JP5279896B2 - 電源装置 - Google Patents

電源装置 Download PDF

Info

Publication number
JP5279896B2
JP5279896B2 JP2011509114A JP2011509114A JP5279896B2 JP 5279896 B2 JP5279896 B2 JP 5279896B2 JP 2011509114 A JP2011509114 A JP 2011509114A JP 2011509114 A JP2011509114 A JP 2011509114A JP 5279896 B2 JP5279896 B2 JP 5279896B2
Authority
JP
Japan
Prior art keywords
protection circuit
diode
substrate
conductor
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011509114A
Other languages
English (en)
Other versions
JPWO2010119514A1 (ja
Inventor
昭弘 鈴木
仁志 城所
利樹 腰前
宏 久留島
真人 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2010119514A1 publication Critical patent/JPWO2010119514A1/ja
Application granted granted Critical
Publication of JP5279896B2 publication Critical patent/JP5279896B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/0814Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the output circuit
    • H03K17/08142Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the output circuit in field-effect transistor switches
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/209Heat transfer by conduction from internal heat source to heat radiating structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thermal Sciences (AREA)
  • Inverter Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Dc-Dc Converters (AREA)

Description

本発明は、電子部品を高電圧破壊から守るための保護回路を備えた電源装置に関するものである。
レーザ電源装置では、インバータ(高周波インバータ回路)の周波数として100kHz〜1MHz程度の高周波が用いられている。また、レーザ電源装置のコンバータ部やインバータ部のスイッチには、例えばMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)に代表される半導体スイッチが用いられている。
MOSFETは、デバイス構造上寄生的にできる寄生ダイオードを内蔵しており、寄生ダイオード部分はデバイスとしての特性を保証できない場合がある。そのため、寄生ダイオードに電流が流れることを防ぐために、MOSFETと直列にダイオードを接続し、さらにMOSFETと逆並列に寄生ダイオードとは異なるダイオード(寄生ダイオードへの電流防止用ダイオード)を接続して用いる場合がある。ダイオードとしてSBD(ショットキーバリアダイオード)が用いられることが多い。このようなMOSFETでは、電流がダイオード、MOSFETのドレイン、MOSFETのソースの順番の経路、およびMOSFETのソース、電流防止用ダイオードの順番の経路で流れる。また、レーザ電源装置に用いる高周波インバータ回路には、ダイオードを高電圧破壊から守るための保護回路(ツェナーダイオード等)を付加して用いている。これにより、ダイオードに高電圧が印加された場合、ダイオードと並列接続した保護回路が導通し、ダイオードの過電圧破壊を抑制している(特許文献1参照)。
特開2003−243749号公報
しかしながら、上記従来の技術では、保護回路が発熱し、温度上昇によってMOSFETの特性が変化するのを防ぐため冷却構造が大型化する課題があった。また、電源装置のコンバータ部やインバータ部のスイッチは、電流容量を増すために保護回路を備えたMOSFETを複数個並列接続して用いる場合がある。この場合、ダイオード順方向電流は、温度上昇に対して正帰還特性があるので、ダイオードを並列接続して用いる場合には、一部のダイオードに電流が集中し、ダイオードが破壊する場合があるといった問題があった。また、プリント基板上の保護回路を冷却する方法として、柔軟性をもたせたアルミパック型水冷ユニットをプリント基板に密着させる方法がある。この方法では、水冷ユニットと回路素子間に隙間が発生し、熱伝導が阻害されるおそれがあるという問題があった。
本発明は、上記に鑑みてなされたものであって、保護回路の熱上昇を抑えて安定した電源を供給する電源装置を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明は、トランジスタを有したスイッチ素子を用いて電源電圧を供給する電源装置において、前記電源電圧を発生させる回路基板となる回路用プリント基板と、前記トランジスタと逆並列に接続されて前記トランジスタを回避した経路で電流を流せるよう構成された第1のダイオードと、前記トランジスタと直列接続されて前記トランジスタに形成される寄生ダイオードに流れる電流を防ぐ第2のダイオードと、前記第2のダイオードと並列に接続されて前記第2のダイオードを高電圧破壊から守るとともに前記回路用プリント基板とは異なる基板上に形成された保護回路と、前記回路用プリント基板外で前記保護回路と接合して前記保護回路を冷却する冷却部と、を備えることを特徴とする。
本発明にかかる電源装置は、保護回路が回路用プリント基板とは異なる基板上に形成されて回路用プリント基板外で冷却部と接合するので、保護回路の熱上昇を抑えて安定した電源を供給することが可能になるという効果を奏する。
図1は、電源装置の構成を示す図である。 図2は、昇圧コンバータ部またはインバータ部のスイッチの詳細な構成を示す図である。 図3は、インバータ部の構成の一例を示す図である。 図4は、水冷フィンの構成の一例を示す図である。 図5は、メインプリント基板と冷却フィンの実施の形態1に係る構成を示す図である。 図6は、保護回路基板の内部パターンと冷却フィンを直接接合した場合の構成を示す図である。 図7は、保護回路基板の裏面と冷却フィンとをアイランド状の導体で接合した場合の構成を示す図である。 図8は、保護回路基板の裏面と冷却フィンとをベタパターン状の導体で接合した場合の構成を示す図である。 図9は、保護回路基板の裏面と冷却フィンとをアイランド状の導体および絶縁物で接合した場合の構成を示す図である。 図10は、保護回路基板の裏面と冷却フィンとをベタパターン状の導体および絶縁物で接合した場合の構成を示す図である。 図11は、保護回路基板の内部パターンと冷却フィンを保護回路基板の側面側から接合した場合の構成を示す図である。 図12は、メインプリント基板と冷却フィンの実施の形態2に係る構成を示す図である。 図13は、1つのスイッチ素子を構成する半導体スイッチ群を同一の絶縁物上に配置した場合の構成を示す図である。 図14は、ダイオードと保護回路との間に発生する浮遊インダクタンスを説明するための図である。
以下に、本発明の実施の形態係る電源装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。以下の実施の形態では、電源装置の一例として、電源装置がレーザ出力に用いられるレーザ電源装置である場合について説明する。
実施の形態1.
本実施の形態では、半導体部品の保護回路の冷却能力を高めるために、保護対象の半導体部品が接続されるメインプリント基板とは別のプリント基板上に保護回路を構成する。そして、メインプリント基板の配線パターンと電気的に接続された導体を、保護回路を構成するプリント基板上に設け、この導体を伝熱性絶縁物(絶縁体)などを介して冷却フィンと熱的に接続する。
図1は、電源装置の構成を示す図である。電源装置100は、整流部50と、昇圧コンバータ部51と、インバータ部52と、昇圧トランス部53と、放電電極部54とを備えている。
整流部50は、商用200Vの三相交流電源を整流して脈流を得る。昇圧コンバータ部51は、平滑コンデンサC1およびインダクタL1により、整流電圧を平滑して直流電圧を得て、それを昇圧する。昇圧コンバータ部51にはスイッチ素子S1が設けられており、昇圧コンバータ部51の出力電圧値は、duty比設定回路81がスイッチ素子S1のduty比を変えることにより任意に設定できる。
インバータ部52は、昇圧コンバータ部51により昇圧された直流電圧を高周波に変換するための複数のスイッチ素子Q1〜Q4を有している。インバータ部52は、スイッチ素子Q1とスイッチ素子Q2、スイッチ素子Q3とスイッチ素子Q4の組み合わせを、スイッチング信号作成回路82からのスイッチング信号で交互に高周波でオン/オフすることにより、昇圧された電圧を高周波に変換する。昇圧トランス部53は、インバータ部52により高周波に変換された高周波電圧を放電電極部(レーザ発振用放電電極部)54への印加電圧まで昇圧する。放電電極部54は、昇圧トランス部53により昇圧された電圧(電源電圧)の供給によってレーザを発する。電源装置100では、インバータ(高周波インバータ回路)の周波数として例えば100kHz〜1MHz程度の高周波が用いられる。
なお、図1では電源装置100がduty比設定回路81、スイッチング信号作成回路82を備える構成の場合について説明したが、電源装置100はduty比設定回路81、スイッチング信号作成回路82を備えていなくてもよい。
図2は、昇圧コンバータ部またはインバータ部のスイッチの詳細な構成を示す図である。図2では、スイッチ素子Q1〜Q4が有している半導体スイッチTXの構成を示している。半導体スイッチTXは、MOSFET3、ダイオード(第2のダイオード)2、保護回路1、ダイオード(第1のダイオード)5を備えている。また、半導体スイッチTXは、デバイス構造上寄生的にできる寄生ダイオード4を内蔵している。ダイオードとしてSBD(ショットキーバリアダイオード)が用いることが多い。
ダイオード2は、MOSFET3のドレイン側で、MOSFET3と直列に接続されている。ダイオード5は、MOSFET3と逆並列に接続されている。保護回路1は、ダイオード2を高電圧破壊から守るための保護回路素子であり、例えばツェナーダイオード等である。保護回路1は、ダイオード2と並列に接続されている。これにより、ダイオード2に高電圧が印加された場合、保護回路1が導通し、ダイオード2の過電圧破壊を抑制する。
電源装置100では、図2に示した半導体スイッチTXを1〜複数個並列に接続することによって、昇圧コンバータ部51やインバータ部52の1つのスイッチ素子(スイッチS1やスイッチ素子Q1〜Q4)を構成している。ここで、インバータ部52の構成の一例について説明する。図3は、インバータ部の構成の一例を示す図である。図3では、インバータ部52の各スイッチ素子Q1〜Q4が、それぞれ2並列の半導体スイッチTXを有している場合を図示している。
スイッチ素子Q1は、半導体スイッチTXとして半導体スイッチT11,T12を有し、スイッチ素子Q2は、半導体スイッチTXとして半導体スイッチT21,T22を有している。スイッチ素子Q3は、半導体スイッチTXとして半導体スイッチT31,T32を有し、スイッチ素子Q4は、半導体スイッチTXとして半導体スイッチT41,T42を有している。
本実施の形態では、保護回路1を保護回路1用のプリント基板上に形成し、この保護回路1を冷却フィンに取り付けることによって保護回路1を冷却する。冷却フィンとしては、水冷フィンであってもよいし、空冷フィンであってもよい。本実施の形態では、保護回路1などの冷却に水冷フィンを用いる場合について説明する。また、本実施の形態では、保護回路1用のプリント基板とともに、ダイオード2用のプリント基板、MOSFET3用のプリント基板を、水冷フィンに取り付けて冷却する。
図4は、水冷フィンの構成の一例を示す図である。図4では、冷却フィン10に保護回路1を取り付けた場合を示している。冷却フィン(冷却部)10は、例えば直方体をなしており、その柱軸が筒状にくり貫かれて形成されている。具体的には、冷却フィン10は、直方体の上面側から底面側にかけて筒状にくり貫かれている。保護回路1(保護回路用のプリント基板)は、概略板状をなしており、その主面が冷却フィン10の側面と接するよう取り付けられる。冷却フィン10の筒状の穴には、水冷に用いる水が送り込まれ、これにより保護回路1が冷却される構成となっている。
本実施の形態では、電源装置100を構成する一部の回路(半導体スイッチTX以外の回路)を電源装置用のプリント基板(後述のメインプリント基板P)に形成するとともに、このメインプリント基板(回路用プリント基板)Pの近傍に冷却フィン10を配置する。また、図2に示すコンデンサからダイオード2、MOSFET3への給電は、メインプリント基板P内に設けた導体パターン(図示せず)によって行う。また、電源装置100を構成する半導体スイッチTXの各部品を、それぞれ別々のプリント基板上に形成しておき、各プリント基板を各冷却フィン10に接合する。本実施の形態では、1つの冷却フィン10に1つのプリント基板を接合する。
つぎに、電源装置100が形成されたメインプリント基板Pと冷却フィン10の構成について説明する。図5は、メインプリント基板と冷却フィンの実施の形態1に係る構成を示す図である。図5では、メインプリント基板Pおよび冷却フィン10の側面を示している。メインプリント基板Pと冷却フィン10とは、メインプリント基板Pの底面と冷却フィン10(柱状の側面のうち保護回路1などが取り付けられる側面に垂直な側面)がスペーサ22を介して接合されている。
そして、1つの冷却フィン10へは、半導体スイッチTXを構成する1つの部品(プリント基板)が接合される。図5では、各冷却フィン10に半導体スイッチT11のMOSFET3(MOSFET3用のプリント基板)、ダイオード2(ダイオード2用のプリント基板)、保護回路1(保護回路1用のプリント基板)、ダイオード5(ダイオード5用のプリント基板)、半導体スイッチT12のMOSFET3、ダイオード2、保護回路1、ダイオード5を接合した場合を示している。この構成により、MOSFET3、ダイオード5、ダイオード2、保護回路1、ダイオード5は、スペーサ22を介して冷却フィン10によって冷却される。
つぎに、保護回路1などの半導体スイッチTXの構成要素(部品)と冷却フィン10との接合部分の構成について説明する。ここでは、保護回路1と冷却フィン10との接合部分の構成について説明する。図6〜図11は、保護回路1を形成したプリント基板(保護回路基板)と冷却フィン10との接合部分を示す図であり、保護回路基板(保護回路基板21a,21b)と冷却フィン10との接合部分の断面構成を示している。以下では、紙面の右側を上面側とし、紙面の左側を底面側として説明する。
図6は、保護回路基板の内部パターンと冷却フィンを直接接合した場合の構成を示す図である。保護回路1を構成する保護回路素子1a,1bは、保護回路基板(第1の基板)21aの上面(紙面の右側)に形成されている。保護回路基板21aの底面には保護回路素子1a,1bと接続する内部パターン24が形成され、この内部パターン24が冷却フィン10に接合される。換言すると、剥き出し状態の内部パターン24(内部導体を露出した内部パターン24)が直接冷却フィン10に接合される。
また、保護回路基板21aなどの冷却フィン10への固定は、保護回路基板21aの上面側から保護回路基板21a、内部パターン24を貫通して冷却フィン10に到達するネジ23によって行われる。これにより、簡易な構成で保護回路1を冷却することが可能となる。
図7は、保護回路基板の裏面と冷却フィンとをアイランド状の導体で接合した場合の構成を示す図である。保護回路基板21aの底面には、内部パターン24と、底面側の保護回路基板(第2の基板)21bと、が形成されている。換言すると、上面側の保護回路基板21aと底面側の保護回路基板21bとの間に保護回路基板21a,21bによって挟み込まれた内部パターン24が形成されている。保護回路基板21bには保護回路基板21bの底面側から上面側へ貫通する1〜複数の貫通穴(スルーホールとなる開口部)が形成されており、この貫通穴に導体(第1の導体)25Bが埋め込まれている。導体25Bの埋め込まれる貫通穴は、例えば保護回路基板21aに保護回路素子1a,1bなどを形成する際に用いる穴あけ方法と同じ方法によってあけられる。
さらに、保護回路基板21bの底面側と冷却フィン10とは、導体(第2の導体)25Aで接合されている。導体25Aは、アイランド状の構造を有しており、各導体25Bと接合されている。換言すると、各導体25Aは、各導体25Bの配置位置に応じた位置でアイランド状に形成されている。これにより、内部パターン24は、貫通穴に埋め込まれた導体25Bと導体25Aを介して冷却フィン10に接合される。
また、保護回路基板21aなどの冷却フィン10への固定は、保護回路基板21aの上面側から保護回路基板21a、内部パターン24、保護回路基板21bを貫通して冷却フィン10に到達するネジ23によって行われる。これにより、保護回路1が形成される基板が強強度となり、強度の強い基板上に保護回路1を形成した場合であっても容易に保護回路1を冷却することが可能となる。
なお、プリント基板上に回路を形成する際に用いるリングランドを保護回路基板21bの底面に形成しておいてもよい。このリングランドは、保護回路基板21bの貫通穴の周囲に形成される平板リング状の導体である。これにより、導体25Bと導体25Aとがリングランドを介して接合されることとなり、導体25Bと導体25Aとの接合が容易になる。また、保護回路基板21bの底面にリングランドを形成する場合には、このリングランドを導体25Aとしてもよい。
図8は、保護回路基板の裏面と冷却フィンとをベタパターン状の導体で接合した場合の構成を示す図である。図8の接合構成は、図7の接合構成と比べて保護回路基板21bの底面側と冷却フィン10とを接合する導体25Aが異なっている。具体的には、図8の接合構成では、保護回路基板21bの底面側と冷却フィン10とをベタパターン状の導体25(導体板)Cで接合している。これにより、導体25Cは、複数の導体25Bと接合されている。
また、保護回路基板21aなどの冷却フィン10への固定は、保護回路基板21aの上面側から保護回路基板21a、内部パターン24、保護回路基板21b、導体25Cを貫通して冷却フィン10に到達するネジ23によって行われる。これにより、保護回路1が形成される基板が強強度となり、強度の強い基板上に保護回路1を形成した場合であっても簡易な構成で容易に保護回路1を冷却することが可能となる。
図9は、保護回路基板の裏面と冷却フィンとをアイランド状の導体および絶縁物で接合した場合の構成を示す図である。図9の接合構成は、図7の接合構成と比べて導体25Aと冷却フィン10との間に絶縁物(伝熱性絶縁物)31が配置されている点が異なっている。
また、保護回路基板21aなどの冷却フィン10への固定は、保護回路基板21aの上面側から保護回路基板21a、内部パターン24および絶縁物31を貫通して冷却フィン10に到達するネジ23によって行われる。これにより、冷却フィン10が導体25Bなどと同電位はない(アースでない)場合であっても、容易に保護回路1を冷却することが可能となる。
図10は、保護回路基板の裏面と冷却フィンとをベタパターン状の導体および絶縁物で接合した場合の構成を示す図である。図10の接合構成は、図8の接合構成と比べて導体25Cと冷却フィン10との間に絶縁物31が配置されている点が異なっている。
また、保護回路基板21aなどの冷却フィン10への固定は、保護回路基板21aの上面側から保護回路基板21a、内部パターン24、保護回路基板21bおよび絶縁物31を貫通して冷却フィン10に到達するネジ23によって行われる。これにより、冷却フィン10が導体25Cなどと同電位はない場合であっても、簡易な構成で容易に保護回路1を冷却することが可能となる。
図11は、保護回路基板の内部パターンと冷却フィンを保護回路基板の側面側から接合した場合の構成を示す図である。保護回路基板21aの底面には、内部パターン24と、底面側の保護回路基板21bと、が形成されている。そして、内部パターン24のうち保護回路基板21a,21bに接合していない面(側面)にかぎ型の導体(第3の導体)26が接合されている。この導体26は、内部パターン24との接合位置から保護回路基板21bの側面(外壁面)に沿って冷却フィン10側に延び、保護回路基板21bの底面(絶縁物31の上面)で曲がり、絶縁物31の上面側と接合されている。換言すると、導体26は、内部パターン24の側面と接続するとともに、保護回路基板21bの側面から保護回路基板21bの底面に延びている。
また、保護回路基板21aなどの冷却フィン10への固定は、保護回路基板21aの上面側から保護回路基板21a、内部パターン24、保護回路基板21bおよび絶縁物31を貫通して冷却フィン10に到達するネジ23によって行われる。これにより、強度の強い基板上に保護回路1を形成した場合であっても貫通穴を用いることなく簡易な構成で保護回路1を冷却することが可能となる。
なお、図6から図11に示した接合構成を種々組み合わせてもよい。例えば、図6に示した接合構成に絶縁物31を配置してもよい。この場合、内部パターン24と冷却フィン10との間に絶縁物31を配置する。また、図11に示した接合構成において絶縁物を省略してもよい。この場合、導体26と冷却フィン10とを直接接合させる。
また、冷却フィン10には、水冷フィンと空冷フィンの何れを用いてもよいが、電源装置100の周囲環境に金属粉等が多い場合に空冷フィンを用いる場合は、空冷フィンに到達する気流中に含まれる金属粉を取り除くフィルタを設けておく。
また、図2、図3、図5などでは、各半導体スイッチTXが1つのMOSFET3を有している場合について説明したが、各半導体スイッチTXが複数のMOSFET3を有する構成としてもよい。
なお、本実施の形態では、MOSFET3、ダイオード2、保護回路1、ダイオード5をそれぞれ別々のプリント基板(チップ)上に形成する場合について説明したが、MOSFET3、ダイオード2、保護回路1、ダイオード5のうちのいくつかを同一のプリント基板上に形成してもよい。例えば、ダイオード2と保護回路1とを同一のプリント基板上に形成し、このプリント基板を冷却フィン10に接続してもよい。
なお、本実施の形態では、保護回路1やダイオード2をプリント基板上に形成する場合について説明したが、保護回路1やダイオード2はプリント基板上以外の基板上(半導体基板上など)に形成してもよい。
従来、ダイオードを保護する保護回路はプリント基板上に構成していた。ところが、ツェナーダイオードなどの保護回路を構成する電子部品の発熱によって保護回路が温度上昇するなどの問題があった。一方、本実施の形態では、保護回路素子1a,1bで発生した熱を、保護回路基板21の内部導体(内部パターン24、導体25Bなど)、保護回路基板21a,21bの表面導体(導体25A,25C,26など)、冷却フィン10の経路で冷却フィン10に伝えることができるので効率良く保護回路を冷却することが可能となる。
このように実施の形態1によれば、保護回路1を保護回路基板21上に形成し、この保護回路基板21を冷却フィン10によって冷却しているので保護回路1の熱上昇を抑えて安定した電源を効率良く供給することが可能となる。
実施の形態2.
つぎに、図12〜図14を用いてこの発明の実施の形態2について説明する。実施の形態2では、並列接続された複数の保護回路1の温度差による特性ばらつきを抑制するために、並列接続された複数の保護回路1を個別の冷却フィン10ではなく、同一の冷却フィン10に接続する。
ダイオードの特性は温度依存性があるので、ダイオード2や保護回路1はできるだけ同じ温度で動作させることが望ましい。このため、本実施の形態では、ダイオード2と保護回路1とを同一の冷却フィン10に設置する。また、1つのスイッチ素子(スイッチ素子Q1〜Q4)内でダイオード2や保護回路1を並列接続して用いる場合、並列接続した複数のダイオード2、保護回路1の温度がそれぞれ異なるとダイオード特性によって温度の高いダイオードに電流が集中し、この結果、ダイオードが破壊する場合がある。このため、本実施の形態では、並列接続したダイオード2と保護回路1を同一の冷却フィン10に設置する。換言すると、1つのスイッチ素子を構成する部品群(ダイオード2や保護回路1)を同一の冷却フィン10に接続する。
図12は、メインプリント基板と冷却フィンの実施の形態2に係る構成を示す図である。図12では、メインプリント基板Pおよび冷却フィン10の側面を示している。メインプリント基板Pと冷却フィン10とは、メインプリント基板Pの底面と冷却フィン10の側面でスペーサ22を介して接合されている。
そして、1つの冷却フィン10へは、1つのスイッチ素子が有している半導体スイッチTX群の保護回路1とダイオード2(スイッチ素子内で並列接続された保護回路1とダイオード2)が接合される。図12では、1つの冷却フィン10にスイッチ素子Q1の部品群(保護回路1とダイオード2)を接合した場合を示している。具体的には、1つの冷却フィン10に半導体スイッチT11のダイオード2、半導体スイッチT11の保護回路1、半導体スイッチT12のダイオード2、半導体スイッチT12の保護回路1を接合している。
この構成により、同一のスイッチ素子を構成する保護回路1とダイオード2は、同一の冷却フィン10によって冷却される。したがって、同一のスイッチ素子内で並列接続された複数の保護回路1、ダイオード2の温度差による特性ばらつきを抑制することが可能となる。
また、1つのスイッチ素子を構成する半導体スイッチTX群を同一の絶縁物32上に配置してもよい。図13は、1つのスイッチ素子を構成する半導体スイッチ群を同一の絶縁物上に配置した場合の構成を示す図である。なお、図13では、半導体スイッチT11,T12のMOSFET3やダイオード5の図示を省略している。
図13では、並列接続した半導体スイッチT11のダイオード2、半導体スイッチT11の保護回路1、半導体スイッチT12のダイオード2、半導体スイッチT12の保護回路1を冷却フィン10との間に設けた共通の1枚の絶縁物32上に配置している。絶縁物32として熱伝導率の高い部材を用いることにより、1つのスイッチ素子を構成する保護回路1とダイオード2の間の温度差を小さくすることができる。
ところで、電源装置100をレーザ用電源装置として用いる場合、動作周波数が100kHz〜1MHz程度と高いので、インバータ部のスイッチ素子にはMOSFET3など数十ns〜数100ns程度でスイッチ動作する高速素子が用いられる。この場合、MOSFET3と直列接続されたダイオード2にも、MOSFET3のスイッチング速度に相当する周波数の電圧変化、電流変化が発生する。ダイオード2に保護回路1を接続する場合に、配線経路が長いと、ダイオード2と保護回路1との間に図14に示すような浮遊インダクタンス6(保護回路1に直列接続した浮遊インダクタンス分)が入る場合がある。浮遊インダクタンス6が大きな場合、MOSFET3がオン/オフした際に電圧の一部が浮遊インダクタンス6にかかるので、保護回路1を構成するツェナーダイオードに印加される電圧が減少する。これにより、ツェナーダイオードの導通が遅れ、保護回路1の動作が遅れることにより、ダイオード2に過電圧が印加される場合がある。この結果、保護回路1の動作が遅れてダイオード2を破壊する場合がある。
そこで、本実施の形態では、図12や図13に示すようにダイオード2と保護回路1を同一の冷却フィン10上で隣接するよう配置している。この構成をとることにより、保護回路1からダイオード2への配線距離が短くなるので、ダイオード2と保護回路1との間に発生する浮遊インダクタンス6を抑制することができ、ダイオード2に過電圧が印加されることを防ぐことが可能となる。
なお、本実施の形態では、並列接続したダイオード2と保護回路1を同一の冷却フィン10に設置する場合について説明したが、1つの半導体スイッチの保護回路1とダイオード2を同一の冷却フィン10に設置し、並列接続される保護回路1とダイオード2は、半導体スイッチTX毎に異なる冷却フィン10に設置してもよい。換言すると、1つの半導体スイッチTXを構成する保護回路1とダイオード2を1つの冷却フィン10に設置し、各半導体スイッチTXは、別々の冷却フィン10に設置してもよい。また、スイッチ素子Q1〜Q4を構成する全ての保護回路1とダイオード2を同一の冷却フィン10に接続してもよい。また、保護回路1とダイオード2とともにMOSFET3やダイオード5を同一の冷却フィン10に接続してもよい。
このように、実施の形態2によれば、1つのスイッチ素子を構成する保護回路1とダイオード2を同一の冷却フィン10に接続するので、1つのスイッチ素子を構成する保護回路1やダイオード2の間の温度差を小さくすることができる。したがって、温度ばらつきによるダイオード2、保護回路1への電流集中の発生を防止できる。
また、ダイオード2と保護回路1を同一の冷却フィン10上で隣接するよう配置しているので、ダイオード2と保護回路1との間に発生する浮遊インダクタンス6を抑制することができ、その結果、ダイオード2に過電圧が印加されることを防ぐことが可能となる。
なお、上述した実施の形態1,2では、インバータ部52のMOSFET3、MOSFET3と直列接続したダイオード2、およびダイオード2と並列接続した保護回路1について説明したが、昇圧コンバータ部51のMOSFET3、MOSFET3と直列接続したダイオード2、およびダイオード2と並列接続した保護回路1に上述した実施の形態1,2を適用してもよく、この場合もインバータ部52と同様の効果を奏する。また、実施の形態1,2で用いた導体25A〜25C,26、内部パターン24は、熱伝導率の高い絶縁物であってもよい。
以上のように、本発明に係る電源装置は、電子部品を高電圧破壊から守るための保護回路の冷却に適している。
1 保護回路
1a,1b 保護回路素子
2 ダイオード
3 MOSFET
4 寄生ダイオード
5 ダイオード
6 浮遊インダクタンス
10 冷却フィン
21a,21b 保護回路基板
22 スペーサ
23 ネジ
24 内部パターン
25A〜25C,26 導体
31,32 絶縁物
50 整流部
51 昇圧コンバータ部
52 インバータ部
53 昇圧トランス部
54 放電電極部
100 電源装置
P メインプリント基板
Q1〜Q4 スイッチ素子
T11,T12,T21,T22,T31,T32,T41,T42,TX 半導体スイッチ

Claims (11)

  1. トランジスタを有したスイッチ素子を用いて電源電圧を供給する電源装置において、
    前記電源電圧を発生させる回路基板となる回路用プリント基板と、
    前記トランジスタと逆並列に接続されて前記トランジスタを回避した経路で電流を流せるよう構成された第1のダイオードと、
    前記トランジスタと直列接続されて前記トランジスタに形成される寄生ダイオードに流れる電流を防ぐ第2のダイオードと、
    前記第2のダイオードと並列に接続されて前記第2のダイオードを高電圧破壊から守るとともに前記回路用プリント基板とは異なる基板上に形成された保護回路と、
    前記回路用プリント基板外で前記保護回路と接合して前記保護回路を冷却する冷却部と、
    を備えることを特徴とする電源装置。
  2. 前記冷却部と前記保護回路との間に配置されて前記冷却部と前記保護回路との間を絶縁する絶縁部をさらに備えることを特徴とする請求項1に記載の電源装置。
  3. 同一の前記トランジスタに接続される前記第2のダイオードと前記保護回路とが同一の前記冷却部に接合され、前記冷却部は、前記保護回路および前記第2のダイオードを冷却することを特徴とする請求項1に記載の電源装置。
  4. 1つの前記スイッチ素子内で並列接続される前記第2のダイオードと前記保護回路とが同一の前記冷却部に接合され、前記冷却部は、前記保護回路および前記第2のダイオードを冷却することを特徴とする請求項1に記載の電源装置。
  5. 前記同一の冷却部に接続される前記第2のダイオードおよび前記保護回路は、同一の前記絶縁部を介して前記冷却部に接合されることを特徴とする請求項3または4に記載の電源装置。
  6. 前記保護回路と前記第2のダイオードとは、前記冷却部上で隣接配置されることを特徴とする請求項3または4に記載の電源装置。
  7. 前記保護回路が形成される基板は、当該基板の底面に前記保護回路と接続する内部パターンを有し、
    前記保護回路は、前記内部パターンと前記冷却部とが接合されることによって前記冷却部を介して前記冷却部に接合されることを特徴とする請求項1に記載の電源装置。
  8. 前記保護回路が形成される基板は、前記保護回路を載せる第1の基板と、前記第1の基板の底面で前記保護回路と接続する内部パターンと、前記第1の基板との間で前記内部パターンを挟み込む第2の基板と、前記第2の基板の底面側から前記内部パターンまで開けられた開口部に埋め込まれて前記内部パターンと接合された第1の導体と、前記第2の基板の底面上に配置されて前記第1の導体に接合された第2の導体と、を有し、
    前記保護回路は、前記第2の導体と前記冷却部とが接合されることによって、前記内部パターン、前記第1の導体および前記第2の導体を介して前記冷却部に接合されることを特徴とする請求項1に記載の電源装置。
  9. 前記第2の導体は、前記第1の導体の配置に応じた位置で前記第1の導体の配置位置毎にアイランド状で形成されていることを特徴とする請求項8に記載の電源装置。
  10. 前記第2の導体は、複数の前記第1の導体と接合するようベタパターンで形成されていることを特徴とする請求項8に記載の電源装置。
  11. 前記保護回路が形成される基板は、前記保護回路を載せる第1の基板と、前記第1の基板の底面で前記保護回路と接続する内部パターンと、前記第1の基板との間で前記内部パターンを挟み込む第2の基板と、前記内部パターンの側面と接続するとともに前記第2の基板の側面から前記第2の基板の底面に延びる第3の導体と、を有し、
    前記保護回路は、前記第3の導体と前記冷却部とが接合されることによって、前記内部パターンおよび前記第3の導体を介して前記冷却部に接合されることを特徴とする請求項1に記載の電源装置。
JP2011509114A 2009-04-14 2009-04-14 電源装置 Active JP5279896B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/057528 WO2010119514A1 (ja) 2009-04-14 2009-04-14 電源装置

Publications (2)

Publication Number Publication Date
JPWO2010119514A1 JPWO2010119514A1 (ja) 2012-10-22
JP5279896B2 true JP5279896B2 (ja) 2013-09-04

Family

ID=42982198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011509114A Active JP5279896B2 (ja) 2009-04-14 2009-04-14 電源装置

Country Status (5)

Country Link
US (1) US8773832B2 (ja)
JP (1) JP5279896B2 (ja)
CN (1) CN102396141B (ja)
DE (1) DE112009004661T8 (ja)
WO (1) WO2010119514A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5687027B2 (ja) 2010-10-27 2015-03-18 三菱重工業株式会社 インバータ一体型電動圧縮機
SE537080C2 (sv) * 2012-07-06 2014-12-30 Comsys Ab Förbättrat strömställarskydd för resonansomriktare
JP6061101B2 (ja) * 2014-06-23 2017-01-18 株式会社安川電機 コンデンサモジュール及びマトリクスコンバータ
JP6341971B2 (ja) * 2016-10-25 2018-06-13 伸▲よし▼ 杉谷 トーテムポール回路のパワー素子接続構造
CN111030477B (zh) * 2019-12-24 2020-12-08 北京帕斯特电力集成技术有限公司 一种环形布局的模块化并联半桥集成组件
JP2023007184A (ja) * 2021-07-01 2023-01-18 日立Astemo株式会社 電力変換装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637171A (ja) * 1986-06-25 1988-01-13 Fuji Electric Co Ltd インバ−タ回路
JPH10229680A (ja) * 1997-02-17 1998-08-25 Hitachi Ltd 電気車用スイッチング装置
JP2003338695A (ja) * 2002-05-20 2003-11-28 Hitachi Unisia Automotive Ltd 電子部品の放熱装置およびその製造方法
JP2009027840A (ja) * 2007-07-19 2009-02-05 Fuji Electric Device Technology Co Ltd 電力変換装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5495149A (en) * 1993-05-20 1996-02-27 Matsushita Electric Works, Ltd. Power supply
JPH1189248A (ja) 1997-09-02 1999-03-30 Denso Corp 電力制御装置
JP3383588B2 (ja) * 1998-08-04 2003-03-04 株式会社東芝 電力変換装置
GB0003302D0 (en) * 2000-02-15 2000-04-05 Koninkl Philips Electronics Nv Semiconductor devices
JP2003243749A (ja) 2002-02-15 2003-08-29 Mitsubishi Electric Corp レーザ電源装置
JP4459883B2 (ja) * 2005-04-28 2010-04-28 三菱電機株式会社 半導体装置
JP4769752B2 (ja) * 2007-03-23 2011-09-07 トヨタ自動車株式会社 半導体装置および電動車両
US7965508B2 (en) * 2007-03-27 2011-06-21 Denso Corporation Cooling device for electronic component and power converter equipped with the same
FR2916306B1 (fr) * 2007-05-15 2009-07-17 Batscap Sa Module pour ensembles de stockage d'energie electrique permettant la detection du vieillissement desdits ensembles.
JP5434914B2 (ja) * 2008-06-12 2014-03-05 株式会社安川電機 パワーモジュールおよびその制御方法
US20100007293A1 (en) * 2008-07-09 2010-01-14 Ives Burr Meadors Programmable power-control circuit and methods of operation
CN102340233B (zh) * 2010-07-15 2014-05-07 台达电子工业股份有限公司 功率模块
WO2012046534A1 (ja) * 2010-10-06 2012-04-12 三菱電機株式会社 電源装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637171A (ja) * 1986-06-25 1988-01-13 Fuji Electric Co Ltd インバ−タ回路
JPH10229680A (ja) * 1997-02-17 1998-08-25 Hitachi Ltd 電気車用スイッチング装置
JP2003338695A (ja) * 2002-05-20 2003-11-28 Hitachi Unisia Automotive Ltd 電子部品の放熱装置およびその製造方法
JP2009027840A (ja) * 2007-07-19 2009-02-05 Fuji Electric Device Technology Co Ltd 電力変換装置

Also Published As

Publication number Publication date
CN102396141B (zh) 2014-07-09
US20110299208A1 (en) 2011-12-08
DE112009004661T8 (de) 2013-06-20
US8773832B2 (en) 2014-07-08
CN102396141A (zh) 2012-03-28
JPWO2010119514A1 (ja) 2012-10-22
WO2010119514A1 (ja) 2010-10-21
DE112009004661T5 (de) 2012-08-02

Similar Documents

Publication Publication Date Title
CN103782380B (zh) 半导体模块
JP5279896B2 (ja) 電源装置
JP2009043820A (ja) 高効率モジュール
US7035106B2 (en) Heat dissipation system for semiconductor device
JP2015135895A (ja) 半導体モジュール
JP5652346B2 (ja) パワー半導体モジュール
JP6158051B2 (ja) 電力変換装置
JP2010097967A (ja) 半導体装置
JP2008042124A (ja) 半導体パワーモジュール
JP2004186504A (ja) 半導体装置
JP5652019B2 (ja) スイッチング電源モジュールおよび電気機器
JP6070581B2 (ja) 端子台、及びこの端子台を備えた電力変換装置
JP6511992B2 (ja) 電力変換装置
JP2014082894A (ja) 同期整流装置および電源装置
Fita et al. A novel 3D structure for synchronous buck converter based on nitride Gallium transistors
JP2020140996A (ja) 半導体装置
JP2016197952A (ja) 電子機器
JP5958493B2 (ja) 電源装置
JP6638324B2 (ja) 電力変換装置
JP5851666B1 (ja) 電力変換装置
KR101826727B1 (ko) 방열 장치 및 그 제조 방법
JP2019096828A (ja) 回路構成体
US20240106354A1 (en) Systems and methods for power module for inverter for electric vehicle
JP2010109062A (ja) 電力用半導体モジュール
JP6373901B2 (ja) 高効率モジュール

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130521

R150 Certificate of patent or registration of utility model

Ref document number: 5279896

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250