JP5300201B2 - マグネチックドメイン移動を利用した磁気メモリ - Google Patents

マグネチックドメイン移動を利用した磁気メモリ Download PDF

Info

Publication number
JP5300201B2
JP5300201B2 JP2007035442A JP2007035442A JP5300201B2 JP 5300201 B2 JP5300201 B2 JP 5300201B2 JP 2007035442 A JP2007035442 A JP 2007035442A JP 2007035442 A JP2007035442 A JP 2007035442A JP 5300201 B2 JP5300201 B2 JP 5300201B2
Authority
JP
Japan
Prior art keywords
magnetic
data
memory
data bit
memory track
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007035442A
Other languages
English (en)
Other versions
JP2007227916A (ja
Inventor
泰完 金
永眞 ▲チョ▼
起園 金
仁俊 黄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JP2007227916A publication Critical patent/JP2007227916A/ja
Application granted granted Critical
Publication of JP5300201B2 publication Critical patent/JP5300201B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
    • G11C11/15Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements using multiple magnetic layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/02Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements
    • G11C19/08Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure
    • G11C19/0808Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure using magnetic domain propagation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/02Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements
    • G11C19/08Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure
    • G11C19/0808Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure using magnetic domain propagation
    • G11C19/0841Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure using magnetic domain propagation using electric current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/90Magnetic feature

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Thin Magnetic Films (AREA)

Description

本発明は、磁気メモリに係り、さらに詳細には、マグネチックドメインからなるデータビットがアレイに保存され、マグネチックドメイン移動(magnetic domain motion)の可能な磁気メモリに関する。
磁気RAM(MRAM:Magnetic Random Access Memory)は、不揮発性磁気メモリの一つであり、ナノ磁性体特有のスピン依存伝導現象に基づいた磁気抵抗効果を利用する新しい固体磁気メモリである。かかるMRAMは、電子の自由度であるスピンが電子伝達現象に大きな影響を及ぼすことにより生じる巨大磁気抵抗(GMR:Giant MagnetoResistance)現象やトンネル磁気抵抗(TMR:Tunnel MagnetoResitance)現象を利用したものである。
GMRとは、強磁性体/金属非磁性体/強磁性体の連続的な配列において、非磁性体を挟んで形成された強磁性体間の磁化方向配列が同じである場合と、互いに反対である場合とで抵抗差が生じる現象を意味する。TMRは、強磁性体/絶縁体/強磁性体の連続的な配列で、2層の強磁性層での磁化方向の配列が同じである場合では、異なった場合に比べて電流の透過が容易であるという現象を意味する。GMR現象を利用したMRAMの場合、磁化方向による抵抗値の差が相対的に小さいために、電圧値の差を大きくできない。また、セルを構成するために、GMR膜と組み合わせて使用する金属酸化膜半導体電界効果トランジスタ(MOSFET:Metal−Oxide Semiconductor Field Effect Transistor)のサイズを大きくしなければならないという短所があり、現在ではTMR膜を採用してMRAMを実用化するための研究がさらに活発に行われている。
MRAMは、例えば、スイッチング素子であるトランジスタと、データの保存される磁気トンネル接合(MTJ:Magnetic Tunnel Junction)セルとから構成される。一般的に、MTJセルは、磁化方向が固定されている固定強磁性層(pinned ferromagnetic layer)、前記固定強磁性層に対して磁化方向が平行(parallel)または反平行(anti−parallel)に変わりうる自由強磁性層(free ferromagnetic layer)、及び前記固定強磁性層と自由強磁性層との間に配置され、前記強磁性層を磁気的に分離させる非磁性層からなる。
ところで、一般的に、MTJセル当たり1ビットのデータしか保存されないので、MRAMのデータ保存容量を増大するのには、限界がある。従って、MRAMのような磁気メモリの情報保存容量をさらに増大させるためには、新しい保存方式が必要とされる。
本発明は、前記のような点を勘案して案出され、複数のマグネチックドメインが形成され、データビットがアレイに保存され、マグネチックドメイン移動が容易である磁気メモリを提供するところにその目的がある。
前記目的を達成するための本発明による磁気メモリは、複数のマグネチックドメインが形成され、このマグネチックドメインからなるデータビットがアレイに保存されうるメモリトラックを具備し、前記メモリトラックは、非晶質軟磁性物質からなることを特徴とする。
前記メモリトラックは、NiFeのIV族元素合金、例えば、NiFeSiBにより形成されうる。
前記メモリトラックは、NiFeより磁気異方性定数の大きな非晶質軟磁性物質からなる。
前記メモリトラックは、磁化方向のスイッチングが可能なように設けられ、前記メモリトラックの一部領域に対応するように形成され、固定された磁化方向を有する基準層をさらに具備し、前記メモリトラックに前記基準層の有効サイズに相応する前記マグネチックドメインからなるデータビットがアレイに保存されうるように形成され、前記メモリトラックのデータビット領域に保存されたデータを隣接したデータビット領域に移動させるように、前記メモリトラックに電気的に連結され、マグネチックドメイン移動信号を入力する第1入力部をさらに備えることができる。
前記基準層と前記メモリトラックとの間には、非磁性層がさらに備わりうる。
前記非磁性層は、導電膜やトンネリング障壁としての役割を行う絶縁膜でありうる。
前記メモリトラックは、保存しようとするデータビット数に対応するデータビット領域を備え、複数ビットのデータが保存される少なくとも1つのデータ保存領域と、マグネチックドメイン移動時に、データ保存領域外に移動するデータを必要によって保存することができるようにデータ保存領域に連続するバッファ領域とを備えることができる。
前記メモリトラックの少なくとも1つのデータビット領域と、前記基準層に電気的に連結され、書き込み電流信号及び読み取り電流信号のうち少なくともいずれか一つを入力する第2入力部とをさらに具備できる。
前記メモリトラックは、複数のデータ保存領域を備え、2つの隣接するデータ保存領域間には、バッファ領域が位置し、前記第2入力部は、各データ保存領域に少なくとも1個ずつ対応するように設けられうる。
本発明の磁気メモリによれば、大きな磁気異方性定数を有する非晶質軟磁性物質からなり、複数のマグネチックドメインが形成されうるメモリトラックを具備するので、小さな電流によってもマグネチックドメイン移動が容易になされうる。
また、メモリトラックにマグネチックドメインからなるデータビットがアレイに保存されうるので、本発明による磁気メモリを適用したセル当たり複数ビットのデータを保存することができ、データ保存容量を大きく増大できる。
以下、添付された図面を参照して、本発明によるマグネチックドメイン移動可能なメモリトラックを具備する磁気メモリの望ましい実施例を詳細に説明する。
図1は、本発明による磁気メモリを概略的に示している。
図1を参照すれば、本発明による磁気メモリ1は、複数のマグネチックドメインが形成され、データビットがアレイに保存されうるメモリトラック11を具備する。また、本発明による磁気メモリ1は、前記メモリトラック11に電気的に連結され、マグネチックドメイン移動信号を入力する第1入力部50をより備えることができる。
前記メモリトラック11には、マグネチックドメイン障壁(magnetic domain wall)が形成されうる。このマグネチックドメイン障壁の存在により、前記メモリトラック11には、複数のマグネチックドメインが形成される。
前記メモリトラック11は、データを記録できるように磁化方向のスイッチングが可能なように設けられうる。この場合、本発明による磁気メモリ1は、マグネチックドメインにデータビット(磁化方向に設定される)を記録できる。ここで、本発明による磁気メモリ1は、後述する実施例でのように、前記メモリトラック11にマグネチックドメインをスピン転換トルク、すなわち、電流誘導マグネチックスイッチング(CIMS:Current Induced Magnetic Switching)法を利用して磁化反転させることにより、データビット、すなわち、「0」または「1」を記録するように形成されうる。他の例として、本発明による磁気メモリ1は、メモリトラック11に電流により誘導された磁場によってマグネチックドメインを磁化反転させることにより、データビットを記録するように設けられることもある。
前記メモリトラック11は、マグネチックドメインの移動が容易になされうるように、大きな磁気異方性定数(magnetic anisotropy constant)Kを有する非晶質軟磁性物質からなる。
一般的な軟磁性物質であるNiFeの場合には、比較的小さな磁気異方性定数Kを有するので、これを利用した複数のマグネチックドメインが形成されうるメモリトラックを形成するのであれば、マグネチックドメイン移動のために、大きな電流値が必要となる。
従って、前記メモリトラック11は、このNiFeより磁気異方性定数Kの大きな非晶質軟磁性物質からなることが望ましい。例えば、前記メモリトラック11は、大きな磁気異方性定数Kを有するNiFeのIV族元素合金、例えば、NiFeSiBから形成されうる。
NiFeSiBのようなNiFeのIV族元素合金の非晶質軟磁性物質は、異方性磁界Hが大きいために、磁気異方性がよい。
マグネチックドメイン移動のために要求される電流が大きければ、マグネチックドメイン移動のために印加される電流により、磁性材料が中間でカットオフされる可能性が高まる。従って、マグネチックドメイン移動可能なメモリトラック11を形成するためには、低い電流を印加することによってもマグネチックドメイン移動が容易になされうる材質によりメモリトラック11を形成する必要がある。
ドメイン障壁幅(domain wall width)を縮めれば、小さなエネルギー(電流)でもドメイン移動が実現できる。ドメイン障壁幅Wは、数式1に示したように、ドメイン障壁の表面エネルギー(surface energy of domain wall)Γと比例関係にある。
Γ∝W (1)
また、ドメイン障壁の幅Wは、数式2に示したように磁気異方性定数Kの自乗根に比例する。
W∝(K1/2 (2)
数式1及び2から分かるように、ドメイン障壁幅を縮め、ドメイン移動のためのエネルギー、すなわち、電流値を下げるためには、大きな磁気異方性定数を有する物質を前記メモリトラック11を形成するのに使用する必要がある。
従って、前記メモリトラック11を、大きな磁気異方性を有する非晶質軟磁性物質から形成すれば、小さな電流値でもドメイン移動が容易になされ、磁性材料が中間でカットオフされることがなくなる。
図2は、軟磁性物質であるNiFeの磁気履歴曲線を示し、図3は、非晶質軟磁性物質であるNiFeSiBの磁気履歴曲線を示している。詳細には、図2は、Ni81Fe19の磁気履歴曲線であり、図3は、Ni16Fe62Si14の磁気履歴曲線である。図2及び図3では、磁化容易軸方向(イージーディレクション:easy direction)に磁場が印加されるときの磁気履歴曲線と、これに垂直な方向(ハードディレクション:hard direction)に磁場が印加されるときの磁気履歴曲線とを示している。
図2及び図3を比較して説明すれば、NiFeの保磁力(coercivity)Hは、ほぼ10Oe程度であり、NiFeSiBの保磁力は、ほぼ20Oe程度ほどと、非晶質軟磁性物質であるNiFeSiBの保磁力の方がNiFeの保磁力に比べて2倍程度大きい。これにより、NiFeSiBの誘導された磁気異方性(induced magnetic anisotropy)が一般的なNiFeに比べて2倍以上大きい。
ここで、マグネチックドメインの異方性磁界Hは保磁力Hに比例し、異方性磁界Hは磁気異方性定数Kに比例する。従って、磁気異方性定数は、保磁力に比例することとなる。
従って、NiFeSiBのような保磁力及び磁気異方性の大きな非晶質軟磁性物質を使用すれば、安定したビット形成が可能であり、ストリップマグネチックドメイン(strip magnetic domain)が形成され、これにより、マグネチックドメインからなるデータビットをアレイに保存することができ、ドメイン障壁幅を縮めることができるために、小さな電流でもマグネチックドメイン移動が実現され、マグネチックドメイン移動が容易になされうる。従って、非晶質軟磁性物質からなるメモリトラック11は、小さな電流によりマグネチックドメイン移動がなされるので、磁性材料がカットオフされることなどが発生しなくなる。
従って、NiFeSiBのようなNiFeのIV族元素合金の非晶質軟磁性物質によって前記メモリトラック11を形成すれば、マグネチックドメインからなるデータビットがアレイに保存され、マグネチックドメイン移動が容易になされうる磁気メモリ1を実現できる。
一方、前記第1入力部50は、メモリトラック11のマグネチックドメインを移動させ、データビット領域に保存されたデータ(すなわち、水平磁化または垂直磁化)を隣接したデータビット領域に移動させるように、前記メモリトラック11に電気的に連結される。この第1入力部50を介して入力された移動信号(motion signal)、すなわち、移動電流信号によってマグネチックドメインの磁化方向は、隣接したマグネチックドメインに移動する。これをマグネチックドメイン移動という。
前記移動信号は、図7に図示されているように、一定周期で入力されるパルス電流(パルス1)でありうる。前記移動信号は、単一マグネチックドメインを含むデータビット領域単位にマグネチックドメイン移動がなされるように入力されうる。ここで、マグネチックドメイン移動は、実質的には所定マグネチックドメインの磁化方向を隣接したマグネチックドメインに移動させることであるから、移動信号は、データビット領域単位にマグネチックドメイン移動がなされる時間の間持続され、データビット領域単位にマグネチックドメイン移動がなされるように、周期的に印加されることが望ましい。
前記のような本発明による磁気メモリ1によれば、複数のマグネチックドメインが形成され、それぞれが単一マグネチックドメインからなるデータビットがアレイに保存されうるメモリトラック11を具備するので、メモリトラック11当たり複数ビットのデータを保存することができ、磁気メモリ1の情報保存容量を大きく増加させることができる。また、メモリトラック11のマグネチックドメインを小さな印加電流によっても容易に移動させることができるので、後述する具体実施例でのように、データの読み取りまたは書き込みと、マグネチックドメイン移動とを交互に進めて、メモリトラック11から/に複数ビットのデータを読み込み/書き込みを行うことが可能である。
図4は、本発明による磁気メモリの具体的な一実施例を概略的に示したものであり、本発明による磁気メモリがメモリトラック11のマグネチックドメインをスピン転換トルク法を利用して磁化反転させることにより、データビット、すなわち、「0」または「1」を記録するように設けられた実施例を示している。図4で、メモリトラック11と第1入力部50は、図1と実質的に同じ部材であるから、同一参照符号を使用し、反復されるような説明は省略する。
図4を参照すれば、本発明の一実施例による磁気メモリ10は、メモリトラック11と、メモリトラック11のマグネチックドメイン移動信号を入力する第1入力部50と、このメモリトラック11の一部領域に対応するように形成され、固定された磁化方向を有する基準層15を備え、前記メモリトラック11に前記基準層15の有効サイズに相応するマグネチックドメインからなるデータビットをアレイに保存することができるように設けられる。本発明の一実施例による磁気メモリ10は、メモリトラック11の少なくとも1つのデータビット領域と、基準層15に電気的に連結され、書き込み電流信号及び読み取り電流信号のうち少なくともいずれか1つの信号(パルス2)を入力する第2入力部40とをさらに備える。前記基準層15とメモリトラック11との間には、非磁性層13が配置されうる。図4では、非磁性層13がメモリトラック11の全面にわたって形成された例を示すが、非磁性層13を基準層15の上面に形成することもある。
前述のように、前記メモリトラック11は、複数のマグネチックドメインストリップが形成され、単一マグネチックドメインからなるデータビットがアレイに保存され、NiFeSiBのような非晶質軟磁性物質からなり、小さな電流によってもマグネチックドメイン移動がなされうる。
本実施例において、前記メモリトラック11は、磁化方向がスイッチングされうるように設けられ、データビットが記録される記録層である。
前記基準層15は、固定された磁化方向を有する固定層であり、メモリトラック11の1データビット領域(1マグネチックドメイン)に対応する有効サイズを有するように形成される。
一方、メモリトラック11と基準層15との間に位置する非磁性層13は、Cuのような導電膜であるか、またはトンネリング障壁として役割を行うアルミニウム酸化膜のような絶縁膜でありうる。
本発明の一実施例による磁気メモリ10において、データ書き込みまたは保存されたデータ読み取りは、前記基準層15の有効サイズに対応するメモリトラック11の面積単位でなされる。従って、前記基準層15の有効サイズは、実質的にメモリトラック11の1データビット領域(すなわち、マグネチックドメイン)の大きさを決定する。
1データビット領域内には、単一マグネチックドメインだけが存在するのが望ましいが、メモリトラック11に形成されるマグネチックドメインは、少なくとも基準層15の有効サイズに相応する大きさに形成されることが望ましい。
また、前記メモリトラック11は、前記基準層15の有効サイズ、すなわち、メモリトラック11のマグネチックドメイン移動方向の幅と所望のデータビット領域の数との積の長さに形成されることが望ましい。これにより、基準層15の有効サイズ単位に単一マグネチックドメインからなる複数のデータビット領域アレイが形成され、複数ビットのデータをアレイに保存することができるメモリトラック11が得られる。
前記メモリトラック11は、図4でのように、保存しようとするデータビット数に対応するデータビット領域D1,D2,D3,D4,D5,D6を備え、複数ビットのデータが保存されるデータ保存領域20と、マグネチックドメイン移動時に、データ保存領域20外に移動するデータを必要に応じて保存することができるように、データ保存領域20に連続するバッファ領域30とを備えることができる。バッファ領域30は、データ保存領域20の少なくとも一側に位置しうる。
前記データ保存領域20がn個のデータビット領域を具備する場合、前記バッファ領域30は、少なくともn個またはn−1個のデータビット領域を具備することが望ましい。すなわち、バッファ領域30の全体データビット領域の数は、データ保存領域20のデータビット領域の数と少なくとも同一であるか、または1個程度少なく形成されうる。図4では、メモリトラック11の中心部分は、データ保存領域20として使用し、その両側のメモリトラック11をバッファ領域30として使用する例を示している。バッファ領域30の部分では、直接書き込みまたは読み取りがなされないので、バッファ領域30は、記録層に該当するメモリトラック11のみを具備するか、またはメモリトラック11とその下面の非磁性層13とからなる層構造を有することができる。また、本発明の一実施例による磁気メモリ10は、バッファ領域30がデータ保存領域20と実質的に同じ層構造、すなわち、基準層15まで含む層構造を有し、バッファ領域30の基準層15には、信号を入力しないように構成されることもある。
図4では、データ保存領域20の6個のデータビット領域D1,D2,D3,D4,D5,D6のうち、三番目の第3データビット領域D3でデータ書き込みまたはデータ読み取りが行われ、データ保存領域20の両側に、バッファ領域30の第1部分A及び第2部分Bが備わった例を示している。図4では、データを読み込む動作の間、マグネチックドメイン移動が左側から右側になされる場合を考慮し、データ保存領域20の左側に3個のデータビット領域を有するバッファ領域30の第1部分A、データ保存領域20の右側に2個のデータビット領域を有するバッファ領域30の第2部分Bを形成した例を示している。データ保存領域20の6個のデータビット領域D1,D2,D3,D4,D5,D6のデータは、第6データビット領域D6のデータが第3データビット領域D3に位置するように左側に移動した状態でデータ読み取り動作を始め、データを右側に移動しつつ、移動と読み取り動作は交互に行えば、この6個のデータビット領域D1,D2,D3,D4,D5,D6のデータを順に読み取ることができる。
図4では、データ保存領域20の中間部分に基準層15が形成され、データ保存または読み取り動作がデータ保存領域20の中間部分でなされる例を示すが、本発明はこれに限定されるものではなく、多様な変形例が可能である。
例えば、データ保存領域20の最初のデータビット領域D1でデータ保存またはデータ読み取りが行われ、データ保存領域20のデータビット領域と、少なくともこれと同じ数またはこれより一つ少ない数のデータビット領域を有するバッファ領域30は、データ保存領域20のデータ読み取りまたは書き込みの始まるデータビット領域に隣接するように(例えば、データ読み取りまたは書き込みが最初のデータビット領域D1から始まる場合にその左側、データ読み取りまたは保存が最後の六番目データビット領域D6から始まる場合にその右側)設けられるか、または両側にそれぞれ設けられることもある。かかる変形例についての図示は、図4に図示された構造から十分に類推できるので、その図示を省略する。
バッファ領域30がデータ保存領域20の右側または左側だけに設けられた場合、データを読み取る区間では、データ保存領域20のデータを移動してバッファ領域30に移動させた後、データ読み取りを行うことができる。このとき、データを読み取る間に行われるマグネチックドメイン移動と、データを記録する間に行われるマグネチックドメイン移動は、同一方向に行われうる。また、データ保存領域20のデータを直にバッファ領域30に移動させて、データ読み取りを行うこともある。その場合のデータを読み取る間に行われるマグネチックドメイン移動と、データを記録する動作の間行われるマグネチックドメイン移動は、互いに反対方向に行われる。
データ保存領域20にnビットのデータを保存する場合、バッファ領域30でのデータビット領域の数は、データ保存領域20でのデータビット領域の数より一つ少なく用意することが可能であるが、その理由は、次の通りである。すなわち、バッファ領域30は、n−1ビットのデータを保存するように設けられうる。これは、1ビットのデータは、データ保存領域20のデータ保存または読み取りが行われるデータビット領域、すなわち、特定データビット領域21に保存することが常に可能であるので、バッファ領域30には、n−1ビットのデータだけ一時的に保存すればよいためである。ここで、バッファ領域30がデータ保存領域20と同数、またはそれより多くの数のデータビット領域を有することができることは、もちろんである。
バッファ領域30がデータ保存領域20両側に設けられた場合に、データをバッファ領域30に移動させる過程なしに、直にデータ保存領域20のデータに対してマグネチックドメイン移動を行い、データを読み取ることが可能である。このとき、データを読み取る間に行われるマグネチックドメイン移動と、データを保存する動作の間行われるマグネチックドメイン移動は、互いに反対方向に行われる。その場合にも、データ保存領域20にnビットのデータを保存する場合、このデータ保存領域20両側のバッファ領域30それぞれのデータビット領域の数は、データ保存領域20でのデータビット領域の数より一つ小さくありうる。
一方、以上では、本発明による磁気メモリ10のメモリトラック11がデータ保存領域20に連続するバッファ領域30を具備すると説明及び図示したが、本発明による磁気メモリ10のメモリトラック11は、バッファ領域なしにデータ保存領域20のみによりなされうる。このとき、データ保存領域20には、バッファとしての役割を行えるように、保存しようとするビット数のデータビット領域を追加し、剰余のデータビット領域をさらに具備する。例えば、nビットのデータを保存しようとする場合、データ保存領域20には、少なくとも2nまたは2n−1のデータビット領域を具備できる。
一方、本発明の一実施例による磁気メモリ10では、前記第1入力部50を介して印加されるマグネチックドメイン移動信号(パルス1)、及びこの移動信号と同期され、前記第2入力部40を介して印加される書き込み信号(例えば、図7でのパルス2(書き込み))により、メモリトラック11の連続したマグネチックドメインを移動して、そのマグネチックドメインの一部領域、例えば、前記基準層15に対応する特定位置のマグネチックドメインをスピン転換トルク、すなわち、電流誘導マグネチックスイッチング(CIMS:Current Induced Magnetic Switching)法を利用して磁化反転させることにより、データビット、すなわち、「0」または「1」を記録する。
付加的に、本発明の一実施例による磁気メモリ10では、前記第1入力部50を介して印加される移動信号(パルス1)、及びこの移動信号と同期されて前記第2入力部40を介して印加される読み取り信号(例えば、図7でのパルス2(読み取り))により、マグネチックドメインを移動しつつ、記録層に該当するメモリトラック11と基準層15との間に読み取り信号、例えば、読み取り用パルス信号を印加し、例えば、スピントンネリング現象によってメモリトラック11のマグネチックドメインに保存された情報データを読み取る。
図4でパルス1は、マグネチックドメイン移動信号、パルス2は、読み取り信号または書き込み信号を意味する。
一方、前記第2入力部40は、メモリトラック11と前記基準層15とに電気的に連結される。図4では、前記第2入力部40が基準層15及びこの基準層15上に位置したメモリトラック11の特定データビット領域21に電気的に連結された場合を示している。
書き込み信号は、前記第2入力部40を介してメモリトラック11の特定データビット領域21及び基準層15に入力され、この書き込み信号により、例えば、基準層15上に位置したメモリトラック11の特定データビット領域21の磁化方向が指定される。図4で、データ保存領域20は、第1ないし第6データビット領域D1,D2,D3,D4,D5,D6のアレイを具備し、第2入力部40に電気的に連結された特定データビット領域21は、基準層15上に位置した第3データビット領域D3になる。
前記第2入力部40を介して書き込み信号が入力されれば、その書き込み信号により、前記第3データビット領域D3の磁化方向が決まる。例えば、第3データビット領域D3が所定の磁化方向を有するとき、印加される書き込み信号により、第3データビット領域D3の磁化方向が反転されたり、または本来の磁化方向が維持される。このように、指定された磁化方向が記録されたデータビットを示す。
前記書き込み信号は、後述する図7に図示されているように、パルス形態のスイッチング電流であり、このスイッチング電流の極性により、前記基準層15上に位置したメモリトラック11の特定データビット領域21、例えば、第3データビット領域D3の磁化方向が選択的にスイッチングされ、その特定データビット領域21には、保存しようとするデータビット、すなわち、「0」または「1」の値が保存される。
例えば、基準層15が所定の磁化方向を有する場合、スイッチング電流を印加し、特定データビット領域21の磁化方向と基準層15の磁化方向とが同じ場合、すなわち、平行である場合に、データビットが「0」に指定されるならば、反対極性のスイッチング電流を印加し、特定データビット領域21が基準層15と反対の磁化方向を有するようになり、データビットは、「1」に指定されうる。このように、スイッチング電流の極性を変えることにより、特定データビット領域21の磁化方向を基準層15と同じ磁化方向にしたり、または基準層15と反対の磁化方向にし、データを保存する。
ここで、基準層15の磁化方向はあらかじめ決まっている。従って、既定の基準層15の磁化方向に対し、メモリトラック11のデータビット領域の磁化方向が平行であるとき、データビットを「0」、反平行であるとき、データビットを「1」にすれば、メモリトラック11の特定データビット領域21の磁化方向をスイッチングすることにより、所望のデータを保存することができる。
一方、保存されたデータを読み込もうとするときには、読み取り信号、例えば、図7でのような読み取り用パルス電流が前記第2入力部40を介してメモリトラック11の特定データビット領域21及び基準層15に入力される。このとき、基準層15、この基準層15上に位置したメモリトラック11の特定データビット領域21、及びその間の非磁性層13は、MTJセルを構成する。従って、前記基準層15の磁化方向に対し、前記メモリトラック11の特定データビット領域21の磁化方向により、電流の通過程度や抵抗値が変わり、かかる差に基づいてデータ情報を読み取る。ここで、データを読み取るために、別途の基準層15と入力部とを構成することもある。
前記読み取り用パルス電流は、図7に図示されているように、記録のための前記スイッチング電流よりは小さいパルス電流でありうる。この読み取り用パルス電流は、前記ドメイン移動信号と同期されて印加される。これにより、マグネチックドメイン移動と読み取り基準層15上に位置する特定データビット領域21の磁化方向とにより、保存データ情報を読み取ることができる。
前記のような構成を有する本発明の一実施例による磁気メモリ10では、記録用スイッチング電流または読み取り用パルス電流の入力と移動信号の入力は、交互になされる。これにより、データ保存または保存されたデータ読み取りとマグネチックドメイン移動とが交互になされる。これにより、複数のデータビット領域に複数ビットのデータを順に記録したり、またはその複数のデータビット領域に保存された複数ビットのデータを順に読み取ることとなる。本発明の一実施例による磁気メモリ10でのデータ保存、または保存されたデータ読み取りについて、図5Aないし図5C、図6A及び図6Bを参照して説明すれば、次の通りである。
図5Aないし図5Cは、図4の第3データビット領域D3(特定データビット領域21)にスイッチング電流が印加されて磁化方向が反転され、磁化反転された第3データビット領域D3の磁化方向が移動電流によって隣接した第4データビット領域D4に移動する過程を示している。図6A及び図6Bは、第3データビット領域D3(特定データビット領域21)に読み取り用パルス電流を印加し、第3データビット領域D3のデータを読み取った後、第3データビット領域D3の磁化方向が移動電流により隣接した第4データビット領域D4に移動する過程を示している。図7は、本発明の一実施例による磁気メモリ10に適用される移動電流パルス1(移動)、読み取り用パルス電流パルス2(読み取り)、書き込み用スイッチング電流信号パルス2(書き込み)を概略的に示したグラフである。図7で横軸は、時間(t)軸である。
データ記録は、次の通り進められる。図5Aでのように、第3データビット領域D3にスイッチング電流を印加すれば、図5Bに図示されているように、第3データビット領域D3の磁化方向が反転される。その後、メモリトラック11に移動電流を印加すれば、図5Cでのように、各データビット領域の磁化方向が隣接したデータビット領域に移動する。すなわち、図5Bでのようなデータ保存領域20の第1データビット領域ないし第6データビット領域D1,D2,D3,D4,D5,D6の磁化方向は、それぞれ、図5Cでのように、第2データビット領域ないし第6データビット領域D2,D3,D4,D5,D6、及びバッファ領域30の第2部分Bの最初のデータビット領域B1にそれぞれ1データビット領域分移動する。
前記の通りに、特定データビット領域21の磁化方向を指定した後、一定時間が経過した後で、特定データビット領域21のデータ(磁化方向)を隣接したデータビット領域、すなわち、第4データビット領域D4に移動させ、特定データビット領域21にさらに書き込み信号を入力し、再び磁化方向を指定する過程を進める。図7に例示的に示した周期的に印加される移動電流、及びこれと同期されて周期的に印加される書き込み用スイッチング電流により、かかる磁化方向指定過程及び移動過程は、交互になされ、前記メモリトラック11の複数データビット領域には、複数ビットのデータがアレイに記録される。データ記録完了後、データ保存位置をそのまま維持したり、または前記と反対方向にマグネチックドメインを移動する移動信号を入力し、データがデータ保存領域20の第1ないし第6データビット領域D1,D2,D3,D4,D5,D6に保存された状態に維持させることもある。
保存されているデータの読み取りは、次の通り進められる。図6Aを参照すれば、第3データビット領域D3に読み取り用パルス電流を印加し、第3データビット領域D3のデータを読み取る。その後、図6Bでのように、メモリトラック11に移動電流を印加し、データビット領域の磁化方向を隣接データビット領域に移動させる。図6Aでのように、データ保存領域20の第1データビット領域ないし第6データビット領域D1,D2,D3,D4,D5,D6の磁化方向は、図6Bに図示されているように、第2データビット領域ないし第6データビット領域D2,D3,D4,D5,D6及びバッファ領域30の第2部分Bの最初のデータビット領域B1にそれぞれ1データビット領域分移動する。
前記の通りに、特定データビット領域21の磁化方向を読み取った後、一定時間が経過した後で、特定データビット領域21のデータ(磁化方向)を隣接したデータビット領域、すなわち、第4データビット領域D4に移動させ、特定データビット領域21に対し、さらに読み取り信号を入力してデータ読み取りを進める。図7に例示的に示した周期的に印加される移動電流、及びこれと同期されて周期的に印加される読み取り用パルス電流により、かかる読み取り過程及び移動過程は、前記メモリトラック11に保存された複数データビットに対して読み取りを完了するまで交互になされる。データ読み取り完了後、データ保存位置をそのまま維持したり、または前記とは反対方向にマグネチックドメインを移動させる移動信号を入力し、データがデータ保存領域20の第1データビット領域ないし第6データビット領域D1,D2,D3,D4,D5,D6に保存された状態に維持されるようにすることもある。
読み取りの際、前記読み取り用パルス電流は、図7に例示的に図示されているように、極性反転なしに、ドメイン移動信号と同期されて周期的に印加される。読み取り用パルス電流を基準層15及びメモリトラック11の特定データビット領域21間に印加するとき、例えば、トンネル障壁を通過する電流量及びこれによる抵抗値は、メモリトラック11の特定データビット領域21の磁化方向が基準層15の磁化方向と平行であるか、または反平行であるかによって変わる。例えば、基準層15と、メモリトラック11の特定データビット領域21との磁化方向が平行であるときには、反平行であるときより抵抗値がさらに小さくなる。かかる抵抗差より、特定データビット領域21に保存されたデータ値を認識することとなる。
以上、1データビット領域単位になされ、マグネチックドメイン移動、及びデータビット書き込みまたは読み取りが交互になされると説明及び図示したが、それらは例示的なものであり、多様な変形例が可能である。例えば、複数のデータビット領域を移動させた後、読み取りまたは書き込みがなされることもある。
図8は、本発明の他の実施例による磁気メモリ100を概略的に示している。本発明の他の実施例による磁気メモリ100は、図8に図示されたように、メモリトラック11にデータ保存領域20が複数個備わった構造を有することもある。このとき、メモリトラック11は、マグネチックドメイン移動によってデータ保存領域20外に移動するデータを保存することができるように、データ保存領域20に連続するバッファ領域30をさらに具備できる。このとき、第2入力部40は、データ保存領域20当たり少なくとも一つずつ対応するように設けられる。このように、複数のデータ保存領域20を具備し、各データ保存領域20に対応するように少なくとも1つの第2入力部40を具備する場合、データ保存領域20の数だけデータ保存容量を増やしながらも、メモリトラック11が複数のデータビット領域からなる単一データ保存領域を具備する本発明の一実施例による磁気メモリ10とほぼ同一であるか、または速いデータ保存速度あるいはデータ読み取り速度を達成できる。
図8では、2つのデータ保存領域20間に、バッファ領域30を具備する例を示している。複数のデータ保存領域20を具備する構造で、バッファ領域30は、最初のデータ保存領域の前、及び最後のデータ保存領域の後のうち、少なくともいずれか一ヵ所と、2つの隣接するデータ保存領域との間にそれぞれ設けられうる。
一方、図8では、1データ保存領域20に対して基準層15及び第2入力部40がそれぞれ2個ずつ設けられた例を示している。このように、1データ保存領域20に対して第2入力部40を複数個具備すれば、データ保存速度またはデータを読み取る速度をさらに速められる。
他の例として、1データ保存領域20に対して基準層15及び第2入力部40がそれぞれ複数個設けられ、書き込み信号入力と読み取り信号入力とが互いに異なる第2入力部40を介してなされるように、磁気メモリ100を構成することも可能である。また、書き込み信号入力がなされるデータ保存領域20と、保存されたデータを読み取るデータ保存領域20とを区分して使用することもできる。
以上では、本発明による磁気メモリが複数ビットのデータを読み取ることができる磁性素子(すなわち、MTJまたはGMRセンサ)と、スピン転換トルク法による記録用磁性素子との構成を単一素子で具現できるように設けられた場合を例に挙げて説明及び図示したが、本発明はこれらに限定されるものではない。すなわち、本発明による磁気メモリは、マグネチックドメイン移動を使用して複数ビットのデータを読み取ることができる磁性素子(すなわち、MTJまたはGMRセンサー)として適用されたり、またはマグネチックドメイン移動を使用して複数ビットのデータを記録できるスピン転換トルク法による記録用磁性素子として適用されることもある。
また、以上では、本発明による磁気メモリが、基準層15、及びこの基準層15上に位置したメモリトラック11の特定データビット領域21、その間の非磁性層13により形成されるMTJセルに書き込み電流信号を直接的に印加してスピン転換トルク方式によりデータを書き込むように設けられた場合を例に挙げて説明したが、本発明はそれに限定されるものではない。
すなわち、本発明による磁気メモリは、メモリトラック11の特定データビット領域のマグネチックドメインを電流により誘導された磁場により選択的に磁化反転させることによってデータビットを記録するように設けられうる。その場合、例えば、本発明による磁気メモリは、メモリトラックに直接書き込み電流信号または読み取り電流信号を印加する第2入力部40の代わりに、メモリトラック11の特定データビット領域の選択的な磁化反転のための磁場を発生させる構造と、メモリトラック11に保存されているデータビットを読み取るために電界効果トランジスタを含む構成とを有することもある。
本発明のマグネチックドメイン移動を利用した磁気メモリは、例えば、磁気記録関連の技術分野に効果的に適用可能である。
本発明による磁気メモリを概略的に示している図面である。 軟磁性物質であるNiFeの磁気履歴曲線を示しているグラフである。 非晶質軟磁性物質であるNiFeSiBの磁気履歴曲線を示しているグラフである。 本発明による磁気メモリの具体的な一実施例を概略的に示している図面である。 図4の第3データビット領域(特定データビット領域)にスイッチング電流が印加されて磁化方向が反転され、磁化反転された第3データビット領域の磁化方向が移動電流により隣接した第4データビット領域に移動する過程を示している図面である。 図4の第3データビット領域(特定データビット領域)にスイッチング電流が印加されて磁化方向が反転され、磁化反転された第3データビット領域の磁化方向が移動電流により隣接した第4データビット領域に移動する過程を示している図面である。 図4の第3データビット領域(特定データビット領域)にスイッチング電流が印加されて磁化方向が反転され、磁化反転された第3データビット領域の磁化方向が移動電流により隣接した第4データビット領域に移動する過程を示している図面である。 第3データビット領域(特定データビット領域)に読み取り用パルス電流を印加して第3データビット領域のデータを読み取った後、第3データビット領域の磁化方向が移動電流により隣接した第4データビット領域に移動する過程を示している図面である。 第3データビット領域(特定データビット領域)に読み取り用パルス電流を印加して第3データビット領域のデータを読み取った後、第3データビット領域の磁化方向が移動電流により隣接した第4データビット領域に移動する過程を示している図面である。 本発明の一実施例による磁気メモリに適用される移動電流パルス1(移動)、読み取り用パルス電流パルス2(読み取り)、書き込み用スイッチング電流信号パルス2(書き込み)を概略的に示したグラフである。 本発明の他の実施例による磁気メモリを概略的に示している図面である。
符号の説明
1,10,100 磁気メモリ
11 メモリトラック
13 非磁性層
15 基準層
20 データ保存領域
21 特定データビット領域
30 バッファ領域
40 第2入力部
50 第1入力部
D1〜D6 第1〜第6データビット領域

Claims (9)

  1. 複数のマグネチックドメインが形成され、該マグネチックドメインからなるデータビッ
    トがアレイに保存されうるメモリトラックと、
    前記メモリトラックの一部領域に対応するように形成され固定された磁化方向を有する基準層と、
    前記メモリトラックに電気的に連結されたもので、前記メモリトラックのデータビット領域に保存されたデータを隣接したデータビット領域に移動させるように、マグネチックドメイン移動信号を入力する第1入力部と、
    前記メモリトラックの少なくとも一つのデータビット領域と前記基準層に電気的に連結され書き込み電流信号及び読み取り電流信号を入力する第2入力部と、を具備し、
    前記メモリトラックは、マグネチックドメイン障壁の存在により、複数のマグネチックドメインが形成されると同時に、該マグネチックドメインの移動が容易に行えるように、NiFeより大きい磁気異方性定数を有する非晶質軟磁性物質からなり、
    前記一つの基準層及び前記一つの第2入力部を通じてデータの書き込み及び読み取りの両方を行うことを特徴とする磁気メモリ。
  2. 前記メモリトラックは、NiFeのIV族元素合金により形成されることを特徴とする請求項1に記載の磁気メモリ。
  3. 前記メモリトラックは、NiFeSiBにより形成されることを特徴とする請求項2に記載の磁気メモリ。
  4. 前記メモリトラックは、NiFeより磁気異方性定数の大きな非晶質軟磁性物質からなることを特徴とする請求項1に記載の磁気メモリ。
  5. 前記メモリトラックに前記基準層の有効サイズに相応する前記マグネチックドメインからなるデータビットがアレイに保存されうるように形成されていることを特徴とする請求項1から請求項4のうちいずれか1項に記載の磁気メモリ。
  6. 前記基準層と前記メモリトラックとの間には、非磁性層がさらに備わったことを特徴とする請求項1に記載の磁気メモリ。
  7. 前記非磁性層は、導電膜やトンネリング障壁としての役割を行う絶縁膜であることを特徴とする請求項6に記載の磁気メモリ。
  8. 前記メモリトラックは、
    保存しようとするデータビット数に対応するデータビット領域を備え、複数ビットのデータが保存される少なくとも1つのデータ保存領域と、
    マグネチックドメイン移動時に、データ保存領域外に移動するデータを必要によって保存することができるようにデータ保存領域に連続するバッファ領域とを備えることを特徴とする請求項1に記載の磁気メモリ。
  9. 前記メモリトラックは、複数のデータ保存領域を備え、
    2つの隣接するデータ保存領域間には、バッファ領域が位置し、
    前記第2入力部は、各データ保存領域に少なくとも1個ずつ対応するように設けられたことを特徴とする請求項8に記載の磁気メモリ。
JP2007035442A 2006-02-22 2007-02-15 マグネチックドメイン移動を利用した磁気メモリ Active JP5300201B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020060017238A KR100754397B1 (ko) 2006-02-22 2006-02-22 마그네틱 도메인 이동을 이용한 자기메모리
KR10-2006-0017238 2006-02-22

Publications (2)

Publication Number Publication Date
JP2007227916A JP2007227916A (ja) 2007-09-06
JP5300201B2 true JP5300201B2 (ja) 2013-09-25

Family

ID=37807890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007035442A Active JP5300201B2 (ja) 2006-02-22 2007-02-15 マグネチックドメイン移動を利用した磁気メモリ

Country Status (6)

Country Link
US (1) US7738278B2 (ja)
EP (1) EP1826773B1 (ja)
JP (1) JP5300201B2 (ja)
KR (1) KR100754397B1 (ja)
CN (1) CN101026001B (ja)
DE (1) DE602006007099D1 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100834811B1 (ko) * 2006-11-28 2008-06-09 고려대학교 산학협력단 수직 자기 이방성을 가지는 코발트-철-실리콘-보론/플래티늄 다층박막
KR101435516B1 (ko) * 2008-02-14 2014-08-29 삼성전자주식회사 자구벽 이동을 이용한 정보저장장치 및 그 동작방법
KR20090125378A (ko) * 2008-06-02 2009-12-07 삼성전자주식회사 메모리 장치 및 이를 포함하는 데이터 저장 장치
KR101430170B1 (ko) * 2008-06-16 2014-08-13 삼성전자주식회사 자구벽 이동을 이용한 정보저장장치의 구동방법
JP2010010605A (ja) * 2008-06-30 2010-01-14 Fujitsu Ltd 磁気メモリ素子、磁気メモリ装置およびメモリ素子製造方法
TWI416529B (zh) * 2008-09-26 2013-11-21 Ind Tech Res Inst 磁性移位暫存記憶體以及操作方法
GB2465370A (en) * 2008-11-13 2010-05-19 Ingenia Holdings Magnetic data storage comprising a synthetic anti-ferromagnetic stack arranged to maintain solitons
KR20100068791A (ko) 2008-12-15 2010-06-24 삼성전자주식회사 자성트랙, 자성트랙을 포함하는 정보저장장치 및 상기 정보저장장치의 동작방법
KR20100075203A (ko) 2008-12-24 2010-07-02 삼성전자주식회사 정보저장장치 및 그의 동작방법
US8559214B2 (en) 2008-12-25 2013-10-15 Nec Corporation Magnetic memory device and magnetic random access memory
WO2010074130A1 (ja) * 2008-12-25 2010-07-01 日本電気株式会社 磁気メモリ素子及び磁気ランダムアクセスメモリ
US8406029B2 (en) 2009-02-17 2013-03-26 Samsung Electronics Co., Ltd. Identification of data positions in magnetic packet memory storage devices, memory systems including such devices, and methods of controlling such devices
US8050074B2 (en) * 2009-02-17 2011-11-01 Samsung Electronics Co., Ltd. Magnetic packet memory storage devices, memory systems including such devices, and methods of controlling such devices
KR20100104044A (ko) 2009-03-16 2010-09-29 삼성전자주식회사 정보저장장치 및 그의 동작방법
US7965543B2 (en) * 2009-04-30 2011-06-21 Everspin Technologies, Inc. Method for reducing current density in a magnetoelectronic device
US8279667B2 (en) * 2009-05-08 2012-10-02 Samsung Electronics Co., Ltd. Integrated circuit memory systems and program methods thereof including a magnetic track memory array using magnetic domain wall movement
JP5615310B2 (ja) * 2012-03-16 2014-10-29 株式会社東芝 磁気メモリ
CN105336357B (zh) * 2014-07-17 2018-05-11 华为技术有限公司 磁性存储装置及运用该装置的信息存储方法
JP6193190B2 (ja) * 2014-08-25 2017-09-06 株式会社東芝 磁気記憶素子および磁気メモリ
US10056126B1 (en) 2017-10-27 2018-08-21 Honeywell International Inc. Magnetic tunnel junction based memory device
US10885961B2 (en) * 2019-03-14 2021-01-05 Samsung Electronics Co., Ltd. Race-track memory with improved writing scheme
DE102019210177B4 (de) 2019-07-10 2021-05-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Herstellen einer gegenläufig magnetisierten Magnetstruktur
JP2021072138A (ja) * 2019-10-29 2021-05-06 三星電子株式会社Samsung Electronics Co.,Ltd. レーストラック磁気メモリ装置、及びその書き込み方法
CN112289363B (zh) * 2020-11-23 2023-03-14 信阳师范学院 基于磁性斯格明子的赛道存储器

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3940750A (en) * 1973-03-26 1976-02-24 International Business Machines Corporation Wall topology storage system
US5565849A (en) * 1995-02-22 1996-10-15 Sensormatic Electronics Corporation Self-biased magnetostrictive element for magnetomechanical electronic article surveillance systems
JPH0936455A (ja) * 1995-07-21 1997-02-07 Sony Corp 磁気抵抗効果素子
US6667118B1 (en) 2000-09-05 2003-12-23 Seagate Technology Llc Texture-induced magnetic anisotropy of soft underlayers for perpendicular recording media
KR100954970B1 (ko) * 2001-10-12 2010-04-29 소니 주식회사 자기 저항 효과 소자, 자기 메모리 소자, 자기 메모리 장치 및 이들의 제조 방법
KR100450794B1 (ko) * 2001-12-13 2004-10-01 삼성전자주식회사 마그네틱 랜덤 엑세스 메모리 및 그 작동 방법
US7108797B2 (en) * 2003-06-10 2006-09-19 International Business Machines Corporation Method of fabricating a shiftable magnetic shift register
US6834005B1 (en) * 2003-06-10 2004-12-21 International Business Machines Corporation Shiftable magnetic shift register and method of using the same
JP4095498B2 (ja) * 2003-06-23 2008-06-04 株式会社東芝 磁気ランダムアクセスメモリ、電子カードおよび電子装置
JP2005093488A (ja) * 2003-09-12 2005-04-07 Sony Corp 磁気抵抗効果素子とその製造方法、および磁気メモリ装置とその製造方法
US6970379B2 (en) * 2003-10-14 2005-11-29 International Business Machines Corporation System and method for storing data in an unpatterned, continuous magnetic layer
US6947235B2 (en) * 2003-12-03 2005-09-20 Hitachi Global Storage Technologies Netherlands B.V. Patterned multilevel perpendicular magnetic recording media
JP4413603B2 (ja) * 2003-12-24 2010-02-10 株式会社東芝 磁気記憶装置及び磁気情報の書込み方法
JPWO2005069368A1 (ja) 2004-01-15 2007-12-27 独立行政法人科学技術振興機構 電流注入磁壁移動素子
US7236386B2 (en) * 2004-12-04 2007-06-26 International Business Machines Corporation System and method for transferring data to and from a magnetic shift register with a shiftable data column
US7242604B2 (en) * 2005-01-13 2007-07-10 International Business Machines Corporation Switchable element
EP1701357B1 (en) * 2005-03-09 2008-10-29 Korea University Foundation Magnetic tunnel junction structure with amorphous NiFeSiB free layer
JP2007081280A (ja) * 2005-09-16 2007-03-29 Fujitsu Ltd 磁気抵抗効果素子及び磁気メモリ装置
JP2007123640A (ja) * 2005-10-28 2007-05-17 Sharp Corp 磁気メモリ、情報記録/再生方法、情報再生方法、情報記録方法
KR100754394B1 (ko) * 2006-01-26 2007-08-31 삼성전자주식회사 마그네틱 도메인 드래깅을 이용하는 자성소자 유닛 및 그작동 방법

Also Published As

Publication number Publication date
KR100754397B1 (ko) 2007-08-31
US20070195587A1 (en) 2007-08-23
KR20070084884A (ko) 2007-08-27
EP1826773A1 (en) 2007-08-29
EP1826773B1 (en) 2009-06-03
JP2007227916A (ja) 2007-09-06
DE602006007099D1 (de) 2009-07-16
US7738278B2 (en) 2010-06-15
CN101026001A (zh) 2007-08-29
CN101026001B (zh) 2012-04-18

Similar Documents

Publication Publication Date Title
JP5300201B2 (ja) マグネチックドメイン移動を利用した磁気メモリ
JP5122153B2 (ja) マグネチックドメイン移動を利用した磁気メモリ
JP5101125B2 (ja) マグネティックドメイン移動を利用する磁気メモリ装置
JP5317412B2 (ja) マグネチックドメインドラッギングを利用する磁性素子ユニット及びその作動方法
US7936597B2 (en) Multilevel magnetic storage device
JP5441005B2 (ja) 磁壁移動素子及び磁気ランダムアクセスメモリ
JP6617829B2 (ja) 磁壁利用型スピンmosfet、磁壁利用型アナログメモリ、不揮発性ロジック回路および磁気ニューロ素子
JP5613402B2 (ja) 磁壁移動を利用した情報保存装置、及び磁壁移動を利用した情報保存装置の動作方法
JP2007080952A (ja) 多値記録スピン注入磁化反転素子およびこれを用いた装置
JP2010062342A (ja) 磁性細線及び記憶装置
KR101231288B1 (ko) 자기 메모리 셀 및 자기 랜덤 액세스 메모리
US20230145983A1 (en) Magnetic domain wall-based memory device with track-crossing architecture
KR101236116B1 (ko) 마그네틱 도메인의 이동을 이용하는 마그네틱 메모리 및 동작방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120403

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130219

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130618

R150 Certificate of patent or registration of utility model

Ref document number: 5300201

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250