06-18 1998-01-06 Fujitsu Ltd クロック再生回路
JP2957489B2 (ja) 1996-09-18 1999-10-04 静岡日本電気株式会社 4値fsk受信機
CN1179661A (zh) * 1996-09-18 1998-04-22 日本电气株式会社 数字调制的信号接收机
US6633621B1 (en) * 2000-03-20 2003-10-14 Motorola, Inc. Apparatus and method for synchronizing a clock using a phase-locked loop circuit
US6735260B1 (en) * 2000-04-17 2004-05-11 Texas Instruments Incorporated Adaptive data slicer
JP2006254296A (ja) 2005-03-14 2006-09-21 Matsushita Electric Ind Co Ltd シンボル位置検出装置
JP2007013620A (ja) 2005-06-30 2007-01-18 Kenwood Corp クロック再生装置、クロック再生方法、クロック再生プログラム及び記録媒体
JP4585438B2 (ja) * 2005-12-06 2010-11-24 富士通株式会社 タイミング再生回路
JP2007181016A (ja) 2005-12-28 2007-07-12 Oki Electric Ind Co Ltd 判定タイミング同期回路及び受信回路
US7649957B2 (en) * 2006-03-22 2010-01-19 Freescale Semiconductor, Inc. Non-overlapping multi-stage clock generator system
JP4872651B2 (ja) * 2006-12-20 2012-02-08 ソニー株式会社 無線通信装置及び無線通信方法
JP5004612B2 (ja) 2007-02-15 2012-08-22 大日本スクリーン製造株式会社 基板処理装置

Also Published As

Publication number Publication date
US8331515B2 (en) 2012-12-11
CN101946476A (zh) 2011-01-12
US20110019788A1 (en) 2011-01-27
EP2309691A4 (en) 2016-06-29
JP2010041139A (ja) 2010-02-18
EP2309691B1 (en) 2018-04-25
HK1149130A1 (en) 2011-09-23
CN101946476B (zh) 2013-08-21
EP2309691A1 (en) 2011-04-13
WO2010013512A1 (ja) 2010-02-04

Similar Documents

Publication Publication Date Title
JP5343439B2 (ja) フレーム同期検出回路およびそれを用いるfsk受信機
JP5304090B2 (ja) クロック再生回路およびそれを用いる受信機
JP5304089B2 (ja) Fsk受信機
US9160588B2 (en) Radio receiver and frequency correcting method therefor
US6456831B1 (en) Amplitude change time activated phase locked controller in a selective call receiver
EP1202511A1 (en) Method for estimating and removing a time-varying DC-offset
JP3403198B2 (ja) デジタル変調された信号を復調する方法及び復調器
US6933775B2 (en) Circuit for detecting and correcting central level of FSK demodulation signal
US8472909B2 (en) Filter device for detecting and/or removing erroneous components in and/or from a signal
JPH08237313A (ja) 多値fsk復調回路
JP5880246B2 (ja) アナログ信号再生装置およびアナログ信号再生方法
JP4391433B2 (ja) 回転角度導出装置
JP4246184B2 (ja) クロック位相推定装置
JPH07240766A (ja) 同期検波回路
JP2000312232A (ja) クロック同期回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130610

R150 Certificate of patent or registration of utility model

Ref document number: 5304090

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250